Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995
Haggard, Brian; Green, W. Reed
2002-01-01
The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.
Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.
2003-01-01
Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.
NASA Astrophysics Data System (ADS)
Balbín, R.; López-Jurado, J. L.; Aparicio-González, A.; Serra, M.
2014-10-01
Oceanographic data obtained between 2001 and 2011 by the Spanish Institute of Oceanography (IEO, Spain) have been used to characterise the spatial distribution and the temporal variability of the dissolved oxygen around the Balearic Islands (Mediterranean Sea). The study area includes most of the Western Mediterranean Sea, from the Alboran Sea to Cape Creus, at the border between France and Spain. Dissolved oxygen (DO) at the water surface is found to be in a state of equilibrium exchange with the atmosphere. In the spring and summer a subsurface oxygen supersaturation is observed due to the biological activity, above the subsurface fluorescence maximum. Minimum observed values of dissolved oxygen are related to the Levantine Intermediate Waters (LIW). An unusual minimum of dissolved oxygen concentrations was also recorded in the Alboran Sea Oxygen Minimum Zone. The Western Mediterranean Deep Waters (WMDW) and the Western Intermediate Waters (WIW) show higher values of dissolved oxygen than the Levantine Intermediate Waters due to their more recent formation. Using these dissolved oxygen concentrations it is possible to show that the Western Intermediate Waters move southwards across the Ibiza Channel and the deep water circulates around the Balearic Islands. It has also been possible to characterise the seasonal evolution of the different water masses and their dissolved oxygen content in a station in the Algerian sub-basin.
USDA-ARS?s Scientific Manuscript database
The effect of daily minimum dissolved oxygen concentration on growth and yield (kg/ha) of the channel catfish (Ictalurus punctatus) and the channel x blue hybrid catfish (I. punctatus female x I. furcatus male), which shared the Jubilee strain of channel catfish as the maternal parent, was evaluated...
A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific
NASA Astrophysics Data System (ADS)
Hawco, Nicholas J.; Ohnemus, Daniel C.; Resing, Joseph A.; Twining, Benjamin S.; Saito, Mak A.
2016-10-01
Cobalt is a nutrient to phytoplankton, but knowledge about its biogeochemical cycling is limited, especially in the Pacific Ocean. Here, we report sections of dissolved cobalt and labile dissolved cobalt from the US GEOTRACES GP16 transect in the South Pacific. The cobalt distribution is closely tied to the extent and intensity of the oxygen minimum zone in the eastern South Pacific with highest concentrations measured at the oxycline near the Peru margin. Below 200 m, remineralization and circulation produce an inverse relationship between cobalt and dissolved oxygen that extends throughout the basin. Within the oxygen minimum zone, elevated concentrations of labile cobalt are generated by input from coastal sources and reduced scavenging at low O2. As these high cobalt waters are upwelled and advected offshore, phytoplankton export returns cobalt to low-oxygen water masses underneath. West of the Peru upwelling region, dissolved cobalt is less than 10 pM in the euphotic zone and strongly bound by organic ligands. Because the cobalt nutricline within the South Pacific gyre is deeper than in oligotrophic regions in the North and South Atlantic, cobalt involved in sustaining phytoplankton productivity in the gyre is heavily recycled and ultimately arrives from lateral transport of upwelled waters from the eastern margin. In contrast to large coastal inputs, atmospheric deposition and hydrothermal vents along the East Pacific Rise appear to be minor sources of cobalt. Overall, these results demonstrate that oxygen biogeochemistry exerts a strong influence on cobalt cycling.
Biver, Marc; Filella, Montserrat
2016-05-03
The toxicity of Cd being well established and that of Te suspected, the bulk, surface-normalized steady-state dissolution rates of two industrially important binary tellurides-polycrystalline cadmium and bismuth tellurides- were studied over the pH range 3-11, at various temperatures (25-70 °C) and dissolved oxygen concentrations (0-100% O2 in the gas phase). The behavior of both tellurides is strikingly different. The dissolution rates of CdTe monotonically decreased with increasing pH, the trend becoming more pronounced with increasing temperature. Activation energies were of the order of magnitude associated with surface controlled processes; they decreased with decreasing acidity. At pH 7, the CdTe dissolution rate increased linearly with dissolved oxygen. In anoxic solution, CdTe dissolved at a finite rate. In contrast, the dissolution rate of Bi2Te3 passed through a minimum at pH 5.3. The activation energy had a maximum in the rate minimum at pH 5.3 and fell below the threshold for diffusion control at pH 11. No oxygen dependence was detected. Bi2Te3 dissolves much more slowly than CdTe; from one to more than 3.5 orders of magnitude in the Bi2Te3 rate minimum. Both will readily dissolve under long-term landfill deposition conditions but comparatively slowly.
Chaplin, Jeffrey J.; Crawford, J. Kent; Brightbill, Robin A.
2009-01-01
Mortalities of young-of-the-year (YOY) smallmouth bass (Micropterus dolomieu) recently have occurred in the Susquehanna River due to Flavobacterium columnare, a bacterium that typically infects stressed fish. Stress factors include but are not limited to elevated water temperature and low dissolved oxygen during times critical for survival and development of smallmouth bass (May 1 through July 31). The infections were first discovered in the Susquehanna River and major tributaries in the summer months of 2005 but also were prevalent in 2007. The U.S. Geological Survey, Pennsylvania Fish and Boat Commission, Pennsylvania Department of Environmental Protection, and PPL Corporation worked together to monitor dissolved oxygen, water temperature, pH, and specific conductance on a continuous basis at seven locations from May through mid October 2008. In addition, nutrient concentrations, which may affect dissolved-oxygen concentrations, were measured once in water and streambed sediment at 25 locations. Data from water-quality meters (sondes) deployed as pairs showed daily minimum dissolved-oxygen concentration at YOY smallmouth-bass microhabitats in the Susquehanna River at Clemson Island and the Juniata River at Howe Township Park were significantly lower (p-value < 0.0001) than nearby main-channel habitats. The average daily minimum dissolved-oxygen concentration during the critical period (May 1-July 31) was 1.1 mg/L lower in the Susquehanna River microhabitat and 0.3 mg/L lower in the Juniata River. Daily minimum dissolved-oxygen concentrations were lower than the applicable national criterion (5.0 mg/L) in microhabitat in the Susquehanna River at Clemson Island on 31 days (of 92 days in the critical period) compared to no days in the corresponding main-channel habitat. In the Juniata River, daily minimum dissolved-oxygen concentration in the microhabitat was lower than 5.0 mg/L on 20 days compared to only 5 days in the main-channel habitat. The maximum time periods that dissolved oxygen was less than 5.0 mg/L in microhabitats of the Susquehanna and Juniata Rivers were 8.5 and 5.5 hours, respectively. Dissolved-oxygen concentrations lower than the national criterion generally occurred during nighttime and early-morning hours between midnight and 0800. The lowest instantaneous dissolved-oxygen concentrations measured in microhabitats during the critical period were 3.3 mg/L for the Susquehanna River at Clemson Island (June 11, 2008) and 4.1 mg/L for the Juniata River at Howe Township Park (July 22, 2008). Comparison of 2008 data to available continuous-monitoring data from 1974 to 1979 in the Susquehanna River at Harrisburg, Pa., indicates the critical period of 2008 had an average daily mean dissolved-oxygen concentration that was 1.1 mg/L lower (p-value < 0.0001) than in the 1970s and an average daily mean water temperature that was 0.8 deg C warmer (p-value = 0.0056). Streamflow was not significantly different (p-value = 0.0952) between the two time periods indicating that it is not a likely explanation for the differences in water quality. During the critical period in 2008, dissolved-oxygen concentrations were lower in the Susquehanna River at Harrisburg, Pa., than in the Delaware River at Trenton, N.J., or Allegheny River at Acmetonia near Pittsburgh, Pa. Daily minimum dissolved-oxygen concentrations were below the national criterion of 5.0 mg/L on 6 days during the critical period in the Susquehanna River at Harrisburg compared to no days in the Delaware River at Trenton and the Allegheny River at Acmetonia. Average daily mean water temperature in the Susquehanna River at Harrisburg was 1.8 deg C warmer than in the Delaware River at Trenton and 3.4 deg C warmer than in the Allegheny River at Acmetonia. These results indicate that any stress induced by dissolved oxygen or other environmental conditions is likely to be magnified by elevated temperature in the Susquehanna River at Harrisburg compared to the Delaw
Beman, J Michael; Carolan, Molly T
2013-01-01
Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans' largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.
NASA Astrophysics Data System (ADS)
Beman, J. Michael; Carolan, Molly T.
2013-10-01
Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans’ largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.
Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender
2016-10-01
This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to dissolved oxygen management strategies. The purpose of this study was to compare the production and water quality responses of the channel x...
Spatial and temporal patterns of dissolved oxygen (DO) in Yaquina Estuary, Oregon (USA) are examined using historic and recent data. There was a significant increasing trend in DO in the upstream portion of the estuary during the years 1960–1985. Historically, minimum dry season ...
Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes
NASA Astrophysics Data System (ADS)
Stramma, Lothar; Prince, Eric D.; Schmidtko, Sunke; Luo, Jiangang; Hoolihan, John P.; Visbeck, Martin; Wallace, Douglas W. R.; Brandt, Peter; Körtzinger, Arne
2012-01-01
Climate model predictions and observations reveal regional declines in oceanic dissolved oxygen, which are probably influenced by global warming. Studies indicate ongoing dissolved oxygen depletion and vertical expansion of the oxygen minimum zone (OMZ) in the tropical northeast Atlantic Ocean. OMZ shoaling may restrict the usable habitat of billfishes and tunas to a narrow surface layer. We report a decrease in the upper ocean layer exceeding 3.5mll-1 dissolved oxygen at a rate of <=1myr-1 in the tropical northeast Atlantic (0-25°N, 12-30°W), amounting to an annual habitat loss of ~5.95×1013m3, or 15% for the period 1960-2010. Habitat compression and associated potential habitat loss was validated using electronic tagging data from 47 blue marlin. This phenomenon increases vulnerability to surface fishing gear for billfishes and tunas, and may be associated with a 10-50% worldwide decline of pelagic predator diversity. Further expansion of the Atlantic OMZ along with overfishing may threaten the sustainability of these valuable pelagic fisheries and marine ecosystems.
Ebbert, J.C.
2002-01-01
The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by photosynthesis and respiration. The upper limit on oxygen demand caused by the scour of anoxic bed sediment and subsequent oxidation of reduced iron and manganese is less than 1 mg/L. The actual demand, if any, is probably negligible.In August and September 2001, concentrations of dissolved oxygen in the lower Puyallup River did not fall below the water-quality standard of 8 mg/L, except at high tide when the saline water from Commencement Bay reached the monitor at river mile 2.9. The minimum concentration of dissolved oxygen (7.6 mg/L) observed at river mile 2.9 coincided with the maximum value of specific conductance. Because the dissolved-oxygen standard for marine water is 6.0 mg/L, the standard was not violated at river mile 2.9. The concentration of dissolved oxygen at river mile 1.8 in the White River dropped below the water-quality standard on two occasions in August 2001. The minimum concentration of 7.8 mg/L occurred on August 23, and a concentration of 7.9 mg/L was recorded on August 13. Because there was some uncertainty in the monitoring record for those days, it cannot be stated with certainty that the actual concentration of dissolved oxygen in the river dropped below 8 mg/L. However, at other times when the quality of the monitoring record was good, concentrations as low as 8.2 mg/L were observed at river mile 1.8 in the White River.
Feaster, Toby D.; Conrads, Paul; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.
2003-01-01
Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3) fully loaded (in accordance with South Carolina Department of Health and Environmental Control National Discharge Elimination System permits). Results indicate that the 24-hour mean and minimum dissolved-oxygen concentrations for August 24, 1996, changed from the no-load condition within a range of - 0.33 to 0.02 milligram per liter and - 0.48 to 0.00 milligram per liter, respectively. Fully permitted loading conditions changed the 24-hour mean and minimum dissolved-oxygen concentrations from - 0.88 to 0.04 milligram per liter and - 1.04 to 0.00 milligram per liter, respectively. A second scenario included the addition of a point-source discharge of 25 million gallons per day to the August 1996 calibration conditions. The discharge was added at S.C. Highway 5 or at a location near Culp Island (about 4 miles downstream from S.C. Highway 5) and had no significant effect on the daily mean and minimum dissolved-oxygen concentration. A third scenario evaluated the phosphorus loading into Fishing Creek Reservoir; four loading conditions of phosphorus into Catawba River were simulated. The four conditions included fully permitted and actual loading conditions, removal of all point sources from the Catawba River, and removal of all point and nonpoint sources from Sugar Creek. Removing the point-source inputs on the Catawba River and the point and nonpoint sources in Sugar Creek reduced the organic phosphorus and orthophosphate loadings to Fishing Creek Reservoir by 78 and 85 percent, respectively.
Peters, James G.; Wilber, W.G.; Crawford, Charles G.; Girardi, F.P.
1979-01-01
A digital computer model calibrated to observe stream conditions was used to evaluate water quality in West Fork Blue River, Washington County, IN. Instream dissolved-oxygen concentration averaged 96.5% of saturation at selected sites on West Fork Blue River during two 24-hour summer surveys. This high dissolved-oxygen concentration reflects small carbonaceous and nitrogenous waste loads; adequate dilution of waste by the stream; and natural reaeration. Nonpoint source waste loads accounted for an average of 53.2% of the total carbonaceous biochemical-oxygen demand and 90.2% of the nitrogenous biochemical-oxygen demand. Waste-load assimilation was studiedfor critical summer and winter low flows. Natural streamflow for these conditions was zero, so no benefit from dilution was provided. The projected stream reaeration capacity was not sufficient to maintain the minimum daily dissolved-oxygen concentration (5 milligrams per liter) in the stream with current waste-discharge restrictions. During winter low flow, ammonia toxicity, rather than dissolved-oxygen concentration, was the limiting water-quality criterion downstream from the Salem wastewater-treatment facility. (USGS)
Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.
1996-01-01
Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.
Ye, Feng; Huang, Xiao-ping; Shi, Zhen; Liu, Qing-xi
2013-05-01
More and more attention has focused on assessing impacts of extreme hydrologic events on estuarine ecosystem under the background of climate change. Based on a summer cruise conducted in the Pearl River Estuary in 2011 (extreme drought event), we have investigated the spatial distribution of dissolved oxygen (DO) and its relationships to water column stability, nutrient concentrations, and organic matter; besides, the major reason which caused the oxygen depletion was discussed. Under the influence of the extreme drought event, low bottom water dissolved oxygen was apparent in regions characterized by great depths, with an oxygen minimum value of 1.38 mg x L(-1). Statistical analysis shows significant correlations among deltaDO, deltaT, deltaS and deltaPOC. A comparison was conducted to show the mechanisms of oxygen depletion during the summers of 1999, 2009 and 2011, respectively. The result indicates that prolonged residence time of water due to the extremely low discharge and the subsequently decomposition of organic substance are major factors causing the formation of hypoxia during the summer drought in 2011. Despite the changing nutrient and organic matter regime in the Pearl River Estuary, there was no apparent trend in the minimum values of DO over the past 2 decades.
Distribution of dissolved manganese in the Peruvian Upwelling and Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Vedamati, Jagruti; Chan, Catherine; Moffett, James W.
2015-05-01
The geochemistry of manganese (Mn) in seawater is dominated by its redox chemistry, as Mn(II) is soluble and Mn(IV) forms insoluble oxides, and redox transformations are mediated by a variety of processes in the oceans. Dissolved Mn (DMn) accumulates under reducing conditions and is depleted under oxidizing conditions. Thus the Peruvian upwelling region, characterized by highly reducing conditions over a broad continental shelf and a major oxygen minimum zone extending far offshore, is potentially a large source of Mn to the eastern Tropical South Pacific. In this study, DMn was determined on cruises in October 2005 and February 2010 in the Peruvian Upwelling and Oxygen Minimum Zone, to evaluate the relationship between Mn, oxygen and nitrogen cycle processes. DMn concentrations were determined using simple dilution and matrix-matched external standardization inductively coupled mass spectrometry. Surprisingly, DMn was depleted under the most reducing conditions along the Peruvian shelf. Concentrations of dissolved Mn in surface waters increased offshore, indicating that advection of Mn offshore from the Peruvian shelf is a minor source. Subsurface Mn maxima were observed within the oxycline rather than within the oxygen minimum zone (OMZ), indicating they arise from remineralization of organic matter rather than reduction of Mn oxides. The distribution of DMn appears to be dominated by non-redox processes and inputs from the atmosphere and from other regions associated with specific water masses. Lower than expected DMn concentrations on the shelf probably reflect limited fluvial inputs from the continent and efficient offshore transport. This behavior is in stark contrast to Fe, reported in a companion study which is very high on the shelf and undergoes dynamic redox cycling.
Wilber, William G.; Peters, James G.; Crawford, Charles G.
1979-01-01
A digital model calibrated to conditions in East Fork White River, Bartholomew County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand and the headwater concentrations of carbonaceous biochemical-oxygen demand, nitrogenous biochemical-oxygen demand, and dissolved oxygen are the most significant factors affecting the dissolved-oxygen concentration of East Fork White River downstream from the Columbus wastewater-treatment facility. The effect of effluent from the facility on the water quality of East Fork White River was minimal. The model also indicates that, with a benthic-oxygen demand of approximately 0.65 gram per square meter per day, the stream has no additional waste-load assimilative capacity during summer low flows. Regardless of the quality of the Columbus wastewater effluent, the minimum 24-hour average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams, would not be met. Ammonia toxicity is not a limiting water-quality criterion during summer and winter low flows. During winter low flows, the current carbonaceous biochemical-oxygen demand limits for the Columbus wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard. (USGS)
Liscum, Fred; Goss, R.L.; Paul, E.M.
1987-01-01
The third approach was a comparison at each site of the mean, maximum, and minimum values computed for seven constituents that did not correlate with discharge. These constituents or properties of water were temperature, pH, dissolved oxygen, dissolved oxygen percent saturation, total-coliform bacteria, fecal-conform bacteria, and fecal-streptococci bacteria. The only consistent water-quality changes observed were with the three bacteria groups, which were decreased by flood-water detention.
NASA Astrophysics Data System (ADS)
Silva, Nelson; Rojas, Nora; Fedele, Aldo
2009-07-01
Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.
NASA Astrophysics Data System (ADS)
Wright, J.; Hallam, S.; Merzouk, A.; Tortell, P.
2008-12-01
Oxygen minimum zones (OMZs) are areas of low dissolved oxygen concentrations that play a major role in biogeochemical cycling within the world's oceans. They are major sinks for nitrogen and sources for the greenhouse gases carbon dioxide and nitrous oxide. Therefore, microbial mediated biological activity associated with these systems directly impacts ocean productivity and global climate balance. There is increasing evidence that ocean warming trends will decrease dissolved oxygen concentrations within the coastal and interior regions of the subarctic Pacific, causing an expansion of the hypoxic boundary layer. This expansion will have a direct effect on coastal benthic ecosystems and the productivity of marine fisheries due to habitat loss and changes in nutrient cycling. In order to understand the potential implications of these transitions, we are performing environmental genomic analyses of indigenous microbial communities found in coastal and open ocean OMZs in the subarctic Pacific Ocean in relation to dissolved gas and nutrient concentrations. In addition to identifying and describing the key microbial players and biochemical pathways contributing to carbon, nitrogen and sulfur metabolism within the subarctic Pacific Ocean, this work provides a solid comparative genomic foundation for understanding the biogeochemical processes at work in marine OMZs around the globe.
NASA Astrophysics Data System (ADS)
Lamont, Peter A.; Gage, John D.
2000-01-01
Morphological adaptation to low dissolved oxygen consisting of enlarged respiratory surface area is described in polychaete species belonging to the family Spionidae from the Oman margin where the oxygen minimum zone impinges on the continental slope. Similar adaptation is suggested for species in the family Cossuridae. Such morphological adaptation apparently has not been previously recorded among polychaetes living in hypoxic conditions. The response consists of enlargement in size and branching of the branchiae relative to similar species living in normal levels of dissolved oxygen. Specimens were examined in benthic samples from different depths along a transect through the oxygen minimum zone. There was a highly significant trend shown to increasing respiratory area relative to body size in two undescribed spionid species with decreasing depth and oxygen within the OMZ. Yet the size and number of branchiae are often used as taxonomic characters. These within-species differences in size and number of branchiae may be a direct response by the phenotype to intensity of hypoxia. The alternative explanations are that they either reflect a pattern of differential post-settlement selection among a highly variable genotype, or represent early genetic differentiation among depth-isolated sub-populations.
Sink or link? The bacterial role in benthic carbon cycling in the Arabian Sea's oxygen minimum zone
NASA Astrophysics Data System (ADS)
Pozzato, L.; Van Oevelen, D.; Moodley, L.; Soetaert, K.; Middelburg, J. J.
2013-11-01
The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea's oxygen minimum zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the 7 day experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient, in sediments both inside and outside the OMZ. Moreover, metazoans directly consumed labile particulate organic matter resources and thus competed with bacteria for phytodetritus.
Sink or link? The bacterial role in benthic carbon cycling in the Arabian sea oxygen minimum zone
NASA Astrophysics Data System (ADS)
Pozzato, L.; Van Oevelen, D.; Moodley, L.; Soetaert, K.; Middelburg, J. J.
2013-06-01
The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic aquatic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea Oxygen Minimum Zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient in these sediments. Moreover, metazoans directly consume labile particulate organic matter resources and thus compete with bacteria for phytodetritus.
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; ...
2017-05-19
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less
NASA Astrophysics Data System (ADS)
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.
2017-08-01
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.
Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan
2013-12-01
An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.
Rickman, Ronald L.
1998-01-01
A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate habitat for salmon incubation. The study that determined this minimum flow did not account for the effects of ice formation on habitat. The limiting factor for determining the minimal acceptable flow limit appears to be stream-water velocity. The minimum short-term flow needed to ensure adequate salmon incubation habitat when ice is present is about 30 cubic feet per second. For long-term flows, 40 cubic feet per second is adequate when ice is present. Long-term minimum discharge needed to ensure adequate incubation habitat--which is based on mean velocity alone--is as follows: 40 cubic feet per second when ice is forming; 35 cubic feet per second for stable and eroding ice conditions; and 30 cubic feet per second for ice-free conditions. The effects of long-term streamflow less than 40 cubic feet per second on fine-sediment deposition and dissolved-oxygen interchange could not be extrapolated from the data. Hydrologic properties and water-quality data were measured in winter only from March 1993 to April 1998 at six transects in the lower Bradley River under three phases of icing: forming, stable, and eroding. Discharge in the lower Bradley River ranged from 33.3 to 73.0 cubic feet per second during all phases of ice formation and ice conditions, which ranged from ice free to 100 percent ice cover. Hydrostatic head was adequate for habitat protection for all ice phases and discharges. Mean stream velocity was adequate for all but one ice-forming episode. Velocity distribution within each transect varied significantly from one sampling period to the next. No relation was found between ice phase, discharge, and wetted perimeter. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface- and intragravel-water dissolved-oxygen levels were adequate for all ice phases and discharges. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Fine-sediment deposition was greatest at the downstream end of the study reach because of low shear velocities and tide-induced deposition. Dissolved-oxygen interchange was adequate for all discharges and ice conditions. Stranding potential of salmon fry was found to be low throughout the study reach. Minimum flows from the fish-water bypass needed to maintain 40 cubic feet per second in the lower Bradley River are estimated.
Johnson, Barry L.; Knights, Brent C.; Barko, John W.; Gaugush, Robert F.; Soballe, David M.; James, William F.
1998-01-01
The backwaters of large rivers provide winter refuge for many riverine fish, but they often exhibit low dissolved oxygen levels due to high biological oxygen demand and low flows. Introducing water from the main channel can increase oxygen levels in backwaters, but can also increase current velocity and reduce temperature during winter, which may reduce habitat suitability for fish. In 1993, culverts were installed to introduce flow to the Finger Lakes, a system of six backwater lakes on the Mississippi River, about 160 km downstream from Minneapolis, Minnesota. The goal was to improve habitat for bluegills and black crappies during winter by providing dissolved oxygen concentrations >3 mg/L, current velocities <1 cm/s, and temperatures >1°C. To achieve these conditions, we used data on lake volume and oxygen demand to estimate the minimum flow required to maintain 3 mg/L of dissolved oxygen in each lake. Estimated flows ranged from 0.02 to 0.14 m3/s among lakes. Data gathered in winter 1994 after the culverts were opened, indicated that the estimated flows met habitat goals, but that thermal stratification and lake morphometry can reduce the volume of optimal habitat created.
Study of dissolved oxygen content in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan)
NASA Astrophysics Data System (ADS)
Grigoryeva, N. I.
2017-09-01
Seasonal changes in the dissolved oxygen (DO) content in water were analyzed based on long-term observations (2006-2013) in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan). It was found that the monthly average DO concentrations at the bottom of the strait were significantly lower in summer than the average annual long-term data. The minimum DO contents were recorded during four months, from July to October. It was shown that the DO content in water depended on changes in current directions in the strait: lower DO contents resulted from hypoxic water inflow, mostly from Amur Bay.
Dean, Walter E.; Gardner, James V.; Anderson, Roger Y.
1994-01-01
The present upper water mass of the northeastern Pacific Ocean off California has a well-developed oxygen minimum zone between 600 and 1200 m wherein concentrations of dissolved oxygen are less than 0.5 mL/L. Even at such low concentrations of dissolved oxygen, benthic burrowing organisms are abundant enough to thoroughly bioturbate the surface and near-surface sediments. These macro organisms, together with micro organisms, also consume large quantities of organic carbon produced by large seasonal stocks of plankton in the overlying surface waters, which are supported by high concentrations of nutrients within the California Current upwelling system. In contrast to modern conditions of bioturbation, laminated sediments are preserved in upper Pleistocene sections of cores collected on the continental slope at water depths within the present oxygen minimum zone from at least as far north as the California-Oregon border and as far south as Point Conception. Comparison of sediment components in the laminae with those delivered to sediment traps as pelagic marine “snow” demonstrates that the dark-light lamination couplets are indeed annual (varves). These upper Pleistocene varved sediments contain more abundant lipid-rich “sapropelic” (type II) organic matter than the overlying bioturbated, oxidized Holocene sediments. The baseline of stable carbon isotopic composition of the organic matter in these slope cores does not change with time, indicating that the higher concentrations of type II organic matter in the varved sediments represent better preservation of organic matter rather than any change in the source of organic matter.
viral abundance distribution in deep waters of the Northern of South China Sea
NASA Astrophysics Data System (ADS)
He, Lei; Yin, Kedong
2017-04-01
Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.
Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones
Glass, Jennifer B.; Kretz, Cecilia B.; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L.; Buck, Kristen N.; Landing, William M.; Morton, Peter L.; Moffett, James W.; Giovannoni, Stephen J.; Vergin, Kevin L.; Stewart, Frank J.
2015-01-01
Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3−, NO2−, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu. PMID:26441925
Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones.
Glass, Jennifer B; Kretz, Cecilia B; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L; Buck, Kristen N; Landing, William M; Morton, Peter L; Moffett, James W; Giovannoni, Stephen J; Vergin, Kevin L; Stewart, Frank J
2015-01-01
Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO[Formula: see text], NO[Formula: see text], Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.
Feaster, Toby D.; Conrads, Paul
2000-01-01
In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate and validate the Branched Lagrangian Transport Model. The data include dye-tracer concentrations collected at six locations, stream-reaeration data collected at four locations, and water-quality and water-temperature data collected at nine locations. Hydraulic data for the Branched Lagrangian Transport Model were simulated by using the U.S. Geological Survey BRANCH one-dimensional, unsteady-flow model. Data that were used to calibrate and validate the BRANCH model included time-series of water-level and streamflow data at three locations. The domain of the hydraulic model and the transport model was a 57.3- and 43.5-mile reach of the river, respectively. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to changes in the boundary concentration inputs of water temperature and dissolved oxygen followed by sensitivity to the change in streamflow. A 35-percent increase in streamflow resulted in a negative normalized sensitivity index, indicating a decrease in dissolved-oxygen concentrations. The simulated dissolved-oxygen concentrations showed no significant sensitivity to changes in model input rate kinetics. To demonstrate the utility of the Branched Lagrangian Transport Model of the Wateree River, the model was used to simulate several hydrologic and water-quality scenarios to evaluate the effects on simulated dissolved-oxygen concentrations. The first scenario compared the 24-hour mean dissolved-oxygen concentrations for August 13, 1997, as simulated during the model validation, with simulations using two different streamflow patterns. The mean streamflow for August 13, 1997, was 2,000 cubic feet per second. Simulations were run using mean streamflows of 1,000 and 1,400 cubic feet per second while keeping the water-quality boundary conditions the same as were used during the validation simulations. When compared t
NASA Astrophysics Data System (ADS)
Rasiq, K. T.; Kurian, S.; Karapurkar, S. G.; Naqvi, S. W. A.
2016-07-01
Sedimentary pigments, carbon and nitrogen content and their stable isotopes were studied in three short cores collected from the oxygen minimum zone (OMZ) of the Eastern Arabian Sea (EAS). Nine pigments including chlorophyll a and their degradation products were quantified using High Performance Liquid Chromatography (HPLC). Astaxanthin followed by canthaxanthin and zeaxanthin were the major carotenoids detected in these cores. The total pigment concentration was high in the core collected from 500 m water depth (6.5 μgg-1) followed by 800 m (1.7 μgg-1) and 1100 m (1.1 μgg-1) depths respectively. The organic carbon did not have considerable control on sedimentary pigments preservation. Pigment degradation was comparatively high in the core collected from the 800 m site which depended not only the bottom dissolved oxygen levels, but also on the faunal activity. As reported earlier, the bottom water dissolved oxygen and presence of fauna have good control on the organic carbon accumulation and preservation at Indian margin OMZ sediments. The C/N ratios and δ13C values for all the cores conclude the marine origin of organic matter and δ15N profiles revealed signature of upwelling associated denitrification within the water column.
NASA Astrophysics Data System (ADS)
De Leo, Fabio C.; Gauthier, Maéva; Nephin, Jessica; Mihály, Steven; Juniper, S. Kim
2017-03-01
Understanding responses of benthic ecosystems to cumulative impacts of natural stressors, long-term ocean change and increasing resource exploitation is an emerging area of interest for marine ecologists and environmental managers. Few, if any, studies have quantitatively addressed cumulative effects in the deep sea. We report here on a study from the continental slope off Vancouver Island (Canada) in the northeast Pacific Ocean, where the Oxygen Minimum Zone impinges on seabed habitats that are subjected to widespread bottom trawling, primarily by the fishery for thornyhead (Sebastolobus ssp.). We examined how the benthic megafauna in this area was influenced by varying levels of dissolved oxygen and trawling activity, along a depth gradient that was also likely to shape community composition. Continuous video and sonar records from two ROV surveys (50 linear km total; depth range 300-1400 m) respectively provided data on faunal attributes (composition, abundance and diversity) and the frequency of trawl door marks on the seabed. Faunal and trawl data were compiled in a geo-referenced database along with corresponding dissolved oxygen data, and pooled into 500 m segments for statistical analysis. Trawl mark occurrence peaked between 500 and 1100 m, corresponding to areas of slope subjected to hypoxia (<1.4 ml l-1) and severe hypoxia (<0.5 ml l-1). A combined total of 266,251 megafauna organisms from 87 taxa were enumerated in the two transects. Significant megafaunal assemblages according to depth, trawling intensity and bottom water dissolved oxygen concentration were identified by PERMANOVA analyses, with characterizing taxa identified for all three factors. Depth, dissolved oxygen and trawl mark density accounted for 21% to 52% of the variability in benthic community structure according to multiple regression (DISTLM) models. Species richness was highest at intermediate depths and in areas subject to intermediate levels of trawling, and higher under hypoxia than under severe hypoxia. These statistically significant trends demonstrate that the structuring influences of bottom trawling on deep-sea benthic communities can be observed even where communities are being shaped by strong environmental gradients.
Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases.
Null, Sarah E; Mouzon, Nathaniel R; Elmore, Logan R
2017-07-15
Environmental water purchases are increasingly used for ecological protection. In Nevada's Walker Basin (western USA), environmental water purchases augment streamflow in the Walker River and increase lake elevation of terminal Walker Lake. However, water quality impairments like elevated stream temperatures and low dissolved oxygen concentrations also limit ecosystems and species, including federally-threatened Lahontan cutthroat trout. In this paper, we prioritize water volumes and locations that most enhance water quality for riverine habitat from potential environmental water rights purchases. We monitored and modeled streamflows, stream temperatures, and dissolved oxygen concentrations using River Modeling System, an hourly, physically-based hydrodynamic and water quality model. Modeled environmental water purchases ranged from average daily increases of 0.11-1.41 cubic meters per second (m 3 /s) during 2014 and 2015, two critically dry years. Results suggest that water purchases consistently cooled maximum daily stream temperatures and warmed nightly minimum temperatures. This prevented extremely low dissolved oxygen concentrations below 5.0 mg/L, but increased the duration of moderate conditions between 5.5 and 6.0 mg/L. Small water purchases less than approximately 0.71 m 3 /s per day had little benefit for Walker River habitat. Dissolved oxygen concentrations were affected by upstream environmental conditions, where suitable upstream water quality improved downstream conditions and vice versa. Overall, this study showed that critically dry water years degrade environmental water quality and habitat, but environmental water purchases of at least 0.71 m 3 /s were promising for river restoration. Published by Elsevier Ltd.
Senn, David; Downing-Kunz, Maureen; Novick, Emily
2016-01-01
Dissolved oxygen (DO) concentration serves as an important indicator of estuarine habitat condition, because all aquatic macro-organisms require some minimum DO level to survive and prosper. The instantaneous DO concentration, measured at a specific location in the water column, results from a balance between multiple processes that add or remove oxygen (Figure 6.1): primary production produces O2; aerobic respiration in the water column and sediments consumes O2; abiotic or microbially-mediated biogeochemical reactions utilize O2 as an oxidant (e.g., oxidation of ammonium, sulfide, and ferrous iron); O2 exchange occurs across the air:water interface in response to under- or oversaturated DO concentrations in the water column; and water currents and turbulent mixing transport DO into and out of zones in the water column. If the oxygen loss rate exceeds the oxygen production or input rate, DO concentration decreases. When DO losses exceed production or input over a prolonged enough period of time, hypoxia ((<2-3 mg/L) or anoxia can develop. Persistent hypoxia or anoxia causes stress or death in aquatic organism populations, or for organisms that can escape a hypoxic or anoxic area, the loss of habitat. In addition, sulfide, which is toxic to aquatic organisms and causes odor problems, escapes from sediments under low oxygen conditions. Low dissolved oxygen is a common aquatic ecosystem response to elevated organic
Kay, R.T.; Groschen, G.E.; Cygan, G.; Dupre, David H.
2011-01-01
Diel variations in the concentrations of a number of constituents have the potential to substantially affect the appropriate sampling regimen in acidic streams. Samples taken once during the course of the day cannot adequately reflect diel variations in water quality and may result in an inaccurate understanding of biogeochemical processes, ecological conditions, and of the threat posed by the water to human health and the associated wildlife. Surface water and groundwater affected by acid drainage were sampled every 60 to 90. min over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, near Hegeler, Illinois. Diel variations related to water quality in the aquifer were not observed in groundwater. Diel variations were observed in the temperature, pH, and concentration of dissolved oxygen, nitrite, barium, iron, lead, vanadium, and possibly uranium in surface water. Temperature, dissolved oxygen, nitrite, barium, lead, and uranium generally attained maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally attained minimum values during the afternoon and maximum values during the night. Concentrations of dissolved oxygen were affected by the intensity of photosynthetic activity and respiration, which are dependent upon insolation. Nitrite, an intermediary in many nitrogen reactions, may have been formed by the oxidation of ammonium by dissolved oxygen and converted to other nitrogen species as part of the decomposition of organic matter. The timing of the pH cycles was distinctly different from the cycles found in Midwestern alkaline streams and likely was the result of the photoreduction of Fe3+ to Fe 2+ and variations in the intensity of precipitation of hydrous ferric oxide minerals. Diel cycles of iron and vanadium also were primarily the result of variations in the intensity of precipitation of hydrous ferric oxide minerals. The diel variation in the concentrations of lead, uranium, and barium may have been affected by competition with Fe+2 for sorption sites on hydrous ferric oxide minerals. ?? 2010.
Nur-E-Alam, M; Islam, M Monirul; Islam, M Nazrul; Rima, Farhana Rahman; Islam, M Nurul
2016-03-01
The cleansing efficiencies of laundry detergents depend on composition and variation of ingredients such as surfactants, phosphate, and co-builders. Among these ingredients, surfactants and phosphate are considered as hazardous materials. Knowledge on compositions and micellar behavior is very useful for understanding their cleansing efficiencies and environmental impact. With this view, composition, critical micelle concentration, and dissolved oxygen level in aqueous solution of some laundry detergents available in Bangladesh such as keya, Wheel Power White, Tibet, Surf Excel, and Chaka were determined. Surfactant and phosphate were found to be maximum in Surf Excel and Wheel Power White, respectively, while both of the ingredients were found to be minimum in Tibet. The critical micelle concentration decreased with increasing surfactant content. The amount of laundry detergents required for efficient cleansing was found to be minimum for Surf Excel and maximum for Chaka; however, cleansing cost was the highest for Surf Excel and the lowest for Tibet. The maximum amount of surfactants and phosphate was discharged by Surf Excel and Wheel Power White, respectively, while discharges of both of the ingredients were minimum for Tibet. The maximum decrease of dissolved oxygen level was caused by Surf Excel and the minimum by Tibet. Therefore, it can be concluded that Tibet is cost-effective and environment friendly, whereas Surf Excel and Wheel Power White are expensive and pose a threat to water environment.
Sharma, Neeraj Kumar; Akhtar, M S; Pandey, Nityanand; Singh, Ravindra; Singh, Atul Kumar
2015-08-01
We studied the season dependent thermal tolerance, oxygen consumption, respiratory burst response and antioxidative enzyme activities in juveniles of Barilius bendelisis. The critical thermal maximum (CTmax), lethal thermal maximum (LTmax), critical thermal minimum (CTmin) and lethal thermal minimum (LTmin) were significantly different at five different seasons viz. winter (10.64°C), spring (16.25°C), summer (22.11°C), rainy (20.87°C) and autumn (17.77°C). The highest CTmax was registered in summer (36.02°C), and lowest CTmin was recorded during winter (2.77°C). Water temperature, dissolved oxygen and pH were strongly related to CTmax, LTmax, CTmin and LTmin suggesting seasonal acclimatization of B. bendelisis. The thermal tolerance polygon area of the B. bendelisis juveniles within the range of seasonal temperature (10.64-22.11°C) was calculated as 470.92°C(2). Oxygen consumption rate was significantly different (p<0.05) between seasons with maximum value during summer (57.66mgO2/kg/h) and lowest in winter (32.60mgO2/kg/h). Total white blood cell count including neutrophil and monocytes also showed significant difference (p<0.05) between seasons with maximum value during summer and minimum number in winter and were found correlated to temperature, dissolved oxygen, pH and respiratory burst activity. Respiratory burst activity of blood phagocytes significantly differed (p<0.05) among seasons with higher value during summer (0.163 OD540nm) and minimum in winter season (0.054 OD540nm). The activity of superoxide dismutase, catalase and glutathione-s-transferase both in liver and gill, also varied significantly (p<0.05) during different seasons. Overall results of this study suggest that multiple environmental factors play a role in seasonal acclimation in B. bendelisis, which modulate the thermal tolerance, oxygen consumption, respiratory burst activity and status of anti-oxidative potential in wild environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006
Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.
2008-01-01
The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of Upper Klamath Lake revealed few differences in water quality dynamics. Median daily temperatures were higher in nearshore areas, and dissolved oxygen concentrations were periodically higher as well during periods of high AFA bloom. Differences between the two areas in water quality conditions potentially harmful to fish were not statistically significant (p < 0.05). Chlorophyll a concentrations varied temporally and spatially throughout Upper Klamath Lake. Chlorophyll a concentrations indicated an algal bloom in late June and early July that was followed by an algae bloom decline in late July and early August and a subsequent recovery in mid-August. Sites in the deepest part of the lake, where some of the highest chlorophyll a concentrations were observed, were the same sites where the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations were recorded during the bloom decline, indicating cell senescence. Total phosphorus concentrations limited the initial algal bloom in late June and early July. The rate of net dissolved oxygen production (that is, production in excess of community respiration) and consumption (due to community respiration) in the lake water column as measured in light and dark bottles, respectively, ranged from 2.79 to -2.14 milligrams of oxygen per liter per hour. Net production rate generally correlated positively with chlorophyll a concentration, except episodically at a few sites where high chlorophyll a concentrations resulted in self-shading that inhibited photosynthesis. The depth of photic zone was inversely correlated with chlorophyll a concentration. Calculations of a 24-hour change in dissolved oxygen concentration indicated that oxygen-consuming processes predominated at the deep trench sites and oxygen-producing processes predominated at the shallow sites. In addition, calculations of the 24-hour change in dissolved oxygen indicate that oxygen-consuming processes in the water column di
Welch, Eugene Brummer
1969-01-01
Phytoplankton productivity, standing stock, and related environmental factors were studied during 1964-66 in the Duwamish River estuary, at Seattle, Wash., to ascertain the factors that affect phytoplankton growth in the estuary; a knowledge of these factors in turn permits the detection and evaluation of the influence that effluent nutrients have on phytoplankton production. The factors that control the concentration of dissolved oxygen were also evaluated because of the importance of dissolved oxygen to the salmonid populations that migrate through the estuary. Phytoplankton blooms, primarily of diatoms, occurred in the lower estuary during August 1965 and 1966. No bloom occurred during 1964, but the presence of oxygen-supersaturated surface water in August 1963 indicates that a bloom did occur then. Nutrients probably were not the primary factor controlling the timing of phytoplankton blooms. Ammonia ,and phosphate concentrations increased significantly downstream from the Municipality of Metropolitan Seattle's Renton Treatment Plant outfall after the plant began operation in June 1965, and concentrations of nitrogen and phosphorus were relatively high before operation of the Renton Treatment Plant and during nonbloom periods. The consistent coincidence of blooms with minimum fresh-water discharge and tidal exchange during August throughout the study period indicates that bloom timing probably was controlled mostly by hydrographic factors that determine retention time and stability of the surface-water layer. This control was demonstrated in part by a highly significant correlation of gross productivity with retention time (as indicated by fresh-water discharge) and vertical stability (as indicated by the difference between mean surface and mean bottom temperatures). The failure of a bloom to develop in 1964 is related to a minimum fresh-water discharge that was much greater than normal during that summer. Hydrographic factors are apparently important because, as shown by studies of other estuarine environments by other workers, phytoplankton production increases when the zone of vertical turbulent mixing is not markedly deeper than the compensation depth. Phytoplankton cells produced in the surface waters sink, thereby contributing oxidizable organic matter to the bottom saline-water wedge. The maximum BOD (biochemical oxygen demand) in this bottom wedge occurs in the same section of the estuary and ,at the same time as the maximum phytoplankton biomass (as indicated by chlorophyll a) and minimum DO (dissolved oxygen). Other sources of BOD occur in the estuary, and conditions of minimum discharge and tidal exchange assist in reducing DO. Nonetheless, the highly significant correlation of chlorophyll a with BOD throughout the summer indicates that respiration and decomposition of phytoplankton cells is dearly an important contributor of BOD. Increases in the biomass and resultant B0D of blooms because of increased effluent nutrients presumably would further decrease the concentration of DO. This possible effect of effluent nutrients was evaluated by laboratory .bioassays and by a comparison of mean annual biomasses in the estuary. A green algal population in vitro did increase in response to added effluent nutrients; however, the available field data suggest that a 46-percent increase in effluent discharge between 1965 and 1966 did not increase the estuary's phytoplankton biomass significantly.
Schefter, John E.; Hirsch, Robert M.
1980-01-01
A method for evaluating the cost-effectiveness of alternative strategies for dissolved-oxygen (DO) management is demonstrated, using the Chattahoochee River, GA., as an example. The conceptual framework for the analysis is suggested by the economic theory of production. The minimum flow of the river and the percentage of the total waste inflow receiving nitrification are considered to be two variable inputs to be used in the production of given minimum concentration of DO in the river. Each of the inputs has a cost: the loss of dependable peak hydroelectric generating capacity at Buford Dam associated with flow augmentation and the cost associated with nitrification of wastes. The least-cost combination of minimum flow and waste treatment necessary to achieve a prescribed minimum DO concentration is identified. Results of the study indicate that, in some instances, the waste-assimilation capacity of the Chattahoochee River can be substituted for increased waste treatment; the associated savings in waste-treatment costs more than offset the benefits foregone because of the loss of peak generating capacity at Buford Dam. The sensitivity of the results to the estimates of the cost of replacing peak generating capacity is examined. It is also demonstrated that a flexible approach to the management of DO in the Chattahoochee River may be much more cost effective than a more rigid, institutional approach wherein constraints are placed on the flow of the river and(or) on waste-treatment practices. (USGS)
NASA Astrophysics Data System (ADS)
Montes, I.; Dewitte, B.; Gutknecht, E.; Paulmier, A.; Dadou, I.; Oschlies, A.; Garçon, V. C.
2015-12-01
The Eastern Tropical South Pacific encompasses one of the most extended Oxygen Minimum zones, which is mainly maintained by a combination of sluggish circulation and high biological productivity in the surface layer leading to elevate organic matter decomposition consuming dissolved oxygen. Low-oxygen areas are important not only for macroorganisms that cannot survive in oxygen-poor conditions, but also because of special biogeochemical processes occurring at low oxygen concentrations. In particular, a large fraction of oceanic nitrogen-loss occurs in these areas via anaerobic microbial processes. These include denitrification and axammox that both lead to a net loss of fixed nitrogen once oxygen concentrations have fallen below some threshold of a few umol/l. Recently it has been found that eddies may act as nitrogen-loss hotspots, possibly by shielding enclosed water parcels from lateral mixing with better ventilated oxygen-richer waters outside the eddies. Here we used a regional coupled biogeochemical model to investigate the relationship between eddies and the nitrogen-loss. We also investigate the mechanisms responsible for the generation of eddies and for possible modulations of eddy activity on interannual timescales, in particular during cold and warm phases of the El Nino Southern Oscillation.
D.W. Reiser; T.C. Bjornn
1979-01-01
Habitat requirements of anadromous and some resident salmonid fishes have been described for various life stages, including upstream migration of adults, spawning, incubation, and juvenile rearing. Factors important in the migration of adults are water temperature, minimum water depth, maximum water velocity, turbidity, dissolved oxygen, and...
Biogeochemical modelling of dissolved oxygen in a changing ocean.
Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha
2017-09-13
Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of p CO 2 -sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a p CO 2 -sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).
Biogeochemical modelling of dissolved oxygen in a changing ocean
NASA Astrophysics Data System (ADS)
Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha
2017-08-01
Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of pCO2-sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
Stamer, J.K.; Cherry, Rodney N.; Faye, R.E.; Kleckner, R.L.
1979-01-01
During the period April 1975 to June 1978, the U.S. Geological Survey conducted a river-quality assessment of the Upper Chattahoochee River basin in Georgia. One objective of the study was to assess the magnitudes, nature, and effects of point and non-point discharges in the Chattahoochee River basin from Atlanta to the West Point Dam. On an average annual basis and during the storm period of March 1215, 1976, non-point-source loads for most constituents analyzed were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 river miles downstream of Atlanta. Most of the non-point-source constituent loads in the Atlanta-to-Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads, and about 70 percent of the dissolved phosphorus loads at Whitesburg. During weekends, power generation at the upstream Buford Dam hydroelectric facility is minimal. Streamflow at the Atlanta station during dry-weather weekends is estimated to be about 1,200 ft3/s (cubic feet per second). Average daily dissolved-oxygen concentrations of less than 5.0 mg/L (milligrams per liter) occurred often in the river, about 20 river miles downstream from Atlanta during these periods from May to November. During a low-flow period, June 1-2, 1977, five municipal point sources contributed 63 percent of the ultimate biochemical oxygen demand, 97 percent of the ammonium nitrogen, 78 percent of the total nitrogen, and 90 percent of the total phosphorus loads at the Franklin station, at the upstream end of West Point Lake. Average daily concentrations of 13 mg/L of ultimate biochemical oxygen demand and 1.8 mg/L of ammonium nitrogen were observed about 2 river miles downstream from two of the municipal point sources. Carbonaceous and nitrogenous oxygen demands caused dissolved-oxygen concentrations between 4.1 and 5.0 mg/L to occur in a 22-mile reach of the river downstream from Atlanta. Nitrogenous oxygen demands were greater than carbonaceous oxygen demands in the reach from river mile 303 to 271, and carbonaceous demands were greater from river mile 271 to 235. The heat load from the Atkinson-McDonough thermoelectric power-plants caused a decrease in the dissolved-oxygen concentrations of about 0.2 mg/L. During a critical low-flow period, a streamflow at Atlanta of about 1,800 ft3/s, with present (1977) point-source flows of 185 ft3/s containing concentrations of 45 mg/L of ultimate biochemical oxygen demand and 15 mg/L of ammonium nitrogen, results in a computed minimum dissolved-oxygen concentration of 4.7 mg/L in the river downstream from Atlanta. In the year 2000, a streamflow at Atlanta of about 1,800 ft3/s with point-source flows of 373 ft3/s containing concentrations of 45 mg/L of ultimate biochemical oxygen demand and 5.0 mg/L of ammonium nitrogen, will result in a computed minimum dissolved-oxygen concentration of 5.0 mg/L. A streamflow of about 1,050 ft3/s at Atlanta in the year 2000 will result in a dissolved-oxygen concentration of 5.0 mg/L if point-source flows contain concentrations of 15 mg/L of ultimate biochemical oxygen demand and 5.0 mg/L of ammonium nitrogen. Phytoplankton concentrations in West Point Lake, about 70 river miles downstream from Atlanta, could exceed 3 million cells per milliliter during extended low-flow periods in the summer with present point- and non-point-source nitrogen and phosphorus loads. In the year 2000, phytoplankton concentrations in West Point Lake are not likely to exceed 700,000 cells per milliliter during extended low-flow periods in the summer, if phosphorus concentrations do not exceed 1.0 mg/L in point-source discharges.
CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen
Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.
Hardy, Mark A.; Parliman, Deborah J.; O'Dell, Ivalou
2005-01-01
Idaho has. Although erodable soils are likely a cause of elevated turbidities, suspended-sediment concentrations were not strongly correlated with turbidities. Dissolved-solids and hardness concentrations were strongly correlated. This is probably because the limestones present in some basins are more soluble than the igneous rocks that predominate in others. Low hardness in streams of northern Idaho, where watersheds are underlain by resistant igneous rocks, enhances the toxicity of some trace elements to aquatic life in these streams. Only a few measurements of dissolved-oxygen concentrations at six sites were less than 6.0 milligrams per liter, the Idaho minimum criterion for protection of aquatic organisms. High supersaturations of dissolved oxygen at four sites suggest excessive photosynthetic activity by algal communities. Nighttime monitoring would help determine whether dissolved-oxygen concentrations at these sites might fall below the Idaho criterion. Data from four sites suggest that dissolved-oxygen concentrations may have decreased over time. The pH at 15 sites sometimes fell outside the range specified (6.5-9.0) for the protection of aquatic organisms in Idaho streams. Values exceeded 9.0 at 10 sites, probably because of excessive algal photosynthetic activity in waters where carbonate rocks are present. Values were sometimes less than 6.5 at five sites in areas of mountain bedrock geology where pH is likely to be naturally low. Mining activities also may contribute to low pH at some of these sites. Inorganic nitrogen and total phosphorus concentrations commonly exceeded those considered sufficient for supporting excess algal production (0.3 and 0.1 milligrams per liter, respectively). Data from a few sites suggest that nitrogen and(or) phosphorus concentrations might be changing over time. Low concentrations of nitrogen and phosphorus at six sites, most representing forested basins, might make them good candidates as reference sites that represent naturally occurring nutrient concentrations. Trace elements examined for this report were cadmium, copper, lead, mercury, selenium, and zinc. In water, many trace-element concentrations were below the minimum analytical reporting levels. Concentrations of cadmium, copper, lead, and zinc generally were highest in mined and other mineral-rich basins in northern Idaho. Concentrations of mercury were
Bacterioplankton Populations within the Oxygen Minimum Zone of the Sargasso Sea
NASA Astrophysics Data System (ADS)
Schuler, G.; Parsons, R. J.; Johnson, R. J.
2016-02-01
Oxygen minimum zones are present throughout the world's oceans, and occur at depths between 200 to 1000m. Heterotrophic bacteria reduce the dissolved oxygen within this layer through respiration, while metabolizing falling particles. This report studied the bacterioplankton in the oxygen minimum zone at the BATS (Bermuda Atlantic Times-series Study) site from July 2014 until November 2014. Total bacterioplankton populations were enumerated through direct counts. In the transitional zone (400m-800m) of the oxygen minimum zone, a secondary bacterioplankton peak formed. This study used FISH (Fluorescent in situ hybridization) and CARD-FISH (Catalyzed Reporter Deposition-Fluorescent in situ hybridization) to enumerate specific bacterial and archaeal taxa. Crenarchaeota (including Thaumarchaeota) increased in abundance within the upper oxycline. Thaumarchaeota have the ammonia monooxygenase gene that oxidizes ammonium into nitrite in low oxygen conditions. Amplification of the amoA gene confirmed that ammonia oxidizing archaea (AOA) were present within the OMZ. Using Terminal Restriction Fragment Length Polymorphism (T-RFLP), the bacterial community structure showed high similarity based depth zones (0-80m, 160-600m, and 800-4500m). Niskin experiments determined that water collected at 800m had an exponential increase in bacterioplankton over time. While experimental design did not allow for oxygen levels to be maintained, the bacterioplankton community was predominantly bacteria with eubacteria positive cells making up 89.3% of the of the total bacterioplankton community by day 34. Improvements to the experimental design are required to determine which specific bacterial taxa caused this increase at 800m. This study suggests that there are factors other than oxygen influencing bacterioplankton populations at the BATS site, and more analysis is needed once the BATS data is available to determine the key drivers of bacterioplankton dynamics within the BATS OMZ.
CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Simple Conceptual Diagram
Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.
CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Detailed Conceptual Diagram
Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.
The oxygen minimum zone of the eastern South Pacific
NASA Astrophysics Data System (ADS)
Ulloa, Osvaldo; Pantoja, Silvio
2009-07-01
In spite of the fact that oxygen-deficient waters with ⩽20 μM of dissolved oxygen—known as oxygen minimum zones (OMZs)—occupy only ˜1% of the volume of the global ocean, they disproportionately affect global biogeochemical cycles, particularly the nitrogen cycle. The macrobiota diversity in OMZs is low, but the fauna that do inhabit these regions present special adaptations to the low-oxygen conditions. Conversely, microbial communities in the OMZ water column and sediments are abundant and phylogenetically and metabolically very diverse, and microbial processes occurring therein (e.g., denitrification, anammox, and organic matter degradation) are important for global marine biogeochemical cycles. In this introductory article, we present the collection of papers for the special volume on the OMZ of the eastern South Pacific, one of the three main open-ocean oxygen-deficient regions of the global ocean. These papers deal with aspects of regional oceanography, inorganic and organic geochemistry, ecology, and the biochemistry of micro and macro organisms—both in the plankton and in the sediments—and past changes in the fish scales preserved in the sediments bathed by OMZ waters.
Evaluating Use of Environmental Flows to Aerate Streams by Modelling the Counterfactual Case.
Stewardson, Michael J; Skinner, Dominic
2018-03-01
This paper evaluates an experimental environmental flow manipulation by modeling the counterfactual case that no environmental flow was applied. This is an alternate approach to evaluating the effect of an environmental flow intervention when a before-after or control-impact comparison is not possible. In this case, the flow manipulation is a minimum flow designed to prevent hypoxia in a weir on the low-gradient Broken Creek in south-eastern Australia. At low flows, low reaeration rates and high respiration rates associated with elevated organic matter loading in the weir pool can lead to a decline in dissolved oxygen concentrations with adverse consequences both for water chemistry and aquatic biota. Using a one dimensional oxygen balance model fitted to field measurements, this paper demonstrates that increased flow leads to increases in reaeration rates, presumably because of enhanced turbulence and hence mixing in the surface layers. By comparing the observed dissolved oxygen levels with the modeled counterfactual case, we show that the environmental flow was effective in preventing hypoxia.
Evaluating Use of Environmental Flows to Aerate Streams by Modelling the Counterfactual Case
NASA Astrophysics Data System (ADS)
Stewardson, Michael J.; Skinner, Dominic
2018-03-01
This paper evaluates an experimental environmental flow manipulation by modeling the counterfactual case that no environmental flow was applied. This is an alternate approach to evaluating the effect of an environmental flow intervention when a before-after or control-impact comparison is not possible. In this case, the flow manipulation is a minimum flow designed to prevent hypoxia in a weir on the low-gradient Broken Creek in south-eastern Australia. At low flows, low reaeration rates and high respiration rates associated with elevated organic matter loading in the weir pool can lead to a decline in dissolved oxygen concentrations with adverse consequences both for water chemistry and aquatic biota. Using a one dimensional oxygen balance model fitted to field measurements, this paper demonstrates that increased flow leads to increases in reaeration rates, presumably because of enhanced turbulence and hence mixing in the surface layers. By comparing the observed dissolved oxygen levels with the modeled counterfactual case, we show that the environmental flow was effective in preventing hypoxia.
Organic carbon accumulation and preservation in surface sediments on the Peru margin
Arthur, M.A.; Dean, W.E.; Laarkamp, K.
1998-01-01
Concentrations and characteristics of organic matter in surface sediments deposited under an intense oxygen-minimum zone on the Peru margin were studied in samples from deck-deployed box cores and push cores acquired by submersible on two transects spanning depths of 75 to 1000 m at 12??and 13.5??S. The source of organic matter to the seafloor in these areas is almost entirely marine material as confirmed by the narrow range of ??13C of organic carbon obtained in the present study (-20.3 to -21.6???; PDB) and the lack of any relationship between pyrolysis hydrogen index and carbon isotope composition. Organic carbon contents are highest (up to 16%) on the slope at depths between 75 and 350 m in sediments deposited under intermediate water masses with low dissolved oxygen concentrations (< 5 ??mol/kg). Even at these low concentrations of dissolved oxygen, however, the surface sediments that were recovered from these depths are dominantly unlaminated. Strong currents (up to 30 cm/s) associated with the poleward-flowing Peru Undercurrent were measured at depths between 160 and 300 m on both transects. The seafloor in this range of water depths is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Constant advection of dissolved oxygen, although in low concentrations, active resuspension of surficial organic matter, activity of organisms, and transport of fine-grained sediment to and from more oxygenated zones all contribute to greater degradation and poorer initial preservation of organic matter than might be expected under oxygen-deficient conditions. Dissolved-oxygen concentrations ultimately may be the dominant affect on organic matter characteristics, but reworking of fine-grained sediment and organic matter by strong bottom currents and redeposition on the seafloor in areas of lower energy also exert important controls on organic carbon concentration and degree of oxidation in this region.
Nitrous oxide production in the eastern tropical South Pacific oxygen minimum zone
NASA Astrophysics Data System (ADS)
Ji, Qixing; Altabet, Mark; Arevalo-Martinez, Damian; Bange, Hermann; Ma, Xiao; Marandino, Christa; Sun, Mingshuang; Grundle, Damian
2017-04-01
Nitrous oxide (N2O) is an important climate active trace gas that contributes to both atmospheric warming and ozone destruction, and the ocean is an important source of N2O to the atmosphere. Dissolved oxygen concentrations play an important role in regulating N2O production in the ocean, such that under low oxygen conditions major shifts in the predominant production pathways (i.e. nitrification vs. denitrification) can occur and the magnitude of production may increase substantially. To this end, major oceanic oxygen minimum zones (OMZs) are responsible for a disproportionately high amount of marine N2O production. During the October 2015 ASTRA-OMZ cruise to the eastern tropical South Pacific (ETSP), one of the three major oceanic OMZs, we measured a suite of N2O parameters which included N2O concentrations, N2O production, and natural abundance N2O isotope (i.e. del 15N and del 18O) and isotopomer (i.e. 15N site-preference) signatures. Based on the results from these measurements, our presentation will demonstrate how N2O production and the different production pathways change along the oxygen concentration gradients from the oxygenated surface waters through the oxygen minimum layer. Our data could better constrain the importance of the ETSP-OMZ as source of marine N2O. Results from this work will provide insights into how N2O cycling responds to ocean deoxygenation as a result of climate change.
Esralew, Rachel A.; Andrews, William J.; Smith, S. Jerrod
2011-01-01
The U.S. Geological Survey, in cooperation with the city of Oklahoma City, collected water-quality samples from the North Canadian River at the streamflow-gaging station near Harrah, Oklahoma (Harrah station), since 1968, and at an upstream streamflow-gaging station at Britton Road at Oklahoma City, Oklahoma (Britton Road station), since 1988. Statistical summaries and frequencies of detection of water-quality constituent data from water samples, and summaries of water-quality constituent data from continuous water-quality monitors are described from the start of monitoring at those stations through 2009. Differences in concentrations between stations and time trends for selected constituents were evaluated to determine the effects of: (1) wastewater effluent discharges, (2) changes in land-cover, (3) changes in streamflow, (4) increases in urban development, and (5) other anthropogenic sources of contamination on water quality in the North Canadian River downstream from Oklahoma City. Land-cover changes between 1992 and 2001 in the basin between the Harrah station and Lake Overholser upstream included an increase in developed/barren land-cover and a decrease in pasture/hay land cover. There were no significant trends in median and greater streamflows at either streamflow-gaging station, but there were significant downward trends in lesser streamflows, especially after 1999, which may have been associated with decreases in precipitation between 1999 and 2009 or construction of low-water dams on the river upstream from Oklahoma City in 1999. Concentrations of dissolved chloride, lead, cadmium, and chlordane most frequently exceeded the Criterion Continuous Concentration (a water-quality standard for protection of aquatic life) in water-quality samples collected at both streamflow-gaging stations. Visual trends in annual frequencies of detection were investigated for selected pesticides with frequencies of detection greater than 10 percent in all water samples collected at both streamflow-gaging stations. Annual frequencies of detection of 2,4-dichlorophenoxyacetic acid and bromacil increased with time. Annual frequencies of detection of atrazine, chlorpyrifos, diazinon, dichlorprop, and lindane decreased with time. Dissolved nitrogen and phosphorus concentrations were significantly greater in water samples collected at the Harrah station than at the Britton Road station, whereas specific conductance was greater at the Britton Road station. Concentrations of dissolved oxygen, biochemical oxygen demand, and fecal coliform bacteria were not significantly different between stations. Daily minimum, mean, and maximum specific conductance collected from continuous water-quality monitors were significantly greater at the Britton Road station than in water samples collected at the Harrah station. Daily minimum, maximum, and diurnal fluctuations of water temperature collected from continuous water-quality monitors were significantly greater at the Harrah station than at the Britton Road station. The daily maximums and diurnal range of dissolved oxygen concentrations were significantly greater in water samples collected at the Britton Road station than at the Harrah station, but daily mean dissolved oxygen concentrations in water at those streamflow-gaging stations were not significantly different. Daily mean and diurnal water temperature ranges increased with time at the Britton Road and Harrah streamflow-gaging stations, whereas daily mean and diurnal specific conductance ranges decreased with time at both streamflow-gaging stations from 1988–2009. Daily minimum dissolved oxygen concentrations collected from continuous water-quality monitors more frequently indicated hypoxic conditions at the Harrah station than at the Britton Road station after 1999. Fecal coliform bacteria counts in water decreased slightly from 1988–2009 at the Britton Road station. The Seasonal Kendall's tau test indicated significant downward trends in
Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans
NASA Astrophysics Data System (ADS)
Karstensen, Johannes; Stramma, Lothar; Visbeck, Martin
2008-06-01
Within the eastern tropical oceans of the Atlantic and Pacific basin vast oxygen minimum zones (OMZ) exist in the depth range between 100 and 900 m. Minimum oxygen values are reached at 300-500 m depth which in the eastern Pacific become suboxic (dissolved oxygen content <4.5 μmol kg -1) with dissolved oxygen concentration of less than 1 μmol kg -1. The OMZ of the eastern Atlantic is not suboxic and has relatively high oxygen minimum values of about 17 μmol kg -1 in the South Atlantic and more than 40 μmol kg -1 in the North Atlantic. About 20 (40%) of the North Pacific volume is occupied by an OMZ when using 45 μmol kg -1 (or 90 μmol kg -1, respectively) as an upper bound for OMZ oxygen concentration for ocean densities lighter than σθ < 27.2 kg m -3. The relative volumes reduce to less than half for the South Pacific (7% and 13%, respectively). The abundance of OMZs are considerably smaller (1% and 7%) for the South Atlantic and only ∼0% and 5% for the North Atlantic. Thermal domes characterized by upward displacements of isotherms located in the northeastern Pacific and Atlantic and in the southeastern Atlantic are co-located with the centres of the OMZs. They seem not to be directly involved in the generation of the OMZs. OMZs are a consequence of a combination of weak ocean ventilation, which supplies oxygen, and respiration, which consumes oxygen. Oxygen consumption can be approximated by the apparent oxygen utilization (AOU). However, AOU scaled with an appropriate consumption rate (aOUR) gives a time, the oxygen age. Here we derive oxygen ages using climatological AOU data and an empirical estimate of aOUR. Averaging oxygen ages for main thermocline isopycnals of the Atlantic and Pacific Ocean exhibit an exponential increase with density without an obvious signature of the OMZs. Oxygen supply originates from a surface outcrop area and can also be approximated by the turn-over time, the ratio of ocean volume to ventilating flux. The turn-over time corresponds well to the average oxygen ages for the well ventilated waters. However, in the density ranges of the suboxic OMZs the turn-over time substantially increases. This indicates that reduced ventilation in the outcrop is directly related to the existence of suboxic OMZs, but they are not obviously related to enhanced consumption indicated by the oxygen ages. The turn-over time suggests that the lower thermocline of the North Atlantic would be suboxic but at present this is compensated by the import of water from the well ventilated South Atlantic. The turn-over time approach itself is independent of details of ocean transport pathways. Instead the geographical location of the OMZ is to first order determined by: (i) the patterns of upwelling, either through Ekman or equatorial divergence, (ii) the regions of general sluggish horizontal transport at the eastern boundaries, and (iii) to a lesser extent to regions with high productivity as indicated through ocean colour data.
NASA Astrophysics Data System (ADS)
Conway, Tim M.; John, Seth G.
2015-09-01
Dissolved stable isotope ratios of the transition metals provide useful information, both for understanding the cycling of these bioactive trace elements through the oceans, and tracing their marine sources and sinks. Here, we present seawater dissolved Fe, Zn and Cd concentration and stable isotope ratio (δ56Fe, δ66Zn, and δ114Cd) profiles from two stations in the Pacific Ocean, the SAFe Station (30°N 140°W) in the subtropical North East Pacific from the GEOTRACES IC2 cruise, and the marginal San Pedro Basin (33.8°N 118.4°W) within the South California Bight. These data represent, to our knowledge, the first full-water column profiles for δ66Zn and δ56Fe from the open-ocean North Pacific, and the first observations of dissolved δ66Zn and δ114Cd in a low-oxygen marginal basin. At the SAFe station, δ56Fe is isotopically lighter throughout the water column (-0.6 to +0.1‰, relative to IRRM-014) compared to the North Atlantic, suggesting significant differences in Fe sources or Fe cycling between these two ocean basins. A broad minimum in δ56Fe associated with the North Pacific oxygen minimum zone (OMZ; <75 μmol kg-1 dissolved oxygen; ∼550-2000 m depth) is consistent with reductive sediments along the California margin being an important source of dissolved Fe to the North Pacific. Other processes which may influence δ56Fe at SAFe include biological cycling in the upper ocean, and input of Fe from hydrothermal vents and oxic sediments below the OMZ. Zn and Cd concentration profiles at both stations broadly match the distribution of the macronutrients silicate and phosphate, respectively. At SAFe, δ114Cd increases towards the surface, reflecting the biological preference for assimilation of lighter Cd isotopes, while negative Cd∗ (-0.12) associated with low oxygen waters supports the recently proposed hypothesis of water-column CdS precipitation. In contrast to δ114Cd, δ66Zn at SAFe decreases towards the surface ocean, perhaps due to scavenging of isotopically heavy Zn, while at intermediate depths δ66Zn provides further evidence of a mid-depth dissolved δ66Zn maximum. We suggest this may be a global feature of Zn biogeochemistry related to either regeneration of heavy adsorbed Zn, or to ZnS formation and removal within the water column. Data from San Pedro shows that anoxic sediments can be a source of isotopically light Zn to the water column (δ66Zn of ∼-0.3‰ relative to JMC Lyon), though evidence of this signal is not observed being transported to SAFe. Within North Pacific Intermediate Water at SAFe (NPIW; ∼500 m) elevated Cd∗ and Zn∗ and a focused minimum in δ56Fe suggest possible transport of Fe, Zn, and Cd over thousands of km from subpolar waters, meaning that NPIW may have a strong influence on the subsurface distribution of trace metals throughout the North Pacific.
NASA Astrophysics Data System (ADS)
Fernandes, S. Q.; Mazumdar, A.; Peketi, A.; Bhattacharya, S.; Carvalho, M.; Da Silva, R.; Roy, R.; Mapder, T.; Roy, C.; Banik, S. K.; Ghosh, W.
2017-12-01
The oxygen minimum zone (OMZ) of the Arabian Sea in the northern Indian Ocean is one of the three major global sites of open ocean denitrification. The functionally anoxic water column between 150 to 1200 mbsl plays host to unique biogeochemical processes and organism interactions. Little is known, however, about the consequence of the low dissolved oxygen on the underlying sedimentary biogeochemical processes. Here we present, for the first time, a comprehensive investigation of sediment biogeochemistry of the Arabian Sea OMZ by coupling pore fluid analyses with microbial diversity data in eight sediment cores collected across a transect off the west coast of India in the Eastern Arabian Sea. We observed that in sediments underlying the core of the OMZ, high organic carbon sequestration coincides with a high diversity of all bacteria (the majority of which are complex organic matter hydrolyzers) and sulfate reducing bacteria (simple organic compound utilizers). Depth-integrated sulfate reduction rate also intensifies in this territory. These biogeochemical features, together with the detected shallowing of the sulfate-methane interface and buildup of pore-water sulfide, are all reflective of heightened carbon-sulfur cycling in the sediments underlying the OMZ core. Our data suggests that the sediment biogeochemistry of the OMZ is sensitive to minute changes in bottom water dissolved oxygen, and is dictated by the potential abundance and bioavailability of complex to simple carbon compounds which can stimulate a cascade of geomicrobial activities pertaining to the carbon-sulfur cycle. Our findings hold implications in benthic ecology and sediment diagenesis.
NASA Astrophysics Data System (ADS)
Schmittner, Andreas; Galbraith, Eric D.; Hostetler, Steven W.; Pedersen, Thomas F.; Zhang, Rong
2007-09-01
Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas.
Modeling oxygen depletion forced by acetate discharge in the coastal waters of the North Sea
NASA Astrophysics Data System (ADS)
Ilinskaya, Alisa; Yakushev, Evgeny; Nøst, Ole-Anders; Pakhomova, Svetlana
2017-04-01
Consequences of discharge of acetate produced during the production of X-ray contrast agents in the coastal waters of the Norwegian coast of the North Sea were analyzed with a set of mathematical models. The baseline seasonal variability of temperature, salinity, advection and turbulence were calculated with the Finite Volume Community Ocean Model (FVCOM) applied to the Southern coast of Norway. These data were used to force a vertical 2-Dimensional Benthic-Pelagic transport model (2DBP) coupled via Framework for Aquatic Biogeochemical Models (FABM) with a biogeochemical model OxyDep, considering phytoplankton, heterotrophs, nutrient, dissolved organic matter, particulate organic matter, and dissolved oxygen (DO). Acetate was considered as a chemical oxygen depletion substrate leading to the decrease of oxygen concentrations. We simulated seasonal variability at a 10 km long vertical transect with a spatial resolution of 50 m horizontally and approximately 2 m vertically. These calculations reproduced local minimum in the vertical DO distributions in 2 km distance from the discharge point, that corresponded to the observations. We conducted numerical experiments on the effects of doubling of the acetate discharge and on formation of acetate complexes.
Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45 degrees C.
Yu, Yunmei; Zhu, Yongxuan; Gao, Zhenmin; Gammons, Christopher H; Li, Denxian
2007-09-15
The oxidation rate of arsenopyrite by dissolved oxygen was measured using a mixed flow reactor at dissolved O2 concentrations of 0.007-0.77 mM, pH 1.8-12.6, and temperatures of 15-45 degrees C. As(III) was the dominant redox species (>75%) in the experimental system, and the As(III)/As(V) ratio of effluent waters did not change with pH. The results were used to derive the following rate law expression (valid between pH 1.8 and 6.4): r = 10((-2211 +/- 57)T) (mO2)(0.45 +/- 0.05), where r is the rate of release of dissolved As in mol m(-2) s(-1) and T is in Kelvin. Activation energies (Ea) for oxidation of arsenopyrite by 02 at pH 1.8 and 5.9 are 43 and 57 kJ/mol, respectively, and they compare to an Ea value of 16 kJ/mol for oxidation by Fe(III) at pH 1.8. Apparent As release rates passed through a minimum in the pH range 7-8, which may have been due to oxidation of Fe2+ to hydrous ferric oxide (HFO) with attenuation of dissolved As onto the freshly precipitated HFO.
NASA Astrophysics Data System (ADS)
Netburn, Amanda N.; Anthony Koslow, J.
2015-10-01
Climate change-induced ocean deoxygenation is expected to exacerbate hypoxic conditions in mesopelagic waters off the coast of southern California, with potentially deleterious effects for the resident fauna. In order to understand the possible impacts that the oxygen minimum zone expansion will have on these animals, we investigated the response of the depth of the deep scattering layer (i.e., upper and lower boundaries) to natural variations in midwater oxygen concentrations, light levels, and temperature over time and space in the southern California Current Ecosystem. We found that the depth of the lower boundary of the deep scattering layer (DSL) is most strongly correlated with dissolved oxygen concentration, and irradiance and oxygen concentration are the key variables determining the upper boundary. Based on our correlations and published estimates of annual rates of change to irradiance level and hypoxic boundary, we estimated the corresponding annual rate of change of DSL depths. If past trends continue, the upper boundary is expected to shoal at a faster rate than the lower boundary, effectively widening the DSL under climate change scenarios. These results have important implications for the future of pelagic ecosystems, as a change to the distribution of mesopelagic animals could affect pelagic food webs as well as biogeochemical cycles.
The Paleoceanography of the Bering Sea During the Last Glacial Cycle
2006-02-01
Stabeno, 1998). Water from the Bering (1995) inferred that the oxygen minimum zone Sea is relatively low salinity and rich in nutrients, (OMZ...fresher, warmer, and enriched in nutrients, particu- planktonic species Neogloboquadrina pachyderma larly silicate, which dissolves from opal- rich seafloor...2- rich 33 North Pacific intermediate water (NPIW), (2) decrease in the [02] of newly-formed NPIW without a change in ventilation rate (Crusius et al
Spietz, Rachel L; Williams, Cheryl M; Rocap, Gabrielle; Horner-Devine, M Claire
2015-01-01
Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA-a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L(-1). This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L(-1)), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems.
NASA Astrophysics Data System (ADS)
Rapp, I.; Schlosser, C.; Gledhill, M.; Achterberg, E. P.
2016-02-01
Fe availability in surface waters determines primary production, N2 fixation and microbial community structure and thus plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling areas with oxygen minimum zones, such as the Mauritanian shelf region, are typically associated with elevated Fe concentrations with shelf sediments as key source of Fe to bottom and surface waters. The magnitude of vertical and horizontal Fe fluxes from shelf sediments to onshore and offshore surface waters are not well constrained and there are still large uncertainties concerning the stabilisation of Fe once released from sediments into suboxic and oxic waters. Supportive data of other trace metals can be used as an indicator of sediment release, scavenging processes and biological utilisation. Here we present soluble (<0.02 µm), dissolved (<0.2 µm) and total dissolvable (unfiltered) trace metal data collected at 10 stations on a 90 nautical mile transect across the Mauritanian shelf region in June 2014 (cruise Meteor 107). The samples were pre-concentrated using an automated off-line pre-concentration device and analysed simultaneously for Cd, Pb, Fe, Ni, Cu, Zn, Mn and Co using a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS). First results indicate the importance of benthic sources to the overall Fe budget in this region. Both dissolved Fe and Mn showed enhanced concentrations close to the shelf at depths between 40 and 180 m corresponding with low oxygen concentrations (<50 µmol L-1). Elevated soluble, dissolved, and total dissolvable Fe and Mn concentrations at an offshore station coincided with the location of a cyclonic Eddie that was characterised by an oxygen depleted water body. To further assess the accuracy of vertical and horizontal fluxes of Fe and other trace metals, we compare diffusivity estimates determined by a microstructure profiler and the scale length method (de Jong et al. 2012) with observed isotopic Ra data.
Biochemical Oxygen Demand and Dissolved Oxygen. Training Module 5.105.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…
Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Llanillo, P. J.; Pelegrí, J. L.; Talley, L. D.; Peña-Izquierdo, J.; Cordero, R. R.
2018-03-01
Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.84 ± 0.42 µmol kg-1 yr-1) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).
Spietz, Rachel L.; Williams, Cheryl M.; Rocap, Gabrielle; Horner-Devine, M. Claire
2015-01-01
Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems. PMID:26270047
Martin, Jeffrey D.
1995-01-01
Concentrations of dissolved oxygen measured at the station in the middle of the combined-sewer overflows were less than the Indiana minimum ambient water-quality standard of 4.0 milligrams per liter during all storms. Concentrations of ammonia, oxygen demand, copper, lead, zinc, and fecal coliform bacteria at the stations downstream from the combined-sewer overflows were much higher in storm runoff than in base flow. Increased concentrations of oxygen demand in runoff probably were caused by combined-sewer overflows, urban runoff, and the resuspension of organic material deposited on the streambed. Some of the increased concentrations of lead, zinc, and probably copper can be attributed to the discharge and resuspension of filter backwash
Talley, L D; Feely, R A; Sloyan, B M; Wanninkhof, R; Baringer, M O; Bullister, J L; Carlson, C A; Doney, S C; Fine, R A; Firing, E; Gruber, N; Hansell, D A; Ishii, M; Johnson, G C; Katsumata, K; Key, R M; Kramp, M; Langdon, C; Macdonald, A M; Mathis, J T; McDonagh, E L; Mecking, S; Millero, F J; Mordy, C W; Nakano, T; Sabine, C L; Smethie, W M; Swift, J H; Tanhua, T; Thurnherr, A M; Warner, M J; Zhang, J-Z
2016-01-01
Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.
Schmittner, A.; Galbraith, E.D.; Hostetler, S.W.; Pedersen, Thomas F.; Zhang, R.
2007-01-01
Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones, throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas. Copyright 2007 by the American Geophysical Union.
Waldron, M.C.; Wiley, J.B.
1996-01-01
The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.
Dissolved Rare Earth Elements in the US GEOTRACES North Atlantic Section
NASA Astrophysics Data System (ADS)
Shiller, A. M.
2016-12-01
The rare earth elements (REEs) are a unique chemical set wherein there are systematic changes in geochemical behavior across the series. Furthermore, while most REEs are in the +III oxidation state, Ce and Eu can be in other oxidation states leading to distinct characteristics of those elements. Thus, the geochemical properties of the REEs make them particularly useful tools for inquiring into various geochemical processes. As part of the US GEOTRACES effort, we determined dissolved REEs and Y at 32 stations across the North Atlantic during US cruises GT10 and GT11 along a meridional transect from Lisbon to the Cape Verde Islands and a zonal transect from Cape Cod to the Mauritanian coast. While profiles are similar to previous reports, the high spatial resolution of the section allows for better elucidation of processes. Light rare earths (LREEs) show removal in the upper water column with a minimum at the chlorophyll maximum. LREE concentrations then increase into the oxygen minimum followed by a slight decrease and fairly constant concentrations in the mid-water column followed by an increase into the deep and bottom waters. Heavy rare earths (HREEs) show a more monotonic increase with depth. We also take advantage of a previously published water mass analysis for the section to estimate that most of the deep water changes can be explained by conservative mixing of waters with different pre-formed REE concentrations. Nonetheless, the pattern of LREE shallow water removal followed by regeneration, possible re-scavenging, and then deep water input is still preserved. Other features of note include an increase in LREEs in the strong oxygen minimum zone off Mauritania, consistent with an association of REE cycling with the redox cycles of Fe and Mn. Also along the eastern margin, but below the oxygen minimum, a small but distinct increase in the cerium and europium anomalies is observed, consistent with terrigenous input. In hydrothermally influenced waters along the mid-Atlantic Ridge, there are increases in Ce/Ce*, Eu/Eu*, and Y/Ho but a decrease in Nd/Yb and in REE concentrations. Surface water distributions are more consistent with elements influenced by margin inputs than with atmospheric input.
Kay, Robert T.; Groschen, George E.; Dupre, David H.; Drexler, Timothy D.; Thingvold, Karen L.; Rosenfeld, Heather J.
2009-01-01
Surface water can exhibit substantial diel variations in the concentration of a number of constituents. Sampling regimens that do not characterize diel variations in water quality can result in an inaccurate understanding of site conditions and of the threat posed by the site to human health and the environment. Surface- and groundwater affected by acid drainage were sampled every 60 to 90 minutes over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, in Hegeler, Ill. Groundwater-quality data from a well at the site indicate stable, low pH, weakly oxidizing geochemical conditions in the aquifer. With the exceptions of temperature and pH, no constituents exhibited diel variations in groundwater. Variations in temperature and pH likely were not representative of conditions in the aquifer. Surface water was sampled at a site on Grape Creek. Diel variations were observed in temperature, dissolved oxygen, pH, and specific conductance, and in the concentrations of nitrite, barium, iron, lead, vanadium, and possibly uranium. Concentrations during the diel cycles varied by about an order of magnitude for nitrite and varied by about a factor of two for barium, iron, lead, vanadium, and uranium. Temperature, dissolved oxygen, specific conductance, nitrite, barium, lead, and uranium generally reached maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally reached minimum values during the afternoon and maximum values during the night. These variations would need to be accounted for during sampling of surface-water quality in similar hydrologic settings. The temperature variations in surface water were affected by variations in air temperature. Concentrations of dissolved oxygen were affected by variations in the intensity of photosynthetic activity and respiration. Nitrite likely was formed by the oxidation of ammonium by dissolved oxygen and degraded by its anaerobic oxidation by ammonium or as part of the decomposition of organic matter. Variations in pH were affected by the photoreduction of Fe3+ to Fe2+ and the precipitation of iron oxyhydroxides. Diel variations in concentrations of iron and vanadium were likely caused by variations in the dissolution and precipitation of iron oxyhydroxides, oxyhydroxysulfates, and hydrous sulfates, which may have been affected by in the intensity of insolation, iron photoreduction, and the concentration of dissolved oxygen. The concentrations of lead, uranium, and perhaps barium in Grape Creek may have been affected by competition for sorption sites on iron oxyhydroxides. Competition for sorption sites was likely affected by variations in pH and the concentration of Fe2+. Constituent concentrations likely also were affected by precipitation and dissolution of minerals that are sensitive to changes in pH, temperature, oxidation-reduction conditions, and biologic activity. The chemical and biologic processes that resulted in the diel variations observed in Grape Creek occurred within the surface-water column or in the underlying sediments.
The effect of Sequoyah Nuclear Plant on dissolved oxygen in Chickamauga Reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkus, S.R.; Shiao, M.C.; Yeager, B.L.
1990-09-01
During the summer of 1985, the Tennessee Division of Water Pollution Control and the Tennessee Wildlife Resources Agency measured dissolved oxygen (DO) concentrations downstream from the Sequoyah Nuclear Plant (SQN) discharge mixing zone that were below the state criterion for DO. The Tennessee General Water Quality Criteria'' specifies that DO should be a minimum of 5.0 mg/l measured at a depth of 5 feet for the protection of fish and aquatic life. The Tennessee Valley Authority developed the present study to answer general concerns about reservoir conditions and potential for adverse effects on aquatic biota. Four objectives were defined formore » this study: (1) to better define the extent and duration of the redistribution of DO in the reservoir, (2) to better understand DO dynamics within the mixing zone, (3) to determine whether DO is being lost (or added) as the condenser cooling water passes through the plant, and (4) to evaluate the potential for impact on aquatic life in the reservoir.« less
Microbial oceanography of anoxic oxygen minimum zones.
Ulloa, Osvaldo; Canfield, Donald E; DeLong, Edward F; Letelier, Ricardo M; Stewart, Frank J
2012-10-02
Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N(2)) and nitrous oxide (N(2)O) gases. Anaerobic microbial processes, including the two pathways of N(2) production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two "end points" represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future.
Microbial oceanography of anoxic oxygen minimum zones
Ulloa, Osvaldo; Canfield, Donald E.; DeLong, Edward F.; Letelier, Ricardo M.; Stewart, Frank J.
2012-01-01
Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N2) and nitrous oxide (N2O) gases. Anaerobic microbial processes, including the two pathways of N2 production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two “end points” represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future. PMID:22967509
The Evolution of Deepwater Dissolved Oxygen in the Northern South China Sea During the Past 400 ka
NASA Astrophysics Data System (ADS)
Wang, N.; Huang, B.; Dong, Y.
2016-12-01
Reconstruction of dissolved oxygen in paleo-ocean contributes toward understanding the history of ocean circulation, climate, causes of extinctions, and the evolution of marine organisms. Based on analysis of benthic foraminifera oxygen index (BFOI), the redox-sensitive trace elements (Mo/Al), the percentage of epifaunal benthic foraminifera and infaunal/epifaunal ratio at core MD12-3432, we reconstruct the evolution of deep water dissolved oxygen in northern South China Sea (SCS) during the past 400 ka and discuss the mechanisms of variable dissolved oxygen. Both BFOI and Mo/Al are redox indicators. Similar trends confirm that they reflect the variation of dissolved oxygen in seawater since 400 ka accurately. BFOI and Mo/Al indicate that dissolved oxygen was high in MIS 11-MIS 7 and decreased gradually during MIS 6- MIS 2. The percentage of epifauna decreased and infaunal/epifaunal ratio increased with decreasing dissolved oxygen. By comparison of dissolved oxygen and productivity indexes such as phytoplankton total (PT) and species abundances, we found that when PT fluctuated in the average range of 1000-1500 ng/g, the abundances of Bulimina and Uvigerina which represent high productivity increased. However, when PT reached the range of 2500-3000 ng/g, the abundances of Bulimina and Uvigerina didn't increase, but the abundances of dysoxic species Chilostomella oolina and Globobulimina pacifica increased and the dissolved oxygen reached low value. The reasons may be that the decomposition of excessive organic matter consumed more dissolved oxygen. The low dissolved oxygen suppressed the growth of Bulimina and Uvigerina and accelerated the boom of C. oolina and G. oolina. The dissolved oxygen is not only associated with productivity, but also affected by the thermohaline circulation. Benthic foraminifera F. favus is the representative species in Pacific deep water. Its appearance at 194 ka, 205 ka, 325, the 328 ka in MD12-3432 indicate that the upper border of western Pacific deep water was beyond the sill of Bashi Strait and high dissolved oxygen deep water was brought into Northern SCS. The millennium-scale rapid variability and decline of dissolved oxygen in MIS 4, 3, 2 may be caused by fluctuations and slowdown of thermohaline circulation transported from the northern Atlantic to the northern SCS.
Prediction model of dissolved oxygen in ponds based on ELM neural network
NASA Astrophysics Data System (ADS)
Li, Xinfei; Ai, Jiaoyan; Lin, Chunhuan; Guan, Haibin
2018-02-01
Dissolved oxygen in ponds is affected by many factors, and its distribution is unbalanced. In this paper, in order to improve the imbalance of dissolved oxygen distribution more effectively, the dissolved oxygen prediction model of Extreme Learning Machine (ELM) intelligent algorithm is established, based on the method of improving dissolved oxygen distribution by artificial push flow. Select the Lake Jing of Guangxi University as the experimental area. Using the model to predict the dissolved oxygen concentration of different voltage pumps, the results show that the ELM prediction accuracy is higher than the BP algorithm, and its mean square error is MSEELM=0.0394, the correlation coefficient RELM=0.9823. The prediction results of the 24V voltage pump push flow show that the discrete prediction curve can approximate the measured values well. The model can provide the basis for the artificial improvement of the dissolved oxygen distribution decision.
Hasler, C T; Suski, C D; Hanson, K C; Cooke, S J; Tufts, B L
2009-01-01
In this study, field biotelemetry and laboratory physiology approaches were coupled to allow understanding of the behavioral and physiological responses of fish to winter hypoxia. The biotelemetry study compared dissolved oxygen levels measured throughout the winter period with continually tracked locations of nine adult largemouth bass obtained from a whole-lake submerged telemetry array. Fish habitat usage was compared with habitat availability to assess whether fish were selecting for specific dissolved oxygen concentrations. The laboratory study examined behavioral and physiological responses to progressive hypoxia in juvenile largemouth bass acclimated to winter temperatures. Results from the dissolved oxygen measurements made during the biotelemetry study showed high variance in under-ice dissolved oxygen levels. Avoidance of water with dissolved oxygen <2.0 mg/L by telemetered fish was demonstrated, but significant use of water with intermediate dissolved oxygen levels was also found. Results from the lab experiments showed marked changes in behavior (i.e., yawning and vertical movement) at <2.0 mg/L of dissolved oxygen but no change in tissue lactate, an indicator of anaerobic metabolism. Combined results of the biotelemetry and laboratory studies demonstrate that a dissolved oxygen content of 2.0 mg/L may be a critical threshold that induces behavioral responses by largemouth bass during the winter. In addition, the use by fish of areas with intermediate levels of dissolved oxygen suggests that there are multiple environmental factors influencing winter behavior.
Evaluating the Impact of Changes in Oceanic Dissolved Oxygen on Marine Nitrous Oxide
NASA Astrophysics Data System (ADS)
Suntharalingam, Parvadha; Buitenhuis, Erik; Schmidtko, Sunke; Andrews, Oliver; LeQuere, Corinne
2013-04-01
Emissions of the greenhouse gas nitrous-oxide (N2O) from oceanic oxygen minimum zones (OMZs) in the Equatorial Pacific and Northwest Indian Ocean are believed to provide a significant portion of the global oceanic flux to the atmosphere. Mechanisms of marine N2O production and consumption in these regions display significant sensitivity to ambient oxygen, with high yields at low oxygen levels (O2 < 50 micromol/L), and N2O depletion via denitrification in anoxic zones. These OMZ regions display large gradients in sub-surface N2O, and high rates of N2O turnover that far exceed those observed in the open ocean. Recent studies have suggested that possible expansion of oceanic OMZs in a warming climate, could lead to significant changes in N2O emissions from these zones. In this analysis we employ a global ocean biogeochemistry model (NEMO-PlankTOM), which includes representation of the marine N2O cycle, to explore the impact of changes in dissolved oxygen on the ocean-atmosphere N2O flux. We focus on the period 1960-2000, and evaluate the impact of estimated changes in ocean oxygen from two alternative sources : (a) the observationally-based upper-ocean oxygen distributions and trends of Stramma et al. [2012]; (b) simulated oxygen distributions and temporal variations from a set of CMIP5 Earth System models. We will inter-compare the oceanic N2O estimates derived from these alternative scenarios of ocean de-oxygenation. We will also discuss the implications of our results for the ability to reliably predict changes in N2O emissions under potential expansion of oceanic OMZs, particularly in view of the recently noted discrepancies between observed and modeled trends in oceanic oxygen by Stramma et al. [2012].
Water quality in the New River from Calexico to the Salton Sea, Imperial County, California
Setmire, James G.
1984-01-01
The New River enters the United States at Calexico, Calif., after it crosses the international boundary. Water-quality data from routine collection indicated that the New River was degraded by high organic and bacterial content. Intensive sampling for chemical and physical constituents and properties of the river was done May 9-13, 1977, to quantify the chemical composition of the water and to identify water-quality problems. Concentrations of total organic carbon in the New River at Calexico ranged from 80 to 161 milligrams per liter and dissolved organic carbon ranged from 34 to 42 milligrams per liter; the maximum chemical oxygen demand was 510 milligrams per liter. Intensive sampling for chemical and biological characteristics was done in the New River from May 1977 to June 1978 to determine the occurrence of the organic material and its effects on downstream water quality. Dissolved-oxygen concentration was measured along longitudinal profiles of the river from Calexico to the Salton Sea. A dissolved-oxygen sag downstream from the Calexico gage varied seasonally. The sag extended farther downstream and had lower concentrations of dissolved oxygen during the summer months than during the winter months. The sag of zero dissolved-oxygen concentration extended 26 miles in July 1977. In December 1976, the sag extended 20 miles but the minimum dissolved-oxygen concentration was 2.5 milligrams per liter. The greatest diel (24-hour) variation in dissolved-oxygen concentration occurred in the reach from the Calexico gage to Lyons Crossing, 8.8 miles downstream. High concentrations of organic material were detected as far as Highway 80, 19.5 miles downstream from the international boundary. Biological samples analyzed for benthic invertebrates showed that water at the Calexico and Lyons Crossing sites, nearest the international boundary, was of such poor quality that very few bottom-dwelling organisms could survive. Although the water was of poor quality at Keystone Road, 36 miles downstream, it was able to support a benthic community. The April sample had more than 9,150 organisms on a multiplate sampler, 8,770 of which were of one species. Farther downstream at the Westmorland gage, the water quality, as indicated by the number and diversity of organisms, had improved over that at the Keystone site. The Alamo River at its outlet to the Salton Sea--the control site--had the greatest diversity of all the study sites. This diversity, when compared with the diversity at the Westmorland gage, indicated that the effects of the degraded water quality observed at the New River at Calexico are detected as far as 62 miles downstream. Standard bacteria indicator tests indicate that fecal contamination exists in the New River. Counts of fecal coliform bacteria ranged from 180,000 to 2,800,000 colonies per 100 milliliters for the 20-mile reach from Calexico to Highway 80, and fecal streptococcal bacteria ranged from 5,000 to 240,000 colonies per 100 milliliters.
Ghosh, J P; Taylor, K E; Bewtra, J K; Biswas, N
2008-04-01
The potential use of laccase (SP-504) in an advanced oxidation-based treatment technology to remove 2,4-dimethylphenol (DMP) from water was investigated with and without the additive, polyethylene glycol (PEG). The DMP concentration was varied between 1.0 and 5.0 mM. The optimization of pH and enzyme concentration in the presence and absence of PEG was carried out. All experiments were carried out in continuously stirred reactors for 3h at room temperature. The reaction was initiated by adding enzyme to the reaction mixture. For more than 95% removal of DMP, the presence of PEG reduced the inactivation of enzyme so that the required enzyme concentrations were reduced by about 2-fold compared to the same reactions in the absence of PEG. Finally, the PEG concentrations were optimized to obtain the minimum dose required. For higher substrate concentrations, the availability of oxygen was insufficient in achieving 95% or more removal. Therefore, the effect of increasing dissolved oxygen at higher substrate concentration was investigated. The laccase studied was capable of efficiently removing DMP at very low enzyme concentrations and hence shows great potential for cost-effective industrial applications.
Waste-assimilation study of Koshkonong Creek below sewage-treatment plant at Sun Prairie, Wisconsin
Grant, R. Stephen
1976-01-01
A waste-load-assimilation study of a reach of Koshkonong Creek below the Sun Prairie, Wisconsin, sewage-treatment-plant outfall indicated that a high level of treatment would be required to meet Wisconsin water-quality standards. To maintain a minimum dissolved-oxygen concentration of 5 mg/liter during the critical summer low-flow period, 5-day carbonaceous biochemical-oxygen demand in waste discharges should not exceed 5 mg/liter and ammonium nitrogen should not exceed 1.5 mg/liter. Advanced treatment with denitrification is required because stream-reaeration coefficients are not high enough to offset deoxygenation caused by an abundance of attached biological slimes. The slimes apparently consumed dissolved oxygen at a rate of about 110 mg/liter per day at the time of the stream survey. During the critical summer low-flow period, natural stream discharge is very small compared to waste-water discharge , so benefits of dilution are insignificant. An evaluation of two proposed alternative waste-water discharge sites indicated that the present discharge site is hydraulically superior to these sites. Stream-reaeration coefficients used in the study were based on measurements using the radioactive-tracer method. (Woodard-USGS)
Graczyk, David J.; Lillie, Richard A.; Schlesser, Roger A.; Mason, John W.; Lyons, John D.; Kerr, Roger A.; Graczyk, David J.
1993-01-01
Low concentrations of dissolved oxygen constituted the most detrimental water-quality problem affecting smallmouth bass populations. Dissolved-oxygen concentrations were occasionally less than 3 milligrams per liter, a dissolved-oxygen concentration that may be detrimental to early-life stages of smallmouth bass in the streams; however, smallmouth bass were apparently able to withstand these low dissolved-oxygen concentrations and seem to have survived in some situations when dissolved-oxygen concentration decreased to1 milligram per liter.
NASA Astrophysics Data System (ADS)
Dunn, Ryan J. K.; Robertson, David; Teasdale, Peter R.; Waltham, Nathan J.; Welsh, David T.
2013-10-01
Benthic oxygen and nutrient fluxes and nitrate reduction rates were determined seasonally under light and dark conditions at three sites in a micro-tidal creek within an urbanised catchment (Saltwater Creek, Australia). It was hypothesized that stormwater inputs of organic matter and inorganic nitrogen would stimulate rates of benthic metabolism and nutrient recycling and preferentially stimulate dissimilatory nitrate reduction to ammonium (DNRA) over denitrification as a pathway for nitrate reduction. Stormwaters greatly influenced water column dissolved inorganic nitrogen (DIN) and suspended solids concentrations with values following a large rainfall event being 5-20-fold greater than during the preceding dry period. Seasonally, maximum and minimum water column total dissolved nitrogen (TDN) and DIN concentrations occurred in the summer (wet) and winter (dry) seasons. Creek sediments were highly heterotrophic throughout the year, and strong sinks for oxygen, and large sources of dissolved organic and inorganic nitrogen during both light and dark incubations, although micro-phytobenthos (MPB) significantly decreased oxygen consumption and N-effluxes during light incubations due to photosynthetic oxygen production and photoassimilation of nutrients. Benthic denitrification rates ranged from 3.5 to 17.7 μmol N m2 h-1, denitrification efficiencies were low (<1-15%) and denitrification was a minor process compared to DNRA, which accounted for ˜75% of total nitrate reduction. Overall, due to the low denitrification efficiencies and high rates of N-regeneration, Saltwater Creek sediments would tend to increase rather than reduce dissolved nutrient loads to the downstream Gold Coast Broadwater and Moreton Bay systems. This may be especially true during wet periods when increased inputs of particulate organic nitrogen (PON) and suspended solids could respectively enhance rates of N-regeneration and decrease light availability to MPB, reducing their capacity to ameliorate N-effluxes through photoassimilation.
Reconnaissance of water quality of Pueblo Reservoir, Colorado: May through December 1985
Edelmann, Patrick
1989-01-01
Pueblo Reservoir is the farthest upstream, main-stream reservoir constructed on the Arkansas River and is located in Pueblo County approximately 6 miles upstream from the city of Pueblo, Colorado. During the 1985 sampling period, the reservoir was stratified, and underflow from the Arkansas River occurred that resulted in stratification with respect to specific conductance. Concentrations of dissolved solids decreased markedly below the thermocline during June. Later in the summer, dissolved-solids concentrations increased substantially below the thermocline. Substantial depletion of dissolved oxygen occurred near the bottom of the reservoir. The dissolved oxygen minimum of 0.1 mg/L occurred during August near the reservoir bottom at transect 7 (near the dam). The average total-inorganic-nitrogen concentration near the reservoir surface was about 0.2 mg/L; near the reservoir bottom, the average concentration was about 0.3 mg/L. Concentrations of total phosphorus ranged from less than 0.01 to 0.05 mg/L near the reservoir surface, and from less than 0.01 to 0.22 mg/L near the reservoir bottom. At transect 2 (about 7 miles upstream from the dam) near the bottom of the reservoir, concentrations of total iron exceeded aquatic-life standards, and dissolved-manganese concentrations exceeded standards for public water supply. Diatoms, green algae, blue-green algae, and cryptomonads comprised the majority of phytoplankton in Pueblo Reservoir in 1985. The maximum average of 41,000 cells/ml occurred in July. Blue-green algae dominated from June to September; diatoms were the dominant group of algae in October. The average concentrations of phytoplankton decreased from July to October. (USGS)
Ma, Yuhan; Berman, Avery J L; Pike, G Bruce
2016-12-01
To determine the contribution of paramagnetic dissolved oxygen in blood plasma to blood-oxygenation-level-dependent (BOLD) signal changes in hyperoxic calibrated BOLD studies. Bovine blood plasma samples were prepared with partial pressures of oxygen (pO 2 ) ranging from 110 to 600 mmHg. R 1 , R 2 , and R 2 * of the plasma with dissolved oxygen were measured using quantitative MRI sequences at 3 Tesla. Simulations were performed to predict the relative effects of dissolved oxygen and deoxyhemoglobin changes in hyperoxia calibrated BOLD. The relaxivities of dissolved oxygen in plasma were found to be r 1, O2 =1.97 ± 0.09 ×10 -4 s -1 mmHg -1 , r 2, O2 =2.3 ± 0.7 ×10 -4 s -1 mmHg -1 , and r 2, O2 * = 2.3 ± 0.7 ×10 -4 s -1 mmHg -1 . Simulations predict that neither the transverse nor longitudinal relaxation rates of dissolved oxygen contribute significantly to the BOLD signal during hyperoxia. During hyperoxia, the increases in R 2 and R 2 * of blood from dissolved oxygen in plasma are considerably less than the decreases in R 2 and R 2 * from venous deoxyhemoglobin. R 1 effects due to dissolved oxygen are also predicted to be negligible. As a result, dissolved oxygen in arteries should not contribute significantly to the hyperoxic calibrated BOLD signal. Magn Reson Med 76:1905-1911, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
Gylienė, Ona; Servienė, Elena; Vepštaitė, Iglė; Binkienė, Rima; Baranauskas, Mykolas; Lukša, Juliana
2015-10-20
The ability of chitosan to adsorb dissolved oxygen from solution depends on its physical shape and is related to the surface area. Depending on conditions chitosan is capable of adsorbing or releasing oxygen. Chitosan, modificated by the substances possessing antimicrobial activity, such as succinic acid, Pd(II) ions, metallic Pd or Ag, distinctly increases the ability to adsorb the dissolved oxygen. The additional treatment of chitosan with air oxygen or electrochemically produced oxygen also increases the uptake of dissolved oxygen by chitosan. A strong correlation between the amount of oxygen adsorbed onto chitosan and its antimicrobial activity against Esherichia coli has been observed. This finding suggests that one of the sources of antimicrobial activity of chitosan is the ability to sorb dissolved oxygen, along with other well-known factors such as physical state and chemical composition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method to Estimate the Dissolved Air Content in Hydraulic Fluid
NASA Technical Reports Server (NTRS)
Hauser, Daniel M.
2011-01-01
In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.
NASA Astrophysics Data System (ADS)
González, Rodrigo R.; Gutiérrez, Marcelo H.; Quiñones, Renato A.
2007-11-01
The effects of the oxygen minimum zone on the metabolism of the heterotrophic microplankton community (0.22-100 μm) in the Humboldt Current System, as well as the factors controlling its biomass production, remain unknown. Here we compare the effect of four sources of dissolved organic carbon (glucose, oxaloacetate, glycine, leucine) on microbial biomass production (such as ATP-P) and the potential enzymatic activities involved in catabolic pathways under oxic and suboxic conditions. Our results show significant differences ( p < 0.05) in the ATP-P production when induced by the different substrates that are used as dissolved organic carbon herein. The induction of ATP-P production is enhanced from glucose < oxaloacetate < glycine < leucine. Nevertheless, for individual substrates, no significant differences were found between incubation under oxic and suboxic conditions except in the case of leucine. For this amino acid, the induction of ATP-P synthesis was higher under suboxic than oxic conditions. The data sets of all the substrates used showed greater potential ATP-P production under suboxic than oxic conditions. The results of the potential enzymatic activities suggest that malate dehydrogenase has the highest signal of NADH oxidization activity in the microbial assemblage. Furthermore, for all experiments, the malate dehydrogenase activity data set had a significant relationship with ATP-P production. These findings suggest that the microbial community inhabiting the oxygen minimum zone has the same or greater potential growth than the community inhabiting more oxygenated strata of the water column and that malate dehydrogenase is the activity that best represents the metabolic potential of the community.
Hernández-Miranda, Eduardo; Veas, Rodrigo; Anabalón, Valeria; Quiñones, Renato A
2017-01-01
In January 2008 there was an intensive and extensive upwelling event in the southern Humboldt Current System. This event produced an intrusion of water with low dissolved oxygen into Coliumo Bay, which caused massive mortality and the beaching of pelagic and benthic organisms, including zooplankton. During this event, which lasted 3 to 5 days, we studied and evaluated the effect of the hypoxic water in the bay on the abundance of macrozooplankton, nanoplankton and microphytoplankton, the concentration of several nutrients and hydrographic conditions. At the beginning of the hypoxia event the water column had very low dissolved oxygen concentrations (<0.5 mL O2 L-1), low temperatures and high salinity which are characteristics of the oxygen minimum zone from the Humboldt Current System. Redox, pH, nitrate, phosphate, silicate and chlorophyll-a values were the lowest, while nitrate and the phaeopigment values were the highest. The N:P ratio was below 16, and the abundance of nano- and microphytoplankton were at their lowest, the latter also with the lowest proportion of live organisms. Macrozooplankton had the greatest abundance during hypoxia, dominated mainly by crustacean, fish eggs and amphipods. The hypoxia event generated a strong short-term alteration of all biotic and abiotic components of the pelagic system in Coliumo Bay and the neighboring coastal zone. These negative effects associated with strong natural hypoxia events could have important consequences for the productivity and ecosystem functioning of the coastal zone of the Humboldt Current System if, as suggested by several models, winds favorable to upwelling should increase due to climate change. The effects of natural hypoxia in this coastal zone can be dramatic especially for pelagic and benthic species not adapted to endure conditions of low dissolved oxygen.
NASA Astrophysics Data System (ADS)
Mahasri, G.; Saskia, A.; Apandi, P. S.; Dewi, N. N.; Rozi; Usuman, N. M.
2018-04-01
The purpose of this research was to discover the process of enrichment of dissolved oxygen in fish cultivation media using nanobubble technology. This study was conducted with two treatments, namely a cultivation media without fish and a cultivation media containing 8 fish with an average body length of 24.5 cm. The results showed that the concentration of dissolved oxygen increased from 6.5 mg/L to 25 mg/L. The rate of increase in dissolved oxygen concentration for 30 minutes is 0.61 pp/minute. The rate of decrease in dissolved oxygen concentration in treatment 1 is 3.08 ppm/day and in treatment 2 is 0.23 ppm/minute. It was concluded that nanobubble is able to increase dissolved oxygen.
Perils of categorical thinking: "Oxic/anoxic" conceptual model in environmental remediation
Bradley, Paul M.
2012-01-01
Given ambient atmospheric oxygen concentrations of about 21 percent (by volume), the lower limit for reliable quantitation of dissolved oxygen concentrations in groundwater samples is in the range of 0.1–0.5 mg/L. Frameworks for assessing in situ redox condition are often applied using a simple two-category (oxic/anoxic) model of oxygen condition. The "oxic" category defines the environmental range in which dissolved oxygen concentrations are clearly expected to impact contaminant biodegradation, either by supporting aerobic biodegradation of electron-donor contaminants like petroleum hydrocarbons or by inhibiting anaerobic biodegradation of electron-acceptor contaminants like chloroethenes. The tendency to label the second category "anoxic" leads to an invalid assumption that oxygen is insignificant when, in fact, the dissolved oxygen concentration is less than detection but otherwise unknown. Expressing dissolved oxygen concentrations as numbers of molecules per volume, dissolved oxygen concentrations that fall below the 0.1 mg/L field detection limit range from 1 to 1017 molecules/L. In light of recent demonstrations of substantial oxygen-linked biodegradation of chloroethene contaminants at dissolved oxygen concentrations well below the 0.1–0.5 mg/L field detection limit, characterizing "less than detection" oxygen concentrations as "insignificant" is invalid.
Influence of dissolved oxygen concentration on the pharmacokinetics of alcohol in humans.
Baek, In-hwan; Lee, Byung-yo; Kwon, Kwang-il
2010-05-01
Ethanol oxidation by the microsomal ethanol oxidizing system requires oxygen for alcohol metabolism, and a higher oxygen uptake increases the rate of ethanol oxidation. We investigated the effect of dissolved oxygen on the pharmacokinetics of alcohol in healthy humans (n = 49). The concentrations of dissolved oxygen were 8, 20, and 25 ppm in alcoholic drinks of 240 and 360 ml (19.5% v/v). Blood alcohol concentrations (BACs) were determined by converting breath alcohol concentrations. Breath samples were collected every 30 min when the BAC was higher than 0.015%, 20 min at BAC < or =0.015%, 10 min at BAC < or =0.010%, and 5 min at BAC < or =0.006%. The high dissolved oxygen groups (20, 25 ppm) descended to 0.000% and 0.050% BAC faster than the normal dissolved oxygen groups (8 ppm; p < 0.05). In analyzing pharmacokinetic parameters, AUC(inf) and K(el) of the high oxygen groups were lower than in the normal oxygen group, while C(max) and T(max) were not significantly affected. In a Monte Carlo simulation, the lognormal distribution of mean values of AUC(inf) and t(1/2) was expected to be reduced in the high oxygen group compared to the normal oxygen group. In conclusion, elevated dissolved oxygen concentrations in alcoholic drinks accelerate the metabolism and elimination of alcohol. Thus, enhanced dissolved oxygen concentrations in alcohol may have a role to play in reducing alcohol-related side effects and accidents.
Climate and Anthropogenic Controls of Coastal Deoxygenation on Interannual to Centennial Timescales
NASA Astrophysics Data System (ADS)
Wang, Yi; Hendy, Ingrid; Napier, Tiffany J.
2017-11-01
Understanding dissolved oxygen variability in the ocean is limited by the short duration of direct measurements; however, sedimentary oxidation-reduction reactions can provide context for modern observations. Here we use bulk sediment redox-sensitive metal enrichment factors (MoEF, ReEF, and UEF) and scanning X-ray fluorescence records to examine annual-scale sedimentary oxygen concentrations in the Santa Barbara Basin from the Industrial Revolution (Common Era 1850) to present. Enrichments are linked to measured bottom water oxygen concentrations after 1986. We reveal gradual intensification of the coastal oxygen minimum zone (OMZ) on the southern California margin coinciding with the twentieth century anthropogenic warming trend that leads to reduced oxygen solubility and greater stratification. High-frequency interannual oscillations become more prominent over the last three decades. These are attributed to local "flushing events" triggered by the transition from El Niño to La Niña conditions, which further amplify changes in the extratropical southern Californian OMZ.
Zhao, Huifang; Li, Jing; Zhang, Xuejin
2018-06-01
In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.
Predicting the Fate and Effects of Resuspended Metal Contaminated Sediments
2015-12-23
force on the sediment. Over the course of the experiment, dissolved and particulate metal concentrations, dissolved oxygen , temperature , turbidity, pH...dissolved oxygen , and temperature . A 16-hour multiple resuspension was also implemented in the SeFEC, intended to replicate intermittent ship traffic...was sampled at the end of hours 4, 8, 12, and 16. Samples were analyzed for: dissolved metals, pH, dissolved oxygen , and temperature (three
NASA Astrophysics Data System (ADS)
Wang, X.; Murtugudde, R. G.; Zhang, D.
2016-12-01
Photosynthesis and respiration are important processes in all ecosystems on the Earth, in which carbon and oxygen are the two main elements. However, the oxygen cycle has received much less attention (relative to the carbon cycle) despite its big role in the earth system. Oxygen is a sensitive indicator of physical and biogeochemical processes in the ocean thus a key parameter for understanding the ocean's ecosystem and biogeochemistry. The Oxygen-Minimum-Zone (OMZ), often seen below 200 m, is a profound feature in the world oceans. There has been evidence of OMZ expansion over the past few decades in the tropical oceans. Climate models project that there would be a continued decline in dissolved oxygen (DO) and an expansion of the tropical OMZs under future warming conditions, which is of great concern because of the implications for marine organisms. We employ a validated three-dimensional model that simulates physical transport (circulation and vertical mixing), biological processes (O2 production and consumption) and ocean-atmosphere O2 exchange to quantify various sources and sinks of DO over 1980-2015. We show how we use observational data to improve our model simulation. Then we assess the spatial and temporal variability in simulated DO in the tropical Pacific Ocean, and explore the impacts of physical and biogeochemical processes on the DO dynamics, with a focus on the MOZ. Our analyses indicate that DO in the OMZ has a positive relationship with the 13ºC isotherm depth and a negative relationship with the concentration of dissolved organic material.
Effects of Southern Hemispheric Wind Changes on Global Oxygen and the Pacific Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Getzlaff, J.; Dietze, H.; Oschlies, A.
2016-02-01
We use a coupled ocean biogeochemistry-circulation model to compare the impact of changes in southern hemispheric winds with that of warming induced buoyancy fluxes on dissolved oxygen. Changes in the southern hemispheric wind fields, which are in line with an observed shift of the southern annual mode, are a combination of a strengthening and poleward shift of the southern westerlies. We differentiate between effects caused by a strengthening of the westerlies and effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our results confirm that the Southern Ocean plays an important role for the marine oxygen supply: a strengthening of the southern westerlies, that leads to an increase of the water formation rates of the oxygen rich deep and intermediate water masses, can counteract part of the warming-induced decline in marine oxygen levels. The wind driven intensification of the Southern Ocean meridional overturning circulation drives an increase of the global oxygen supply. Furthermore the results show that the shift of the boundary between westerlies and trades results in an increase of subantarctic mode water and an anti-correlated decrease of deep water formation and reduces the oceanic oxygen supply. In addition we find that the increased meridional extension of the southern trade winds, results in a strengthening and southward shift of the subtropical wind stress curl. This alters the subtropical gyre circulation (intensification and southward shift) and with it decreases the water mass transport into the oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-to-westerlies boundary is as important for the future evolution of the suboxic volume as direct warming-induced changes.
Belley, Rénald; Snelgrove, Paul V R; Archambault, Philippe; Juniper, S Kim
2016-01-01
The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor habitats should consider bottom water temperature variation. Bottom temperature has important implications for estimates of seasonal and spatial benthic flux variation, benthic-pelagic coupling, and impacts of predicted ocean warming at high latitudes.
NASA Astrophysics Data System (ADS)
Zhao, Hua-De; Kao, Shuh-Ji; Zhai, Wei-Dong; Zang, Kun-Peng; Zheng, Nan; Xu, Xue-Mei; Huo, Cheng; Wang, Ju-Ying
2017-02-01
The Bohai Sea, a semi-enclosed shallow coastal sea with increasing nutrient loads, is susceptible to seasonal oxygen deficiency in its bottom waters, similar to many other areas of the worlds' coastal oceans. We examined the dissolved oxygen (DO) distribution in the Bohai during August 2014. Two oxygen-deficient zones (DO<92 μmol O2 kg-1) with a minimum DO of 80 μmol O2 kg-1 were documented. The area and volume of bottom oxygen-deficient water were 756 km2 and 7820×106 m3, with a mean thickness of 10 m. Thus, the Bohai is second to the Changjiang estuary in its oxygen-deficient zone size among China's coastal waters. We classified three hydrographic areas that dictated the distribution of DO: 1) the shallow well-mixed zone; 2) the laterally-open stratified zone; and 3) the isolated stratified zone. Vertical mixing dominated the shallow well-mixed zone leading to homogeneous DO in the water column. The laterally-open stratified zone was influenced by high DO and low temperature inflow through the northern Bohai Strait. The isolated stratified zones, i.e., the low DO areas, were found in depressed regions. The stoichiometric relationship between DO consumption and the corresponding enrichment of dissolved inorganic carbon suggested that the aerobic respiration of organic matter contributed to the oxygen-depletion in the isolated stratified zone. Overall, the bottom DO distribution in the Bohai system was controlled largely by lateral DO exchange modified by bathymetric features, while superimposed on that was the build-up of stratification caused by summer heating and the remineralization of organics sourced from spring phytoplankton bloom.
Low Oxygen and Ocean Acidification on the Vancouver Island Shelf
NASA Astrophysics Data System (ADS)
Bianucci, L.; Denman, K.
2008-12-01
In the recent years hypoxic events have been observed along the west coast of North America (off Oregon and California). Although a common cause of coastal hypoxia is usually anthropogenic eutrophication, in these upwelling regions the advection of oxygen-depleted waters from offshore is a key mechanism. Moreover, the high productivity typical of these margins generates a large flux of sinking particular organic matter. The remineralization of this matter below the euphotic zone produces an elevated consumption of oxygen. When concentrations become lower than certain threshold, hypoxia leads to a major change in the ecosystem and the affected areas are called 'dead zones'. Furthermore, the two processes that drive oxygen levels down (physical upwelling and biological demand) also increase dissolved inorganic carbon in the shelf, which leads to a pH reduction. Ocean acidification and hypoxia can severely affect ecosystems, and the links between these phenomena have not been explored. This presentation will discuss a model study of the carbon and oxygen coupling on the Vancouver Island shelf, with focus on the connection between acidification and hypoxia. Moreover, the role of biology versus physics will be investigated. This region comprises the northern end of the wind-driven upwelling margin off western North America, where low oxygen events have not been extensively studied. However, the proximity to an Oxygen Minimum Zone offshore and the observed decline of oxygen in the Northeast Pacific turns this shelf into a potential candidate to suffer from low-oxygen events. The model used is the Regional Ocean Modeling System (ROMS) in a quasi-2D configuration of the shelf (across-shore section with uniform properties alongshore). The biogeochemical model has carbon, oxygen, and nitrogen as state variables, and includes cycling of dissolved organic matter. Carbon and oxygen cycles are coupled through ecosystem processes such as photosynthesis and remineralization, while they are decoupled by other processes (e.g., nitrification and denitrification).
Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S
2008-09-01
The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.
A Sixteen-year Decline in Dissolved Oxygen in the Central California Current.
Ren, Alice S; Chai, Fei; Xue, Huijie; Anderson, David M; Chavez, Francisco P
2018-05-08
A potential consequence of climate change is global decrease in dissolved oxygen at depth in the oceans due to changes in the balance of ventilation, mixing, respiration, and photosynthesis. We present hydrographic cruise observations of declining dissolved oxygen collected along CalCOFI Line 66.7 (Line 67) off of Monterey Bay, in the Central California Current region, and investigate likely mechanisms. Between 1998 and 2013, dissolved oxygen decreased at the mean rate of 1.92 µmol kg -1 year -1 on σ θ 26.6-26.8 kg m -3 isopycnals (250-400 m), translating to a 40% decline from initial concentrations. Two cores of elevated dissolved oxygen decline at 130 and 240 km from shore, which we suggest are a California Undercurrent and a California Current signal respectively, occurred on σ θ ranges of 26.0-26.8 kg m -3 (100-400 m). A box model suggests that small annual changes in dissolved oxygen in source regions are sufficient to be the primary driver of the mid-depth declines. Variation in dissolved oxygen at the bottom of the surface mixed layer suggests that there is also a signal of increased local remineralization.
NASA Astrophysics Data System (ADS)
Sunarsih; Sasongko, Dwi P.; Sutrisno
2018-02-01
This paper describes a mathematical model for the dissolved oxygen distribution in the plane of a facultative pond with a certain depth. The purpose of this paper is to determine the variation of dissolved oxygen concentration in facultative ponds. The 3-dimensional advection-diffusion equation is solved using the finite difference method Forward Time Central Space (FTCS). Numerical results show that the aerator greatly affects the occurrence of oxygen concentration variations in the facultative pond in the certain depth. The concentration of dissolved oxygen decreases as the depth of the pond increases.
How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells
NASA Astrophysics Data System (ADS)
Oh, Jun-Seok; Strudwick, Xanthe; Short, Robert D.; Ogawa, Kotaro; Hatta, Akimitsu; Furuta, Hiroshi; Gaur, Nishtha; Hong, Sung-Ha; Cowin, Allison J.; Fukuhara, Hideo; Inoue, Keiji; Ito, Masafumi; Charles, Christine; Boswell, Roderick W.; Bradley, James W.; Graves, David B.; Szili, Endre J.
2016-11-01
The effect of oxidation, oxygenation, and de-oxygenation arising from He gas jet and He plasma jet treatments on the viability of skin cells cultured in vitro has been investigated. He gas jet treatment de-oxygenated cell culture medium in a process referred to as "sparging." He plasma jet treatments oxidized, as well as oxygenated or de-oxygenated cell culture medium depending on the dissolved oxygen concentration at the time of treatment. He gas and plasma jets were shown to have beneficial or deleterious effects on skin cells depending on the concentration of dissolved oxygen and other oxidative molecules at the time of treatment. Different combinations of treatments with He gas and plasma jets can be used to modulate the concentrations of dissolved oxygen and other oxidative molecules to influence cell viability. This study highlights the importance of a priori knowledge of the concentration of dissolved oxygen at the time of plasma jet treatment, given the potential for significant impact on the biological or medical outcome. Monitoring and controlling the dynamic changes in dissolved oxygen is essential in order to develop effective strategies for the use of cold atmospheric plasma jets in biology and medicine.
Cotter, John J; O'Gara, James P; Casey, Eoin
2009-08-01
Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96-well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96-well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model.
John, Gernot T; Klimant, Ingo; Wittmann, Christoph; Heinzle, Elmar
2003-03-30
Microtiter plates with integrated optical sensing of dissolved oxygen were developed by immobilization of two fluorophores at the bottom of 96-well polystyrene microtiter plates. The oxygen-sensitive fluorophore responded to dissolved oxygen concentration, whereas the oxygen-insensitive one served as an internal reference. The sensor measured dissolved oxygen accurately in optically well-defined media. Oxygen transfer coefficients, k(L)a, were determined by a dynamic method in a commercial microtiter plate reader with an integrated shaker. For this purpose, the dissolved oxygen was initially depleted by the addition of sodium dithionite and, by oxygen transfer from air, it increased again after complete oxidation of dithionite. k(L)a values in one commercial reader were about 10 to 40 h(-1). k(L)a values were inversely proportional to the filling volume and increased with increasing shaking intensity. Dissolved oxygen was monitored during cultivation of Corynebacterium glutamicum in another reader that allowed much higher shaking intensity. Growth rates determined from optical density measurement were identical to those observed in shaking flasks and in a stirred fermentor. Oxygen uptake rates measured in the stirred fermentor and dissolved oxygen concentrations measured during cultivation in the microtiter plate were used to estimate k(L)a values in a 96-well microtiter plate. The resulting values were about 130 h(-1), which is in the lower range of typical stirred fermentors. The resulting maximum oxygen transfer rate was 26 mM h(-1). Simulations showed that the errors caused by the intermittent measurement method were insignificant under the prevailing conditions. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 829-836, 2003.
Chen, Yingyi; Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang
2018-01-01
A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies.
Lee, Nacole D; Kondragunta, Bhargavi; Uplekar, Shaunak; Vallejos, Jose; Moreira, Antonio; Rao, Govind
2015-01-01
Of importance to the biological properties of proteins produced in cell culture systems are the complex post-translational modifications that are affected by variations in process conditions. Protein oxidation, oxidative modification to intracellular proteins that involves cleavage of the polypeptide chain, and modifications of the amino acid side chains can be affected by such process variations. Dissolved oxygen is a parameter of increasing interest since studies have shown that despite the necessity of oxygen for respiration, there may also be some detrimental effects of oxygen to the cell. Production and accumulation of reactive oxygen species can cause damage to proteins as a result of oxidation of the cell and cellular components. Variation, or changes to cell culture products, can affect function, clearance rate, immunogenicity, and specific activity, which translates into clinical implications. The effect of increasing dissolved oxygen on protein oxidation in immunoglobulin G3-producing mouse hybridoma cells was studied using 50 mL high-throughput mini-bioreactors that employ non-invasive optical sensor technology for monitoring and closed feedback control of pH and dissolved oxygen. Relative protein carbonyl concentration of proteins produced under varying levels of dissolved oxygen was measured by enzyme-linked immunosorbent assay and used as an indicator of oxidative damage. A trend of increasing protein carbonyl content in response to increasing dissolved oxygen levels under controlled conditions was observed. Protein oxidation, oxidative modification to intracellular proteins that involves cleavage of the polypeptide chain, and modifications of the amino acid side chains can be affected by variations in dissolved oxygen levels in cell culture systems. Studies have shown that despite the necessity of oxygen for respiration, there may be detrimental effects of oxygen to the cell. Production and accumulation of reactive oxygen species can cause damage to proteins as a result of oxidation of the cell and cellular components, affecting function, clearance rate, immunogenicity, and specific activity, which translates into clinical implications. The effect of increasing dissolved oxygen on protein oxidation in immunoglobulin G3-producing mouse hybridoma cells was studied using 50 mL high-throughput mini-bioreactors that employ non-invasive optical sensor technology for monitoring and closed feedback control of pH and dissolved oxygen. Protein carbonyl concentration of proteins produced under varying levels of dissolved oxygen was measured by enzyme-linked immunosorbent assay and used as an indicator of oxidative damage. A trend of increasing protein carbonyl content in response to increasing dissolved oxygen levels under controlled conditions was observed. © PDA, Inc. 2015.
Dissolved Oxygen Data for Coos Estuary (Oregon)
The purpose of this product is the transmittal of dissolved oxygen data collected in the Coos Estuary, Oregon to Ms. Molly O'Neill (University of Oregon), for use in her studies on the factors influencing spatial and temporal patterns in dissolved oxygen in this estuary. These d...
Earth resources data acquisition sensor study
NASA Technical Reports Server (NTRS)
Grohse, E. W.
1975-01-01
The minimum data collection and data processing requirements are investigated for the development of water monitoring systems, which disregard redundant and irrelevant data and process only those data predictive of the onset of significant pollution events. Two approaches are immediately suggested: (1) adaptation of a presently available ambient air monitoring system developed by TVA, and (2) consideration of an air, water, and radiological monitoring system developed by the Georgia Tech Experiment Station. In order to apply monitoring systems, threshold values and maximum allowable rates of change of critical parameters such as dissolved oxygen and temperature are required.
Oxygen declines and the shoaling of the hypoxic boundary in the California Current
NASA Astrophysics Data System (ADS)
Bograd, Steven J.; Castro, Carmen G.; Di Lorenzo, Emanuele; Palacios, Daniel M.; Bailey, Helen; Gilly, William; Chavez, Francisco P.
2008-06-01
We use hydrographic data from the California Cooperative Oceanic Fisheries Investigations program to explore the spatial and temporal variability of dissolved oxygen (DO) in the southern California Current System (CCS) over the period 1984-2006. Large declines in DO (up to 2.1 μmol/kg/y) have been observed throughout the domain, with the largest relative DO declines occurring below the thermocline (mean decrease of 21% at 300 m). Linear trends were significant (p < 0.05) at the majority of stations down to 500 m. The hypoxic boundary (~60 μmol/kg) has shoaled by up to 90 m within portions of the southern CCS. The observed trends are consistent with advection of low-DO waters into the region, as well as decreased vertical oxygen transport following near-surface warming and increased stratification. Expansion of the oxygen minimum layer could lead to cascading effects on benthic and pelagic ecosystems, including habitat compression and community reorganization.
Dissolved Gases in Seawater and Sediments (Paper 7R0315)
NASA Astrophysics Data System (ADS)
Key, R. M.
1987-07-01
Certainly the most controversial results derived from the study of any dissolved gas concerned oxygen utilization rates in the North Atlantic. Jenkins (1982) estimated a net oxy-gen utilization rate (OUR) for the Beta triangle region of the North Atlantic (apices 26.5°N x 38.5°W, 32.5°N x 30.0°W, and 22.5°N x 28.5°W) of 5.7 moles of oxygen consumed m-2 yr-1 for the zone below 100m. He assumed that the oxygen distribution below the euphotic zone was stationary and steady state and therfore that the in situ oxygen consumption must be balanced by physical transport of oxygen into the area. His estimates were based on measured distributions of dissolved oxygen and the tracers 3He and 3H and a simple model which assumed lateral advection was small. The derived value or OUR was several times higher that previous estimates based on 14C and 15N incubation techniques. The OUR requires a downward flux of carbon from the photic zone of approximately 50 gCm-2yr-1 , which is again much higher that previous results. Jenkins and Goldman (1985) amplified the arguments in a study of seasonal oxygen cycling and primary production based on a ten year time series of measurements from the Panulirus station near Bermuda. Considering insolation, heat budgets and 3He/3H data they estimated a vertically integrated oxygen production rate of 5 Mm-2yr-1 and a subsequent new production of 50 gCm-2yr-1. The results were supported by calculations based on a second order turbulence closure model (Klein and Coste, 1984). These results have been challenged primarily on the basis of the spatial variability of the phenomenon!. Whatever the final outcome Jenkins has clearly demonstrated that the time has come to take a fresh look at oxygen utilization rates and primary productivity given the tools and modelling capabilities now at hand. The TTO data set will go a long way toward providing the necessary data set for the North Atlantic when the analyses are complete. Other studies have dealt with the photooxidative daylight loss of oxygen from near-surface tropical waters (Gieskes and Kraay, 1982), isotopic fractionation between fresh and seawater and the atmosphere (Benson and Krause, 1984) , edge effects on chemistry in the 02 minimum zone (Mullins et al., 1985), and the relationship between oxygen and other biogeochemical properties (Pak, 1984; Blizard and Pak, 1984; Lewitus and Broenkow, 1985).
Field comparison of optical and clark cell dissolved-oxygen sensors
Fulford, J.M.; Davies, W.J.; Garcia, L.
2005-01-01
Three multi-parameter water-quality monitors equipped with either Clark cell type or optical type dissolved-oxygen sensors were deployed for 30 days in a brackish (salinity <10 parts per thousand) environment to determine the sensitivity of the sensors to biofouling. The dissolved-oxygen sensors compared periodically to a hand-held dissolved oxygen sensor, but were not serviced or cleaned during the deployment. One of the Clark cell sensors and the optical sensor performed similarly during the deployment. The remaining Clark cell sensor was not aged correctly prior to deployment and did not perform as well as the other sensors. All sensors experienced substantial biofouling that gradually degraded the accuracy of the dissolved-oxygen measurement during the last half of the deployment period. Copyright ASCE 2005.
NASA Astrophysics Data System (ADS)
Ekau, W.; Auel, H.; Pörtner, H.-O.; Gilbert, D.
2009-05-01
Dissolved oxygen (DO) concentration in the water column is an environmental parameter that is crucial for the successful development of many pelagic organisms. Hypoxia tolerance and threshold values are species- and stage-specific and can vary enormously. While some fish species may suffer from oxygen values of less than 3 ml L-1 and show impact on growth, development and behaviour, other organisms such as euphausiids may survive DO levels as low as 0.1 ml L-1. A change in the average or the minimum or maximum DO in an area may have significant impacts on the survival of certain species and hence on the species composition in the ecosystem with consequent changes in trophic pathways and productivity. Evidence of the deleterious effects of oxygen depletion on species of the pelagic realm is scarce, particularly in terms of the effect of low oxygen on development, recruitment and patterns of migration and distribution. While planktonic organisms have to cope with different DOs and find adaptive mechanisms, nektonic species may avoid areas of inconvenient DO and develop adapted migrational strategies. Planktonic organisms may only be able to escape vertically, above or beneath the Oxygen Minimum Zone (OMZ). In shallow areas only the surface layer can serve as a refuge, in deep waters many organisms have developed vertical migration strategies to use, pass and cope with the OMZ. This paper elucidates the role of DO for different taxa in the pelagic realm and the consequences of low oxygen for foodweb structure and system productivity.
Topical dissolved oxygen penetrates skin: model and method.
Roe, David F; Gibbins, Bruce L; Ladizinsky, Daniel A
2010-03-01
It has been commonly perceived that skin receives its oxygen supply from the internal circulation. However, recent investigations have shown that a significant amount of oxygen may enter skin from the external overlying surface. A method has been developed for measuring the transcutaneous penetration of human skin by oxygen as described herein. This method was used to determine both the depth and magnitude of penetration of skin by topically applied oxygen. An apparatus consisting of human skin samples interposed between a topical oxygen source and a fluid filled chamber that registered changes in dissolved oxygen. Viable human skin samples of variable thicknesses with and without epidermis were used to evaluate the depth and magnitude of oxygen penetration from either topical dissolved oxygen (TDO) or topical gaseous oxygen (TGO) devices. This model effectively demonstrates transcutaneous penetration of topically applied oxygen. Topically applied dissolved oxygen penetrates through >700 microm of human skin. Topically applied oxygen penetrates better though dermis than epidermis, and TDO devices deliver oxygen more effectively than TGO devices. Copyright (c) 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Qian, Wei; Gan, Jianping; Liu, Jinwen; He, Biyan; Lu, Zhongming; Guo, Xianghui; Wang, Deli; Guo, Liguo; Huang, Tao; Dai, Minhan
2018-05-01
We examine the current status of dissolved oxygen (DO) and its trend over the past 25 years in the lower Pearl River Estuary, a large eutrophic estuary located in Southern China and surrounded by large cities including Hong Kong, Shenzhen and Guangzhou. Monthly cruises conducted from April 2010 to March 2011 clearly show that DO depletion began to emerge in the bottom layer of the lower estuary off Hong Kong in June, and became fully developed in July and August when oxygen-deficient water occupied ∼1000 km2 before gradually becoming re-oxygenated in September and October. The development of the low oxygen zone was closely coupled with phytoplankton blooms in the surface water, which was supersaturated with respect to DO suggesting the importance of autochthonous organic matter in fueling bottom DO consumption after settling through the pycnocline. Long-term monitoring data collected in the study area adjacent to Hong Kong by the Hong Kong Environmental Protection Department showed a decreasing trend of ∼2 ± 0.9 μmol kg-1 yr-1 in the annual minimum DO concentration in bottom water over the past 25 years. Associated with the decrease in DO was an increase in the annual maximum surface concentration of dissolved inorganic nitrogen (DIN) at a rate of ∼1.4 ± 0.3 μmol kg-1 yr-1, suggesting again that eutrophication is the most plausible driver of oxygen deficiency in this region. Therefore, our monthly cruises, along with the decadal monitoring data, reveal a large low oxygen zone, likely developing into a large hypoxic zone driven primarily by anthropogenic eutrophication. This new development suggests environmental stressors such as eutrophication may have a cascading effect, with important and expensive consequences for the regional environment.
Assessment of Eutrophication in the Lower Yakima River Basin, Washington, 2004-07
Wise, Daniel R.; Zuroske, Marie L.; Carpenter, Kurt D.; Kiesling, Richard L.
2009-01-01
In response to concerns that excessive plant growth in the lower Yakima River in south-central Washington was degrading water quality and affecting recreational use, the U.S. Geological Survey and the South Yakima Conservation District conducted an assessment of eutrophication in the lower 116 miles of the river during the 2004-07 irrigation seasons (March - October). The lower Yakima River was divided into three distinct reaches based on geomorphology, habitat, aquatic plant and water-quality conditions. The Zillah reach extended from the upstream edge of the study area at river mile (RM) 116 to RM 72, and had abundant periphyton growth and sparse macrophyte growth, the lowest nutrient concentrations, and moderately severe summer dissolved oxygen and pH conditions in 2005. The Mabton reach extended from RM 72 to RM 47, and had sparse periphyton and macrophyte growth, the highest nutrient conditions, but the least severe summer dissolved oxygen and pH conditions in 2005. The Kiona reach extended from RM 47 to RM 4, and had abundant macrophyte and epiphytic algae growth, relatively high nutrient concentrations, and the most severe summer dissolved oxygen and pH conditions in 2005. Nutrient concentrations in the lower Yakima River were high enough at certain times and locations during the irrigation seasons during 2004-07 to support the abundant growth of periphytic algae and macrophytes. The metabolism associated with this aquatic plant growth caused large daily fluctuations in dissolved oxygen concentrations and pH levels that exceeded the Washington State water-quality standards for these parameters between July and September during all 4 years, but also during other months when streamflow was unusually low. The daily minimum dissolved oxygen concentration was strongly and negatively related to the preceding day's maximum water temperature - information that could prove useful if a dissolved oxygen predictive model is developed for the lower Yakima River. Periphytic algal growth generally was not nutrient-limited and frequently reached nuisance levels in the Zillah reach, where some surface-water nutrient concentrations were below the reference concentrations suggested by the U.S. Environmental Protection Agency. Although lowering nutrient concentrations in this reach might limit periphytic algal growth enough to improve dissolved oxygen and pH conditions, ground water inflow at some locations might still provide an adequate supply of nutrients for periphytic algal growth. Macrophyte growth in the Kiona reach was dominated by water stargrass (Heteranthera dubia), was far greater compared to the other two reaches, varied greatly between years, and was negatively related to greater spring runoff due to lower light availability. Lowering nutrient concentrations in the Kiona reach might not impact the level of macrophyte growth because macrophytes with extensive root systems such as water stargrass can get nutrients from river sediment. In addition, the results from this study did not indicate any nutrient uptake by the macrophytes from the water column (nutrient uptake from the sediment was not examined). Creating the prolonged turbid and deep conditions during spring necessary to suppress macrophyte growth in this reach would not be possible in years with low streamflow. In addition, because of the relatively stable substrate present in much of this reach, the macrophyte root systems would likely not be disturbed under all but the most extremely high streamflows that occur in the lower Yakima River.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
... Ponchatoula Creek and Dissolved Ponchatoula River. oxygen. 041201 Bayou Labranche-- Dissolved Headwaters to Lake oxygen. Pontchartrain (Scenic) (Estuarine). 041805 Lake Borgne Canal (Violet Dissolved Canal)--MS River siphon oxygen. at Violet to Bayou Dupre (Scenic) (Estuarine). The EPA requests the public provide...
NASA Astrophysics Data System (ADS)
Mouzon, N. R.; Null, S. E.
2014-12-01
Human impacts from land and water development have degraded water quality and altered the physical, chemical, and biological integrity of Nevada's Walker River. Reduced instream flows and increased nutrient concentrations affect native fish populations through warm daily stream temperatures and low nightly dissolved oxygen concentrations. Water rights purchases are being considered to maintain instream flows, improve water quality, and enhance habitat for native fish species, such as Lahontan cutthroat trout. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate streamflows, temperatures, and dissolved oxygen concentrations in the Walker River. We simulate thermal and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that water purchases most enhance native trout habitat. Stream temperatures and dissolved oxygen concentrations are proxies for trout habitat. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach currently acts as a water quality barrier for fish passage.
Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang
2018-01-01
A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies. PMID:29466394
Long-period variability of oxygen dissolved in Black Sea waters
NASA Astrophysics Data System (ADS)
Polonsky, A. B.; Kotolypova, A. A.
2017-09-01
Using an archival database from the Institute of Natural and Technical Systems, the low-frequency variability of oxygen dissolved in the deep-water and northwestern parts of the Black Sea for the period of 1955-2004 is analyzed. The upper mixed layer (UML) is characterized by quasi-periodic variability in the dissolved oxygen concentration in the interdecadal scale. Deeper, a long-term decrease in the oxygen concentration is recorded.
Global distribution of naturally occurring marine hypoxia on continental margins
NASA Astrophysics Data System (ADS)
Helly, John J.; Levin, Lisa A.
2004-09-01
Hypoxia in the ocean influences biogeochemical cycling of elements, the distribution of marine species and the economic well being of many coastal countries. Previous delineations of hypoxic environments focus on those in enclosed seas where hypoxia may be exacerbated by anthropogenically induced eutrophication. Permanently hypoxic water masses in the open ocean, referred to as oxygen minimum zones, impinge on a much larger seafloor surface area along continental margins of the eastern Pacific, Indian and western Atlantic Oceans. We provide the first global quantification of naturally hypoxic continental margin floor by determining upper and lower oxygen minimum zone depth boundaries from hydrographic data and computing the area between the isobaths using seafloor topography. This approach reveals that there are over one million km 2 of permanently hypoxic shelf and bathyal sea floor, where dissolved oxygen is <0.5 ml l -1; over half (59%) occurs in the northern Indian Ocean. We also document strong variation in the intensity, vertical position and thickness of the OMZ as a function of latitude in the eastern Pacific Ocean and as a function of longitude in the northern Indian Ocean. Seafloor OMZs are regions of low biodiversity and are inhospitable to most commercially valuable marine resources, but support a fascinating array of protozoan and metazoan adaptations to hypoxic conditions.
Diazotroph community structure in the deep oxygen minimum zone of the Costa Rica Dome.
Cheung, Shunyan; Xia, Xiaomin; Guo, Cui; Liu, Hongbin
2016-03-01
Oxygen minimum zones (OMZs), characterized by depleted dissolved oxygen concentration in the intermediate depth of the water column, are predicted to expand under the influence of global warming. Recent studies in the Eastern Tropical South Pacific Ocean and Arabian Sea have reported that heterotrophic nitrogen fixation is active in the OMZs. In this study, we investigated the community structure of diazotrophs in the OMZ of the Costa Rica Dome (CRD) upwelling region in the Eastern Tropical North Pacific Ocean, using 454-pyrosequencing of nifH gene amplicons. Comparing diazotroph assemblages in different depth strata of the OMZ (200-1000 m in depth), we found a unique diazotroph community in the OMZ core, which was mainly dominated by methanotroph-like diazotrophs, suggesting a potential coupling of nitrogen cycle and methane assimilation. In addition, some OTUs revealed in this study, especially those belonging to the large sub-cluster Vibrio diazotrophicus , were reported to be abundant and expressing the nifH gene in other OMZs. Our results suggest that the unique hydrographic conditions in OMZs may support similar assemblages of diazotrophs, and heterotrophic nitrogen fixation could also be occurring in our studied region. Our study provides the first insight into the composition and distribution of putative diazotrophs in the CRD OMZ.
Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2005
Hoilman, Gene R.; Lindenberg, Mary K.; Wood, Tamara M.
2008-01-01
During June-October 2005, water quality data were collected from Upper Klamath and Agency Lakes in Oregon, and meteorological data were collected around and within Upper Klamath Lake. Data recorded at two continuous water quality monitors in Agency Lake showed similar temperature patterns throughout the field season, but data recorded at the northern site showed more day-to-day variability for dissolved oxygen concentration and saturation after late June and more day-to-day variability for pH and specific conductance values after mid-July. Data recorded from the northern and southern parts of Agency Lake showed more comparable day-to-day variability in dissolved oxygen concentrations and pH from September through the end of the monitoring period. For Upper Klamath Lake, seasonal (late July through early August) lows of dissolved oxygen concentrations and saturation were coincident with a seasonal low of pH values and seasonal highs of ammonia and orthophosphate concentrations, specific conductance values, and water temperatures. Patterns in these parameters, excluding water temperature, were associated with bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae in Upper Klamath Lake. In Upper Klamath Lake, water temperature in excess of 28 degrees Celsius (a high stress threshold for Upper Klamath Lake suckers) was recorded only once at one site during the field season. Large areas of Upper Klamath Lake had periods of dissolved oxygen concentration of less than 4 milligrams per liter and pH value greater than 9.7, but these conditions were not persistent throughout days at most sites. Dissolved oxygen concentrations in Upper Klamath Lake on time scales of days and months appeared to be influenced, in part, by bathymetry and prevailing current flow patterns. Diel patterns of water column stratification were evident, even at the deepest sites. This diel pattern of stratification was attributable to diel wind speed patterns and the shallow nature of most of Upper Klamath Lake. Timing of the daily extreme values of dissolved oxygen concentration, pH, and water temperature was less distinct with increased water column depth. Chlorophyll a concentrations varied spatially and temporally throughout Upper Klamath Lake. Location greatly affected algal concentrations, in turn affecting nutrient and dissolved oxygen concentrations - some of the highest chlorophyll a concentrations were associated with the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations. The occurrence of the low dissolved oxygen and high un-ionized ammonia concentrations coincided with a decline in algae resulting from cell death, as measured by concentrations of chlorophyll a. Dissolved oxygen production rates in experiments were as high as 1.47 milligrams of oxygen per liter per hour, and consumption rates were as much as -0.73 milligrams of oxygen per liter per hour. Dissolved oxygen consumption rates measured in this study were comparable to those measured in a 2002 Upper Klamath Lake study, and a higher rate of dissolved oxygen consumption was recorded in dark bottles positioned higher in the water column. Data, though inconclusive, indicated that a decreasing trend of dissolved oxygen productivity through July could have contributed to the decreasing dissolved oxygen concentrations and percent saturation recorded in Upper Klamath Lake during this time. Phytoplankton self-shading was evident from a general inverse relation between depth of photic zone and chlorophyll a concentrations. This shading caused net dissolved oxygen consumption during daylight hours in lower parts of the water column that would otherwise have been in the photic zone. Meteorological data collected in and around Upper Klamath Lake showed that winds were likely to come from a broad range of westerly directions in the northern one-third of the lake, but tended to come from a narrow range of northwesterly directions
Wehmeyer, Loren L.; Wagner, Chad R.
2011-01-01
The relation between dam releases and dissolved-oxygen concentration, saturation and deficit, downstream from Roanoke Rapids Dam in North Carolina was evaluated from 2005 to 2009. Dissolved-oxygen data collected at four water-quality monitoring stations downstream from Roanoke Rapids Dam were used to determine if any statistical relations or discernible quantitative or qualitative patterns linked Roanoke River in-stream dissolved-oxygen levels to hydropower peaking at Roanoke Rapids Dam. Unregulated tributaries that inundate and drain portions of the Roanoke River flood plain are crucial in relation to in-stream dissolved oxygen. Hydropower peaking from 2005 to 2009 both inundated and drained portions of the flood plain independently of large storms. The effects of these changes in flow on dissolved-oxygen dynamics are difficult to isolate, however, because of (1) the variable travel time for water to move down the 112-mile reach of the Roanoke River from Roanoke Rapids Dam to Jamesville, North Carolina, and (2) the range of in-situ conditions, particularly inundation history and water temperature, in the flood plain. Statistical testing was conducted on the travel-time-adjusted hourly data measured at each of the four water-quality stations between May and November 2005-2009 when the weekly mean flow was 5,000-12,000 cubic feet per second (a range when Roanoke Rapids Dam operations likely affect tributary and flood-plain water levels). Results of this statistical testing indicate that at the 99-percent confidence interval dissolved-oxygen levels downstream from Roanoke Rapids Dam were lower during peaking weeks than during non-peaking weeks in three of the five years and higher in one of the five years; no data were available for weeks with peaking in 2007. For the four years of statistically significant differences in dissolved oxygen between peaking and non-peaking weeks, three of the years had statistically signficant differences in water temperature. Years with higher water temperature during peaking had lower dissolved oxygen during peaking. Only 2009 had no constistent statistically significant water-temperature difference at all sites, and dissolved-oxygen levels downstream from Roanoke Rapids Dam during peaking weeks that year were lower than during non-peaking weeks. Between 2005 and 2009, daily mean dissolved-oxygen concentrations below the State standard occurred during only 1 of the 17 (6 percent) peaking weeks, with no occurrence of instantaneous dissolved-oxygen concentrations below the State standard. This occurrence was during a 9-day period in July 2005 when the daily maximum air temperatures approached or exceeded 100 degrees Fahrenheit, and the draining of the flood plains from peaking operations was followed by consecutive days of low flows.
Chromophoric and fluorescent dissolved organic matter in and above the oxygen minimum zone off Peru
NASA Astrophysics Data System (ADS)
Loginova, A. N.; Thomsen, S.; Engel, A.
2016-11-01
As a result of nutrient upwelling, the Peruvian coastal system is one of the most productive regions in the ocean. Sluggish ventilation of intermediate waters, characteristic for the Eastern Tropical South Pacific (ETSP) and microbial degradation of a high organic matter load promotes deoxygenation at depth. Dissolved organic matter (DOM) plays a key role in microbial respiration and carbon cycling, but little is known on DOM distribution and cycling in the ETSP. DOM optical properties give important insights on DOM sources, structure and biogeochemical reactivity. Here, we present data and a conceptual view on distribution and cycling of chromophoric (CDOM) and fluorescent (FDOM) DOM in and above the oxygen minimum zone (OMZ) off Peru. Five fluorescent components were identified during PARAFAC analysis. Highest intensities of CDOM and of the amino acid-like fluorescent component (C3) occurred above the OMZ and coincided with maximum chl a concentrations, suggesting phytoplankton productivity as major source. High intensities of a marine humic-like fluorescent component (C1), observed in subsurface waters, indicated in situ microbial reworking of DOM. FDOM release from inner shelf sediment was determined by seawater analysis and continuous glider sensor measurement and included a humic-like component (C2) with a signature typical for terrestrially derived humic acids. Upwelling supplied humic-like substances to the euphotic zone. Photo-reactions were likely involved in the production of a humic-like fluorescent component (C5). Our data show that variable biological and physical processes need to be considered for understanding DOM cycling in a highly dynamic coastal upwelling system like the ETSP off Peru.
Dissolved oxygen (DO) is the amount of oxygen that is present in water. It is an important measure of water quality as it indicates a water body's ability to support aquatic life. Water bodies receive oxygen from the atmosphere and from aquatic plants.
A high-resolution dissolved oxygen mass balance model was developed for the Louisiana coastal shelf in the northern Gulf of Mexico. GoMDOM (Gulf of Mexico Dissolved Oxygen Model) was developed to assist in evaluating the impacts of nutrient loading on hypoxia development and exte...
NASA Astrophysics Data System (ADS)
Visbeck, M.; Banyte, D.; Brandt, P.; Dengler, M.; Fischer, T.; Karstensen, J.; Krahmann, G.; Tanhua, T. S.; Stramma, L.
2013-12-01
Equatorial Dynamics provide an essential influence on the ventilation pathways of well oxygenated surface water on their route to tropical oxygen minimum zones (OMZ). The large scale wind driven circulation shield OMZs from the direct ventilation pathways. They are located in the so called ';shadow zones' equator ward of the subtropical gyres. From what is known most of the oxygen is supplied via pathways from the western boundary modulated by the complex zonal equatorial current system and marginally by vertical mixing. What was less clear is which of the possible pathways are most effective in transporting dissolved oxygen towards the OMZ. A collaborative research program focused on the dynamics of oxygen minimum zones, called SFB754 "Climate - Biogeochemistry Interactions in the Tropical Ocean", allowed us to conduct two ocean tracer release experiments to investigate the vertical and horizontal mixing rates and associated oxygen transports. Specifically we report on the first deliberate tracer release experiment (GUTRE, Guinea Upwelling Tracer Release Experiment) in the tropical northeast Atlantic carried out in order to determine the diapycnal diffusivity coefficient in the upper layer of the OMZ. A tracer (CF3SF5) was injected in spring of 2008 and subsequently measured during three designated tracer survey cruises until the end of 2010. We found that, generally, the diffusivity is larger than expected for low latitudes and similar in magnitude to what has previously been experimentally determined in the Canary Basin. When combining the tracer study with estimates of diapycnal mixing based on microstructure profiling and a newly developed method using ship board ADCPs we were able to compute the vertical oxygen flux and its divergence for the OMZ. To our surprise, the vertical flux of oxygen by diapycnal mixing provides about 30% of the total ventilation. The estimate was derived from the simple advection-diffusion model taking into account moored and ship based velocity observations of the equatorial current systems along 23°W in the tropical Atlantic. However, the advective pathways are less certain and possibly more variable. Firstly, the strength of lateral eddy stirring and the role in oxygen transport is less well known, and is the focus of the ongoing second tracer release experiment (OSTRE, Oxygen Supply Tracer Release Experiment). Secondly, the analysis of historical data from the equatorial regime suggests that the observed decline in dissolved oxygen in the tropical North Atlantic might in part be a consequence of reduced horizontal ventilation by equatorial intermediate current systems. The uncertainty of the long-term variability of the circulation in the equatorial systems and additional uncertainty in the biogeochemical consumption rates provide a challenge for estimates of the future of the OMZ regimes. Model prediction of future oxygen changes depend on the models ability to reproduce the observed oxygen ventilation pathways and processes, which might limit the prediction's accuracy.
Cory, Robert L.; Dresler, P.V.
1980-01-01
Water temperature, salinity, turbidity, dissolved oxygen, pH, and water level data were continuously monitored and recorded from the Smithsonian Institution pier near Annapolis, Md., from January 1976 through December 1978. Daily maximum and minimum values are tabulated and summarized, and monthly averages and extremes are presented. Water temperature ranged from 0.0 to 33.9 Celsius. Both high and low extreme values exceeded those recorded during the previous 6 years. Salinity patterns showed normal seasonal variations and were related to the Susquehanna River inflow, which controls the upper bay salinity. Salinity between 13 and 15 parts per thousand in November and December 1978 were the highest recorded over a 9-year period. Turbidity varied seasonally, with lowest values in winter and highest in spring. Dissolved oxygen ranged from 2.0 to 18.7 milligrams per liter. Large variations between summertime daily minima and maxima indicated the high state of eutrophication of the water being monitored. Hydrogen-ion activity (pH) ranged from 7.0 to 10.2 over the 3-year period. The pH changes reflect daily variation in partial pressure of carbon dioxide, which varies inversely with the dissolved oxygen. Water level variation at the monitoring site for the 3-year period was 1.89 meters, with highest water 0.59 meter above mean high water and lowest 0.83 meter below mean low water. An apparent decline of 0.07 meter below previously recorded mean high and mean low water was associated with stronger winds and a prevalance of westerly winds in February during the winter of 1976-1977. (USGS)
Mahler, Barbara J.; Bourgeais, Renan
2013-01-01
Karst aquifers and springs provide the dissolved oxygen critical for survival of endemic stygophiles worldwide, but little is known about fluctuations of dissolved oxygen concentrations (DO) and factors that control those concentrations. We investigated temporal variation in DO at Barton Springs, Austin, Texas, USA. During 2006–2012, DO fluctuated by as much as a factor of 2, and at some periods decreased to concentrations that adversely affect the Barton Springs salamander (Eurycea sorosum) (≤4.4 mg/L), a federally listed endangered species endemic to Barton Springs. DO was lowest (≤4.4 mg/L) when discharge was low (≤1 m3/s) and spring water temperature was >21 °C, although not at a maximum; the minimum DO recorded was 4.0 mg/L. Relatively low DO (3/s) and maximum T (22.2 °C). A four-segment linear regression model with daily data for discharge and spring water temperature as explanatory variables provided an excellent fit for mean daily DO (Nash–Sutcliffe coefficient for the validation period of 0.90). DO also fluctuated at short-term timescales in response to storms, and DO measured at 15-min intervals could be simulated with a combination of discharge, spring temperature, and specific conductance as explanatory variables. On the basis of the daily-data regression model, we hypothesize that more frequent low DO corresponding to salamander mortality could result from (i) lower discharge from Barton Springs resulting from increased groundwater withdrawals or decreased recharge as a result of climate change, and (or) (ii) higher groundwater temperature as a result of climate change.
Zhang, Yangfan; Mauduit, Florian; Farrell, Anthony P; Chabot, Denis; Ollivier, Hélène; Rio-Cabello, Adrien; Le Floch, Stéphane; Claireaux, Guy
2017-10-01
We tested the hypothesis that the chronic residual effects of an acute exposure of European sea bass (Dicentrarchus labrax) to chemically dispersed crude oil is manifest in indices of hypoxic performance rather than aerobic performance. Sea bass were pre-screened with a hypoxia challenge test to establish their incipient lethal oxygen saturation (ILOS), but on discovering a wide breadth for individual ILOS values (2.6-11.0% O 2 saturation), fish were subsequently subdivided into either hypoxia sensitive (HS) or hypoxia tolerant (HT) phenotypes, traits that were shown to be experimentally repeatable. The HT phenotype had a lower ILOS and critical oxygen saturation (O 2crit ) compared with the HS phenotype and switched to glycolytic metabolism at a lower dissolved oxygen, even though both phenotypes accumulated lactate and glucose to the same plasma concentrations at ILOS. As initially hypothesized, and regardless of the phenotype considered, we found no residual effect of oil on any of the indices of aerobic performance. Contrary to our hypothesis, however, oil exposure had no residual effect on any of the indices of hypoxic performance in the HS phenotype. In the HT phenotype, on the other hand, oil exposure had residual effects as illustrated by the impaired repeatability of hypoxia tolerance and also by the 24% increase in O 2crit , the 40% increase in scope for oxygen deficit, the 17% increase in factorial scope for oxygen deficit and the 57% increase in accumulated oxygen deficit. Thus, sea bass with a HT phenotype remained chronically impaired for a minimum of 167days following an acute 24-h oil exposure while the HS phenotypes did not. We reasoned that impaired oxygen extraction at gill due to oil exposure activates glycolytic metabolism at a higher dissolved oxygen, conferring on the HT phenotype an inferior hypoxia resistance that might eventually compromise their ability to survive hypoxic episodes. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Veas, Rodrigo; Anabalón, Valeria; Quiñones, Renato A.
2017-01-01
In January 2008 there was an intensive and extensive upwelling event in the southern Humboldt Current System. This event produced an intrusion of water with low dissolved oxygen into Coliumo Bay, which caused massive mortality and the beaching of pelagic and benthic organisms, including zooplankton. During this event, which lasted 3 to 5 days, we studied and evaluated the effect of the hypoxic water in the bay on the abundance of macrozooplankton, nanoplankton and microphytoplankton, the concentration of several nutrients and hydrographic conditions. At the beginning of the hypoxia event the water column had very low dissolved oxygen concentrations (<0.5 mL O2 L-1), low temperatures and high salinity which are characteristics of the oxygen minimum zone from the Humboldt Current System. Redox, pH, nitrate, phosphate, silicate and chlorophyll-a values were the lowest, while nitrate and the phaeopigment values were the highest. The N:P ratio was below 16, and the abundance of nano- and microphytoplankton were at their lowest, the latter also with the lowest proportion of live organisms. Macrozooplankton had the greatest abundance during hypoxia, dominated mainly by crustacean, fish eggs and amphipods. The hypoxia event generated a strong short-term alteration of all biotic and abiotic components of the pelagic system in Coliumo Bay and the neighboring coastal zone. These negative effects associated with strong natural hypoxia events could have important consequences for the productivity and ecosystem functioning of the coastal zone of the Humboldt Current System if, as suggested by several models, winds favorable to upwelling should increase due to climate change. The effects of natural hypoxia in this coastal zone can be dramatic especially for pelagic and benthic species not adapted to endure conditions of low dissolved oxygen. PMID:28715447
Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul
2012-01-01
Efforts are underway to identify actions that would improve water quality in the Link River to Keno Dam reach of the Upper Klamath River in south-central Oregon. To provide further insight into water-quality improvement options, three scenarios were developed, run, and analyzed using previously calibrated CE-QUAL-W2 hydrodynamic and water-quality models. Additional scenarios are under development as part of this ongoing study. Most of these scenarios evaluate changes relative to a "current conditions" model, but in some cases a "natural conditions" model was used that simulated the reach without the effect of point and nonpoint sources and set Upper Klamath Lake at its Total Maximum Daily Load (TMDL) targets. These scenarios were simulated using a model developed by the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc. for the years 2006–09, referred to here as the "USGS model." Another model of the reach was developed by Tetra Tech, Inc. for years 2000 and 2002 to support the Klamath River TMDL process; that model is referred to here as the "TMDL model." The three scenarios described in this report included (1) an analysis of whether this reach of the Upper Klamath River would be in compliance with dissolved oxygen standards if sources met TMDL allocations, (2) an application of more recent datasets to the TMDL model with comparison to results from the USGS model, and (3) an examination of the effect on dissolved oxygen in the Klamath River if particulate material were stopped from entering Klamath Project diversion canals. Updates and modifications to the USGS model are in progress, so in the future these scenarios will be reanalyzed with the updated model and the interim results presented here will be superseded. Significant findings from this phase of the investigation include: * The TMDL analysis used depth-averaged dissolved oxygen concentrations from model output for comparison with dissolved oxygen standards. The Oregon dissolved oxygen standards do not specify whether the numeric criteria are based on depth-averaged dissolved oxygen concentration; this was an interpretation of the standards rule by the Oregon Department of Environmental Quality (ODEQ). In this study, both depth-averaged and volume-averaged dissolved oxygen concentrations were calculated from model output. Results showed that modeled depth-averaged concentrations typically were lower than volume-averaged dissolved oxygen concentrations because depth-averaging gives a higher weight to small volume areas near the channel bottom that often have lower dissolved oxygen concentrations. Results from model scenarios in this study are reported using volume-averaged dissolved oxygen concentrations. * Under all scenarios analyzed, violations of the dissolved oxygen standard occurred most often in summer. Of the three dissolved oxygen criteria that must be met, the 30-day standard was violated most frequently. Under the base case (current conditions), fewer violations occurred in the upstream part of the reach. More violations occurred in the down-stream direction, due in part to oxygen demand from the decay of algae and organic matter from Link River and other inflows. * A condition in which Upper Klamath Lake and its Link River outflow achieved Upper Klamath Lake TMDL water-quality targets was most effective in reducing the number of violations of the dissolved oxygen standard in the Link River to Keno Dam reach of the Klamath River. The condition in which point and nonpoint sources within the Link River to Keno Dam reach met Klamath River TMDL allocations had no effect on dissolved oxygen compliance in some locations and a small effect in others under current conditions. On the other hand, meeting TMDL allocations for nonpoint and point sources was predicted to be important in meeting dissolved oxygen criteria when Upper Klamath Lake and Link River also met Upper Klamath TMDL water-quality targets. * The location of greatest dissolved oxygen improvement from nutrient and organic matter reductions was downstream from point and nonpoint source inflows because time and distance are required for decay to occur and for oxygen demand to be exerted. * After assessing compliance with dissolved oxygen standards at all 102 model segments in the Link River to Keno Dam reach, it was determined that the seven locations used by ODEQ appear to be a representative subset of the reach for dissolved oxygen analysis. * The USGS and TMDL models were qualitatively compared by running both models for the 2006–09 period but preserving the essential characteristics of each, such as organic matter partitioning, bathymetric representation, and parameter rates. The analysis revealed that some constituents were not greatly affected by the differing algorithms, rates, and assumptions in the two models. Conversely, other constituents, especially organic matter, were simulated differently by the two models. Organic matter in this river system is best represented by a mixture of relatively labile particulate material and a substantial concentration of refractory dissolved material. In addition, the use of a first-order sediment oxygen demand, as in the USGS model, helps to capture the seasonal and dynamic effect of settled organic and algal material. * Simulation of shunting (diverting) particulate material away from the intake of four Klamath Project diversion canals, so that the material stayed in the river and out of the Project area, caused higher concentrations of particulate material to occur in the river. In all cases modeled, the increase in in-river particulate material also produced decreased dissolved oxygen concentrations and an increase in the number of days when dissolved oxygen standards were violated. * If particulate material were shunted back into the river at the Klamath Project diversion canals, less organic matter and nutrients would be taken into the Klamath Project area and the Lost River basin, resulting in return flows to the Klamath River via Lost River Diversion Channel that may have reduced nutrient concentrations. Model scenarios bracketing potential end-member nutrient concentrations showed that the composition of the return flows had little to no effect on dissolved oxygen compliance under simulated conditions.
Passive Biobarrier for Treating Co-mingled Perchlorate and RDX in Groundwater at an Active Range
2016-05-12
and Groundwater Temperature ............................. 102 6.1.2 Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP...22 or equivalent). Parameters, including temperature , conductivity, dissolved oxygen , oxidation-reduction potential (ORP), turbidity, and pH were...3% for temperature and specific conductivity, and % for dissolved oxygen , ORP, and turbidity. When parameters were stable according to the above
2015-07-01
19 Table 3. Temperature , dissolved oxygen , pH, and wind...21 Table 4. Temperature , dissolved oxygen , and pH measured in the study plots following treatment, Fort Peck Lake, MT, 2012...quality, particularly temperature , pH, dissolved oxygen , and nutrient cycling (Prentki et al. 1979; Carpenter and Lodge 1986, Frodge et al. 1990; Boylen
Dissolved oxygen as a key parameter to aerobic granule formation.
Sturm, B S McSwain; Irvine, R L
2008-01-01
Much research has asserted that high shear forces are necessary for the formation of aerobic granular sludge in Sequencing Batch Reactors (SBRs). In order to distinguish the role of shear and dissolved oxygen on granule formation, two separate experiments were conducted with three bench-scale SBRs. In the first experiment, an SBR was operated with five sequentially decreasing superficial upflow gas velocities ranging from 1.2 to 0.4 cm s(-1). When less than 1 cm s(-1) shear was applied to the reactor, aerobic granules disintegrated into flocs, with corresponding increases in SVI and effluent suspended solids. However, the dissolved oxygen also decreased from 8 mg L(-1) to 5 mg L(-1), affecting the Feast/Famine regime in the SBR and the substrate removal kinetics. A second experiment operated two SBRs with an identical shear force of 1.2 cm s(-1), but two dissolved oxygen concentrations. Even when supplied a high shear force, aerobic granules could not form at a dissolved oxygen less than 5 mg L(-1), with a Static Fill. These results indicate that the substrate removal kinetics and dissolved oxygen are more significant to granule formation than shear force. Copyright IWA Publishing 2008.
Dissolved oxygen content prediction in crab culture using a hybrid intelligent method
Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang
2016-01-01
A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206
Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.
Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang
2016-06-08
A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.
Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M
2014-01-01
One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.
Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M
2014-01-01
BACKGROUND One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. METHODS Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer’s lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. RESULTS Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. CONCLUSIONS A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model. PMID:25249764
NASA Astrophysics Data System (ADS)
Papiol, Vanesa; Hendrickx, Michel E.; Serrano, David
2017-03-01
The presence of an Oxygen Minimum Zone (OMZ) is one of the major characteristics of the eastern Pacific. The OMZ changes strongly adjacent to Mexico in its thickness and intensity. The ecological impacts of those changes were studied by examining the community structures of bathyal benthic and bentho-pelagic decapod crustaceans, and their oceanographic contexts, on the Mexican Pacific slope along a wide latitudinal range (16-32°N). Decapod crustaceans were collected with a benthic sledge from 48 stations between 865 and 2165 m in three main areas: offshore of northern Baja California (NBC), off southern Baja California (SBC) and in the southern Mexican Pacific (SMP). Physical-chemical parameters were measured in the water column, and sediment composition was analyzed for each station. The narrowing and weakening of the OMZ north of ca. 26°N was confirmed. Water with dissolved oxygen <0.5 ml l-1 occupied a stratum of 1231 m in the SMP vs. only 664 m off NBC. The strongest changes coincided with a region of surface, subsurface and intermediate water mass transitions, where less saline waters from the north extended to depths of ca. 1000 m. Sand proportions were higher in sediments to the south, whereas silt dominated offshore of NBC. A strong latitudinal shift in decapod community composition and bathymetric distribution occurred from off SBC to off NBC, coinciding with changes in oceanographic conditions. The dominant genera of decapod crustaceans at slope depths were cognate to those dominating slope areas in other tropical and subtropical regions of the world. In the SMP and off SBC, large aggregations of organisms were observed at 900-1300 m, with a sharp decrease in abundance at greater depth. Off NBC, the density of organisms was intermediate at all depths. The combined effects of dissolved oxygen concentration and characteristics of water masses affected the distribution of organisms. The faunal patterns were also related with sediment grain size.
Usher, Courtney R; Cleveland, Curtis A; Strongin, Daniel R; Schoonen, Martin A
2004-11-01
FeS2 (pyrite) is known to react with water and dissolved molecular oxygen to form sulfate and iron oxyhydroxides. This process plays a large role in the environmentally damaging phenomenon known as acid mine drainage. An outstanding scientific issue has been whether the oxygen in the sulfate and oxyhydroxide product was derived from water and/or dissolved oxygen. By monitoring the reaction in situ with horizontal attenuated total reflectance infrared spectroscopy, it was found that when using 18O isotopically substituted water, the majority of the infrared absorbance due to sulfate product red-shifted approximately 70 cm(-1) relative to the absorbance of sulfate using H(2)16O as a reactant. Bands corresponding to the iron oxyhydroxide product did not shift. These results indicate water as the primary source of oxygen in the sulfate product, while the oxygen atoms in the iron oxyhydroxide product are obtained from dissolved molecular oxygen.
NASA Astrophysics Data System (ADS)
Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.
2015-10-01
Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.
Modern and ancient geochemical constraints on Proterozoic atmosphere-ocean redox evolution
NASA Astrophysics Data System (ADS)
Hardisty, D. S.; Horner, T. J.; Wankel, S. D.; Lu, Z.; Lyons, T.; Nielsen, S.
2017-12-01
A detailed understanding of the spatiotemporal oxygenation of Earth's atmosphere-ocean system through the Precambrian has important implications for the environments capable of sustaining early eukaryotic life and the evolving oxidant budget of subducted sediments. Proxy records suggest an anoxic Fe-rich deep ocean through much of the Precambrian and atmospheric and surface-ocean oxygenation that started in earnest at the Paleoproterozoic Great Oxidation Event (GOE). The marine photic zone represented the initial site of oxygen production and accumulation via cyanobacteria, yet our understanding of surface-ocean oxygen contents and the extent and timing of oxygen propagation and exchange between the atmosphere and deeper ocean are limited. Here, we present an updated perspective of the constraints on atmospheric, surface-ocean, and deep-ocean oxygen contents starting at the GOE. Our research uses the iodine content of Proterozoic carbonates as a tracer of dissolved iodate in the shallow ocean, a redox-sensitive species quantitatively reduced in modern oxygen minimum zones. We supplement our understanding of the ancient record with novel experiments examining the rates of iodate production from oxygenated marine environments based on seawater incubations. Combining new data from iodine with published shallow marine (Ce anomaly, N isotopes) and atmospheric redox proxies, we provide an integrated view of the vertical redox structure of the atmosphere and ocean across the Proterozoic.
Lunar mining of oxygen using fluorine
NASA Technical Reports Server (NTRS)
Burt, Donald M.; Tyburczy, James A.; Roberts, Jeffery J.; Balasubramanian, Rajan
1992-01-01
Experiments during the first year of the project were directed towards generating elemental fluorine via the electrolysis of anhydrous molten fluorides. Na2SiF6 was dissolved in either molten NaBF4 or a eutectic (minimum-melting) mixture of KF-LiF-NaF and electrolyzed between 450 and 600 C to Si metal at the cathode and F2 gas at the anode. Ar gas was continuously passed through the system and F2 was trapped in a KBr furnace. Various anode and cathode materials were investigated. Despite many experimental difficulties, the capability of the process to produce elemental fluorine was demonstrated.
Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary
Roegner, G. Curtis; Needoba, Joseph A.; Baptista, António M.
2011-01-01
Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L−1. Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality. PMID:21533083
Data-Logging--A Plug-and-Play Oxygen Probe?
ERIC Educational Resources Information Center
Warne, Peter
1997-01-01
Presents an experiment on collecting data while measuring the dissolved-oxygen levels in Thames River tap water straight from the water mains and dissolved-oxygen levels in rainwater containing Hornwort water weed over 24 hours. (Author/ASK)
Schmidt, A.R.; Stamer, J.K.
1987-01-01
Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)
Distribution of dissolved zinc in the western and central subarctic North Pacific
NASA Astrophysics Data System (ADS)
Kim, T.; Obata, H.; Gamo, T.
2016-02-01
Zinc (Zn) is an essential micronutrient for bacteria and phytoplankton in the ocean as it plays an important role in numerous enzyme systems involved in various metabolic processes. However, large-scale distributions of total dissolved Zn in the subarctic North Pacific have not been investigated yet. In this study, we investigated the distributions of total dissolved Zn to understand biogeochemical cycling of Zn in the western and central subarctic North Pacific as a Japanese GEOTRACES project. Seawater samples were collected during the R/V Hakuho-maru KH-12-4 GEOTRACES GP 02 cruise (from August to October 2012), by using acid-cleaned Teflon-coated X-type Niskin samplers. Total dissolved Zn in seawater was determined using cathodic stripping voltammetry (CSV) after UV-digestion. In this study, total dissolved Zn concentrations in the western and central subarctic North Pacific commonly showed Zn increase from surface to approximately 400-500 m, just above the oxygen minimum layer. However, in the western subarctic North Pacific, relatively higher Zn concentrations have also been observed at intermediate depths (800-1200 m), in comparison with those observed in deep waters. The relationship between Zn and Si in the western subarctic North Pacific showed that Zn is slightly enriched at intermediate depths. These results may indicate that there are additional sources of Zn to intermediate water of the western subarctic North Pacific.
Dmitrieva, E V
2015-01-01
Several series of experiments investigating the influence of dissolved oxygen concentrations on the growth rates and mortality in the embryogenesis of the common toad Bufo bufo were carried out. The experiments showed that, when the eggs develop singly, the lack of oxygen does not lead to an increase in mortality by the time of hatching and results only in a change in the dynamics of mortality: mortality occurs at an earlier stage of development than in the conditions of normal access to oxygen. Taking into account the combined effect of the density of eggs and the dissolved oxygen concentration, we increase the accuracy of analysis of the experimental results and improve the interpretation of the results. In the conditions of different initial density of eggs, the impact of the concentration of dissolved oxygen on mortality and rates of development of the common toad embryos is manifested in different ways. At high density, only a small percentage of embryos survives by the time of hatching, and the embryos are significantly behind in their development compared with the individuals that developed in normal oxygen conditions. The lack of oxygen dissolved in the water slows down the development of embryos of the common toad.
NASA Astrophysics Data System (ADS)
Ozaki, Tatsuya; Ishikawa, Hitoshi; Sakaue, Hirotaka
2009-11-01
We have developed anodized-aluminum pressuresensitive paint (AA-PSP) for flow visualization in water using dissolved oxygen as a tracer. Developed AA-PSP is characterized using water calibration setup by controlling a dissolved oxygen concentration. It is shown that the developed AA-PSP gives 4.0 percent change in luminescence per 1 mg/l of oxygen concentration. This AA-PSP is applied to visualize flows in a water tunnel. Oxygen concentrations of the water tunnel and the dissolved oxygen are 9.5 mg/l and 20 mg/l, respectively. We can capture horseshoe vortices over the base of 10 mm cylinder by using this technique at Reynolds number of 1000 and a water speed of 100 mm/s, respectively. Unlike conventional tracers such as ink, milk, and fluorescent dyes, this visualization technique gives flow information on the AA-PSP coated surface without integrating flows between the AA-PSP and an optical detector. Because of using dissolved oxygen as a tracer, it holds the material properties of testing water except for the amount of oxygen. The tracer does not interfere with optical measurements and it does not contaminate the testing water. A conventional visualization technique using milk as a tracer is also employed for comparison.
Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.
Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P
2014-12-01
This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wilber, William G.; Peters, J.G.; Ayers, M.A.; Crawford, Charles G.
1979-01-01
A digital model calibrated to conditions in Cedar Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that the dissolved-oxygen concentration of the Auburn wastewater effluent and nitrification are the most significant factors affecting the dissolved-oxygen concentration in Cedar Creek during summer low flows. The observed dissolved-oxygen concentration of the Auburn wastewater effluent was low and averaged 30 percent of saturation. Projected nitrogenous biochemical-oxygen demand loads, from the Indiana State Board of Health, for the Auburn and Waterloo wastewater-treatment facilities will result in violations of the current instream dissolved-oxygen standard (5 mg/l), even with an effluent dissolved-oxygen concentration of 80 percent saturation. Natural streamflow for Cedar Creek upstream from the confluence of Willow and Little Cedar Creeks is small compared with the waste discharge, so benefits of dilution for Waterloo and Auburn are minimal. The model also indicates that, during winter low flows, ammonia toxicity, rather than dissolved oxygen, is the limiting water-quality criterion in the reach of Cedar Creek downstream from the wastewater-treatment facility at Auburn and the confluence of Garrett ditch. Ammonia-nitrogen concentrations predicted for 1978 through 2000 downstream from the Waterloo wastewater-treatment facility do not exceed Indiana water-quality standards for streams. Calculations of the stream 's assimilative capacity indicate that future waste discharge in the Cedar Creek basin will be limited to the reaches between the Auburn wastewater-treatment facility and County Road 68. (Kosco-USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.
2006-11-15
Some fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13?C and at intergravel dissolved oxygen concentrations that are less than 8 mg O2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, these temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine if temperatures from 13 to 17 C and dissolved oxygen levels from 4 to greater than 8 mg O2/L during the first 40 days ofmore » incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 days of incubation, temperatures were adjusted downward approximately 0.2 C/day and oxygen was increased in increments of 2 mg O2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures equal to or greater than 17?C, and a rapid decline in survival occurred between 16.5 C and 17 C, with no significant difference in survival at temperatures less than or equal to 16.5 C. Initial dissolved oxygen levels as low as 4 mg O2/L over a range of initial temperatures from 15 to 16.5 C did not affect embryo survival to emergence. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; it took from 6 to 10 days longer to reach hatch at 4 mg O2/L than at saturation and up to 24 days longer to reach emergence. In contrast, within each dissolved oxygen treatment, it took about 20 days longer to reach hatch at 13 C than at 16.5 C (no data for 17 C) and up to 41 days longer to reach emergence. Overall, this study indicates that exposure to water temperatures up to 16.5 C will not have deleterious impacts on survival or growth from egg to emergence if temperatures decline at a rate of greater than or equal to 0.2 C/day following spawning. Although fall Chinook salmon survived low initial dissolved oxygen levels, the delay in emergence could have significant long-term effects on their survival. Thus, an exemption to the state water quality standards for temperature but not oxygen may be warranted in the Snake River where fall Chinook salmon spawn.« less
Dissolved Oxygen Levels in Lake Chabot
NASA Astrophysics Data System (ADS)
Sharma, D.; Pica, R.
2014-12-01
Dissolved oxygen levels are crucial in every aquatic ecosystem; it allows for the fish to breathe and it is the best indicator of water quality. Lake Chabot is the main backup water source for Castro Valley, making it crucial that the lake stays in good health. Last year, research determined that the water in Lake Chabot was of good quality and not eutrophic. This year, an experiment was conducted using Lake Chabot's dissolved oxygen levels to ensure the quality of the water and to support the findings of the previous team. After testing three specifically chosen sites at the lake using a dissolved oxygen meter, results showed that the oxygen levels in the lake were within the healthy range. It was then determined that Lake Chabot is a suitable backup water source and it continues to remain a healthy habitat.
USDA-ARS?s Scientific Manuscript database
Control of dissolved gases, especially oxygen is an essential component of recirculating aquaculture systems. The use of pure oxygen in a recirculating aquaculture system creates supersaturated concentrations of dissolved oxygen and can reduce fish production costs by supporting greater fish and fee...
Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992
Kelly, V.J.
1996-01-01
Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.
NASA Astrophysics Data System (ADS)
Singh, R.; Ingole, B. S.
2016-01-01
We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and low oxygen levels on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14° N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. The oxygen minimum zone extended from 102 to 1001 m. Nematodes (described and undescribed) were identified to species and classified according to biological and functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Three depth zones were identified: the shelf (depth range: 34-102 m; highest nematode mean density: 176.6 ± 37 ind 10 cm-2), the slope (525-1524 m; 124.3 ± 16 ind 10 cm-2), and the basin (2001-2546 m; 62.9 ± 2 ind 10 cm-2). Across the entire study area, the dominant species were Terschellingia longicaudata, Desmodora sp. 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Nematode communities in different zones differed in species composition. Chromadorita sp. 2 (2.78 %) and Sphaerolaimus gracilis (2.21 %) were dominant on the shelf, whereas Terschellingia longicaudata (4.73 %) and Desmodora sp. 1 (4.42 %) were dominant on the slope, but in the basin, Halalaimus sp. 1(1.11 %) and Acantholaimus elegans (1.11 %) were dominant. The information in a particular functional group was not a simple reflection of the information in species abundance. Ecological information captured by adult length, adult shape, and life-history strategy was less site-specific and thus differed notably from information contained in other taxonomic groups. The functional composition of nematodes was strongly linked to the organic-carbon and dissolved-oxygen concentration. Seven species were found exclusively in the oxygen minimum zone: Pselionema sp. 1, Choanolaimus sp. 2, Halichoanolaimus sp. 1, Cobbia dentata, Daptonema sp. 1, Trissonchulus sp. 1, and Minolaimus sp. 1. Correlation with a number of environmental variables indicated that food quantity (measured as the organic-carbon content and chlorophyll content) and oxygen level were the major factors that influenced nematode community structure and function.
The biogeochemistry of Arabian Sea surficial sediments: A review of recent studies
NASA Astrophysics Data System (ADS)
Cowie, Greg
2005-05-01
The Arabian Sea’s unusual features have drawn attention from oceanographers and other scientists since the late 1800s. Water-column processes, including the seasonally reversing monsoon-driven circulation and the associated upwelling and productivity, as well as a basin-wide, mid-water layer of intense oxygen depletion have been the foci of many studies. However, the importance of benthic processes in the Arabian Sea has also been recognized. Both the abyssal region and the continental margins have been sites of major studies focused on the biology and geochemistry of surficial sediments and key biogeochemical processes that occur across the benthic boundary layer, especially in the last decade. A summary of benthic studies carried out up to the 1990s is followed by descriptions and syntheses of biological and geochemical studies conducted since that time. The results highlight that the benthic system of the Arabian Sea is highly dynamic, with evidence of strong benthic-pelagic coupling displayed as a cross-basin trophic gradient and in benthic response to seasonal variability in productivity and C flux. Benthic biogeochemical processes, especially on the upper slope and within the oxygen minimum zone, including denitrification, phosphogenesis, and fluxes of trace metals, nutrients and dissolved organic matter, may be of global significance but remain poorly quantified. Sedimentary organic matter distributions across the Arabian Sea have served to fuel an ongoing debate over the controlling environmental factors. Recent studies have illustrated that factors including the supply of reactive organic matter, oxygen exposure, digestion and mixing by the benthos, sorptive preservation, and sediment dilution, winnowing and down-slope transport, all interact in a complex fashion and with varied impact to determine distributions of sedimentary organic matter across the different margins of this basin. Notable features include the facts that it is only at the core of the oxygen minimum zone on the Indian and Pakistan margins where laminated sediments occur and oxygen concentrations appear to fall below the threshold required for macrobenthos, and that sulfate reduction is surprisingly suppressed when compared to rates observed on other upwelling margins with oxygen minimum zones. The review is completed by suggestions for future benthic research in the Arabian Sea.
Landscape-level variation in disease susceptibility related to shallow-water hypoxia.
Breitburg, Denise L; Hondorp, Darryl; Audemard, Corinne; Carnegie, Ryan B; Burrell, Rebecca B; Trice, Mark; Clark, Virginia
2015-01-01
Diel-cycling hypoxia is widespread in shallow portions of estuaries and lagoons, especially in systems with high nutrient loads resulting from human activities. Far less is known about the effects of this form of hypoxia than deeper-water seasonal or persistent low dissolved oxygen. We examined field patterns of diel-cycling hypoxia and used field and laboratory experiments to test its effects on acquisition and progression of Perkinsus marinus infections in the eastern oyster, Crassostrea virginica, as well as on oyster growth and filtration. P. marinus infections cause the disease known as Dermo, have been responsible for declines in oyster populations, and have limited success of oyster restoration efforts. The severity of diel-cycling hypoxia varied among shallow monitored sites in Chesapeake Bay, and average daily minimum dissolved oxygen was positively correlated with average daily minimum pH. In both field and laboratory experiments, diel-cycling hypoxia increased acquisition and progression of infections, with stronger results found for younger (1-year-old) than older (2-3-year-old) oysters, and more pronounced effects on both infections and growth found in the field than in the laboratory. Filtration by oysters was reduced during brief periods of exposure to severe hypoxia. This should have reduced exposure to waterborne P. marinus, and contributed to the negative relationship found between hypoxia frequency and oyster growth. Negative effects of hypoxia on the host immune response is, therefore, the likely mechanism leading to elevated infections in oysters exposed to hypoxia relative to control treatments. Because there is considerable spatial variation in the frequency and severity of hypoxia, diel-cycling hypoxia may contribute to landscape-level spatial variation in disease dynamics within and among estuarine systems.
Behavioral ecology of jumbo squid (Dosidicus gigas) in relation to oxygen minimum zones
NASA Astrophysics Data System (ADS)
Stewart, Julia S.; Field, John C.; Markaida, Unai; Gilly, William F.
2013-10-01
Habitat utilization, behavior and food habits of the jumbo or Humboldt squid, Dosidicus gigas, were compared between an area recently inhabited in the northern California Current System (CCS) and a historically established area of residence in the Gulf of California (GOC). Low dissolved oxygen concentrations at midwater depths define the oxygen minimum zone (OMZ), an important environmental feature in both areas. We analyzed vertical diving behavior and diet of D. gigas and hydrographic properties of the water column to ascertain the extent to which squid utilized the OMZ in the two areas. The upper boundary of the OMZ has been shoaling in recent decades in the CCS, and this phenomenon has been proposed to vertically compress the pelagic environment inhabited by aerobic predators. A shoaling OMZ will also bring mesopelagic communities into a depth range with more illumination during daytime, making these organisms more vulnerable to predation by visual predators (i.e. jumbo squid). Because the OMZ in the GOC is considerably shallower than in the CCS, our study provides insight into the behavioral plasticity of jumbo squid and how they may respond to a shoaling OMZ in the CCS. We propose that shoaling OMZs are likely to be favorable to jumbo squid and could be a key indirect factor behind the recent range expansion of this highly migratory predator.
Streamflow and water-quality conditions, Wilsons Creek and James River, Springfield area, Missouri
Berkas, Wayne R.
1982-01-01
A network of water-quality-monitoring stations was established upstream and downstream from the Southwest Wastewater-Treatment Plant on Wilsons Creek to monitor the effects of sewage effluent on water quality. Data indicate that 82 percent of the time the flow in Wilsons Creek upstream from the wastewater-treatment plant is less than the effluent discharged from the plant. On October 15, 1977, an advanced wastewater-treatment facility was put into operation. Of the four water-quality indicators measured at the monitoring stations (specific conductance, dissolved oxygen, pH, and water temperature), only dissolved oxygen showed improvement downstream from the plant. During urban runoff, the specific conductance momentarily increased and dissolved-oxygen concentration momentarily decreased in Wilsons Creek upstream from the plant. Urban runoff was found to have no long-term effects on specific conductance and dissolved oxygen downstream from the plant before or after the addition of the advanced wastewater-treatment facility. Data collected monthly from the James River showed that the dissolved-oxygen concentrations and the total nitrite plus nitrate nitrogen concentrations increased, whereas the dissolved-manganese concentrations decreased after the advanced wastewater-treatment facility became operational.
Remote Sensing of Dissolved Oxygen and Nitrogen in Water Using Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Ganoe, Rene; DeYoung, Russell J.
2013-01-01
The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle system has been developed and the specifications are being honed to maximize efficiency for the final application. The theoretical criteria of the research, components of the experimental system, and key findings are presented in this report
Crawford, Charles G.; Wangsness, David J.
1987-01-01
A diel (24-hour) water-quality survey was done to investigate the sources of dry-weather waste inputs attributable to other than permitted point-source effluent and to evaluate the waste-load assimilative capacity of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, in October 1984. Flow in the Grand Calumet River consists almost entirely of municipal and industrial effluents which comprised more than 90% of the 500 cu ft/sec flow observed at the confluence of the East Branch Grand Calumet River and the Indiana Harbor Ship Canal during the study. At the time of the study, virtually all of the flow in the West Branch Grand Calumet River was municipal effluent. Diel variations in streamflow of as much as 300 cu ft/sec were observed in the East Branch near the ship canal. The diel variation diminished at the upstream sampling sites in the East Branch. In the West Branch, the diel variation in flow was quite drastic; complete reversals of flow were observed at sampling stations near the ship canal. Average dissolved-oxygen concentrations at stations in the East Branch ranged from 5.7 to 8.2 mg/L and at stations in the West Branch from 0.8 to 6.6 mg/L. Concentrations of dissolved solids, suspended solids, biochemical-oxygen demand, ammonia, nitrite, nitrate, and phosphorus were substantially higher in the West Branch than in the East Branch. In the East Branch, only the Indiana Stream Pollution Control Board water-quality standards for total phosphorus and phenol were exceeded. In the West Branch, water-quality standards for total ammonia, chloride, cyanide, dissolved solids, fluoride, total phosphorus, mercury, and phenol were exceeded and dissolved oxygen was less than the minimum allowable. Three areas of significant differences between cumulative effluent and instream chemical-mass discharges were identified in the East Branch and one in the West Branch. The presence of unidentified waste inputs in the East Branch were indicated by differences in the chemical-mass discharges at three sites. Elevated suspended solids, biochemical-oxygen demand, and ammonia chemical-mass discharges at Columbia Avenue indicated the presence of a source of what may have been untreated sewage to the West Branch during the survey. (Author 's abstract)
PHYSICAL AND BIOLOGICAL CONTROLS ON DISSOLVED OXYGEN DYNAMICS IN PENSACOLA BAY, FL
Nutrient enrichment of estuaries and coastal waters can contribute to hypoxia (low dissolved oxygen) by increasing primary production and biological oxygen demand. Other factors, however, contribute to hypoxia and affect the susceptibility of coastal waters to hypoxia. Hypoxia fo...
Terry, J.E.; Morris, E.E.; Bryant, C.T.
1982-01-01
The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)
The importance of dissolved free oxygen during formation of sandstone-type uranium deposits
Granger, Harry Clifford; Warren, C.G.
1979-01-01
One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.
Williams, Richard J; Boorman, David B
2012-04-15
The River Kennet in southern England shows a clear diurnal signal in both water temperature and dissolved oxygen concentrations through the summer months. The water quality model QUESTOR was applied in a stepwise manner (adding modelled processes or additional data) to simulate the flow, water temperature and dissolved oxygen concentrations along a 14 km reach. The aim of the stepwise model building was to find the simplest process-based model which simulated the observed behaviour accurately. The upstream boundary used was a diurnal signal of hourly measurements of water temperature and dissolved oxygen. In the initial simulations, the amplitude of the signal quickly reduced to zero as it was routed through the model; a behaviour not seen in the observed data. In order to keep the correct timing and amplitude of water temperature a heating term had to be introduced into the model. For dissolved oxygen, primary production from macrophytes was introduced to better simulate the oxygen pattern. Following the modifications an excellent simulation of both water temperature and dissolved oxygen was possible at an hourly resolution. It is interesting to note that it was not necessary to include nutrient limitation to the primary production model. The resulting model is not sufficiently proven to support river management but suggests that the approach has some validity and merits further development. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Water-quality conditions in the New River, Imperial County, California
Setmire, James G.
1979-01-01
The New River, when entering the United States at Calexico, Calif., often contains materials which have the appearance of industrial and domestic wastes. Passage of some of these materials is recognized by a sudden increase in turbidity over background levels and the presence of white particulate matter. Water samples taken during these events are usually extremely high in organic content. During a 4-day reconnaissance of water quality in May 1977, white-to-brown extremely turbid water crossed the border on three occasions. On one of these occasions , the water was intensively sampled. The total organic-carbon concentration ranged from 80 to 161 milligrams per liter (mg/l); dissolved organic carbon ranged from 34 to 42 mg/l, and the chemical oxygen demand was as high as 510 mg/l. River profiles showed a dissolved-oxygen sag, with the length of the zone of depressed dissolved-oxygen concentrations varying seasonally. During the summer months, dissolved-oxygen concentrations in the river were lower and the zone of depressed dissolved-oxygen concentrations was longer. The largest increases in dissolved-oxygen concentration from reaeration occurred at the three drop structures and the rock weir near Seeley. The effects of oxygen demanding materials crossing the border extended as far as Highway 80, 19.5 miles downstream from the international boundary at Calexico. Fish kills and anaerobic conditions were also detected as far as Highway 80. Standard bacteria indicator tests for fecal contamination showed a very high health-hazard potential near the border. (Woodard-USGS)
DIEL OXYGEN-INDUCED MOVEMENT OF FISH ASSEMBLAGES IN A GREAT LAKES COASTAL WETLAND
To determine the importance of dissolved oxygen conditions in influencing daily ovement patterns of fishes in Great Lakes coastal wetlands, we sampled migrating fish assemblages from habitats with varying diurnal dissolved oxygen patterns in a Lake Superior coastal wetland during...
Fan, Cheng-Wei; Kao, Shuh-Ji
2008-04-15
The seasonal concentrations of dissolved oxygen in a subtropical deep reservoir were studied over a period of one year. The study site was the Feitsui Reservoir in Taiwan. It is a dam-constructed reservoir with a surface area of 10.24 km(2) and a mean depth of 39.6 m, with a maximum depth of 113.5 m near the dam. It was found that certain weather and climate events, such as typhoons in summer and autumn, as well as cold fronts in winter, can deliver oxygen-rich water, and consequently have strong impacts on the dissolved oxygen level. The typhoon turbidity currents and winter density currents played important roles in supplying oxygen to the middle and bottom water, respectively. The whole process can be understood by the hydrodynamics driven by weather and climate events. This work provides the primary results of dissolved oxygen in a subtropical deep reservoir, and the knowledge is useful in understanding water quality in subtropical regions.
Wang, Zejie; Deng, Huan; Chen, Lihui; Xiao, Yong; Zhao, Feng
2013-03-01
Biofilms are the core component of bioelectrochemical systems (BESs). To understand the polarization effects on biocathode performance of BES, dissolved oxygen concentrations, pHs and oxidation-reduction potentials of biofilm microenvironments were determined in situ. The results showed that lower polarization potentials resulted in the generation of larger currents and higher pH values, as well as the consumption of more oxygen. Oxidation-reduction potentials of biofilms were mainly affected by polarization potentials of the electrode rather than the concentration of dissolved oxygen or pH value, and its changes in the potentials corresponded to the electric field distribution of the electrode surface. The results demonstrated that a sufficient supply of dissolved oxygen and pH control of the biocathode are necessary to obtain optimal performance of BESs; a lower polarization potential endowed microorganisms with a higher electrochemical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level.
Sahoo, P; Ananthanarayanan, R; Malathi, N; Rajiniganth, M P; Murali, N; Swaminathan, P
2010-06-11
A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 microg L(-1) levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L(-1) levels, with modification in methodology for accurate detection of end point even at 10.0 microg L(-1) levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 microg L(-1) O(2). Finally, several water samples containing dissolved oxygen from mg L(-1) to microg L(-1) levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 microg L(-1) O(2) level is 0.14 (n=5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 microg L(-1) levels. Copyright 2010 Elsevier B.V. All rights reserved.
An experimental study on the cavitation of water with dissolved gases
NASA Astrophysics Data System (ADS)
Li, Buxuan; Gu, Youwei; Chen, Min
2017-12-01
Cavitation inception is generally determined by the tensile strengths of liquids. Investigations on the tensile strength of water, which is essential in many fields, will help understand the promotion/prevention of cavitation and related applications in water. Previous experimental studies, however, vary in their conclusions about the value of tensile strength of water; the difference is commonly attributed to the existence of impurities in water. Dissolved gases, especially oxygen and nitrogen from the air, are one of the most common kinds of impurities in water. The influence of these gases on the tensile strength of water is still unclear. This study investigated the effects of dissolved gases on water cavitation through experiments. Cavitation in water is generated by acoustic method. Water samples are prepared with dissolved oxygen and nitrogen in different gas concentrations. Results show that under the same temperature, the tensile strength of water with dissolved oxygen or nitrogen decreases with increased gas concentration compared with that of ultrapure water. Under the same gas concentration and temperature, water with dissolved oxygen shows a lower tensile strength than that with dissolved nitrogen. Possible reasons of these results are also discussed.
Response of Benthic Foraminiferal Size to Oxygen Concentration in Antarctic Sediment Cores
NASA Astrophysics Data System (ADS)
Guo, D.; Keating-Bitonti, C.; Payne, J.
2014-12-01
Oxygen availability is important for biological reactions and the demand of oxygen is determined by the size of the organism. Few marine organisms can tolerate low oxygen conditions, but benthic foraminifera, a group of amoeboid protists that are highly sensitive to environmental factors, are known to live in these conditions. Benthic foraminifera may be able to live in oxygen stressed environments by changing the size and shape of their test. Low oxygen concentrations should favor smaller, thinner-shelled, flattened test morphologies. We hypothesize that the volume-to-surface area ratio of benthic foraminifera will decrease with decreasing dissolved oxygen concentrations. To test this hypothesis, we picked two calcareous species (Epistominella exigua and Cassulinoides porrectus) and one agglutinated species (Portatrochammina antarctica) from three sediment cores collected from Explorer's Cove, Antarctica. Starting at the sediment-water interface, each core spans approximately 5-8 cm of depth. Profiles of dissolved oxygen concentrations were measured at the time of collection. At specific depths within the cores, we measured the three dimensions of picked foraminiferal tests using NIS-Elements. We calculated the volume and surface area of the tests assuming the shape of the foraminifers was an ellipsoid. The size trends of E. exigua confirm our hypothesis that the test volume-to-surface area ratios correlate positively with dissolved oxygen concentrations (p-value < 0.001). However, the size trends of the other species refute our hypothesis: P. antarctica shows no correlation and C. porrectus shows a negative correlation (p-value < 0.001) to dissolved oxygen concentrations. Thus, our results show that the change in size in response to variations in dissolved oxygen concentrations is species dependent. Moreover, we find that calcareous species are more sensitive to oxygen fluctuations than agglutinated species.
Bobay, Keith E.
1986-01-01
Two U.S. Geological Survey computer programs are modified and linked to predict the cumulative impact of iron and manganese oxidation in coal-mine discharge water on the dissolved chemical quality of a receiving stream. The coupled programs calculate the changes in dissolved iron, dissolved manganese, and dissolved oxygen concentrations; alkalinity; and, pH of surface water downstream from the point of discharge. First, the one-dimensional, stead-state stream, water quality program uses a dissolved oxygen model to calculate the changes in concentration of elements as a function of the chemical reaction rates and time-of-travel. Second, a program (PHREEQE) combining pH, reduction-oxidation potential, and equilibrium equations uses an aqueous-ion association model to determine the saturation indices and to calculate pH; it then mixes the discharge with a receiving stream. The kinetic processes of the first program dominate the system, whereas the equilibrium thermodynamics of the second define the limits of the reactions. A comprehensive test of the technique was not possible because a complete set of data was unavailable. However, the cumulative impact of representative discharges from several coal mines on stream quality in a small watershed in southwestern Indiana was simulated to illustrate the operation of the technique and to determine its sensitivity to changes in physical, chemical, and kinetic parameters. Mine discharges averaged 2 cu ft/sec, with a pH of 6.0, and concentrations of 7.0 mg/L dissolved iron, 4.0 mg/L dissolved manganese, and 8.08 mg/L dissolved oxygen. The receiving stream discharge was 2 cu ft/sec, with a pH of 7.0, and concentrations of 0.1 mg/L dissolved iron, 0.1 mg/L dissolved manganese, and 8.70 mg/L dissolved oxygen. Results of the simulations indicated the following cumulative impact on the receiving stream from five discharges as compared with the effect from one discharge: 0.30 unit decrease in pH, 1.82 mg/L increase in dissolved iron, 1.50 mg/L increase in dissolved manganese, and 0.24 mg/L decrease in dissolved oxygen concentration.
Patterns of dissolved oxygen dynamics in a Pacific Northwest slough and tide channel.
Pacific Northwest (PNW) estuaries and tide channels are habitats or migratory corridors for societally prized salmonids. These fish have high oxygen requirements, and an adequate level of dissolved oxygen is considered an important gauge of a PNW water body’s condition. W...
Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate Warming
NASA Astrophysics Data System (ADS)
Fu, Weiwei; Primeau, Francois; Keith Moore, J.; Lindsay, Keith; Randerson, James T.
2018-04-01
Dissolved oxygen (O2) is essential for the survival of marine animals. Climate change impacts on future oxygen distributions could modify species biogeography, trophic interactions, biodiversity, and biogeochemistry. The Coupled Model Intercomparison Project Phase 5 models predict a decreasing trend in marine O2 over the 21st century. Here we show that this increasing hypoxia trend reverses in the tropics after 2100 in the Community Earth System Model forced by atmospheric CO2 from the Representative Concentration Pathway 8.5 and Extended Concentration Pathway 8.5. In tropical intermediate waters between 200 and 1,000 m, the model predicts a steady decline of O2 and an expansion of oxygen minimum zones (OMZs) during the 21st century. By 2150, however, the trend reverses with oxygen concentration increasing and OMZ volume shrinking through 2300. A novel five-box model approach in conjunction with output from the full Earth system model is used to separate the contributions of biological and physical processes to the trends in tropical oxygen. The tropical O2 recovery is caused mainly by reductions in tropical biological export, coupled with a modest increase in ventilation after 2200. The time-evolving oxygen distribution impacts marine nitrogen cycling, with potentially important climate feedbacks.
Slade, A H; Anderson, S M; Evans, B G
2003-01-01
N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of the study as suspended solids discharge improved. Nitrogen fixation was demonstrated throughout the study using an acetylene reduction assay. Based on nitrogen balances around the plant, there was a 55, 354 and 98% increase in nitrogen during Phases 1, 2 and 3 respectively. There was a significant decrease in phosphorus between Phases 1 and 2, and Phase 3 of the study, as well as a significant increase in nitrogen between Phases 2 and 3 which masked the effect of changing the dissolved oxygen. Operation at low dissolved oxygen appeared to confer a competitive advantage to the nitrogen-fixing bacteria.
Chromium Isotope Anomaly Scaling with Past Warming Episodes
NASA Astrophysics Data System (ADS)
Remmelzwaal, S.; O'Connor, L.; Preston, W.; Parkinson, I. J.; Schmidt, D. N.
2017-12-01
The recent expansion of oxygen minimum zones caused by anthropogenic global warming raises questions about the scale of this expansion with different emission scenarios. Ocean deoxygenation will impact marine ecosystems and fisheries demanding an assessment of the possible extent and intensity of deoxygenation. Here, we used past climate warming events to quantify a potential link between warming and the spread of oxygen minimum zones: including Ocean Anoxic Event (OAE) 1a, OAE 2 in the Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Eocene Thermal Maximum 2 (ETM2), and Pleistocene glacial-interglacial cycles. We applied the emerging proxy of chromium isotopes in planktic foraminifera to assess redox changes during the PETM, ETM2, and Pleistocene and bulk carbonate for the OAEs. Both δ53Cr and chromium concentrations respond markedly during the PETM indicative of a reduction in dissolved oxygen concentrations caused by changes in ocean ventilation and associated warming [1]. A strong correlation between Δδ53Cr and benthic Δδ18O, a measure of the excursion size in both oxygen and chromium isotopes, suggest temperatures to be one of the main drivers of ocean deoxygenation in the past [1]. Chromium concentrations decrease during ETM2 and OAE1a, and, increase by 4.5 ppm over the Plenus Cold Event during OAE2, which suggests enhanced seafloor ventilation. [1] Remmelzwaal, S.R.C., Dixon, S., Parkinson, I.J., Schmidt, D.N., Monteiro, F.M., Sexton, P., Fehr, M., Peacock, C., Donnadieu, Y., James, R.H., in review. Ocean deoxygenation during the Palaeocene-Eocene Thermal Maximum. EPSL.
Techniques for the conversion to carbon dioxide of oxygen from dissolved sulfate in thermal waters
Nehring, N.L.; Bowen, P.A.; Truesdell, A.H.
1977-01-01
The fractionation of oxygen isotopes between dissolved sulfate ions and water provides a useful geothermometer for geothermal waters. The oxygen isotope composition of dissolved sulfate may also be used to indicate the source of the sulfate and processes of formation. The methods described here for separation, purification and reduction of sulfate to prepare carbon dioxide for mass spectrometric analysis are modifications of methods by Rafter (1967), Mizutani (1971), Sakai and Krouse (1971), and Mizutani and Rafter (1969). ?? 1976.
Reduction of Dissolved Oxygen at a Copper Rotating Disc Electrode
ERIC Educational Resources Information Center
Kear, Gareth; Albarran, Carlos Ponce-de-Leon; Walsh, Frank C.
2005-01-01
Undergraduates from chemical engineering, applied chemistry, and environmental science courses, together with first-year postgraduate research students in electrochemical technology, are provided with an experiment that demonstrates the reduction of dissolved oxygen in aerated seawater at 25°C. Oxygen reduction is examined using linear sweep…
Patterns of dissolved oxygen dynamics in a Pacific Northwest slough and tide channel - CERF 2015
Pacific Northwest (PNW) estuaries and tide channels are habitats or migratory corridors for societally prized salmonids. These fish have high oxygen requirements, and an adequate level of dissolved oxygen is considered an important gauge of a PNW water body’s condition. W...
Long-term simulations of dissolved oxygen concentrations in Lake Trout lakes
NASA Astrophysics Data System (ADS)
Jabbari, A.; Boegman, L.; MacKay, M.; Hadley, K.; Paterson, A.; Jeziorski, A.; Nelligan, C.; Smol, J. P.
2016-02-01
Lake Trout are a rare and valuable natural resource that are threatened by multiple environmental stressors. With the added threat of climate warming, there is growing concern among resource managers that increased thermal stratification will reduce the habitat quality of deep-water Lake Trout lakes through enhanced oxygen depletion. To address this issue, a three-part study is underway, which aims to: analyze sediment cores to understand the past, develop empirical formulae to model the present and apply computational models to forecast the future. This presentation reports on the computational modeling efforts. To this end, a simple dissolved oxygen sub-model has been embedded in the one-dimensional bulk mixed-layer thermodynamic Canadian Small Lake Model (CSLM). This model is currently being incorporated into the Canadian Land Surface Scheme (CLASS), the primary land surface component of Environment Canada's global and regional climate modelling systems. The oxygen model was calibrated and validated by hind-casting temperature and dissolved oxygen profiles from two Lake Trout lakes on the Canadian Shield. These data sets include 5 years of high-frequency (10 s to 10 min) data from Eagle Lake and 30 years of bi-weekly data from Harp Lake. Initial results show temperature and dissolved oxygen was predicted with root mean square error <1.5 °C and <3 mgL-1, respectively. Ongoing work is validating the model, over climate-change relevant timescales, against dissolved oxygen reconstructions from the sediment cores and predicting future deep-water temperature and dissolved oxygen concentrations in Canadian Lake Trout lakes under future climate change scenarios. This model will provide a useful tool for managers to ensure sustainable fishery resources for future generations.
First Autonomous Recording of in situ Dissolved Oxygen from Free-ranging Fish
NASA Astrophysics Data System (ADS)
Coffey, D.; Holland, K.
2016-02-01
Biologging technology has enhanced our understanding of the ecology of marine animals and has been central to identifying how oceanographic conditions drive patterns in their distribution and behavior. Among these environmental influences, there is increasing recognition of the impact of dissolved oxygen on the distribution of marine animals. Understanding of the impact of oxygen on vertical and horizontal movements would be advanced by contemporaneous in situ measurements of dissolved oxygen from animal-borne sensors instead of relying on environmental data that may not have appropriate spatial or temporal resolution. Here we demonstrate the capabilities of dissolved oxygen pop-up satellite archival tags (DO-PATs) by presenting the results from calibration experiments and trial deployments of two prototype tags on bluntnose sixgill sharks (Hexanchus griseus). The DO-PATs provided fast, accurate, and stable measurements in calibration trials and demonstrated high correlation with vertical profiles obtained via traditional ship-borne oceanographic instruments. Deployments on bluntnose sixgill sharks recorded oxygen saturations as low as 9.4% and effectively captured the oceanography of the region when compared with World Ocean Atlas 2013 values. This is the first study to use an animal-borne device to autonomously measure and record in situ dissolved oxygen saturation from non-air-breathing marine animals. The DO-PATs maintained consistency over time and yielded measurements equivalent to industry standards for environmental sampling. Acquiring contemporaneous in situ measurements of dissolved oxygen saturation alongside temperature and depth data will greatly improve our ability to investigate the spatial ecology of marine animals and make informed predictions of the impacts of global climate change. The information returned from DO-PATs is relevant not only to the study of the ecology of marine animals but will also become a useful new tool for investigating the physical structure of the oceans.
Bernstein, Hans C; Beam, Jacob P; Kozubal, Mark A; Carlson, Ross P; Inskeep, William P
2013-08-01
The role of dissolved oxygen as a principal electron acceptor for microbial metabolism was investigated within Fe(III)-oxide microbial mats that form in acidic geothermal springs of Yellowstone National Park (USA). Specific goals of the study were to measure and model dissolved oxygen profiles within high-temperature (65-75°C) acidic (pH = 2.7-3.8) Fe(III)-oxide microbial mats, and correlate the abundance of aerobic, iron-oxidizing Metallosphaera yellowstonensis organisms and mRNA gene expression levels to Fe(II)-oxidizing habitats shown to consume oxygen. In situ oxygen microprofiles were obtained perpendicular to the direction of convective flow across the aqueous phase/Fe(III)-oxide microbial mat interface using oxygen microsensors. Dissolved oxygen concentrations dropped from ∼ 50-60 μM in the bulk-fluid/mat surface to below detection (< 0.3 μM) at a depth of ∼ 700 μm (∼ 10% of the total mat depth). Net areal oxygen fluxes into the microbial mats were estimated to range from 1.4-1.6 × 10(-4) μmol cm(-2) s(-1) . Dimensionless parameters were used to model dissolved oxygen profiles and establish that mass transfer rates limit the oxygen consumption. A zone of higher dissolved oxygen at the mat surface promotes Fe(III)-oxide biomineralization, which was supported using molecular analysis of Metallosphaera yellowstonensis 16S rRNA gene copy numbers and mRNA expression of haem Cu oxidases (FoxA) associated with Fe(II)-oxidation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Pizarro, Shelly A; Dinges, Rachel; Adams, Rachel; Sanchez, Ailen; Winter, Charles
2009-10-01
Process analytical technology (PAT) is an initiative from the US FDA combining analytical and statistical tools to improve manufacturing operations and ensure regulatory compliance. This work describes the use of a continuous monitoring system for a protein refolding reaction to provide consistency in product quality and process performance across batches. A small-scale bioreactor (3 L) is used to understand the impact of aeration for refolding recombinant human vascular endothelial growth factor (rhVEGF) in a reducing environment. A reverse-phase HPLC assay is used to assess product quality. The goal in understanding the oxygen needs of the reaction and its impact to quality, is to make a product that is efficiently refolded to its native and active form with minimum oxidative degradation from batch to batch. Because this refolding process is heavily dependent on oxygen, the % dissolved oxygen (DO) profile is explored as a PAT tool to regulate process performance at commercial manufacturing scale. A dynamic gassing out approach using constant mass transfer (k(L)a) is used for scale-up of the aeration parameters to manufacturing scale tanks (2,000 L, 15,000 L). The resulting DO profiles of the refolding reaction show similar trends across scales and these are analyzed using rpHPLC. The desired product quality attributes are then achieved through alternating air and nitrogen sparging triggered by changes in the monitored DO profile. This approach mitigates the impact of differences in equipment or feedstock components between runs, and is directly inline with the key goal of PAT to "actively manage process variability using a knowledge-based approach." (c) 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Waeles, Matthieu; Planquette, Hélène; Afandi, Imane; Delebecque, Nina; Bouthir, Fatimazohra; Donval, Anne; Shelley, Rachel U.; Auger, Pierre-Amaël.; Riso, Ricardo D.; Tito de Morais, Luis
2016-05-01
In this study, we report the distributions of total dissolvable cadmium and particulate cadmium from 27 stations in southern Moroccan coastal waters (22°N-30°N), which is part of the North-West African upwelling system. These distributions were predominantly controlled by upwelling of the North Atlantic Central Waters (NACWs) and uptake by primary production. Atmospheric inputs and phosphogypsum slurry inputs from the phosphate industry at Jorf Lasfar (33°N), recently estimated as an important source of dissolved cadmium (240 t Cd yr-1), are at best of minor importance for the studied waters. Our study provides new insights into the mechanisms fractionating cadmium from phosphate. In the upper 30 m, the anomalies observed in terms of Cd:P ratios in both the particulate and total dissolvable fractions were related to an overall preferential uptake of phosphate. We show that the type of phytoplanktonic assemblage (diatoms versus dinoflagellates) is also a determinant of the fractionation intensity. In subsurface waters (30-60 m), a clear preferential release of P (versus Cd) was observed indicating that remineralization in Oxygen Minimum Zones is a key process in sequestering Cd.
Groschen, George E.; King, Robin B.
2005-01-01
Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago metropolitan area. Unlike temperature, dissolved oxygen, and specific conductivity that have been typically measured over a wide range of historical streamflow conditions in many streams, there are few historical turbidity data and the full range of turbidity values is not well known for many streams. Because proposed regional criteria for turbidity in regional streams are based on upper 25th percentiles of concentration in reference streams, accurate determination of the distribution of turbidity in monitored streams is important. Digital data from all five sensors were recorded within each of the eight sondes deployed in the streams and in automated data recorders in the nearby streamflow-gaging houses at each station. The data recorded on each sonde were retrieved to a field laptop computer at each station visit. The feasibility of transmitting these data in near-real time to a central processing point for dissemination on the World-Wide Web was tested successfully. Data collected at all eight stations indicate that a number of factors affect the dissolved-oxygen concentration in the streams and rivers monitored. These factors include: temperature, biological activity, nutrient runoff, and weather (storm runoff). During brief periods usually in late summer, dissolved-oxygen concentrations in half or more of the eight streams and rivers monitored were below the 5 milligrams per liter minimum established by the Illinois Pollution Control Board to protect aquatic life. Because the streams monitored represent a wide range in water-quality and environmental conditions, including diffuse (non-point) runoff and wastewater-effluent contributions, this result indicates that deleterious low dissolved-oxygen concentrations during late summer may be widespread in Illinois streams.
The Measurement of Dissolved Oxygen
ERIC Educational Resources Information Center
Thistlethwayte, D.; And Others
1974-01-01
Describes an experiment in environmental chemistry which serves to determine the dissolved oxygen concentration in both fresh and saline water. Applications of the method at the undergraduate and secondary school levels are recommended. (CC)
Variability of dissolved oxygen over the last millennium and the 21st century in CESM
NASA Astrophysics Data System (ADS)
Hameau, Angélique; Joos, Fortunat; Mignot, Juliette; Keller, Kathrin
2017-04-01
The earth system models simulate a depletion of the oxygen content in the ocean under global warming conditions (Cocco et al. 2012, Frölicher et al. 2009). The response to external forcing and mechanism underlying this evolution are not completely understood. Physical and biogeochemical processes are involved and tangled up to each other leading to a decrease of the global mean concentration of O2 in the ocean with the increase of the ocean temperature. This result is supported by experimental and observational studies in Atlantic and Pacific oceans (Stramma et al. 2008, Brandt et al. 2010). Here, we study the evolution of dissolved oxygen in a climate simulation of the Community Earth System Model (CESM) covering the last millennium and the 21st century. This long period allows us to identify the natural variability of the climate in this system, and therefore analyse the time of emergence (ToE) of the anthropogenic signal under the RCP8.5 scenario. Based on Keller et al. 2014, the time of emergence is defined as the point in time when the trend signal reaches twice the standard deviation of the signal during the preindustrial period (1000 years). The ToE of oxygen and of temperature present an offset. We show that the anthropogenic emissions are seen in a first hand by the oxygen and only then by the temperature. We also look at the OMZ response. The oxygen minimum zones result from a combination of weak ventilation and sustained respiration by the microorgamisms. With a global decrease of the oceanic oxygen content, the OMZ may therefore expand impacting the environment of marine species. But this statement is questioned by Deutsch et al 2014, who relates the variations of Pacific OMZ to the variations of the tropical Walker circulation. The CESM climate model predicts an expansion of the oxygen low zones and the emergence of new ones over the last century. Magnitude and timescales of these responses will be discussed and compared to natural variability.
Field, S.J.; Graczyk, D.J.
1990-01-01
An increase in oxygen demand, caused by agricultural runoff, has resulted in reduced dissolved-oxygen content of the water in both Black Earth and Garfoot Creeks. The most substantial reduction occurred at Black Earth Creek at Cross Plains on July 25, 1985, as a result of the largest storm runoff event during the study. A rainfall of 5.54 inches caused streamflow discharges to increase from 9 to 122 ft3/s and dissolved-oxygen concentrations to decline to 3.0 mg/L; the dissolved-oxygen concentration was less than 6.0 mg/L for 30 hours.
Tomasso J.R., Davis; Parker, N.C.
1981-01-01
Plasma corticosteroid concentrations in channel catfish, Ictalurus punctatus, (normally 1.0 ± 0.3 μg/100 ml) increased significantly (to 5.9 ± 1.2μg/100 ml) in response to acute oxygen depletion and then returned to control levels within 30 min after the dissolved oxygen concentration was increased; however, a secondary increase in plasma corticosteroid levels was observed 6 h after exposure. Corticosteroid levels also increased in fish exposed to dissolved oxygen concentration of <0.2 mg/1 for three days. Methylene blue was not effective in preventing interrenal response to low dissolved oxygen. No diurnal plasma corticosteroid rhythm was observed in fish exposed to diurnal chemical rhythms of culture ponds.
Scaling oxygen microprofiles at the sediment interface of deep stratified waters
NASA Astrophysics Data System (ADS)
Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien
2017-02-01
Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.
14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...
14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...
14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...
14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... physical and chemical water quality parameters (such as temperature, dissolved oxygen, pH, and conductivity... unknown. High temperatures can reduce dissolved oxygen concentrations in the water, which slows growth... encystment, increase oxygen consumption, reduce the speed in which they orient themselves in the substrate...
Rocha, R R A; Thomaz, S M; Carvalho, P; Gomes, L C
2009-06-01
The need for prediction is widely recognized in limnology. In this study, data from 25 lakes of the Upper Paraná River floodplain were used to build models to predict chlorophyll-a and dissolved oxygen concentrations. Akaike's information criterion (AIC) was used as a criterion for model selection. Models were validated with independent data obtained in the same lakes in 2001. Predictor variables that significantly explained chlorophyll-a concentration were pH, electrical conductivity, total seston (positive correlation) and nitrate (negative correlation). This model explained 52% of chlorophyll variability. Variables that significantly explained dissolved oxygen concentration were pH, lake area and nitrate (all positive correlations); water temperature and electrical conductivity were negatively correlated with oxygen. This model explained 54% of oxygen variability. Validation with independent data showed that both models had the potential to predict algal biomass and dissolved oxygen concentration in these lakes. These findings suggest that multiple regression models are valuable and practical tools for understanding the dynamics of ecosystems and that predictive limnology may still be considered a powerful approach in aquatic ecology.
NASA Astrophysics Data System (ADS)
Largier, J. L.
2013-12-01
Coastal fog reduces available light levels that in turn reduce rates of photosynthesis and oxygen production. This effect can be seen in perturbations of the day-night production-respiration cycle that leads to increase and decrease in dissolved oxygen in shallow-water habitats. In well stratified coastal lagoons, a lower layer may be isolated from the atmosphere so that small changes in photosynthetically active radiation (PAR) are evident in perturbations of the typical day-night cycle of oxygen concentration. This effect is observed in the summertime, mouth-closed Salmon Creek Estuary, located in Sonoma County (California). Sub-diurnal fluctuations in dissolved oxygen in Salmon Creek Estuary correlate with deviations from the clear-sky diurnal cycle in PAR. Similar effects are observed in other estuaries and the process by which fog controls photosynthesis can be expected to occur throughout coastal California, although the effect may not be easily observable in data collected from open waters where mixing and bloom dynamics are likely to dominate temporal variability in biogenic properties like dissolved oxygen.
Lotspeich, R. Russell
2007-01-01
Lunga Reservoir is on the U.S. Marine Corps Base in Quantico, which is in the Potomac River basin and the Piedmont Physiographic Province of northern Virginia. Because of the potential use of the reservoir for scuba-diver training and public water supply in addition to current recreational activities, the U.S. Marine Corps wanted to know more about the water quality of Lunga Reservoir and how it compared to Virginia Department of Environmental Quality and Virginia State Water Control Board ambient water-quality standards. Water samples and physical properties were collected by the U.S. Geological Survey at 6 locations throughout Lunga Reservoir, and physical properties were collected at 11 additional locations in the reservoir from September 2004 through August 2005. Water samples for analysis of pesticides and bottom-material trace elements were collected once during the study at four of the sampling locations. Water temperature, dissolved-oxygen concentration, specific conductance, pH, and total chlorophyll concentration in Lunga Reservoir all had similar seasonal and spatial variations as in other lakes and reservoirs in this geographic region - thermal gradient in the summer and fall and isothermal conditions in the winter and early spring. Concentrations of water-quality indicators in Lunga Reservoir were within comparable levels of those in other reservoirs and did not violate the Virginia State Water Control Board standards for public water supplies. Water temperatures throughout Lunga Reservoir during the study period ranged from 4.4 to 30.1 degrees Celsius, well below the State Water Control Board maximum water temperature criteria of 32 degrees Celsius. Dissolved-oxygen concentrations ranged from 0.05 to 14.1 milligrams per liter throughout the reservoir during the study period, but never fell below the State Water Control Board minimum dissolved-oxygen criterion of 4.0 milligrams per liter at the surface of Lunga Reservoir. Specific conductance throughout Lunga Reservoir ranged from 29 to 173 microsiemens per centimeter at 25 degrees Celsius during the study period, with a mean specific conductance of 68 microsiemens per centimeter at 25 degrees Celsius. Measurements of pH throughout the reservoir ranged from 4.8 to 7.6 standard units. Concentrations of chemical constituents analyzed in Lunga Reservoir samples were below any State Water Control Board criteria and generally were similar in concentration to the same chemical constituents in other reservoirs in the State. Four water samples were analyzed for 54 pesticides, and none of these pesticides were above the laboratory minimum reporting level.
Rhee, Su-jin; Chae, Jung-woo; Song, Byung-jeong; Lee, Eun-sil; Kwon, Kwang-il
2013-02-01
Oxygen plays an important role in the metabolism of alcohol. An increased dissolved oxygen level in alcoholic beverages reportedly accelerates the elimination of alcohol. Therefore, we evaluated the effect of dissolved oxygen in alcohol and the supportive effect of oxygenated water on alcohol pharmacokinetics after the excessive consumption of alcohol, i.e., 540 ml of 19.5% alcohol (v/v). Fifteen healthy males were included in this randomized, 3 × 3 crossover study. Three combinations were tested: X, normal alcoholic beverage and normal water; Y, oxygenated alcoholic beverage and normal water; Z, oxygenated alcoholic beverage and oxygenated water. Blood alcohol concentrations (BACs) were determined by conversion of breath alcohol concentrations. Four pharmacokinetic parameters (C(max), T(max), K(el), and AUCall) were obtained using non-compartmental analysis and the times to reach 0.05% and 0.03% BAC (T(0.05%) and T(0.03%)) were compared using one-way analysis of variance (ANOVA) and Duncan's post hoc test. With combination Z, the BAC decreased to 0.05% significantly faster (p < 0.05) than with combination X. Analyzing the pharmacokinetic parameters, the mean K(el) was significantly higher for combination Z than for combinations X and Y (p < 0.05), whereas the mean values of C(max), T(max) and AUCall did not differ significantly among the combinations. Dissolved oxygen in drinks accelerates the decrease in BAC after consuming a large amount of alcohol. However, the oxygen dissolved in the alcoholic beverage alone did not have a sufficient effect in this case. We postulate that highly oxygenated water augments the effect of oxygen in the alcoholic beverage in alcohol elimination. Therefore, it is necessary to investigate the supportive effect of ingesting additional oxygenated water after heavy drinking of normal alcoholic beverages. Copyright © 2013 Elsevier Inc. All rights reserved.
Horstkotte, Burkhard; Alonso, Juan Carlos; Miró, Manuel; Cerdà, Víctor
2010-01-15
An integrated analyzer based on the multisyringe flow injection analysis approach is proposed for the automated determination of dissolved oxygen in seawater. The entire Winkler method including precipitation of manganese(II) hydroxide, fixation of dissolved oxygen, dissolution of the oxidized manganese hydroxide precipitate, and generation of iodine and tri-iodide ion are in-line effected within the flow network. Spectrophotometric quantification of iodine and tri-iodide at the isosbestic wavelength of 466nm renders enhanced method reliability. The calibration function is linear up to 19mgL(-1) dissolved oxygen and an injection frequency of 17 per hour is achieved. The multisyringe system features a highly satisfying signal stability with repeatabilities of 2.2% RSD that make it suitable for continuous determination of dissolved oxygen in seawater. Compared to the manual starch-end-point titrimetric Winkler method and early reported automated systems, concentrations and consumption of reagents and sample are reduced up to hundredfold. The versatility of the multisyringe assembly was exploited in the implementation of an ancillary automatic batch-wise Winkler titrator using a single syringe of the module for accurate titration of the released iodine/tri-iodide with thiosulfate.
NMR of laser-polarized 129Xe in blood foam
NASA Technical Reports Server (NTRS)
Tseng, C. H.; Peled, S.; Nascimben, L.; Oteiza, E.; Walsworth, R. L.; Jolesz, F. A.
1997-01-01
Laser-polarized 129Xe dissolved in a foam preparation of fresh human blood was investigated. The NMR signal of 129Xe dissolved in blood was enhanced by creating a foam in which the dissolved 129Xe exchanged with a large reservoir of gaseous laser-polarized 129Xe. The dissolved 129Xe T1 in this system was found to be significantly shorter in oxygenated blood than in deoxygenated blood. The T1 of 129Xe dissolved in oxygenated blood foam was found to be approximately 21 (+/-5) s, and in deoxygenated blood foam to be greater than 40 s. To understand the oxygenation trend, T1 measurements were also made on plasma and hemoglobin foam preparations. The measurement technique using a foam gas-liquid exchange interface may also be useful for studying foam coarsening and other liquid physical properties.
NASA Astrophysics Data System (ADS)
Zhou, X.; Thomas, E.; Winguth, A. M. E.; Ridgwell, A.; Scher, H.; Hoogakker, B. A. A.; Rickaby, R. E. M.; Lu, Z.
2016-12-01
Anthropogenic warming could well drive depletion of oceanic oxygen in the future. Important insight into the relationship between deoxygenation and warming can be gleaned from the geological record, but evidence is limited because few ocean oxygenation records are available for past greenhouse climate conditions. We use I/Ca in benthic foraminifera to reconstruct late Paleocene through early Eocene bottom and pore water redox conditions in the South Atlantic and Southern Indian Oceans and compare our results with those derived from Mn speciation and the Ce anomaly in fish teeth. We conclude that waters with lower oxygen concentrations were widespread at intermediate depths (1.5-2 km), whereas bottom waters were more oxygenated at the deepest site, in the Southeast Atlantic Ocean (>3 km). Epifaunal benthic foraminiferal I/Ca values were higher in the late Paleocene, especially at low-oxygen sites, than at well-oxygenated modern sites, indicating higher seawater total iodine concentrations in the late Paleocene than today. The proxy-based bottom water oxygenation pattern agrees with the site-to-site O2 gradient as simulated in a comprehensive climate model (Community Climate System Model Version 3), but the simulated absolute dissolved O2 values are low (< 35 µmol/kg), while higher O2 values ( 60-100 µmol/kg) were obtained in an Earth system model (Grid ENabled Integrated Earth system model). Multiproxy data together with improvements in boundary conditions and model parameterization are necessary if the details of past oceanographic oxygenation are to be resolved.
Bolke, E.L.
1979-01-01
The circulation of water in Flaming Gorge Reservoir is caused chiefly by insolation, inflow-outflow relationships, and wind, which is significant due to the geographical location of the reservoir. During 1970-75, there was little annual variation in the thickness, dissolved oxygen, and specific conductance of the hypolimnion near Flaming Gorge Dam. Depletion of dissolved oxygen occurred simultaneously in the bottom waters of both tributary arms in the upstream part of the reservoir and was due to reservoir stratification. Anaerobic conditions in the bottom water during summer stratification eventually results in a metalimnetic oxygen minimum in the reservoir.The depletion of flow in the river below Flaming Gorge Dam due to evaporation and bank storage in the reservoir for the 1963-75 period was 1,320 cubic hectometers, and the increase of dissolved-solids load in the river was 1,947,000 metric tons. The largest annual variations in dissolved-solids concentration in the river was about 600 milligrams per liter before closure of the dam and about 200 milligrams per liter after closure. The discharge weighted-average dissolved-solids concentration for the 5 years prior to closure was 386 milligrams per liter and 512 milligrams per liter after closure. The most significant changes in the individual dissolved-ion loads in the river during 1973-75 were the increase in sulfate (0.46 million metric tons), which was probably derived from the solution of gypsum, and the decrease in bicarbonate (0.39 million metric tons), which can be attributed to chemical precipitation.The maximum range in temperature in the Green River below the reservoir prior to closure of the dam in 1962 was from 0°C in winter to 21°C in summer. After closure until 1970 the temperature ranged from 2° to 12°C, but since 1970 the range has been from 4° to 9°C.The maximum range in temperature in the Green River below the reservoir prior to closure of the dam in 1962 was from 0°C in winter to 21°C in summer. After closure until 1970 the temperature ranged from 2° to 12°C, but since 1970 the range has been from 4° to 9°C.During September 1975, a massive algal bloom was observed in the upstream part of the reservoir. The bloom covered approximately 16 kilometers of the lower part of the Blacks Fork arm, 23 kilometers of the lower part of the Green River arm, and 15 kilometers of the main reservoir below the confluence of the two arms. By October 1975 the algal bloom had disappeared. Nutrient loading in the reservoir was not sufficient to maintain a rate of algal production that would be disastrous to the reservoir ecosystem. However, should the nutrient loading increase substantially, the quality of the reservoir water could probably deteriorate rapidly, and its use for recreation and water supply could be severely limited.
Oxygen stress reduces zoospore survival of Phytophthora species in a simulated aquatic system.
Kong, Ping; Hong, Chuanxue
2014-05-13
The genus Phytophthora includes a group of agriculturally important pathogens and they are commonly regarded as water molds. They produce motile zoospores that can move via water currents and on their own locomotion in aquatic environments. However, zoosporic response to dissolved oxygen, an important water quality parameter, is not known. Like other water quality parameters, dissolved oxygen concentration in irrigation reservoirs fluctuates dramatically over time. The aim of this study was to determine whether and how zoospore survival may be affected by elevated and low concentrations of dissolved oxygen in water to better understand the aquatic biology of these pathogens in irrigation reservoirs. Zoospores of P. megasperma, P. nicotianae, P. pini and P. tropicalis were assessed for survival in 10% Hoagland's solution at a range of dissolved concentrations from 0.9 to 20.1 mg L(-1) for up to seven exposure times from 0 to 72 h. Zoospore survival was measured by resultant colony counts per ml. Zoospores of these species survived the best in control Hoagland's solution at dissolved oxygen concentrations of 5.3 to 5.6 mg L(-1). Zoospore survival rates decreased with increasing and decreasing concentration of dissolved oxygen, depending upon Phytophthora species and exposure time. Overall, P. megasperma and P. pini are less sensitive than P. nicotianae and P. tropicalis to hyperoxia and hypoxia conditions. Zoospores in the control solution declined over time and this natural decline process was enhanced under hyperoxia and hypoxia conditions. These findings suggest that dramatic fluctuations of dissolved oxygen in irrigation reservoirs contribute to the population decline of Phytophthora species along the water path in the same reservoirs. These findings advanced our understanding of the aquatic ecology of these pathogens in irrigation reservoirs. They also provided a basis for pathogen risk mitigation by prolonging the turnover time of runoff water in recycling irrigation systems via better system designs.
Oxygen stress reduces zoospore survival of Phytophthora species in a simulated aquatic system
2014-01-01
Background The genus Phytophthora includes a group of agriculturally important pathogens and they are commonly regarded as water molds. They produce motile zoospores that can move via water currents and on their own locomotion in aquatic environments. However, zoosporic response to dissolved oxygen, an important water quality parameter, is not known. Like other water quality parameters, dissolved oxygen concentration in irrigation reservoirs fluctuates dramatically over time. The aim of this study was to determine whether and how zoospore survival may be affected by elevated and low concentrations of dissolved oxygen in water to better understand the aquatic biology of these pathogens in irrigation reservoirs. Results Zoospores of P. megasperma, P. nicotianae, P. pini and P. tropicalis were assessed for survival in 10% Hoagland’s solution at a range of dissolved concentrations from 0.9 to 20.1 mg L-1 for up to seven exposure times from 0 to 72 h. Zoospore survival was measured by resultant colony counts per ml. Zoospores of these species survived the best in control Hoagland’s solution at dissolved oxygen concentrations of 5.3 to 5.6 mg L-1. Zoospore survival rates decreased with increasing and decreasing concentration of dissolved oxygen, depending upon Phytophthora species and exposure time. Overall, P. megasperma and P. pini are less sensitive than P. nicotianae and P. tropicalis to hyperoxia and hypoxia conditions. Conclusion Zoospores in the control solution declined over time and this natural decline process was enhanced under hyperoxia and hypoxia conditions. These findings suggest that dramatic fluctuations of dissolved oxygen in irrigation reservoirs contribute to the population decline of Phytophthora species along the water path in the same reservoirs. These findings advanced our understanding of the aquatic ecology of these pathogens in irrigation reservoirs. They also provided a basis for pathogen risk mitigation by prolonging the turnover time of runoff water in recycling irrigation systems via better system designs. PMID:24885900
Ju, Lu-Kwang; Huang, Lin; Trivedi, Hiren
2007-08-01
Simultaneous nitrification and denitrification (SND or SNdN) may occur at low dissolved oxygen concentrations. In this study, bench-scale (approximately 6 L) bioreactors treating a continuous feed of synthetic wastewater were used to evaluate the effects of solids retention time and low dissolved oxygen concentration, under cyclic aeration, on the removal of organics, nitrogen, and phosphorus. The cyclic aeration was carried out with repeated cycles of 1 hour at a higher dissolved oxygen concentration (HDO) and 30 minutes at a lower (or zero) dissolved oxygen concentration (LDO). Compared with aeration at constant dissolved oxygen concentrations, the cyclic aeration, when operated with proper combinations of HDO and LDO, produced better-settling sludge and more complete nitrogen and phosphorus removal. For nitrogen removal, the advantage resulted from the more readily available nitrate and nitrite (generated by nitrification during the HDO period) for denitrification (during the LDO period). For phosphorus removal, the advantage of cyclic aeration came from the development of a higher population of polyphosphate-accumulating organisms, as indicated by the higher phosphorus contents in the sludge solids of the cyclically aerated systems. Nitrite shunt was also observed to occur in the LDO systems. Higher ratios of nitrite to nitrate were found in the systems of lower HDO (and, to less dependency, higher LDO), suggesting that the nitrite shunt took place mainly because of the disrupted nitrification at lower HDO. The study results indicated that the HDO used should be kept reasonably high (approximately 0.8 mg/L) or the HDO period prolonged, to promote adequate nitrification, and the LDO kept low (< or =0.2 mg/L), to achieve more complete denitrification and higher phosphorus removal. The above findings in the laboratory systems find strong support from the results obtained in full-scale plant implementation. Two plant case studies using the cyclic low-dissolved-oxygen aeration for creating and maintaining SND are also presented.
Dissolved oxygen sensing using organometallic dyes deposited within a microfluidic environment
NASA Astrophysics Data System (ADS)
Chen, Q. L.; Ho, H. P.; Jin, L.; Chu, B. W.-K.; Li, M. J.; Yam, V. W.-W.
2008-02-01
This work primarily aims to integrate dissolved oxygen sensing capability with a microfluidic platform containing arrays of micro bio-reactors or bio-activity indicators. The measurement of oxygen concentration is of significance for a variety of bio-related applications such as cell culture and gene expression. Optical oxygen sensors based on luminescence quenching are gaining much interest in light of their low power consumption, quick response and high analyte sensitivity in comparison to similar oxygen sensing devices. In our microfluidic oxygen sensor device, a thin layer of oxygen-sensitive luminescent organometallic dye is covalently bonded to a glass slide. Micro flow channels are formed on the glass slide using patterned PDMS (Polydimethylsiloxane). Dissolved oxygen sensing is then performed by directing an optical excitation probe beam to the area of interest within the microfluidic channel. The covalent bonding approach for sensor layer formation offers many distinct advantages over the physical entrapment method including minimizing dye leaching, ensuring good stability and fabrication simplicity. Experimental results confirm the feasibility of the device.
Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand
Delzer, Gregory C.; McKenzie, Stuart W.
1999-01-01
The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.
Brusie, James P.
2004-07-13
The method of determining the extent to which a nickel structure has been attacked by a halogen containing gas to which it has been exposed which comprises preparing a quantity of water substantially free from dissolved oxygen, passing ammonia gas through a cuprammonium solution to produce ammonia substantially free from oxygen, dissolving said oxygen-free ammonia in said water to produce a saturated aqueous ammonia solution free from uncombined oxygen, treating at least a portion of said nickel structure of predetermined weight with said solution to dissolve nickel compounds from the surface of said structure without dissolving an appreciable amount of said nickel and analyzing the resulting solution to determine the quantity of said nickel compounds that was associated with said said portion of said structure to determine the proportion of combined nickel in said nickel structure.
Amphiphilic Fluorinated Polymer Nanoparticle Film Formation and Dissolved Oxygen Sensing Application
NASA Astrophysics Data System (ADS)
Gao, Yu; Zhu, Huie; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya
2016-04-01
Fluorinated polymer nanoparticle films were prepared by dissolving amphiphilic fluorinated polymer, poly (N-1H, 1H-pentadecafluorooctylmethacrylamide) (pC7F15MAA) in two miscible solvents (AK-225 and acetic acid). A superhydrophobic and porous film was obtained by dropcasting the solution on substrates. With higher ratios of AK-225 to acetic acid, pC7F15MAA was densified around acetic acid droplets, leading to the formation of pC7F15MAA nanoparticles. The condition of the nanoparticle film preparation was investigated by varying the mixing ratio or total concentration. A highly sensitive dissolved oxygen sensor system was successfully prepared utilizing a smart surface of superhydrophobic and porous pC7F15MAA nanoparticle film. The sensitivity showed I0/I40 = 126 in the range of dissolved oxygen concentration of 0 ~ 40 mg L-1. The oxygen sensitivity was compared with that of previous reports.
Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.
Vitale, Sarah A; Robbins, Gary A
2017-07-01
Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%. © 2017, National Ground Water Association.
A Quantitative Evaluation of Dissolved Oxygen Instrumentation
NASA Technical Reports Server (NTRS)
Pijanowski, Barbara S.
1971-01-01
The implications of the presence of dissolved oxygen in water are discussed in terms of its deleterious or beneficial effects, depending on the functional consequences to those affected, e.g., the industrialist, the oceanographer, and the ecologist. The paper is devoted primarily to an examination of the performance of five commercially available dissolved oxygen meters. The design of each is briefly reviewed and ease or difficulty of use in the field described. Specifically, the evaluation program treated a number of parameters and user considerations including an initial check and trial calibration for each instrument and a discussion of the measurement methodology employed. Detailed test results are given relating to the effects of primary power variation, water-flow sensitivity, response time, relative accuracy of dissolved-oxygen readout, temperature accuracy (for those instruments which included this feature), error and repeatability, stability, pressure and other environmental effects, and test results obtained in the field. Overall instrument performance is summarized comparatively by chart.
NASA Astrophysics Data System (ADS)
Less, G.; Cohen, Y.; Luz, B.; Lazar, B.
2002-05-01
Hypersaline microbial mat communities (MMC) are the modern equivalents of the Archean stromatolities, the first photosynthetic organisms on Earth. An estimate of their oxygen production rate is important to the understanding of oxygen evolution on Earth ca. 2 b.y.b.p. Here we use the diurnal cycle of dissolved oxygen, O2/Ar ratio and the isotopic composition of dissolved oxygen to calculate net and gross primary productivity of MMC growing in a large scale (80 m2) experimental pan. The pan is inoculated with MMC taken from the Solar Lake, Sinai, Egypt and filled with 90\\permil evaporated Red Sea water brine up to a depth of ca. 0.25 m. It is equipped with computerized flow through system that is programmed to pump pan water at selected time intervals into a sampling cell fitted with dissolved oxygen, pH, conductivity and temperature sensors connected to a datalogger. Manual brine samples were taken for calibrating the sensors, mass spectrometric analyses and for measurements of additional relevant parameters. Dissolved oxygen concentrations fluctuate during the diurnal cycle being highly supersaturated except for the end of the night. The O2 curve varies seasonally and has a typical "shark fin" shape due to the MMC metabolic response to the shape of the diurnal light curve. The dissolved oxygen data were fitted to a smooth curve that its time derivative (dO2 /dt) is defined as: Z dO2 /dt=GP-R-k(O2(meas)- O2(sat)) where z is the depth (m); GP and R are the MMC gross production and respiration (mol m-2 d-1), respectively; k is the gas exchange coefficient (m d-1); O2(meas) and O2(sat) (mol L-1) are the measured and equilibrium dissolved oxygen concentrations, respectively. The high resolution sampling of the automated system produces O2 curves that enable the calculation of smooth and reliable time derivatives. The calculations yield net production values that vary between 1,000 10-6 to -100 10-6 mol O2 m-2 h-1 and day respiration rates between 60 10-6 to 30 10-6 mol O2 m-2 h-1 in summer and winter, respectively. Independent estimate of the gross productivity and respiration is provided by the oxygen isotopic measurements.
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo; Brown, Christopher S.; Nagle, H. Troy
2004-01-01
Plant experiments in space will require active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of plant cultivation systems in the space environment. Control of water and oxygen is limited by the current state-of-the-art in sensor technology. Two capabilities of the new microsensor array were tested. First, a novel in situ self-diagnosis/self-calibration capability for the microsensor was explored by dynamically controlling the oxygen microenvironment in close proximity to an amperometric dissolved oxygen microsensors. A pair of integrated electrochemical actuator electrodes provided the microenvironments based on water electrolysis. Miniaturized thin film dissolved oxygen microsensors on a flexible polyimide (Kapton(Registered Trademark)? substrate were fabricated and their performances were tested. Secondly, measurements of dissolved oxygen in two representative plant growth systems were made, which had not been performed previously due to lack of proper sensing technology. The responses of the oxygen microsensor array on a flexible polymer substrate properly reflected the oxygen contents on the surface of a porous tube nutrient delivery system and within a particulate substrate system. Additionally, we demonstrated the feasibility of using a 4-point thin film microprobe for water contents measurements for both plant growth systems. mechanical flexibility, and self-diagnosis. The proposed technology is anticipated to provide a reliable sensor feedback plant growth nutrient delivery systems in both terrestrial environment and the microgravity environment during long term space missions. The unique features of the sensor include small size and volume, multiple-point sensing,
Algal Biomass as an Indicator for Biochemical Oxygen Demand in the San Joaquin River, California.
NASA Astrophysics Data System (ADS)
Volkmar, E. C.; Dalhgren, R. A.
2005-12-01
Episodes of hypoxia (DO < 2 mg/L) occur in the lower San Joaquin River (SJR), California, and are typically most acute in the late summer and fall. The oxygen deficit can stress and kill aquatic organisms, and often inhibits the upstream migration of fall-run Chinook salmon. Hypoxia is most pronounced downstream from the Stockton Deep Water Ship Channel, which has been dredged from a depth of 2-3 m to about 11 m to allow ocean-going ships to reach the Port of Stockton. To protect aquatic organisms and facilitate the upstream migration of fall-run Chinook salmon, the minimum water quality standard for DO is 6 mg/L during September through November, and 5 mg/L for the remainder of the year. A five year study examined components contributing to biochemical oxygen demand (BOD): ammonia, algal biomass, non-algal particulate organic matter, and dissolved organic carbon. BOD shows a significant increase in loading rates as the SJR flows downstream, which parallels the load of algal biomass due to instream growth. BOD loading rates from tributaries accounts for 28% in a wet year and 39% in a dry year. Regression analysis revealed that chlorophyll-a + pheophyton-a was the only significant (p<0.05) predictor for BOD (r2 = 0.71). Less than 20% of the BOD was found in the dissolved fraction (<0.45 μm). The average BOD decomposition rate of the SJR and tributaries is 0.0841 d-1. We conclude that algal biomass is the primary contributor to BOD loads in the San Joaquin River.
Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.
2018-01-31
The purpose of the prediction grids for selected redox constituents—dissolved oxygen and dissolved manganese—are intended to provide an understanding of groundwater-quality conditions at the domestic and public-supply drinking water depths. The chemical quality of groundwater and the fate of many contaminants is influenced by redox processes in all aquifers, and understanding the redox conditions horizontally and vertically is critical in evaluating groundwater quality. The redox condition of groundwater—whether oxic (oxygen present) or anoxic (oxygen absent)—strongly influences the oxidation state of a chemical in groundwater. The anoxic dissolved oxygen thresholds of <0.5 milligram per liter (mg/L), <1.0 mg/L, and <2.0 mg/L were selected to apply broadly to regional groundwater-quality investigations. Although the presence of dissolved manganese in groundwater indicates strongly reducing (anoxic) groundwater conditions, it is also considered a “nuisance” constituent in drinking water, making drinking water undesirable with respect to taste, staining, or scaling. Three dissolved manganese thresholds, <50 micrograms per liter (µg/L), <150 µg/L, and <300 µg/L, were selected to create predicted probabilities of exceedances in depth zones used by domestic and public-supply water wells. The 50 µg/L event threshold represents the secondary maximum contaminant level (SMCL) benchmark for manganese (U.S. Environmental Protection Agency, 2017; California Division of Drinking Water, 2014), whereas the 300 µg/L event threshold represents the U.S. Geological Survey (USGS) health-based screening level (HBSL) benchmark, used to put measured concentrations of drinking-water contaminants into a human-health context (Toccalino and others, 2014). The 150 µg/L event threshold represents one-half the USGS HBSL. The resultant dissolved oxygen and dissolved manganese prediction grids may be of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Prediction grids for selected redox constituents and thresholds were created by the USGS National Water-Quality Assessment (NAWQA) modeling and mapping team.
Measurement in a marine environment using low cost sensors of temperature and dissolved oxygen
Godshall, F.A.; Cory, R.L.; Phinney, D.E.
1974-01-01
Continuous records of physical parameters of the marine environment are difficult as well as expensive to obtain. This paper describes preliminary results of an investigative program with the purpose of developing low cost time integrating measurement and averaging devices for water temperature and dissolved oxygen. Measurements were made in an estuarine area of the Chesapeake Bay over two week periods. With chemical thermometers average water temperature for the two week period was found to be equal to average water temperature measured with thermocouples plus or minus 1.0 C. The slow diffusion of oxygen through the semipermiable sides of plastic bottles permitted the use of water filled bottles to obtain averaged oxygen measurements. Oxygen measurements for two week averaging times using 500 ml polyethylene bottles were found to vary from conventionally measured and averaged dissolved oxygen by about 1.8 mg/l. ?? 1974 Estuarine Research Federation.
NASA Astrophysics Data System (ADS)
Sato, K.; Jung, J. Y.; Levin, L. A.
2016-02-01
The rapid pace of deoxygenation and ocean acidification associated with anthropogenic climate change on upwelling margins will have differing effects on marine species from the population level down to the nanoscale. Driven by the understudied effects of climate change in the deep sea, we address the question, how will dominant echinoid urchins respond to future changes in multiple stressors (i.e. ocean acidification, deoxygenation, and shoaling of hypoxic water and calcium carbonate saturation horizons) on the southern California continental slope? Samples of the sea urchin, Strongylocentrotus fragilis, were collected along gradients of multiple hydrographic variables and analyzed for phenotypic variation with respect to multiple climate change stressors (oxygen, pH, and temperature). We compare fitness traits of S. fragilis collected along the continental slope and through the Oxygen Minimum Zone (OMZ), which include growth rate, morphology, and reproductive output, in addition to nanoscale structural and biomechanical test properties. Our results indicate that growth rate of S. fragilis is directly correlated with dissolved oxygen and pH, but not depth or temperature. Reproductive output, as measured by a standard gonad index, was found to be sensitive at the OMZ core (pH 7.40; O2 0.25 mL/L), which suggests a nonlinear response to chemical stressors. Preliminary analysis of mineral density in test pieces imaged using micro- and nano- computed tomography indicates exposure to conditions in the OMZ reduces calcification. This improved understanding of how continental margin urchins differ along natural physicochemical gradients will provide modern-day insight into the threshold tolerances of species to multiple stressors and will help guide future manipulation experiments as well as fisheries and spatial management.
FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF TECHNIQUES
The measurement and interpretation of geochemical redox parameters are key components of ground water remedial investigations. Dissolved oxygen (DO) is perhaps the most robust geochemical parameter in redox characterization; however, recent work has indicated a need for proper da...
Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen.
Shehata, Nader; Azab, Mohammed; Kandas, Ishac; Meehan, Kathleen
2015-08-14
This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO). The system integrates a nanosensor that employs cerium oxide (ceria) nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media.
Ninomiya, Kazuaki; Yamada, Ryuji; Matsumoto, Masami; Fukiya, Satoru; Katayama, Takane; Ogino, Chiaki; Shimizu, Nobuaki
2013-02-01
An image analyzing method was developed to evaluate in situ bioluminescence expression, without exposing the culture sample to the ambient oxygen atmosphere. Using this method, we investigated the effect of dissolved oxygen concentration on bioluminescence from an obligate anaerobe Bifidobacterium longum expressing bacterial luciferase which catalyzes an oxygen-requiring bioluminescent reaction. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Dissolved-oxygen regime of the Jordan River, Salt Lake County, Utah
Stephens, D.W.
1984-01-01
Concentrations of dissolved oxygen in the Jordan River in Salt Lake County decrease considerably as the river flows northward. Mean concentrations of dissolved oxygen decreased from 8.1 milligrams per liter at the Jordan Narrows to 4.7 milligrams per liter at 500 North Street during April 1981 to September 1982. Coincident with the decrease, the biochemical-oxygen demand increased from 5 to 7 milligrams per liter. About 50 percent of the dissolved-oxygen concentrations and 90 percent of the 5-day biochemical-oxygen demand measured downstream from 1700 South Street exceeded the State intended-use standards. An estimated 6. million pounds of oxygen-demanding substances as measured by 5-day biochemical-oxygen demand were discharged to the Jordan River during 1981 from point sources downstream from 9000 South Street. Seven wastewater-treatment plants contributed 77 percent of this load, nonstorm base flows contributed 22 percent, and storm flows less than 1 percent. The Surplus Canal diversion at 2100 South Street removed about 70 percent of this load, and travel time of about 1 day also decreased the actual effects of the load on the river. Reaeration rates during September and October were quite high (average K2 at 20 degrees Celsius was about 12 per day) between the Jordan Narrows and 9000 South Street, but they decreased to 2.4 per day in the reach from 1330 South to 1800 North Streets. (USGS)
Skolimowski, Maciej; Nielsen, Martin Weiss; Emnéus, Jenny; Molin, Søren; Taboryski, Rafael; Sternberg, Claus; Dufva, Martin; Geschke, Oliver
2010-08-21
A microfluidic chip for generation of gradients of dissolved oxygen was designed, fabricated and tested. The novel way of active oxygen depletion through a gas permeable membrane was applied. Numerical simulations for generation of O(2) gradients were correlated with measured oxygen concentrations. The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions.
Combined effects of acidification and hypoxia on the estuarine ctenophore, Mnemiopsis leidyi
Estuaries are transitive zones which experience large fluctuations in environmental parameters (temperature, dissolved oxygen, pH, etc.). The interactive effects of reduced dissolved oxygen (DO) and elevated pCO2 on estuarine organisms is not currently well understood. Ctenophore...
RELATIONSHIPS BETWEEN NEAR-BOTTOM DISSOLVED OXYGEN AND SEDIMENT PROFILE CAMERA MEASUREMENTS
The United States Environmental Protection Agency (U.S. EPA) and other environmental authorities regulate concentrations of dissolved oxygen (DO) as a measure of nutrient-related eutrophication in estuarine and coastal waters. However, in situ DO concentrations are extremely var...
ERIC Educational Resources Information Center
Openshaw, Peter
1983-01-01
Describes a unit on river pollution and analytical methods to use in assessing temperature, pH, flow, calcium, chloride, dissolved oxygen, biochemical oxygen demand, dissolved nitrogen, detergents, heavy metals, sewage pollution, conductivity, and sediment cores. Suggests tests to be carried out and discusses significance of results. (JM)
SIMULATION OF DISSOLVED OXYGEN PROFILES IN A TRANSPARENT, DIMICTIC LAKE
Thrush Lake is a small, highly transparent lake in northeastern Minnesota. rom 1986 to 1991, vertical profiles of water temperature, dissolved oxygen, chlorophyll a concentration, underwater light irradiance, and Secchi depths were measured at monthly intervals during the ice-fre...
De Lanois, Jeanne L.; Green, W. Reed
2011-01-01
Dissolved oxygen is a critical constituent in reservoirs and lakes because it is essential for metabolism by all aerobic aquatic organisms. In general, hypolimnetic temperature and dissolved-oxygen concentrations vary from summer to summer in reservoirs, more so than in natural lakes, largely in response to the magnitude of flow into and release out of the water body. Because eutrophication is often defined as the acceleration of biological productivity resulting from increased nutrient and organic loading, hypolimnetic oxygen consumption rates or deficits often provide a useful tool in analyzing temporal changes in water quality. This report updates a previous report that evaluated hypolimnetic dissolved-oxygen dynamics for a 21-year record (1974-94) in Beaver, Table Rock, Bull Shoals, and Norfork Lakes, as well as analyzed the record for Greers Ferry Lake. Beginning in 1974, vertical profiles of temperature and dissolved-oxygen concentrations generally were collected monthly from March through December at sites near the dam of each reservoir. The rate of change in the amount of dissolved oxygen present below a given depth at the beginning and end of the thermal stratification period is referred to as the areal hypolimnetic oxygen deficit. Areal hypolimnetic oxygen deficit was normalized for each reservoir based on seasonal flushing rate between April 15 and October 31 to adjust for wet year and dry year variability. Annual cycles in thermal stratification within Beaver, Table Rock, Bull Shoals, Norfork, and Greers Ferry Lakes exhibited typical monomictic (one extended turnover period per year) characteristics. Flow dynamics drive reservoir processes and need to be considered when analyzing areal hypolimnetic oxygen deficit rates. A nonparametric, locally weighted scatter plot smooth line describes the relation between areal hypolimnetic oxygen deficit and seasonal flushing rates, without assuming linearity or normality of the residuals. The results in this report are consistent with earlier findings that oxygen deficit rates and flushing-rate adjusted areal hypolimnetic oxygen deficit in Beaver and Table Rock Lakes were decreasing between 1974 and 1994. The additional data (1995-2008) demonstrate that the decline in flushing-rate adjusted areal hypolimnetic oxygen deficit in Beaver Lake has continued, whereas that in Table Rock Lake has flattened out in recent years. The additional data demonstrate the flushing-rate adjusted areal hypolimnetic oxygen deficit in Bull Shoals and Norfork Lakes have declined since 1995 (improved water quality), which was not indicated in earlier studies, while Greers Ferry Lake showed little net change over the period of record. Given the amount of data (35 years) for these reservoirs, developing an equation or model to predict areal hypolimnetic oxygen deficit and, therefore, areal hypolimnetic oxygen content, on any given day during future stratification seasons may be useful for reservoir managers.
Optical fiber-mediated photosynthesis for enhanced subsurface oxygen delivery.
Lanzarini-Lopes, Mariana; Delgado, Anca G; Guo, Yuanming; Dahlen, Paul; Westerhoff, Paul
2018-03-01
Remediation of polluted groundwater often requires oxygen delivery into subsurface to sustain aerobic bacteria. Air sparging or injection of oxygen containing solutions (e.g., hydrogen peroxide) into the subsurface are common. In this study visible light was delivered into the subsurface using radially emitting optical fibers. Phototrophic organisms grew near the optical fiber in a saturated sand column. When applying light in on-off cycles, dissolved oxygen (DO) varied from super saturation levels of >15 mg DO/L in presence of light to under-saturation (<5 mg DO/L) in absence of light. Non-photosynthetic bacteria dominated at longer radial distances from the fiber, presumably supported by soluble microbial products produced by the photosynthetic microorganisms. The dissolved oxygen variations alter redox condition changes in response to light demonstrate the potential to biologically deliver oxygen into the subsurface and support a diverse microbial community. The ability to deliver oxygen and modulate redox conditions on diurnal cycles using solar light may provide a sustainable, long term strategy for increasing dissolved oxygen levels in subsurface environments and maintaining diverse biological communities. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xucai; Zhang, Jianmei
2018-02-01
Biological denitrification is currently a common approach to remove nitrate from wastewater. This study was conducted to evaluate the influence of dissolved oxygen on denitrification in wastewater treatment using biodegradable plastic as carbon source by designing the aerated, anoxic, and low-oxygen experimental treatment groups. The results showed that the removal rates of nitrate in anoxic and low-oxygen groups were 30.6 g NO3 --Nm-3 d-1 and 30.8 g NO3 --N m-3 d-1 at 83 h, respectively, both of which were higher than that of the aerated group. There was no significant difference between the anoxic and low-oxygen treatment groups for the nitrate removal. Additional, the nitrite accumulated during the experiments, and the nitrite concentrations in anoxic and aerated groups were lower than those in low-oxygen group. No nitrite was detected in all groups at the end of the experiments. These findings indicated that dissolved oxygen has important influence on denitrification, and anoxic and low-oxygen conditions can support completely denitrification when using BP as carbon source in nitrate-polluted wastewater treatment.
Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen.
Luz, B; Barkan, E
2000-06-16
Plant production in the sea is a primary mechanism of global oxygen formation and carbon fixation. For this reason, and also because the ocean is a major sink for fossil fuel carbon dioxide, much attention has been given to estimating marine primary production. Here, we describe an approach for estimating production of photosynthetic oxygen, based on the isotopic composition of dissolved oxygen of seawater. This method allows the estimation of integrated oceanic productivity on a time scale of weeks.
Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of dissolved oxygen (DO), salinity, temperature, nutrients (nitrogen and phosphorus), and chlorophyll a in the Caloosahatchee Riv...
Modeling Fish Growth in Low Dissolved Oxygen
ERIC Educational Resources Information Center
Neilan, Rachael Miller
2013-01-01
This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…
FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF METHODS
The ability to confidently measure the concentration of dissolved oxygen (D.O.) in ground water is a key aspect of remedial selection and assessment. Presented here is a comparison of the commonly practiced methods for determining D.O. concentrations in ground water, including c...
FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF METHODS: JOURNAL ARTICLE
NRMRL-ADA- 00160 Wilkin*, R.T., McNeil*, M.S., Adair*, C.J., and Wilson*, J.T. Field Measurement of Dissolved Oxygen: A Comparison of Methods. Ground Water Monitoring and Remediation (Fall):124-132 (2001). EPA/600/J-01/403. The abili...
Bubble growth as a means to measure dissolved nitrogen concentration in aerated water
NASA Astrophysics Data System (ADS)
Ando, Keita; Yamashita, Tatsuya
2017-11-01
Controlling the amount of dissolved gases in water is important, for example, to food processing; it is essential to quantitatively evaluate dissolved gas concentration. The concentration of dissolved oxygen (DO) can be measured by commercial DO meters, but that of dissolved nitrogen (DN) cannot be obtained easily. Here, we propose a means to measure DN concentration based on Epstein-Plesset-type analysis of bubble growth under dissolved gas supersaturation. DO supersaturation in water is produced by oxygen microbubble aeration. The diffusion-driven growth of bubbles nucleated at glass surfaces in contact with the aerated water is first observed. The observed growth is then compared to the extended Epstein-Plesset theory that considers Fick's mass transfer of both DO and DN across bubble interfaces; in this comparison, the unknown DN concentration is treated as a fitting parameter. Comparisons between the experiment and the theory suggest, as expected, that DN can be effectively purged by oxygen microbubble aeration. This study was supported in part by the Mizuho Foundation for the Promotion of Science and by a MEXT Grant-in-Aid for the Program for Leading Graduate Schools.
Drought effects on water quality in the South Platte River Basin, Colorado
Sprague, Lori A.
2005-01-01
Twenty-three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite-plus-nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water-derived calcium bicarbonate type base flow likely led to elevated pH and specific-conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.
Effects of Environmental and Anthropogenic Factors on Water Quality in the Rock Creek Watershed
2016-04-08
factors playing an augmenting role. The authors found a seasonal relationship with temperature , pH, and dissolved oxygen (DO). Additionally, they...2011 ), and nutrients (2013). In 1994, a Public Health Advisory ( fish consumption advisory) which is still in place today, was issued by the D.C...Dissolved Solids (TDS) Escherichia coli (E.coli) Temperature Dissolved Oxygen (DO) Total Colifonns - Electrical Conductivity (EC) Nitrate (N03-N
NASA Astrophysics Data System (ADS)
Vedamati, J.; Chang, B. X.; Peters, B. D.; Forbes, M. S.; Mordy, C.; Warner, M. J.; Devol, A.; Ward, B. B.; Casciotti, K. L.
2014-12-01
Marine sources of nitrous oxide (N2O), an important greenhouse gas, account for up to 25% of global emissions, out of which 25-75% originates from oxygen minimum zones (OMZs). The Eastern Tropical South Pacific (ETSP) OMZ is characterized by low to undetectable oxygen concentrations within the water column and is known to be a region of intense N2O cycling. However, the balance of processes regulating N2O production and emissions is still uncertain. The isotopic composition of dissolved N2O is a tracer of its production, transport, and consumption processes in the ocean. Here we use concentration, isotopic and isotopomeric measurements of dissolved N2O collected during cruise NBP1305 to the ETSP in 2013 to examine the processes affecting the distribution of N2O throughout the water column. Dissolved N2O concentrations ranged between 42-65 nmol/L at the edges of the oxycline while ranging between 6 -20 nmol/L at the core of the OMZ. The nitrogen and oxygen isotopic composition of dissolved N2O (reported as δ15N vs air N2 and δ18O vs VSMOW in units of ‰, respectively) displayed maxima coincident with the OMZ core. δ15N of N2O ranged between 14 - 22‰, δ18O of N2O ranged between 68 - 100‰ while site preference of N2O ranged between 39 - 60‰ at the OMZ core. Based on the T-S plot and N2O concentration profiles, there appears to be a strong correlation between N2O and water mass features within the OMZ. Thus, the differences in δ15N and δ18O of N2O along the north- south transect within the OMZ core may be related to differences in N2O production-consumption mechanisms along with N2O transport. Within the OMZ, the δ18O: δ15N relationship is also much lower than the 2.5:1 ratio expected for N2O consumption via denitrification, leading us to believe that both production and consumption processes are likely to be at play.
Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka
2017-01-01
Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles. PMID:28182635
Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka
2017-01-01
Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.
The role of the oceanic oxygen minima in generating biodiversity in the deep sea
NASA Astrophysics Data System (ADS)
Rogers, Alex D.
2000-01-01
Many studies on the deep-sea benthic biota have shown that the most species-rich areas lie on the continental margins between 500 and 2500 m, which coincides with the present oxygen-minimum in the world's oceans. Some species have adapted to hypoxic conditions in oxygen-minimum zones, and some can even fulfil all their energy requirements through anaerobic metabolism for at least short periods of time. It is, however, apparent that the geographic and vertical distribution of many species is restricted by the presence of oxygen-minimum zones. Historically, cycles of global warming and cooling have led to periods of expansion and contraction of oxygen-minimum layers throughout the world's oceans. Such shifts in the global distribution of oxygen-minimum zones have presented many opportunities for allopatric speciation in organisms inhabiting slope habitats associated with continental margins, oceanic islands and seamounts. On a smaller scale, oxygen-minimum zones can be seen today as providing a barrier to gene-flow between allopatric populations. Recent studies of the Arabian Sea and in other regions of upwelling also have shown that the presence of an oxygen-minimum layer creates a strong vertical gradient in physical and biological parameters. The reduced utilisation of the downward flux of organic material in the oxygen-minimum zone results in an abundant supply of food for organisms immediately below it. The occupation of this area by species exploiting abundant food supplies may lead to strong vertical gradients in selective pressures for optimal rates of growth, modes of reproduction and development and in other aspects of species biology. The presence of such strong selective gradients may have led to an increase in habitat specialisation in the lower reaches of oxygen-minimum zones and an increased rate of speciation.
Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation
NASA Astrophysics Data System (ADS)
Sperling, Erik A.; Wolock, Charles J.; Morgan, Alex S.; Gill, Benjamin C.; Kunzmann, Marcus; Halverson, Galen P.; MacDonald, Francis A.; Knoll, Andrew H.; Johnston, David T.
2015-07-01
Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.
Living with a large reduction in permited loading by using a hydrograph-controlled release scheme
Conrads, P.A.; Martello, W.P.; Sullins, N.R.
2003-01-01
The Total Maximum Daily Load (TMDL) for ammonia and biochemical oxygen demand for the Pee Dee, Waccamaw, and Atlantic Intracoastal Waterway system near Myrtle Beach, South Carolina, mandated a 60-percent reduction in point-source loading. For waters with a naturally low background dissolved-oxygen concentrations, South Carolina anti-degradation rules in the water-quality regulations allows a permitted discharger a reduction of dissolved oxygen of 0.1 milligrams per liter (mg/L). This is known as the "0.1 rule." Permitted dischargers within this region of the State operate under the "0.1 rule" and cannot cause a cumulative impact greater than 0.1 mg/L on dissolved-oxygen concentrations. For municipal water-reclamation facilities to serve the rapidly growing resort and retirement community near Myrtle Beach, a variable loading scheme was developed to allow dischargers to utilize increased assimilative capacity during higher streamflow conditions while still meeting the requirements of a recently established TMDL. As part of the TMDL development, an extensive real-time data-collection network was established in the lower Waccamaw and Pee Dee River watershed where continuous measurements of streamflow, water level, dissolved oxygen, temperature, and specific conductance are collected. In addition, the dynamic BRANCH/BLTM models were calibrated and validated to simulate the water quality and tidal dynamics of the system. The assimilative capacities for various streamflows were also analyzed. The variable-loading scheme established total loadings for three streamflow levels. Model simulations show the results from the additional loading to be less than a 0.1 mg/L reduction in dissolved oxygen. As part of the loading scheme, the real-time network was redesigned to monitor streamflow entering the study area and water-quality conditions in the location of dissolved-oxygen "sags." The study reveals how one group of permit holders used a variable-loading scheme to implement restrictive permit limits without experiencing prohibitive capital expenditures or initiating a lengthy appeals process.
Controls on biochemical oxygen demand in the upper Klamath River, Oregon
Sullivan, Annett B.; Snyder, Dean M.; Rounds, Stewart A.
2010-01-01
A series of 30-day biochemical oxygen demand (BOD) experiments were conducted on water column samples from a reach of the upper Klamath River that experiences hypoxia and anoxia in summer. Samples were incubated with added nitrification inhibitor to measure carbonaceous BOD (CBOD), untreated to measure total BOD, which included demand from nitrogenous BOD (NBOD), and coarse-filtered to examine the effect of removing large particulate matter. All BOD data were fit well with a two-group model, so named because it considered contributions from both labile and refractory pools of carbon: BODt = a1(1 − e− a0t) + a2t. Site-average labile first-order decay rates a0 ranged from 0.15 to 0.22/day for CBOD and 0.11 to 0.29/day for BOD. Site-average values of refractory zero-order decay rates a2 ranged from 0.13 to 0.25 mg/L/day for CBOD and 0.01 to 0.45 mg/L/day for BOD; the zero-order CBOD decay rate increased from early- to mid-summer. Values of ultimate CBOD for the labile component a1 ranged from 5.5 to 28.8 mg/L for CBOD, and 7.6 to 30.8 mg/L for BOD. Two upstream sites had higher CBOD compared to those downstream. Maximum measured total BOD5 and BOD30 during the study were 26.5 and 55.4 mg/L; minimums were 4.2 and 13.6 mg/L. For most samples, the oxygen demand from the three components considered here were: labile CBOD > NBOD > refractory CBOD, though the relative importance of refractory CBOD to oxygen demand increased over time. Coarse-filtering reduced CBOD for samples with high particulate carbon and high biovolumes of Aphanizomenon flos-aquae. There was a strong positive correlation between BOD, CBOD, and the labile component of CBOD to particulate C and N, with weaker positive correlation to field pH, field dissolved oxygen, and total N. The refractory component of CBOD was not correlated to particulate matter, instead showing weak but statistically significant correlation to dissolved organic carbon, UV absorbance at 254 nm, and total N. Particulate organic matter, especially the alga A.flos-aquae, is an important component of oxygen demand in this reach of the Klamath River, though refractory dissolved organic matter would continue to exert an oxygen demand over longer time periods and as water travels downstream.
Long-Duration Carbon Dioxide Anesthesia of Fish Using Ultra Fine (Nano-Scale) Bubbles.
Kugino, Kenji; Tamaru, Shizuka; Hisatomi, Yuko; Sakaguchi, Tadashi
2016-01-01
We investigated whether adding ultrafine (nano-scale) oxygen-carrying bubbles to water concurrently with dissolved carbon-dioxide (CO2) could result in safe, long-duration anesthesia for fish. To confirm the lethal effects of CO2 alone, fishes were anesthetized with dissolved CO2 in 20°C seawater. Within 30 minutes, all fishes, regardless of species, died suddenly due to CO2-induced narcosis, even when the water was saturated with oxygen. Death was attributed to respiration failure caused by hypoxemia. When ultrafine oxygen-carrying bubbles were supplied along with dissolved CO2, five chicken grunts were able to remain anesthetized for 22 hours and awoke normally within 2-3 hours after cessation of anesthesia. The high internal pressures and oxygen levels of the ultrafine bubbles enabled efficient oxygen diffusion across the branchia and permitted the organismal oxygen demands of individual anesthetized fish to be met. Thus, we demonstrated a method for safe, long-duration carbon dioxide anesthesia in living fish under normal water temperatures.
Dissolved Oxygen Thresholds to Protect Designated Aquatic Life Uses in Estuaries
Most if not all coastal states in the US have established numeric thresholds for dissolved oxygen (DO) to protect aquatic life in estuaries. Some are in the process, or have recently completed, revisions of their criteria based on newer science. Often, a toxicological approach ...
Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean
Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...
SIMULATED CLIMATE CHANGE EFFECTS ON DISSOLVED OXYGEN CHARACTERISTICS IN ICE-COVERED LAKES. (R824801)
A deterministic, one-dimensional model is presented which simulates daily dissolved oxygen (DO) profiles and associated water temperatures, ice covers and snow covers for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface ...
USE OF SEDIMENT PROFILE IMAGERY TO ESTIMATE NEAR-BOTTOM DISSOLVED OXYGEN REGIMES
The U.S. EPA, Atlantic Ecology Division is developing empirical stressor-response models for nitrogen pollution in partially enclosed coastal systems using dissolved oxygen (DO) as one of the system responses. We are testing a sediment profile image camera as a surrogate indicat...
DISSOLVED OXYGEN AND METHANE IN WATER BY A GC HEADSPACE EQUILIBRATION TECHNIQUE
An analytical procedure is described for the determination of dissolved oxygen and methane in groundwater samples. The method consists of generating a helium gas headspace in a water filled bottle, and analysis of the headspace by gas chromatography. Other permanent gases such as...
Investigating Factors that Affect Dissolved Oxygen Concentration in Water
ERIC Educational Resources Information Center
Jantzen, Paul G.
1978-01-01
Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)
An effective device for gas-liquid oxygen removal in enclosed microalgae culture.
Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling
2010-01-01
A high-performance gas-liquid transmission device (HPTD) was described in this paper. To investigate the HPTD mass transfer characteristics, the overall volumetric mass transfer coefficients, K(A)(La,CO(2)) for the absorption of gaseous CO(2) and K(A)(La,O(2)) for the desorption of dissolved O(2) were determined, respectively, by titration and dissolved oxygen electrode. The mass transfer capability of carbon dioxide was compared with that of dissolved oxygen in the device, and the operating conditions were optimized to suit for the large-scale enclosed micro-algae cultivation. Based on the effectiveness evaluation of the HPTD applied in one enclosed flat plate Spirulina culture system, it was confirmed that the HPTD can satisfy the demand of the enclosed system for carbon supplement and excessive oxygen removal.
Wesolowski, Edwin A.
1996-01-01
Two separate studies to simulate the effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, have been completed. In the first study, the Red River at Fargo Water-Quality Model was calibrated and verified for icefree conditions. In the second study, the Red River at Fargo Ice-Cover Water-Quality Model was verified for ice-cover conditions.To better understand and apply the Red River at Fargo Water-Quality Model and the Red River at Fargo Ice-Cover Water-Quality Model, the uncertainty associated with simulated constituent concentrations and property values was analyzed and quantified using the Enhanced Stream Water Quality Model-Uncertainty Analysis. The Monte Carlo simulation and first-order error analysis methods were used to analyze the uncertainty in simulated values for six constituents and properties at sites 5, 10, and 14 (upstream to downstream order). The constituents and properties analyzed for uncertainty are specific conductance, total organic nitrogen (reported as nitrogen), total ammonia (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), 5-day carbonaceous biochemical oxygen demand for ice-cover conditions and ultimate carbonaceous biochemical oxygen demand for ice-free conditions, and dissolved oxygen. Results are given in detail for both the ice-cover and ice-free conditions for specific conductance, total ammonia, and dissolved oxygen.The sensitivity and uncertainty of the simulated constituent concentrations and property values to input variables differ substantially between ice-cover and ice-free conditions. During ice-cover conditions, simulated specific-conductance values are most sensitive to the headwatersource specific-conductance values upstream of site 10 and the point-source specific-conductance values downstream of site 10. These headwater-source and point-source specific-conductance values also are the key sources of uncertainty. Simulated total ammonia concentrations are most sensitive to the point-source total ammonia concentrations at all three sites. Other input variables that contribute substantially to the variability of simulated total ammonia concentrations are the headwater-source total ammonia and the instream reaction coefficient for biological decay of total ammonia to total nitrite. Simulated dissolved-oxygen concentrations at all three sites are most sensitive to headwater-source dissolved-oxygen concentration. This input variable is the key source of variability for simulated dissolved-oxygen concentrations at sites 5 and 10. Headwatersource and point-source dissolved-oxygen concentrations are the key sources of variability for simulated dissolved-oxygen concentrations at site 14.During ice-free conditions, simulated specific-conductance values at all three sites are most sensitive to the headwater-source specific-conductance values. Headwater-source specificconductance values also are the key source of uncertainty. The input variables to which total ammonia and dissolved oxygen are most sensitive vary from site to site and may or may not correspond to the input variables that contribute the most to the variability. The input variables that contribute the most to the variability of simulated total ammonia concentrations are pointsource total ammonia, instream reaction coefficient for biological decay of total ammonia to total nitrite, and Manning's roughness coefficient. The input variables that contribute the most to the variability of simulated dissolved-oxygen concentrations are reaeration rate, sediment oxygen demand rate, and headwater-source algae as chlorophyll a.
Decline in global oceanic oxygen content during the past five decades.
Schmidtko, Sunke; Stramma, Lothar; Visbeck, Martin
2017-02-15
Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (10 12 mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (10 15 mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.
McMahon, P.B.; Tindall, J.A.; Collins, J.A.; Lull, K.J.; Nuttle, J.R.
1995-01-01
More than 95% of the water in the South Platte River downstream from the largest wastewater treatment plant serving the metropolitan Denver, Colorado, area consists of treated effluent during some periods of low flow. Fluctuations in effluent-discharge rates caused daily changes in river stage that promoted exchange of water between the river and bottom sediments. Groundwater discharge measurements indicated fluxes of water across the sediment-water interface as high as 18 m3 s−1 km−1. Laboratory experiments indicated that downward movement of surface water through bottom sediments at velocities comparable to those measured in the field (median rate ≈0.005 cm s−1) substantially increased dissolved oxygen uptake rates in bottom sediments (maximum rate 212 ± 10 μmol O2 L−1 h−1) compared with rates obtained when no vertical advective flux was generated (maximum rate 25 ± 8.8 μmol O2 L−1 h−1). Additions of dissolved ammonium to surface waters generally increased dissolved oxygen uptake rates relative to rates measured in experiments without ammonium. However, the magnitude of the advective flux through bottom sediments had a greater effect on dissolved oxygen uptake rates than did the availability of ammonium. Results from this study indicated that efforts to improve dissolved oxygen dynamics in effluent-dominated rivers might include stabilizing daily fluctuations in river stage.
Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba
2018-03-01
In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.
Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream
Nimick, D.A.; Cleasby, T.E.; McCleskey, R. Blaine
2005-01-01
Substantial diel (24-h) cycles in dissolved (0.1-??m filtration) metal concentrations were observed during summer low flow, winter low flow, and snowmelt runoff in Prickly Pear Creek, Montana. During seven diel sampling episodes lasting 34-61.5 h, dissolved Mn and Zn concentrations increased from afternoon minimum values to maximum values shortly after sunrise. Dissolved As concentrations exhibited the inverse timing. The magnitude of diel concentration increases varied in the range 17-152% for Mn and 70-500% for Zn. Diel increases of As concentrations (17-55%) were less variable. The timing of minimum and maximum values of diel streamflow cycles was inconsistent among sampling episodes and had little relation to the timing of metal concentration cycles, suggesting that geochemical rather than hydrological processes are the primary control of diel metal cycles. Diel cycles of dissolved metal concentrations should be assumed to occur at any time of year in any stream with dissolved metals and neutral to alkaline pH. ?? Springer-Verlag 2005.
NASA Astrophysics Data System (ADS)
Shibahara, Akihiko; Ohkushi, Ken'ichi; Kennett, James P.; Ikehara, Ken
2007-09-01
A strong oxygen minimum zone (OMZ) currently exists at upper intermediate water depths on the northern Japanese margin, NW Pacific. The OMZ results largely from a combination of high surface water productivity and poor ventilation of upper intermediate waters. We investigated late Quaternary history (last 34 kyr) of ocean floor oxygenation and the OMZ using quantitative changes in benthic foraminiferal assemblages in three sediment cores taken from the continental slope off Shimokita Peninsula and Tokachi, northern Japan, at water depths between 975 and 1363 m. These cores are well located within the present-day OMZ, a region of high surface water productivity, and in close proximity to the source region of North Pacific Intermediate Water. Late Quaternary benthic foraminiferal assemblages experienced major changes in response to changes in dissolved oxygen concentration in ocean floor sediments. Foraminiferal assemblages are interpreted to represent three main groups representing oxic, suboxic, and dysoxic conditions. Assemblage changes in all three cores and hence in bottom water oxygenation coincided with late Quaternary climatic episodes, similar to that known for the southern California margin. These episodes, in turn, are correlated with orbital and millennial climate episodes in the Greenland ice core including the last glacial episode, Bølling-Ållerød (B/A), Younger Dryas, Preboreal (earliest Holocene), early Holocene, and late Holocene. The lowest oxygen conditions, marked by dysoxic taxa and laminated sediments in one core, occurred during the B/A and the Preboreal intervals. Suboxic taxa dominated mainly during the last glacial, the Younger Dryas, and most of the Holocene. Dysoxic conditions during the B/A and Preboreal intervals in this region were possibly caused by high surface water productivity at times of reduced intermediate ventilation in the northwestern Pacific. Remarkable similarities are evident in the late Quaternary sequence of benthic foraminiferal assemblage change between the two very distant continental margins of northern Japan and southern California. The oscillations in OMZ strength, reflected by these faunal changes, were widespread and apparently synchronous over wide areas of the North Pacific, reflecting broad changes in intermediate water ventilation and surface ocean productivity closely linked with late Quaternary climate change on millennial and orbital timescales.
Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2011-12-01
Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption rates. This least-favorable zone for aerobic respiration is bound to expand with further ocean warming.
Lee, Yeon Gyu; Jeong, Da Un; Lee, Jung Sick; Choi, Yang Ho; Lee, Moon Ok
2016-08-15
Seawater monitoring and geochemical and benthic foraminiferal analysis of sediments were conducted to identify the effects of hypoxia created by a mussel farm on benthic foraminifera in a semi-closed bay. Extremely polluted reductive conditions with a high content of organic matter (OM) at >12.0% and oxygen minimum zones (OMZs) with dissolved oxygen (DO) <0.4mg∙L(-1) were formed below the mussel farm in the northwest area of Gamak Bay, and gradually diffused toward the south. Highly similar patterns of variation were observed in species diversity, abundance frequency, and benthic foraminiferal assemblage distributed from Elphidium subarcticum-Ammonia beccarii in the northwest area through E. subarcticum-A. beccarii-Trochammina hadai, E. subarcticum-A. beccarii-Elphidiumclavatum, and E. clavatum-Ammonia ketienziensis in the southern area. These phenomena were caused by hydrodynamics in the current water mass. It was thought that E. subarcticum is a bioindicator of organic pollution caused by the mussel farm. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nasby-Lucas, Nicole; Dewar, Heidi; Lam, Chi H.; Goldman, Kenneth J.; Domeier, Michael L.
2009-01-01
Background Although much is known about the behavior of white sharks in coastal regions, very little is known about their vertical movements offshore in the eastern Pacific where they spend up to five months. We provide the first detailed description of the offshore habitat use of white sharks in the eastern North Pacific. Methodology/Principal Findings This study uses 2-min data from four recovered pop-up satellite archival tags deployed at Guadalupe Island (2002 and 2005). Deployments ranged from 5.4 to 8.2 months. Two predominant vertical patterns were described. The first was a bimodal vertical pattern with time spent at the surface and at depth, which was observed while traveling. The second was a repetitive oscillatory diving mode displayed by sharks in the Shared Offshore Foraging Area (SOFA). For all four datasets the average maximum daily dive depths ranged from 442.5 to 492.8 m and were typically associated with dissolved oxygen concentrations of above 1.7 ml L−1. Although infrequent, occasional dives to near 1000 m with a minimum temperature of 3.9°C and a minimum O2 level of 0.3 ml L−1 were observed. Conclusions/Significance Recovered pop-up satellite tags from Guadalupe Island white sharks advance our understanding of the vertical habitat use of white sharks while offshore. The bimodal vertical pattern during traveling is most likely related to geolocation. The oscillatory dive pattern is likely associated with foraging. While feeding is not documented, foraging is likely occurring in association with the deep scattering layer. Diving depths were not limited by temperature but were constrained by O2 levels below approximately 1.5 ml L−1. While oxygen may limit the extent of sharks' vertical movements, it will also impact prey distribution. Consequently, the shallow oxygen minimum zone in the SOFA may act to concentrate prey, thus enhancing foraging opportunities in these oligotrophic waters. PMID:20011032
ACUTE SENSITIVITY OF JUVENILE SHORTNOSE STURGEON TO LOW DISSOLVED OXYGEN CONCENTRATIONS
Campbell, Jed G. and Larry R. Goodman. 2004. Acute Sensitivity of Juvenile Shortnose Sturgeon to Low Dissolved Oxygen Concentrations. EPA/600/J-04/175. Trans. Am. Fish. Soc. 133(3):772-776. (ERL,GB 1155).
There is considerable concern that factors such as eutrophication, ...
Dissolved oxygen in two Oregon estuaries: Importance of the ocean-estuary connection
We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...
Aeration in biological nutrient removal (BNR) processes accounts for nearly half of the total electricity costs at many wastewater treatment plants. Even though conventional BNR processes are usually operated to have aerated zones with high dissolved oxygen (DO) concentrations, r...
Dissolved oxygen in two Oregon estuaries: The importance of the ocean-estuary connection
We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...
A Simplified and Inexpensive Method for Measuring Dissolved Oxygen in Water.
ERIC Educational Resources Information Center
Austin, John
1983-01-01
A modified Winkler method for determining dissolved oxygen in water is described. The method does not require use of a burette or starch indicator, is simple and inexpensive and can be used in the field or laboratory. Reagents/apparatus needed and specific procedures are included. (JN)
The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...
RESEARCH AT THE GULF ECOLOGY DIVISION ON THE EFFECTS OF LOW DISSOLVED OXYGEN ON ESTUARINE ANIMALS
Concerns about hypoxia and its effects on saltwater organisms are increasing as environmental conditions in the inshore and nearshore marine environments are better understood. Along the Gulf of Mexico coast, periods of very low dissolved oxygen (D.O.) concentrations have been re...
Bales, Jerad D.; Walters, Douglas A.
2004-01-01
The lower Roanoke River corridor in North Carolina contains a floodplain of national significance. Data from a network of 1 streamflow-measurement site, 13 river-stage sites, 13 floodplain water-level sites located along 4 transects, and 5 in situ water-quality monitoring sites were used to characterize temporal and spatial variations of floodplain and river water levels during 1997-2000 and to describe dissolved-oxygen conditions in the lower Roanoke River for the period 1998-2001. Major differences in the relation of floodplain inundation to flow occurred both among sites at a given transect and among transects. Several floodplain sites were inundated for the full range of flow conditions measured during the study. These included one site on the Big Swash transect (at about river kilometer 119); one site on the Broadneck Swamp transect (river kilometer 97), which was inundated 91 percent of the time during the study; one site on the Devils Gut transect (river kilometer 44), which was inundated throughout the study; and three sites on the Cow Swamp transect (near river kilometer 10). The relation of floodplain inundation depth to Roanoke River flow was highly variable among sites. There was no relation between flow and inundation depth at one of the Big Swash sites or at any of the four Cow Swamp sites. At two of the Big Swash transect sites, there was some relation between inundation depth and 10-day mean flow for flows greater than 700 cubic meters per second. A relatively strong relation between inundation depth and 10-day mean flow occurred at two of the Broadneck Swamp sites and, to a lesser degree, at two of the Devils Gut transect sites. There was much greater interannual variability in floodplain water levels, as represented by the difference between the maximum and minimum daily water level for a given calendar date during January-May and September-October than during the summer and late fall months. If data from this study are representative of long-term conditions, then this means that there is less uncertainty about what future floodplain water levels will be during June-August and November-December than during other months. Rates of ground-water decline, primarily due to evapotranspiration, were fairly similar at all sites, ranging from about 3 to 4 centimeters per day. For a 10-day mean flow of 300 cubic meters per second, an evaporative loss of 2 centimeters per day is equal to about 56 cubic meters per second. Evapotranspiration rates are much lower during the fall and winter months, so losses of river flow to floodplain processes likely are much lower during those months. The ground-water gradient at most sites was from the floodplain to the river, indicating a potential for ground-water movement into the river from the floodplain. At two of the Devils Gut sites, however, the water level often was higher in the river than in the floodplain when floodplain sites were not inundated. This indicates that there is a potential for river water to move as ground water from the river into the floodplain. It seems likely that this feature observed at the Devils Gut transect occurs elsewhere in the lower Roanoke River corridor. Dissolved-oxygen concentrations typically decrease with increasing distance from Roanoke Rapids Dam. During the 1998-2001 study period, the median dissolved-oxygen concentration at Halifax (river kilometer 187), the upstream-most station, was 8.4 milligrams per liter, and the median concentration at the downstream-most station (NC-45, bottom sensor; river kilometer 2.6) was 6.6 milligrams per liter. Several synoptic measurements of dissolved-oxygen concentration down the river identified the presence of a dissolved-oxygen sag in the vicinity of Halifax, with some recovery of concentrations between Halifax and about Scotland Neck at river kilometer 156. Data from the synoptic measurements also indicated that the greatest rate of dissolved-oxygen change with distance along the riv
Krueger, C.J.; Radakovich, K.M.; Sawyer, T.E.; Barber, L.B.; Smith, R.L.; Field, J.A.
1998-01-01
Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2-and 3- phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2- and 3-phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.
Effects of Multiple Stressors on Red Abalone (Haliotis rufescens) Fertilization Success
NASA Astrophysics Data System (ADS)
Boch, C. A.; Aalto, E.; De Leo, G.; Litvin, S.; Lovera, C.; Micheli, F.; Woodson, C. B.; Monismith, S. G.; Barry, J. P.
2016-02-01
Acidification, hypoxia, and ocean warming are escalating threats in the world's coastal waters, with potentially severe consequences for marine life and ocean-based economies. In particular, eastern boundary current ecosystems, including the California Current Large Marine Ecosystem (CCLME), are experiencing large-scale declines in pH and dissolved oxygen (DO)—with the latter linked to changes in thermal stratification and shoaling of the oxygen minimum zone. To examine the consequences of ocean acidification and other climate-related changes in oceanographic conditions on nearshore marine populations within the CCLME, we are assessing the potential effects of current and future upwelling-type conditions on the population dynamics of the red abalone (Haliotis rufescens), with a focus on sensitive early life history phases (e.g., fertilization, larval development, and juvenile growth and survival) expected to be important determinants of population dynamics. Here, we present the first experimental results on the impacts of combined exposures of low pH and low DO on abalone fertilization success. Our results show that abalone fertilization success is significantly reduced when the gametes are exposed to a decrease in seawater pH from 8.0 to 7.2. Furthermore, low pH in combination with hypoxic exposure—e.g., a decrease in dissolved oxygen from 6 mg/L DO to 1 mg/L DO—does not further decrease fertilization rates, suggesting a lack of synergistic or additive effects of these multiple stressors on the reduction of fertilization success. Although the focus of this study is to characterize the effects of multiple stressors on the early life history of abalone, the implications of these results are expected to be relevant for a variety of marine taxa with similar reproductive modes.
Anderson, R.Y.; Linsley, B.K.; Gardner, J.V.
1990-01-01
Upper Pleistocene marine sediments along the upper continental slope off northern and central California contain alternations of varved and bioturbated sediments and associated changes in biota and sediment composition. These alternations can be related to conditions that accompany El Nin??o and anti-El Nin??o (ENSO) circulation. Anti-El Nin??o conditions are characterized by increased upwelling and productivity and by low concentrations of dissolved oxygen in the oxygen minimum zone that resulted in varve preservation. El Nin??o conditions are characterized by little or no upwelling, low productivity, and higher concentrations of dissolved oxygen that resulted in zones of bioturbation. Alternations of varves and zones of bioturbation, that range from decades to millennia, occur through the upper Pleistocene section. The inferred long-term alternations in El Nin??o and anti-El Nin??o conditions appear to be a re-expression of ENSO's primary 3-7 year cycle. Decadal to millennial cycles of productivity associated with El Nin??o and anti-El Nin??o conditions may have served as a "carbon pump" and transferred atmospheric CO2 to the marine reservoir. Changes in sediment composition and organisms associated with El Nin??o or anti-El Nin??o conditions can be related to both seasonal and ENSO phenomena. Expression of these changes at lower-than-ENSO frequencies may be partly explained by adding the effects of seasonal variability to effects produced by a self-oscillating ENSO system. However, deterministic mechanisms, including solar modulation of ENSO, may also contribute to long-term alternations of El Nin??o and anti-El Nin??o conditions. ?? 1990.
Wilber, William G.; Crawford, Charles G.; Peters, James G.
1979-01-01
The Indiana State Board of Health is developing a State water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Silver Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Effluents from the Sellersburg and Clarksville-North wastewater-treatment facilities are the only point-source waste loads that significantly affect the water quality in the modeled segment of Silver Creek. Model simulations indicate that nitrification is the most significant factor affecting the dissolved-oxygen concentration in Silver Creek during summer and winter low flows. Natural streamflow in Silver Creek during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. Present ammonia-nitrogen and dissolved-oxygen concentrations of effluent from the Sellersburg and Clarksville-North wastewater-treatment facilities will violate current Indiana water-quality standards for ammonia toxicity and dissolved oxygen during summer and winter low flows. The current biochemical-oxygen demand limits for the Sellersburg and Clarksville-North wastewater-treatment facilities are not sufficient to maintain an average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams. Calculations of the stream 's assimilative capacity indicate that Silver Creek cannot assimilate additional waste loadings and meet current Indiana water-quality standards. (Kosco-USGS)
Jiang, Danlie; Hu, Xialin; Wang, Rui; Yin, Daqiang
2015-03-01
Oxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen≈8mgL(-1)) and anaerobic (dissolved oxygen <3mgL(-1)) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe(0)≈8±5%), thus magnetization mainly depended on magnetite content. Since sufficient dissolved oxygen led to the much less magnetite (∼15%) in HO-nZVI than that in LO-nZVI (>90%), HO-nZVI was far less magnetic (Ms=88kAm(-1)) than LO-nZVI (Ms=365kAm(-1)). Consequently, HO-nZVI formed small agglomerates (228±10nm), while LO-nZVI tended to form chain-like aggregations (>1μm) which precipitated rapidly. Based on the EDLVO theory, we suggested that dissolved oxygen level determined aggregation morphologies by controlling the degree of oxidation and the magnitude of magnetization. Then the chain-like alignment of LO-nZVI would promote further aggregation, but the agglomerate morphology of HO-nZVI would eliminate magnetic forces and inhibit the aggregation while HO-nZVI remained magnetic. Our results indicated the fine colloidal stability of HO-nZVI, which might lead to the great mobility in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Deep oxygenated ground water: Anomaly or common occurrence?
Winograd, I.J.; Robertson, F.N.
1982-01-01
Contrary to the prevailing notion that oxygen-depleting reactions in the soil zone and in the aquifer rapidly reduce the dissolved oxygen content of recharge water to detection limits, 2 to 8 milligrams per liter of dissolved oxygen is present in water from a variety of deep (100 to 1000 meters) aquifers in Nevada, Arizona, and the hot springs of the folded Appalachians and Arkansas. Most of the waters sampled are several thousand to more than 10,000 years old, and some are 80 kilometers from their point of recharge. Copyright ?? 1982 AAAS.
Goldstein, R.M.; Stauffer, J.C.; Larson, P.R.; Lorenz, D.L.
1996-01-01
Within the instream habitat data set, measures of habitat volume (channel width and depth) and habitat diversity were most significant in explaining the variability of the fish communities. The amount of nonagricultural land and riparian zone integrity from the terrestrial habitat data set were also useful in explaining fish community composition. Variability of mean monthly discharge and the frequency of high and low discharge events during the three years prior to fish sampling were the most influential of the hydrologic variables.The first two axes of the canonical correspondence analysis accounted for 43.3 percent of the variation in the fish community and 52.5 percent of the variation in the environmental-species relation. Water-quality indicators such as the percent of fine material in suspended sediment, minimum dissolved oxygen concentrations, minimum concentrations of dissolved organic carbon, and the range of concentrations of major ions and nutrients were the variables that were most important in the canonical correspondence analysis of water-quality data with fish. No single environmental variable or data set appeared to be more important than another in explaining variation in the fish community. The environmental factors affecting the fish communities of the Red River of the North are interrelated. For the most part, instream environmental conditions (instream habitat, hydrology, and water chemistry) appear to be more important in explaining variability in fish community composition than factors related to the agricultural nature of the basin.
Moore, C.R.
1989-01-01
This report presents physical, chemical, and biological data collected at 50 sampling sites on selected streams in Chester County, Pennsylvania from 1969 to 1980. The physical data consist of air and water temperature, stream discharge, suspended sediment, pH, specific conductance, and dissolved oxygen. The chemical data consist of laboratory determinations of total nutrients, major ions, and trace metals. The biological data consist of total coliform, fecal coliform, and fecal streptococcus bacteriological analyses, and benthicmacroinvertebrate population analyses. Brillouin's diversity index, maximum diversity, minimum diversity, and evenness for each sample, and median and mean Brilloiuin's diversity index, standard deviation, and standard error of the mean were calculated for the benthic-macroinvertebrate data for each site.
Water-quality data for Smith and Bybee Lakes, Portland, Oregon, June to November, 1982
Clifton, Daphne G.
1983-01-01
Water-quality monitoring at Smith and Bybee Lakes included measurement of water temperature, dissolved oxygen concentration and percent saturation, pH, specific conductance, lake depth, alkalinity, dissolved carbon, total dissolved solids, secchi disk light transparency, nutrients, and chlorophyll a and b. In addition, phytoplankton, zooplankton, and benthic invertebrate populations were identified and enumerated. Lakebed sediment was analyzed for particle size, volatile solids, immediate oxygen demand, trace metals, total organic carbon, nutrients, and organic constituents. (USGS)
NASA Technical Reports Server (NTRS)
Mckeown, Anderson B; Hibbard, Robert R
1955-01-01
The effect of dissolved oxygen in the filter-clogging characteristics of three JP-4 and two JP-5 fuels was studied at 300 degrees to 400 degrees F in a bench- scale rig, employing filter paper as the filter medium. The residence time of the fuel at the high temperature was approximately 6 seconds. For these conditions, the clogging characteristics of the fuels increased with both increasing temperature and increasing concentration of dissolved oxygen. The amount of insoluble material formed at high temperatures necessary to produce clogging of filters was very small, of the order of 1 milligram per gallon of fuel.
O'Leary, C A; Perry, E; Bayard, A; Wainger, L; Boynton, W R
2015-10-01
One consequence of nutrient-induced eutrophication in shallow estuarine waters is the occurrence of hypoxia and anoxia that has serious impacts on biota, habitats, and biogeochemical cycles of important elements. Because of the important role of dissolved oxygen (DO) on these ecosystem features, a variety of DO criteria have been established as indicators of system condition. However, DO dynamics are complex and vary on time scales ranging from diel to decadal and spatial scales from meters to multiple kilometers. Because of these complexities, determining DO criteria attainment or failure remains difficult. We propose a method for linking two common measurement technologies for shallow water DO criteria assessment using a Chesapeake Bay tributary as a test case. Dataflow© is a spatially intensive (30-60-m collection intervals) system used to map surface water conditions at the whole estuary scale, and ConMon is a high-frequency (15-min collection intervals) fixed station approach. The former technology is effective with spatial descriptions but poor regarding temporal resolution, while the latter provides excellent temporal but very limited spatial resolution. Our methodology for combining the strengths of these measurement technologies involved a sequence of steps. First, a statistical model of surface water DO dynamics, based on temporally intense ConMon data, was developed. The results of this model were used to calculate daily DO minimum concentrations. Second, this model was then inserted into Dataflow©-generated spatial maps of DO conditions and used to adjust measured DO concentrations to daily minimum concentrations. This information was used to assess DO criteria compliance at the full tributary scale. Model results indicated that it is vital to consider the short-term time scale DO criteria across both space and time concurrently. Large fluctuations in DO occurred within a 24-h time period, and DO dynamics varied across the length and width of the tributary. The overall result provided a more detailed and realistic characterization of the shallow water DO minimum conditions that have the potential to be extended to other tributaries and regions. Broader applications of this model include instantaneous DO criteria assessment, utilizing this model in combination with aerial remote sensing, and developing DO amplitude as an indicator of impaired water bodies.
NASA Astrophysics Data System (ADS)
SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.
2016-07-01
The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.
Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene
2015-03-01
Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both. Concurrently, anaerobic acidification rate maximum Vamax was decreased and Tamax was extended. Fermentation kinetics in nitrogen-flushed milk was not statistically different from that in untreated milk except for Lc. lactis ssp. lactis CHCC D2, which showed faster reduction time after nitrogen flushing. This study clarifies the relationship between the redox state in milk and acidification kinetics of the predominant subspecies in DL-starter cultures. This knowledge is important for dairies to ensure optimized, fast, and controlled milk fermentations, leading to greater standardization of dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
In aquatic systems, time series of dissolved oxygen (DO) have been used to compute estimates of ecosystem metabolism. Central to this open-water method is the assumption that the DO time series is a Lagrangian specification of the flow field. However, most DO time series are coll...
Dissolved oxygen in two Oregon estuaries: Importance of the ocean-estuary connection - March 2011
We examined the role of the ocean–estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO w...
A one-dimensional water quality model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM-1D), was developed to simulate phytoplankton, carbon, nutrients, and dissolved oxygen in Gulf of Mexico. The model was calibrated and corroborated against a comprehensive set of field observation...
We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...
The objective of this study was to provide a database of the incipient lethal concentrations for reduced dissolved oxygen (DO) for selected marine and estuarine species including 12 species of fish, 9 crustaceans, and 1 bivalve. All species occur in the Virginian Province, USA, w...
Kiamco, Mia Mae; Atci, Erhan
2017-01-01
ABSTRACT Biofilms on wound surfaces are treated topically with hyperosmotic agents, such as medical-grade honey and cadexomer iodine; in some cases, these treatments are combined with antibiotics. Tissue repair requires oxygen, and a low pH is conducive to oxygen release from red blood cells and epithelialization. We investigated the variation of dissolved oxygen concentration and pH with biofilm depth and the variation in oxygen consumption rates when biofilms are challenged with medical-grade honey or cadexomer iodine combined with vancomycin or ciprofloxacin. Dissolved oxygen and pH depth profiles in Staphylococcus aureus biofilms were measured using microelectrodes. The presence of cadexomer iodine with vancomycin or ciprofloxacin on the surface of the biofilm permitted a measurable concentration of oxygen at greater biofilm depths (101.6 ± 27.3 μm, P = 0.02; and 155.5 ± 27.9 μm, P = 0.016, respectively) than in untreated controls (30.1 μm). Decreases in pH of ∼0.6 and ∼0.4 units were observed in biofilms challenged with medical-grade honey alone and combined with ciprofloxacin, respectively (P < 0.001 and 0.01, respectively); the number of bacteria recovered from biofilms was significantly reduced (1.26 log) by treatment with cadexomer iodine and ciprofloxacin (P = 0.002) compared to the untreated control. Combining cadexomer iodine and ciprofloxacin improved dissolved oxygen concentration and penetration depth into the biofilm, while medical-grade honey was associated with a lower pH; not all treatments established a bactericidal effect in the time frame used in the experiments. IMPORTANCE Reports about using hyperosmotic agents and antibiotics against wound biofilms focus mostly on killing bacteria, but the results of these treatments should additionally be considered in the context of how they affect physiologically important parameters, such as oxygen concentration and pH. We confirmed that the combination of a hyperosmotic agent and an antibiotic results in greater dissolved oxygen and reduced pH within an S. aureus biofilm. PMID:28062458
Kiamco, Mia Mae; Atci, Erhan; Mohamed, Abdelrhman; Call, Douglas R; Beyenal, Haluk
2017-03-15
Biofilms on wound surfaces are treated topically with hyperosmotic agents, such as medical-grade honey and cadexomer iodine; in some cases, these treatments are combined with antibiotics. Tissue repair requires oxygen, and a low pH is conducive to oxygen release from red blood cells and epithelialization. We investigated the variation of dissolved oxygen concentration and pH with biofilm depth and the variation in oxygen consumption rates when biofilms are challenged with medical-grade honey or cadexomer iodine combined with vancomycin or ciprofloxacin. Dissolved oxygen and pH depth profiles in Staphylococcus aureus biofilms were measured using microelectrodes. The presence of cadexomer iodine with vancomycin or ciprofloxacin on the surface of the biofilm permitted a measurable concentration of oxygen at greater biofilm depths (101.6 ± 27.3 μm, P = 0.02; and 155.5 ± 27.9 μm, P = 0.016, respectively) than in untreated controls (30.1 μm). Decreases in pH of ∼0.6 and ∼0.4 units were observed in biofilms challenged with medical-grade honey alone and combined with ciprofloxacin, respectively ( P < 0.001 and 0.01, respectively); the number of bacteria recovered from biofilms was significantly reduced (1.26 log) by treatment with cadexomer iodine and ciprofloxacin ( P = 0.002) compared to the untreated control. Combining cadexomer iodine and ciprofloxacin improved dissolved oxygen concentration and penetration depth into the biofilm, while medical-grade honey was associated with a lower pH; not all treatments established a bactericidal effect in the time frame used in the experiments. IMPORTANCE Reports about using hyperosmotic agents and antibiotics against wound biofilms focus mostly on killing bacteria, but the results of these treatments should additionally be considered in the context of how they affect physiologically important parameters, such as oxygen concentration and pH. We confirmed that the combination of a hyperosmotic agent and an antibiotic results in greater dissolved oxygen and reduced pH within an S. aureus biofilm. Copyright © 2017 American Society for Microbiology.
Greer, K D; Molson, J W; Barker, J F; Thomson, N R; Donaldson, C R
2010-10-21
A field experiment was completed at a fractured dolomite aquifer in southwestern Ontario, Canada, to assess the delivery of supersaturated dissolved oxygen (supersaturated with respect to ambient conditions) for enhanced bioremediation of petroleum hydrocarbons in groundwater. The injection lasted for 1.5h using iTi's gPro® oxygen injection technology at pressures of up to 450 kPa and at concentrations of up to 34 mg O₂/L. A three-dimensional numerical model for advective-dispersive transport of dissolved oxygen within a discretely-fractured porous medium was calibrated to the observed field conditions under a conservative (no-consumption) scenario. The simulation demonstrated that oxygen rapidly filled the local intersecting fractures as well as the porous matrix surrounding the injection well. Following injection, the local fractures were rapidly flushed by the natural groundwater flow system but slow back-diffusion ensured a relatively longer residence time in the matrix. A sensitivity analysis showed significant changes in behaviour with varying fracture apertures and hydraulic gradients. Applying the calibrated model to a 7-day continuous injection scenario showed oxygen residence times (at the 3mg/L limit), within a radius of 2-4m from the injection well, of up to 100 days. This study has demonstrated that supersaturated dissolved oxygen can be effectively delivered to this type of a fractured and porous bedrock system at concentrations and residence times potentially sufficient for enhanced aerobic biodegradation. Copyright © 2010 Elsevier B.V. All rights reserved.
The influence of kinetics on the oxygen isotope composition of calcium carbonate
NASA Astrophysics Data System (ADS)
Watkins, James M.; Nielsen, Laura C.; Ryerson, Frederick J.; DePaolo, Donald J.
2013-08-01
Paleotemperature reconstructions rely on knowledge of the equilibrium separation of oxygen isotopes between aqueous solution and calcium carbonate. Although oxygen isotope separation is expected on theoretical grounds, the temperature-dependence remains uncertain because other factors, such as slow exchange of isotopes between dissolved CO2-species and water, can obscure the temperature signal. This is problematic for crystal growth experiments on laboratory timescales and for interpreting the oxygen isotope composition of crystals formed in natural settings. We present results from experiments in which inorganic calcite is precipitated in the presence of 0.25 μM dissolved bovine carbonic anhydrase (CA). The presence of dissolved CA accelerates oxygen isotope equilibration between the dissolved carbon species CO2, H2CO3, HCO3-, CO32- and water, thereby eliminating this source of isotopic disequilibrium during calcite growth. The experimental results allow us to isolate, for the first time, kinetic oxygen isotope effects occurring at the calcite-water interface. We present a framework of ion-by-ion growth of calcite that reconciles our new measurements with measurements of natural cave calcites that are the best candidate for having precipitated under near-equilibrium conditions. Our findings suggest that isotopic equilibrium between calcite and water is unlikely to have been established in laboratory experiments or in many natural settings. The use of CA in carbonate precipitation experiments offers new opportunities to refine oxygen isotope-based geothermometers and to interrogate environmental variables other than temperature that influence calcite growth rates.
The Effects of Elevated pCO2, Hypoxia and Temperature on ...
Estuarine fish are acclimated to living in an environment with rapid and frequent changes in temperature, salinity, pH, and dissolved oxygen (DO) levels; the physiology of these organisms is well suited to cope with extreme thermal, hypercapnic, and hypoxic stress. While the adverse effects of low dissolved oxygen levels on estuarine fish has been well-documented, the interaction between low DO and elevated pCO2 is not well understood. There is some evidence that low DO and elevated pCO2 interact antagonistically, however little information exists on how projected changes of pCO2 levels in near-shore waters may affect estuarine species, and how these changes may specifically interact with dissolved oxygen and temperature. We explored the survivability of 7-day post fertilization sheepshead minnow, Cyprinodon variegatus, using short term exposure to the combined effects of elevated pCO2 (~1300 µatm; IPCC RCP 8.5) and low dissolved oxygen levels (~2 mg/L). Additionally, we determined if the susceptibility of these fish to elevated pCO2 and low DO was influenced by increases in temperature from 27.5°C to 35°C. Results from this study and future studies will be used to identify estuarine species and lifestages sensitive to the combined effects of elevated pCO2 and low dissolved oxygen. This project was created in order to better understand the interactive effects of projected pCO2 levels and hypoxia in estuarine organisms. This work is currently focused on the se
Trophic conditions in Lake Winnisquam, New Hampshire
Frost, Leonard R.
1977-01-01
Lake Winnisquam has received treated domestic sewage for approximately 50 years and since June 1961 has been treated with copper sulfate to control the growth of nuisance algae. The Laconia City secondary sewage-treatment plant was upgraded in 1975 to include phosphorus removal. Phosphorus was not removed effectively until early 1976, and, therefore, the 1976 data are considered baseline or pre-phosphorus removal with respect to anticipated changes in the trophic condition of the lake. Effluent from the Laconia State School primary-treatment plant was diverted to the Laconia City plant in October 1976. Dissolved oxygen concentrations showed marked differences between the two basins comprising Lake Winnisquam. Phytoplankton samples showed similarities by algal group for all stations but algal genera varied between the upper and lower basins. Total phosphorus concentrations in the epilimnion ranged from 0.01 to 0.10 milligram per liter, and accumulation of total phosphorus in the hypolimnion resulted in concentrations up to 0.59 milligrams per liter. Chemical states of nutrients varied among the stations corresponding to the degree of depletion of hypolimnetic dissolved oxygen. Dissolved oxygen profiles were used to illustrate zones of algal production, respiration, and bacterial decomposition. The rate of depletion of dissolved oxygen in the hypolimnion was linearly related to time. Because change in the rate of hypolimnetic dissolved oxygen depletion is more easily measured than change of nutrient load in the lake, it is suggested it be used as an indicator of the response of the lake to change in trophic condition.
Li, M D; Wang, Y X; Li, P; Deng, Y M; Xie, X J
2014-12-01
Environmental isotopology of sulfur and oxygen of dissolved sulfate in groundwater was conducted in the Hetao Plain, northwestern China, aiming to better understand the processes controlling arsenic mobilization in arsenic-rich aqueous systems. A total of 22 groundwater samples were collected from domestic wells in the Hetao Plain. Arsenic concentrations ranged from 11.0 to 388 μg/L. The δ(34)S-SO4 and δ(18)O-SO4 values of dissolved sulfate covered a range from +1.48 to +22.4‰ and +8.17‰ to +14.8‰ in groundwater, respectively. The wide range of δ(34)S-SO4 values reflected either an input of different sources of sulfate, such as gypsum dissolution and fertilizer application, or a modification from biogeochemical process of bacterial sulfate reduction. The positive correlation between δ(34)S-SO4 and arsenic concentrations suggested that bacteria mediated processes played an important role in the mobilization of arsenic. The δ(18)O-SO4 values correlated non-linearly with δ(34)S-SO4, but within a relatively narrow range (+8.17 to +14.8‰), implying that complexities inherent in the sulfate-oxygen (O-SO4(2-)) origins, for instance, water-derived oxygen (O-H2O), molecular oxygen (O-O2) and isotope exchanging with dissolved oxides, are accounted for oxygen isotope composition of dissolved sulfate in groundwater in the Hetao Plain.
Schenk, Liam N.; Bragg, Heather M.
2014-01-01
The drawdown of Fall Creek Lake resulted in the net transport of approximately 50,300 tons of sediment from the lake during a 6-day drawdown operation, based on computed daily values of suspended-sediment load downstream of Fall Creek Dam and the two main tributaries to Fall Creek Lake. A suspended-sediment budget calculated for 72 days of the study period indicates that as a result of drawdown operations, there was approximately 16,300 tons of sediment deposition within the reaches of Fall Creek and the Middle Fork Willamette River between Fall Creek Dam and the streamgage on the Middle Fork Willamette River at Jasper, Oregon. Bedload samples collected at the station downstream of Fall Creek Dam during the drawdown were primarily composed of medium to fine sands and accounted for an average of 11 percent of the total instantaneous sediment load (also termed sediment discharge) during sample collection. Monitoring of dissolved oxygen at the station downstream of Fall Creek Dam showed an initial decrease in dissolved oxygen concurrent with the sediment release over the span of 5 hours, though the extent of dissolved oxygen depletion is unknown because of extreme and rapid fouling of the probe by the large amount of sediment in transport. Dissolved oxygen returned to background levels downstream of Fall Creek Dam on December 18, 2012, approximately 1 day after the end of the drawdown operation.
NASA Astrophysics Data System (ADS)
Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.
2016-12-01
More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.
Material and method for promoting the growth of anaerobic bacteria
Adler, H.I.
1984-10-09
A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings
Material and method for promoting the growth of anaerobic bacteria
Adler, Howard I.
1984-01-01
A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1980-01-01
A digital model calibrated to conditions in Little Laughery Creek triutary and Little Laughery Creek, Ripley and Franklin Counties, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero. Headwater flow upstream from the wastewater-treatment facilities consists solely of process cooling water from an industrial discharger. This flow is usually less than 0.5 cubic foot per second. Consequently, benefits from dilution are minimal. As a result, current and projected ammonia-nitrogen concentrations from the municipal discharges will result in in-stream ammonia-nitrogen concentrations that exceed the Indiana ammonia-nitrogen toxicity standards (maximum stream ammonia-nitrogen concentrations of 2.5 and 4.0 milligrams per liter during summer and winter low flows, respectively). Benthic-oxygen demand is probably the most significant factor affecting Little Laughery Creek and is probably responsible for the in-stream dissolved-oxygen concentration being less than the Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) during two water-quality surveys. After municipal dischargers complete advanced waste-treatment facilities, benthic-oxygen demand should be less significant in the stream dissolved-oxygen dynamics. (USGS)
NASA Astrophysics Data System (ADS)
Ribeiro Piffer, P.; Reverberi Tambosi, L.; Uriarte, M.
2017-12-01
One of the most pressing challenges faced by modern societies is ensuring a sufficient supply of water considering the ever-growing conflict between environmental conservation and expansion of agricultural and urban frontiers worldwide. Land use cover change have marked effects on natural landscapes, putting key watershed ecosystem services in jeopardy. We investigated the consequences of land use cover change and precipitation regimes on water quality in the state of São Paulo, Brazil, a landscape that underwent major changes in past century. Water quality data collected bi-monthly between 2000 and 2014 from 229 water monitoring stations was analyzed together with 2011 land use cover maps. We focused on six water quality metrics (dissolved oxygen, total nitrogen, total phosphorus, turbidity, total dissolved solids and fecal coliforms) and used generalized linear mixed models to analyze the data. Models were built at two scales, the entire watershed and a 60 meters riparian buffer along the river network. Models accounted for 46-67% of the variance in water quality metrics and, apart from dissolved oxygen, which reflected land cover composition in riparian buffers, all metrics responded to land use at the watershed scale. Highly urbanized areas had low dissolved oxygen and high fecal coliforms, dissolved solids, phosphorus and nitrogen levels in streams. Pasture was associated with increases in turbidity, while sugarcane plantations significantly increased nitrogen concentrations. Watersheds with high forest cover had greater dissolved oxygen and lower turbidity. Silviculture plantations had little impact on water quality. Precipitation decreased dissolved oxygen and was associated with higher levels of turbidity, fecal coliforms and phosphorus. Results indicate that conversion of forest cover to other land uses had negative impacts on water quality in the study area, highlighting the need for landscape restoration to improve watersheds ecosystem services.
The effect of oxygen fugacity on the solubility of carbon-oxygen fluids in basaltic melt
NASA Technical Reports Server (NTRS)
Pawley, Alison R.; Holloway, John R.; Mcmillan, Paul F.
1992-01-01
The solubility of CO2-CO fluids in a midocean ridge basalt have been measured at 1200 C, 500-1500 bar, and oxygen fugacities between NNO and NNO-4. In agreement with results of previous studies, the results reported here imply that, at least at low pressures, CO2 dissolves in basaltic melt only in the form of carbonate groups. The dissolution reaction is heterogeneous, with CO2 molecules in the fluid reacting directly with reactive oxygens in the melt to produce CO3(2-). CO, on the other hand, is insoluble, dissolving neither as carbon, molecular CO, nor CO3(2-). It is shown that, for a given pressure and temperature, the concentration of dissolved carbon-bearing species in basaltic melt in equilibrium with a carbon-oxygen fluid is proportional to the mole fraction of CO2 in the fluid, which is a function of fO2. At low pressures CO2 solubility is a linear function of CO2 fugacity at constant temperatures.
14 CFR 121.335 - Equipment standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply of...
14 CFR 121.335 - Equipment standards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply of...
14 CFR 121.335 - Equipment standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply of...
14 CFR 121.335 - Equipment standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply of...
14 CFR 121.335 - Equipment standards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply of...
Yang, Li-Na; Li, Zheng-Yan; Zhang, Xue-Qing
2011-01-01
Based on field surveys in the upper estuarine zone of the Daliaohe River in Spring and Summer of 2009, the spatial and temporal distributions of dissolved oxygen were analyzed and the mechanism of hypoxia were preliminarily discussed. The results indicated that DO concentrations were higher in the river mouth and lower in the upper reaches, higher in surface layers and lower in bottom concerning its spatial distribution. For its temporal distribution, DO concentrations were higher in daytime and lower at night, higher in Spring and lower in Summer. The DO concentrations in the upper estuarine zone of the Daliaohe River in Summer ranged between 1.36-4.77 mg/L with an average of 3.44 mg/L. The concentrations in the lower reaches were higher with an average of 3.94 mg/L. A large hypoxia area was recorded in Summer in the upper reaches of the estuary starting from about 45 km away from the river gate with an average DO concentration of 2.33 mg/L and a minimum of 1.36 mg/L. The correlation analysis showed that DO concentration was significantly correlated with nutrients and permanganate index. Excessive discharge of nutrients and organic pollutants were, therefore, main factors causing hypoxia, and water column stratification due to temperature rise in Summer in surface layers led to further reduction of DO in bottom layers of the water.
Water quality of Lake Whitney, north-central Texas
Strause, Jeffrey L.; Andrews, Freeman L.
1983-01-01
Seasonal temperature variations and variations in the concentration of dissolved oxygen result in dissolved iron, dissolved manganese, total inorganic nitrogen, and total phosphorus being recycled within the lake; however, no significant accumulations of these constituents were detected.
NASA Astrophysics Data System (ADS)
Jaccard, S. L.; Eric, G. D.; Haug, G. H.; Sigman, D. M.; Francois, R.; Dulski, P.
2006-12-01
Low-latitude Pacific Ocean records of past changes in productivity and denitrification have often been ascribed to local processes, including changes in local wind forcing, with some recent hypothesis calling on remote control by thermocline ventilation processes. Here we show that deep thermohaline circulation, a fundamentally high-latitude process, is also linked to the low-latitude thermocline biogeochemistry through its impact on nutrient and dissolved oxygen distributions. We present new, multi-proxy evidence from sediment records from the abyssal subarctic North Pacific, including sedimentary redox-sensitive trace metal distribution, Th-normalized biogenic barium, calcium carbonate, and opal mass accumulation rates, and bulk sedimentary 15N measurements. These proxies show that the abyss was significantly depleted in oxygen, and low 13C, all consistent with high DIC concentrations. Meanwhile, above a deep chemical divide, the overlying waters were relatively well-oxygenated and nutrient-poor. At the mid-point of the deglaciation, the glacial deep water mass dissipated upwards in the water column, releasing deeply-sequestered CO2 to the atmosphere and shifting nutrients into the thermocline. The flux of regenerated nutrients to the sunlit surface ocean associated with this breakdown of the deep water mass enhanced primary productivity throughout the subarctic Pacific, while records from lower latitudes of the North Pacific show a parallel boom in export production. The accelerated flux of organic matter from the surface contributed towards an intensification of the thermocline oxygen minimum zone, accelerating denitrification in the Eastern (sub)tropical North Pacific and the production of nitrous oxide. These observations, taken together with our evidence for changes in the deep North Pacific, suggest that the flux of nutrients from the deep North Pacific into the upper water column increased at the end of the ice age. This release may have occurred via the polar oceans, which today feed nutrients into the lower latitude thermocline. Alternatively, it may have occurred directly, by vertical mixing in the ocean interior. Regardless of the mechanism, this transition led to the modern configuration of a relatively well-ventilated deep sea, overlain by an oxygen minimum.
Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe
2015-01-01
The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems’ health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour. PMID:26200780
Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe
2015-01-01
The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.
Effects of dissolved oxygen on dye removal by zero-valent iron.
Wang, Kai-Sung; Lin, Chiou-Liang; Wei, Ming-Chi; Liang, Hsiu-Hao; Li, Heng-Ching; Chang, Chih-Hua; Fang, Yung-Tai; Chang, Shih-Hsien
2010-10-15
Effects of dissolved oxygen concentrations on dye removal by zero-valent iron (Fe(0)) were investigated. The Vibrio fischeri light inhibition test was employed to evaluate toxicity of decolorized solution. Three dyes, Acid Orange 7 (AO7, monoazo), Reactive Red 120 (RR120, diazo), and Acid Blue 9 (AB9, triphenylmethane), were selected as model dyes. The dye concentration and Fe(0) dose used were 100 mg L(-1) and 30 g L(-1), respectively. Under anoxic condition, the order for dye decolorization was AO7>RR120>AB9. An increase in the dissolved oxygen concentrations enhanced decolorization and chemical oxygen demand (COD) removal of the three dyes. An increase in gas flow rates also improved dye and COD removals by Fe(0). At dissolved oxygen of 6 mg L(-1), more than 99% of each dye was decolorized within 12 min and high COD removals were obtained (97% for AO7, 87% for RR120, and 93% for AB9). The toxicity of decolorized dye solutions was low (I(5)<40%). An increase in DO concentrations obviously reduced the toxicity. When DO above 2 mg L(-1) was applied, low iron ion concentration (13.6 mg L(-1)) was obtained in the decolorized AO7 solution. 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert
2013-12-01
The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3-41.1 μmol L-1) and high dissolved oxygen concentrations (58-100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.
Batiuk, Richard A.; Breitburg, Denise L.; Diaz, Robert J.; Cronin, Thomas M.; Secor, David H.; Thursby, Glen
2009-01-01
The Chesapeake 2000 Agreement committed its state and federal signatories to “define the water quality conditions necessary to protect aquatic living resources” in the Chesapeake Bay (USA) and its tidal tributaries. Hypoxia is one of the key water quality issues addressed as a result of the above Agreement. This paper summarizes the protection goals and specific criteria intended to achieve those goals for addressing hypoxia. The criteria take into account the variety of Bay habitats and the tendency towards low dissolved oxygen in some areas of the Bay. Stressful dissolved oxygen conditions were characterized for a diverse array of living resources of the Chesapeake Bay by different aquatic habitats: migratory fish spawning and nursery, shallow-water, open-water, deep-water, and deep-channel. The dissolved oxygen criteria derived for each of these habitats are intended to protect against adverse effects on survival, growth, reproduction and behavior. The criteria accommodate both spatial and temporal aspects of low oxygen events, and have been adopted into the Chesapeake Bay states – Maryland, Virginia, and Delaware – and the District of Columbia's water quality standards regulations. These criteria, now in the form of state regulatory standards, are driving an array of land-based and wastewater pollution reduction actions across the six-watershed.
USDA-ARS?s Scientific Manuscript database
Performance traits and body composition of juvenile hybrid striped bass (Morone chrysops x M. saxatilis) in response to hypoxia were evaluated in replicate tanks maintained at constant dissolved oxygen concentrations that averaged 23.0 +/- 2.3%, 39.7 +/- 3.0%, and 105.5 +/- 9.5% dissolved oxygen sat...
Continuous time series of dissolved oxygen (DO) have been used to compute estimates of metabolism in aquatic ecosystems. Central to this open water or "Odum" method is the assumption that the DO time is not strongly affected by advection and that effects due to advection or mixin...
Joseph W. Love; Christopher M. Taylor; Melvin L. Warren
2005-01-01
The effects of population density, fish density, and dissolved oxygen on body condition of late-instar nymphs of Stenonema tripunctatum (Ephemeroptera, Heptageniidae) were investigated using nymphs sampled from isolated, upland stream pools over summer in central Arkansas, USA. All three factors exhibited high variation among pools. Body condition...
Aceituno, Felipe F.; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W.; Melo, Francisco
2012-01-01
Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations. PMID:23001663
Aceituno, Felipe F; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W; Melo, Francisco; Agosin, Eduardo
2012-12-01
Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2010 CFR
2010-01-01
... discretion. (c) If first-aid oxygen equipment is installed, the minimum mass flow of oxygen to each user may... upon an average flow rate of 3 liters per minute per person for whom first-aid oxygen is required. (d...
Chatelain, Mathieu; Guizien, Katell
2010-03-01
A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (
2016-09-22
approxi- mately 21% dissolved oxygen ) and deoxygenated (ɘ.0001% dissolved oxygen ) natural seawater fixed the corrosion potential (Ecorr) of 316L (UNS...at 70°C for 2 h, and allowed to cool to room temperature (23±1°C) overnight. Electrochemical measurements were conducted in Model K0047† corrosion...Coy Laboratory Products). Palladium (Pd) catalyst stacks were placed within the chamber to maintain the atmospheric oxygen level to below 1 part-per
Work Plan for Three-Dimensional Time-Varying, Hydrodynamic and Water Quality Model of Chesapeake Bay
1988-08-01
successfully calibrated: a. Dissolved oxygen b. Anmonium c. Nitrate d . Dissolved inorganic phosphorus e. Silica f. Methane g. Sulfide Fluxes of dissolved...oxygen, amonium , nitrate , methane, and sulfide can be related to the rate of diagenesis. A less mechanistic, more empirical approach may be required...CLASSc;CA’ ON A ’I.ORITV 3 D.S1R RUT ON AVA LABMLTY OF REPORT ’b D LASPCTO1,DONGRANG C ED, kApproved for public rele~ise; distribution 2b DC~ASFAT.N
Tian, Yanqing; Shumway, Bradley R; Youngbull, A Cody; Li, Yongzhong; Jen, Alex K-Y; Johnson, Roger H; Meldrum, Deirdre R
2010-06-03
Using a thermal polymerization approach and polymerizable pH and oxygen sensing monomers with green and red emission spectra, respectively, new pH, oxygen, and their dual sensing membranes were prepared using poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) as a matrix. The sensors were grafted on acrylate-modified quartz glass and characterized under different pH values, oxygen concentrations, ion strengths, temperatures and cell culture media. The pH and oxygen sensors were excited using the same excitation wavelength and exhibited well-separated emission spectra. The pH-sensing films showed good response over the pH range 5.5 to 8.5, corresponding to pK(a) values in the biologically-relevant range between 6.9 and 7.1. The oxygen-sensing films exhibited linear Stern-Volmer quenching responses to dissolved oxygen. As the sensing membranes were prepared using thermally initiated polymerization of sensing moiety-containing monomers, no leaching of the sensors from the membranes to buffers or medium was observed. This advantageous characteristic accounts in part for the sensors' biocompatibility without apparent toxicity to HeLa cells after 40 hours incubation. The dual-sensing membrane was used to measure pH and dissolved oxygen simultaneously. The measured results correlated with the set-point values.
Sandra M. Clinton; Rick T. Edwards; Stuart E.G. Findlay
2010-01-01
We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were...
NASA Astrophysics Data System (ADS)
Kakinuma, Daiki; Tsushima, Yuki; Ohdaira, Kazunori; Yamada, Tadashi
2015-04-01
The objective of the study is to elucidate the waterside environment in the outer moats of Yedo Castle and the downstream of Nihonbashi River in Tokyo. Scince integrated sewage system has been installed in the area around the outer moats of Yedo Castle and the Nihon River basin, when rainfall exceeds more than the sewage treatment capacity, overflowed untreated wastewater is released into the moats and the river. Because the moats is a closed water body, pollutants are deposited to the bottom without outflowing. While reeking offensive odors due to the decomposition, blue-green algae outbreaks affected by the residence time and eluted nutrient causes problems. Scince the Nihonbashi River is a typical tidal river in urban area, the water pollution problems in the river is complicated. This study clarified the characteristics of the water quality in terms of dissolved oxygen saturation through on-site observations. In particular, dissolved oxygen saturation in summer, it is clarified that variations from a supersaturated state due to the variations of horizontal insolation intensity and water temperature up to hypoxic water conditions in the moats. According to previous studies on the water quality of Nihonbashi River, it is clarified that there are three types of variations of dissolved oxygen which desided by rainfall scale. The mean value of dissolved oxygen saturation of all layers has decreased by about 20% at the spring tide after dredging, then it recoveres gradually and become the value before dredging during about a year. Further more, in places where sewage inflows, it is important to developed a ecosystem medel and the applicability of the model. 9 variables including cell quota (intracellular nutrients of phytoplankton) of phosphorus and nitrogen with considerring the nitrification of ammonia nitrogen are used in the model. This model can grasp the sections (such as oxygen production by photosynthesis of phytoplankton, oxygen consumption by respiration of plankton, and bottom mud) of dissolved oxygen concentration.
The effect of dissolved oxygen on the susceptibility of blood.
Berman, Avery J L; Ma, Yuhan; Hoge, Richard D; Pike, G Bruce
2016-01-01
It has been predicted that, during hyperoxia, excess O2 dissolved in arterial blood will significantly alter the blood's magnetic susceptibility. This would confound the interpretation of the hyperoxia-induced blood oxygenation level-dependent signal as arising solely from changes in deoxyhemoglobin. This study, therefore, aimed to determine how dissolved O2 affects the susceptibility of blood. We present a comprehensive model for the effect of dissolved O2 on the susceptibility of blood and compare it with another recently published model, referred to here as the ideal gas model (IGM). For validation, distilled water and samples of bovine plasma were oxygenated over a range of hyperoxic O2 concentrations and their susceptibilities were determined using multiecho gradient echo phase imaging. In distilled water and plasma, the measured changes in susceptibility were very linear, with identical slopes of 0.062 ppb/mm Hg of O2. This change was dramatically less than previously predicted using the IGM and was close to that predicted by our model. The primary source of error in the IGM is the overestimation of the volume fraction occupied by dissolved O2. Under most physiological conditions, the susceptibility of dissolved O2 can be disregarded in MRI studies employing hyperoxia. © 2015 Wiley Periodicals, Inc.
Microbial mineralization of dichloroethene and vinyl chloride under hypoxic conditions
Bradley, Paul M.; Chapelle, Francis H.
2011-01-01
Mineralization of 14C-radiolabled vinyl chloride ([1,2-14C] VC) and cis-dichloroethene ([1,2-14C] cis-DCE) under hypoxic (initial dissolved oxygen (DO) concentrations about 0.1 mg/L) and nominally anoxic (DO minimum detection limit = 0.01 mg/L) was examined in chloroethene-exposed sediments from two groundwater and two surface water sites. The results show significant VC and dichloroethene (DCE) mineralization under hypoxic conditions. All the sample treatments exhibited pseudo-first-order kinetics for DCE and VC mineralization over an extended range of substrate concentrations. First-order rates for VC mineralization were approximately 1 to 2 orders of magnitude higher in hypoxic groundwater sediment treatments and at least three times higher in hypoxic surface water sediment treatments than in the respective anoxic treatments. For VC, oxygen-linked processes accounted for 65 to 85% of mineralization at DO concentrations below 0.1 mg/L, and 14CO2 was the only degradation product observed in VC treatments under hypoxic conditions. Because the lower detection limit for DO concentrations measured in the field is typically 0.1 to 0.5 mg/L, these results indicate that oxygen-linked VC and DCE biodegradation can be significant under field conditions that appear anoxic. Furthermore, because rates of VC mineralization exceeded rates of DCE mineralization under hypoxic conditions, DCE accumulation without concomitant accumulation of VC may not be evidence of a DCE degradative “stall” in chloroethene plumes. Significantly, mineralization of VC above the level that could reasonably be attributed to residual DO contamination was also observed in several nominally anoxic (DO minimum detection limit = 0.01 mg/L) microcosm treatments.
NASA Astrophysics Data System (ADS)
Myhre, S. E.; Pak, D. K.; Borreggine, M. J.; Hill, T. M.; Kennett, J.; Nicholson, C.; Deutsch, C. A.
2017-12-01
One of the most interesting problems for 21st Century marine ecology is understanding the potential physical, chemical, and biological scale of future climate-forced oceanographic changes. These fundamental questions can be informed through the examination of micro- and macrofauna from Quaternary sedimentary sequences, combined with modern observations of continental margin ecosystems. Here we examine Remotely Operated Vehicle (ROV) exploratory videos and sedimentary push cores, to identify biological assemblages, including mollusc, echinoderm, ostracod, and foraminifera density, diversity, and community structure from Santa Barbara Basin in the California Borderland. ROV explorations, from 380-500 meters below sea level (mbsl), describe the zonation of benthic fauna and the distribution of chemosynthetic trophic webs, which are consequences of gradations in the oxygen minimum zone and the ventilating sill depth (475 mbsl). Such observations reveal the modern vertical distribution of chemosynthetic bacterial communities and shallower, diverse communities associated with detrital food webs. Biological assemblages from 16.1-3.4 ka (from core MV0811-15JC, collected at 418 mbsl) produce a suite of paleoceanographic indicators, such as dissolved oxygen concentrations (foraminifera), chemosynthetic trophic webs (molluscs), and water masses (ostracods). These assemblages demonstrate how continental margin ecosystems reorganize vertically (through the water column) and geographically through climate events, for example through the loss of cryophilic species, the ephemeral occurrence of chemosynthetic communities, and the trace fossil evidence (through predation scarring on mollusc shells) of higher trophic web interactions. Together with ROV seafloor observations, these communities can reconstruct step-by-step vertical changes in the zonation of the continental margin, and can identify intervals of zonation change in relation to both Santa Barbara Basin ventilation and the regional California Borderland oxygen minimum zone.
Curry, B. Brandon; Filippelli, G.M.
2010-01-01
Low dissolved oxygen during the summer and early fall controls profundal continental ostracode distribution in Crystal Lake (McHenry County), Illinois, favoring Cypria ophthalmica and Physocypria globula at water depths from 6 to 13 m. These species also thrived in the lake's profundal zone from 14,165 to 9600 calendar year before present (cal yr b.p.) during the late Boiling, Allerod, and Younger Dryas chronozones, and early Holocene. Characterized by sand, cemented tubules, large aquatic gastropod shells, and littoral ostracode valves, thin (1-6 cm) tempestite deposits punctuate thicker deposits of organic gyttja from 16,080 to 11,900 cal yr b.p. The succeeding 2300 yr (11,900-9600 cal yr b.p.) lack tempestites, and reconstructed water depths were at their maximum. Deposition of marl under relatively well-oxygenated conditions occurred during the remainder of the Holocene until the arrival of Europeans, when the lake returned to a pattern of seasonally low dissolved oxygen. Such conditions are also indicated in the lake sediment by the speciation of phosphorus, high concentrations of organic carbon, and abundant iron and manganese occluded to mineral grains. Initial low dissolved oxygen was probably caused by the delivery of dissolved P and Fe in shallow groundwater, the chemistry of which was influenced by Spodosol pedogenesis under a spruce forest. The triggering may have been regionally warm and wet conditions associated with retreat of the Lake Michigan lobe (south-central Laurentide Ice Sheet). ?? 2010, by the American Society of Limnology and Oceanography Inc.
Measurement of dissolved oxygen during red wines tank aging with chips and micro-oxygenation.
Nevares, I; del Alamo, M
2008-07-21
Nowadays, micro-oxygenation is a very important technique used in aging wines in order to improve their characteristics. The techniques of wine tank aging imply the use of small doses of oxygen and the addition of wood pieces of oak to the wine. Considering the low dissolved oxygen (DO) levels used by micro-oxygenation technique it is necessary to choose the appropriate measurement principle to apply the precise oxygen dosage in wine at any time, in order to assure its correct assimilation. This knowledge will allow the oenologist to control and run the wine aging correctly. This work is a thorough revision of DO measurement main technologies applied to oenology. It describes the strengths and weaknesses of each of them, and draws a comparison of their workings in wine measurement. Both, the traditional systems by electrochemical probes, and the newest photoluminescence-based probes have been used. These probes adapted to red wines ageing study are then compared. This paper also details the first results of the dissolved oxygen content evolution in red wines during a traditional and alternative tank aging. Samples have been treated by three different ageing systems: oak barrels, stainless-steel tanks with small oak wood pieces (chips) and with bigger oak pieces (staves) with low micro-oxygenation levels. French and American oak barrels manufactured by the same cooperage have been used.
A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts.
Stolper, Daniel A; Keller, C Brenhin
2018-01-18
The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O 2 ) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe 3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).
A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts
NASA Astrophysics Data System (ADS)
Stolper, Daniel A.; Keller, C. Brenhin
2018-01-01
The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O2) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).
Brante, Antonio; Fernández, Miriam; Viard, Frédérique
2009-07-01
Encapsulation is a common strategy among marine invertebrate species. It has been shown that oxygen and food availability independently constrain embryo development during intracapsular development. However, it is unclear how embryos of species with different feeding strategies perceive these two constraints when operating jointly. In the present study, we examined the relative importance of dissolved albumen, as a food source, oxygen condition and their interaction on embryonic growth and the survival of two calyptraeid species, Crepidula coquimbensis and Crepidula fornicata, exhibiting different embryo feeding behaviours (i.e. presence vs absence of intracapsular cannibalism). Two oxygen condition treatments (normoxia and hypoxia) and three albumen concentrations (0, 1 and 2 mg l(-1)) were studied. In addition, albumen intake by embryos was observed using fluorescence microscopy. Our study shows that embryos of both species incorporated dissolved albumen but used a different set of embryonic organs. We observed that embryo growth rates in C. coquimbensis were negatively affected only by hypoxic conditions. Conversely, a combination of low albumen concentration and oxygen availability slowed embryo growth in C. fornicata. These findings suggest that oxygen availability is a limiting factor for the normal embryo development of encapsulated gastropod species, regardless of feeding behaviour or developmental mode. By contrast, the effect of dissolved albumen as an alternative food source on embryo performance may depend on the feeding strategy of the embryos.
Hurek, T; Reinhold, B; Fendrik, I; Niemann, E G
1987-01-01
The effect of oxygen on N(2)-dependent growth of two Azospirillum strains and two diazotrophic rods closely associated with roots of Kallar grass (Leptochloa fusca) was studied. To enable precise comparison, bacteria were grown in dissolved-oxygen-controlled batch and continuous cultures. Steady states were obtained from about 1 to 30 muM O(2), some of them being carbon limited. All strains needed a minimum amount of oxygen for N(2)-dependent growth. Nitrogen contents between 10 and 13% of cell dry weight were observed. The response of steady-state cultures to increasing O(2) concentrations suggested that carbon limitation shifted to internal nitrogen limitation when N(2) fixation became so low that the bacteria could no longer meet their requirements for fixed nitrogen. For Azospirillum lipoferum Rp5, increase of the dilution rate resulted in decreased N(2) fixation in steady-state cultures with internal nitrogen limitation. Oxygen tolerance was found to be strain specific in A. lipoferum with strain Sp59b as a reference organism. Oxygen tolerance of strains from Kallar grass was found to be root zone specific. A. halopraeferens Au 4 and A. lipoferum Rp5, predominating on the rhizoplane of Kallar grass, and strains H6a2 and BH72, predominating in the endorhizosphere, differed in their oxygen tolerance profiles. Strains H6a2 and BH72 still grew and fixed nitrogen in steady-state cultures at O(2) concentrations exceeding those which absolutely inhibited nitrogen fixation of both Azospirillum strains. It is proposed that root-zone-specific oxygen tolerance reflects an adaptation of the isolates to the microenvironments provided by the host plant.
Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio
2016-04-01
Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.
K.R. Matthews; N.H. Berg
1997-01-01
Habitat use by rainbow trout Oncorhynchus mykiss is described for a southern California stream where the summer water temperatures typically exceed the lethal limits for trout (>25) C). During August 1994, water temperature, dissolved oxygen (DO), and trout distribution were monitored in two adjacent pools in Sespe Creek, Ventura County, where summer water...
ERIC Educational Resources Information Center
Carpenter, Matt
2009-01-01
The purpose of this study was to determine whether increased levels of UV radiation and temperatures from global warming have a significant impact on dissolved oxygen (DO) output from the alga, "Euglena," which affects other organisms in the ecosystem. The original hypothesis stated that if temperature was increased along with exposure time to…
April Mason; Y. Jun Xu; Philip Saksa; Adrienne Viosca; Johnny M. Grace; John Beebe; Richard Stich
2007-01-01
Low dissolved oxygen (DO) concentrations in streams can be linked to both natural conditions and human activities. In Louisiana, natural stream conditions such as low flow, high temperature and high organic content, often result in DO levels already below current water quality criteria, making it difficult to develop standards for Best Management Practices (BMPs)....
Rawson, Jack; Goss, Richard L.; Rathbun, Ira G.
1980-01-01
A three-phase study was conducted during July and August 1979 to determine the effects of varying release rates through the power-outlet works at Sam Rayburn Reservoir, eastern Texas, on aeration capacity of a 14-mile reach of the Angelina River below Sam Rayburn Dam. The dominant factors that affected the aeration capacity during the study time were time of travel and the dissolved-oxygen deficit of the releases. Aeration was low throughout the study but increased in response to increases in the dissolved-oxygen deficit and the duration of time that the releases were exposed to the atmosphere (time of travel). The average concentration of dissolved oxygen sustained by release of 8,800 cubic feet per second decreased from 5.0 milligrams per liter at a site near the power outlet to 4.8 milligrams per liter at a site about 14 miles downstream; the time of travel averaged about 8 hours. The average concentration of dissolved oxygen in flow sustained by releases of 2,200 cubic feet per second increased from 5.2 to 5.5 milligrams per liter; the time of travel averaged about 20 hours. (USGS)
Water-quality reconnaissance of Laguna Tortuguero, Vega Baja, Puerto Rico, March 1999-May 2000
Soler-Lopez, Luis; Guzman-Rios, Senen; Conde-Costas, Carlos
2006-01-01
The Laguna Tortuguero, a slightly saline to freshwater lagoon in north-central Puerto Rico, has a surface area of about 220 hectares and a mean depth of about 1.2 meters. As part of a water-quality reconnaissance, water samples were collected at about monthly and near bi-monthly intervals from March 1999 to May 2000 at four sites: three stations inside the lagoon and one station at the artificial outlet channel dredged in 1940, which connects the lagoon with the Atlantic Ocean. Physical characteristics that were determined from these water samples were pH, temperature, specific conductance, dissolved oxygen, dissolved oxygen saturation, and discharge at the outlet canal. Other water-quality constituents also were determined, including nitrogen and phosphorus species, organic carbon, chlorophyll a and b, plankton biomass, hardness, alkalinity as calcium carbonate, and major ions. Additionally, a diel study was conducted at three stations in the lagoon to obtain data on the diurnal variation of temperature, specific conductance, dissolved oxygen, and dissolved oxygen saturation. The data analysis indicates the water quality of Laguna Tortuguero complies with the Puerto Rico Environmental Quality Board standards and regulations.
Farrah, S R; Bitton, G
1983-01-01
The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978
Lumb, Andrew B; Nair, Sindhu
2010-03-01
Breathing increased fractional oxygen concentration (FiO2) is recommended for the treatment of tissue ischaemia. The theoretical benefits of increasing FiO2 on tissue oxygenation were evaluated using standard physiological equations. Assuming constant oxygen consumption by tissues throughout the length of a capillary, the oxygen content at 20 arbitrary points along a capillary was calculated. Using mathematical representations of the haemoglobin dissociation curve and an iterative approach to include the dissolved oxygen component of oxygen content, the oxygen partial pressure (PO2) profile along a capillary was estimated. High FiO2 concentrations cause large increases in PO2 at the arteriolar end of capillaries but these large PO2 values, caused by the extra dissolved oxygen, rapidly decline along the capillary. At the venular end of the capillary (the area of tissue most likely to be hypoxic), breathing oxygen causes only a modest improvement in PO2. Increasing FiO2 to treat tissue hypoxia has clear benefits, but a multimodal approach to management is required.
Dominancy of Trichodesmium sp. in the Biawak Island
NASA Astrophysics Data System (ADS)
Prihadi, D. J.
2018-03-01
The Biawak Island is one of the small islands in West Java Province with an abundance of marine biological resources. This research was conducted to collect the primary producer zooplankton and water quality parameters. Direct observation is done by field surveys and measurement in situ for plankton and environmental parameters such as temperature, water transparency, water current, salinity, dissolved oxygen, and pH. Trichodesmium sp. was found dominance in where some other types of zooplankton were found in the area, like Scenedesmus sp., Sagitta sp., Acartia sp. also occurred. Further, the most abundance of Trichodesmium sp. was found in southern of Biawak Island where mangroves, coral and seagrass ecosystem provide nutrients which indirectly support the abundance of planktons. Trichodesmium sp. is plankton that can survive in water with minimum nutrient.
Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: A review.
Liu, Huaqing; Hu, Zhen; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Fan, Jinlin; Lu, Shaoyong; Wu, Haiming
2016-08-01
Dissolved oxygen (DO) is one of the most important factors that can influence pollutants removal in constructed wetlands (CWs). However, problems of insufficient oxygen supply and inappropriate oxygen distribution commonly exist in traditional CWs. Detailed analyses of DO supply and distribution characteristics in different types of CWs were introduced. It can be concluded that atmospheric reaeration (AR) served as the promising point on oxygen intensification. The paper summarized possible optimizations of DO in CWs to improve its decontamination performance. Process (tidal flow, drop aeration, artificial aeration, hybrid systems) and parameter (plant, substrate and operating) optimizations are particularly discussed in detail. Since economic and technical defects are still being cited in current studies, future prospects of oxygen research in CWs terminate this review. Copyright © 2016. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Ono, S.; Ennyu, A.; Najjar, R. G.; Bates, N.
1998-01-01
A diagnostic model of the mean annual cycles of dissolved inorganic carbon (DIC) and oxygen below the mixed layer at the Bermuda Atlantic Time-series Study (BATS) site is presented and used to estimate organic carbon remineralization in the seasonal thermocline. The model includes lateral and vertical advection as well as vertical, diffusion. Very good agreement is found for the remineralization estimates based on oxygen and DIC. Net remineralization averaged from mid-spring to early fall is found to be a maximum between 120 and 140 in. Remineralization integrated between 100 (the compensation depth) and 250 m during this period is estimated to be about 1 mol C/sq m. This flux is consistent with independent estimates of the loss of particulate and dissolved organic carbon.
Metagenomic insights into important microbes from the Dead Zone
NASA Astrophysics Data System (ADS)
Thrash, C.; Baker, B.; Seitz, K.; Temperton, B.; Gillies, L.; Rabalais, N. N.; Mason, O. U.
2015-12-01
Coastal regions of eutrophication-driven oxygen depletion are widespread and increasing in number. Also known as dead zones, these regions take their name from the deleterious effects of hypoxia (dissolved oxygen less than 2 mg/L) on shrimp, demersal fish, and other animal life. Dead zones result from nutrient enrichment of primary production, concomitant consumption by chemoorganotrophic aerobic microorganisms, and strong stratification that prevents ventilation of bottom water. One of the largest dead zones in the world occurs seasonally in the northern Gulf of Mexico (nGOM), where hypoxia can reach up to 22,000 square kilometers. While this dead zone shares many features with more well-known marine oxygen minimum zones, it is nevertheless understudied with regards to the microbial assemblages involved in biogeochemical cycling. We performed metagenomic and metatranscriptomic sequencing on six samples from the 2013 nGOM dead zone from both hypoxic and oxic bottom waters. Assembly and binning led to the recovery of over fifty partial to nearly complete metagenomes from key microbial taxa previously determined to be numerically abundant from 16S rRNA data, such as Thaumarcheaota, Marine Group II Euryarchaeota, SAR406, SAR324, Synechococcus spp., and Planctomycetes. These results provide information about the roles of these taxa in the nGOM dead zone, and opportunities for comparing this region of low oxygen to others around the globe.
Wilson, Timothy P.
2014-01-01
Sediment oxygen demand rates were measured in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, during August through October 2009. These rates were measured as part of an ongoing water-quality monitoring program being conducted in cooperation with the New Jersey Department of Environmental Protection. Oxygen depletion rates were measured using in-situ test chambers and a non-consumptive optical electrode sensing technique for measuring dissolved oxygen concentrations. Sediment oxygen demand rates were calculated on the basis of these field measured oxygen depletion rates and the temperature of the stream water at each site. Hammonton Creek originates at an impoundment, then flows through pine forest and agricultural fields, and receives discharge from a sewage-treatment plant. The streambed is predominantly sand and fine gravel with isolated pockets of organic-rich detritus. Sediment oxygen demand rates were calculated at four sites on Hammonton Creek and were found to range from -0.3 to -5.1 grams per square meter per day (g/m2/d), adjusted to 20 degrees Celsius. When deployed in pairs, the chambers produced similar values, indicating that the method was working as expected and yielding reproducible results. At one site where the chamber was deployed for more than 12 hours, dissolved oxygen was consumed linearly over the entire test period. Crosswicks Creek originates in a marshy woodland area and then flows through woodlots and pastures. The streambed is predominantly silt and clay with some bedrock exposures. Oxygen depletion rates were measured at three sites within the main channel of the creek, and the calculated sediment oxygen demand rates ranged from -0.33 to -2.5 g/m2/d, adjusted to 20 degrees Celsius. At one of these sites sediment oxygen demand was measured in both a center channel flowing area of a pond in the stream and in a stagnant non-flowing area along the shore of the pond where organic-rich bottom sediments had accumulated and lower dissolved oxygen concentration conditions existed in the water column. Dissolved oxygen concentrations in the center channel test chamber showed a constant slow decrease over the entire test period. Oxygen consumption in the test chamber at the near-shore location began rapidly and then slowed over time as oxygen became depleted in the chamber. Depending on the portion of the near-shore dissolved oxygen depletion curve used, calculated sediment oxygen demand rates ranged from as low as -0.03 g/m2/d to as high as -10 g/m2/d. The wide range of sediment oxygen demand rates indicates that care must be taken when extrapolating sediment oxygen demand rates between stream sites that have different bottom sediment types and different flow regimes.
Process for oxidation of hydrogen halides to elemental halogens
Lyke, Stephen E.
1992-01-01
An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.
Identification of an Archean marine oxygen oasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riding, Dr Robert E; Fralick, Dr Philip; Liang, Liyuan
2014-01-01
The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insolublemore » Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.« less
Triple oxygen isotope composition of photosynthetic oxygen
NASA Astrophysics Data System (ADS)
van der Meer, Anne; Kaiser, Jan
2013-04-01
The measurement of biological production rates is essential for our understanding how marine ecosystems are sustained and how much CO2 is taken up through aquatic photosynthesis. Traditional techniques to measure marine production are laborious and subject to systematic errors. A biogeochemical approach based on triple oxygen isotope measurements in dissolved oxygen (O2) has been developed over the last few years, which allows the derivation of gross productivity integrated over the depth of the mixed layer and the time-scale of O2 gas exchange (Luz and Barkan, 2000). This approach exploits the relative 17O/16O and 18O/16O isotope ratio differences of dissolved O2 compared to atmospheric O2 to work out the rate of biological production. Two parameters are key for this calculation: the isotopic composition of dissolved O2 in equilibrium with air and the isotopic composition of photosynthetic oxygen. Recently, a controversy has emerged in the literature over these parameters (Kaiser, 2011) and one of the goals of this research is to provide additional data to resolve this controversy. In order to obtain more information on the isotopic signature of biological oxygen, laboratory experiments have been conducted to determine the isotopic composition of oxygen produced by different phytoplankton cultures.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1979-01-01
The Indiana State Board of Health is developing a water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Wildcat Creek was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand is the most significant factor affecting the dissolved-oxygen concentrations in Wildcat Creek during summer low flows. The Indiana stream dissolved-oxygen standard should not be violated if the Kokomo wastewater-treatment facility meets its current National Pollution Discharge Elimination System permit restrictions (average monthly 5-day biochemical-oxygen demand of 5 milligrams per liter and maximum weekly 5-day biochemical-oxygen demand of 7.5 milligrams per liter) and benthic-oxygen demand becomes negligible. Ammonia-nitrogen toxicity may also be a water-quality limitation in Wildcat Creek. Ammonia-nitrogen waste loads for the Kokomo wastewater-treatment facility, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State standard (2.5 milligrams per liter during summer months and 4.0 milligrams per liter during winter months). (Kosco-USGS)
Mascarin, Gabriel Moura; Jackson, Mark A; Kobori, Nilce Naomi; Behle, Robert W; Dunlap, Christopher A; Delalibera Júnior, Ítalo
2015-08-01
The filamentous fungus Beauveria bassiana is an economically important pathogen of numerous arthropod pests and is able to grow in submerged culture as filaments (mycelia) or as budding yeast-like blastospores. In this study, we evaluated the effect of dissolved oxygen and high glucose concentrations on blastospore production by submerged cultures of two isolates of B. bassiana, ESALQ1432 and GHA. Results showed that maintaining adequate dissolved oxygen levels coupled with high glucose concentrations enhanced blastospore yields by both isolates. High glucose concentrations increased the osmotic pressure of the media and coincided with higher dissolved oxygen levels and increased production of significantly smaller blastospores compared with blastospores produced in media with lower concentrations of glucose. The desiccation tolerance of blastospores dried to less than 2.6 % moisture was not affected by the glucose concentration of the medium but was isolate dependent. Blastospores of isolate ESALQ1432 produced in media containing 140 g glucose L(-1) showed greater virulence toward whitefly nymphs (Bemisia tabaci) as compared with blastospores produced in media containing 40 g glucose L(-1). These results suggest a synergistic effect between glucose concentration and oxygen availability on changing morphology and enhancing the yield and efficacy of blastospores of B. bassiana, thereby facilitating the development of a cost-effective production method for this blastospore-based bioinsecticide.
Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert
2013-01-01
The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3–41.1 μmol L−1) and high dissolved oxygen concentrations (58–100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.
Smart oxygen cuvette for optical monitoring of dissolved oxygen in biological blood samples
NASA Astrophysics Data System (ADS)
Dabhi, Harish; Alla, Suresh Kumar; Shahriari, Mahmoud R.
2010-02-01
A smart Oxygen Cuvette is developed by coating the inner surface of a cuvette with oxygen sensitive thin film material. The coating is glass like sol-gel based sensor that has an embedded ruthenium compound in the glass film. The fluorescence of the ruthenium is quenched depending on the oxygen level. Ocean Optics phase fluorometer, NeoFox is used to measure this rate of fluorescence quenching and computes it for the amount of oxygen present. Multimode optical fibers are used for transportation of light from an LED source to cuvette and from cuvette to phase fluorometer. This new oxygen sensing system yields an inexpensive solution for monitoring the dissolved oxygen in samples for biological and medical applications. In addition to desktop fluorometers, smart oxygen cuvettes can be used with the Ocean Optics handheld Fluorometers, NeoFox Sport. The Smart Oxygen Cuvettes provide a resolution of 4PPB units, an accuracy of less than 5% of the reading, and 90% response in less than 10 seconds.
Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2012-10-01
Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and higher partial pressure due to higher temperatures might slightly overcompensate for oxygen concentration decreases due to decreases in solubility.
Ice Harbor Spillway Dissolved Gas Field Studies: Before and After Spillway Deflectors
2016-07-01
Executive Summary The operation of spillways on the Columbia and Snake Rivers causes the absorption of atmospheric gases (chiefly nitrogen and oxygen) to...chiefly nitrogen and oxygen) to super- saturated levels. For many operations, the total dissolved gas (TDG) levels exceed state and National...powerhouse releases. However, these mass- balance calculations conclusively show that a substantial portion of the powerhouse discharge becomes entrained
Water-quality conditions in Upper Klamath Lake, Oregon, 2002-04
Wood, Tamara M.; Hoilman, Gene R.; Lindenberg, Mary K.
2006-01-01
Eleven (2002) to 14 (2003 and 2004) continuous water-quality monitors that measured pH, dissolved oxygen, temperature, and specific conductance, were placed in Upper Klamath Lake to support a telemetry tracking study of endangered adult shortnose and Lost River suckers. Samples for the analysis of chlorophyll a and nutrients were collected at a subset of the water-quality monitor sites in each year. The seasonal pattern in the occurrence of supersaturated dissolved oxygen concentrations and high pH associated with photosynthetic activity, as well as the undersaturated dissolved oxygen concentrations associated with oxygen demand through respiration and decay in excess of photosynthetic production, were well described by the dynamics of the massive blooms of Aphanizomenon flos aquae (AFA) that occur each year. Data from the continuous monitors provided a means to quantify the occurrence, duration, and spatial extent of water-quality conditions potentially harmful to fish (dissolved- oxygen concentration less than 4 milligrams per liter, pH greater than 9.7, and temperature greater than 28 degrees Celsius) in the northern part of the lake, where the preferred adult sucker habitat is found. There were few observations of temperature greater than 28 degrees Celsius, suggesting that temperature is not a significant source of chronic stress to fish, although its role in the spread of disease is harder to define. Observations of pH greater than 9.7 were common during times when the AFA bloom was growing rapidly, so pH may be a source of chronic stress to fish. Dissolved oxygen concentrations less than 4 milligrams per liter were common in all 3 years at the deeper sites, in the lower part of the water column and for short periods during the day. Less common were instances of widespread low dissolved oxygen, throughout the water column and persisting through the entire day, but this was the character of a severe low dissolved oxygen event (LDOE) that culminated in the start of a fish die-off in 2003. Documented evidence indicates that LDOEs played a role in three fish die-offs in the mid-1990s as well. In the historical context of 15 years of climate and water-quality data, 3 out of 4 of the recent fish die-off years, 1996, 1997, and 2003, were characterized by low winds and high temperatures in July or August coincident with the start of the die-off. High temperatures accelerate the oxygen demanding processes that lead to a LDOE. The role of low winds remains inconclusive, but it could include the development of stratification in the water column and/or the alteration of the wind-driven circulation pattern. At a site centrally located in the study area, die-off years could be successfully identified in the historical data by screening for water characterized by exceptionally low chlorophyll a concentration, exceptionally low dissolved oxygen concentration throughout the water column (not just near the bottom), and exceptionally high ammonia concentration and water temperature, just prior to or coincident with the start of a fish die-off. These conditions indicate that a severe decline in the AFA bloom and conversion of most of the organic matter into inorganic form had taken place.
Knights, B.C.; Johnson, B.L.; Sandheinrich, M.B.
1995-01-01
We conducted a radiotelemetry study to examine the effects of dissolved oxygen (DO), water temperature, and current velocity on winter habitat selection by bluegills Lepomis macrochirus and black crappies Pomoxis nigromaculatus in the Finger Lakes backwater complex, Pool 5, on the upper Mississippi River. When DO was above 2 mg/L, both species selected areas with water temperature greater than 1 degree C and undetectable current. As dissolved oxygen concentrations fell below 2 mg/L, fish moved to areas with higher DO, despite water temperatures of 1 degree C and lower and current velocities of 1 cm/s. Areas with water temperature less than 1 degree C and current velocity greater than 1 cm/s were avoided. To incorporate the winter habitat requirements of bluegills and black crappies into habitat restoration projects, we recommend designs that allow the inflow of oxygenated water to maintain adequate DO without substantially decreasing temperature and increasing current velocity.
Striped bass, temperature, and dissolved oxygen: a speculative hypothesis for environmental risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coutant, C.C.
1985-01-01
Striped bass Morone saxatilis has a paradoxical record of distribution and abundance, including population declines in coastal waters and variable success of freshwater introductions. This record is analyzed for consistency with a hypothesis that striped bass are squeezed between their thermal and dissolved oxygen preferences or requirements. A commonality among diverse field and laboratory observations supports an inherent thermal niche for the species that changes to lower temperatures as fish age. This shift can cause local conditions, especially warm surface strata and deoxygenated deep water, to be incompatible with the success of large fish. Crowding due to temperature preferences alonemore » or coupled with avoidance of low oxygen concentrations can lead to pathology and overfishing, which may contribute to population declines. Through a mixture of evidence and conjecture, the thermal niche-dissolved oxygen hypothesis is proposed as a unified perspective of the habitat requirements of the species that can aid in its study and management. 139 references, 12 figures.« less
NASA Astrophysics Data System (ADS)
Xiao, Qian; Lu, Zhanpeng; Chen, Junjie; Yao, Meiyi; Chen, Zhen; Ejaz, Ahsan
2016-11-01
The effects of temperature, solution composition and dissolved oxygen on the corrosion rate and electrochemical behavior of an A508III low alloy steel in boric acid solution with lithium hydroxide at 25-95 °C are investigated. In aerated solutions, increasing the boric acid concentration increases the corrosion rate and the anodic current density. The corrosion rate in deaerated solutions increases with increasing temperature. A corrosion rate peak value is found at approximately 75 °C in aerated solutions. Increasing temperature increases the oxygen diffusion coefficient, decreases the dissolved oxygen concentration, accelerates the hydrogen evolution reaction, and accelerates both the active dissolution and the film forming reactions. Increasing dissolved oxygen concentration does not significantly affect the corrosion rate at 50 and 60 °C, increases the corrosion rate at 70 and 80 °C, and decreases the corrosion rate at 87.5 and 95 °C in a high concentration boric acid solution with lithium hydroxide.
Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.
2001-01-01
The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.
Wilber, William G.; Crawford, Charles G.; Peters, James G.
1979-01-01
A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)
Liu, Xiuxia; Yang, Sun; Wang, Fen; Dai, Xiaofeng; Yang, Yankun; Bai, Zhonghu
2017-02-01
The dissolved oxygen (DO) level of a culture of Corynebacterium glutamicum (C. glutamicum) in a bioreactor has a significant impact on the cellular redox potential and the distribution of energy and metabolites. In this study, to gain a deeper understanding of the effects of DO on the metabolism of C. glutamicum, we sought to systematically explore the influence of different DO concentrations on genetic regulation and metabolism through transcriptomic analysis. The results revealed that after 20 h of fermentation, oxygen limitation enhanced the glucose metabolism, pyruvate metabolism and carbon overflow, and restricted NAD + availability. A high oxygen supply enhanced the TCA cycle and reduced glyoxylate metabolism. Several key genes involved in response of C. glutamicum to different oxygen concentrations were examined, which provided suggestions for target site modifications in developing optimized oxygen supply strategies. These data provided new insights into the relationship between oxygen supply and metabolism of C. glutamicum.
Selected papers in the hydrologic sciences 1984; July 1984
Meyer, Eric L.
1984-01-01
The rapid, accurate measurement of the oxygen content of soil gas in the unsaturated zone or dissolved oxygen in soil water in the saturated zone can be useful in wetland vegetation studies. A method has been devised and tested in the Great Dismal Swamp, a wetland with fine silt-clay and organic soils, that appears to provide good results. A 60-milliliter sample of soil gas or water is withdrawn from permanently installed chambers at various depths in the soil profile. The oxygen concentration of air samples is measured with a specially constructed analyzer cell fitted to the polarographic oxygen electrode of a portable oxygen meter. The dissolved oxygen concentration of water samples is measured directly with the oxygen electrode while stirring the sample in a 32-milliliter glass bottle with a portable magnetic stirrer. Field tests with duplicate chamber installations showed that consistent results are obtained for soil gas and water.
Costache, T A; Acién Fernández, F Gabriel; Morales, M M; Fernández-Sevilla, J M; Stamatin, I; Molina, E
2013-09-01
In this paper, the influence of culture conditions (irradiance, temperature, pH, and dissolved oxygen) on the photosynthesis rate of Scenedesmus almeriensis cultures is analyzed. Short-run experiments were performed to study cell response to variations in culture conditions, which take place in changing environments such as outdoor photobioreactors. Experiments were performed by subjecting diluted samples of cells to different levels of irradiance, temperature, pH, and dissolved oxygen concentration. Results demonstrate the existence of photoinhibition phenomena at irradiances higher than 1,000 μE/m(2) s; in addition to reduced photosynthesis rates at inadequate temperatures or pH-the optimal values being 35 °C and 8, respectively. Moreover, photosynthesis rate reduction at dissolved oxygen concentrations above 20 mg/l is demonstrated. Data have been used to develop an integrated model based on considering the simultaneous influence of irradiance, temperature, pH, and dissolved oxygen. The model fits the experimental results in the range of culture conditions tested, and it was validated using data obtained by the simultaneous variation of two of the modified variables. Furthermore, the model fits experimental results obtained from an outdoor culture of S. almeriensis performed in an open raceway reactor. Results demonstrate that photosynthetic efficiency is modified as a function of culture conditions, and can be used to determine the proximity of culture conditions to optimal values. Optimal conditions found (T = 35 °C, pH = 8, dissolved oxygen concentration <20 mg/l) allows to maximize the use of light by the cells. The developed model is a powerful tool for the optimal design and management of microalgae-based processes, especially outdoors, where the cultures are subject to daily culture condition variations.
Coeur d'Alene Lake, Idaho: Insights Gained From Limnological Studies of 1991-92 and 2004-06
Wood, Molly S.; Beckwith, Michael A.
2008-01-01
More than 100 years of mining and processing of metal-rich ores in northern Idaho's Coeur d'Alene River basin have resulted in widespread metal contamination of the basin's soil, sediment, water, and biota, including Coeur d'Alene Lake. Previous studies reported that about 85 percent of the bottom of Coeur d'Alene Lake is substantially enriched in antimony, arsenic, cadmium, copper, lead, mercury, silver, and zinc. Nutrients in the lake also are a major concern because they can change the lake's trophic status - or level of biological productivity - which could result in secondary releases of metals from contaminated lakebed sediments. This report presents insights into the limnological functioning of Coeur d'Alene Lake based on information gathered during two large-scale limnological studies conducted during calendar years 1991-92 and water years 2004-06. Both limnological studies reported that longitudinal gradients exist from north to south for decreasing water column transparency, loss of dissolved oxygen, and increasing total phosphorus concentrations. Gradients also exist for total lead, total zinc, and hypolimnetic dissolved oxygen concentrations, ranging from high concentrations in the central part of the lake to lower concentrations at the northern and southern ends of the lake. In the southern end of the lake, seasonal anoxia serves as a mechanism to release dissolved constituents such as phosphorus, nitrogen, iron, and manganese from lakebed sediments and from detrital material within the water column. Nonparametric statistical hypothesis tests at a significance level of a=0.05 were used to compare analyte concentrations among stations, between lake zones, and between study periods. The highest dissolved oxygen concentrations were measured in winter in association with minimum water temperatures, and the lowest concentrations were measured in the Coeur d'Alene Lake hypolimnion during late summer or autumn as prolonged thermal stratification restricted mixing of the oxygenated upper water column and the hypolimnion, where oxygen was consumed. Large differences in median concentrations of dissolved inorganic nitrogen were measured between the euphotic zone and hypolimnion in the deep areas of the lake. These differences in nitrogen concentrations were attributable to several limnological processes, including seasonal inflow plume routing, isolation from wind-driven circulation and associated hypolimnetic enrichment, phytoplanktonic assimilation during summer months, and benthic flux. Increased chlorophyll-a and total phosphorus concentrations were measured throughout the lake in the 2004-06 study compared with results from the 1991-92 study. No significant change in hypolimnetic dissolved inorganic nitrogen concentration throughout the lake was noted even though total nitrogen loads into the lake decreased between study periods. Total zinc and total lead decreased throughout the lake from the 1991-92 study to the 2004-06 study except in the southern part of the lake, where concentrations were typically low. Median detected nitrogen-to-phosphorus ratios decreased from the 1991-92 study to the 2004-06 study. Whereas the lake was clearly phosphorus-limited in 1991-92, in 2004-06 the lake may have been much closer to the boundary value of 7.2 that separates nitrogen from phosphorus limitation. However, due to changes in analytical reporting limits in the period between the two studies, the data are insufficiently certain to draw reliable conclusions with regard to limiting nutrients. For both studies, the trophic state of the lake was classified as oligotrophic (less productive) or mesotrophic (moderately productive), depending on the constituent used for classification. Internal circulation from wind-generated waves and changes in the lake's thermocline are important processes for distribution of water-quality constituents throughout Coeur d'Alene Lake. Surficial distribution of trace metals throughout most o
Ancient Oceans Had Less Oxygen
ERIC Educational Resources Information Center
King, Angela G.
2004-01-01
The amount of dissolved oxygen in the oceans in the mid-Proterozoic period has evolutionary implications since essential trace metals are redox sensitive. The findings suggest that there is global lack of oxygen in seawater.
Influence of low oxygen tensions and sorption to sediment black carbon on biodegradation of pyrene.
Ortega-Calvo, José-Julio; Gschwend, Philip M
2010-07-01
Sorption to sediment black carbon (BC) may limit the aerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in resuspension events and intact sediment beds. We examined this hypothesis experimentally under conditions that were realistic in terms of oxygen concentrations and BC content. A new method, based on synchronous fluorescence observations of (14)C-pyrene, was developed for continuously measuring the uptake of dissolved pyrene by Mycobacterium gilvum VM552, a representative degrader of PAHs. The effect of oxygen and pyrene concentrations on pyrene uptake followed Michaelis-Menten kinetics, resulting in a dissolved oxygen half-saturation constant (K(om)) of 14.1 microM and a dissolved pyrene half-saturation constant (K(pm)) of 6 nM. The fluorescence of (14)C-pyrene in air-saturated suspensions of sediments and induced cells followed time courses that reflected simultaneous desorption and biodegradation of pyrene, ultimately causing a quasi-steady-state concentration of dissolved pyrene balancing desorptive inputs and biodegradation removals. The increasing concentrations of (14)CO(2) in these suspensions, as determined with liquid scintillation, evidenced the strong impact of sorption to BC-rich sediments on the biodegradation rate. Using the best-fit parameter values, we integrated oxygen and sorption effects and showed that oxygen tensions far below saturation levels in water are sufficient to enable significant decreases in the steady-state concentrations of aqueous-phase pyrene. These findings may be relevant for bioaccumulation scenarios that consider the effect of sediment resuspension events on exposure to water column and sediment pore water, as well as the direct uptake of PAHs from sediments.
One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois
Robertson, Dale M.
2000-01-01
As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.
Garcia, Ana Maria
2012-01-01
The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve water quality and protect the aquatic habitat of the Roanoke River.
Taabu-Munyaho, A.; Kayanda, Robert J.; Everson, Inigo; Grabowski, Timothy B.; Marteinsdóttir, Gudrún
2013-01-01
Stratification restricts habitable areas forcing fish to balance between favourable temperature and minimum dissolved oxygen requirements. Acoustic surveys conducted during the stratified and isothermal periods on tropical Lake Victoria indicated that stratification of temperature and dissolved oxygen (DO) affected vertical distribution of Nile perch. There was higher mean temperature (25.6 ± 0.5 °C) and lower DO (6.4 ± 1.8 mg/l) during stratified period compared to the isothermal period (mean temperature 24.9 ± 0.3 °C; mean DO 7.3 ± 0.6 mg/l). Higher mean densities of Nile perch were recorded in the coastal (0.44 ± 0.03) and deep (0.27 ± 0.02 g/m3) strata during the stratified compared to the isothermal season (coastal: 0.24 ± 0.01; deep: 0.12 ± 0.02 g/m3). In addition, Nile perch density in the upper 0–40 m depth layers in the coastal and deep strata increased by over 50% from the isothermal to the stratified season. Daily landings from 65 motorised fishing boats between October 2008 and September 2010 show higher mean catch (26.29 ± 0.17 kg/boat/day) during stratified compared to the isothermal (23.59 ± 0.15) season. Thermal stratification apparently compresses the habitat available to Nile perch and can potentially result in higher exploitation. Managers should evaluate the potential benefits of instituting closed seasons during the stratified period, and stock assessment models should take into account the seasonal niche compression.
USDA-ARS?s Scientific Manuscript database
Dissolved organic nitrogen (DON) transport from animal agriculture to surface waters can lead to eutrophication and dissolved oxygen depletion. Biodegradable DON (BDON) is a portion of DON that is mineralized by bacteria while bioavailable DON (ABDON) is utilized by bacteria and/or algae. This stu...
2017-01-01
65 5-15. Dissolved oxygen and temperature data from T = 34 month (2015) post-remedy...Continuous measurements of dissolved oxygen and temperature in SEA Ring chambers placed at 3-meter depth at Chollas Creek mouth (CC1-B) and adjacent to...which the organisms would be exposed, such as salinity and temperature . This action provided valuable data to determine if any effects observed were
Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming
2013-09-01
This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS.
Balci, N.; Shanks, Wayne C.; Mayer, B.; Mandernack, K.W.
2007-01-01
To better understand reaction pathways of pyrite oxidation and biogeochemical controls on ??18O and ??34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying ??18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ???2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ???2.7. The ??34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (???-0.7???) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (??18 OSO4 s(-) H2 O) of ???3.5??? was determined for the anaerobic (biological and abiotic) experiments. This measured ??18 OSO42 - s(-) H2 O value was then used to estimate the oxygen isotope fractionation effects (??18 OSO42 - s(-) O2) between sulfate and dissolved oxygen in the aerobic experiments which were -10.0???, -10.8???, and -9.8??? for the short-term biological, long-term biological and abiotic control experiments, respectively. Based on the similarity between ??18OSO4 values in the biological and abiotic experiments, it is suggested that ??18OSO4 values cannot be used to distinguish biological and abiotic mechanisms of pyrite oxidation. The results presented here suggest that Fe(III)aq is the primary oxidant for pyrite at pH < 3, even in the presence of dissolved oxygen, and that the main oxygen source of sulfate is water-oxygen under both aerobic and anaerobic conditions. ?? 2007 Elsevier Ltd. All rights reserved.
Cavitating Jet Method and System for Oxygenation of Liquids
NASA Technical Reports Server (NTRS)
Chahine, Georges L.
2012-01-01
Reclamation and re-use of water is critical for space-based life support systems. A number of functions must be performed by any such system including removal of various contaminants and oxygenation. For long-duration space missions, this must be done with a compact, reliable system that requires little or no use of expendables and minimal power. DynaJets cavitating jets can oxidize selected organic compounds with much greater energy efficiency than ultrasonic devices typically used in sonochemistry. The focus of this work was to develop cavitating jets to simultaneously accomplish the functions of oxygenation and removal of contaminants of importance to space-structured water reclamation systems. The innovation is a method to increase the concentration of dissolved oxygen or other gasses in a liquid. It utilizes a particular form of novel cavitating jet operating at low to moderate pressures to achieve a high-efficiency means of transporting and mixing the gas into the liquid. When such a jet is utilized to simultaneously oxygenate the liquid and to oxidize organic compounds within the liquid, such as those in waste water, the rates of contaminant removal are increased. The invention is directed toward an increase in the dissolved gas content of a liquid, in general, and the dissolved oxygen content of a liquid in particular.
NASA Astrophysics Data System (ADS)
Cain, J. S.; Wollheim, W. M.; Sheehan, K.; Lightbody, A.
2014-12-01
Low dissolved oxygen content in rivers threatens fish populations, aquatic organisms, and the health of entire ecosystems. River systems with high fluvial wetland abundance and organic matter, may result in high metabolism that in conjunction with low re-aeration rates, lead to low oxygen conditions. Increasing abundance of beaver ponds in many areas may exacerbate this phenomenon. This research aims to understand the impact of fluvial wetlands, including beaver ponds, on dissolved oxygen (D.O.) and metabolism throughout the headwaters of the Ipswich R. watershed, MA, USA. In several fluvial wetland dominated systems, we measured diel D.O. and metabolism in the upstream inflow, the surface water transient storage zones of fluvial wetland sidepools, and at the outflow to understand how the wetlands modify dissolved oxygen. D.O. was also measured longitudinally along entire surface water flow paths (x-y km long) to determine how low levels of D.O. propagate downstream. Nutrient samples were also collected to understand how their behavior was related to D.O. behavior. Results show that D.O. in fluvial wetlands has large swings with periods of very low D.O. at night. D.O. swings were also seen in downstream outflow, though lagged and somewhat attenuated. Flow conditions affect the level of inundation and the subsequent effects of fluvial wetlands on main channel D.O.. Understanding the D.O. behavior throughout river systems has important implications for the ability of river systems to remove anthropogenic nitrogen.
Dissolved oxygen and its response to eutrophication in a tropical black water river.
Rixen, Tim; Baum, Antje; Sepryani, Harni; Pohlmann, Thomas; Jose, Christine; Samiaji, Joko
2010-08-01
The Siak is a typical, nutrient-poor, well-mixed, black water river in central Sumatra, Indonesia, which owes its brown color to dissolved organic matter (DOM) leached from surrounding, heavily disturbed peat soils. We measured dissolved organic carbon (DOC) and oxygen concentrations along the river, carried out a 36-h experiment in the province capital Pekanbaru and quantified organic matter and nutrient inputs from urban wastewater channels into the Siak. In order to consider the complex dynamic of oxygen in rivers, a box-diffusion model was used to interpret the measured data. The results suggest that the decomposition of soil derived DOM was the main factor influencing the oxygen concentration in the Siak which varied between approximately 100 and 140 micromol l(-1). Additional DOM input caused by wastewater discharges appeared to reduce the oxygen concentrations by approximately 20 micromol l(-1) during the peak-time in household water use in the early morning and in the early evening. Associated enhanced nutrient inputs appear to reduce the impact of the anthropogenic DOM by favoring the photosynthetic production of oxygen in the morning. A reduction of 20 micromol l(-1), which although perhaps not of great significance in Pekanbaru, has strong implications for wastewater management in the fast developing areas downstream Pekanbaru where oxygen concentrations rarely exceed 20 micromol l(-1). Copyright 2010 Elsevier Ltd. All rights reserved.
Wang, Rui; Wong, Ming-Hung; Wang, Wen-Xiong
2011-09-01
The relationships among the uptake of toxic methylmercury (MeHg) and two important fish physiological processes-respiration and water pumping--in the Nile tilapia (Oreochromis niloticus) were explored in the present study. Coupled radiotracer and respirometric techniques were applied to measure simultaneously the uptake rates of MeHg, water, and oxygen under various environmental conditions (temperature, dissolved oxygen level, and water flow). A higher temperature enhanced MeHg influx and the oxygen consumption rate but had no effect on the water uptake, indicating the influence of metabolism on MeHg uptake. The fish showed a high tolerance to hypoxia, and the oxygen consumption rate was not affected until the dissolved oxygen concentration decreased to extremely low levels (below 1 mg/L). The MeHg and water uptake rates increased simultaneously as the dissolved oxygen level decreased, suggesting the coupling of water flux and MeHg uptake. The influence of fish swimming performance on MeHg uptake was also investigated for the first time. Rapidly swimming fish showed significantly higher uptake rates of MeHg, water, and oxygen, confirming the coupling relationships among respiration, water pumping, and metal uptake. Moreover, these results support that MeHg uptake is a rate-limiting process involving energy. Our study demonstrates the importance of physiological processes in understanding mercury bioaccumulation in fluctuating aquatic environments. Copyright © 2011 SETAC.
Yamagishi, Anna; Tanabe, Koji; Yokokawa, Masatoshi; Morimoto, Yuji; Kinoshita, Manabu; Suzuki, Hiroaki
2017-09-08
A microfluidic device coupled with a microfabricated Clark-type oxygen electrode was used to measure the bactericidal activity of neutrophil-like cells differentiated from HL-60 cells. The neutrophil-like cells and Escherichia coli (E. coli) cells were cultured in the same medium, which was introduced into the flow channel of the device. Changes in the respiratory activity of E. coli were measured as changes in the consumption of dissolved oxygen. As the activity of the neutrophil-like cells increased, the rate of elimination of E. coli increased. The accompanying decrease in the number of E. coli reduced the consumption of dissolved oxygen. The changes were actually observed as changes in generated current. A distinct difference in changes in dissolved oxygen concentrations was observed between E. coli cells co-incubated with IFN-γ-activated or non-activated neutrophil-like cells. The required sample volume was less than 10 μL, and results could be obtained within 1-2 h. The device may be useful for the assessment of psychological stresses that affect the activity of neutrophils. Copyright © 2017 Elsevier B.V. All rights reserved.
Preservation of tumour oxygen after hyperbaric oxygenation monitored by magnetic resonance imaging
Kinoshita, Y; Kohshi, K; Kunugita, N; Tosaki, T; Yokota, A
1999-01-01
Hyperbaric oxygen (HBO) has been proposed to reduce tumour hypoxia by increasing the dissolved molecular oxygen in tissue. Using a non-invasive magnetic resonance imaging (MRI) technique, we monitored the changes in MRI signal intensity after HBO exposure because dissolved paramagnetic molecular oxygen itself shortens the T1 relation time. SCCVII tumour cells transplanted in mice were used. The molecular oxygen-enhanced MR images were acquired using an inversion recovery-preparation fast low angle shot (IR-FLASH) sequence sensitizing the paramagnetic effects of molecular oxygen using a 4.7 tesla MR system. MR signal of muscles decreased rapidly and returned to the control level within 40 min after decompression, whereas that of tumours decreased gradually and remained at a high level 60 min after HBO exposure. In contrast, the signal from the tumours in the normobaric oxygen group showed no significant change. Our data suggested that MR signal changes of tumours and muscles represent an alternation of extravascular oxygenation. The preserving tumour oxygen concentration after HBO exposure may be important regarding adjuvant therapy for cancer patients. © 2000 Cancer Research Campaign PMID:10638972
1983-06-01
cl~. 0 I ~Ix *~ S I F (V () m C Y wI 0 C. -d concentrations of dissolved oxygen, heavy metals , petrolum hydrocarbons, pesticides, and turbidity...effects at the dredged and disposal sites under consideration. Water quality parameters of concern include: concentrations of dissolved oxygen, heavy ... metals , petroleum hydrocarbons and pesticides. Some groundwater has been pumped from wells penetrating the Meritt Sand. Brackish water of limited use
USDA-ARS?s Scientific Manuscript database
Atlantic salmon fry were stocked into twelve circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5-2 body-lengths per second, or BL/s) or low (less than 0.5 BL/s) swimming speeding and high (100% saturation) or low (70% saturation) dissolved oxygen (DO) while being raised fr...
One hundred years of hydrographic measurements in the Baltic Sea
NASA Astrophysics Data System (ADS)
Fonselius, Stig; Valderrama, Jorge
2003-06-01
The first measurements of salinity of the deep water in the open Baltic Sea were made in the last decades of the 1800s. At a Scandinavian science meeting in Copenhagen in 1892, Professor Otto Pettersson from Sweden suggested that regular measurements of hydrographic parameters should be carried out at some important deep stations in the Baltic Sea. His suggestion was adopted and since that time we have rather complete hydrographical data from the Bornholm Deep, the Gotland Deep, and the Landsort Deep and from some stations in the Gulf of Bothnia. The measurements were interrupted in the Baltic Proper during the two World Wars. At the beginning only salinity, temperature and dissolved oxygen were measured and one or two expeditions were carried out annually, mostly in summer. In the 1920s also alkalinity and pH were occasionally measured and total carbonate was calculated. A few nutrient measurements were also carried out. After World War II we find results from four or more expeditions every year and intercalibration of methods was arranged. Results of temperature, salinity and dissolved oxygen measurements from the Bornholm Deep, the Gotland Deep, the Landsort Deep and salinity measurements from three stations in the Gulf of Bothnia, covering the whole 20th century are presented and discussed. The salinity distribution and the variations between oxygen and hydrogen sulphide periods in the deep water of the Gotland Deep and the Landsort Deep are demonstrated. Series of phosphate and nitrate distribution in the Gotland Deep are shown from the 1950s to the present and the effects of the stagnant conditions are briefly discussed. Two large inflows of highly saline water, the first during the First World War and the second in 1951, are demonstrated. The 20th century minimum salinity of the bottom water in the Baltic Proper in 1992 is discussed.
NASA Astrophysics Data System (ADS)
Coppola, Laurent; Legendre, Louis; Lefevre, Dominique; Prieur, Louis; Taillandier, Vincent; Diamond Riquier, Emilie
2018-03-01
Dissolved oxygen (O2) is a relevant tracer to interpret variations of both water mass properties in the open ocean and biological production in the surface layer of both coastal and open waters. Deep-water formation is very active in the northwestern Mediterranean Sea, where it influences intermediate and deep waters properties, nutrients replenishment and biological production. This study analyses, for the first time, the 20-year time series of monthly O2 concentrations at the DYFAMED long-term sampling site in the Ligurian Sea. Until the winters of 2005 and 2006, a thick and strong oxygen minimum layer was present between 200 and 1300 m because dense water formation was then local, episodic and of low intensity. In 2005-2006, intense and rapid deep convection injected 24 mol O2 m-2 between 350 and 2000 m from December 2005 to March 2006. Since this event, the deep layer has been mostly ventilated during winter time by newly formed deep water spreading from the Gulf of Lion 250 km to the west and by some local deep mixing in early 2010, 2012 and 2013. In the context of climate change, it is predicted that the intensity of deep convection will become weaker in the Mediterranean, which could potentially lead to hypoxia in intermediate and deep layers with substantial impact on marine ecosystems. With the exception of winters 2005 and 2006, the O2 changes in surface waters followed a seasonal trend that reflected the balance between air-sea O2 exchanges, changes in the depth of the mixed layer and phytoplankton net photosynthesis. We used the 20-year O2 time series to estimate monthly and annual net community production. The latter was 7.1 mol C m-2 yr-1, consistent with C-14 primary production determinations and sediment-trap carbon export fluxes at DYFAMED.
Iron and sulfur in the pre-biologic ocean
NASA Technical Reports Server (NTRS)
Walker, J. C.; Brimblecombe, P.
1985-01-01
Tentative geochemical cycles for the pre-biologic Earth are developed by comparing the relative fluxes of oxygen, dissolved iron, and sulfide to the atmosphere and ocean. The flux of iron is found to exceed both the oxygen and the sulfide fluxes. Because of the insolubility of iron oxides and sulfides the implication is that dissolved iron was fairly abundant and that oxygen and sulfide were rare in the atmosphere and ocean. Sulfate, produced by the oxidation of volcanogenic sulfur gases, was the most abundant sulfur species in the ocean, but its concentration was low by modern standards because of the absence of the river-borne flux of dissolved sulfate produced by oxidative weathering of the continents. These findings are consistent with the geologic record of the isotopic composition of sedimentary sulfates and sulfides. Except in restricted environments, the sulfur metabolism of the earliest organisms probably involved oxidized sulfur species not sulfide.
Enhanced bioremediation of BTEX using immobilized nutrients: Field demonstration and monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borden, R.C.; Goin, R.T.; Kao, C.M.
1996-12-01
A permeable barrier system was developed for controlling the migration of dissolved contaminant plumes in ground water. The barrier system consisted of a line of closely spaced wells installed perpendicular to the contaminant plume. Each well contained concrete briquets that released oxygen and nitrate at a controlled rate, enhancing the aerobic biodegradation of dissolved hydrocarbons in the downgradient aquifer. A full scale permeable barrier system was constructed at a gasoline-spill site near Leland, NC. Initially, increased dissolved oxygen and decreased benzene, toluene, ethylbenzene, and xylene isomer (BTEX) concentrations in the downgradient aquifer indicated that oxygen released from the remediation wellsmore » was enhancing biodegradation. Field tracer tests and soil analyses performed at the conclusion of the project indicated that the aquifer in the vicinity of the remediation wells was being clogged by precipitation from iron minerals.« less
Braun, Christopher L.; Moring, James B.
2013-01-01
In the absence of flow during fall 2011, the reach at Black Cypress was reduced to four isolated pools, and the reach at Little Cypress was reduced to three isolated pools. Dissolved oxygen, temperature, pH, and specific conductance data were collected from the pools because it was hypothesized that these conditions would be the most limiting with respect to aquatic life. Dissolved oxygen concentrations ranged from 0.58 milligrams per liter (mg/L) to 4.79 mg/L at Black Cypress and from 0.24 mg/L to 5.33 mg/L at Little Cypress; both sites exhibited a stratified pattern in dissolved oxygen concentrations along transect lines, but the pattern was less pronounced at Black Cypress.
Farrell, Patrick; Sun, Jacob; Champagne, Paul-Philippe; Lau, Heron; Gao, Meg; Sun, Hong; Zeiser, Arno; D'Amore, Tony
2015-11-27
A simple "off-the-shelf" fed-batch approach to aerobic bacterial cultivation for recombinant protein subunit vaccine manufacturing is presented. In this approach, changes in the dissolved oxygen levels are used to adjust the nutrient feed rate (DO-stat), so that the desired dissolved oxygen level is maintained throughout cultivation. This enables high Escherichia coli cell densities and recombinant protein titers. When coupled to a kLa-matched scale-down model, process performance is shown to be consistent at the 2L, 20L, and 200L scales for two recombinant E. coli strains expressing different protein subunit vaccine candidates. Additionally, by mining historical DO-stat nutrient feeding data, a method to transition from DO-stat to a pre-determined feeding profile suitable for larger manufacturing scales without using feedback control is demonstrated at the 2L, 20L, and 200L scales. Copyright © 2015 Elsevier Ltd. All rights reserved.
Amend, Donald F.; Yasutake, William T.; Morgan, Reginald
1969-01-01
This study determined the influence of water temperature (55–68° F), dissolved oxygen (4–12 ppm), water hardness as CaCO3 (20–256 ppm), and chloride ions (to 2 mM) on the susceptibility of rainbow trout (Salmo gairdneri) to the acute toxicity of ethyl mercury phosphate (EMP). The fish were exposed for one hour to 0.125 ppm EMP, the active ingredient of Timsan, a commercial EMP formulation. The death rate because of the exposure to EMP increased with an increase in water temperature, a decrease in dissolved oxygen, and an increase in chloride ions; calcium appeared to have no effect. The effect of water temperature and dissolved oxygen was ascribed to changes in the respiration rate of the fish, and a chemical explanation is presented for the effect of chloride ions.
Tanner, Dwight Q.; Bragg, Heather M.
2002-03-06
At times in July and August 2001, the total-dissolved-gas probe at Warrendale could not be positioned below the minimum compensation depth because the river was too shallow at that location. Consequently, degassing at probe depth may have occurred, and total dissolved gas may have been larger in locations with greater depths.
Oxygen enhanced switching to combustion of lower rank fuels
Kobayashi, Hisashi; Bool, III, Lawrence E.; Wu, Kuang Tsai
2004-03-02
A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.
Oppenländer, Thomas; Walddörfer, Carsten; Burgbacher, Jens; Kiermeier, Martin; Lachner, Klaus; Weinschrott, Helga
2005-07-01
Xenon excimer (Xe2*) lamps can be used for the oxidation and mineralization of organic compounds in aqueous solution. This vacuum-ultraviolet (VUV) photochemical method is mainly based on the photochemically initiated homolysis of water that produces hydrogen atoms and hydroxyl radicals. The efficiency of substrate oxidation and mineralization is limited markedly due to the high absorbance of water at the emission maximum of the Xe2* lamp (lambda(max)=172 nm). This photochemical condition generates an extreme heterogeneity between the irradiated volume V(irr) and the non-irradiated ("dark") bulk solution. During VUV-initiated photomineralization of organic substrates, the fast scavenging of hydrogen atoms and of carbon-centered radicals by dissolved molecular oxygen produces a permanent oxygen deficit within V(irr) and adjacent compartments. Hence, at a constant photon flux the concentration of dissolved molecular oxygen within the zones of photo and thermal radical reactions limits the rate of mineralization, i.e. the rate of TOC diminution. Thus, a simple and convenient technique is presented that overcomes this limitation by injection of molecular oxygen (or air) into the irradiated volume by use of a ceramic oxygenator (aerator). The tube oxygenator was centered axially within the xenon excimer flow-through lamp. Consequently, the oxygen or air bubbles enhanced the transfer of dissolved molecular oxygen into the VUV-irradiated volume leading to an increased rate of mineralization of organic model compounds, e.g. 1-heptanol, benzoic acid and potassium hydrogen phthalate.
Mineralisation assays of some organic resources of aquatic systems.
Bitar, A L; Bianchini, Júnior I
2002-11-01
Assays were carried out to evaluate the consumption of dissolved oxygen resulting from mineralisation processes in resources usually found in aquatic systems. They were also aimed at estimating the oxygen uptake rate of each investigated process. Experiments were conducted using substrates from 3 different places. A fixed amount of substrate was added to 5 litres of water from Lagoa do Infernão that was previously filtered with glass wool. After adding the substrates the bottles were aired and the amount of dissolved oxygen and the temperature were monitored for 55 days. The occurrence of anaerobic processes was avoided by reoxygenating the bottles. The experimental results were fitted to a first order kinetics model, from which the consumption of dissolved oxygen owing to mineralisation processes was obtained. The amount of oxygen uptake from the mineralisation processes appeared in the following decreasing order: Wolffia sp., Cabomba sp., Lemna sp., DOM (Dissolved Organic Matter), Salvinia sp., Scirpus cubensis, stem, Eichhornia azurea, sediment and humic compounds. The deoxygenation rates (day-1) were: 0.267 (humic compounds), 0.230 (Lemna sp.), 0.199 (E. azurea), 0.166 (S. cubensis), 0.132 (sediment), 0.126 (DOM), 0.093 (Cabomba sp.), 0.091 (stem), 0.079 (Salvinia sp. and Wolffia sp.). From these results, 2 groups of resources could be identified: the first one consists of detritus with higher amounts of labile (ready to use) compounds, which show a higher global oxygen uptake during the mineralisation process; the second one consists mainly of resources that show refracting characteristics. However, when the consumption rates are analysed it is noted that the mineralised parts of the refracting substrates can be easier to process than the labile fractions of the less refracting resources.
Kellar, Robert S; Audet, Robert G; Roe, David F; Rheins, Lawrence A; Draelos, Zoe Diana
2013-06-01
As oxygen is essential for wound healing and there is limited diffusion across the stratum corneum into the epidermis, we wanted to evaluate whether the topical delivery of a total dissolved oxygen in dressing form on intact human subject skin would improve clinical and histologic skin functioning. Fifty normal, healthy subjects completed a pilot clinical evaluation to assess the efficacy and tolerability of a dissolved oxygen dressing (OxygeneSys™-Continuous) to improve the health and appearance of intact skin. Clinical analysis was performed on 50 subjects; histological and gene expression analysis was performed on 12 of the 50 subjects to assess the effect of the dissolved oxygen dressing. Clinical data demonstrate that the dressing is well tolerated, and several measures of skin health and integrity showed improvements compared with a control dressing site. Skin hydration measurements showed a statistically significant increase in skin hydration at 0-4, 4-8, and 0-8 weeks (P < 0.05 at each time point). The blinded clinical investigator's grading of desquamation, roughness, and skin texture show significant decreases from baseline to the 8-week time point (P < 0.05). The dressings were removed prior to the blinded clinical investigator's grading. These data were supported by the histological and gene expression studies, which showed a general reduction in inflammatory response markers and transcription products (IL-6, IL-8, TNF-alpha, MMP-1, and MMP-12), while facilitating a general increase in structural skin proteins (collagen I, elastin, and filaggrin). Additionally, p53 signals from biopsy samples support the clinical investigator's observations of no safety concerns. The data from this study demonstrate that the dressing has no deleterious effects and stimulates beneficial effects on intact, nonwounded skin. © 2013 Wiley Periodicals, Inc.
Yanagida, Hirotaka
2008-04-01
The sonochemical luminescence intensity from luminol was measured at a sampling rate of several kilohertz. This was noted at three different periods: first, the latent period in which no light emission occurs at all; second, the increased emission period from the start of light emission to the time when a steady state is reached; and third, the steady state period in which light emission occurs at the steady state value. When irradiated with ultrasound of different intensities, the times of the latent period and increased emission period are shorter for higher ultrasound intensities. To know how the dissolved oxygen content is involved in early-stage cavitation growth, an experiment was conducted using solutions with varying dissolved oxygen contents from 100% to 37%. For dissolved air content of 50% or less, it was found that the latent period was 30 times longer in a saturated condition. It was also found that the increased emission period was 10 times longer. However, the emission intensity in the steady state did not change at all even when the initial dissolved gas concentration of the sample was changed. From this, it was found that the reuse of collapsed bubbles takes place efficiently in the steady state. Dissolved oxygen was reduced by the use of a vacuum pump and by the degassing action of ultrasound, and it was discovered that the behavior of transient emission differed for the two ways of degassing.
Interannual variability of Dissolved Oxygen values around the Balearic Islands
NASA Astrophysics Data System (ADS)
Balbín, R.; Aparicio, A.; López-Jurado, J. L.; Flexas, M. M.
2012-04-01
Periodic movements of the trawl fishing fleet at Mallorca Island suggest a seasonal variability of the demersal resources, associated with hydrodynamic variability. The area where these commercial fisheries operate extends from the north to the southeast of Mallorca channel, between Mallorca and Ibiza Islands. It is thus affected by the different hydrodynamic conditions of the two sub-basins of the western Mediterranean (the Balearic and the Algerian sub-basins), with different geomorphologic and hydrodynamic characteristics. To characterize this hydrodynamic variability, hydrographic data collected around the Balearic Islands since 2001 with CTDs were analized [1]. Hydrographic parameters were processed according to the standard protocols. Dissolved oxygen (DO) was calibrated onboard using the winkler method. Temperature and salinity were used to characterize the different water masses. At the Western Mediterranean, the maximum values of DO in the water column are observed in the sur- face waters during winter (> 6.0 ml /l), when these water in contact with the atmosphere absorb large amount of oxygen, favored by low winter temperatures and notable turbulence. Later in the spring, the gradual increase of temperature, and the beginning of stratification and biological activity, lead to a decrease of oxygen concentration mainly in surface waters. During summer, these values continue to reduce in the surface mixed layer. Below it, and due to the biological activity, an increase is observed, giving rise to the absolute maximum of this parameter (> 6.5 ml /l). During autumn, the atmospheric forcing breaks the stratification producing a homogenization of surface water. At this moment, DO shows intermediate values. Below the surface waters, about 200 m, a relative maximum corresponding to the seasonal Winter Intermediate Waters (WIW) can be observed. Intermediate waters, between 400 and 600 m, reveal an oxygen minimum (4.0 ml /l) associated to the Levantine Intermediate Waters (LIW) and underneath, the Western Mediterranean Deep Waters (WMDW) show a slight increase of these values (> 4.5 ml /l). Interannual variability of DO at the Balearic and the Algerian sub-basins and in the different water masses will be presented. A systematic difference (> 0.10 ml/l) is observed at intermediate and deep waters between the oxygen con- tent in the Balearic and Algerian sub-basins. This could be explained in terms of the longer path these water masses have to cover around the Mallorca and Menorca Islands, which implies a longer residence time and consumption as a result of respiration and decay of organic matter. During some campaigns minimum DO values (≈ 3.8 ml/l) were found in this area which are smaller that the values usually reported for the Mediterranean [2, 3, 4]. Different possible causes as the influence of the Easter Mediterranean Transient, the reported increase of surface temperature or just the interannual variability, will be discussed. [1] J. L. López-Jurado, J. M. García-Lafuente, L. Cano, et al., Oceanologica acta, vol. 18, no. 2, 1995. [2] T. Packard, H. Minas, B. Coste, R. Martinez, M. Bonin, J. Gostan, P. Garfield, J. Christensen, Q. Dortch, M. Minas, et al., Deep Sea Research Part A. Oceanographic Research Papers, vol. 35, no. 7, 1988. [3] B. Manca, M. Burca, A. Giorgetti, C. Coatanoan, M. Garcia,and A. Iona, Journal of marine systems, vol. 48, no. 1-4, 2004. [4] A. Miller, "Mediterranean sea atlas of temperature, salinity, and oxygen. profiles and data from cruises of RV Atlantis and RV Chain," tech. rep., Woods Hole Oceanographic Institution, Massachusetts, 1970.
Low head oxygenator performance characterization for marine recirculating aquaculture systems
USDA-ARS?s Scientific Manuscript database
This study evaluated the effect of temperature (20 and 25 ºC), salinity (10, 15, and 20 ppt), and dissolved oxygen levels within low head oxygenator (LHO) outlet water on oxygen transfer efficiency (OTE) of LHOs for a planned marine recirculating aquaculture system (RAS). Test results indicated tha...
Oxygen requirement of separated hybrid catfish eggs
USDA-ARS?s Scientific Manuscript database
Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...
NASA Astrophysics Data System (ADS)
Ekau, W.; Auel, H.; Pörtner, H.-O.; Gilbert, D.
2010-05-01
Dissolved oxygen (DO) concentration in the water column is an environmental parameter that is crucial for the successful development of many pelagic organisms. Hypoxia tolerance and threshold values are species- and stage-specific and can vary enormously. While some fish species may suffer from oxygen values of less than 3 mL O2 L-1 through impacted growth, development and behaviour, other organisms such as euphausiids may survive DO levels as low as 0.1 mL O2 L-1. A change in the average or the range of DO may have significant impacts on the survival of certain species and hence on the species composition in the ecosystem with consequent changes in trophic pathways and productivity. Evidence for the deleterious effects of oxygen depletion on pelagic species is scarce, particularly in terms of the effect of low oxygen on development, recruitment and patterns of migration and distribution. While planktonic organisms have to cope with variable DOs and exploit adaptive mechanisms, nektonic species may avoid areas of unfavourable DO and develop adapted migration strategies. Planktonic organisms may only be able to escape vertically, above or beneath the Oxygen Minimum Zone (OMZ). In shallow areas only the surface layer can serve as a refuge, but in deep waters many organisms have developed vertical migration strategies to use, pass through and cope with the OMZ. This paper elucidates the role of DO for different taxa in the pelagic realm and the consequences of low oxygen for foodweb structure and system productivity. We describe processes in two contrasting systems, the semi-enclosed Baltic Sea and the coastal upwelling system of the Benguela Current to demonstrate the consequences of increasing hypoxia on ecosystem functioning and services.
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo; Lee, Cae-Hyang; Fiering, Jason O.; Ufer, Stefan; Scarantino, Charles W.; Nagle, H. Troy; Fiering, Jason O.; Ufer, Stefan; Nagle, H. Troy; Scarantino, Charles W.
2004-01-01
Abstract - Biochemical sensors for continuous monitoring require dependable periodic self- diagnosis with acceptable simplicity to check its functionality during operation. An in situ self- diagnostic technique for a dissolved oxygen microsensor is proposed in an effort to devise an intelligent microsensor system with an integrated electrochemical actuation electrode. With a built- in platinum microelectrode that surrounds the microsensor, two kinds of microenvironments, called the oxygen-saturated or oxygen-depleted phases, can be created by water electrolysis depending on the polarity. The functionality of the microsensor can be checked during these microenvironment phases. The polarographic oxygen microsensor is fabricated on a flexible polyimide substrate (Kapton) and the feasibility of the proposed concept is demonstrated in a physiological solution. The sensor responds properly during the oxygen-generating and oxygen- depleting phases. The use of these microenvironments for in situ self-calibration is discussed to achieve functional integration as well as structural integration of the microsensor system.
Carpenter, Clay E.; Morrison, Stanley J.
2001-07-03
This invention is directed to a process for treating the flow of anaerobic groundwater through an aquifer with a primary treatment media, preferably iron, and then passing the treated groundwater through a second porous media though which an oxygenated gas is passed in order to oxygenate the dissolved primary treatment material and convert it into an insoluble material thereby removing the dissolved primary treatment material from the groundwater.
The water quality of Sam Rayburn Reservoir, eastern Texas
Rawson, Jack; Lansford, Myra W.
1971-01-01
Results of periodic surveys indicate that dissolved-oxygen concentrations at three sites in the 19-mile reach of the Angelina River downstream from Sam Rayburn Dam were low in late summer and early fall after periods of summer stagnation in the reservoir. Moreover, the amount of reaeration that occurred in the reach was insignificant. During periods when the dissolved-oxygen deficiency was large, the concentrations of iron and manganese at each of the three sites increased greatly.
NASA Technical Reports Server (NTRS)
Weinberg, M. C.; Oronato, P. I.; Uhlmann, D. R.
1984-01-01
Analytical expression used to calculate time it takes for stationary bubbles of oxygen and carbon dioxide to dissolve from glass melt. Technique based on analytical expression for bubble radius as function time, with consequences of surface tension included.
Zaqoot, Hossam Adel; Ansari, Abdul Khalique; Unar, Mukhtiar Ali; Khan, Shaukat Hyat
2009-01-01
Artificial Neural Networks (ANNs) are flexible tools which are being used increasingly to predict and forecast water resources variables. The human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. The presence of dissolved oxygen is essential for the survival of most organisms in the water bodies. This paper is concerned with the use of ANNs - Multilayer Perceptron (MLP) and Radial Basis Function neural networks for predicting the next fortnight's dissolved oxygen concentrations in the Mediterranean Sea water along Gaza. MLP and Radial Basis Function (RBF) neural networks are trained and developed with reference to five important oceanographic variables including water temperature, wind velocity, turbidity, pH and conductivity. These variables are considered as inputs of the network. The data sets used in this study consist of four years and collected from nine locations along Gaza coast. The network performance has been tested with different data sets and the results show satisfactory performance. Prediction results prove that neural network approach has good adaptability and extensive applicability for modelling the dissolved oxygen in the Mediterranean Sea along Gaza. We hope that the established model will help in assisting the local authorities in developing plans and policies to reduce the pollution along Gaza coastal waters to acceptable levels.
Stamer, J.K.; Cherry, R.N.; Faye, R.E.; Kleckner, R.L.
1978-01-01
On an average annual basis and during the storm period of March 12-15, 1976, nonpoint-source loads for most constituents were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 miles downstream from Atlanta, GA. Most of the nonpoint-source constituent loads in the Atlanta to Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads and about 70 percent of the dissolved phosphorus loads at Whitesburg. During a low-flow period, June 1-2, 1977, five municipal point-sources contributed 63 percent of the ultimate biochemical oxygen demand, and 97 percent of the ammonium nitrogen loads at the Franklin station, at the upstream end of West Point Lake. Dissolved-oxygen concentrations of 4.1 to 5.0 milligrams per liter occurred in a 22-mile reach of the river downstream from Atlanta due about equally to nitrogenous and carbonaceous oxygen demands. The heat load from two thermoelectric powerplants caused a decrease in dissolved-oxygen concentration of about 0.2 milligrams per liter. Phytoplankton concentrations in West Point Lake, about 70 miles downstream from Atlanta, could exceed three million cells per millimeter during extended low-flow periods in the summer with present point-source phosphorus loads. (Woodard-USGS)
Seagrass carbon budgets provide valuable insight on the minimum requirements needed to maintain this valuable resource. Carbon budgets are a balance between C fixation, storage and loss rates, most of which are well characterized. However, relatively few measurements of dissolv...
Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela
2013-02-01
This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gomes, Patrícia Pereira; Ferreira, Verónica; Tonin, Alan M; Medeiros, Adriana Oliveira; Júnior, José Francisco Gonçalves
2018-05-01
Aquatic ecosystems worldwide have been substantially altered by human activities, which often induce changes in multiple factors that can interact to produce complex effects. Here, we evaluated the combined effects of dissolved nutrients (nitrogen [N] and phosphorus [P]; three levels: concentration found in oligotrophic streams in the Cerrado biome, 10× and 100× enriched) and oxygen (O 2 ; three levels: hypoxic [4% O 2 ], depleted [55% O 2 ], and saturated [96% O 2 ]) on plant litter decomposition and associated fungal decomposers in laboratory microcosms simulating stream conditions under distinct scenarios of water quality deterioration. Senescent leaves of Maprounea guianensis were incubated for 10 days in an oligotrophic Cerrado stream to allow microbial colonization and subsequently incubated in microcosms for 21 days. Leaves lost 1.1-3.0% of their initial mass after 21 days, and this was not affected either by nutrients or oxygen levels. When considering simultaneous changes in nutrients and oxygen concentrations, simulating increased human pressure, fungal biomass accumulation, and sporulation rates were generally inhibited. Aquatic hyphomycete community structure was also affected by changes in nutrients and oxygen availability, with stronger effects found in hypoxic treatments than in depleted or saturated oxygen treatments. This study showed that the effects of simultaneous changes in the availability of dissolved nutrients and oxygen in aquatic environments can influence the activity and composition of fungal communities, although these effects were not translated into changes in litter decomposition rates.
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Dunne, J. P.; John, J.
2012-03-01
Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1) shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic) waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral eddy transport of dissolved oxygen in such waters.
Water quality of Tampa Bay, Florida, June 1972-May 1976
Goetz, Carole L.; Goodwin, Carl R.
1980-01-01
A comprehensive assessment of the water quality of Tampa Bay, Florida, was initiated in 1970 to provide background information to evaluate the effects of widening and deepening the ship channel to the port of Tampa. This report provides results of water-quality sampling in the bay from 1972 to 1976, prior to dredging. Measurements of temperature, dissolved oxygen, pH, turbidity, specific conductance, biochemical oxygen demand, and total organic carbon were made as well as measurements for several nutrient, metal, and pesticide parameters. Many parameters were measured at as many as three points in the vertical. These data indicate that Tampa Bay is well-mixed vertically with little density stratification. Time histories of average temperature, dissolved oxygen, pH, turbidity, specific conductance and nutrient values within four subareas of Tampa Bay are given to reveal seasonal or other trends during the period of record. Temperature, dissolved oxygen, pH, turbidity, specific conductance, nutrient, biochemical oxygen demand, total organic carbon, and metal data are also presented as areal distributions. Nutrient concentrations were generally higher in Hillsborough Bay than in other sub-areas of Tampa Bay. Biochemical oxygen demand, total organic carbon, and total organic nitrogen distribution patterns show regions of highest concentrations to be along bay shorelines near population centers. Of the metals analyzed, all were present in concentrations of less than 1 milligram per liter. (USGS)
Measures of net oxidant concentration in seawater
NASA Astrophysics Data System (ADS)
Jackson, George A.; Williams, Peter M.
1988-02-01
Dissolved oxygen deficits in the ocean have been used as a measure of the organic matter oxidized in a volume of water. Such organic matter is usually assumed to be predominantly settled particles. Using dissolved oxygen concentration in this way has two problems: first, it does not differentiate between oxidant consumed by the pool of dissolved organic matter present near the ocean surface and oxidant consumed by organic matter contained by falling particles; second, it does not account for other oxidant sources, such as nitrate, which can be as important to organic matter decay as oxygen in low-oxygen water, such as off Peru or in the Southern California submarine basins. New parameters provide better measures of the net oxidant concentration in a water parcel. One such, NetOx, is changed only by gaseous exchange with the atmosphere, exchange with the benthos, or the production or consumption of sinking particles. A simplified version of NetOx, NetOx = [O2] + 1.25[NO3-] - [TOC], where TOC (total organic carbon), the dissolved organic carbon (DOC) plus the suspended particulate organic carbon (POC), provides an index based on the usually dominant variables. Calculation of NetOx and a second property, NetOC ([O2] - [TOC]), for data from GEOSECS and ourselves in the Atlantic and Pacific oceans using property-property graphs show differences from those from oxygen deficits alone. Comparison of NetOx and NetOC concentrations at high and low latitudes of the Pacific Ocean shows the difference in surface water oxidant concentrations is even larger than the difference in oxygen concentration. Vertical particle fluxes off Peru calculated from NetOx gradients are much greater than those calculated from oxygen gradients. The potential value of NetOx and NetOC as parameters to understand particle fluxes implies that determination of TOC should be a routine part of hydrographic measurements.
Walter, D.A.; Rea, B.A.; Stollenwerk, K.G.; Savoie, Jennifer G.
1995-01-01
The disposal of secondarily treated sewage onto rapid infiltration sand beds at the Massachusetts Military Reservation, Cape Cod, Massachusetts, has created a sewage plume in the underlying sand and gravel aquifer; the part of the\\x11sewage plume that contains dissolved phosphorus extends about 2,500 feet downgradient of the sewage-disposal beds. A part of the plume that\\x11contains nearly 2 milligrams per liter of phosphorus currently (1993) discharges into Ashumet Pond along about 700 feet of shoreline. The sewage plume discharges from about 59 to about 76 kilograms of phosphorus per year into the pond. Hydraulic-head measurements indicate that the north end of Ashumet Pond is a ground-water sink and an increased component of ground-water discharge and phosphorus flux into\\x11the pond occurs at higher water levels. Phosphorus was mobile in ground water in two distinct geochemical environments-an anoxic zone that contains no dissolved oxygen and as much as 25\\x11milligrams per liter of dissolved iron, and a more areally extensive suboxic zone that contains little or no iron, low but detectable dissolved oxygen, and as much as 12 milligrams per liter of dissolved manganese. Dissolved phosphorus is mobile in the suboxic geochemical environment because continued phosphorus loading has filled available sorption sites in the aquifer. Continued disposal of sewage since 1936 has created a large reservoir of sorbed phosphorus that is much greater than the mass of dissolved phosphorus in the ground water; the average ratio of sorbed to dissolved phosphorus in the anoxic and suboxic parts of the sewage plume were 31:1 and 155:1, respectively. Column experiments indicate that phosphorus in the anoxic core of the plume containing dissolved iron may be immobilized within 17 years by sorption and coprecipitation with new iron oxyhydroxides following the cessation of sewage disposal and the introduction of uncontaminated oxygenated ground water into the aquifer in December 1995. Residual oxygen demand associated with sorbed organic compounds and ammonia could retard the movement of oxygenated water into the aquifer. Sorbed phosphorus in the suboxic zone of the aquifer will continue to desorb into the ground water and will remain mobile in the ground water for perhaps hundreds of years. Also, the introduction of uncontaminated water into the aquifer may cause dissolved-phosphorus concentrations in the suboxic zone of the aquifer to increase sharply and remain higher than precessation levels for many years due to the desorption of loosely bound phosphorus. Data from three sampling sites, located along the eastern and western boundaries of the sewage plume and downgradient of abandoned sewage-disposal beds, indicate that ground-water mixing and phosphorus desorption may already be occurring in the aquifer in response to the introduction of uncontaminated recharge water into previously contaminated parts of the aquifer.
Sediment oxygen demand in the Saddle River and Salem River watersheds, New Jersey, July-August 2008
Heckathorn, Heather A.; Gibs, Jacob
2010-01-01
Many factors, such as river depth and velocity, biochemical oxygen demand, and algal productivity, as well as sediment oxygen demand, can affect the concentration of dissolved oxygen in the water column. Measurements of sediment oxygen demand, in conjunction with those of other water-column water-quality constituents, are useful for quantifying the mechanisms that affect in-stream dissolved-oxygen concentrations. Sediment-oxygen-demand rates are also needed to develop and calibrate a water-quality model being developed for the Saddle River and Salem River Basins in New Jersey to predict dissolved-oxygen concentrations. This report documents the methods used to measure sediment oxygen demand in the Saddle River and Salem River watersheds along with the rates of sediment oxygen demand that were obtained during this investigation. In July and August 2008, sediment oxygen demand was measured in situ in the Saddle River and Salem River watersheds. In the Saddle River Basin, sediment oxygen demand was measured twice at two sites and once at a third location; in the Salem River Basin, sediment oxygen demand was measured three times at two sites and once at a third location. In situ measurements of sediment oxygen demand in the Saddle River and Salem River watersheds ranged from 0.8 to 1.4 g/m2d (grams per square meter per day) and from 0.6 to 7.1 g/m2d at 20 degrees Celsius, respectively. Except at one site in this study, rates of sediment oxygen demand generally were low. The highest rate of sediment oxygen demand measured during this investigation, 7.1 g/m2d, which occurred at Courses Landing in the Salem River Basin, may be attributable to the consumption of oxygen by a large amount of organic matter (54 grams per kilogram as organic carbon) in the streambed sediments or to potential error during data collection. In general, sediment oxygen demand increased with the concentration of organic carbon in the streambed sediments. Repeated measurements made 6 to 7 days apart at the same site locations resulted in similar values.
Smith, Jennifer E.; Thompson, Melissa
2014-01-01
While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortality in the direct vicinity. Most of the processes likely causing such algal exudate induced coral mortality have been quantified (e.g., labile organic matter release, increased microbial metabolism, decreased dissolved oxygen availability), yet little is known about how reduced dissolved oxygen concentrations affect competitive dynamics between seaweeds and corals. The goals of this study were to investigate the effects of different levels of oxygen including hypoxic conditions on a common hermatypic coral Acropora yongei and the common green alga Bryopsis pennata. Specifically, we examined how photosynthetic oxygen production, dark and daylight adapted quantum yield, intensity and anatomical distribution of the coral innate fluorescence, and visual estimates of health varied with differing background oxygen conditions. Our results showed that the algae were significantly more tolerant to extremely low oxygen concentrations (2–4 mg L−1) than corals. Furthermore corals could tolerate reduced oxygen concentrations, but only until a given threshold determined by a combination of exposure time and concentration. Exceeding this threshold led to rapid loss of coral tissue and mortality. This study concludes that hypoxia may indeed play a significant role, or in some cases may even be the main cause, for coral tissue loss during coral-algae interaction processes. PMID:24482757
Haas, Andreas F; Smith, Jennifer E; Thompson, Melissa; Deheyn, Dimitri D
2014-01-01
While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortality in the direct vicinity. Most of the processes likely causing such algal exudate induced coral mortality have been quantified (e.g., labile organic matter release, increased microbial metabolism, decreased dissolved oxygen availability), yet little is known about how reduced dissolved oxygen concentrations affect competitive dynamics between seaweeds and corals. The goals of this study were to investigate the effects of different levels of oxygen including hypoxic conditions on a common hermatypic coral Acropora yongei and the common green alga Bryopsis pennata. Specifically, we examined how photosynthetic oxygen production, dark and daylight adapted quantum yield, intensity and anatomical distribution of the coral innate fluorescence, and visual estimates of health varied with differing background oxygen conditions. Our results showed that the algae were significantly more tolerant to extremely low oxygen concentrations (2-4 mg L(-1)) than corals. Furthermore corals could tolerate reduced oxygen concentrations, but only until a given threshold determined by a combination of exposure time and concentration. Exceeding this threshold led to rapid loss of coral tissue and mortality. This study concludes that hypoxia may indeed play a significant role, or in some cases may even be the main cause, for coral tissue loss during coral-algae interaction processes.
Lopes, Paulo; Silva, Maria A; Pons, Alexandre; Tominaga, Takatoshi; Lavigne, Valérie; Saucier, Cédric; Darriet, Philippe; Teissedre, Pierre-Louis; Dubourdieu, Denis
2009-11-11
This work outlines the results from an investigation to determine the effect of the oxygen dissolved at bottling and the specific oxygen barrier properties of commercially available closures on the composition, color and sensory properties of a Bordeaux Sauvignon Blanc wine during two years of storage. The importance of oxygen for wine development after bottling was also assessed using an airtight bottle ampule. Wines were assessed for the antioxidants (SO(2) and ascorbic acid), varietal thiols (4-mercapto-4-methylpentan-2-one, 3-mercaptohexan-1-ol), hydrogen sulfide and sotolon content, and color throughout 24 months of storage. In addition, the aroma and palate properties of wines were also assessed. The combination of oxygen dissolved at bottling and the oxygen transferred through closures has a significant effect on Sauvignon Blanc development after bottling. Wines highly exposed to oxygen at bottling and those sealed with a synthetic, Nomacorc classic closure, highly permeable to oxygen, were relatively oxidized in aroma, brown in color, and low in antioxidants and volatile compounds compared to wines sealed with other closures. Conversely, wines sealed under more airtight conditions, bottle ampule and screw cap Saran-tin, have the slowest rate of browning, and displayed the greatest contents of antioxidants and varietal thiols, but also high levels of H(2)S, which were responsible for the reduced dominating character found in these wines, while wines sealed with cork stoppers and screw cap Saranex presented negligible reduced and oxidized characters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khangaonkar, Tarang; Sackmann, Brandon; Long, Wen
2012-08-14
Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics.more » Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5–20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. Finally, by late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.« less
Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie
2016-01-01
In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502
Marine methane paradox explained by bacterial degradation of dissolved organic matter
NASA Astrophysics Data System (ADS)
Repeta, Daniel J.; Ferrón, Sara; Sosa, Oscar A.; Johnson, Carl G.; Repeta, Lucas D.; Acker, Marianne; Delong, Edward F.; Karl, David M.
2016-12-01
Biogenic methane is widely thought to be a product of archaeal methanogenesis, an anaerobic process that is inhibited or outcompeted by the presence of oxygen and sulfate. Yet a large fraction of marine methane delivered to the atmosphere is produced in high-sulfate, fully oxygenated surface waters that have methane concentrations above atmospheric equilibrium values, an unexplained phenomenon referred to as the marine methane paradox. Here we use nuclear magnetic resonance spectroscopy to show that polysaccharide esters of three phosphonic acids are important constituents of dissolved organic matter in seawater from the North Pacific. In seawater and pure culture incubations, bacterial degradation of these dissolved organic matter phosphonates in the presence of oxygen releases methane, ethylene and propylene gas. Moreover, we found that in mutants of a methane-producing marine bacterium, Pseudomonas stutzeri, disrupted in the C-P lyase phosphonate degradation pathway, methanogenesis was also disabled, indicating that the C-P lyase pathway can catalyse methane production from marine dissolved organic matter. Finally, the carbon stable isotope ratio of methane emitted during our incubations agrees well with anomalous isotopic characteristics of seawater methane. We estimate that daily cycling of only about 0.25% of the organic matter phosphonate inventory would support the entire atmospheric methane flux at our study site. We conclude that aerobic bacterial degradation of phosphonate esters in dissolved organic matter may explain the marine methane paradox.
Statistical Exposé of a Multiple-Compartment Anaerobic Reactor Treating Domestic Wastewater.
Pfluger, Andrew R; Hahn, Martha J; Hering, Amanda S; Munakata-Marr, Junko; Figueroa, Linda
2018-06-01
Mainstream anaerobic treatment of domestic wastewater is a promising energy-generating treatment strategy; however, such reactors operated in colder regions are not well characterized. Performance data from a pilot-scale, multiple-compartment anaerobic reactor taken over 786 days were subjected to comprehensive statistical analyses. Results suggest that chemical oxygen demand (COD) was a poor proxy for organics in anaerobic systems as oxygen demand from dissolved inorganic material, dissolved methane, and colloidal material influence dissolved and particulate COD measurements. Additionally, univariate and functional boxplots were useful in visualizing variability in contaminant concentrations and identifying statistical outliers. Further, significantly different dissolved organic removal and methane production was observed between operational years, suggesting that anaerobic reactor systems may not achieve steady-state performance within one year. Last, modeling multiple-compartment reactor systems will require data collected over at least two years to capture seasonal variations of the major anaerobic microbial functions occurring within each reactor compartment.
Water quality in the tidal Potomac River and Estuary, hydrologic data report, 1979 water year
Blanchard, Stephen F.; Hahl, D.C.
1981-01-01
This report contains data on the physical and chemical properties measured during the 1979 water year for the tidal Potomac River and estuary. Data were collected routinely at five major stations and periodically at 14 intervening stations. Each major station represents a cross section through which the transport of selected dissolved and suspended materials will be computed. The intervening stations represent locations at which data were collected for special studies such as: salt water migration, dissolved oxygen dynamics, and other synoptic studies. About 960 samples were analyzed for silicate, Kjeldhal nitrogen, nitrite, phosphorus, chlorophyll and suspended sediment, with additional samples analyzed for organic carbon, calcium, magnesium, sodium, bicarbonate, sulfate, potassium, chloride, fluoride, seston and dissolved solids residue. In addition, about 1400 in-situ measurements of dissolved oxygen, specific conductance, temperature, and Secchi disk transparency are reported. (USGS)
BIODEGRADATION OF AROMATIC COMPOUNDS UNDER MIXED OXYGEN/DENITRIFYING CONDITIONS: A REVIEW
Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria...
NASA Astrophysics Data System (ADS)
Shulaker, D. Z.; Kohl, I.; Coleman, M. L.
2011-12-01
Studying regions on Earth that are analogous to Mars serve as case studies for studying astrobiology and planetary surface rock formation processes. Rio Tinto, Spain is very rich in iron sulfates, and has an environment that is possibly very similar to the former environment on Mars. Certain bacteria play significant roles in accelerating pyrite oxidation rates, the products of which contribute to the formation of ferrous sulfates, such as melanterite. During mineral crystallization in an aqueous solution, there are systematic isotopic differences between dissolved species and solid phases. Quantifying this fractionation enables isotopic analysis to be used to trace the original isotopic signature of the dissolved species. Isotope fractionation has been determined for minerals such as gypsum and epsomite, and from these results and theoretical predictions, it is expected that melanterite, a mineral potentially found on Mars, would be more enriched in oxygen-18 relative to the aqueous solution from which it crystallized.Thus, determining the oxygen-18 isotopic fractionation between melanterite and dissolved sulfate has many potential benefits for understanding surface processes on Mars and its past environment. To investigate the oxygen isotope fractionation for melanterite, acidic aqueous solutions saturated with dissolved hydrated ferrous sulfate were evaporated at 25 deg C and 40 deg C and under different conditions to induce different evaporation rates. During evaporation, the aqueous solution and crystallized melanterite were sampled at different stages. Oxygen-18 isotopic compositions were then measured. However, the fractionations observed in the experiments were opposite from predictions. At 25 deg C without enhanced evaporation, the dissolved sulfate was +5.5 per mil relative to the solid, while at 40 deg C it was +4.3 per mil. With enhanced evaporation, fractionation was +2.1 per mil, while at 40 deg C it was +3.6 per mil. In addition, at 40 deg C, evaporation rates and fractionation were larger than at 25 deg C. Because no Rayleigh fractionation was observed, this system was not in equilibrium, and was most likely dominated by kinetics. Because of the unexpected results, further research will be conducted on the oxygen isotope fractionation of melanterite.
Neale, Alex R; Li, Peilin; Jacquemin, Johan; Goodrich, Peter; Ball, Sarah C; Compton, Richard G; Hardacre, Christopher
2016-04-28
This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in different ILs. The viscosity of the ILs and the calculated molar volume and free volume are also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying that oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of an ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas.
Du, Ziyan; He, Yingsheng; Fan, Jianing; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Qu, Xiaolei; Kong, Ao; Zhu, Dongqiang
2018-03-01
Dissolved black carbon (DBC) is ubiquitous in aquatic systems, being an important subgroup of the dissolved organic matter (DOM) pool. Nevertheless, its aquatic photoactivity remains largely unknown. In this study, a range of spectroscopic indices of DBC and humic substance (HS) samples were determined using UV-Vis spectroscopy, fluorescence spectroscopy, and proton nuclear magnetic resonance. DBC can be readily differentiated from HS using spectroscopic indices. It has lower average molecular weight, but higher aromaticity and lignin content. The apparent singlet oxygen quantum yield (Φ singlet oxygen ) of DBC under simulated sunlight varies from 3.46% to 6.13%, significantly higher than HS, 1.26%-3.57%, suggesting that DBC is the more photoactive component in the DOM pool. Despite drastically different formation processes and structural properties, the Φ singlet oxygen of DBC and HS can be well predicted by the same simple linear regression models using optical indices including spectral slope coefficient (S 275-295 ) and absorbance ratio (E 2 /E 3 ) which are proxies for the abundance of singlet oxygen sensitizers and for the significance of intramolecular charge transfer interactions. The regression models can be potentially used to assess the photoactivity of DOM at large scales with in situ water spectrophotometry or satellite remote sensing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Landmeyer, James E.; Effinger, Thomas N.
2016-01-01
Concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site near Charleston, South Carolina, USA, have been monitored since the installation of a phytoremediation system of hybrid poplar trees in 1998. Between 2000 and 2014, the concentrations of benzene, toluene, and naphthalene (BT&N) in groundwater in the planted area have decreased. For example, in the monitoring well containing the highest concentrations of BT&N, benzene concentrations decreased from 10,200 µg/L to less than 4000 µg/L, toluene concentrations decreased from 2420 µg/L to less than 20 µg/L, and naphthalene concentrations decreased from 6840 µg/L to less than 3000 µg/L. Concentrations of BT&N in groundwater in all wells were observed to be lower during the summer months relative to the winter months of a particular year during the first few years after installing the phytoremediation system, most likely due to increased transpiration and contaminant uptake by the hybrid poplar trees during the warm summer months; this pathway of uptake by trees was confirmed by the detection of benzene, toluene, and naphthalene in trees during sampling events in 2002, and later in the study in 2012. These data suggest that the phytoremediation system affects the groundwater contaminants on a seasonal basis and, over multiple years, has resulted in a cumulative decrease in dissolved-phase contaminant concentrations in groundwater. The removal of dissolved organic contaminants from the aquifer has resulted in a lower demand on dissolved oxygen supplied by recharge and, as a result, the redox status of the groundwater has changed from anoxic to oxic conditions. This study provides much needed information for water managers and other scientists on the viability of the long-term effectiveness of phytoremediation in decreasing groundwater contaminants and increasing dissolved oxygen at sites contaminated by benzene, toluene, and naphthalene.
Effect of hemoglobin polymerization on oxygen transport in hemoglobin solutions.
Budhiraja, Vikas; Hellums, J David
2002-09-01
The effect of hemoglobin (Hb) polymerization on facilitated transport of oxygen in a bovine hemoglobin-based oxygen carrier was studied using a diffusion cell. In high oxygen tension gradient experiments (HOTG) at 37 degrees C the diffusion of dissolved oxygen in polymerized Hb samples was similar to that in unpolymerized Hb solutions during oxygen uptake. However, in the oxygen release experiments, the transport by diffusion of dissolved oxygen was augmented by diffusion of oxyhemoglobin over a range of oxygen saturations. The augmentation was up to 30% in the case of polymerized Hb and up to 100% in the case of unpolymerized Hb solution. In experiments performed at constant, low oxygen tension gradients in the range of physiological significance, the augmentation effect was less than that in the HOTG experiments. Oxygen transport in polymerized Hb samples was approximately the same as that in unpolymerized samples over a wide range of oxygen tensions. However, at oxygen tensions lower than 30 mm Hg, there were more significant augmentation effects in unpolymerized bovine Hb samples than in polymerized Hb. The results presented here are the first accurate, quantitative measurements of effective diffusion coefficients for oxygen transport in hemoglobin-based oxygen carriers of the type being evaluated to replace red cells in transfusions. In all cases the oxygen carrier was found to have higher effective oxygen diffusion coefficients than blood.
Yin, Chun-Yun; Zhou, Ying; Ye, Bang-Ce
2011-01-01
Dissolved oxygen (DO) is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616), we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min) and low oxygen supply (agitation 450 r/min). The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow), inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine) and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism. PMID:21625606
Trends in the quality of water in New Jersey streams, water years 1998-2007
Hickman, R. Edward; Gray, Bonnie J.
2010-01-01
Trends were determined in flow-adjusted values of selected water-quality characteristics measured year-round during water years 1998-2007 (October 1, 1997, through September 30, 2007) at 70 stations on New Jersey streams. Water-quality characteristics included in the analysis are dissolved oxygen, pH, total dissolved solids, total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite. In addition, trend tests also were conducted on measurements of dissolved oxygen made only during the growing season, April to September. Nearly all the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the New Jersey Department of Environmental Protection Ambient Surface-Water Quality Monitoring Network. Monotonic trends in flow-adjusted values of water quality were determined by use of procedures in the ESTREND computer program. A 0.05 level of significance was selected to indicate a trend. Results of tests were not reported if there were an insufficient number of measurements or insufficient number of detected concentrations, or if the results of the tests were affected by a change in data-collection methods. Trends in values of dissolved oxygen, pH, and total dissolved solids were identified using the Seasonal Kendall test. Trends or no trends in year-round concentrations of dissolved oxygen were determined for 66 stations; decreases at 4 stations and increases at 0 stations were identified. Trends or no trends in growing-season concentrations of dissolved oxygen were determined for 65 stations; decreases at 4 stations and increases at 4 stations were identified. Tests of pH values determined trends or no trends at 26 stations; decreases at 2 stations and increases at 3 stations were identified. Trends or no trends in total dissolved solids were reported for all 70 stations; decreases at 0 stations and increases at 24 stations were identified. Trends in total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite were identified by use of Tobit regression. Two sets of trend tests were conducted-one set with all measurements and a second set with all measurements except the most extreme outlier if one could be identified. The result of the test with all measurements is reported if the results of the two tests are equivalent. The result of the test without the outlier is reported if the results of the two tests are not equivalent. Trends or no trends in total phosphorus were determined for 69 stations. Decreases at 12 stations and increases at 5 stations were identified. Of the five stations on the Delaware River included in this study, decreases in concentration were identified at four. Trends or no trends in total organic nitrogen plus ammonia were determined for 69 stations. Decreases and increases in concentrations were identified at six and nine stations, respectively. Trends or no trends in dissolved nitrate plus nitrite were determined for 66 stations. Decreases and increases in concentration were identified at 4 and 19 stations, respectively.
Testing and Validation Studies of the NSMII-Benthic Sediment Diagenesis Module
2016-07-01
NSMII analytical vs. numerical solutions of sediment methane ............................ 27 3.2.4 Comparisons of the diagenesis rates of three sediment...26 Figure 12. Comparisons of NSMII analytical vs. numerical solutions of sediment methane : (a) layer 2’s CH4, (b...oxygen demand mg-O2 L-1 0-10 CH4 Methane mg-O2 L-1 On/Off HxS Total dissolved sulfides mg-O2 L-1 On/Off DO Dissolved oxygen mg-O2 L-1 On BSi
Speiran, Gary K.
1996-01-01
Local and regional patterns in the organic content of sediments in the surficial aquifer, as reflected in topography and land use, control dissolved oxygen and nitrate concentrations in ground water that recharged through agricultural fields and flowed beneath riparian woodlands. Dissolved oxygen and nitrate concentrations decreased beneath the woodlands as a result of changes in the organic content of the sediments that resulted from deposition of the sediments, not the current presence of riparian woodlands.
A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium
NASA Astrophysics Data System (ADS)
Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng
2018-05-01
NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness ( R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.
Lambert, Mary S; Ozbay, Gulnihal; Richards, Gary P
2009-08-01
We evaluated the quality of seawater and ribbed mussels (Gukensia demissa) at six sites along the West Coast of Assateague Island National Seashore (ASIS), a barrier island popular with tourists and fishermen. Parameters evaluated were summertime temperature, pH, salinity, dissolved oxygen, total phosphorus, total ammonia nitrogen, and nitrite levels for seawater and total heterotrophic plate counts and total Vibrionaceae levels for the ribbed mussels. Approximately 150 feral horses (Equus caballus) are located on ASIS and, combined with agricultural runoff from animals and croplands, local wildlife, and anthropogenic inputs, contribute to nutrient loads affecting water and shellfish quality. The average monthly dissolved oxygen for June was 2.65 mg L(-1), below the minimum acceptable threshold of 3.0 mg L(-1). Along Chincoteague Bay, total phosphorus generally exceeded the maximum level of 0.037 mg L(-1), as set by the Maryland Coastal Bays Program management objective for seagrasses, with a high of 1.92 mg L(-1) in June, some 50-fold higher than the recommended threshold. Total ammonia nitrogen approached levels harmful to fish, with a maximum recorded value of 0.093 mg L(-1). Levels of total heterotrophic bacteria spiked to 9.5 x 10(6) cells g(-1) of mussel tissue in August in Sinepuxent Bay, leading to mussels which exceeded acceptable standards for edible bivalves by 19-fold. An average of 76% of the bacterial isolates were in the Vibrionaceae family. Together, these data suggest poor stewardship of our coastal environment and the need for new intervention strategies to reduce chemical and biological contamination of our marine resources.
A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium
NASA Astrophysics Data System (ADS)
Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng
2018-04-01
NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness (R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.
Haag, K.H.; Garcia, Rene; Jarrett, G.L.; Porter, S.D.
1995-01-01
The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water-Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of water-quality constituents including metals and trace elements, nutrients, sediments, pesticides, dissolved oxygen, and fecal-coliform bacteria. Oil-production activities were the source of barium, bromide, chloride, magnesium, and sodium in several watersheds. High concentrations of aluminum, iron, and zinc were related to surface mining in the Eastern Coal Field Region. High concentrations of lead and zinc occurred in streambed sediments in urban areas, whereas concentrations of arsenic, strontium, and uranium were associated with natural geologic sources. Concentrations of phosphorus were significantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, most of the stream nitrogen load was attributable to wastewater-treatment-plant effluent. Average suspended-sediment concentrations were positively correlated with discharge. There was a downward trend in suspended-sediment concentrations downstream in the Kentucky River main stem during the study. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organophosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, and lindane were found in streambed-sediment samples. Dissolved-oxygen concentrations were sometimes below the minimum concentration needed to sustain aquatic life. At some sites, high concentrations of fecal-indicator bacteria were found and water samples did not meet sanitary water-quality criteria.
Ebbert, James C.
2003-01-01
The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1°C (degrees Celsius) at river mile 4.9 and 19.6°C at river mile 1.8 exceeded the water-quality standard of 18°C at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River.Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The lower limit allowed by the water-quality standard is 8 mg/L. Concentrations of dissolved oxygen measured in a cross section of the Puyallup River estuary at high tide on September 12, 2002, ranged from 9.9 to 10.2 mg/L in fresh water at the surface and from 8.1 to 8.4 mg/L in salt water near the riverbed. These values were within limits set by Washington State water-quality standards for dissolved oxygen of 8 mg/L in fresh water and 6 mg/L in marine water.
Using turbidity for designing water networks.
Castaño, J A; Higuita, J C
2016-05-01
Some methods to design water networks with minimum fresh water consumption are based on the selection of a key contaminant. In most of these "single contaminant methods", a maximum allowable concentration of contaminants must be established in water demands and water sources. Turbidity is not a contaminant concentration but is a property that represents the "sum" of other contaminants, with the advantage that it can be cheaper and easily measured than biological oxygen demand, chemical oxygen demand, suspended solids, dissolved solids, among others. The objective of this paper is to demonstrate that turbidity can be used directly in the design of water networks just like any other contaminant concentration. A mathematical demonstration is presented and in order to validate the mathematical results, the design of a water network for a guava fudge production process is performed. The material recovery pinch diagram and nearest neighbors algorithm were used for the design of the water network. Nevertheless, this water network could be designed using other single contaminant methodologies. The maximum error between the expected and the real turbidity values in the water network was 3.3%. These results corroborate the usefulness of turbidity in the design of water networks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Amperometric monochloramine detection using newly fabricated gold, platinum, and carbon-fiber microsensors was investigated to optimize sensor operation and eliminate oxygen interference. Gold and platinum microsensors exhibited no oxygen interference during monochloramine measu...
Fraker, Christopher A; Mendez, Armando J; Stabler, Cherie L
2011-09-08
Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions.
NASA Astrophysics Data System (ADS)
Larkin, K. E.; Gooday, A. J.; Woulds, C.; Jeffreys, R.; Schwartz, M.; Cowie, G.; Whitcraft, C.; Levin, L.; Dick, J. R.; Pond, D. W.
2014-01-01
Foraminifera are an important component of benthic communities in oxygen depleted settings, where they potentially play a~significant role in the processing of organic matter. We tracked the uptake of a 13C-labeled algal food source into individual fatty acids in the benthic foraminiferal species, Uvigerina ex. gr. semiornata, from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan Margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was 13C-labeled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m and for 2.5 days duration, whilst a laboratory incubation used an oxystat system to maintain ambient dissolved oxygen concentrations. These shipboard experiments were terminated after 5 days. Uptake of diatoms was rapid, with high incorporation of diatom fatty acids into foraminifera after ~2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in~situ and laboratory-based experiments. These results indicate that U. ex. gr. semiornata rapidly ingested the diatom food source and that this foraminifera will play an important role in the short-term cycling of organic matter within this OMZ environment. The experiments also suggested that U. ex. gr. semiornata consumed non-labeled bacterial food items, particularly bacteria, and synthesised the polyunsaturated fatty acid 20:4(n-6) de novo. 20:4(n-6) is often abundant in benthic fauna yet its origins and function have remained unclear. This study demonstrates that U. ex. gr. semiornata is capable of de novo synthesis of this "essential fatty acid" and is potentially a major source of this dietary nutrient in benthic food webs.
Ocean deoxygenation in a warming world.
Keeling, Ralph E; Körtzinger, Arne; Gruber, Nicolas
2010-01-01
Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.
Ionic strength and DOC determinations from various freshwater sources to the San Francisco Bay
Hunter, Y.R.; Kuwabara, J.S.
1994-01-01
An exact estimation of dissolved organic carbon (DOC) within the salinity gradient of zinc and copper metals is significant in understanding the limit to which DOC could influence metal speciation. A low-temperature persulfate/oxygen/ultraviolet wet oxidation procedure was utilized for analyzing DOC samples adapted for ionic strength from major freshwater sources of the northern and southern regions of San Francisco Bay. The ionic strength of samples was modified with a chemically defined seawater medium up to 0.7M. Based on the results, a minimum effect of ionic strength on oxidation proficiency for DOC sources to the Bay over an ionic strength gradient of 0.0 to 0.7 M was observed. There was no major impacts of ionic strength on two Suwanee River fulvic acids. In general, the noted effects associated with ionic strength were smaller than the variances seen in the aquatic environment between high- and low-temperature methods.
Geochemistry of thermal water from selected wells, Boise, Idaho
Mariner, R.H.; Young, H.W.; Parliman, D.J.; Evans, William C.
1989-01-01
Samples of thermal water from selected wells in the Boise area were analyzed for chemical composition; stable isotopes of hydrogen, oxygen, and dissolved carbon; radioactive carbon; and dissolved-gas concentrations. Chemically, the waters are virtually identical to those of the adjacent Idaho batholith. Isotopically, the thermal waters are more depleted in deuterium and oxygen-18 than coldwater springs in the presumed recharge area. Chemical and isotopic data indicate the presence of two separate geothermal systems. Radioactive carbon and dissolved helium concentrations are interpreted to indicate recharge during the Pleistocene. Hot water in or southeast of Boise probably recharged 20,000 to 30,000 years ago, and warm water 2.5 miles northwest of Boise probably recharged at least 15,000 years ago.
NASA Astrophysics Data System (ADS)
Yaşar Korkanç, Selma; Kayıkçı, Sedef; Korkanç, Mustafa
2017-05-01
The aim of this study is to investigate the water pollution in the Akkaya Dam watershed spatially and temporally and put forward management suggestions in a watershed scale. For this purpose, monthly water sampling was performed from 11 sampling stations on streams that fed the dam. According to land surveys they have a potential to inflict pollution to the dam. Thus the physical and chemical parameters (i.e. pH, dissolved oxygen, electrical conductivity, temperature, chemical oxygen demand, turbidity and suspended solids) were monitored monthly for 1-year period. Chloride, sulfate, total nitrogen, ammonium, nitrite, nitrate were monitored for a 6-month period, and the results were evaluated in accordance with the Turkish Regulation of Surface Water Quality Management. Results of the study show that the most important reasons for the pollution in the dam are caused by domestic and industrial wastewaters, which were released to the system without being treated, or without being sufficiently treated, and also of agricultural activities. It was determined that electrical conductivity, dissolved oxygen, turbidity, chemical oxygen demand, suspended solids, nitrite, nitrate, total nitrogen, sulfate, and chloride parameters which were high at the sampling stations where domestic and industrial wastewaters discharge were present. pH and temperature demonstrate a difference at a significant level by seasons. As a result of the study, it was determined that the water was of IVth quality in terms of nitrate, chemical oxygen demand, and total nitrogen, and it was of IIIrd quality water with respect to ammonium, electrical conductivity, and dissolved oxygen. It was observed that the dam outflow water was of IVth quality with respect to nitrate, chemical oxygen demand, and total nitrogen, and of IIIrd quality with respect to dissolved oxygen and electrical conductivity. It is considered that the pollution problem in the Akkaya Dam can only be resolved with prevention studies on a watershed scale. Therefore, coordination between the institutions is necessary. The preparation for the integrated water management plan of the watershed will provide a significant contribution to the solution of the water quality problem.
Beman, J Michael; Leilei Shih, Joy; Popp, Brian N
2013-01-01
Nitrogen (N) is an essential nutrient in the sea and its distribution is controlled by microorganisms. Within the N cycle, nitrite (NO2−) has a central role because its intermediate redox state allows both oxidation and reduction, and so it may be used by several coupled and/or competing microbial processes. In the upper water column and oxygen minimum zone (OMZ) of the eastern tropical North Pacific Ocean (ETNP), we investigated aerobic NO2− oxidation, and its relationship to ammonia (NH3) oxidation, using rate measurements, quantification of NO2−-oxidizing bacteria via quantitative PCR (QPCR), and pyrosequencing. 15NO2− oxidation rates typically exhibited two subsurface maxima at six stations sampled: one located below the euphotic zone and beneath NH3 oxidation rate maxima, and another within the OMZ. 15NO2− oxidation rates were highest where dissolved oxygen concentrations were <5 μM, where NO2− accumulated, and when nitrate (NO3−) reductase genes were expressed; they are likely sustained by NO3− reduction at these depths. QPCR and pyrosequencing data were strongly correlated (r2=0.79), and indicated that Nitrospina bacteria numbered up to 9.25% of bacterial communities. Different Nitrospina groups were distributed across different depth ranges, suggesting significant ecological diversity within Nitrospina as a whole. Across the data set, 15NO2− oxidation rates were decoupled from 15NH4+ oxidation rates, but correlated with Nitrospina (r2=0.246, P<0.05) and NO2− concentrations (r2=0.276, P<0.05). Our findings suggest that Nitrospina have a quantitatively important role in NO2− oxidation and N cycling in the ETNP, and provide new insight into their ecology and interactions with other N-cycling processes in this biogeochemically important region of the ocean. PMID:23804152
NASA Astrophysics Data System (ADS)
Gonsalves, M.-J.; Paropkari, A. L.; Fernandes, C. E. G.; Loka Bharathi, P. A.; Krishnakumari, L.; Fernando, V.; Nampoothiri, G. E.
2011-08-01
The presence of a delicately poised mid-depth oxygen minimum zone (OMZ) makes the Arabian Sea a unique and important ecosystem. So far, various aspects responsible for its formation have been studied. However, the contributions from bacterial groups mediating its formation and maintaining its intensity are described for the first time in this study. Thus, we hypothesize that the bacterial dynamics along with organic carbon loading result in bringing about differences in the intensity of OMZ between two stations in the Eastern Arabian Sea (EAS). Water column from 2 stations, one from offshore and another from slope, in the EAS were examined for phytoplankton diversity and pertinent groups of culturable bacteria. Vertical profiles of dissolved oxygen, productivity, chlorophyll a, total organic carbon and different physiological groups of bacteria showed well-defined stratified patterns in tandem with physical and chemical stratifications of the water column. The phytoplankton diversity was higher at the slope station (SS) and was dominated by the heterotrophic dinoflagellates. The offshore station (OS) on the other hand, showed lower diversity dominated by diatoms ( p<0.05). This observation could imply relatively higher autotrophy at the OS. Our results show that OMZ from these 'oligotrophic' regions is dominated by anaerobic bacteria. We believe that these bacteria contribute to intensify the OMZ in the EAS. Further, a higher abundance of viable anaerobic bacteria (TVC anaero) and other anaerobic groups at the SS than the OS suggest that the OMZ is relatively much more intense near the slope. Besides, total organic carbon (TOC) load is three-fold higher at the SS than at OS implying its higher accumulation and lower degradability in slope waters. Settling of this more preserved organic carbon in mid-slope sediments in contact with OMZ results in one of the highest enrichments of sedimentary TOC in the world oceans.
Simon, N.S.; Kennedy, M.M.; Massoni, C.S.
1985-01-01
Field and laboratory evaluations were made of a simple, inexpensive diffusion-controlled sampler with ports on two sides at each interval which incorporates 0.2-??m polycarbonate membrane to filter samples in situ. Monovalent and divalent ions reached 90% of equilibrium between sampler contents and the external solution within 3 and 6 hours, respectively. Sediment interstitial water chemical gradients to depths of tens of centimeters were obtained within several days after placement. Gradients were consistent with those determined from interstitial water obtained by centrifugation of adjacent sediment. Ten milliliter sample volumes were collected at 1-cm intervals to determine chemical gradients and dissolved oxygen profiles at depth and at the interface between the sediment and water column. The flux of dissolved species, including oxygen, across the sediment-water interface can be assessed more accurately using this sampler than by using data collected from benthic cores. ?? 1985 Dr W. Junk Publishers.
Effect of Growth Conditions and Trehalose Content on Cryotolerance of Bakers' Yeast in Frozen Doughs
Gélinas, Pierre; Fiset, Gisèle; LeDuy, Anh; Goulet, Jacques
1989-01-01
The cryotolerance in frozen doughs and in water suspensions of bakers' yeast (Saccharomyces cerevisiae) previously grown under various industrial conditions was evaluated on a laboratory scale. Fed-batch cultures were very superior to batch cultures, and strong aeration enhanced cryoresistance in both cases for freezing rates of 1 to 56°C min−1. Loss of cell viability in frozen dough or water was related to the duration of the dissolved-oxygen deficit during fed-batch growth. Strongly aerobic fed-batch cultures grown at a reduced average specific rate (μ = 0.088 h−1 compared with 0.117 h−1) also showed greater trehalose synthesis and improved frozen-dough stability. Insufficient aeration (dissolved-oxygen deficit) and lower growth temperature (20°C instead of 30°C) decreased both fed-batch-grown yeast cryoresistance and trehalose content. Although trehalose had a cryoprotective effect in S. cerevisiae, its effect was neutralized by even a momentary lack of excess dissolved oxygen in the fed-batch growth medium. PMID:16348024
The stress response system of proteins: Implications for bioreactor scaleup
NASA Technical Reports Server (NTRS)
Goochee, Charles F.
1988-01-01
Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.
Module for Oxygenating Water without Generating Bubbles
NASA Technical Reports Server (NTRS)
Gonzalez-Martin, Anuncia; Sidik, Reyimjan; Kim, Jinseong
2004-01-01
A module that dissolves oxygen in water at concentrations approaching saturation, without generating bubbles of oxygen gas, has been developed as a prototype of improved oxygenators for water-disinfection and water-purification systems that utilize photocatalyzed redox reactions. Depending on the specific nature of a water-treatment system, it is desirable to prevent the formation of bubbles for one or more reasons: (1) Bubbles can remove some organic contaminants from the liquid phase to the gas phase, thereby introducing a gas-treatment problem that complicates the overall water-treatment problem; and/or (2) in some systems (e.g., those that must function in microgravity or in any orientation in normal Earth gravity), bubbles can interfere with the flow of the liquid phase. The present oxygenation module (see Figure 1) is a modified version of a commercial module that contains >100 hollow polypropylene fibers with a nominal pore size of 0.05 m and a total surface area of 0.5 m2. The module was originally designed for oxygenation in a bioreactor, with no water flowing around or inside the tubes. The modification, made to enable the use of the module to oxygenate flowing water, consisted mainly in the encapsulation of the fibers in a tube of Tygon polyvinyl chloride (PVC) with an inside diameter of 1 in. (approx.=25 mm). In operation, water is pumped along the insides of the hollow fibers and oxygen gas is supplied to the space outside the hollow tubes inside the PVC tube. In tests, the pressure drops of water and oxygen in the module were found to be close to zero at water-flow rates ranging up to 320 mL/min and oxygen-flow rates up to 27 mL/min. Under all test conditions, no bubbles were observed at the water outlet. In some tests, flow rates were chosen to obtain dissolved-oxygen concentrations between 25 and 31 parts per million (ppm) . approaching the saturation level of approx.=35 ppm at a temperature of 20 C and pressure of 1 atm (approx.=0.1 MPa). As one would expect, it was observed that the time needed to bring a flow of water from an initial low dissolved-oxygen concentration (e.g., 5 ppm) to a steady high dissolved-oxygen concentration at or near the saturation level depends on the rates of flow of both oxygen and water, among other things. Figure 2 shows the results of an experiment in which a greater flow of oxygen was used during the first few tens of minutes to bring the concentration up to approx.=25 ppm, then a lesser flow was used to maintain the concentration.
Xu, Yuan; Vick-Majors, Trista; Morgan-Kiss, Rachael; Priscu, John C; Amaral-Zettler, Linda
2014-10-01
We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies. © 2014 Marine Biological Laboratory.
Modeling white sturgeon movement in a reservoir: The effect of water quality and sturgeon density
Sullivan, A.B.; Jager, H.I.; Myers, R.
2003-01-01
We developed a movement model to examine the distribution and survival of white sturgeon (Acipenser transmontanus) in a reservoir subject to large spatial and temporal variation in dissolved oxygen and temperature. Temperature and dissolved oxygen were simulated by a CE-QUAL-W2 model of Brownlee Reservoir, Idaho for a typical wet, normal, and dry hydrologic year. We compared current water quality conditions to scenarios with reduced nutrient inputs to the reservoir. White sturgeon habitat quality was modeled as a function of temperature, dissolved oxygen and, in some cases, suitability for foraging and depth. We assigned a quality index to each cell along the bottom of the reservoir. The model simulated two aspects of daily movement. Advective movement simulated the tendency for animals to move toward areas with high habitat quality, and diffusion simulated density dependent movement away from areas with high sturgeon density in areas with non-lethal habitat conditions. Mortality resulted when sturgeon were unable to leave areas with lethal temperature or dissolved oxygen conditions. Water quality was highest in winter and early spring and lowest in mid to late summer. Limiting nutrient inputs reduced the area of Brownlee Reservoir with lethal conditions for sturgeon and raised the average habitat suitability throughout the reservoir. Without movement, simulated white sturgeon survival ranged between 45 and 89%. Allowing movement raised the predicted survival of sturgeon under all conditions to above 90% as sturgeon avoided areas with low habitat quality. ?? 2003 Elsevier B.V. All rights reserved.
VOCs in shallow groundwater in new residential/commercial areas of the United States
Squillace, P.J.; Moran, M.J.; Price, C.V.
2004-01-01
The quality of shallow groundwater in urban areas was investigated by sampling 518 monitoring wells between 1996 and 2002 as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Well networks were installed primarily in new residential/commercial areas less than about 30 years old (17 studies) and in small towns (2 studies) by randomly locating as many as 30 monitoring wells in each study area. The median well depth was 10 m. Based on samples with age-date information, almost all groundwater was recharged after 1950. Samples were analyzed for 53 volatile organic compounds (VOCs). Concentrations ranged from about 0.001 to 1000 ??g/L (median 0.04), with less than 1% of the samples exceeding a Maximum Contamination Level or Drinking Water Advisory established by the U.S. Environmental Protection Agency. Using uncensored concentration data, at least one VOC was detected in 88% of the samples, and at least two VOCs were detected in 69% of the samples. Chloroform, toluene, and perchloroethene were the three most frequently detected VOCs. Dissolved oxygen concentration, estimated recharge index, and land-use were significant variables in logistic regression models that explained the presence of the commonly detected VOCs. Dissolved oxygen concentration was the most important explanatory variable in logistic regression models for 6 of the 14 most frequently detected VOCs. Bromodichloromethane, chloroform, and 1,1,1-trichloroethane had a positive correlation with dissolved oxygen; in contrast, dichloroethane, benzene, and toluene had a negative correlation with dissolved oxygen.
Bryson, Jeannie R.; Coupe, Richard H.; Manning, Michael A.
2007-01-01
The Mississippi Department of Environmental Quality is required to develop restoration and remediation plans for water bodies not meeting their designated uses, as stated in the U.S. Environmental Protection Agency's Clean Water Act section 303(d). The majority of streams in northwestern Mississippi are on the 303(d) list of water-quality limited waters. Agricultural effects on streams in northwestern Mississippi have reduced the number of unimpaired streams (reference streams) for water-quality comparisons. As part of an effort to develop an index to assess impairment, the U.S. Geological Survey collected water samples from 52 stream sites on the 303(d) list during May-June 2006, and analyzed the samples for nutrients and chlorophyll. The data were analyzed by trophic group as determined by total nitrogen concentrations. Seven constituents (nitrite plus nitrate, total Kjeldhal nitrogen, total phosphorus, orthophosphorus, total organic carbon, chlorophyll a, and pheophytina) and four physical property measurements (specific conductance, pH, turbidity, and dissolved oxygen) were determined to be significantly different (p < 0.05) between trophic groups. Total Kjeldhal nitrogen, turbidity, and dissolved oxygen were used as indicators of stream productivity with which to infer stream health. Streams having high total Kjeldhal nitrogen values and high turbidity values along with low dissolved oxygen concentrations were typically eutrophic abundant in nutrients), whereas streams having low total Kjeldhal nitrogen values and low turbidity values along with high dissolved oxygen concentrations were typically oligotrophic (deficient in nutrients).
Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene
2016-06-02
Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Desmet, N. J. S.; Van Belleghem, S.; Seuntjens, P.; Bouma, T. J.; Buis, K.; Meire, P.
When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on hydrodynamics and river processes. This research focused on the direct effect of macrophytes on oxygen dynamics and nutrient cycling. Discharge, macrophyte biomass density, basic water quality, dissolved oxygen and nutrient concentrations were in situ monitored throughout the year in a lowland river (Nete catchment, Belgium). In addition, various processes were investigated in more detail in multiple ex situ experiments. The field and aquaria measurement results clearly demonstrated that aquatic plants can exert considerable impact on dissolved oxygen dynamics in a lowland river. When the river was dominated by macrophytes, dissolved oxygen concentrations varied from 5 to 10 mg l -1. Considering nutrient retention, it was shown that the investigated in-stream macrophytes could take up dissolved inorganic nitrogen (DIN) from the water column at rates of 33-50 mg N kgdry matter-1 h. And DIN fluxes towards the vegetation were found to vary from 0.03 to 0.19 g N ha -1 h -1 in spring and summer. Compared to the measured changes in DIN load over the river stretch, it means that about 3-13% of the DIN retention could be attributed to direct nitrogen uptake from the water by macrophytes. Yet, the role of macrophytes in rivers should not be underrated as aquatic vegetation also exerts considerable indirect effects that may have a greater impact than the direct fixation of nutrients into the plant biomass.
Basatnia, Nabee; Hossein, Seyed Abbas; Rodrigo-Comino, Jesús; Khaledian, Yones; Brevik, Eric C; Aitkenhead-Peterson, Jacqueline; Natesan, Usha
2018-04-29
Coastal lagoon ecosystems are vulnerable to eutrophication, which leads to the accumulation of nutrients from the surrounding watershed over the long term. However, there is a lack of information about methods that could accurate quantify this problem in rapidly developed countries. Therefore, various statistical methods such as cluster analysis (CA), principal component analysis (PCA), partial least square (PLS), principal component regression (PCR), and ordinary least squares regression (OLS) were used in this study to estimate total organic matter content in sediments (TOM) using other parameters such as temperature, dissolved oxygen (DO), pH, electrical conductivity (EC), nitrite (NO 2 ), nitrate (NO 3 ), biological oxygen demand (BOD), phosphate (PO 4 ), total phosphorus (TP), salinity, and water depth along a 3-km transect in the Gomishan Lagoon (Iran). Results indicated that nutrient concentration and the dissolved oxygen gradient were the most significant parameters in the lagoon water quality heterogeneity. Additionally, anoxia at the bottom of the lagoon in sediments and re-suspension of the sediments were the main factors affecting internal nutrient loading. To validate the models, R 2 , RMSECV, and RPDCV were used. The PLS model was stronger than the other models. Also, classification analysis of the Gomishan Lagoon identified two hydrological zones: (i) a North Zone characterized by higher water exchange, higher dissolved oxygen and lower salinity and nutrients, and (ii) a Central and South Zone with high residence time, higher nutrient concentrations, lower dissolved oxygen, and higher salinity. A recommendation for the management of coastal lagoons, specifically the Gomishan Lagoon, to decrease or eliminate nutrient loadings is discussed and should be transferred to policy makers, the scientific community, and local inhabitants.
Dissolved oxygen content as an index of water quality in San Vicente Bay, Chile (36 degrees 45'S).
Rudolph, Anny; Ahumada, Ramón; Pérez, Claudio
2002-08-01
The present report describes some effects of industrial and municipal effluents on the waters of San Vicente Bay. Analyses of the main substances contained in the fishing industry effluent suggest rating criteria based on the oxygen saturation of the water as an assessment of organic pollution. Six cruises were carried out throughout the Bay, from June to December 1996. Water samples were analyzed for dissolved oxygen, oil and grease content, and sediment samples for organic matter content. Water parameters (salinity, temperature) were used to characterize the Bay's hydrography, and to calculate values for oxygen saturation. The measurements demonstrated a local broad range of oxygen deficit, with a maximum of 45% in the winter to 95% in the spring. In November more than 65% of the Bay's area showed oxygen deficits greater than 40%. Organic matter was unusually high in sediments along the northern sector of the Bay. The results suggest that the oxygen depletion was a representative parameter for establishing a relative scale of water quality in this Bay.
NASA Astrophysics Data System (ADS)
McDonald, N.; Barnes, R.; Nelson, N. B.
2016-02-01
The optically active or chromophoric fraction of dissolved organic matter (CDOM) is a topic of much interest to researchers due to its role in many biogeochemical processes in the global oceans. As CDOM effectively regulates the underwater light field, its influences on photosynthesis and primary productivity are significant. Despite recognition of its importance in biogeochemical cycles in natural waters, its chemical composition remains nebulous, due to photochemical processes, as well as spatial and temporal variations in composition. Understanding of CDOM composition and links to ocean processes is especially complex in pelagic, oligotrophic waters such as the North Atlantic Subtropical Gyre. In this region, minimum CDOM concentrations have been observed and it is decoupled from both dissolved organic carbon (DOC) and from net primary production (NPP). As CDOM absorbance has been shown to influence estimates of NPP from remote sensing models in the subtropical gyres, and as it has the potential to serve as an invaluable tracer of ocean DOM cycling, a better understanding of links between the optical properties of CDOM and biogeochemical processes in the subtropical gyres is crucial. In this study, monthly depth profiles of CDOM absorbance (between 1m and 3000m) were measured for a period of five years at the Bermuda Atlantic Timeseries Site (BATS) in the North Atlantic Subtropical Gyre to investigate seasonal variations and periodicity in CDOM optical properties. From this data, the spectral slope ratio (Sr) was calculated according to Helms et. al, 2008. Sr can be a useful tool in eliciting information about molecular weight, diagenetic state and microbial processes affecting CDOM composition, especially when coupled with other diagnostic parameters. In this study multivariate analysis techniques were utilized to examine links between Sr and ancillary parameters including apparent oxygen utilization (AOU) and excess nitrogen (DINxs) both of which can be a useful indicator of specific biogeochemical processes in the ocean. Results showed distinct seasonality in CDOM optical properties in conjunction with biological parameters and provide preliminary evidence that CDOM could be used as a proxy for organic carbon removal through the microbial loop.
Cema, G; Płaza, E; Trela, J; Surmacz-Górska, J
2011-01-01
A biofilm system with Kaldnes biofilm carrier was used in these studies to cultivate bacteria responsible for both partial nitritation and Anammox processes. Due to co-existence of oxygen and oxygen-free zones within the biofilm depth, both processes can occur in a single reactor. Oxygen that inhibits the Anammox process is consumed in the outer layer of the biofilm and in this way Anammox bacteria are protected from oxygen. The impact of oxygen concentration on nitrogen removal rates was investigated in the pilot plant (2.1 m3), supplied with reject water from the Himmerfjärden Waste Water Treatment Plant. The results of batch tests showed that the highest nitrogen removal rates were obtained for a dissolved oxygen (DO) concentration around 3 g O2 m(-3) At a DO concentration of 4 g O2 m(-3), an increase of nitrite and nitrate nitrogen concentrations in the batch reactor were observed. The average nitrogen removal rate in the pilot plant during a whole operating period oscillated around 1.3 g N m(-2)d(-1) (0.3 +/- 0.1 kg N m(-3)d(-1)) at the average dissolved oxygen concentration of 2.3 g O2 m(-3). The maximum value of a nitrogen removal rate amounted to 1.9 g N m(-2)d(-1) (0.47 kg N m(-3)d(-1)) and was observed for a DO concentration equal to 2.5 g O2 m(-3). It was observed that increase of biofilm thickness during the operational period, had no influence on nitrogen removal rates in the pilot plant.
SU-E-T-274: Does Atmospheric Oxygen Affect the PRESAGE Dosimeter?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alqathami, M; Ibbott, G; Blencowe, A
Purpose: To experimentally determine the influence of atmospheric oxygen on the efficiency of the PRESAGE dosimeter and its reporting system. Methods: Batches of the reporting system – a mixture of chloroform and leuchomalachite green dye – and PRESAGE were prepared in aerobic and anaerobic conditions. For anaerobic batches, samples were deoxygenated by bubbling nitrogen through the dosimeter precursors or reporting system for 10 min. The dosimeters and reporting systems were prepared in spectrophotometric cuvettes and glass vials, respectively, and were irradiated with 6 MV photons to various radiation doses using a clinical linear accelerator. Changes in optical density of themore » dosimeters and reporting system before and after irradiation were measured using a spectrophotometer. In addition, the concentrations of dissolved oxygen were measured using a dissolved oxygen meter. Results: The experiments revealed that oxygen has little influence on the characteristics of PRESAGE, with the radical initiator oxidizing the leucomalachite green even in the presence of oxygen. However, deoxygenation of the reporting system leads to an increase in sensitivity to radiation dose by ∼ 30% when compared to the non-deoxygenated system. A slight improvement in sensitivity (∼ 5%) was also achieved by deoxygenating the PRESAGE precursor prior to casting. Measurement of the dissolved oxygen revealed low levels (0.4 ppm) in the polyurethane precursor used to fabricate the dosimeters, as compared to water (8.6 ppm). In addition, deoxygenation had no effect on the retention of the post-response absorption value of the PRESAGE dosimeter. Conclusion: The results suggest that the presence of oxygen does not inhibit the radiochromic properties of the PRESAGE system. In addition, there were no observed changes in the dose linearity, absorption spectrum and post-response photofading characteristics of the PRESAGE under the conditions investigated.« less
Thurston, R.S.; Mandernack, K.W.; Shanks, Wayne C.
2010-01-01
Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (??18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ?? 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, ??18OSO4-H2O, of ~ 3.8??? for the anaerobic experiments. Aerobic oxidation produced apparent ??SO4-H2O values (6.4???) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. ??34SSO4 values are ~ 4??? lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in ??34SSO4 of ~- 1.5 ?? 0.2??? was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions. ?? 2009 Elsevier B.V.
Upper ocean O2 trends: 1958-2015
NASA Astrophysics Data System (ADS)
Ito, Takamitsu; Minobe, Shoshiro; Long, Matthew C.; Deutsch, Curtis
2017-05-01
Historic observations of dissolved oxygen (O2) in the ocean are analyzed to quantify multidecadal trends and variability from 1958 to 2015. Additional quality control is applied, and the resultant oxygen anomaly field is used to quantify upper ocean O2 trends at global and hemispheric scales. A widespread negative O2 trend is beginning to emerge from the envelope of interannual variability. Ocean reanalysis data are used to evaluate relationships with changes in ocean heat content (OHC) and oxygen solubility (O2,sat). Global O2 decline is evident after the 1980s, accompanied by an increase in global OHC. The global upper ocean O2 inventory (0-1000 m) changed at the rate of -243 ± 124 T mol O2 per decade. Further, the O2 inventory is negatively correlated with the OHC (r = -0.86; 0-1000 m) and the regression coefficient of O2 to OHC is approximately -8.2 ± 0.66 nmol O2 J-1, on the same order of magnitude as the simulated O2-heat relationship typically found in ocean climate models. Variability and trends in the observed upper ocean O2 concentration are dominated by the apparent oxygen utilization component with relatively small contributions from O2,sat. This indicates that changing ocean circulation, mixing, and/or biochemical processes, rather than the direct thermally induced solubility effects, are the primary drivers for the observed O2 changes. The spatial patterns of the multidecadal trend include regions of enhanced ocean deoxygenation including the subpolar North Pacific, eastern boundary upwelling systems, and tropical oxygen minimum zones. Further studies are warranted to understand and attribute the global O2 trends and their regional expressions.
Implications of Deoxygenation and Acidification for Deep Sea Urchins in Southern California
NASA Astrophysics Data System (ADS)
Sato, Kirk Nicholas Suda
Implications of multiple climate drivers for sea urchins were investigated across a spectrum of biological organization ranging from the urchin guild scale, to individual life history traits, to the geochemistry, material properties and porosity of sea urchin calcium carbonate skeletal tests. Using pink fragile sea urchins (Strongylocentrotus fragilis) on the southern California upwelling margin as a model species, links between biological traits and environmental parameters in nature across multiple spatial and temporal scales revealed correlations with dissolved oxygen (DO), pH, and temperature. Temporal trends in sea urchin populations assessed from trawl surveys conducted in southern California over the last 20 years (1994-2013) revealed changes in deep-sea urchin densities and depth distributions that coincide with trends in DO and pH on multidecadal and interdecadal (El Nino Southern Oscillation) time scales. The shallower urchin species ( Lytechinus pictus) decreased in density in the upper 200 m by 80%, and the deeper S. fragilis increased in density by ˜300%, providing the first evidence of habitat compression and expansion in sea urchin populations associated with secular and interdecadal variability in DO and pH. In this context, marketable food quality properties of the roe were compared between S. fragilis and the currently fished California red urchin, Mesocentrotus franciscanus, to assess the feasibility of developing a climate change-tolerant future S. fragilis trap fishery. Although roe color, texture, and resilience were similar between the two species, smaller and softer S. fragilis roe suggest it may only supplement, but not replace M. franciscanus in future fisheries. In comparisons across natural margin depth and climate gradients from 100-1100 m, S. fragilis exhibited reduced gonad production, smaller, weaker and more porous calcified tests in the Oxygen Minimum Zone (DO < 22 mumol kg-1) and pH Minimum Zone (in situ pHTotal <7.57) than those collected from less acidic and more oxygenated shelf and oxygen limiting zones above and the lower OMZ below. Thus S. fragilis may be more vulnerable to crushing predators if low oxygen, low pH OMZs continue to shoal and intensify in the future. This research highlights the utility of quantifying natural variability in species' traits along natural gradients on upwelling margins to improve understanding about potential impacts of changing climate drivers.
Aparecida Maranho, Lucineide; Teresinha Maranho, Leila; Grossi Botelho, Rafael; Luiz Tornisielo, Valdemar
2014-09-29
The aim of this one-year study (August 2009 to July 2010) was to evaluate the Corumbataí River water polluted by anthropogenic sources and see how it affects the reproduction of the microcrustacean Ceriodaphnia dubia (Richard, 1984) in laboratory conditions over seven days of exposure to water samples collected monthly at six different locations. We determined the concentrations of zinc (Zn), copper (Cu), nickel (Ni), lead (Pb), and cadmium (Cd), as well as physicochemical parameters such as dissolved oxygen, conductivity, water temperature, and pH. Dissolved oxygen and conductivity demonstrated anthropogenic influence, as dissolved oxygen concentration decreased and conductivity increased from the upstream to the downstream stretch of the river. The effects on C. dubia were observed in the months with high precipitation, but the toxicity cannot be associated with any particular contaminant. Heavy metal levels kept well below the limit values. Zn and Pb had the highest concentrations in the water during the sampling period, probably due to the industrial and agricultural influence. However, these levels do not seem to be associated with precipitation, which suggests that their primary source was industry. Physicochemical parameters, the ecotoxicological assay, and determination of heavy metals proved to be efficient tools to evaluate aquatic environments.
Methods of deoxygenating metals having oxygen dissolved therein in a solid solution
Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Xia, Yang; Zhou, Chengshang
2017-06-06
A method of deoxygenating metal can include forming a mixture of: a metal having oxygen dissolved therein in a solid solution, at least one of metallic magnesium and magnesium hydride, and a magnesium-containing salt. The mixture can be heated at a deoxygenation temperature for a period of time under a hydrogen-containing atmosphere to form a deoxygenated metal. The deoxygenated metal can then be cooled. The deoxygenated metal can optionally be subjected to leaching to remove by-products, followed by washing and drying to produce a final deoxygenated metal.
1998-12-01
influence community respiration, photosynthesis, solubility of dissolved oxygen, redox potential, biochemical reaction rates, and ensuing treatment...Conductivity 15-8 15.1.3.5 Dissolved Oxygen Concentration 15-12 15.1.3.6 Redox Potential 15-14 15.1.3.7 pH 15-16 15.1.3.8 Nutrients and Water Quality 15-19...Average Redox Potential of Wetland Waters From June 17, 6-27 1996, to September 16, 1997 Phytoremediation Demonstration Milan AAP FIGURE NUMBER
Brinda, S; Bragadeeswaran, S
2005-01-01
Studies on the economically important juvenile fin-fishes such as Elops machnata, Chanos chanos, Lates calcarifer, Epinephelus sp., Sillago sihama, Etroplus suratensis, Mugil cephalus, Liza parsia and Liza tade with relation to the hydrographical parameters as rainfall, temperature, salinity, dissolved oxygen and pH of Vellar estuary during September 2001 to August 2002. The simple correlation co-efficient showed positive significance against juvenile density with water temperature and dissolved oxygen. The influence of hydrographical parameters to the fin-fishes and its abundance is discussed.
Production of recombinant protein by a novel oxygen-induced system in Escherichia coli.
Baez, Antonino; Majdalani, Nadim; Shiloach, Joseph
2014-04-07
The SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration likely to protect the bacteria from possible oxygen damage. The soxS expression can be increased up to 16 fold, making it a possible candidate for recombinant protein expression. Compared with the existing induction approaches, oxygen induction is advantageous because it does not involve addition or depletion of growth factors or nutrients, addition of chemical inducers or temperature changes that can affect growth and metabolism of the producing bacteria. It also does not affect the composition of the growth medium simplifying the recovery and purification processes. The soxS promoter was cloned into the commercial pGFPmut3.1 plasmid creating pAB49, an expression vector that can be induced by increasing oxygen concentration. The efficiency and the regulatory properties of the soxS promoter were characterized by measuring the GFP expression when the culture dissolved oxygen concentration was increased from 30% to 300% air saturation. The expression level of recombinant GFP was proportional to the oxygen concentration, demonstrating that pAB49 is a controllable expression vector. A possible harmful effect of elevated oxygen concentration on the recombinant product was found to be negligible by determining the protein-carbonyl content and its specific fluorescence. By performing high density growth in modified LB medium, the cells were induced by increasing the oxygen concentration. After 3 hours at 300% air saturation, GFP fluorescence reached 109000 FU (494 mg of GFP/L), representing 3.4% of total protein, and the cell concentration reached 29.1 g/L (DW). Induction of recombinant protein expression by increasing the dissolved oxygen concentration was found to be a simple and efficient alternative expression strategy that excludes the use of chemical, nutrient or thermal inducers that have a potential negative effect on cell growth or the product recovery.
A computer program for geochemical analysis of acid-rain and other low-ionic-strength, acidic waters
Johnsson, P.A.; Lord, D.G.
1987-01-01
ARCHEM, a computer program written in FORTRAN 77, is designed primarily for use in the routine geochemical interpretation of low-ionic-strength, acidic waters. On the basis of chemical analyses of the water, and either laboratory or field determinations of pH, temperature, and dissolved oxygen, the program calculates the equilibrium distribution of major inorganic aqueous species and of inorganic aluminum complexes. The concentration of the organic anion is estimated from the dissolved organic concentration. Ionic ferrous iron is calculated from the dissolved oxygen concentration. Ionic balances and comparisons of computed with measured specific conductances are performed as checks on the analytical accuracy of chemical analyses. ARCHEM may be tailored easily to fit different sampling protocols, and may be run on multiple sample analyses. (Author 's abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balestra, Barbara; Krupinksi, Nadine Quintana; Erhoina, Tzvetina
The Southern California Borderland (SCB) is a region that experiences strong natural variations in bottom water oxygen and pH. Here, we use marine sediments from the Santa Monica Basin (SMB) to reconstruct environmental conditions and changes in the basin's bottom water oxygenation from the Last Glacial Maximum (LGM) to present, and compare the records to the adjacent Santa Barbara Basin (SBB) and Santa Lucia Slope (SLS). High-resolution records of benthic foraminiferal oxygen and carbon isotopes (δ 18O and δ 13C), benthic foraminiferal assemblages, and bulk sedimentary organic matter geochemistry records exhibit major changes associated with late Quaternary millennial-scale global climatemore » oscillations. Our data show the dominance of low-oxygen benthic foraminifera assemblages during warm intervals, and assemblages representing higher dissolved oxygen during cooler intervals, as also seen in SBB and SLS. But, our record shows a stronger and longer-lasting oxygen minimum zone (OMZ) between the end of the Bølling-Allerød (B-A) and the Early Holocene (including the Younger Dryas) than at neighboring sites, indicated by dominance of Bolivina tumida (characteristic of major hypoxia) in the assemblage. The middle to late Holocene (from ~ 8.8 to 0 ka) had weaker hypoxia than the early Holocene, with assemblages mainly composed of Bolivina argentea and Uvigerina peregrina. The SMB remains mostly slightly low in oxygen throughout the studied interval, with differences in the degree of hypoxia relative to SBB and SLS (especially from the B-A to the Early Holocene) likely due to its greater depth and its more southern geographic position and therefore decreased exposure to North Pacific Intermediate Water current. Regional effects, such as changing intermediate water source and/or changing ventilation (oxygenation) of the intermediate water source, also affect SMB deep water. Our analysis utilizing parallel geochemical and micropaleontological records brings new insights into bottom water and climate conditions in SMB, indicating regional similarities and differences with adjacent basins, and provides insight into the causes for changes in bottom water oxygenation.« less
Balestra, Barbara; Krupinksi, Nadine Quintana; Erhoina, Tzvetina; ...
2017-09-29
The Southern California Borderland (SCB) is a region that experiences strong natural variations in bottom water oxygen and pH. Here, we use marine sediments from the Santa Monica Basin (SMB) to reconstruct environmental conditions and changes in the basin's bottom water oxygenation from the Last Glacial Maximum (LGM) to present, and compare the records to the adjacent Santa Barbara Basin (SBB) and Santa Lucia Slope (SLS). High-resolution records of benthic foraminiferal oxygen and carbon isotopes (δ 18O and δ 13C), benthic foraminiferal assemblages, and bulk sedimentary organic matter geochemistry records exhibit major changes associated with late Quaternary millennial-scale global climatemore » oscillations. Our data show the dominance of low-oxygen benthic foraminifera assemblages during warm intervals, and assemblages representing higher dissolved oxygen during cooler intervals, as also seen in SBB and SLS. But, our record shows a stronger and longer-lasting oxygen minimum zone (OMZ) between the end of the Bølling-Allerød (B-A) and the Early Holocene (including the Younger Dryas) than at neighboring sites, indicated by dominance of Bolivina tumida (characteristic of major hypoxia) in the assemblage. The middle to late Holocene (from ~ 8.8 to 0 ka) had weaker hypoxia than the early Holocene, with assemblages mainly composed of Bolivina argentea and Uvigerina peregrina. The SMB remains mostly slightly low in oxygen throughout the studied interval, with differences in the degree of hypoxia relative to SBB and SLS (especially from the B-A to the Early Holocene) likely due to its greater depth and its more southern geographic position and therefore decreased exposure to North Pacific Intermediate Water current. Regional effects, such as changing intermediate water source and/or changing ventilation (oxygenation) of the intermediate water source, also affect SMB deep water. Our analysis utilizing parallel geochemical and micropaleontological records brings new insights into bottom water and climate conditions in SMB, indicating regional similarities and differences with adjacent basins, and provides insight into the causes for changes in bottom water oxygenation.« less
Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng
2017-11-22
Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.
POTENTIAL IMPACTS OF ORGANIC WASTES ON SMALL STREAM WATER QUALITY
We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. Our monthly monitoring results showed a strong inverse relationship betwe...
Water quality of the tidal Potomac River and estuary hydrologic data report, 1980 water year
Blanchard, Stephen; Coupe, R.H.; Woodward, J.C.
1982-01-01
This report contains data on the physical and chemical properties measured in the Tidal Potomac River and Estuary during the 1980 Water Year. Data were collected routinely at five stations, and periodically at 17 stations including three stations near the mouth of the Potomac River in Chesapeake Bay. Each of the five stations represent a cross section through which the transport of selected dissolved and suspended materials can be computed. The remaining stations represent locations at which data were collected for special synoptic studies such as salt water migration, and dissolved oxygen dynamics. Routinely, samples were analyzed for silica, nitrogen, phosphorus, chlorophyll-a, pheophytin, and suspended sediment. Additional samples were analyzed for organic carbon, calcium, manganese, magnesium, sodium, alkalinity, sulfate, iron, potassium, chloride, fluoride, seston, algal growth potential, adenosine triphosphate, nitrifying bacteria and dissolved-solids residue. In addition, solar radiation measurements and in-situ measurements of dissolved oxygen, specific conductance, pH, temperature, and Secchi disk transparency are reported. (USGS)
Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C
2014-01-01
The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.
Camilli, Richard; Duryea, Anthony N
2009-07-01
The TETHYS mass spectrometer is intended for long-term in situ observation of dissolved gases and volatile organic compounds in aquatic environments. Its design maintains excellent low mass range sensitivity and stability during long-term operations, enabling characterization of low-frequency variability in many trace dissolved gases. Results are presented from laboratory trials and a 300-h in situ trial in a shallow marine embayment in Massachusetts, U.S.A. This time series consists of over 15000 sample measurements and represents the longest continuous record made by an in situ mass spectrometer in an aquatic environment. These measurements possess sufficient sampling density and duration to apply frequency analysis techniques for study of temporal variability in dissolved gases. Results reveal correlations with specific environmental periodicities. Numerical methods are presented for converting mass spectrometer ion peak ratios to absolute-scale dissolved gas concentrations across wide temperature regimes irrespective of ambient pressure, during vertical water column profiles in a hypoxic deep marine basin off the coast of California, U.S.A. Dissolved oxygen concentration values obtained with the TETHYS instrument indicate close correlation with polarographic oxygen sensor data across the entire depth range. These methods and technology enable observation of aquatic environmental chemical distributions and dynamics at appropriate scales of resolution.
Xu, Y.; Schoonen, M.A.A.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.
1998-01-01
Thiosulfate (S2O2-3), polythionate (SxO2-6), dissolved sulfide (H2S), and sulfate (SO2-4) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 ??mol/L in neutral and alkaline chloride springs with low sulfate concentrations (C1-/SO2-4 > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl-/SO2-4 < 10), thiosulfate concentrations were also typically lower than 2 ??mol/L. However, in some chloride springs enriched with sulfate (Cl-/SO2-4 between 10 to 25), thiosulfate was found at concentrations ranging from 9 to 95 ??mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 ??mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.
NASA Astrophysics Data System (ADS)
Schmidt, M.; Eggert, A.
2016-02-01
The Angola Gyre and the Northern Benguela Upwelling System are two major oxygen minimum zones (OMZ) of different kind connected by the system of African Eastern Boundary Currents. We discuss results from a 3-dimensional coupled biogeochemical model covering both oxygen-deficient systems. The biogeochemical model component comprises trophic levels up to zooplankton. Physiological properties of organisms are parameterized from field data gained mainly in the course of the project "Geochemistry and Ecology of the Namibian Upwelling System" (GENUS). The challenge of the modelling effort is the different nature of both systems. The Angola Gyre, located in a "shadow zone" of the tropical Atlantic, has a low productivity and little ventilation, hence a long residence time of water masses. In the northern Benguela Upwelling System, trade winds drive an intermittent, but permanent nutrient supply into the euphotic zone which fuels a high coastal productivity, large particle export and high oxygen consumption from dissimilatory processes. In addition to the local processes, oxygen-deficient water formed in the Angola Gyre is one of the source water masses of the poleward undercurrent, which feeds oxygen depleted water into the Benguela system. In order to simulate the oxygen distribution in the Benguela system, both physical transport as well as local biological processes need to be carefully adjusted in the model. The focus of the analysis is on the time scale and the relative contribution of the different oxygen related processes to the oxygen budgets in both the oxygen minimum zones. Although these are very different in both the OMZ, the model is found as suitable to produce oxygen minimum zones comparable with observations in the Benguela and the Angola Gyre as well. Variability of the oxygen concentration in the Angola Gyre depends strongly on organismic oxygen consumption, whereas the variability of the oxygen concentration on the Namibian shelf is governed mostly by pole-ward advection of tropical water masses.
A Course in... Biochemical Engineering.
ERIC Educational Resources Information Center
Ng, Terry K-L.; And Others
1988-01-01
Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)