Sample records for minimum entropy aproach

  1. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.

    PubMed

    Haseli, Y

    2016-05-01

    The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.

  2. A minimum entropy principle in the gas dynamics equations

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1986-01-01

    Let u(x bar,t) be a weak solution of the Euler equations, governing the inviscid polytropic gas dynamics; in addition, u(x bar, t) is assumed to respect the usual entropy conditions connected with the conservative Euler equations. We show that such entropy solutions of the gas dynamics equations satisfy a minimum entropy principle, namely, that the spatial minimum of their specific entropy, (Ess inf s(u(x,t)))/x, is an increasing function of time. This principle equally applies to discrete approximations of the Euler equations such as the Godunov-type and Lax-Friedrichs schemes. Our derivation of this minimum principle makes use of the fact that there is a family of generalized entrophy functions connected with the conservative Euler equations.

  3. Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cheng, Yao; Zhou, Ning; Zhang, Weihua; Wang, Zhiwei

    2018-07-01

    Minimum entropy deconvolution is a widely-used tool in machinery fault diagnosis, because it enhances the impulse component of the signal. The filter coefficients that greatly influence the performance of the minimum entropy deconvolution are calculated by an iterative procedure. This paper proposes an improved deconvolution method for the fault detection of rolling element bearings. The proposed method solves the filter coefficients by the standard particle swarm optimization algorithm, assisted by a generalized spherical coordinate transformation. When optimizing the filters performance for enhancing the impulses in fault diagnosis (namely, faulty rolling element bearings), the proposed method outperformed the classical minimum entropy deconvolution method. The proposed method was validated in simulation and experimental signals from railway bearings. In both simulation and experimental studies, the proposed method delivered better deconvolution performance than the classical minimum entropy deconvolution method, especially in the case of low signal-to-noise ratio.

  4. Minimum entropy deconvolution and blind equalisation

    NASA Technical Reports Server (NTRS)

    Satorius, E. H.; Mulligan, J. J.

    1992-01-01

    Relationships between minimum entropy deconvolution, developed primarily for geophysics applications, and blind equalization are pointed out. It is seen that a large class of existing blind equalization algorithms are directly related to the scale-invariant cost functions used in minimum entropy deconvolution. Thus the extensive analyses of these cost functions can be directly applied to blind equalization, including the important asymptotic results of Donoho.

  5. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  6. Uncertainty relations with quantum memory for the Wehrl entropy

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo

    2018-03-01

    We prove two new fundamental uncertainty relations with quantum memory for the Wehrl entropy. The first relation applies to the bipartite memory scenario. It determines the minimum conditional Wehrl entropy among all the quantum states with a given conditional von Neumann entropy and proves that this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The second relation applies to the tripartite memory scenario. It determines the minimum of the sum of the Wehrl entropy of a quantum state conditioned on the first memory quantum system with the Wehrl entropy of the same state conditioned on the second memory quantum system and proves that also this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The Wehrl entropy of a quantum state is the Shannon differential entropy of the outcome of a heterodyne measurement performed on the state. The heterodyne measurement is one of the main measurements in quantum optics and lies at the basis of one of the most promising protocols for quantum key distribution. These fundamental entropic uncertainty relations will be a valuable tool in quantum information and will, for example, find application in security proofs of quantum key distribution protocols in the asymptotic regime and in entanglement witnessing in quantum optics.

  7. Maximum Relative Entropy of Coherence: An Operational Coherence Measure.

    PubMed

    Bu, Kaifeng; Singh, Uttam; Fei, Shao-Ming; Pati, Arun Kumar; Wu, Junde

    2017-10-13

    The operational characterization of quantum coherence is the cornerstone in the development of the resource theory of coherence. We introduce a new coherence quantifier based on maximum relative entropy. We prove that the maximum relative entropy of coherence is directly related to the maximum overlap with maximally coherent states under a particular class of operations, which provides an operational interpretation of the maximum relative entropy of coherence. Moreover, we show that, for any coherent state, there are examples of subchannel discrimination problems such that this coherent state allows for a higher probability of successfully discriminating subchannels than that of all incoherent states. This advantage of coherent states in subchannel discrimination can be exactly characterized by the maximum relative entropy of coherence. By introducing a suitable smooth maximum relative entropy of coherence, we prove that the smooth maximum relative entropy of coherence provides a lower bound of one-shot coherence cost, and the maximum relative entropy of coherence is equivalent to the relative entropy of coherence in the asymptotic limit. Similar to the maximum relative entropy of coherence, the minimum relative entropy of coherence has also been investigated. We show that the minimum relative entropy of coherence provides an upper bound of one-shot coherence distillation, and in the asymptotic limit the minimum relative entropy of coherence is equivalent to the relative entropy of coherence.

  8. Irreversibility and entropy production in transport phenomena, III—Principle of minimum integrated entropy production including nonlinear responses

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-01-01

    A new variational principle of steady states is found by introducing an integrated type of energy dissipation (or entropy production) instead of instantaneous energy dissipation. This new principle is valid both in linear and nonlinear transport phenomena. Prigogine’s dream has now been realized by this new general principle of minimum “integrated” entropy production (or energy dissipation). This new principle does not contradict with the Onsager-Prigogine principle of minimum instantaneous entropy production in the linear regime, but it is conceptually different from the latter which does not hold in the nonlinear regime. Applications of this theory to electric conduction, heat conduction, particle diffusion and chemical reactions are presented. The irreversibility (or positive entropy production) and long time tail problem in Kubo’s formula are also discussed in the Introduction and last section. This constitutes the complementary explanation of our theory of entropy production given in the previous papers (M. Suzuki, Physica A 390 (2011) 1904 and M. Suzuki, Physica A 391 (2012) 1074) and has given the motivation of the present investigation of variational principle.

  9. Maximum and minimum entropy states yielding local continuity bounds

    NASA Astrophysics Data System (ADS)

    Hanson, Eric P.; Datta, Nilanjana

    2018-04-01

    Given an arbitrary quantum state (σ), we obtain an explicit construction of a state ρɛ * ( σ ) [respectively, ρ * , ɛ ( σ ) ] which has the maximum (respectively, minimum) entropy among all states which lie in a specified neighborhood (ɛ-ball) of σ. Computing the entropy of these states leads to a local strengthening of the continuity bound of the von Neumann entropy, i.e., the Audenaert-Fannes inequality. Our bound is local in the sense that it depends on the spectrum of σ. The states ρɛ * ( σ ) and ρ * , ɛ (σ) depend only on the geometry of the ɛ-ball and are in fact optimizers for a larger class of entropies. These include the Rényi entropy and the minimum- and maximum-entropies, providing explicit formulas for certain smoothed quantities. This allows us to obtain local continuity bounds for these quantities as well. In obtaining this bound, we first derive a more general result which may be of independent interest, namely, a necessary and sufficient condition under which a state maximizes a concave and Gâteaux-differentiable function in an ɛ-ball around a given state σ. Examples of such a function include the von Neumann entropy and the conditional entropy of bipartite states. Our proofs employ tools from the theory of convex optimization under non-differentiable constraints, in particular Fermat's rule, and majorization theory.

  10. Entropy-Based Registration of Point Clouds Using Terrestrial Laser Scanning and Smartphone GPS.

    PubMed

    Chen, Maolin; Wang, Siying; Wang, Mingwei; Wan, Youchuan; He, Peipei

    2017-01-20

    Automatic registration of terrestrial laser scanning point clouds is a crucial but unresolved topic that is of great interest in many domains. This study combines terrestrial laser scanner with a smartphone for the coarse registration of leveled point clouds with small roll and pitch angles and height differences, which is a novel sensor combination mode for terrestrial laser scanning. The approximate distance between two neighboring scan positions is firstly calculated with smartphone GPS coordinates. Then, 2D distribution entropy is used to measure the distribution coherence between the two scans and search for the optimal initial transformation parameters. To this end, we propose a method called Iterative Minimum Entropy (IME) to correct initial transformation parameters based on two criteria: the difference between the average and minimum entropy and the deviation from the minimum entropy to the expected entropy. Finally, the presented method is evaluated using two data sets that contain tens of millions of points from panoramic and non-panoramic, vegetation-dominated and building-dominated cases and can achieve high accuracy and efficiency.

  11. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario

    2018-06-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  12. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario

    2018-01-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  13. Joint Entropy for Space and Spatial Frequency Domains Estimated from Psychometric Functions of Achromatic Discrimination

    PubMed Central

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158

  14. Joint entropy for space and spatial frequency domains estimated from psychometric functions of achromatic discrimination.

    PubMed

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.

  15. [Specific features in realization of the principle of minimum energy dissipation during individual development].

    PubMed

    Zotin, A A

    2012-01-01

    Realization of the principle of minimum energy dissipation (Prigogine's theorem) during individual development has been analyzed. This analysis has suggested the following reformulation of this principle for living objects: when environmental conditions are constant, the living system evolves to a current steady state in such a way that the difference between entropy production and entropy flow (psi(u) function) is positive and constantly decreases near the steady state, approaching zero. In turn, the current steady state tends to a final steady state in such a way that the difference between the specific entropy productions in an organism and its environment tends to be minimal. In general, individual development completely agrees with the law of entropy increase (second law of thermodynamics).

  16. Entropy considerations applied to shock unsteadiness in hypersonic inlets

    NASA Astrophysics Data System (ADS)

    Bussey, Gillian Mary Harding

    The stability of curved or rectangular shocks in hypersonic inlets in response to flow perturbations can be determined analytically from the principle of minimum entropy. Unsteady shock wave motion can have a significant effect on the flow in a hypersonic inlet or combustor. According to the principle of minimum entropy, a stable thermodynamic state is one with the lowest entropy gain. A model based on piston theory and its limits has been developed for applying the principle of minimum entropy to quasi-steady flow. Relations are derived for analyzing the time-averaged entropy gain flux across a shock for quasi-steady perturbations in atmospheric conditions and angle as a perturbation in entropy gain flux from the steady state. Initial results from sweeping a wedge at Mach 10 through several degrees in AEDC's Tunnel 9 indicates the bow shock becomes unsteady near the predicted normal Mach number. Several curved shocks of varying curvature are compared to a straight shock with the same mean normal Mach number, pressure ratio, or temperature ratio. The present work provides analysis and guidelines for designing an inlet robust to off- design flight or perturbations in flow conditions an inlet is likely to face. It also suggests that inlets with curved shocks are less robust to off-design flight than those with straight shocks such as rectangular inlets. Relations for evaluating entropy perturbations for highly unsteady flow across a shock and limits on their use were also developed. The normal Mach number at which a shock could be stable to high frequency upstream perturbations increases as the speed of the shock motion increases and slightly decreases as the perturbation size increases. The present work advances the principle of minimum entropy theory by providing additional validity for using the theory for time-varying flows and applying it to shocks, specifically those in inlets. While this analytic tool is applied in the present work for evaluating the stability of shocks in hypersonic inlets, it can be used for an arbitrary application with a shock.

  17. Minimum entropy density method for the time series analysis

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae

    2009-01-01

    The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.

  18. Minimum and Maximum Entropy Distributions for Binary Systems with Known Means and Pairwise Correlations

    DTIC Science & Technology

    2017-08-21

    distributions, and we discuss some applications for engineered and biological information transmission systems. Keywords: information theory; minimum...of its interpretation as a measure of the amount of information communicable by a neural system to groups of downstream neurons. Previous authors...of the maximum entropy approach. Our results also have relevance for engineered information transmission systems. We show that empirically measured

  19. Comment on: The cancer Warburg effect may be a testable example of the minimum entropy production rate principle.

    PubMed

    Sadeghi Ghuchani, Mostafa

    2018-02-08

    This comment argues against the view that cancer cells produce less entropy than normal cells as stated in a recent paper by Marín and Sabater. The basic principle of estimation of entropy production rate in a living cell is discussed, emphasizing the fact that entropy production depends on both the amount of heat exchange during the metabolism and the entropy difference between products and substrates.

  20. Comment on: The cancer Warburg effect may be a testable example of the minimum entropy production rate principle

    NASA Astrophysics Data System (ADS)

    Sadeghi Ghuchani, Mostafa

    2018-03-01

    This comment argues against the view that cancer cells produce less entropy than normal cells as stated in a recent paper by Marín and Sabater. The basic principle of estimation of entropy production rate in a living cell is discussed, emphasizing the fact that entropy production depends on both the amount of heat exchange during the metabolism and the entropy difference between products and substrates.

  1. Viscous regularization of the full set of nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations

    DOE PAGES

    Delchini, Marc O.; Ragusa, Jean C.; Ferguson, Jim

    2017-02-17

    A viscous regularization technique, based on the local entropy residual, was proposed by Delchini et al. (2015) to stabilize the nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations using an artificial viscosity technique. This viscous regularization is modulated by the local entropy production and is consistent with the entropy minimum principle. However, Delchini et al. (2015) only based their work on the hyperbolic parts of the Grey Radiation-Hydrodynamic equations and thus omitted the relaxation and diffusion terms present in the material energy and radiation energy equations. Here in this paper, we extend the theoretical grounds for the method and derive an entropy minimum principlemore » for the full set of nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations. This further strengthens the applicability of the entropy viscosity method as a stabilization technique for radiation-hydrodynamic shock simulations. Radiative shock calculations using constant and temperature-dependent opacities are compared against semi-analytical reference solutions, and we present a procedure to perform spatial convergence studies of such simulations.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovannetti, Vittorio; Maccone, Lorenzo; Shapiro, Jeffrey H.

    The minimum Renyi and Wehrl output entropies are found for bosonic channels in which the signal photons are either randomly displaced by a Gaussian distribution (classical-noise channel), or coupled to a thermal environment through lossy propagation (thermal-noise channel). It is shown that the Renyi output entropies of integer orders z{>=}2 and the Wehrl output entropy are minimized when the channel input is a coherent state.

  3. Maximum Kolmogorov-Sinai Entropy Versus Minimum Mixing Time in Markov Chains

    NASA Astrophysics Data System (ADS)

    Mihelich, M.; Dubrulle, B.; Paillard, D.; Kral, Q.; Faranda, D.

    2018-01-01

    We establish a link between the maximization of Kolmogorov Sinai entropy (KSE) and the minimization of the mixing time for general Markov chains. Since the maximisation of KSE is analytical and easier to compute in general than mixing time, this link provides a new faster method to approximate the minimum mixing time dynamics. It could be interesting in computer sciences and statistical physics, for computations that use random walks on graphs that can be represented as Markov chains.

  4. Free Energy in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Prentis, Jeffrey J.; Obsniuk, Michael J.

    2016-02-01

    Energy and entropy are two of the most important concepts in science. For all natural processes where a system exchanges energy with its environment, the energy of the system tends to decrease and the entropy of the system tends to increase. Free energy is the special concept that specifies how to balance the opposing tendencies to minimize energy and maximize entropy. There are many pedagogical articles on energy and entropy. Here we present a simple model to illustrate the concept of free energy and the principle of minimum free energy.

  5. Force-Time Entropy of Isometric Impulse.

    PubMed

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  6. Ratio of shear viscosity to entropy density in multifragmentation of Au + Au

    NASA Astrophysics Data System (ADS)

    Zhou, C. L.; Ma, Y. G.; Fang, D. Q.; Li, S. X.; Zhang, G. Q.

    2012-06-01

    The ratio of the shear viscosity (η) to entropy density (s) for the intermediate energy heavy-ion collisions has been calculated by using the Green-Kubo method in the framework of the quantum molecular dynamics model. The theoretical curve of η/s as a function of the incident energy for the head-on Au + Au collisions displays that a minimum region of η/s has been approached at higher incident energies, where the minimum η/s value is about 7 times Kovtun-Son-Starinets (KSS) bound (1/4π). We argue that the onset of minimum η/s region at higher incident energies corresponds to the nuclear liquid gas phase transition in nuclear multifragmentation.

  7. Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states

    NASA Technical Reports Server (NTRS)

    Aragone, C.; Mundarain, D.

    1993-01-01

    We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.

  8. Numerical estimation of the relative entropy of entanglement

    NASA Astrophysics Data System (ADS)

    Zinchenko, Yuriy; Friedland, Shmuel; Gour, Gilad

    2010-11-01

    We propose a practical algorithm for the calculation of the relative entropy of entanglement (REE), defined as the minimum relative entropy between a state and the set of states with positive partial transpose. Our algorithm is based on a practical semidefinite cutting plane approach. In low dimensions the implementation of the algorithm in matlab provides an estimation for the REE with an absolute error smaller than 10-3.

  9. Research relative to automated multisensor image registration

    NASA Technical Reports Server (NTRS)

    Kanal, L. N.

    1983-01-01

    The basic aproaches to image registration are surveyed. Three image models are presented as models of the subpixel problem. A variety of approaches to the analysis of subpixel analysis are presented using these models.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovannetti, Vittorio; Lloyd, Seth; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

    The Amosov-Holevo-Werner conjecture implies the additivity of the minimum Renyi entropies at the output of a channel. The conjecture is proven true for all Renyi entropies of integer order greater than two in a class of Gaussian bosonic channel where the input signal is randomly displaced or where it is coupled linearly to an external environment.

  11. Minimum entropy deconvolution optimized sinusoidal synthesis and its application to vibration based fault detection

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhao, Qing

    2017-03-01

    In this paper, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS) filter is proposed to improve the fault detection performance of the regular sinusoidal synthesis (SS) method. The SS filter is an efficient linear predictor that exploits the frequency properties during model construction. The phase information of the harmonic components is not used in the regular SS filter. However, the phase relationships are important in differentiating noise from characteristic impulsive fault signatures. Therefore, in this work, the minimum entropy deconvolution (MED) technique is used to optimize the SS filter during the model construction process. A time-weighted-error Kalman filter is used to estimate the MEDSS model parameters adaptively. Three simulation examples and a practical application case study are provided to illustrate the effectiveness of the proposed method. The regular SS method and the autoregressive MED (ARMED) method are also implemented for comparison. The MEDSS model has demonstrated superior performance compared to the regular SS method and it also shows comparable or better performance with much less computational intensity than the ARMED method.

  12. Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1991-01-01

    Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.

  13. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  14. Efficient optimization of the quantum relative entropy

    NASA Astrophysics Data System (ADS)

    Fawzi, Hamza; Fawzi, Omar

    2018-04-01

    Many quantum information measures can be written as an optimization of the quantum relative entropy between sets of states. For example, the relative entropy of entanglement of a state is the minimum relative entropy to the set of separable states. The various capacities of quantum channels can also be written in this way. We propose a unified framework to numerically compute these quantities using off-the-shelf semidefinite programming solvers, exploiting the approximation method proposed in Fawzi, Saunderson and Parrilo (2017 arXiv: 1705.00812). As a notable application, this method allows us to provide numerical counterexamples for a proposed lower bound on the quantum conditional mutual information in terms of the relative entropy of recovery.

  15. [Study on once sampling quantitation based on information entropy of ISSR amplified bands of Houttuynia cordata].

    PubMed

    Wang, Haiqin; Liu, Wenlong; He, Fuyuan; Chen, Zuohong; Zhang, Xili; Xie, Xianggui; Zeng, Jiaoli; Duan, Xiaopeng

    2012-02-01

    To explore the once sampling quantitation of Houttuynia cordata through its DNA polymorphic bands that carried information entropy, from other form that the expression of traditional Chinese medicine polymorphism, genetic polymorphism, of traditional Chinese medicine. The technique of inter simple sequence repeat (ISSR) was applied to analyze genetic polymorphism of H. cordata samples from the same GAP producing area, the DNA genetic bands were transformed its into the information entropy, and the minimum once sampling quantitation with the mathematical mode was measured. One hundred and thirty-four DNA bands were obtained by using 9 screened ISSR primers to amplify from 46 strains DNA samples of H. cordata from the same GAP, the information entropy was H=0.365 6-0.978 6, and RSD was 14.75%. The once sampling quantitation was W=11.22 kg (863 strains). The "once minimum sampling quantitation" were calculated from the angle of the genetic polymorphism of H. cordata, and a great differences between this volume and the amount from the angle of fingerprint were found.

  16. Rényi-Fisher entropy product as a marker of topological phase transitions

    NASA Astrophysics Data System (ADS)

    Bolívar, J. C.; Nagy, Ágnes; Romera, Elvira

    2018-05-01

    The combined Rényi-Fisher entropy product of electrons plus holes displays a minimum at the charge neutrality points. The Stam-Rényi difference and the Stam-Rényi uncertainty product of the electrons plus holes, show maxima at the charge neutrality points. Topological quantum numbers capable of detecting the topological insulator and the band insulator phases, are defined. Upper and lower bounds for the position and momentum space Rényi-Fisher entropy products are derived.

  17. Statistical mechanical theory for steady state systems. VI. Variational principles

    NASA Astrophysics Data System (ADS)

    Attard, Phil

    2006-12-01

    Several variational principles that have been proposed for nonequilibrium systems are analyzed. These include the principle of minimum rate of entropy production due to Prigogine [Introduction to Thermodynamics of Irreversible Processes (Interscience, New York, 1967)], the principle of maximum rate of entropy production, which is common on the internet and in the natural sciences, two principles of minimum dissipation due to Onsager [Phys. Rev. 37, 405 (1931)] and to Onsager and Machlup [Phys. Rev. 91, 1505 (1953)], and the principle of maximum second entropy due to Attard [J. Chem.. Phys. 122, 154101 (2005); Phys. Chem. Chem. Phys. 8, 3585 (2006)]. The approaches of Onsager and Attard are argued to be the only viable theories. These two are related, although their physical interpretation and mathematical approximations differ. A numerical comparison with computer simulation results indicates that Attard's expression is the only accurate theory. The implications for the Langevin and other stochastic differential equations are discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Hsin, Po-Shen; Niu, Yuezhen, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: r01222031@ntu.edu.tw, E-mail: yuezhenniu@gmail.com

    We investigate the entropy evolution in the early universe by computing the change of the entanglement entropy in Freedmann-Robertson-Walker quantum cosmology in the presence of particle horizon. The matter is modeled by a Chaplygin gas so as to provide a smooth interpolation between inflationary and radiation epochs, rendering the evolution of entropy from early time to late time trackable. We found that soon after the onset of the inflation, the total entanglement entropy rapidly decreases to a minimum. It then rises monotonically in the remainder of the inflation epoch as well as the radiation epoch. Our result is in qualitativemore » agreement with the area law of Ryu and Takayanagi including the logarithmic correction. We comment on the possible implication of our finding to the cosmological entropy problem.« less

  19. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    USGS Publications Warehouse

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  20. Bimodal behavior of post-measured entropy and one-way quantum deficit for two-qubit X states

    NASA Astrophysics Data System (ADS)

    Yurischev, Mikhail A.

    2018-01-01

    A method for calculating the one-way quantum deficit is developed. It involves a careful study of post-measured entropy shapes. We discovered that in some regions of X-state space the post-measured entropy \\tilde{S} as a function of measurement angle θ \\in [0,π /2] exhibits a bimodal behavior inside the open interval (0,π /2), i.e., it has two interior extrema: one minimum and one maximum. Furthermore, cases are found when the interior minimum of such a bimodal function \\tilde{S}(θ ) is less than that one at the endpoint θ =0 or π /2. This leads to the formation of a boundary between the phases of one-way quantum deficit via finite jumps of optimal measured angle from the endpoint to the interior minimum. Phase diagram is built up for a two-parameter family of X states. The subregions with variable optimal measured angle are around 1% of the total region, with their relative linear sizes achieving 17.5%, and the fidelity between the states of those subregions can be reduced to F=0.968. In addition, a correction to the one-way deficit due to the interior minimum can achieve 2.3%. Such conditions are favorable to detect the subregions with variable optimal measured angle of one-way quantum deficit in an experiment.

  1. 16QAM Blind Equalization via Maximum Entropy Density Approximation Technique and Nonlinear Lagrange Multipliers

    PubMed Central

    Mauda, R.; Pinchas, M.

    2014-01-01

    Recently a new blind equalization method was proposed for the 16QAM constellation input inspired by the maximum entropy density approximation technique with improved equalization performance compared to the maximum entropy approach, Godard's algorithm, and others. In addition, an approximated expression for the minimum mean square error (MSE) was obtained. The idea was to find those Lagrange multipliers that bring the approximated MSE to minimum. Since the derivation of the obtained MSE with respect to the Lagrange multipliers leads to a nonlinear equation for the Lagrange multipliers, the part in the MSE expression that caused the nonlinearity in the equation for the Lagrange multipliers was ignored. Thus, the obtained Lagrange multipliers were not those Lagrange multipliers that bring the approximated MSE to minimum. In this paper, we derive a new set of Lagrange multipliers based on the nonlinear expression for the Lagrange multipliers obtained from minimizing the approximated MSE with respect to the Lagrange multipliers. Simulation results indicate that for the high signal to noise ratio (SNR) case, a faster convergence rate is obtained for a channel causing a high initial intersymbol interference (ISI) while the same equalization performance is obtained for an easy channel (initial ISI low). PMID:24723813

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guha, Saikat; Shapiro, Jeffrey H.; Erkmen, Baris I.

    Previous work on the classical information capacities of bosonic channels has established the capacity of the single-user pure-loss channel, bounded the capacity of the single-user thermal-noise channel, and bounded the capacity region of the multiple-access channel. The latter is a multiple-user scenario in which several transmitters seek to simultaneously and independently communicate to a single receiver. We study the capacity region of the bosonic broadcast channel, in which a single transmitter seeks to simultaneously and independently communicate to two different receivers. It is known that the tightest available lower bound on the capacity of the single-user thermal-noise channel is thatmore » channel's capacity if, as conjectured, the minimum von Neumann entropy at the output of a bosonic channel with additive thermal noise occurs for coherent-state inputs. Evidence in support of this minimum output entropy conjecture has been accumulated, but a rigorous proof has not been obtained. We propose a minimum output entropy conjecture that, if proved to be correct, will establish that the capacity region of the bosonic broadcast channel equals the inner bound achieved using a coherent-state encoding and optimum detection. We provide some evidence that supports this conjecture, but again a full proof is not available.« less

  3. Nonequilibrium Thermodynamics in Biological Systems

    NASA Astrophysics Data System (ADS)

    Aoki, I.

    2005-12-01

    1. Respiration Oxygen-uptake by respiration in organisms decomposes macromolecules such as carbohydrate, protein and lipid and liberates chemical energy of high quality, which is then used to chemical reactions and motions of matter in organisms to support lively order in structure and function in organisms. Finally, this chemical energy becomes heat energy of low quality and is discarded to the outside (dissipation function). Accompanying this heat energy, entropy production which inevitably occurs by irreversibility also is discarded to the outside. Dissipation function and entropy production are estimated from data of respiration. 2. Human body From the observed data of respiration (oxygen absorption), the entropy production in human body can be estimated. Entropy production from 0 to 75 years old human has been obtained, and extrapolated to fertilized egg (beginning of human life) and to 120 years old (maximum period of human life). Entropy production show characteristic behavior in human life span : early rapid increase in short growing phase and later slow decrease in long aging phase. It is proposed that this tendency is ubiquitous and constitutes a Principle of Organization in complex biotic systems. 3. Ecological communities From the data of respiration of eighteen aquatic communities, specific (i.e. per biomass) entropy productions are obtained. They show two phase character with respect to trophic diversity : early increase and later decrease with the increase of trophic diversity. The trophic diversity in these aquatic ecosystems is shown to be positively correlated with the degree of eutrophication, and the degree of eutrophication is an "arrow of time" in the hierarchy of aquatic ecosystems. Hence specific entropy production has the two phase: early increase and later decrease with time. 4. Entropy principle for living systems The Second Law of Thermodynamics has been expressed as follows. 1) In isolated systems, entropy increases with time and approaches to a maximum value. This is well-known classical Clausius principle. 2) In open systems near equilibrium entropy production always decreases with time approaching a minimum stationary level. This is the minimum entropy production principle by Prigogine. These two principle are established ones. However, living systems are not isolated and not near to equilibrium. Hence, these two principles can not be applied to living systems. What is entropy principle for living systems? Answer: Entropy production in living systems consists of multi-stages with time: early increasing, later decreasing and/or intermediate stages. This tendency is supported by various living systems.

  4. Increased temperature and entropy production in cancer: the role of anti-inflammatory drugs.

    PubMed

    Pitt, Michael A

    2015-02-01

    Some cancers have been shown to have a higher temperature than surrounding normal tissue. This higher temperature is due to heat generated internally in the cancer. The higher temperature of cancer (compared to surrounding tissue) enables a thermodynamic analysis to be carried out. Here I show that there is increased entropy production in cancer compared with surrounding tissue. This is termed excess entropy production. The excess entropy production is expressed in terms of heat flow from the cancer to surrounding tissue and enzymic reactions in the cancer and surrounding tissue. The excess entropy production in cancer drives it away from the stationary state that is characterised by minimum entropy production. Treatments that reduce inflammation (and therefore temperature) should drive a cancer towards the stationary state. Anti-inflammatory agents, such as aspirin, other non-steroidal anti-inflammatory drugs, corticosteroids and also thyroxine analogues have been shown (using various criteria) to reduce the progress of cancer.

  5. Reply to Comment on ‘The cancer Warburg effect may be a testable example of the minimum entropy production rate principle’

    NASA Astrophysics Data System (ADS)

    Sabater, Bartolomé; Marín, Dolores

    2018-03-01

    The minimum rate principle is applied to the chemical reaction in a steady-state open cell system where, under constant supply of the glucose precursor, reference to time or to glucose consumption does not affect the conclusions.

  6. An entropy method for induced drag minimization

    NASA Technical Reports Server (NTRS)

    Greene, George C.

    1989-01-01

    A fundamentally new approach to the aircraft minimum induced drag problem is presented. The method, a 'viscous lifting line', is based on the minimum entropy production principle and does not require the planar wake assumption. An approximate, closed form solution is obtained for several wing configurations including a comparison of wing extension, winglets, and in-plane wing sweep, with and without a constraint on wing-root bending moment. Like the classical lifting-line theory, this theory predicts that induced drag is proportional to the square of the lift coefficient and inversely proportioinal to the wing aspect ratio. Unlike the classical theory, it predicts that induced drag is Reynolds number dependent and that the optimum spanwise circulation distribution is non-elliptic.

  7. A secure image encryption method based on dynamic harmony search (DHS) combined with chaotic map

    NASA Astrophysics Data System (ADS)

    Mirzaei Talarposhti, Khadijeh; Khaki Jamei, Mehrzad

    2016-06-01

    In recent years, there has been increasing interest in the security of digital images. This study focuses on the gray scale image encryption using dynamic harmony search (DHS). In this research, first, a chaotic map is used to create cipher images, and then the maximum entropy and minimum correlation coefficient is obtained by applying a harmony search algorithm on them. This process is divided into two steps. In the first step, the diffusion of a plain image using DHS to maximize the entropy as a fitness function will be performed. However, in the second step, a horizontal and vertical permutation will be applied on the best cipher image, which is obtained in the previous step. Additionally, DHS has been used to minimize the correlation coefficient as a fitness function in the second step. The simulation results have shown that by using the proposed method, the maximum entropy and the minimum correlation coefficient, which are approximately 7.9998 and 0.0001, respectively, have been obtained.

  8. Quantum Entanglement and the Topological Order of Fractional Hall States

    NASA Astrophysics Data System (ADS)

    Rezayi, Edward

    2015-03-01

    Fractional quantum Hall states or, more generally, topological phases of matter defy Landau classification based on order parameter and broken symmetry. Instead they have been characterized by their topological order. Quantum information concepts, such as quantum entanglement, appear to provide the most efficient method of detecting topological order solely from the knowledge of the ground state wave function. This talk will focus on real-space bi-partitioning of quantum Hall states and will present both exact diagonalization and quantum Monte Carlo studies of topological entanglement entropy in various geometries. Results on the torus for non-contractible cuts are quite rich and, through the use of minimum entropy states, yield the modular S-matrix and hence uniquely determine the topological order, as shown in recent literature. Concrete examples of minimum entropy states from known quantum Hall wave functions and their corresponding quantum numbers, used in exact diagonalizations, will be given. In collaboration with Clare Abreu and Raul Herrera. Supported by DOE Grant DE-SC0002140.

  9. Minimum energy dissipation required for a logically irreversible operation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Naoki; Yoshikawa, Nobuyuki

    2018-01-01

    According to Landauer's principle, the minimum heat emission required for computing is linked to logical entropy, or logical reversibility. The validity of Landauer's principle has been investigated for several decades and was finally demonstrated in recent experiments by showing that the minimum heat emission is associated with the reduction in logical entropy during a logically irreversible operation. Although the relationship between minimum heat emission and logical reversibility is being revealed, it is not clear how much free energy is required to be dissipated for a logically irreversible operation. In the present study, in order to reveal the connection between logical reversibility and free energy dissipation, we numerically demonstrated logically irreversible protocols using adiabatic superconductor logic. The calculation results of work during the protocol showed that, while the minimum heat emission conforms to Landauer's principle, the free energy dissipation can be arbitrarily reduced by performing the protocol quasistatically. The above results show that logical reversibility is not associated with thermodynamic reversibility, and that heat is not only emitted from logic devices but also absorbed by logic devices. We also formulated the heat emission from adiabatic superconductor logic during a logically irreversible operation at a finite operation speed.

  10. Focus! Keys to Developing Concentration Skills in Open-Skill Sports

    ERIC Educational Resources Information Center

    Monsma, Eva; Perreault, Melanie; Doan, Robert

    2017-01-01

    Sideline shouting to "focus" and "anticipate" can be stressful and counterproductive for athletes, especially when they are novices playing in dynamic sport environments. An alternative aproach is to coach athletes to understand that focusing is a concentration skill that improves with practice. Selective attention, attentional…

  11. An Integrative STEM Aproach to Teaching Solar Energy Collection

    ERIC Educational Resources Information Center

    Hughes, Bill; Mona, Lynn; Stout, Heath; Bierly, Mike; McAninch, Steve

    2015-01-01

    "Against the backdrop of the daunting carbon-neutral energy needs of our global future, the largest gap between our present use of solar energy and its enormous undeveloped potential defines a compelling imperative for science and technology in the 21st century" (Lewis & Norcera 2006). Concurrently, the United States educational…

  12. Prediction of pKa Values for Neutral and Basic Drugs based on Hybrid Artificial Intelligence Methods.

    PubMed

    Li, Mengshan; Zhang, Huaijing; Chen, Bingsheng; Wu, Yan; Guan, Lixin

    2018-03-05

    The pKa value of drugs is an important parameter in drug design and pharmacology. In this paper, an improved particle swarm optimization (PSO) algorithm was proposed based on the population entropy diversity. In the improved algorithm, when the population entropy was higher than the set maximum threshold, the convergence strategy was adopted; when the population entropy was lower than the set minimum threshold the divergence strategy was adopted; when the population entropy was between the maximum and minimum threshold, the self-adaptive adjustment strategy was maintained. The improved PSO algorithm was applied in the training of radial basis function artificial neural network (RBF ANN) model and the selection of molecular descriptors. A quantitative structure-activity relationship model based on RBF ANN trained by the improved PSO algorithm was proposed to predict the pKa values of 74 kinds of neutral and basic drugs and then validated by another database containing 20 molecules. The validation results showed that the model had a good prediction performance. The absolute average relative error, root mean square error, and squared correlation coefficient were 0.3105, 0.0411, and 0.9685, respectively. The model can be used as a reference for exploring other quantitative structure-activity relationships.

  13. [Application of an Adaptive Inertia Weight Particle Swarm Algorithm in the Magnetic Resonance Bias Field Correction].

    PubMed

    Wang, Chang; Qin, Xin; Liu, Yan; Zhang, Wenchao

    2016-06-01

    An adaptive inertia weight particle swarm algorithm is proposed in this study to solve the local optimal problem with the method of traditional particle swarm optimization in the process of estimating magnetic resonance(MR)image bias field.An indicator measuring the degree of premature convergence was designed for the defect of traditional particle swarm optimization algorithm.The inertia weight was adjusted adaptively based on this indicator to ensure particle swarm to be optimized globally and to avoid it from falling into local optimum.The Legendre polynomial was used to fit bias field,the polynomial parameters were optimized globally,and finally the bias field was estimated and corrected.Compared to those with the improved entropy minimum algorithm,the entropy of corrected image was smaller and the estimated bias field was more accurate in this study.Then the corrected image was segmented and the segmentation accuracy obtained in this research was 10% higher than that with improved entropy minimum algorithm.This algorithm can be applied to the correction of MR image bias field.

  14. Image Segmentation via Fractal Dimension

    DTIC Science & Technology

    1987-12-01

    Contipany, 1986. 7. Harrington, Steven. Computer Graphics A Programming Aproach. New York: McGrawU-Hill Book Company, 1987. 8. Norev, Moshe. Picture...ITEX TORHS conversion program . My fazily has been a constant source of relaxation and enoouragement, and I wish to thank them for their understanding...Conclusion 29.... ....................... 9........... . -11 III. Experimental Method 3..-.1..................... .. ....... -1 Overviev

  15. Integrated design of multivariable hydrometric networks using entropy theory with a multiobjective optimization approach

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Hwang, T.; Vose, J. M.; Martin, K. L.; Band, L. E.

    2016-12-01

    Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.

  16. Integrated design of multivariable hydrometric networks using entropy theory with a multiobjective optimization approach

    NASA Astrophysics Data System (ADS)

    Keum, J.; Coulibaly, P. D.

    2017-12-01

    Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.

  17. The cancer Warburg effect may be a testable example of the minimum entropy production rate principle

    NASA Astrophysics Data System (ADS)

    Marín, Dolores; Sabater, Bartolomé

    2017-04-01

    Cancer cells consume more glucose by glycolytic fermentation to lactate than by respiration, a characteristic known as the Warburg effect. In contrast with the 36 moles of ATP produced by respiration, fermentation produces two moles of ATP per mole of glucose consumed, which poses a puzzle with regard to the function of the Warburg effect. The production of free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) per mole linearly varies with the fraction (x) of glucose consumed by fermentation that is frequently estimated around 0.9. Hence, calculation shows that, in respect to pure respiration, the predominant fermentative metabolism decreases around 10% the production of entropy per mole of glucose consumed in cancer cells. We hypothesize that increased fermentation could allow cancer cells to accomplish the Prigogine theorem of the trend to minimize the rate of production of entropy. According to the theorem, open cellular systems near the steady state could evolve to minimize the rates of entropy production that may be reached by modified replicating cells producing entropy at a low rate. Remarkably, at CO2 concentrations above 930 ppm, glucose respiration produces less entropy than fermentation, which suggests experimental tests to validate the hypothesis of minimization of the rate of entropy production through the Warburg effect.

  18. The cancer Warburg effect may be a testable example of the minimum entropy production rate principle.

    PubMed

    Marín, Dolores; Sabater, Bartolomé

    2017-04-28

    Cancer cells consume more glucose by glycolytic fermentation to lactate than by respiration, a characteristic known as the Warburg effect. In contrast with the 36 moles of ATP produced by respiration, fermentation produces two moles of ATP per mole of glucose consumed, which poses a puzzle with regard to the function of the Warburg effect. The production of free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) per mole linearly varies with the fraction (x) of glucose consumed by fermentation that is frequently estimated around 0.9. Hence, calculation shows that, in respect to pure respiration, the predominant fermentative metabolism decreases around 10% the production of entropy per mole of glucose consumed in cancer cells. We hypothesize that increased fermentation could allow cancer cells to accomplish the Prigogine theorem of the trend to minimize the rate of production of entropy. According to the theorem, open cellular systems near the steady state could evolve to minimize the rates of entropy production that may be reached by modified replicating cells producing entropy at a low rate. Remarkably, at CO 2 concentrations above 930 ppm, glucose respiration produces less entropy than fermentation, which suggests experimental tests to validate the hypothesis of minimization of the rate of entropy production through the Warburg effect.

  19. Minimum relative entropy distributions with a large mean are Gaussian

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2016-12-01

    Entropy optimization principles are versatile tools with wide-ranging applications from statistical physics to engineering to ecology. Here we consider the following constrained problem: Given a prior probability distribution q , find the posterior distribution p minimizing the relative entropy (also known as the Kullback-Leibler divergence) with respect to q under the constraint that mean (p ) is fixed and large. We show that solutions to this problem are approximately Gaussian. We discuss two applications of this result. In the context of dissipative dynamics, the equilibrium distribution of a Brownian particle confined in a strong external field is independent of the shape of the confining potential. We also derive an H -type theorem for evolutionary dynamics: The entropy of the (standardized) distribution of fitness of a population evolving under natural selection is eventually increasing in time.

  20. Use and validity of principles of extremum of entropy production in the study of complex systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitor Reis, A., E-mail: ahr@uevora.pt

    2014-07-15

    It is shown how both the principles of extremum of entropy production, which are often used in the study of complex systems, follow from the maximization of overall system conductivities, under appropriate constraints. In this way, the maximum rate of entropy production (MEP) occurs when all the forces in the system are kept constant. On the other hand, the minimum rate of entropy production (mEP) occurs when all the currents that cross the system are kept constant. A brief discussion on the validity of the application of the mEP and MEP principles in several cases, and in particular to themore » Earth’s climate is also presented. -- Highlights: •The principles of extremum of entropy production are not first principles. •They result from the maximization of conductivities under appropriate constraints. •The conditions of their validity are set explicitly. •Some long-standing controversies are discussed and clarified.« less

  1. Evaluation of spectral entropy to measure anaesthetic depth and antinociception in sevoflurane-anaesthetised Beagle dogs.

    PubMed

    Morgaz, Juan; Granados, María del Mar; Domínguez, Juan Manuel; Navarrete, Rocío; Fernández, Andrés; Galán, Alba; Muñoz, Pilar; Gómez-Villamandos, Rafael J

    2011-06-01

    The use of spectral entropy to determine anaesthetic depth and antinociception was evaluated in sevoflurane-anaesthetised Beagle dogs. Dogs were anaesthetised at each of five multiples of their individual minimum alveolar concentrations (MAC; 0.75, 1, 1.25, 1.5 and 1.75 MAC), and response entropy (RE), state entropy (SE), RE-SE difference, burst suppression rate (BSR) and cardiorespiratory parameters were recorded before and after a painful stimulus. RE, SE and RE-SE difference did not change significantly after the stimuli. The correlation between MAC-entropy parameters was weak, but these values increased when 1.75 MAC results were excluded from the analysis. BSR was different to zero at 1.5 and 1.75 MAC. It was concluded that RE and RE-SE differences were not adequate indicators of antinociception and SE and RE were unable to detect deep planes of anaesthesia in dogs, although they both distinguished the awake and unconscious states. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delchini, Marc O., E-mail: delchinm@email.tamu.edu; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim, E-mail: jim.morel@tamu.edu

    2015-09-01

    The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The methodmore » of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks.« less

  3. New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.

    PubMed

    Ingo, Carson; Magin, Richard L; Parrish, Todd B

    2014-11-01

    Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag-Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.

  4. Adapting a tourism crime typology: classifying outdoor recreation crime

    Treesearch

    Joanne F. Tynon; Deborah J. Chavez

    2006-01-01

    Using a qualitative aproach, the authors tested a crime typology developed for tourism destinations in a U.S. National Forest recreation setting. Specific objectives were to classify the attributes of crime and violence, examine the effects of crime and violence on visitor demand, and suggest methods of prevention and recovery. A key modification to the crime typology...

  5. Necessary conditions for the optimality of variable rate residual vector quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.

    1993-01-01

    Residual vector quantization (RVQ), or multistage VQ, as it is also called, has recently been shown to be a competitive technique for data compression. The competitive performance of RVQ reported in results from the joint optimization of variable rate encoding and RVQ direct-sum code books. In this paper, necessary conditions for the optimality of variable rate RVQ's are derived, and an iterative descent algorithm based on a Lagrangian formulation is introduced for designing RVQ's having minimum average distortion subject to an entropy constraint. Simulation results for these entropy-constrained RVQ's (EC-RVQ's) are presented for memory less Gaussian, Laplacian, and uniform sources. A Gauss-Markov source is also considered. The performance is superior to that of entropy-constrained scalar quantizers (EC-SQ's) and practical entropy-constrained vector quantizers (EC-VQ's), and is competitive with that of some of the best source coding techniques that have appeared in the literature.

  6. [Quantitative assessment of urban ecosystem services flow based on entropy theory: A case study of Beijing, China].

    PubMed

    Li, Jing Xin; Yang, Li; Yang, Lei; Zhang, Chao; Huo, Zhao Min; Chen, Min Hao; Luan, Xiao Feng

    2018-03-01

    Quantitative evaluation of ecosystem service is a primary premise for rational resources exploitation and sustainable development. Examining ecosystem services flow provides a scientific method to quantity ecosystem services. We built an assessment indicator system based on land cover/land use under the framework of four types of ecosystem services. The types of ecosystem services flow were reclassified. Using entropy theory, disorder degree and developing trend of indicators and urban ecosystem were quantitatively assessed. Beijing was chosen as the study area, and twenty-four indicators were selected for evaluation. The results showed that the entropy value of Beijing urban ecosystem during 2004 to 2015 was 0.794 and the entropy flow was -0.024, suggesting a large disordered degree and near verge of non-health. The system got maximum values for three times, while the mean annual variation of the system entropy value increased gradually in three periods, indicating that human activities had negative effects on urban ecosystem. Entropy flow reached minimum value in 2007, implying the environmental quality was the best in 2007. The determination coefficient for the fitting function of total permanent population in Beijing and urban ecosystem entropy flow was 0.921, indicating that urban ecosystem health was highly correlated with total permanent population.

  7. New paradigm for task switching strategies while performing multiple tasks: entropy and symbolic dynamics analysis of voluntary patterns.

    PubMed

    Guastello, Stephen J; Gorin, Hillary; Huschen, Samuel; Peters, Natalie E; Fabisch, Megan; Poston, Kirsten

    2012-10-01

    It has become well established in laboratory experiments that switching tasks, perhaps due to interruptions at work, incur costs in response time to complete the next task. Conditions are also known that exaggerate or lessen the switching costs. Although switching costs can contribute to fatigue, task switching can also be an adaptive response to fatigue. The present study introduces a new research paradigm for studying the emergence of voluntary task switching regimes, self-organizing processes therein, and the possibly conflicting roles of switching costs and minimum entropy. Fifty-four undergraduates performed 7 different computer-based cognitive tasks producing sets of 49 responses under instructional conditions requiring task quotas or no quotas. The sequences of task choices were analyzed using orbital decomposition to extract pattern types and lengths, which were then classified and compared with regard to Shannon entropy, topological entropy, number of task switches involved, and overall performance. Results indicated that similar but different patterns were generated under the two instructional conditions, and better performance was associated with lower topological entropy. Both entropy metrics were associated with the amount of voluntary task switching. Future research should explore conditions affecting the trade-off between switching costs and entropy, levels of automaticity between task elements, and the role of voluntary switching regimes on fatigue.

  8. Optimization of a Circular Microchannel With Entropy Generation Minimization Method

    NASA Astrophysics Data System (ADS)

    Jafari, Arash; Ghazali, Normah Mohd

    2010-06-01

    New advances in micro and nano scales are being realized and the contributions of micro and nano heat dissipation devices are of high importance in this novel technology development. Past studies showed that microchannel design depends on its thermal resistance and pressure drop. However, entropy generation minimization (EGM) as a new optimization theory stated that the rate of entropy generation should be also optimized. Application of EGM in microchannel heat sink design is reviewed and discussed in this paper. Latest principles for deriving the entropy generation relations are discussed to present how this approach can be achieved. An optimization procedure using EGM method with the entropy generation rate is derived for a circular microchannel heat sink based upon thermal resistance and pressure drop. The equations are solved using MATLAB and the obtained results are compared to similar past studies. The effects of channel diameter, number of channels, heat flux, and pumping power on the entropy generation rate and Reynolds number are investigated. Analytical correlations are utilized for heat transfer and friction coefficients. A minimum entropy generation has been observed for N = 40 and channel diameter of 90μm. It is concluded that for N = 40 and channel hydraulic diameter of 90μm, the circular microchannel heat sink is on its optimum operating point based on second law of thermodynamics.

  9. ECOSYSTEM GROWTH AND DEVELOPMENT

    EPA Science Inventory

    Thermodynamically, ecosystem growth and development is the process by which energy throughflow and stored biomass increase. Several proposed hypotheses describe the natural tendencies that occur as an ecosystem matures, and here, we consider five: minimum entropy production, maxi...

  10. Heat capacities and thermodynamic properties of annite (aluminous iron biotite)

    USGS Publications Warehouse

    Hemingway, B.S.; Robie, R.A.

    1990-01-01

    The heat capacities have been measured between 7 and 650 K by quasi-adiabatic calorimetry and differential scanning calorimetry. At 298.15 K and 1 bar, the calorimetric entropy for our sample is 354.9??0.7 J/(mol.K). A minimum configurational entropy of 18.7 J/(mol.K) for full disorder of Al/Si in the tetrahedral sites should be added to the calorimetric entropy for third-law calculations. The heat capacity equation [Cp in units of J/mol.K)] Cp0 = 583.586 + 0.075246T - 3420.60T-0.5 - (4.4551 ?? 106)T-2 fits the experimental and estimated heat capacities for our sample (valid range 250 to 1000 K) with an average deviation of 0.37%. -from Authors

  11. Temperature lapse rates at restricted thermodynamic equilibrium. Part II: Saturated air and further discussions

    NASA Astrophysics Data System (ADS)

    Björnbom, Pehr

    2016-03-01

    In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.

  12. Optimal Binarization of Gray-Scaled Digital Images via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A. (Inventor); Klinko, Steven J. (Inventor)

    2007-01-01

    A technique for finding an optimal threshold for binarization of a gray scale image employs fuzzy reasoning. A triangular membership function is employed which is dependent on the degree to which the pixels in the image belong to either the foreground class or the background class. Use of a simplified linear fuzzy entropy factor function facilitates short execution times and use of membership values between 0.0 and 1.0 for improved accuracy. To improve accuracy further, the membership function employs lower and upper bound gray level limits that can vary from image to image and are selected to be equal to the minimum and the maximum gray levels, respectively, that are present in the image to be converted. To identify the optimal binarization threshold, an iterative process is employed in which different possible thresholds are tested and the one providing the minimum fuzzy entropy measure is selected.

  13. A MATLAB implementation of the minimum relative entropy method for linear inverse problems

    NASA Astrophysics Data System (ADS)

    Neupauer, Roseanna M.; Borchers, Brian

    2001-08-01

    The minimum relative entropy (MRE) method can be used to solve linear inverse problems of the form Gm= d, where m is a vector of unknown model parameters and d is a vector of measured data. The MRE method treats the elements of m as random variables, and obtains a multivariate probability density function for m. The probability density function is constrained by prior information about the upper and lower bounds of m, a prior expected value of m, and the measured data. The solution of the inverse problem is the expected value of m, based on the derived probability density function. We present a MATLAB implementation of the MRE method. Several numerical issues arise in the implementation of the MRE method and are discussed here. We present the source history reconstruction problem from groundwater hydrology as an example of the MRE implementation.

  14. Sample entropy analysis of cervical neoplasia gene-expression signatures

    PubMed Central

    Botting, Shaleen K; Trzeciakowski, Jerome P; Benoit, Michelle F; Salama, Salama A; Diaz-Arrastia, Concepcion R

    2009-01-01

    Background We introduce Approximate Entropy as a mathematical method of analysis for microarray data. Approximate entropy is applied here as a method to classify the complex gene expression patterns resultant of a clinical sample set. Since Entropy is a measure of disorder in a system, we believe that by choosing genes which display minimum entropy in normal controls and maximum entropy in the cancerous sample set we will be able to distinguish those genes which display the greatest variability in the cancerous set. Here we describe a method of utilizing Approximate Sample Entropy (ApSE) analysis to identify genes of interest with the highest probability of producing an accurate, predictive, classification model from our data set. Results In the development of a diagnostic gene-expression profile for cervical intraepithelial neoplasia (CIN) and squamous cell carcinoma of the cervix, we identified 208 genes which are unchanging in all normal tissue samples, yet exhibit a random pattern indicative of the genetic instability and heterogeneity of malignant cells. This may be measured in terms of the ApSE when compared to normal tissue. We have validated 10 of these genes on 10 Normal and 20 cancer and CIN3 samples. We report that the predictive value of the sample entropy calculation for these 10 genes of interest is promising (75% sensitivity, 80% specificity for prediction of cervical cancer over CIN3). Conclusion The success of the Approximate Sample Entropy approach in discerning alterations in complexity from biological system with such relatively small sample set, and extracting biologically relevant genes of interest hold great promise. PMID:19232110

  15. A Maximum Entropy Method for Particle Filtering

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.; Kim, Sangil

    2006-06-01

    Standard ensemble or particle filtering schemes do not properly represent states of low priori probability when the number of available samples is too small, as is often the case in practical applications. We introduce here a set of parametric resampling methods to solve this problem. Motivated by a general H-theorem for relative entropy, we construct parametric models for the filter distributions as maximum-entropy/minimum-information models consistent with moments of the particle ensemble. When the prior distributions are modeled as mixtures of Gaussians, our method naturally generalizes the ensemble Kalman filter to systems with highly non-Gaussian statistics. We apply the new particle filters presented here to two simple test cases: a one-dimensional diffusion process in a double-well potential and the three-dimensional chaotic dynamical system of Lorenz.

  16. Adjusting protein graphs based on graph entropy.

    PubMed

    Peng, Sheng-Lung; Tsay, Yu-Wei

    2014-01-01

    Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.

  17. Adjusting protein graphs based on graph entropy

    PubMed Central

    2014-01-01

    Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. PMID:25474347

  18. Choosing Wellness: Comprehensive Health Education Planning and Implementation Handbook. A Handbook for Head Start Programs [and] Resource Guide: A Guide for Head Start Programs.

    ERIC Educational Resources Information Center

    Enright, Margaret; Davidson, Tasha

    These materials consist of: (1) a planning and implementation handbook designed to help Head Start managers better understand, plan, and implement a more comprehensive aproach to health education and health promotion--one that addresses local needs and tailors programs to the needs of the children, parents, and staff; and (2) a resource guide that…

  19. Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials.

    PubMed

    Liu, Ruiheng; Chen, Hongyi; Zhao, Kunpeng; Qin, Yuting; Jiang, Binbin; Zhang, Tiansong; Sha, Gang; Shi, Xun; Uher, Ctirad; Zhang, Wenqing; Chen, Lidong

    2017-10-01

    High-throughput explorations of novel thermoelectric materials based on the Materials Genome Initiative paradigm only focus on digging into the structure-property space using nonglobal indicators to design materials with tunable electrical and thermal transport properties. As the genomic units, following the biogene tradition, such indicators include localized crystal structural blocks in real space or band degeneracy at certain points in reciprocal space. However, this nonglobal approach does not consider how real materials differentiate from others. Here, this study successfully develops a strategy of using entropy as the global gene-like performance indicator that shows how multicomponent thermoelectric materials with high entropy can be designed via a high-throughput screening method. Optimizing entropy works as an effective guide to greatly improve the thermoelectric performance through either a significantly depressed lattice thermal conductivity down to its theoretical minimum value and/or via enhancing the crystal structure symmetry to yield large Seebeck coefficients. The entropy engineering using multicomponent crystal structures or other possible techniques provides a new avenue for an improvement of the thermoelectric performance beyond the current methods and approaches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A survey of the role of thermodynamic stability in viscous flow

    NASA Technical Reports Server (NTRS)

    Horne, W. C.; Smith, C. A.; Karamcheti, K.

    1991-01-01

    The stability of near-equilibrium states has been studied as a branch of the general field of nonequilibrium thermodynamics. By treating steady viscous flow as an open thermodynamic system, nonequilibrium principles such as the condition of minimum entropy-production rate for steady, near-equilibrium processes can be used to generate flow distributions from variational analyses. Examples considered in this paper are steady heat conduction, channel flow, and unconstrained three-dimensional flow. The entropy-production-rate condition has also been used for hydrodynamic stability criteria, and calculations of the stability of a laminar wall jet support this interpretation.

  1. Multipoint Optimal Minimum Entropy Deconvolution and Convolution Fix: Application to vibration fault detection

    NASA Astrophysics Data System (ADS)

    McDonald, Geoff L.; Zhao, Qing

    2017-01-01

    Minimum Entropy Deconvolution (MED) has been applied successfully to rotating machine fault detection from vibration data, however this method has limitations. A convolution adjustment to the MED definition and solution is proposed in this paper to address the discontinuity at the start of the signal - in some cases causing spurious impulses to be erroneously deconvolved. A problem with the MED solution is that it is an iterative selection process, and will not necessarily design an optimal filter for the posed problem. Additionally, the problem goal in MED prefers to deconvolve a single-impulse, while in rotating machine faults we expect one impulse-like vibration source per rotational period of the faulty element. Maximum Correlated Kurtosis Deconvolution was proposed to address some of these problems, and although it solves the target goal of multiple periodic impulses, it is still an iterative non-optimal solution to the posed problem and only solves for a limited set of impulses in a row. Ideally, the problem goal should target an impulse train as the output goal, and should directly solve for the optimal filter in a non-iterative manner. To meet these goals, we propose a non-iterative deconvolution approach called Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA). MOMEDA proposes a deconvolution problem with an infinite impulse train as the goal and the optimal filter solution can be solved for directly. From experimental data on a gearbox with and without a gear tooth chip, we show that MOMEDA and its deconvolution spectrums according to the period between the impulses can be used to detect faults and study the health of rotating machine elements effectively.

  2. Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese.

    PubMed

    Martinez-Monteagudo, Sergio I; Salais-Fierro, Fabiola

    2014-10-01

    Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08-0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix.

  3. A Fuzzy Aproach For Facial Emotion Recognition

    NASA Astrophysics Data System (ADS)

    Gîlcă, Gheorghe; Bîzdoacă, Nicu-George

    2015-09-01

    This article deals with an emotion recognition system based on the fuzzy sets. Human faces are detected in images with the Viola - Jones algorithm and for its tracking in video sequences we used the Camshift algorithm. The detected human faces are transferred to the decisional fuzzy system, which is based on the variable fuzzyfication measurements of the face: eyebrow, eyelid and mouth. The system can easily determine the emotional state of a person.

  4. An Integrated Theory of Everything (TOE)

    NASA Astrophysics Data System (ADS)

    Colella, Antonio

    2014-03-01

    An Integrated TOE unifies all known physical phenomena from the Planck cube to the Super Universe (multiverse). Each matter/force particle is represented by a Planck cube string. Any Super Universe object is a volume of contiguous Planck cubes. Super force Planck cube string singularities existed at the start of all universes. An Integrated TOE foundations are twenty independent existing theories and without sacrificing their integrities, are replaced by twenty interrelated amplified theories. Amplifications of Higgs force theory are key to an Integrated TOE and include: 64 supersymmetric Higgs particles; super force condensations to 17 matter particles/associated Higgs forces; spontaneous symmetry breaking is bidirectional; and the sum of 8 permanent Higgs force energies is dark energy. Stellar black hole theory was amplified to include a quark star (matter) with mass, volume, near zero temperature, and maximum entropy. A black hole (energy) has energy, minimal volume (singularity), near infinite temperature, and minimum entropy. Our precursor universe's super supermassive quark star (matter) evaporated to a super supermassive black hole (energy). This transferred total conserved energy/mass and transformed entropy from maximum to minimum. Integrated Theory of Everything Book Video: https://www.youtube.com/watch?v=4a1c9IvdoGY Research Article Video: http://www.youtube.com/watch?v=CD-QoLeVbSY Research Article: http://toncolella.files.wordpress.com/2012/07/m080112.pdf.

  5. Shock wave induced vaporization of porous solids

    NASA Astrophysics Data System (ADS)

    Shen, Andy H.; Ahrens, Thomas J.; O'Keefe, John D.

    2003-05-01

    Strong shock waves generated by hypervelocity impact can induce vaporization in solid materials. To pursue knowledge of the chemical species in the shock-induced vapors, one needs to design experiments that will drive the system to such thermodynamic states that sufficient vapor can be generated for investigation. It is common to use porous media to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens [J. Appl. Phys. 43, 2443 (1972)] and Ahrens and O'Keefe [The Moon 4, 214 (1972)] to higher distentions (up to five) and improved their method with a different impedance match calculation scheme and augmented their model with recent thermodynamic and Hugoniot data of metals, minerals, and polymers. Although we reconfirmed the competing effects reported in the previous studies: (1) increase of entropy production and (2) decrease of impedance match, when impacting materials with increasing distentions, our calculations did not exhibit optimal entropy-generating distention. For different materials, very different impact velocities are needed to initiate vaporization. For aluminum at distention (m)<2.2, a minimum impact velocity of 2.7 km/s is required using tungsten projectile. For ionic solids such as NaCl at distention <2.2, 2.5 km/s is needed. For carbonate and sulfate minerals, the minimum impact velocities are much lower, ranging from less than 1 to 1.5 km/s.

  6. The constructal law of design and evolution in nature

    PubMed Central

    Bejan, Adrian; Lorente, Sylvie

    2010-01-01

    Constructal theory is the view that (i) the generation of images of design (pattern, rhythm) in nature is a phenomenon of physics and (ii) this phenomenon is covered by a principle (the constructal law): ‘for a finite-size flow system to persist in time (to live) it must evolve such that it provides greater and greater access to the currents that flow through it’. This law is about the necessity of design to occur, and about the time direction of the phenomenon: the tape of the design evolution ‘movie’ runs such that existing configurations are replaced by globally easier flowing configurations. The constructal law has two useful sides: the prediction of natural phenomena and the strategic engineering of novel architectures, based on the constructal law, i.e. not by mimicking nature. We show that the emergence of scaling laws in inanimate (geophysical) flow systems is the same phenomenon as the emergence of allometric laws in animate (biological) flow systems. Examples are lung design, animal locomotion, vegetation, river basins, turbulent flow structure, self-lubrication and natural multi-scale porous media. This article outlines the place of the constructal law as a self-standing law in physics, which covers all the ad hoc (and contradictory) statements of optimality such as minimum entropy generation, maximum entropy generation, minimum flow resistance, maximum flow resistance, minimum time, minimum weight, uniform maximum stresses and characteristic organ sizes. Nature is configured to flow and move as a conglomerate of ‘engine and brake’ designs. PMID:20368252

  7. The constructal law of design and evolution in nature.

    PubMed

    Bejan, Adrian; Lorente, Sylvie

    2010-05-12

    Constructal theory is the view that (i) the generation of images of design (pattern, rhythm) in nature is a phenomenon of physics and (ii) this phenomenon is covered by a principle (the constructal law): 'for a finite-size flow system to persist in time (to live) it must evolve such that it provides greater and greater access to the currents that flow through it'. This law is about the necessity of design to occur, and about the time direction of the phenomenon: the tape of the design evolution 'movie' runs such that existing configurations are replaced by globally easier flowing configurations. The constructal law has two useful sides: the prediction of natural phenomena and the strategic engineering of novel architectures, based on the constructal law, i.e. not by mimicking nature. We show that the emergence of scaling laws in inanimate (geophysical) flow systems is the same phenomenon as the emergence of allometric laws in animate (biological) flow systems. Examples are lung design, animal locomotion, vegetation, river basins, turbulent flow structure, self-lubrication and natural multi-scale porous media. This article outlines the place of the constructal law as a self-standing law in physics, which covers all the ad hoc (and contradictory) statements of optimality such as minimum entropy generation, maximum entropy generation, minimum flow resistance, maximum flow resistance, minimum time, minimum weight, uniform maximum stresses and characteristic organ sizes. Nature is configured to flow and move as a conglomerate of 'engine and brake' designs.

  8. Maximum-Entropy Inference with a Programmable Annealer

    PubMed Central

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-01-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition. PMID:26936311

  9. Sorption isotherms, thermodynamic properties and glass transition temperature of mucilage extracted from chia seeds (Salvia hispanica L.).

    PubMed

    Velázquez-Gutiérrez, Sandra Karina; Figueira, Ana Cristina; Rodríguez-Huezo, María Eva; Román-Guerrero, Angélica; Carrillo-Navas, Hector; Pérez-Alonso, César

    2015-05-05

    Freeze-dried chia mucilage adsorption isotherms were determined at 25, 35 and 40°C and fitted with the Guggenheim-Anderson-de Boer model. The integral thermodynamic properties (enthalpy and entropy) were estimated with the Clausius-Clapeyron equation. Pore radius of the mucilage, calculated with the Kelvin equation, varied from 0.87 to 6.44 nm in the temperature range studied. The point of maximum stability (minimum integral entropy) ranged between 7.56 and 7.63kg H2O per 100 kg of dry solids (d.s.) (water activity of 0.34-0.53). Enthalpy-entropy compensation for the mucilage showed two isokinetic temperatures: (i) one occurring at low moisture contents (0-7.56 kg H2O per 100 kg d.s.), controlled by changes in water entropy; and (ii) another happening in the moisture interval of 7.56-24 kg H2O per 100 kg d.s. and was enthalpy driven. The glass transition temperature Tg of the mucilage fluctuated between 42.93 and 57.93°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Study of thermodynamic properties of liquid binary alloys by a pseudopotential method

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2010-11-01

    On the basis of the Percus-Yevick hard-sphere model as a reference system and the Gibbs-Bogoliubov inequality, a thermodynamic perturbation method is applied with the use of the well-known model potential. By applying a variational method, the hard-core diameters are found which correspond to a minimum free energy. With this procedure, the thermodynamic properties such as the internal energy, entropy, Helmholtz free energy, entropy of mixing, and heat of mixing are computed for liquid NaK binary systems. The influence of the local-field correction functions of Hartree, Taylor, Ichimaru-Utsumi, Farid-Heine-Engel-Robertson, and Sarkar-Sen-Haldar-Roy is also investigated. The computed excess entropy is in agreement with available experimental data in the case of liquid alloys, whereas the agreement for the heat of mixing is poor. This may be due to the sensitivity of the latter to the potential parameters and dielectric function.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luis, Alfredo

    The use of Renyi entropy as an uncertainty measure alternative to variance leads to the study of states with quantum fluctuations below the levels established by Gaussian states, which are the position-momentum minimum uncertainty states according to variance. We examine the quantum properties of states with exponential wave functions, which combine reduced fluctuations with practical feasibility.

  12. Information dynamics in living systems: prokaryotes, eukaryotes, and cancer.

    PubMed

    Frieden, B Roy; Gatenby, Robert A

    2011-01-01

    Living systems use information and energy to maintain stable entropy while far from thermodynamic equilibrium. The underlying first principles have not been established. We propose that stable entropy in living systems, in the absence of thermodynamic equilibrium, requires an information extremum (maximum or minimum), which is invariant to first order perturbations. Proliferation and death represent key feedback mechanisms that promote stability even in a non-equilibrium state. A system moves to low or high information depending on its energy status, as the benefit of information in maintaining and increasing order is balanced against its energy cost. Prokaryotes, which lack specialized energy-producing organelles (mitochondria), are energy-limited and constrained to an information minimum. Acquisition of mitochondria is viewed as a critical evolutionary step that, by allowing eukaryotes to achieve a sufficiently high energy state, permitted a phase transition to an information maximum. This state, in contrast to the prokaryote minima, allowed evolution of complex, multicellular organisms. A special case is a malignant cell, which is modeled as a phase transition from a maximum to minimum information state. The minimum leads to a predicted power-law governing the in situ growth that is confirmed by studies measuring growth of small breast cancers. We find living systems achieve a stable entropic state by maintaining an extreme level of information. The evolutionary divergence of prokaryotes and eukaryotes resulted from acquisition of specialized energy organelles that allowed transition from information minima to maxima, respectively. Carcinogenesis represents a reverse transition: of an information maximum to minimum. The progressive information loss is evident in accumulating mutations, disordered morphology, and functional decline characteristics of human cancers. The findings suggest energy restriction is a critical first step that triggers the genetic mutations that drive somatic evolution of the malignant phenotype.

  13. Application of genetic algorithms in nonlinear heat conduction problems.

    PubMed

    Kadri, Muhammad Bilal; Khan, Waqar A

    2014-01-01

    Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry.

  14. Texture descriptions of lunar surface derived from LOLA data: Kilometer-scale roughness and entropy maps

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Wu, Zhongchen; Ni, Yuheng; Zhao, Haowei

    2015-11-01

    The lunar global texture maps of roughness and entropy are derived at kilometer scales from Digital Elevation Models (DEMs) data obtained by Lunar Orbiter Laser Altimeter (LOLA) aboard on Lunar Reconnaissance Orbiter (LRO) spacecraft. We use statistical moments of a gray-level histogram of elevations in a neighborhood to compute the roughness and entropy value. Our texture descriptors measurements are shown in global maps at multi-sized square neighborhoods, whose length of side is 3, 5, 10, 20, 40 and 80 pixels, respectively. We found that large-scale topographical changes can only be displayed in maps with longer side of neighborhood, but the small scale global texture maps are more disorderly and unsystematic because of more complicated textures' details. Then, the frequency curves of texture maps are made out, whose shapes and distributions are changing as the spatial scales increases. Entropy frequency curve with minimum 3-pixel scale has large fluctuations and six peaks. According to this entropy curve we can classify lunar surface into maria, highlands, different parts of craters preliminarily. The most obvious textures in the middle-scale roughness and entropy maps are the two typical morphological units, smooth maria and rough highlands. For the impact crater, its roughness and entropy value are characterized by a multiple-ring structure obviously, and its different parts have different texture results. In the last, we made a 2D scatter plot between the two texture results of typical lunar maria and highlands. There are two clusters with largest dot density which are corresponded to the lunar highlands and maria separately. In the lunar mare regions (cluster A), there is a high correlation between roughness and entropy, but in the highlands (Cluster B), the entropy shows little change. This could be subjected to different geological processes of maria and highlands forming different landforms.

  15. An information-theoretical perspective on weighted ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Weijs, Steven V.; van de Giesen, Nick

    2013-08-01

    This paper presents an information-theoretical method for weighting ensemble forecasts with new information. Weighted ensemble forecasts can be used to adjust the distribution that an existing ensemble of time series represents, without modifying the values in the ensemble itself. The weighting can, for example, add new seasonal forecast information in an existing ensemble of historically measured time series that represents climatic uncertainty. A recent article in this journal compared several methods to determine the weights for the ensemble members and introduced the pdf-ratio method. In this article, a new method, the minimum relative entropy update (MRE-update), is presented. Based on the principle of minimum discrimination information, an extension of the principle of maximum entropy (POME), the method ensures that no more information is added to the ensemble than is present in the forecast. This is achieved by minimizing relative entropy, with the forecast information imposed as constraints. From this same perspective, an information-theoretical view on the various weighting methods is presented. The MRE-update is compared with the existing methods and the parallels with the pdf-ratio method are analysed. The paper provides a new, information-theoretical justification for one version of the pdf-ratio method that turns out to be equivalent to the MRE-update. All other methods result in sets of ensemble weights that, seen from the information-theoretical perspective, add either too little or too much (i.e. fictitious) information to the ensemble.

  16. Free Energy Landscape of Protein-Protein Encounter Resulting from Brownian Dynamics Simulations of Barnase:Barstar.

    PubMed

    Spaar, Alexander; Helms, Volkhard

    2005-07-01

    Over the past years Brownian dynamics (BD) simulations have been proven to be a suitable tool for the analysis of protein-protein association. The computed rates and relative trends for protein mutants and different ionic strength are generally in good agreement with experimental results, e.g. see ref 1. By design, BD simulations correspond to an intensive sampling over energetically favorable states, rather than to a systematic sampling over all possible states which is feasible only at rather low resolution. On the example of barnase and barstar, a well characterized model system of electrostatically steered diffusional encounter, we report here the computation of the 6-dimensional free energy landscape for the encounter process of two proteins by a novel, careful analysis of the trajectories from BD simulations. The aim of these studies was the clarification of the encounter state. Along the trajectories, the individual positions and orientations of one protein (relative to the other) are recorded and stored in so-called occupancy maps. Since the number of simulated trajectories is sufficiently high, these occupancy maps can be interpreted as a probability distribution which allows the calculation of the entropy landscape by the use of a locally defined entropy function. Additionally, the configuration dependent electrostatic and desolvation energies are recorded in separate maps. The free energy landscape of protein-protein encounter is finally obtained by summing the energy and entropy contributions. In the free energy profile along the reaction path, which is defined as the path along the minima in the free energy landscape, a minimum shows up suggesting this to be used as the definition of the encounter state. This minimum describes a state of reduced diffusion velocity where the electrostatic attraction is compensated by the repulsion due to the unfavorable desolvation of the charged residues and the entropy loss due to the increasing restriction of the motional freedom. In the simulations the orientational degrees of freedom at the encounter state are found to be less restricted than the translational degrees of freedom. Therefore, the orientational alignment of the two binding partners seems to take place beyond this free energy minimum. The free energy profiles along the reaction pathway are compared for different ionic strength and temperature. This novel analysis technique facilitates mechanistic interpretation of protein-protein encounter pathways which should be useful for interpretation of experimental results as well.

  17. Efficient Computation of Small-Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration

    PubMed Central

    2013-01-01

    Here we present a novel, end-point method using the dead-end-elimination and A* algorithms to efficiently and accurately calculate the change in free energy, enthalpy, and configurational entropy of binding for ligand–receptor association reactions. We apply the new approach to the binding of a series of human immunodeficiency virus (HIV-1) protease inhibitors to examine the effect ensemble reranking has on relative accuracy as well as to evaluate the role of the absolute and relative ligand configurational entropy losses upon binding in affinity differences for structurally related inhibitors. Our results suggest that most thermodynamic parameters can be estimated using only a small fraction of the full configurational space, and we see significant improvement in relative accuracy when using an ensemble versus single-conformer approach to ligand ranking. We also find that using approximate metrics based on the single-conformation enthalpy differences between the global minimum energy configuration in the bound as well as unbound states also correlates well with experiment. Using a novel, additive entropy expansion based on conditional mutual information, we also analyze the source of ligand configurational entropy loss upon binding in terms of both uncoupled per degree of freedom losses as well as changes in coupling between inhibitor degrees of freedom. We estimate entropic free energy losses of approximately +24 kcal/mol, 12 kcal/mol of which stems from loss of translational and rotational entropy. Coupling effects contribute only a small fraction to the overall entropy change (1–2 kcal/mol) but suggest differences in how inhibitor dihedral angles couple to each other in the bound versus unbound states. The importance of accounting for flexibility in drug optimization and design is also discussed. PMID:24250277

  18. Computational methods for internal flows with emphasis on turbomachinery

    NASA Technical Reports Server (NTRS)

    Mcnally, W. D.; Sockol, P. M.

    1981-01-01

    Current computational methods for analyzing flows in turbomachinery and other related internal propulsion components are presented. The methods are divided into two classes. The inviscid methods deal specifically with turbomachinery applications. Viscous methods, deal with generalized duct flows as well as flows in turbomachinery passages. Inviscid methods are categorized into the potential, stream function, and Euler aproaches. Viscous methods are treated in terms of parabolic, partially parabolic, and elliptic procedures. Various grids used in association with these procedures are also discussed.

  19. Statistical physics of self-replication.

    PubMed

    England, Jeremy L

    2013-09-28

    Self-replication is a capacity common to every species of living thing, and simple physical intuition dictates that such a process must invariably be fueled by the production of entropy. Here, we undertake to make this intuition rigorous and quantitative by deriving a lower bound for the amount of heat that is produced during a process of self-replication in a system coupled to a thermal bath. We find that the minimum value for the physically allowed rate of heat production is determined by the growth rate, internal entropy, and durability of the replicator, and we discuss the implications of this finding for bacterial cell division, as well as for the pre-biotic emergence of self-replicating nucleic acids.

  20. Benford's law and the FSD distribution of economic behavioral micro data

    NASA Astrophysics Data System (ADS)

    Villas-Boas, Sofia B.; Fu, Qiuzi; Judge, George

    2017-11-01

    In this paper, we focus on the first significant digit (FSD) distribution of European micro income data and use information theoretic-entropy based methods to investigate the degree to which Benford's FSD law is consistent with the nature of these economic behavioral systems. We demonstrate that Benford's law is not an empirical phenomenon that occurs only in important distributions in physical statistics, but that it also arises in self-organizing dynamic economic behavioral systems. The empirical likelihood member of the minimum divergence-entropy family, is used to recover country based income FSD probability density functions and to demonstrate the implications of using a Benford prior reference distribution in economic behavioral system information recovery.

  1. Scaling laws for ignition at the National Ignition Facility from first principles.

    PubMed

    Cheng, Baolian; Kwan, Thomas J T; Wang, Yi-Ming; Batha, Steven H

    2013-10-01

    We have developed an analytical physics model from fundamental physics principles and used the reduced one-dimensional model to derive a thermonuclear ignition criterion and implosion energy scaling laws applicable to inertial confinement fusion capsules. The scaling laws relate the fuel pressure and the minimum implosion energy required for ignition to the peak implosion velocity and the equation of state of the pusher and the hot fuel. When a specific low-entropy adiabat path is used for the cold fuel, our scaling laws recover the ignition threshold factor dependence on the implosion velocity, but when a high-entropy adiabat path is chosen, the model agrees with recent measurements.

  2. Minimax Quantum Tomography: Estimators and Relative Entropy Bounds.

    PubMed

    Ferrie, Christopher; Blume-Kohout, Robin

    2016-03-04

    A minimax estimator has the minimum possible error ("risk") in the worst case. We construct the first minimax estimators for quantum state tomography with relative entropy risk. The minimax risk of nonadaptive tomography scales as O(1/sqrt[N])-in contrast to that of classical probability estimation, which is O(1/N)-where N is the number of copies of the quantum state used. We trace this deficiency to sampling mismatch: future observations that determine risk may come from a different sample space than the past data that determine the estimate. This makes minimax estimators very biased, and we propose a computationally tractable alternative with similar behavior in the worst case, but superior accuracy on most states.

  3. Consistent description of kinetic equation with triangle anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu Shi; Gao Jianhua; Wang Qun

    2011-05-01

    We provide a consistent description of the kinetic equation with a triangle anomaly which is compatible with the entropy principle of the second law of thermodynamics and the charge/energy-momentum conservation equations. In general an anomalous source term is necessary to ensure that the equations for the charge and energy-momentum conservation are satisfied and that the correction terms of distribution functions are compatible to these equations. The constraining equations from the entropy principle are derived for the anomaly-induced leading order corrections to the particle distribution functions. The correction terms can be determined for the minimum number of unknown coefficients in onemore » charge and two charge cases by solving the constraining equations.« less

  4. Towards the minimization of thermodynamic irreversibility in an electrically actuated microflow of a viscoelastic fluid under electrical double layer phenomenon

    NASA Astrophysics Data System (ADS)

    Sarma, Rajkumar; Jain, Manish; Mondal, Pranab Kumar

    2017-10-01

    We discuss the entropy generation minimization for electro-osmotic flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of interfacial slip and conjugate transport of heat. We use in this study the simplified Phan-Thien-Tanner model to describe the rheological behavior of the viscoelastic fluid. Using Navier's slip law and thermal boundary conditions of the third kind, we solve the transport equations analytically and evaluate the global entropy generation rate of the system. We examine the influential role of the following parameters on the entropy generation rate of the system, viz., the viscoelastic parameter (ɛDe2), Debye-Hückel parameter ( κ ¯ ) , channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi), Peclet number (Pe), and axial temperature gradient (B). This investigation finally establishes the optimum values of the abovementioned parameters, leading to the minimum entropy generation of the system. We believe that results of this analysis could be helpful in optimizing the second-law performance of microscale thermal management devices, including the micro-heat exchangers, micro-reactors, and micro-heat pipes.

  5. Perspective: Maximum caliber is a general variational principle for dynamical systems

    NASA Astrophysics Data System (ADS)

    Dixit, Purushottam D.; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A.

    2018-01-01

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics—such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production—are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  6. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.

    PubMed

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-28

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  7. Perspective: Maximum caliber is a general variational principle for dynamical systems.

    PubMed

    Dixit, Purushottam D; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A

    2018-01-07

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics-such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production-are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  8. Covariance hypotheses for LANDSAT data

    NASA Technical Reports Server (NTRS)

    Decell, H. P.; Peters, C.

    1983-01-01

    Two covariance hypotheses are considered for LANDSAT data acquired by sampling fields, one an autoregressive covariance structure and the other the hypothesis of exchangeability. A minimum entropy approximation of the first structure by the second is derived and shown to have desirable properties for incorporation into a mixture density estimation procedure. Results of a rough test of the exchangeability hypothesis are presented.

  9. Minimum Entropy Autofocus Correction of Residual Range Cell Migration

    DTIC Science & Technology

    2017-03-02

    reduced the residual to effectively a slowly varying bias on the order of a wavelength ( ∼ 3 cm ) which has negligible impact on the image focus. Fig...Fitzgerrell, and J. Beaver , “Two- dimensional phase gradient autofocus,” Proc. SPIE, vol. 4123, pp. 162– 173, 2000. [6] D. H. Brandwood, “A complex gradient

  10. Constrained signal reconstruction from wavelet transform coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.

    1991-12-31

    A new method is introduced for reconstructing a signal from an incomplete sampling of its Discrete Wavelet Transform (DWT). The algorithm yields a minimum-norm estimate satisfying a priori upper and lower bounds on the signal. The method is based on a finite-dimensional representation theory for minimum-norm estimates of bounded signals developed by R.E. Cole. Cole`s work has its origins in earlier techniques of maximum-entropy spectral estimation due to Lang and McClellan, which were adapted by Steinhardt, Goodrich and Roberts for minimum-norm spectral estimation. Cole`s extension of their work provides a representation for minimum-norm estimates of a class of generalized transformsmore » in terms of general correlation data (not just DFT`s of autocorrelation lags, as in spectral estimation). One virtue of this great generality is that it includes the inverse DWT. 20 refs.« less

  11. Molecular mechanism of direct proflavine-DNA intercalation: evidence for drug-induced minimum base-stacking penalty pathway.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2012-10-11

    DNA intercalation, a biophysical process of enormous clinical significance, has surprisingly eluded molecular understanding for several decades. With appropriate configurational restraint (to prevent dissociation) in all-atom metadynamics simulations, we capture the free energy surface of direct intercalation from minor groove-bound state for the first time using an anticancer agent proflavine. Mechanism along the minimum free energy path reveals that intercalation happens through a minimum base stacking penalty pathway where nonstacking parameters (Twist→Slide/Shift) change first, followed by base stacking parameters (Buckle/Roll→Rise). This mechanism defies the natural fluctuation hypothesis and provides molecular evidence for the drug-induced cavity formation hypothesis. The thermodynamic origin of the barrier is found to be a combination of entropy and desolvation energy.

  12. Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design

    NASA Astrophysics Data System (ADS)

    Keum, Jongho; Coulibaly, Paulin; Razavi, Tara; Tapsoba, Dominique; Gobena, Adam; Weber, Frank; Pietroniro, Alain

    2018-06-01

    Snow has a unique characteristic in the water cycle, that is, snow falls during the entire winter season, but the discharge from snowmelt is typically delayed until the melting period and occurs in a relatively short period. Therefore, reliable observations from an optimal snow monitoring network are necessary for an efficient management of snowmelt water for flood prevention and hydropower generation. The Dual Entropy and Multiobjective Optimization is applied to design snow monitoring networks in La Grande River Basin in Québec and Columbia River Basin in British Columbia. While the networks are optimized to have the maximum amount of information with minimum redundancy based on entropy concepts, this study extends the traditional entropy applications to the hydrometric network design by introducing several improvements. First, several data quantization cases and their effects on the snow network design problems were explored. Second, the applicability the Snow Data Assimilation System (SNODAS) products as synthetic datasets of potential stations was demonstrated in the design of the snow monitoring network of the Columbia River Basin. Third, beyond finding the Pareto-optimal networks from the entropy with multi-objective optimization, the networks obtained for La Grande River Basin were further evaluated by applying three hydrologic models. The calibrated hydrologic models simulated discharges using the updated snow water equivalent data from the Pareto-optimal networks. Then, the model performances for high flows were compared to determine the best optimal network for enhanced spring runoff forecasting.

  13. Systematic investigation of NLTE phenomena in the limit of small departures from LTE

    NASA Astrophysics Data System (ADS)

    Libby, S. B.; Graziani, F. R.; More, R. M.; Kato, T.

    1997-04-01

    In this paper, we begin a systematic study of Non-Local Thermal Equilibrium (NLTE) phenomena in near equilibrium (LTE) high energy density, highly radiative plasmas. It is shown that the principle of minimum entropy production rate characterizes NLTE steady states for average atom rate equations in the case of small departures form LTE. With the aid of a novel hohlraum-reaction box thought experiment, we use the principles of minimum entropy production and detailed balance to derive Onsager reciprocity relations for the NLTE responses of a near equilibrium sample to non-Planckian perturbations in different frequency groups. This result is a significant symmetry constraint on the linear corrections to Kirchoff's law. We envisage applying our strategy to a number of test problems which include: the NLTE corrections to the ionization state of an ion located near the edge of an otherwise LTE medium; the effect of a monochromatic radiation field perturbation on an LTE medium; the deviation of Rydberg state populations from LTE in recombining or ionizing plasmas; multi-electron temperature models such as that of Busquet; and finally, the effect of NLTE population shifts on opacity models.

  14. Characterization of separability and entanglement in (2xD)- and (3xD)-dimensional systems by single-qubit and single-qutrit unitary transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giampaolo, Salvatore M.; CNR-INFM Coherentia, Naples; CNISM Unita di Salerno and INFN Sezione di Napoli, Gruppo collegato di Salerno, Baronissi

    2007-10-15

    We investigate the geometric characterization of pure state bipartite entanglement of (2xD)- and (3xD)-dimensional composite quantum systems. To this aim, we analyze the relationship between states and their images under the action of particular classes of local unitary operations. We find that invariance of states under the action of single-qubit and single-qutrit transformations is a necessary and sufficient condition for separability. We demonstrate that in the (2xD)-dimensional case the von Neumann entropy of entanglement is a monotonic function of the minimum squared Euclidean distance between states and their images over the set of single qubit unitary transformations. Moreover, both inmore » the (2xD)- and in the (3xD)-dimensional cases the minimum squared Euclidean distance exactly coincides with the linear entropy [and thus as well with the tangle measure of entanglement in the (2xD)-dimensional case]. These results provide a geometric characterization of entanglement measures originally established in informational frameworks. Consequences and applications of the formalism to quantum critical phenomena in spin systems are discussed.« less

  15. Thermodynamics of an ideal generalized gas: II. Means of order alpha.

    PubMed

    Lavenda, B H

    2005-11-01

    The property that power means are monotonically increasing functions of their order is shown to be the basis of the second laws not only for processes involving heat conduction, but also for processes involving deformations. This generalizes earlier work involving only pure heat conduction and underlines the incomparability of the internal energy and adiabatic potentials when expressed as powers of the adiabatic variable. In an L-potential equilibration, the final state will be one of maximum entropy, whereas in an entropy equilibration, the final state will be one of minimum L. Unlike classical equilibrium thermodynamic phase space, which lacks an intrinsic metric structure insofar as distances and other geometrical concepts do not have an intrinsic thermodynamic significance in such spaces, a metric space can be constructed for the power means: the distance between means of different order is related to the Carnot efficiency. In the ideal classical gas limit, the average change in the entropy is shown to be proportional to the difference between the Shannon and Rényi entropies for nonextensive systems that are multifractal in nature. The L potential, like the internal energy, is a Schur convex function of the empirical temperature, which satisfies Jensen's inequality, and serves as a measure of the tendency to uniformity in processes involving pure thermal conduction.

  16. Characterizing Protease Specificity: How Many Substrates Do We Need?

    PubMed Central

    Schauperl, Michael; Fuchs, Julian E.; Waldner, Birgit J.; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.

    2015-01-01

    Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4’) with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design. PMID:26559682

  17. Entropy studies on beam distortion by atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2015-09-01

    When a beam propagates through atmospheric turbulence over a known distance, the target beam profile deviates from the projected profile of the beam on the receiver. Intuitively, the unwanted distortion provides information about the atmospheric turbulence. This information is crucial for guiding adaptive optic systems and improving beam propagation results. In this paper, we propose an entropy study based on the image from a plenoptic sensor to provide a measure of information content of atmospheric turbulence. In general, lower levels of atmospheric turbulence will have a smaller information size while higher levels of atmospheric turbulence will cause significant expansion of the information size, which may exceed the maximum capacity of a sensing system and jeopardize the reliability of an AO system. Therefore, the entropy function can be used to analyze the turbulence distortion and evaluate performance of AO systems. In fact, it serves as a metric that can tell the improvement of beam correction in each iteration step. In addition, it points out the limitation of an AO system at optimized correction as well as the minimum information needed for wavefront sensing to achieve certain levels of correction. In this paper, we will demonstrate the definition of the entropy function and how it is related to evaluating information (randomness) carried by atmospheric turbulence.

  18. Multitasking OS manages a team of processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ripps, D.L.

    1983-07-21

    MTOS-68k is a real-time multitasking operating system designed for the popular MC68000 microprocessors. It aproaches task coordination and synchronization in a fashion that matches uniquely the structural simplicity and regularity of the 68000 instruction set. Since in many 68000 applications the speed and power of one CPU are not enough, MTOS-68k has been designed to support multiple processors, as well as multiple tasks. Typically, the devices are tightly coupled single-board computers, that is they share a backplane and parts of global memory.

  19. Thermodynamical transcription of density functional theory with minimum Fisher information

    NASA Astrophysics Data System (ADS)

    Nagy, Á.

    2018-03-01

    Ghosh, Berkowitz and Parr designed a thermodynamical transcription of the ground-state density functional theory and introduced a local temperature that varies from point to point. The theory, however, is not unique because the kinetic energy density is not uniquely defined. Here we derive the expression of the phase-space Fisher information in the GBP theory taking the inverse temperature as the Fisher parameter. It is proved that this Fisher information takes its minimum for the case of constant temperature. This result is consistent with the recently proven theorem that the phase-space Shannon information entropy attains its maximum at constant temperature.

  20. Developing Soil Moisture Profiles Utilizing Remotely Sensed MW and TIR Based SM Estimates Through Principle of Maximum Entropy

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J. F.; Mecikalski, J. R.

    2015-12-01

    Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field data. In this study, vertical soil moisture profiles were developed using the POME model to evaluate an irrigation schedule over a maze field in north central Alabama (USA). The model was validated using both field data and a physically based mathematical model. The results demonstrate that a simple two-constraint entropy model under the assumption of a uniform initial soil moisture distribution can simulate most soil moisture profiles within the field area for 6 different soil types. The results of the irrigation simulation demonstrated that the POME model produced a very efficient irrigation strategy with loss of about 1.9% of the total applied irrigation water. However, areas of fine-textured soil (i.e. silty clay) resulted in plant stress of nearly 30% of the available moisture content due to insufficient water supply on the last day of the drying phase of the irrigation cycle. Overall, the POME approach showed promise as a general strategy to guide irrigation in humid environments, with minimum input requirements.

  1. Detection of cracks in shafts with the Approximated Entropy algorithm

    NASA Astrophysics Data System (ADS)

    Sampaio, Diego Luchesi; Nicoletti, Rodrigo

    2016-05-01

    The Approximate Entropy is a statistical calculus used primarily in the fields of Medicine, Biology, and Telecommunication for classifying and identifying complex signal data. In this work, an Approximate Entropy algorithm is used to detect cracks in a rotating shaft. The signals of the cracked shaft are obtained from numerical simulations of a de Laval rotor with breathing cracks modelled by the Fracture Mechanics. In this case, one analysed the vertical displacements of the rotor during run-up transients. The results show the feasibility of detecting cracks from 5% depth, irrespective of the unbalance of the rotating system and crack orientation in the shaft. The results also show that the algorithm can differentiate the occurrence of crack only, misalignment only, and crack + misalignment in the system. However, the algorithm is sensitive to intrinsic parameters p (number of data points in a sample vector) and f (fraction of the standard deviation that defines the minimum distance between two sample vectors), and good results are only obtained by appropriately choosing their values according to the sampling rate of the signal.

  2. Minimax Quantum Tomography: Estimators and Relative Entropy Bounds

    DOE PAGES

    Ferrie, Christopher; Blume-Kohout, Robin

    2016-03-04

    A minimax estimator has the minimum possible error (“risk”) in the worst case. Here we construct the first minimax estimators for quantum state tomography with relative entropy risk. The minimax risk of nonadaptive tomography scales as O (1/more » $$\\sqrt{N}$$ ) —in contrast to that of classical probability estimation, which is O (1/N) —where N is the number of copies of the quantum state used. We trace this deficiency to sampling mismatch: future observations that determine risk may come from a different sample space than the past data that determine the estimate. Lastly, this makes minimax estimators very biased, and we propose a computationally tractable alternative with similar behavior in the worst case, but superior accuracy on most states.« less

  3. Optimization of rainfall networks using information entropy and temporal variability analysis

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin

    2018-04-01

    Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.

  4. Ovarian Cancer Differential Interactome and Network Entropy Analysis Reveal New Candidate Biomarkers.

    PubMed

    Ayyildiz, Dilara; Gov, Esra; Sinha, Raghu; Arga, Kazim Yalcin

    2017-05-01

    Ovarian cancer is one of the most common cancers and has a high mortality rate due to insidious symptoms and lack of robust diagnostics. A hitherto understudied concept in cancer pathogenesis may offer new avenues for innovation in ovarian cancer biomarker development. Cancer cells are characterized by an increase in network entropy, and several studies have exploited this concept to identify disease-associated gene and protein modules. We report in this study the changes in protein-protein interactions (PPIs) in ovarian cancer within a differential network (interactome) analysis framework utilizing the entropy concept and gene expression data. A compendium of six transcriptome datasets that included 140 samples from laser microdissected epithelial cells of ovarian cancer patients and 51 samples from healthy population was obtained from Gene Expression Omnibus, and the high confidence human protein interactome (31,465 interactions among 10,681 proteins) was used. The uncertainties of the up- or downregulation of PPIs in ovarian cancer were estimated through an entropy formulation utilizing combined expression levels of genes, and the interacting protein pairs with minimum uncertainty were identified. We identified 105 proteins with differential PPI patterns scattered in 11 modules, each indicating significantly affected biological pathways in ovarian cancer such as DNA repair, cell proliferation-related mechanisms, nucleoplasmic translocation of estrogen receptor, extracellular matrix degradation, and inflammation response. In conclusion, we suggest several PPIs as biomarker candidates for ovarian cancer and discuss their future biological implications as potential molecular targets for pharmaceutical development as well. In addition, network entropy analysis is a concept that deserves greater research attention for diagnostic innovation in oncology and tumor pathogenesis.

  5. HMM for hyperspectral spectrum representation and classification with endmember entropy vectors

    NASA Astrophysics Data System (ADS)

    Arabi, Samir Y. W.; Fernandes, David; Pizarro, Marco A.

    2015-10-01

    The Hyperspectral images due to its good spectral resolution are extensively used for classification, but its high number of bands requires a higher bandwidth in the transmission data, a higher data storage capability and a higher computational capability in processing systems. This work presents a new methodology for hyperspectral data classification that can work with a reduced number of spectral bands and achieve good results, comparable with processing methods that require all hyperspectral bands. The proposed method for hyperspectral spectra classification is based on the Hidden Markov Model (HMM) associated to each Endmember (EM) of a scene and the conditional probabilities of each EM belongs to each other EM. The EM conditional probability is transformed in EM vector entropy and those vectors are used as reference vectors for the classes in the scene. The conditional probability of a spectrum that will be classified is also transformed in a spectrum entropy vector, which is classified in a given class by the minimum ED (Euclidian Distance) among it and the EM entropy vectors. The methodology was tested with good results using AVIRIS spectra of a scene with 13 EM considering the full 209 bands and the reduced spectral bands of 128, 64 and 32. For the test area its show that can be used only 32 spectral bands instead of the original 209 bands, without significant loss in the classification process.

  6. [Minimally invasive surgery for treating of complicated fronto-ethmoidal sinusitis].

    PubMed

    Pomar Blanco, P; Martín Villares, C; San Román Carbajo, J; Fernández Pello, M; Tapia Risueño, M

    2005-01-01

    Functional endoscopic sinus surgery (FESS) is nowadays the "gold standard" for frontal sinus pathologies, but management of acute situations and the aproach and/or the extent of the surgery perfomed in the frontal recess remains controversial nowadays. We report our experience in 4 patients with orbital celulitis due to frontal sinusitis who underwent combined external surgery (mini-trephination) and endoscopic sinus surgery. All patients managed sinus patency without any complications. We found this combined sinusotomy as an easy, effective and reproductible technique in order to resolve the difficult surgical management of complicated frontal sinusitis.

  7. Highly Entangled, Non-random Subspaces of Tensor Products from Quantum Groups

    NASA Astrophysics Data System (ADS)

    Brannan, Michael; Collins, Benoît

    2018-03-01

    In this paper we describe a class of highly entangled subspaces of a tensor product of finite-dimensional Hilbert spaces arising from the representation theory of free orthogonal quantum groups. We determine their largest singular values and obtain lower bounds for the minimum output entropy of the corresponding quantum channels. An application to the construction of d-positive maps on matrix algebras is also presented.

  8. Maximum nonlocality and minimum uncertainty using magic states

    NASA Astrophysics Data System (ADS)

    Howard, Mark

    2015-04-01

    We prove that magic states from the Clifford hierarchy give optimal solutions for tasks involving nonlocality and entropic uncertainty with respect to Pauli measurements. For both the nonlocality and uncertainty tasks, stabilizer states are the worst possible pure states, so our solutions have an operational interpretation as being highly nonstabilizer. The optimal strategy for a qudit version of the Clauser-Horne-Shimony-Holt game in prime dimensions is achieved by measuring maximally entangled states that are isomorphic to single-qudit magic states. These magic states have an appealingly simple form, and our proof shows that they are "balanced" with respect to all but one of the mutually unbiased stabilizer bases. Of all equatorial qudit states, magic states minimize the average entropic uncertainties for collision entropy and also, for small prime dimensions, min-entropy, a fact that may have implications for cryptography.

  9. Dissipated energy and entropy production for an unconventional heat engine: the stepwise `circular cycle'

    NASA Astrophysics Data System (ADS)

    di Liberto, Francesco; Pastore, Raffaele; Peruggi, Fulvio

    2011-05-01

    When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, the maximum efficiency occurs, i.e. the maximum available work is obtained. Similarly, a reversible heat pumps transfer entropy from a cold heat source to a hotter one with the minimum expense of energy. In contrast, if we are faced with non-reversible devices, there is some lost work for heat engines, and some extra work for heat pumps. These quantities are both related to entropy production. The lost work, i.e. ? , is also called 'degraded energy' or 'energy unavailable to do work'. The extra work, i.e. ? , is the excess of work performed on the system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the irreversible process). Both quantities are analysed in detail and are evaluated for a complex process, i.e. the stepwise circular cycle, which is similar to the stepwise Carnot cycle. The stepwise circular cycle is a cycle performed by means of N small weights, dw, which are first added and then removed from the piston of the vessel containing the gas or vice versa. The work performed by the gas can be found as the increase of the potential energy of the dw's. Each single dw is identified and its increase, i.e. its increase in potential energy, evaluated. In such a way it is found how the energy output of the cycle is distributed among the dw's. The size of the dw's affects entropy production and therefore the lost and extra work. The distribution of increases depends on the chosen removal process.

  10. Irreversibility and entropy production in transport phenomena, IV: Symmetry, integrated intermediate processes and separated variational principles for multi-currents

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-10-01

    The mechanism of entropy production in transport phenomena is discussed again by emphasizing the role of symmetry of non-equilibrium states and also by reformulating Einstein’s theory of Brownian motion to derive entropy production from it. This yields conceptual reviews of the previous papers [M. Suzuki, Physica A 390 (2011) 1904; 391 (2012) 1074; 392 (2013) 314]. Separated variational principles of steady states for multi external fields {Xi} and induced currents {Ji} are proposed by extending the principle of minimum integrated entropy production found by the present author for a single external field. The basic strategy of our theory on steady states is to take in all the intermediate processes from the equilibrium state to the final possible steady states in order to study the irreversible physics even in the steady states. As an application of this principle, Gransdorff-Prigogine’s evolution criterion inequality (or stability condition) dXP≡∫dr∑iJidXi≤0 is derived in the stronger form dQi≡∫drJidXi≤0 for individual force Xi and current Ji even in nonlinear responses which depend on all the external forces {Xk} nonlinearly. This is called “separated evolution criterion”. Some explicit demonstrations of the present general theory to simple electric circuits with multi external fields are given in order to clarify the physical essence of our new theory and to realize the condition of its validity concerning the existence of the solutions of the simultaneous equations obtained by the separated variational principles. It is also instructive to compare the two results obtained by the new variational theory and by the old scheme based on the instantaneous entropy production. This seems to be suggestive even to the energy problem in the world.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosla, D.; Singh, M.

    The estimation of three-dimensional dipole current sources on the cortical surface from the measured magnetoencephalogram (MEG) is a highly under determined inverse problem as there are many {open_quotes}feasible{close_quotes} images which are consistent with the MEG data. Previous approaches to this problem have concentrated on the use of weighted minimum norm inverse methods. While these methods ensure a unique solution, they often produce overly smoothed solutions and exhibit severe sensitivity to noise. In this paper we explore the maximum entropy approach to obtain better solutions to the problem. This estimation technique selects that image from the possible set of feasible imagesmore » which has the maximum entropy permitted by the information available to us. In order to account for the presence of noise in the data, we have also incorporated a noise rejection or likelihood term into our maximum entropy method. This makes our approach mirror a Bayesian maximum a posteriori (MAP) formulation. Additional information from other functional techniques like functional magnetic resonance imaging (fMRI) can be incorporated in the proposed method in the form of a prior bias function to improve solutions. We demonstrate the method with experimental phantom data from a clinical 122 channel MEG system.« less

  12. Potential of mean force between two hydrophobic solutes in water.

    PubMed

    Southall, Noel T; Dill, Ken A

    2002-12-10

    We study the potential of mean force between two nonpolar solutes in the Mercedes Benz model of water. Using NPT Monte Carlo simulations, we find that the solute size determines the relative preference of two solute molecules to come into contact ('contact minimum') or to be separated by a single layer of water ('solvent-separated minimum'). Larger solutes more strongly prefer the contacting state, while smaller solutes have more tendency to become solvent-separated, particularly in cold water. The thermal driving forces oscillate with solute separation. Contacts are stabilized by entropy, whereas solvent-separated solute pairing is stabilized by enthalpy. The free energy of interaction for small solutes is well-approximated by scaled-particle theory. Copyright 2002 Elsevier Science B.V.

  13. Systems analysis of a closed loop ECLSS using the ASPEN simulation tool. Thermodynamic efficiency analysis of ECLSS components. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chatterjee, Sharmista

    1993-01-01

    Our first goal in this project was to perform a systems analysis of a closed loop Environmental Control Life Support System (ECLSS). This pertains to the development of a model of an existing real system from which to assess the state or performance of the existing system. Systems analysis is applied to conceptual models obtained from a system design effort. For our modelling purposes we used a simulator tool called ASPEN (Advanced System for Process Engineering). Our second goal was to evaluate the thermodynamic efficiency of the different components comprising an ECLSS. Use is made of the second law of thermodynamics to determine the amount of irreversibility of energy loss of each component. This will aid design scientists in selecting the components generating the least entropy, as our penultimate goal is to keep the entropy generation of the whole system at a minimum.

  14. A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection

    NASA Astrophysics Data System (ADS)

    Li, Yongbo; Yang, Yuantao; Li, Guoyan; Xu, Minqiang; Huang, Wenhu

    2017-07-01

    Health condition identification of planetary gearboxes is crucial to reduce the downtime and maximize productivity. This paper aims to develop a novel fault diagnosis method based on modified multi-scale symbolic dynamic entropy (MMSDE) and minimum redundancy maximum relevance (mRMR) to identify the different health conditions of planetary gearbox. MMSDE is proposed to quantify the regularity of time series, which can assess the dynamical characteristics over a range of scales. MMSDE has obvious advantages in the detection of dynamical changes and computation efficiency. Then, the mRMR approach is introduced to refine the fault features. Lastly, the obtained new features are fed into the least square support vector machine (LSSVM) to complete the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault types of planetary gearboxes.

  15. Recurrence plots of discrete-time Gaussian stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramdani, Sofiane; Bouchara, Frédéric; Lagarde, Julien; Lesne, Annick

    2016-09-01

    We investigate the statistical properties of recurrence plots (RPs) of data generated by discrete-time stationary Gaussian random processes. We analytically derive the theoretical values of the probabilities of occurrence of recurrence points and consecutive recurrence points forming diagonals in the RP, with an embedding dimension equal to 1. These results allow us to obtain theoretical values of three measures: (i) the recurrence rate (REC) (ii) the percent determinism (DET) and (iii) RP-based estimation of the ε-entropy κ(ε) in the sense of correlation entropy. We apply these results to two Gaussian processes, namely first order autoregressive processes and fractional Gaussian noise. For these processes, we simulate a number of realizations and compare the RP-based estimations of the three selected measures to their theoretical values. These comparisons provide useful information on the quality of the estimations, such as the minimum required data length and threshold radius used to construct the RP.

  16. Gates to Gregg High Voltage Transmission Line Study. [California

    NASA Technical Reports Server (NTRS)

    Bergis, V.; Maw, K.; Newland, W.; Sinnott, D.; Thornbury, G.; Easterwood, P.; Bonderud, J.

    1982-01-01

    The usefulness of LANDSAT data in the planning of transmission line routes was assessed. LANDSAT digital data and image processing techniques, specifically a multi-date supervised classification aproach, were used to develop a land cover map for an agricultural area near Fresno, California. Twenty-six land cover classes were identified, of which twenty classes were agricultural crops. High classification accuracies (greater than 80%) were attained for several classes, including cotton, grain, and vineyards. The primary products generated were 1:24,000, 1:100,000 and 1:250,000 scale maps of the classification and acreage summaries for all land cover classes within four alternate transmission line routes.

  17. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1981-01-01

    A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.

  18. Endermologie New Aproach in the Medicine Treatment

    NASA Astrophysics Data System (ADS)

    Mezencevová, Viktória; Torok, Jozef; Czánová, Tatiana; Zajac, Ján

    2017-10-01

    Using the effect of mechanical forces affecting cellular response in the treatment of post-traumatic, postoperative, post-imlantation conditions through the application of Endermologie®- mechanotransduction represents a revolutionary solution in tissue-rehabilitation and positive target tissue influencing, with faster regeneration (1). Endermologie® is a noninvasive, painless, natural method of treatments of all connective tissue transformations, muscle and circulation pathologies. The aim of our study is investigation and explanation the mechanism of action by observing the physiological effects of Endermologie® based on human studies. The paper is focused on monitoring of possitive effect tissue regeneration using endermologie as a tools mechanostimulation improvements of systems integridy and health improvement.

  19. Kinetic analysis of hyperpolarized data with minimum a priori knowledge: Hybrid maximum entropy and nonlinear least squares method (MEM/NLS).

    PubMed

    Mariotti, Erika; Veronese, Mattia; Dunn, Joel T; Southworth, Richard; Eykyn, Thomas R

    2015-06-01

    To assess the feasibility of using a hybrid Maximum-Entropy/Nonlinear Least Squares (MEM/NLS) method for analyzing the kinetics of hyperpolarized dynamic data with minimum a priori knowledge. A continuous distribution of rates obtained through the Laplace inversion of the data is used as a constraint on the NLS fitting to derive a discrete spectrum of rates. Performance of the MEM/NLS algorithm was assessed through Monte Carlo simulations and validated by fitting the longitudinal relaxation time curves of hyperpolarized [1-(13) C] pyruvate acquired at 9.4 Tesla and at three different flip angles. The method was further used to assess the kinetics of hyperpolarized pyruvate-lactate exchange acquired in vitro in whole blood and to re-analyze the previously published in vitro reaction of hyperpolarized (15) N choline with choline kinase. The MEM/NLS method was found to be adequate for the kinetic characterization of hyperpolarized in vitro time-series. Additional insights were obtained from experimental data in blood as well as from previously published (15) N choline experimental data. The proposed method informs on the compartmental model that best approximate the biological system observed using hyperpolarized (13) C MR especially when the metabolic pathway assessed is complex or a new hyperpolarized probe is used. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc.

  20. Energy landscapes and properties of biomolecules.

    PubMed

    Wales, David J

    2005-11-09

    Thermodynamic and dynamic properties of biomolecules can be calculated using a coarse-grained approach based upon sampling stationary points of the underlying potential energy surface. The superposition approximation provides an overall partition function as a sum of contributions from the local minima, and hence functions such as internal energy, entropy, free energy and the heat capacity. To obtain rates we must also sample transition states that link the local minima, and the discrete path sampling method provides a systematic means to achieve this goal. A coarse-grained picture is also helpful in locating the global minimum using the basin-hopping approach. Here we can exploit a fictitious dynamics between the basins of attraction of local minima, since the objective is to find the lowest minimum, rather than to reproduce the thermodynamics or dynamics.

  1. Principles of time evolution in classical physics

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, M.

    2018-07-01

    We address principles of time evolution in classical mechanical/thermodynamical systems in translational and rotational motion, in three cases: when there is conservation of mechanical energy, when there is energy dissipation and when there is mechanical energy production. In the first case, the time derivative of the Hamiltonian vanishes. In the second one, when dissipative forces are present, the time evolution is governed by the minimum potential energy principle, or, equivalently, maximum increase of the entropy of the universe. Finally, in the third situation, when internal sources of work are available to the system, it evolves in time according to the principle of minimum Gibbs function. We apply the Lagrangian formulation to the systems, dealing with the non-conservative forces using restriction functions such as the Rayleigh dissipative function.

  2. Parameter Estimation as a Problem in Statistical Thermodynamics.

    PubMed

    Earle, Keith A; Schneider, David J

    2011-03-14

    In this work, we explore the connections between parameter fitting and statistical thermodynamics using the maxent principle of Jaynes as a starting point. In particular, we show how signal averaging may be described by a suitable one particle partition function, modified for the case of a variable number of particles. These modifications lead to an entropy that is extensive in the number of measurements in the average. Systematic error may be interpreted as a departure from ideal gas behavior. In addition, we show how to combine measurements from different experiments in an unbiased way in order to maximize the entropy of simultaneous parameter fitting. We suggest that fit parameters may be interpreted as generalized coordinates and the forces conjugate to them may be derived from the system partition function. From this perspective, the parameter fitting problem may be interpreted as a process where the system (spectrum) does work against internal stresses (non-optimum model parameters) to achieve a state of minimum free energy/maximum entropy. Finally, we show how the distribution function allows us to define a geometry on parameter space, building on previous work[1, 2]. This geometry has implications for error estimation and we outline a program for incorporating these geometrical insights into an automated parameter fitting algorithm.

  3. Query construction, entropy, and generalization in neural-network models

    NASA Astrophysics Data System (ADS)

    Sollich, Peter

    1994-05-01

    We study query construction algorithms, which aim at improving the generalization ability of systems that learn from examples by choosing optimal, nonredundant training sets. We set up a general probabilistic framework for deriving such algorithms from the requirement of optimizing a suitable objective function; specifically, we consider the objective functions entropy (or information gain) and generalization error. For two learning scenarios, the high-low game and the linear perceptron, we evaluate the generalization performance obtained by applying the corresponding query construction algorithms and compare it to training on random examples. We find qualitative differences between the two scenarios due to the different structure of the underlying rules (nonlinear and ``noninvertible'' versus linear); in particular, for the linear perceptron, random examples lead to the same generalization ability as a sequence of queries in the limit of an infinite number of examples. We also investigate learning algorithms which are ill matched to the learning environment and find that, in this case, minimum entropy queries can in fact yield a lower generalization ability than random examples. Finally, we study the efficiency of single queries and its dependence on the learning history, i.e., on whether the previous training examples were generated randomly or by querying, and the difference between globally and locally optimal query construction.

  4. Variation principle in calculating the flow of a two-phase mixture in the pipes of the cooling systems in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Aksenov, Andrey; Malysheva, Anna

    2018-03-01

    The analytical solution of one of the urgent problems of modern hydromechanics and heat engineering about the distribution of gas and liquid phases along the channel cross-section, the thickness of the annular layer and their connection with the mass content of the gas phase in the gas-liquid flow is given in the paper.The analytical method is based on the fundamental laws of theoretical mechanics and thermophysics on the minimum of energy dissipation and the minimum rate of increase in the system entropy, which determine the stability of stationary states and processes. Obtained dependencies disclose the physical laws of the motion of two-phase media and can be used in hydraulic calculations during the design and operation of refrigeration and air conditioning systems.

  5. Heat engine by exorcism of Maxwell Demon using spin angular momentum reservoir

    NASA Astrophysics Data System (ADS)

    Bedkihal, Salil; Wright, Jackson; Vaccaro, Joan; Gould, Tim

    Landauer's erasure principle is a hallmark in thermodynamics and information theory. According to this principle, erasing one bit of information incurs a minimum energy cost. Recently, Vaccaro and Barnett (VB) have explored the role of multiple conserved quantities in memory erasure. They further illustrated that for the energy degenerate spin reservoirs, the cost of erasure can be solely in terms of spin angular momentum and no energy. Motivated by the VB erasure, in this work we propose a novel optical heat engine that operates under a single thermal reservoir and a spin angular momentum reservoir. The novel heat engine exploits ultrafast processes of phonon absorption to convert thermal phonon energy to coherent light. The entropy generated in this process then corresponds to a mixture of spin up and spin down populations of energy degenerate electronic ground states which acts as demon's memory. This information is then erased using a polarised spin reservoir that acts as an entropy sink. The proposed heat engines goes beyond the traditional Carnot engine.

  6. System Mass Variation and Entropy Generation in 100k We Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  7. System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  8. Study of Thermodynamics of Liquid Noble-Metals Alloys Through a Pseudopotential Theory

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2010-09-01

    The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.

  9. Minimum entropy principle-based solar cell operation without a pn-junction and a thin CdS layer to extract the holes from the emitter

    NASA Astrophysics Data System (ADS)

    Böer, Karl W.

    2016-10-01

    The solar cell does not use a pn-junction to separate electrons from holes, but uses an undoped CdS layer that is p-type inverted when attached to a p-type collector and collects the holes while rejecting the backflow of electrons and thereby prevents junction leakage. The operation of the solar cell is determined by the minimum entropy principle of the cell and its external circuit that determines the electrochemical potential, i.e., the Fermi-level of the base electrode to the operating (maximum power point) voltage. It leaves the Fermi level of the metal electrode of the CdS unchanged, since CdS does not participate in the photo-emf. All photoelectric actions are generated by the holes excited from the light that causes the shift of the quasi-Fermi levels in the generator and supports the diffusion current in operating conditions. It is responsible for the measured solar maximum power current. The open circuit voltage (Voc) can approach its theoretical limit of the band gap of the collector at 0 K and the cell increases the efficiency at AM1 to 21% for a thin-film CdS/CdTe that is given as an example here. However, a series resistance of the CdS forces a limitation of its thickness to preferably below 200 Å to avoid unnecessary reduction in efficiency or Voc. The operation of the CdS solar cell does not involve heated carriers. It is initiated by the field at the CdS/CdTe interface that exceeds 20 kV/cm that is sufficient to cause extraction of holes by the CdS that is inverted to become p-type. Here a strong doubly charged intrinsic donor can cause a negative differential conductivity that switches-on a high-field domain that is stabilized by the minimum entropy principle and permits an efficient transport of the holes from the CdTe to the base electrode. Experimental results of the band model of CdS/CdTe solar cells are given and show that the conduction bands are connected in the dark, where the electron current must be continuous, and the valence bands are connected with light where the hole currents are dominant and must be continuous through the junction. The major shifts of the bands in operating conditions are self-adjusting by a change in the junction dipole momentum.

  10. Entropy measures detect increased movement variability in resistance training when elite rugby players use the ball.

    PubMed

    Moras, Gerard; Fernández-Valdés, Bruno; Vázquez-Guerrero, Jairo; Tous-Fajardo, Julio; Exel, Juliana; Sampaio, Jaime

    2018-05-24

    This study described the variability in acceleration during a resistance training task, performed in horizontal inertial flywheels without (NOBALL) or with the constraint of catching and throwing a rugby ball (BALL). Twelve elite rugby players (mean±SD: age 25.6±3.0years, height 1.82±0.07m, weight 94.0±9.9kg) performed a resistance training task in both conditions (NOBALL AND BALL). Players had five minutes of a standardized warm-up, followed by two series of six repetitions of both conditions: at the first three repetitions the intensity was progressively increased while the last three were performed at maximal voluntary effort. Thereafter, the participants performed two series of eight repetitions from each condition for two days and in a random order, with a minimum of 10min between series. The structure of variability was analysed using non-linear measures of entropy. Mean changes (%; ±90% CL) of 4.64; ±3.1g for mean acceleration and 39.48; ±36.63a.u. for sample entropy indicated likely and very likely increase when in BALL condition. Multiscale entropy also showed higher unpredictability of acceleration under the BALL condition, especially at higher time scales. The application of match specific constraints in resistance training for rugby players elicit different amount of variability of body acceleration across multiple physiological time scales. Understanding the non-linear process inherent to the manipulation of resistance training variables with constraints and its motor adaptations may help coaches and trainers to enhance the effectiveness of physical training and, ultimately, better understand and maximize sports performance. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Generating Multivariate Ordinal Data via Entropy Principles.

    PubMed

    Lee, Yen; Kaplan, David

    2018-03-01

    When conducting robustness research where the focus of attention is on the impact of non-normality, the marginal skewness and kurtosis are often used to set the degree of non-normality. Monte Carlo methods are commonly applied to conduct this type of research by simulating data from distributions with skewness and kurtosis constrained to pre-specified values. Although several procedures have been proposed to simulate data from distributions with these constraints, no corresponding procedures have been applied for discrete distributions. In this paper, we present two procedures based on the principles of maximum entropy and minimum cross-entropy to estimate the multivariate observed ordinal distributions with constraints on skewness and kurtosis. For these procedures, the correlation matrix of the observed variables is not specified but depends on the relationships between the latent response variables. With the estimated distributions, researchers can study robustness not only focusing on the levels of non-normality but also on the variations in the distribution shapes. A simulation study demonstrates that these procedures yield excellent agreement between specified parameters and those of estimated distributions. A robustness study concerning the effect of distribution shape in the context of confirmatory factor analysis shows that shape can affect the robust [Formula: see text] and robust fit indices, especially when the sample size is small, the data are severely non-normal, and the fitted model is complex.

  12. Spiral-bevel geometry and gear train precision

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Coy, J. J.

    1983-01-01

    A new aproach to the solution of determination of surface principal curvatures and directions is proposed. Direct relationships between the principal curvatures and directions of the tool surface and those of the principal curvatures and directions of generated gear surface are obtained. The principal curvatures and directions of geartooth surface are obtained without using the complicated equations of these surfaces. A general theory of the train kinematical errors exerted by manufacturing and assembly errors is discussed. Two methods for the determination of the train kinematical errors can be worked out: (1) with aid of a computer, and (2) with a approximate method. Results from noise and vibration measurement conducted on a helicopter transmission are used to illustrate the principals contained in the theory of kinematic errors.

  13. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-10-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.

  14. Dirac dispersion generates unusually large Nernst effect in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Watzman, Sarah J.; McCormick, Timothy M.; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; Prakash, Arati; Felser, Claudia; Trivedi, Nandini; Heremans, Joseph P.

    2018-04-01

    Weyl semimetals contain linearly dispersing electronic states, offering interesting features in transport yet to be thoroughly explored thermally. Here we show how the Nernst effect, combining entropy with charge transport, gives a unique signature for the presence of Dirac bands and offers a diagnostic to determine if trivial pockets play a role in this transport. The Nernst thermopower of NbP exceeds its conventional thermopower by a 100-fold, and the temperature dependence of the Nernst effect has a pronounced maximum. The charge-neutrality condition dictates that the Fermi level shifts with increasing temperature toward the energy that has the minimum density of states (DOS). In NbP, the agreement of the Nernst and Seebeck data with a model that assumes this minimum DOS resides at the Dirac points is taken as strong experimental evidence that the trivial (non-Dirac) bands play no role in high-temperature transport.

  15. First-order irreversible thermodynamic approach to a simple energy converter

    NASA Astrophysics Data System (ADS)

    Arias-Hernandez, L. A.; Angulo-Brown, F.; Paez-Hernandez, R. T.

    2008-01-01

    Several authors have shown that dissipative thermal cycle models based on finite-time thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of first-order irreversible thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function versus efficiency. In a previous work Stucki [J. W. Stucki, Eur. J. Biochem. 109, 269 (1980)] used a FOIT approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in adenosine triphosphate (ATP) synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state at both minimum entropy production and maximum efficiency simultaneously, by means of a conductance matching condition between extreme states of zero and infinite conductances, respectively. In the present work we show that all Stucki’s results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting of the simultaneous maximization of both the so-called ecological function and the efficiency.

  16. Information-theoretic measures of hydrogen-like ions in weakly coupled Debye plasmas

    NASA Astrophysics Data System (ADS)

    Zan, Li Rong; Jiao, Li Guang; Ma, Jia; Ho, Yew Kam

    2017-12-01

    Recent development of information theory provides researchers an alternative and useful tool to quantitatively investigate the variation of the electronic structure when atoms interact with the external environment. In this work, we make systematic studies on the information-theoretic measures for hydrogen-like ions immersed in weakly coupled plasmas modeled by Debye-Hückel potential. Shannon entropy, Fisher information, and Fisher-Shannon complexity in both position and momentum spaces are quantified in high accuracy for the hydrogen atom in a large number of stationary states. The plasma screening effect on embedded atoms can significantly affect the electronic density distributions, in both conjugate spaces, and it is quantified by the variation of information quantities. It is shown that the composite quantities (the Shannon entropy sum and the Fisher information product in combined spaces and Fisher-Shannon complexity in individual space) give a more comprehensive description of the atomic structure information than single ones. The nodes of wave functions play a significant role in the changes of composite information quantities caused by plasmas. With the continuously increasing screening strength, all composite quantities in circular states increase monotonously, while in higher-lying excited states where nodal structures exist, they first decrease to a minimum and then increase rapidly before the bound state approaches the continuum limit. The minimum represents the most reduction of uncertainty properties of the atom in plasmas. The lower bounds for the uncertainty product of the system based on composite information quantities are discussed. Our research presents a comprehensive survey in the investigation of information-theoretic measures for simple atoms embedded in Debye model plasmas.

  17. Parabolic replicator dynamics and the principle of minimum Tsallis information gain

    PubMed Central

    2013-01-01

    Background Non-linear, parabolic (sub-exponential) and hyperbolic (super-exponential) models of prebiological evolution of molecular replicators have been proposed and extensively studied. The parabolic models appear to be the most realistic approximations of real-life replicator systems due primarily to product inhibition. Unlike the more traditional exponential models, the distribution of individual frequencies in an evolving parabolic population is not described by the Maximum Entropy (MaxEnt) Principle in its traditional form, whereby the distribution with the maximum Shannon entropy is chosen among all the distributions that are possible under the given constraints. We sought to identify a more general form of the MaxEnt principle that would be applicable to parabolic growth. Results We consider a model of a population that reproduces according to the parabolic growth law and show that the frequencies of individuals in the population minimize the Tsallis relative entropy (non-additive information gain) at each time moment. Next, we consider a model of a parabolically growing population that maintains a constant total size and provide an “implicit” solution for this system. We show that in this case, the frequencies of the individuals in the population also minimize the Tsallis information gain at each moment of the ‘internal time” of the population. Conclusions The results of this analysis show that the general MaxEnt principle is the underlying law for the evolution of a broad class of replicator systems including not only exponential but also parabolic and hyperbolic systems. The choice of the appropriate entropy (information) function depends on the growth dynamics of a particular class of systems. The Tsallis entropy is non-additive for independent subsystems, i.e. the information on the subsystems is insufficient to describe the system as a whole. In the context of prebiotic evolution, this “non-reductionist” nature of parabolic replicator systems might reflect the importance of group selection and competition between ensembles of cooperating replicators. Reviewers This article was reviewed by Viswanadham Sridhara (nominated by Claus Wilke), Puushottam Dixit (nominated by Sergei Maslov), and Nick Grishin. For the complete reviews, see the Reviewers’ Reports section. PMID:23937956

  18. A Novel Method to Increase LinLog CMOS Sensors’ Performance in High Dynamic Range Scenarios

    PubMed Central

    Martínez-Sánchez, Antonio; Fernández, Carlos; Navarro, Pedro J.; Iborra, Andrés

    2011-01-01

    Images from high dynamic range (HDR) scenes must be obtained with minimum loss of information. For this purpose it is necessary to take full advantage of the quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors satisfy the above demand by offering an adjustable response curve that combines linear and logarithmic responses. This paper presents a novel method to quickly adjust the parameters that control the response curve of a LinLog CMOS image sensor. We propose to use an Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the sensor, together with control algorithms based on the saturation level and the entropy of the images. With this method the sensor’s maximum dynamic range (120 dB) can be used to acquire good quality images from HDR scenes with fast, automatic adaptation to scene conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less than eight frames when working in real time video mode. At least 67% of the scene entropy can be retained with this method. PMID:22164083

  19. A novel method to increase LinLog CMOS sensors' performance in high dynamic range scenarios.

    PubMed

    Martínez-Sánchez, Antonio; Fernández, Carlos; Navarro, Pedro J; Iborra, Andrés

    2011-01-01

    Images from high dynamic range (HDR) scenes must be obtained with minimum loss of information. For this purpose it is necessary to take full advantage of the quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors satisfy the above demand by offering an adjustable response curve that combines linear and logarithmic responses. This paper presents a novel method to quickly adjust the parameters that control the response curve of a LinLog CMOS image sensor. We propose to use an Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the sensor, together with control algorithms based on the saturation level and the entropy of the images. With this method the sensor's maximum dynamic range (120 dB) can be used to acquire good quality images from HDR scenes with fast, automatic adaptation to scene conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less than eight frames when working in real time video mode. At least 67% of the scene entropy can be retained with this method.

  20. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    PubMed

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  1. Unbiased All-Optical Random-Number Generator

    NASA Astrophysics Data System (ADS)

    Steinle, Tobias; Greiner, Johannes N.; Wrachtrup, Jörg; Giessen, Harald; Gerhardt, Ilja

    2017-10-01

    The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to "iron out" such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.

  2. Simulations of dissociation constants in low pressure supercritical water

    NASA Astrophysics Data System (ADS)

    Halstead, S. J.; An, P.; Zhang, S.

    2014-09-01

    This article reports molecular dynamics simulations of the dissociation of hydrochloric acid and sodium hydroxide in water from ambient to supercritical temperatures at a fixed pressure of 250 atm. Corrosion of reaction vessels is known to be a serious problem of supercritical water, and acid/base dissociation can be a significant contributing factor to this. The SPC/e model was used in conjunction with solute models determined from density functional calculations and OPLSAA Lennard-Jones parameters. Radial distribution functions were calculated, and these show a significant increase in solute-solvent ordering upon forming the product ions at all temperatures. For both dissociations, rapidly decreasing entropy of reaction was found to be the controlling thermodynamic factor, and this is thought to arise due to the ions produced from dissociation maintaining a relatively high density and ordered solvation shell compared to the reactants. The change in entropy of reaction reaches a minimum at the critical temperature. The values of pKa and pKb were calculated and both increased with temperature, in qualitative agreement with other work, until a maximum value at 748 K, after which there was a slight decrease.

  3. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization.

    PubMed

    Ding, Jinliang; Chai, Tianyou; Wang, Hong

    2011-03-01

    This paper presents a novel offline modeling for product quality prediction of mineral processing which consists of a number of unit processes in series. The prediction of the product quality of the whole mineral process (i.e., the mixed concentrate grade) plays an important role and the establishment of its predictive model is a key issue for the plantwide optimization. For this purpose, a hybrid modeling approach of the mixed concentrate grade prediction is proposed, which consists of a linear model and a nonlinear model. The least-squares support vector machine is adopted to establish the nonlinear model. The inputs of the predictive model are the performance indices of each unit process, while the output is the mixed concentrate grade. In this paper, the model parameter selection is transformed into the shape control of the probability density function (PDF) of the modeling error. In this context, both the PDF-control-based and minimum-entropy-based model parameter selection approaches are proposed. Indeed, this is the first time that the PDF shape control idea is used to deal with system modeling, where the key idea is to turn model parameters so that either the modeling error PDF is controlled to follow a target PDF or the modeling error entropy is minimized. The experimental results using the real plant data and the comparison of the two approaches are discussed. The results show the effectiveness of the proposed approaches.

  4. Reconfigurable multivariable control law for commercial airplane using a direct digital output feedback design

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.; Hueschen, R. M.

    1984-01-01

    The ability of a pilot to reconfigure the control surfaces on an airplane after a failure, allowing the airplane to recover to a safe condition for landing, becomes more difficult with increasing airplane complexity. Techniques are needed to stabilize and control the airplane immediately after a failure, allowing the pilot time to make longer range decisions. This paper shows a design of a discrete multivariable control law using four controls for the longitudinal channel of a B-737. Single control element failures are allowed in three of the four controls. The four controls design and failure cases are analyzed by means of a digital airplane simulation, with regard to tracking capability and ability to overcome severe windshear and turbulence during the aproach and landing phase of flight.

  5. Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution

    NASA Astrophysics Data System (ADS)

    Li, Jimeng; Li, Ming; Zhang, Jinfeng

    2017-08-01

    Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.

  6. Why Does the Human Body Maintain a Constant 37-Degree Temperature?: Thermodynamic Switch Controls Chemical Equilibrium in Biological Systems

    NASA Astrophysics Data System (ADS)

    Chun, Paul W.

    2005-01-01

    Applying the Planck-Benzinger methodology to biological systems, we have established that the negative Gibbs free energy minimum at a well-defined stable temperature, langTSrang, where the bound unavailable energy TΔS° = 0, has its origin in the sequence-specific hydrophobic interactions. Each such system we have examined confirms the existence of a thermodynamic molecular switch wherein a change of sign in [ΔCp°]reaction leads to a true negative minimum in the Gibbs free energy change of reaction, and hence a maximum in the related equilibrium constant, Keq. At this temperature, langTSrang, where ΔH°(TS)(-) = ΔG°(TS)(-)min, the maximum work can be accomplished in transpiration, digestion, reproduction or locomotion. In the human body, this temperature is 37°C. The langTSrang values may vary from one living organism to another, but the fact that the value of TΔS°(T) = 0 will not. There is a lower cutoff point, langThrang, where enthalpy is unfavorable but entropy is favorable, i.e. ΔH°(Th)(+) = TΔS°(Th)(+), and an upper limit, langTmrang, above which enthalpy is favorable but entropy is unfavorable, i.e. ΔH°(Tm)(-) = TΔS°(Tm)(-). Only between these two temperature limits, where ΔG°(T) = 0, is the net chemical driving force favorable for such biological processes as protein folding, protein-protein, protein-nucleic acid or protein-membrane interactions, and protein self-assembly. All interacting biological systems examined using the Planck-Benzinger methodology have shown such a thermodynamic switch at the molecular level, suggesting that its existence may be universal.

  7. Measurement Uncertainty Relations for Discrete Observables: Relative Entropy Formulation

    NASA Astrophysics Data System (ADS)

    Barchielli, Alberto; Gregoratti, Matteo; Toigo, Alessandro

    2018-02-01

    We introduce a new information-theoretic formulation of quantum measurement uncertainty relations, based on the notion of relative entropy between measurement probabilities. In the case of a finite-dimensional system and for any approximate joint measurement of two target discrete observables, we define the entropic divergence as the maximal total loss of information occurring in the approximation at hand. For fixed target observables, we study the joint measurements minimizing the entropic divergence, and we prove the general properties of its minimum value. Such a minimum is our uncertainty lower bound: the total information lost by replacing the target observables with their optimal approximations, evaluated at the worst possible state. The bound turns out to be also an entropic incompatibility degree, that is, a good information-theoretic measure of incompatibility: indeed, it vanishes if and only if the target observables are compatible, it is state-independent, and it enjoys all the invariance properties which are desirable for such a measure. In this context, we point out the difference between general approximate joint measurements and sequential approximate joint measurements; to do this, we introduce a separate index for the tradeoff between the error of the first measurement and the disturbance of the second one. By exploiting the symmetry properties of the target observables, exact values, lower bounds and optimal approximations are evaluated in two different concrete examples: (1) a couple of spin-1/2 components (not necessarily orthogonal); (2) two Fourier conjugate mutually unbiased bases in prime power dimension. Finally, the entropic incompatibility degree straightforwardly generalizes to the case of many observables, still maintaining all its relevant properties; we explicitly compute it for three orthogonal spin-1/2 components.

  8. The advantages and disadvantages of centralized control of air power at operational level

    NASA Astrophysics Data System (ADS)

    Arisoy, Uǧur

    2014-05-01

    People do not want to see and hear a war. In today's world, if war is inevitable, the use of air power is seen as the preferable means of conducting operations instead of financially burdensome land battles which are more likely to cause heavy loss of life. The use of Air Power has gained importance in NATO operations in the Post-Cold War era. For example, air power has undertaken a decisive role from the beginning to the end of the operation in Libya. From this point of view, the most important issue to consider is how to direct air power more effectively at operational level. NATO's Core JFAC (Joint Force Air Command) was established in 2012 to control joint air power at operational level from a single center. US had experienced JFAC aproach in the Operation Desert Storm in 1991. UK, France, Germany, Italy and Spain are also directing their air power from their JFAC structures. Joint air power can be directed from a single center at operational level by means of JFAC. JFAC aproach provides complex planning progress of Air Power to be controled faster in a single center. An Air Power with a large number of aircrafts, long range missiles of cutting-edge technology may have difficulties in achieving results unless directed effectively. In this article, directing air power more effectively at operational level has been studied in the framework of directing air power from a single center carried out by SWOT analysis technique. "Directing Air Power at operational level from a single center similar to JFAC-like structure" is compared with "Directing Air Power at operational level from two centers similar to AC (Air Command) + CAOC (Combined Air Operations Center) structure" As a result of this study, it is assessed that directing air power at operational level from a single center would bring effectiveness to the air campaign. The study examines directing air power at operational level. Developments at political, strategic and tactical levels have been ignored.

  9. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adesso, Gerardo; CNR-INFM Coherentia, Naples; CNISM, Unita di Salerno, Salerno

    2007-10-15

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself andmore » the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.« less

  10. Automated mango fruit assessment using fuzzy logic approach

    NASA Astrophysics Data System (ADS)

    Hasan, Suzanawati Abu; Kin, Teoh Yeong; Sauddin@Sa'duddin, Suraiya; Aziz, Azlan Abdul; Othman, Mahmod; Mansor, Ab Razak; Parnabas, Vincent

    2014-06-01

    In term of value and volume of production, mango is the third most important fruit product next to pineapple and banana. Accurate size assessment of mango fruits during harvesting is vital to ensure that they are classified to the grade accordingly. However, the current practice in mango industry is grading the mango fruit manually using human graders. This method is inconsistent, inefficient and labor intensive. In this project, a new method of automated mango size and grade assessment is developed using RGB fiber optic sensor and fuzzy logic approach. The calculation of maximum, minimum and mean values based on RGB fiber optic sensor and the decision making development using minimum entropy formulation to analyse the data and make the classification for the mango fruit. This proposed method is capable to differentiate three different grades of mango fruit automatically with 77.78% of overall accuracy compared to human graders sorting. This method was found to be helpful for the application in the current agricultural industry.

  11. [Batas Nómadas in Madrid Salud: art and artists in professional community health teams].

    PubMed

    Castillejo, Mar; Fernández-Cedena, Jorge; Siles, Silvia; Claver, María Dolores; Ávila, Noemí

    2018-06-14

    This article describes the strategy of incorporating artists into the teams of community health in the city of Madrid, specifically in the Madrid Salud Centers. The artistic colletive, Batas Nómadas, formed by three artists expertized in visual arts, has developed performances and participatory aproach to explain the incorporation of art and artists in these teams of professionals of Madrid Salud. Batas Nómadas has carried out sessions in 14 work teams of the Madrid Salud Centers and has collected data in a creative way from the 179 professionals that have participated in these sessions. These actions have shown some needs in community health, and have noticed a meaningful reflection on the usefulness of the art to develop participative strategies into the Madrid Salud teams. Copyright © 2018. Publicado por Elsevier España, S.L.U.

  12. Radio Frequency Interference Detection using Machine Learning.

    NASA Astrophysics Data System (ADS)

    Mosiane, Olorato; Oozeer, Nadeem; Aniyan, Arun; Bassett, Bruce A.

    2017-05-01

    Radio frequency interference (RFI) has plagued radio astronomy which potentially might be as bad or worse by the time the Square Kilometre Array (SKA) comes up. RFI can be either internal (generated by instruments) or external that originates from intentional or unintentional radio emission generated by man. With the huge amount of data that will be available with up coming radio telescopes, an automated aproach will be required to detect RFI. In this paper to try automate this process we present the result of applying machine learning techniques to cross match RFI from the Karoo Array Telescope (KAT-7) data. We found that not all the features selected to characterise RFI are always important. We further investigated 3 machine learning techniques and conclude that the Random forest classifier performs with a 98% Area Under Curve and 91% recall in detecting RFI.

  13. Diffusion profiling of tumor volumes using a histogram approach can predict proliferation and further microarchitectural features in medulloblastoma.

    PubMed

    Schob, Stefan; Beeskow, Anne; Dieckow, Julia; Meyer, Hans-Jonas; Krause, Matthias; Frydrychowicz, Clara; Hirsch, Franz-Wolfgang; Surov, Alexey

    2018-05-31

    Medulloblastomas are the most common central nervous system tumors in childhood. Treatment and prognosis strongly depend on histology and transcriptomic profiling. However, the proliferative potential also has prognostical value. Our study aimed to investigate correlations between histogram profiling of diffusion-weighted images and further microarchitectural features. Seven patients (age median 14.6 years, minimum 2 years, maximum 20 years; 5 male, 2 female) were included in this retrospective study. Using a Matlab-based analysis tool, histogram analysis of whole apparent diffusion coefficient (ADC) volumes was performed. ADC entropy revealed a strong inverse correlation with the expression of the proliferation marker Ki67 (r = - 0.962, p = 0.009) and with total nuclear area (r = - 0.888, p = 0.044). Furthermore, ADC percentiles, most of all ADCp90, showed significant correlations with Ki67 expression (r = 0.902, p = 0.036). Diffusion histogram profiling of medulloblastomas provides valuable in vivo information which potentially can be used for risk stratification and prognostication. First of all, entropy revealed to be the most promising imaging biomarker. However, further studies are warranted.

  14. Free Volume, Energy, and Entropy at the Polymer Glass Transition: New Results and Connections with Widely Used Treatments

    NASA Astrophysics Data System (ADS)

    White, Ronald; Lipson, Jane

    Free volume has a storied history in polymer physics. To introduce our own results, we consider how free volume has been defined in the past, e.g. in the works of Fox and Flory, Doolittle, and the equation of Williams, Landel, and Ferry. We contrast these perspectives with our own analysis using our Locally Correlated Lattice (LCL) model where we have found a striking connection between polymer free volume (analyzed using PVT data) and the polymer's corresponding glass transition temperature, Tg. The pattern, covering over 50 different polymers, is robust enough to be reasonably predictive based on melt properties alone; when a melt hits this T-dependent boundary of critical minimum free volume it becomes glassy. We will present a broad selection of results from our thermodynamic analysis, and make connections with historical treatments. We will discuss patterns that have emerged across the polymers in the energy and entropy when quantified as ''per LCL theoretical segment''. Finally we will relate the latter trend to the point of view popularized in the theory of Adam and Gibbs. The authors gratefully acknowledge support from NSF DMR-1403757.

  15. Quantization Of Temperature

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul

    2017-01-01

    Max Plank did not quantize temperature. I will show that the Plank temperature violates the Plank scale. Plank stated that the Plank scale was Natures scale and independent of human construct. Also stating that even aliens would derive the same values. He made a huge mistake, because temperature is based on the Kelvin scale, which is man-made just like the meter and kilogram. He did not discover natures scale for the quantization of temperature. His formula is flawed, and his value is incorrect. Plank's calculation is Tp = c2Mp/Kb. The general form of this equation is T = E/Kb Why is this wrong? The temperature for a fixed amount of energy is dependent upon the volume it occupies. Using the correct formula involves specifying the radius of the volume in the form of (RE). This leads to an inequality and a limit that is equivalent to the Bekenstein Bound, but using temperature instead of entropy. Rewriting this equation as a limit defines both the maximum temperature and Boltzmann's constant. This will saturate any space-time boundary with maximum temperature and information density, also the minimum radius and entropy. The general form of the equation then becomes a limit in BH thermodynamics T <= (RE)/(λKb) .

  16. Hot-start Giant Planets Form with Radiative Interiors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berardo, David; Cumming, Andrew, E-mail: david.berardo@mcgill.ca, E-mail: andrew.cumming@mcgill.ca

    In the hot-start core accretion formation model for gas giants, the interior of a planet is usually assumed to be fully convective. By calculating the detailed internal evolution of a planet assuming hot-start outer boundary conditions, we show that such a planet will in fact form with a radially increasing internal entropy profile, so that its interior will be radiative instead of convective. For a hot outer boundary, there is a minimum value for the entropy of the internal adiabat S {sub min} below which the accreting envelope does not match smoothly onto the interior, but instead deposits high entropymore » material onto the growing interior. One implication of this would be to at least temporarily halt the mixing of heavy elements within the planet, which are deposited by planetesimals accreted during formation. The compositional gradient this would impose could subsequently disrupt convection during post-accretion cooling, which would alter the observed cooling curve of the planet. However, even with a homogeneous composition, for which convection develops as the planet cools, the difference in cooling timescale will change the inferred mass of directly imaged gas giants.« less

  17. Multicellular regulation of entropy, spatial order, and information

    NASA Astrophysics Data System (ADS)

    Youk, Hyun

    Many multicellular systems such as tissues and microbial biofilms consist of cells that secrete and sense signalling molecules. Understanding how collective behaviours of secrete-and-sense cells is an important challenge. We combined experimental and theoretical approaches to understand multicellular coordination of gene expression and spatial pattern formation among secrete-and-sense cells. We engineered secrete-and-sense yeast cells to show that cells can collectively and permanently remember a past event by reminding each other with their secreted signalling molecule. If one cell ``forgets'' then another cell can remind it. Cell-cell communication ensures a long-term (permanent) memory by overcoming common limitations of intracellular memory. We also established a new theoretical framework inspired by statistical mechanics to understand how fields of secrete-and-sense cells form spatial patterns. We introduce new metrics - cellular entropy, cellular Hamiltonian, and spatial order index - for dynamics of cellular automata that form spatial patterns. Our theory predicts how fast any spatial patterns form, how ordered they are, and establishes cellular Hamiltonian that, like energy for non-living systems, monotonically decreases towards a minimum over time. ERC Starting Grant (MultiCellSysBio), NWO VIDI, NWO NanoFront.

  18. Whole-Lesion Apparent Diffusion Coefficient-Based Entropy-Related Parameters for Characterizing Cervical Cancers: Initial Findings.

    PubMed

    Guan, Yue; Li, Weifeng; Jiang, Zhuoran; Chen, Ying; Liu, Song; He, Jian; Zhou, Zhengyang; Ge, Yun

    2016-12-01

    This study aimed to develop whole-lesion apparent diffusion coefficient (ADC)-based entropy-related parameters of cervical cancer to preliminarily assess intratumoral heterogeneity of this lesion in comparison to adjacent normal cervical tissues. A total of 51 women (mean age, 49 years) with cervical cancers confirmed by biopsy underwent 3-T pelvic diffusion-weighted magnetic resonance imaging with b values of 0 and 800 s/mm 2 prospectively. ADC-based entropy-related parameters including first-order entropy and second-order entropies were derived from the whole tumor volume as well as adjacent normal cervical tissues. Intraclass correlation coefficient, Wilcoxon test with Bonferroni correction, Kruskal-Wallis test, and receiver operating characteristic curve were used for statistical analysis. All the parameters showed excellent interobserver agreement (all intraclass correlation coefficients  > 0.900). Entropy, entropy(H) 0 , entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean were significantly higher, whereas entropy(H) range and entropy(H) std were significantly lower in cervical cancers compared to adjacent normal cervical tissues (all P <.0001). Kruskal-Wallis test showed that there were no significant differences among the values of various second-order entropies including entropy(H) 0, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean. All second-order entropies had larger area under the receiver operating characteristic curve than first-order entropy in differentiating cervical cancers from adjacent normal cervical tissues. Further, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean had the same largest area under the receiver operating characteristic curve of 0.867. Whole-lesion ADC-based entropy-related parameters of cervical cancers were developed successfully, which showed initial potential in characterizing intratumoral heterogeneity in comparison to adjacent normal cervical tissues. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  19. On quantum Rényi entropies: A new generalization and some properties

    NASA Astrophysics Data System (ADS)

    Müller-Lennert, Martin; Dupuis, Frédéric; Szehr, Oleg; Fehr, Serge; Tomamichel, Marco

    2013-12-01

    The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.

  20. Upper entropy axioms and lower entropy axioms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jin-Li, E-mail: phd5816@163.com; Suo, Qi

    2015-04-15

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover,more » different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.« less

  1. EEG entropy measures in anesthesia

    PubMed Central

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation efficiency compared with MDFA. Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA. Overall, it is suggested that the RPE index was a superior measure. Investigating the advantages and disadvantages of these entropy indices could help improve current clinical indices for monitoring DoA. PMID:25741277

  2. On Use of Multi-Chambered Fission Detectors for In-Core, Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Roberts, Jeremy A.

    2018-01-01

    Presented is a short, computational study on the potential use of multichambered fission detectors for in-core, neutron spectroscopy. Motivated by the development of very small fission chambers at CEA in France and at Kansas State University in the U.S., it was assumed in this preliminary analysis that devices can be made small enough to avoid flux perturbations and that uncertainties related to measurements can be ignored. It was hypothesized that a sufficient number of chambers with unique reactants can act as a real-time, foilactivation experiment. An unfolding scheme based on maximizing (Shannon) entropy was used to produce a flux spectrum from detector signals that requires no prior information. To test the method, integral, detector responses were generated for singleisotope detectors of various Th, U, Np, Pu, Am, and Cs isotopes using a simplified, pressurized-water reactor spectrum and fluxweighted, microscopic, fission cross sections, in the WIMS-69 multigroup format. An unfolded spectrum was found from subsets of these responses that had a maximum entropy while reproducing the responses considered and summing to one (that is, they were normalized). Several nuclide subsets were studied, and, as expected, the results indicate inclusion of more nuclides leads to better spectra but with diminishing improvements, with the best-case spectrum having an average, relative, group-wise error of approximately 51%. Furthermore, spectra found from minimum-norm and Tihkonov-regularization inversion were of lower quality than the maximum entropy solutions. Finally, the addition of thermal-neutron filters (here, Cd and Gd) provided substantial improvement over unshielded responses alone. The results, as a whole, suggest that in-core, neutron spectroscopy is at least marginally feasible.

  3. Communication: Introducing prescribed biases in out-of-equilibrium Markov models

    NASA Astrophysics Data System (ADS)

    Dixit, Purushottam D.

    2018-03-01

    Markov models are often used in modeling complex out-of-equilibrium chemical and biochemical systems. However, many times their predictions do not agree with experiments. We need a systematic framework to update existing Markov models to make them consistent with constraints that are derived from experiments. Here, we present a framework based on the principle of maximum relative path entropy (minimum Kullback-Leibler divergence) to update Markov models using stationary state and dynamical trajectory-based constraints. We illustrate the framework using a biochemical model network of growth factor-based signaling. We also show how to find the closest detailed balanced Markov model to a given Markov model. Further applications and generalizations are discussed.

  4. Surgical treatment of neurologic complications of bacterial meningitis in children in Kosovo.

    PubMed

    Namani, Sadie A; Koci, Remzie A; Kuchar, Ernest; Dedushi, Kreshnike H

    2012-04-01

    Neurologic complications of bacterial meningitis can occur any time during the course of the disease and some of them need neurosurgical aproach. to determine the incidence of neurologic complications of bacterial meningitis in children requring neurosurgical treatment. a total of 277 children were followed and treated for bacterial meningitis at the Clinic of Infectious Diseases in Prishtina. The authors have analyzed cases who developed acute neurologic complications and treatment procedures. of the 277 children treated for bacterial meningitis, due to the suspicion for neurologic complications, 109 children underwent a head computerized tomography scan. About 47 cases (43%) had evident structural abnormalities while only 15/277 cases (5%) required neurosurgical treatment; 9/38 cases with subdural collections, 5 cases with hydrocephalus and 1 case of spinal abscess. Neurosurgical intervention were not common in pediatric bacterial meningitis cases (5%) but were highly significant in cases complicated with acute neurologic complications (32%).

  5. SU-E-QI-17: Dependence of 3D/4D PET Quantitative Image Features On Noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, J; Budzevich, M; Zhang, G

    2014-06-15

    Purpose: Quantitative imaging is a fast evolving discipline where a large number of features are extracted from images; i.e., radiomics. Some features have been shown to have diagnostic, prognostic and predictive value. However, they are sensitive to acquisition and processing factors; e.g., noise. In this study noise was added to positron emission tomography (PET) images to determine how features were affected by noise. Methods: Three levels of Gaussian noise were added to 8 lung cancer patients PET images acquired in 3D mode (static) and using respiratory tracking (4D); for the latter images from one of 10 phases were used. Amore » total of 62 features: 14 shape, 19 intensity (1stO), 18 GLCM textures (2ndO; from grey level co-occurrence matrices) and 11 RLM textures (2ndO; from run-length matrices) features were extracted from segmented tumors. Dimensions of GLCM were 256×256, calculated using 3D images with a step size of 1 voxel in 13 directions. Grey levels were binned into 256 levels for RLM and features were calculated in all 13 directions. Results: Feature variation generally increased with noise. Shape features were the most stable while RLM were the most unstable. Intensity and GLCM features performed well; the latter being more robust. The most stable 1stO features were compactness, maximum and minimum length, standard deviation, root-mean-squared, I30, V10-V90, and entropy. The most stable 2ndO features were entropy, sum-average, sum-entropy, difference-average, difference-variance, difference-entropy, information-correlation-2, short-run-emphasis, long-run-emphasis, and run-percentage. In general, features computed from images from one of the phases of 4D scans were more stable than from 3D scans. Conclusion: This study shows the need to characterize image features carefully before they are used in research and medical applications. It also shows that the performance of features, and thereby feature selection, may be assessed in part by noise analysis.« less

  6. Refined two-index entropy and multiscale analysis for complex system

    NASA Astrophysics Data System (ADS)

    Bian, Songhan; Shang, Pengjian

    2016-10-01

    As a fundamental concept in describing complex system, entropy measure has been proposed to various forms, like Boltzmann-Gibbs (BG) entropy, one-index entropy, two-index entropy, sample entropy, permutation entropy etc. This paper proposes a new two-index entropy Sq,δ and we find the new two-index entropy is applicable to measure the complexity of wide range of systems in the terms of randomness and fluctuation range. For more complex system, the value of two-index entropy is smaller and the correlation between parameter δ and entropy Sq,δ is weaker. By combining the refined two-index entropy Sq,δ with scaling exponent h(δ), this paper analyzes the complexities of simulation series and classifies several financial markets in various regions of the world effectively.

  7. Entropy criteria applied to pattern selection in systems with free boundaries

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1985-10-01

    The steady state differential or integral equations which describe patterned dissipative structures, typically to be identified with first order phase transformation morphologies like isothermal pearlites, are invariably degenerate in one or more order parameters (the lamellar spacing in the pearlite case). It is often observed that a different pattern is attained at the steady state for each initial condition (the hysteresis or metastable case). Alternatively, boundary perturbations and internal fluctuations during transition up to, or at the steady state, destroy the path coherence. In this case a statistical ensemble of imperfect patterns often emerges which represents a fluctuating but recognizably patterned and unique average steady state. It is cases like cellular, lamellar pearlite, involving an assembly of individual cell patterns which are regularly perturbed by local fluctuation and growth processes, which concern us here. Such weakly fluctuating nonlinear steady state ensembles can be arranged in a thought experiment so as to evolve as subsystems linking two very large mass-energy reservoirs in isolation. Operating on this discontinuous thermodynamic ideal, Onsager’s principle of maximum path probability for isolated systems, which we interpret as a minimal time correlation function connecting subsystem and baths, identifies the stable steady state at a parametric minimum or maximum (or both) in the dissipation rate. This nonlinear principle is independent of the Principle of Minimum Dissipation which is applicable in the linear regime of irreversible thermodynamics. The statistical argument is equivalent to the weak requirement that the isolated system entropy as a function of time be differentiable to the second order despite the macroscopic pattern fluctuations which occur in the subsystem. This differentiability condition is taken for granted in classical stability theory based on the 2nd Law. The optimal principle as applied to isothermal and forced velocity pearlites (in this case maximal) possesses a Le Chatelier (perturbation) Principle which can be formulated exactly via Langer’s conjecture that “each lamella must grow in a direction which is perpendicular to the solidification front”. This is the first example of such an equivalence to be experimentally and theoretically recognized in nonlinear irreversible thermodynamics. A further application to binary solidification cells is reviewed. In this case the optimum in the dissipation is a minimum and the closure between theory and experiment is excellent. Other applications in thermal-hydraulics, biology, and solid state physics are briefy described.

  8. Aging and cardiovascular complexity: effect of the length of RR tachograms

    PubMed Central

    Nagaraj, Nithin

    2016-01-01

    As we age, our hearts undergo changes that result in a reduction in complexity of physiological interactions between different control mechanisms. This results in a potential risk of cardiovascular diseases which are the number one cause of death globally. Since cardiac signals are nonstationary and nonlinear in nature, complexity measures are better suited to handle such data. In this study, three complexity measures are used, namely Lempel–Ziv complexity (LZ), Sample Entropy (SampEn) and Effort-To-Compress (ETC). We determined the minimum length of RR tachogram required for characterizing complexity of healthy young and healthy old hearts. All the three measures indicated significantly lower complexity values for older subjects than younger ones. However, the minimum length of heart-beat interval data needed differs for the three measures, with LZ and ETC needing as low as 10 samples, whereas SampEn requires at least 80 samples. Our study indicates that complexity measures such as LZ and ETC are good candidates for the analysis of cardiovascular dynamics since they are able to work with very short RR tachograms. PMID:27957395

  9. Comment on "Inference with minimal Gibbs free energy in information field theory".

    PubMed

    Iatsenko, D; Stefanovska, A; McClintock, P V E

    2012-03-01

    Enßlin and Weig [Phys. Rev. E 82, 051112 (2010)] have introduced a "minimum Gibbs free energy" (MGFE) approach for estimation of the mean signal and signal uncertainty in Bayesian inference problems: it aims to combine the maximum a posteriori (MAP) and maximum entropy (ME) principles. We point out, however, that there are some important questions to be clarified before the new approach can be considered fully justified, and therefore able to be used with confidence. In particular, after obtaining a Gaussian approximation to the posterior in terms of the MGFE at some temperature T, this approximation should always be raised to the power of T to yield a reliable estimate. In addition, we show explicitly that MGFE indeed incorporates the MAP principle, as well as the MDI (minimum discrimination information) approach, but not the well-known ME principle of Jaynes [E.T. Jaynes, Phys. Rev. 106, 620 (1957)]. We also illuminate some related issues and resolve apparent discrepancies. Finally, we investigate the performance of MGFE estimation for different values of T, and we discuss the advantages and shortcomings of the approach.

  10. A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem.

    PubMed

    Dang, C; Xu, L

    2001-03-01

    In this paper a globally convergent Lagrange and barrier function iterative algorithm is proposed for approximating a solution of the traveling salesman problem. The algorithm employs an entropy-type barrier function to deal with nonnegativity constraints and Lagrange multipliers to handle linear equality constraints, and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the algorithm searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that the nonnegativity constraints are always satisfied automatically if the step length is a number between zero and one. At each iteration the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the algorithm converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the algorithm seems more effective and efficient than the softassign algorithm.

  11. Microcanonical entropy for classical systems

    NASA Astrophysics Data System (ADS)

    Franzosi, Roberto

    2018-03-01

    The entropy definition in the microcanonical ensemble is revisited. We propose a novel definition for the microcanonical entropy that resolve the debate on the correct definition of the microcanonical entropy. In particular we show that this entropy definition fixes the problem inherent the exact extensivity of the caloric equation. Furthermore, this entropy reproduces results which are in agreement with the ones predicted with standard Boltzmann entropy when applied to macroscopic systems. On the contrary, the predictions obtained with the standard Boltzmann entropy and with the entropy we propose, are different for small system sizes. Thus, we conclude that the Boltzmann entropy provides a correct description for macroscopic systems whereas extremely small systems should be better described with the entropy that we propose here.

  12. On S-mixing entropy of quantum channels

    NASA Astrophysics Data System (ADS)

    Mukhamedov, Farrukh; Watanabe, Noboru

    2018-06-01

    In this paper, an S-mixing entropy of quantum channels is introduced as a generalization of Ohya's S-mixing entropy. We investigate several properties of the introduced entropy. Moreover, certain relations between the S-mixing entropy and the existing map and output entropies of quantum channels are investigated as well. These relations allowed us to find certain connections between separable states and the introduced entropy. Hence, there is a sufficient condition to detect entangled states. Moreover, several properties of the introduced entropy are investigated. Besides, entropies of qubit and phase-damping channels are calculated.

  13. Fermionic entanglement in superconducting systems

    NASA Astrophysics Data System (ADS)

    Di Tullio, M.; Gigena, N.; Rossignoli, R.

    2018-06-01

    We examine distinct measures of fermionic entanglement in the exact ground state of a finite superconducting system. It is first shown that global measures such as the one-body entanglement entropy, which represents the minimum relative entropy between the exact ground state and the set of fermionic Gaussian states, exhibit a close correlation with the BCS gap, saturating in the strong superconducting regime. The same behavior is displayed by the bipartite entanglement between the set of all single-particle states k of positive quasimomenta and their time-reversed partners k ¯. In contrast, the entanglement associated with the reduced density matrix of four single-particle modes k ,k ¯ , k',k¯' , which can be measured through a properly defined fermionic concurrence, exhibits a different behavior, showing a peak in the vicinity of the superconducting transition for states k ,k' close to the Fermi level and becoming small in the strong coupling regime. In the latter, such reduced state exhibits, instead, a finite mutual information and quantum discord. While the first measures can be correctly estimated with the BCS approximation, the previous four-level concurrence lies strictly beyond the latter, requiring at least a particle-number projected BCS treatment for its description. Formal properties of all previous entanglement measures are as well discussed.

  14. Application of maximum entropy to statistical inference for inversion of data from a single track segment.

    PubMed

    Stotts, Steven A; Koch, Robert A

    2017-08-01

    In this paper an approach is presented to estimate the constraint required to apply maximum entropy (ME) for statistical inference with underwater acoustic data from a single track segment. Previous algorithms for estimating the ME constraint require multiple source track segments to determine the constraint. The approach is relevant for addressing model mismatch effects, i.e., inaccuracies in parameter values determined from inversions because the propagation model does not account for all acoustic processes that contribute to the measured data. One effect of model mismatch is that the lowest cost inversion solution may be well outside a relatively well-known parameter value's uncertainty interval (prior), e.g., source speed from track reconstruction or towed source levels. The approach requires, for some particular parameter value, the ME constraint to produce an inferred uncertainty interval that encompasses the prior. Motivating this approach is the hypothesis that the proposed constraint determination procedure would produce a posterior probability density that accounts for the effect of model mismatch on inferred values of other inversion parameters for which the priors might be quite broad. Applications to both measured and simulated data are presented for model mismatch that produces minimum cost solutions either inside or outside some priors.

  15. Analytical design of intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.; Valavanis, Kimon P.

    1987-01-01

    The problem of designing 'intelligent machines' to operate in uncertain environments with minimum supervision or interaction with a human operator is examined. The structure of an 'intelligent machine' is defined to be the structure of a Hierarchically Intelligent Control System, composed of three levels hierarchically ordered according to the principle of 'increasing precision with decreasing intelligence', namely: the organizational level, performing general information processing tasks in association with a long-term memory; the coordination level, dealing with specific information processing tasks with a short-term memory; and the control level, which performs the execution of various tasks through hardware using feedback control methods. The behavior of such a machine may be managed by controls with special considerations and its 'intelligence' is directly related to the derivation of a compatible measure that associates the intelligence of the higher levels with the concept of entropy, which is a sufficient analytic measure that unifies the treatment of all the levels of an 'intelligent machine' as the mathematical problem of finding the right sequence of internal decisions and controls for a system structured in the order of intelligence and inverse order of precision such that it minimizes its total entropy. A case study on the automatic maintenance of a nuclear plant illustrates the proposed approach.

  16. Einstein-Podolsky-Rosen paradox implies a minimum achievable temperature

    NASA Astrophysics Data System (ADS)

    Rogers, David M.

    2017-01-01

    This work examines the thermodynamic consequences of the repeated partial projection model for coupling a quantum system to an arbitrary series of environments under feedback control. This paper provides observational definitions of heat and work that can be realized in current laboratory setups. In contrast to other definitions, it uses only properties of the environment and the measurement outcomes, avoiding references to the "measurement" of the central system's state in any basis. These definitions are consistent with the usual laws of thermodynamics at all temperatures, while never requiring complete projective measurement of the entire system. It is shown that the back action of measurement must be counted as work rather than heat to satisfy the second law. Comparisons are made to quantum jump (unravelling) and transition-probability based definitions, many of which appear as particular limits of the present model. These limits show that our total entropy production is a lower bound on traditional definitions of heat that trace out the measurement device. Examining the master equation approximation to the process at finite measurement rates, we show that most interactions with the environment make the system unable to reach absolute zero. We give an explicit formula for the minimum temperature achievable in repeatedly measured quantum systems. The phenomenon of minimum temperature offers an explanation of recent experiments aimed at testing fluctuation theorems in the quantum realm and places a fundamental purity limit on quantum computers.

  17. Entropy and equilibrium via games of complexity

    NASA Astrophysics Data System (ADS)

    Topsøe, Flemming

    2004-09-01

    It is suggested that thermodynamical equilibrium equals game theoretical equilibrium. Aspects of this thesis are discussed. The philosophy is consistent with maximum entropy thinking of Jaynes, but goes one step deeper by deriving the maximum entropy principle from an underlying game theoretical principle. The games introduced are based on measures of complexity. Entropy is viewed as minimal complexity. It is demonstrated that Tsallis entropy ( q-entropy) and Kaniadakis entropy ( κ-entropy) can be obtained in this way, based on suitable complexity measures. A certain unifying effect is obtained by embedding these measures in a two-parameter family of entropy functions.

  18. Quantile based Tsallis entropy in residual lifetime

    NASA Astrophysics Data System (ADS)

    Khammar, A. H.; Jahanshahi, S. M. A.

    2018-02-01

    Tsallis entropy is a generalization of type α of the Shannon entropy, that is a nonadditive entropy unlike the Shannon entropy. Shannon entropy may be negative for some distributions, but Tsallis entropy can always be made nonnegative by choosing appropriate value of α. In this paper, we derive the quantile form of this nonadditive's entropy function in the residual lifetime, namely the residual quantile Tsallis entropy (RQTE) and get the bounds for it, depending on the Renyi's residual quantile entropy. Also, we obtain relationship between RQTE and concept of proportional hazards model in the quantile setup. Based on the new measure, we propose a stochastic order and aging classes, and study its properties. Finally, we prove characterizations theorems for some well known lifetime distributions. It is shown that RQTE uniquely determines the parent distribution unlike the residual Tsallis entropy.

  19. Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker-Jarvis, James

    This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied tomore » the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance.« less

  20. Entropy flow and entropy production in the human body in basal conditions.

    PubMed

    Aoki, I

    1989-11-08

    Entropy inflow and outflow for the naked human body in basal conditions in the respiration calorimeter due to infrared radiation, convection, evaporation of water and mass-flow are calculated by use of the energetic data obtained by Hardy & Du Bois. Also, the change of entropy content in the body is estimated. The entropy production in the human body is obtained as the change of entropy content minus the net entropy flow into the body. The entropy production thus calculated becomes positive. The magnitude of entropy production per effective radiating surface area does not show any significant variation with subjects. The entropy production is nearly constant at the calorimeter temperatures of 26-32 degrees C; the average in this temperature range is 0.172 J m-2 sec-1 K-1. The forced air currents around the human body and also clothing have almost no effect in changing the entropy production. Thus, the entropy production of the naked human body in basal conditions does not depend on its environmental factors.

  1. Three faces of entropy for complex systems: Information, thermodynamics, and the maximum entropy principle

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Corominas-Murtra, Bernat; Hanel, Rudolf

    2017-09-01

    There are at least three distinct ways to conceptualize entropy: entropy as an extensive thermodynamic quantity of physical systems (Clausius, Boltzmann, Gibbs), entropy as a measure for information production of ergodic sources (Shannon), and entropy as a means for statistical inference on multinomial processes (Jaynes maximum entropy principle). Even though these notions represent fundamentally different concepts, the functional form of the entropy for thermodynamic systems in equilibrium, for ergodic sources in information theory, and for independent sampling processes in statistical systems, is degenerate, H (p ) =-∑ipilogpi . For many complex systems, which are typically history-dependent, nonergodic, and nonmultinomial, this is no longer the case. Here we show that for such processes, the three entropy concepts lead to different functional forms of entropy, which we will refer to as SEXT for extensive entropy, SIT for the source information rate in information theory, and SMEP for the entropy functional that appears in the so-called maximum entropy principle, which characterizes the most likely observable distribution functions of a system. We explicitly compute these three entropy functionals for three concrete examples: for Pólya urn processes, which are simple self-reinforcing processes, for sample-space-reducing (SSR) processes, which are simple history dependent processes that are associated with power-law statistics, and finally for multinomial mixture processes.

  2. Multiwavelet packet entropy and its application in transmission line fault recognition and classification.

    PubMed

    Liu, Zhigang; Han, Zhiwei; Zhang, Yang; Zhang, Qiaoge

    2014-11-01

    Multiwavelets possess better properties than traditional wavelets. Multiwavelet packet transformation has more high-frequency information. Spectral entropy can be applied as an analysis index to the complexity or uncertainty of a signal. This paper tries to define four multiwavelet packet entropies to extract the features of different transmission line faults, and uses a radial basis function (RBF) neural network to recognize and classify 10 fault types of power transmission lines. First, the preprocessing and postprocessing problems of multiwavelets are presented. Shannon entropy and Tsallis entropy are introduced, and their difference is discussed. Second, multiwavelet packet energy entropy, time entropy, Shannon singular entropy, and Tsallis singular entropy are defined as the feature extraction methods of transmission line fault signals. Third, the plan of transmission line fault recognition using multiwavelet packet entropies and an RBF neural network is proposed. Finally, the experimental results show that the plan with the four multiwavelet packet energy entropies defined in this paper achieves better performance in fault recognition. The performance with SA4 (symmetric antisymmetric) multiwavelet packet Tsallis singular entropy is the best among the combinations of different multiwavelet packets and the four multiwavelet packet entropies.

  3. Uniqueness and characterization theorems for generalized entropies

    NASA Astrophysics Data System (ADS)

    Enciso, Alberto; Tempesta, Piergiulio

    2017-12-01

    The requirement that an entropy function be composable is key: it means that the entropy of a compound system can be calculated in terms of the entropy of its independent components. We prove that, under mild regularity assumptions, the only composable generalized entropy in trace form is the Tsallis one-parameter family (which contains Boltzmann-Gibbs as a particular case). This result leads to the use of generalized entropies that are not of trace form, such as Rényi’s entropy, in the study of complex systems. In this direction, we also present a characterization theorem for a large class of composable non-trace-form entropy functions with features akin to those of Rényi’s entropy.

  4. Experimental heat capacities, excess entropies, and magnetic properties of bulk and nano Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solutions

    NASA Astrophysics Data System (ADS)

    Schliesser, Jacob M.; Huang, Baiyu; Sahu, Sulata K.; Asplund, Megan; Navrotsky, Alexandra; Woodfield, Brian F.

    2018-03-01

    We have measured the heat capacities of several well-characterized bulk and nanophase Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solution samples from which magnetic properties of transitions and third-law entropies have been determined. The magnetic transitions show several features common to effects of particle and magnetic domain sizes. From the standard molar entropies, excess entropies of mixing have been generated for these solid solutions and compared with configurational entropies determined previously by assuming appropriate cation and valence distributions. The vibrational and magnetic excess entropies for bulk materials are comparable in magnitude to the respective configurational entropies indicating that excess entropies of mixing must be included when analyzing entropies of mixing. The excess entropies for nanophase materials are even larger than the configurational entropies. Changes in valence, cation distribution, bonding and microstructure between the mixing ions are the likely sources of the positive excess entropies of mixing.

  5. Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions.

    PubMed

    Abe, Sumiyoshi

    2002-10-01

    The q-exponential distributions, which are generalizations of the Zipf-Mandelbrot power-law distribution, are frequently encountered in complex systems at their stationary states. From the viewpoint of the principle of maximum entropy, they can apparently be derived from three different generalized entropies: the Rényi entropy, the Tsallis entropy, and the normalized Tsallis entropy. Accordingly, mere fittings of observed data by the q-exponential distributions do not lead to identification of the correct physical entropy. Here, stabilities of these entropies, i.e., their behaviors under arbitrary small deformation of a distribution, are examined. It is shown that, among the three, the Tsallis entropy is stable and can provide an entropic basis for the q-exponential distributions, whereas the others are unstable and cannot represent any experimentally observable quantities.

  6. On the entropy variation in the scenario of entropic gravity

    NASA Astrophysics Data System (ADS)

    Xiao, Yong; Bai, Shi-Yang

    2018-05-01

    In the scenario of entropic gravity, entropy varies as a function of the location of the matter, while the tendency to increase entropy appears as gravity. We concentrate on studying the entropy variation of a typical gravitational system with different relative positions between the mass and the gravitational source. The result is that the entropy of the system doesn't increase when the mass is displaced closer to the gravitational source. In this way it disproves the proposal of entropic gravity from thermodynamic entropy. It doesn't exclude the possibility that gravity originates from non-thermodynamic entropy like entanglement entropy.

  7. Entropy and climate. I - ERBE observations of the entropy production of the earth

    NASA Technical Reports Server (NTRS)

    Stephens, G. L.; O'Brien, D. M.

    1993-01-01

    An approximate method for estimating the global distributions of the entropy fluxes flowing through the upper boundary of the climate system is introduced, and an estimate of the entropy exchange between the earth and space and the entropy production of the planet is provided. Entropy fluxes calculated from the Earth Radiation Budget Experiment measurements show how the long-wave entropy flux densities dominate the total entropy fluxes at all latitudes compared with the entropy flux densities associated with reflected sunlight, although the short-wave flux densities are important in the context of clear sky-cloudy sky net entropy flux differences. It is suggested that the entropy production of the planet is both constant for the 36 months of data considered and very near its maximum possible value. The mean value of this production is 0.68 x 10 exp 15 W/K, and the amplitude of the annual cycle is approximately 1 to 2 percent of this value.

  8. Logarithmic black hole entropy corrections and holographic Rényi entropy

    NASA Astrophysics Data System (ADS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  9. The Dynameomics Entropy Dictionary: A Large-Scale Assessment of Conformational Entropy across Protein Fold Space.

    PubMed

    Towse, Clare-Louise; Akke, Mikael; Daggett, Valerie

    2017-04-27

    Molecular dynamics (MD) simulations contain considerable information with regard to the motions and fluctuations of a protein, the magnitude of which can be used to estimate conformational entropy. Here we survey conformational entropy across protein fold space using the Dynameomics database, which represents the largest existing data set of protein MD simulations for representatives of essentially all known protein folds. We provide an overview of MD-derived entropies accounting for all possible degrees of dihedral freedom on an unprecedented scale. Although different side chains might be expected to impose varying restrictions on the conformational space that the backbone can sample, we found that the backbone entropy and side chain size are not strictly coupled. An outcome of these analyses is the Dynameomics Entropy Dictionary, the contents of which have been compared with entropies derived by other theoretical approaches and experiment. As might be expected, the conformational entropies scale linearly with the number of residues, demonstrating that conformational entropy is an extensive property of proteins. The calculated conformational entropies of folding agree well with previous estimates. Detailed analysis of specific cases identifies deviations in conformational entropy from the average values that highlight how conformational entropy varies with sequence, secondary structure, and tertiary fold. Notably, α-helices have lower entropy on average than do β-sheets, and both are lower than coil regions.

  10. Double symbolic joint entropy in nonlinear dynamic complexity analysis

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-07-01

    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.

  11. Effect of entropy on anomalous transport in ITG-modes of magneto-plasma

    NASA Astrophysics Data System (ADS)

    Yaqub Khan, M.; Qaiser Manzoor, M.; Haq, A. ul; Iqbal, J.

    2017-04-01

    The ideal gas equation and S={{c}v}log ≤ft(P/ρ \\right) (where S is entropy, P is pressure and ρ is the mass density) define the interconnection of entropy with the temperature and density of plasma. Therefore, different phenomena relating to plasma and entropy need to be investigated. By employing the Braginskii transport equations for a nonuniform electron-ion magnetoplasma, two new parameters—the entropy distribution function and the entropy gradient drift—are defined, a new dispersion relation is obtained, and the dependence of anomalous transport on entropy is also proved. Some results, like monotonicity, the entropy principle and the second law of thermodynamics, are proved with a new definition of entropy. This work will open new horizons in fusion processes, not only by controlling entropy in tokamak plasmas—particularly in the pedestal regions of the H-mode and space plasmas—but also in engineering sciences.

  12. Quantifying and minimizing entropy generation in AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.

    1997-12-31

    Entropy generation in an AMTEC cell represents inherent power loss to the AMTEC cell. Minimizing cell entropy generation directly maximizes cell power generation and efficiency. An internal project is on-going at AMPS to identify, quantify and minimize entropy generation mechanisms within an AMTEC cell, with the goal of determining cost-effective design approaches for maximizing AMTEC cell power generation. Various entropy generation mechanisms have been identified and quantified. The project has investigated several cell design techniques in a solar-driven AMTEC system to minimize cell entropy generation and produce maximum power cell designs. In many cases, various sources of entropy generation aremore » interrelated such that minimizing entropy generation requires cell and system design optimization. Some of the tradeoffs between various entropy generation mechanisms are quantified and explained and their implications on cell design are discussed. The relationship between AMTEC cell power and efficiency and entropy generation is presented and discussed.« less

  13. Thermodynamic and Differential Entropy under a Change of Variables

    PubMed Central

    Hnizdo, Vladimir; Gilson, Michael K.

    2013-01-01

    The differential Shannon entropy of information theory can change under a change of variables (coordinates), but the thermodynamic entropy of a physical system must be invariant under such a change. This difference is puzzling, because the Shannon and Gibbs entropies have the same functional form. We show that a canonical change of variables can, indeed, alter the spatial component of the thermodynamic entropy just as it alters the differential Shannon entropy. However, there is also a momentum part of the entropy, which turns out to undergo an equal and opposite change when the coordinates are transformed, so that the total thermodynamic entropy remains invariant. We furthermore show how one may correctly write the change in total entropy for an isothermal physical process in any set of spatial coordinates. PMID:24436633

  14. Entropy for Mechanically Vibrating Systems

    NASA Astrophysics Data System (ADS)

    Tufano, Dante

    The research contained within this thesis deals with the subject of entropy as defined for and applied to mechanically vibrating systems. This work begins with an overview of entropy as it is understood in the fields of classical thermodynamics, information theory, statistical mechanics, and statistical vibroacoustics. Khinchin's definition of entropy, which is the primary definition used for the work contained in this thesis, is introduced in the context of vibroacoustic systems. The main goal of this research is to to establish a mathematical framework for the application of Khinchin's entropy in the field of statistical vibroacoustics by examining the entropy context of mechanically vibrating systems. The introduction of this thesis provides an overview of statistical energy analysis (SEA), a modeling approach to vibroacoustics that motivates this work on entropy. The objective of this thesis is given, and followed by a discussion of the intellectual merit of this work as well as a literature review of relevant material. Following the introduction, an entropy analysis of systems of coupled oscillators is performed utilizing Khinchin's definition of entropy. This analysis develops upon the mathematical theory relating to mixing entropy, which is generated by the coupling of vibroacoustic systems. The mixing entropy is shown to provide insight into the qualitative behavior of such systems. Additionally, it is shown that the entropy inequality property of Khinchin's entropy can be reduced to an equality using the mixing entropy concept. This equality can be interpreted as a facet of the second law of thermodynamics for vibroacoustic systems. Following this analysis, an investigation of continuous systems is performed using Khinchin's entropy. It is shown that entropy analyses using Khinchin's entropy are valid for continuous systems that can be decomposed into a finite number of modes. The results are shown to be analogous to those obtained for simple oscillators, which demonstrates the applicability of entropy-based approaches to real-world systems. Three systems are considered to demonstrate these findings: 1) a rod end-coupled to a simple oscillator, 2) two end-coupled rods, and 3) two end-coupled beams. The aforementioned work utilizes the weak coupling assumption to determine the entropy of composite systems. Following this discussion, a direct method of finding entropy is developed which does not rely on this limiting assumption. The resulting entropy provides a useful benchmark for evaluating the accuracy of the weak coupling approach, and is validated using systems of coupled oscillators. The later chapters of this work discuss Khinchin's entropy as applied to nonlinear and nonconservative systems, respectively. The discussion of entropy for nonlinear systems is motivated by the desire to expand the applicability of SEA techniques beyond the linear regime. The discussion of nonconservative systems is also crucial, since real-world systems interact with their environment, and it is necessary to confirm the validity of an entropy approach for systems that are relevant in the context of SEA. Having developed a mathematical framework for determining entropy under a number of previously unexplored cases, the relationship between thermodynamics and statistical vibroacoustics can be better understood. Specifically, vibroacoustic temperatures can be obtained for systems that are not necessarily linear or weakly coupled. In this way, entropy provides insight into how the power flow proportionality of statistical energy analysis (SEA) can be applied to a broader class of vibroacoustic systems. As such, entropy is a useful tool for both justifying and expanding the foundational results of SEA.

  15. Entropy is more resistant to artifacts than bispectral index in brain-dead organ donors.

    PubMed

    Wennervirta, Johanna; Salmi, Tapani; Hynynen, Markku; Yli-Hankala, Arvi; Koivusalo, Anna-Maria; Van Gils, Mark; Pöyhiä, Reino; Vakkuri, Anne

    2007-01-01

    To evaluate the usefulness of entropy and the bispectral index (BIS) in brain-dead subjects. A prospective, open, nonselective, observational study in the university hospital. 16 brain-dead organ donors. Time-domain electroencephalography (EEG), spectral entropy of the EEG, and BIS were recorded during solid organ harvest. State entropy differed significantly from 0 (isoelectric EEG) 28%, response entropy 29%, and BIS 68% of the total recorded time. The median values during the operation were state entropy 0.0, response entropy 0.0, and BIS 3.0. In four of 16 organ donors studied the EEG was not isoelectric, and nonreactive rhythmic activity was noted in time-domain EEG. After excluding the results from subjects with persistent residual EEG activity state entropy, response entropy, and BIS values differed from zero 17%, 18%, and 62% of the recorded time, respectively. Median values were 0.0, 0.0, and 2.0 for state entropy, response entropy, and BIS, respectively. The highest index values in entropy and BIS monitoring were recorded without neuromuscular blockade. The main sources of artifacts were electrocauterization, 50-Hz artifact, handling of the donor, ballistocardiography, electromyography, and electrocardiography. Both entropy and BIS showed nonzero values due to artifacts after brain death diagnosis. BIS was more liable to artifacts than entropy. Neither of these indices are diagnostic tools, and care should be taken when interpreting EEG and EEG-derived indices in the evaluation of brain death.

  16. Mathematical investigations of branch length similarity entropy profiles of shapes for various resolutions

    NASA Astrophysics Data System (ADS)

    Jeon, Wonju; Lee, Sang-Hee

    2012-12-01

    In our previous study, we defined the branch length similarity (BLS) entropy for a simple network consisting of a single node and numerous branches. As the first application of this entropy to characterize shapes, the BLS entropy profiles of 20 battle tank shapes were calculated from simple networks created by connecting pixels in the boundary of the shape. The profiles successfully characterized the tank shapes through a comparison of their BLS entropy profiles. Following the application, this entropy was used to characterize human's emotional faces, such as happiness and sad, and to measure the degree of complexity for termite tunnel networks. These applications indirectly indicate that the BLS entropy profile can be a useful tool to characterize networks and shapes. However, the ability of the BLS entropy in the characterization depends on the image resolution because the entropy is determined by the number of nodes for the boundary of a shape. Higher resolution means more nodes. If the entropy is to be widely used in the scientific community, the effect of the resolution on the entropy profile should be understood. In the present study, we mathematically investigated the BLS entropy profile of a shape with infinite resolution and numerically investigated the variation in the pattern of the entropy profile caused by changes in the resolution change in the case of finite resolution.

  17. A diameter-sensitive flow entropy method for reliability consideration in water distribution system design

    NASA Astrophysics Data System (ADS)

    Liu, Haixing; Savić, Dragan; Kapelan, Zoran; Zhao, Ming; Yuan, Yixing; Zhao, Hongbin

    2014-07-01

    Flow entropy is a measure of uniformity of pipe flows in water distribution systems. By maximizing flow entropy one can identify reliable layouts or connectivity in networks. In order to overcome the disadvantage of the common definition of flow entropy that does not consider the impact of pipe diameter on reliability, an extended definition of flow entropy, termed as diameter-sensitive flow entropy, is proposed. This new methodology is then assessed by using other reliability methods, including Monte Carlo Simulation, a pipe failure probability model, and a surrogate measure (resilience index) integrated with water demand and pipe failure uncertainty. The reliability assessment is based on a sample of WDS designs derived from an optimization process for each of the two benchmark networks. Correlation analysis is used to evaluate quantitatively the relationship between entropy and reliability. To ensure reliability, a comparative analysis between the flow entropy and the new method is conducted. The results demonstrate that the diameter-sensitive flow entropy shows consistently much stronger correlation with the three reliability measures than simple flow entropy. Therefore, the new flow entropy method can be taken as a better surrogate measure for reliability and could be potentially integrated into the optimal design problem of WDSs. Sensitivity analysis results show that the velocity parameters used in the new flow entropy has no significant impact on the relationship between diameter-sensitive flow entropy and reliability.

  18. Entropy generation of nanofluid flow in a microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Manay, Eyuphan; Akyürek, Eda Feyza; Sahin, Bayram

    2018-06-01

    Present study aims to investigate the effects of the presence of nano sized TiO2 particles in the base fluid on entropy generation rate in a microchannel heat sink. Pure water was chosen as base fluid, and TiO2 particles were suspended into the pure water in five different particle volume fractions of 0.25%, 0.5%, 1.0%, 1.5% and 2.0%. Under laminar, steady state flow and constant heat flux boundary conditions, thermal, frictional, total entropy generation rates and entropy generation number ratios of nanofluids were experimentally analyzed in microchannel flow for different channel heights of 200 μm, 300 μm, 400 μm and 500 μm. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rate were decreasing with an increase in particle volume fraction. In microchannel flows, thermal entropy generation could be neglected due to its too low rate smaller than 1.10e-07 in total entropy generation. Higher channel heights caused higher thermal entropy generation rates, and increasing channel height yielded an increase from 30% to 52% in thermal entropy generation. When channel height decreased, an increase of 66%-98% in frictional entropy generation was obtained. Adding TiO2 nanoparticles into the base fluid caused thermal entropy generation to decrease about 1.8%-32.4%, frictional entropy generation to increase about 3.3%-21.6%.

  19. Entropy and entropy production in Fokker–Plank equation under the generalized fluctuation–dissipation relation

    NASA Astrophysics Data System (ADS)

    Guo, Ran

    2018-04-01

    In this paper, we investigate the definition of the entropy in the Fokker–Planck equation under the generalized fluctuation–dissipation relation (FDR), which describes a Brownian particle moving in a complex medium with friction and multiplicative noise. The friction and the noise are related by the generalized FDR. The entropy for such a system is defined first. According to the definition of the entropy, we calculate the entropy production and the entropy flux. Lastly, we make a numerical calculation to display the results in figures.

  20. Single water entropy: hydrophobic crossover and application to drug binding.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2014-09-11

    Entropy of water plays an important role in both chemical and biological processes e.g. hydrophobic effect, molecular recognition etc. Here we use a new approach to calculate translational and rotational entropy of the individual water molecules around different hydrophobic and charged solutes. We show that for small hydrophobic solutes, the translational and rotational entropies of each water molecule increase as a function of its distance from the solute reaching finally to a constant bulk value. As the size of the solute increases (0.746 nm), the behavior of the translational entropy is opposite; water molecules closest to the solute have higher entropy that reduces with distance from the solute. This indicates that there is a crossover in translational entropy of water molecules around hydrophobic solutes from negative to positive values as the size of the solute is increased. Rotational entropy of water molecules around hydrophobic solutes for all sizes increases with distance from the solute, indicating the absence of crossover in rotational entropy. This makes the crossover in total entropy (translation + rotation) of water molecule happen at much larger size (>1.5 nm) for hydrophobic solutes. Translational entropy of single water molecule scales logarithmically (Str(QH) = C + kB ln V), with the volume V obtained from the ellipsoid of inertia. We further discuss the origin of higher entropy of water around water and show the possibility of recovering the entropy loss of some hypothetical solutes. The results obtained are helpful to understand water entropy behavior around various hydrophobic and charged environments within biomolecules. Finally, we show how our approach can be used to calculate the entropy of the individual water molecules in a protein cavity that may be replaced during ligand binding.

  1. RNA Thermodynamic Structural Entropy

    PubMed Central

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs. PMID:26555444

  2. RNA Thermodynamic Structural Entropy.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs.

  3. Relating different quantum generalizations of the conditional Rényi entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomamichel, Marco; School of Physics, The University of Sydney, Sydney 2006; Berta, Mario

    2014-08-15

    Recently a new quantum generalization of the Rényi divergence and the corresponding conditional Rényi entropies was proposed. Here, we report on a surprising relation between conditional Rényi entropies based on this new generalization and conditional Rényi entropies based on the quantum relative Rényi entropy that was used in previous literature. Our result generalizes the well-known duality relation H(A|B) + H(A|C) = 0 of the conditional von Neumann entropy for tripartite pure states to Rényi entropies of two different kinds. As a direct application, we prove a collection of inequalities that relate different conditional Rényi entropies and derive a new entropicmore » uncertainty relation.« less

  4. Exact analytical thermodynamic expressions for a Brownian heat engine

    NASA Astrophysics Data System (ADS)

    Taye, Mesfin Asfaw

    2015-09-01

    The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t . Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.

  5. Exact analytical thermodynamic expressions for a Brownian heat engine.

    PubMed

    Taye, Mesfin Asfaw

    2015-09-01

    The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t. Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.

  6. Modeling the Overalternating Bias with an Asymmetric Entropy Measure

    PubMed Central

    Gronchi, Giorgio; Raglianti, Marco; Noventa, Stefano; Lazzeri, Alessandro; Guazzini, Andrea

    2016-01-01

    Psychological research has found that human perception of randomness is biased. In particular, people consistently show the overalternating bias: they rate binary sequences of symbols (such as Heads and Tails in coin flipping) with an excess of alternation as more random than prescribed by the normative criteria of Shannon's entropy. Within data mining for medical applications, Marcellin proposed an asymmetric measure of entropy that can be ideal to account for such bias and to quantify subjective randomness. We fitted Marcellin's entropy and Renyi's entropy (a generalized form of uncertainty measure comprising many different kinds of entropies) to experimental data found in the literature with the Differential Evolution algorithm. We observed a better fit for Marcellin's entropy compared to Renyi's entropy. The fitted asymmetric entropy measure also showed good predictive properties when applied to different datasets of randomness-related tasks. We concluded that Marcellin's entropy can be a parsimonious and effective measure of subjective randomness that can be useful in psychological research about randomness perception. PMID:27458418

  7. Entropy for the Complexity of Physiological Signal Dynamics.

    PubMed

    Zhang, Xiaohua Douglas

    2017-01-01

    Recently, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of biological dynamics. Portable noninvasive medical devices are crucial to capture individual characteristics of biological dynamics. The wearable noninvasive medical devices and the analysis/management of related digital medical data will revolutionize the management and treatment of diseases, subsequently resulting in the establishment of a new healthcare system. One of the key features that can be extracted from the data obtained by wearable noninvasive medical device is the complexity of physiological signals, which can be represented by entropy of biological dynamics contained in the physiological signals measured by these continuous monitoring medical devices. Thus, in this chapter I present the major concepts of entropy that are commonly used to measure the complexity of biological dynamics. The concepts include Shannon entropy, Kolmogorov entropy, Renyi entropy, approximate entropy, sample entropy, and multiscale entropy. I also demonstrate an example of using entropy for the complexity of glucose dynamics.

  8. Information Entropy Analysis of the H1N1 Genetic Code

    NASA Astrophysics Data System (ADS)

    Martwick, Andy

    2010-03-01

    During the current H1N1 pandemic, viral samples are being obtained from large numbers of infected people world-wide and are being sequenced on the NCBI Influenza Virus Resource Database. The information entropy of the sequences was computed from the probability of occurrence of each nucleotide base at every position of each set of sequences using Shannon's definition of information entropy, [ H=∑bpb,2( 1pb ) ] where H is the observed information entropy at each nucleotide position and pb is the probability of the base pair of the nucleotides A, C, G, U. Information entropy of the current H1N1 pandemic is compared to reference human and swine H1N1 entropy. As expected, the current H1N1 entropy is in a low entropy state and has a very large mutation potential. Using the entropy method in mature genes we can identify low entropy regions of nucleotides that generally correlate to critical protein function.

  9. Generalized Entanglement Entropy and Holography

    NASA Astrophysics Data System (ADS)

    Obregón, O.

    2018-04-01

    A nonextensive statistical mechanics entropy that depends only on the probability distribution is proposed in the framework of superstatistics. It is based on a Γ(χ 2) distribution that depends on β and also on pl . The corresponding modified von Neumann entropy is constructed; it is shown that it can also be obtained from a generalized Replica trick. We address the question whether the generalized entanglement entropy can play a role in the gauge/gravity duality. We pay attention to 2dCFT and their gravity duals. The correction terms to the von Neumann entropy result more relevant than the usual UV (for c = 1) ones and also than those due to the area dependent AdS 3 entropy which result comparable to the UV ones. Then the correction terms due to the new entropy would modify the Ryu-Takayanagi identification between the CFT entanglement entropy and the AdS entropy in a different manner than the UV ones or than the corrections to the AdS 3 area dependent entropy.

  10. Quench action and Rényi entropies in integrable systems

    NASA Astrophysics Data System (ADS)

    Alba, Vincenzo; Calabrese, Pasquale

    2017-09-01

    Entropy is a fundamental concept in equilibrium statistical mechanics, yet its origin in the nonequilibrium dynamics of isolated quantum systems is not fully understood. A strong consensus is emerging around the idea that the stationary thermodynamic entropy is the von Neumann entanglement entropy of a large subsystem embedded in an infinite system. Also motivated by cold-atom experiments, here we consider the generalization to Rényi entropies. We develop a new technique to calculate the diagonal Rényi entropy in the quench action formalism. In the spirit of the replica treatment for the entanglement entropy, the diagonal Rényi entropies are generalized free energies evaluated over a thermodynamic macrostate which depends on the Rényi index and, in particular, is not the same state describing von Neumann entropy. The technical reason for this perhaps surprising result is that the evaluation of the moments of the diagonal density matrix shifts the saddle point of the quench action. An interesting consequence is that different Rényi entropies encode information about different regions of the spectrum of the postquench Hamiltonian. Our approach provides a very simple proof of the long-standing issue that, for integrable systems, the diagonal entropy is half of the thermodynamic one and it allows us to generalize this result to the case of arbitrary Rényi entropy.

  11. Radiative entropy generation in a gray absorbing, emitting, and scattering planar medium at radiative equilibrium

    NASA Astrophysics Data System (ADS)

    Sadeghi, Pegah; Safavinejad, Ali

    2017-11-01

    Radiative entropy generation through a gray absorbing, emitting, and scattering planar medium at radiative equilibrium with diffuse-gray walls is investigated. The radiative transfer equation and radiative entropy generation equations are solved using discrete ordinates method. Components of the radiative entropy generation are considered for two different boundary conditions: two walls are at a prescribed temperature and mixed boundary conditions, which one wall is at a prescribed temperature and the other is at a prescribed heat flux. The effect of wall emissivities, optical thickness, single scattering albedo, and anisotropic-scattering factor on the entropy generation is attentively investigated. The results reveal that entropy generation in the system mainly arises from irreversible radiative transfer at wall with lower temperature. Total entropy generation rate for the system with prescribed temperature at walls remarkably increases as wall emissivity increases; conversely, for system with mixed boundary conditions, total entropy generation rate slightly decreases. Furthermore, as the optical thickness increases, total entropy generation rate remarkably decreases for the system with prescribed temperature at walls; nevertheless, for the system with mixed boundary conditions, total entropy generation rate increases. The variation of single scattering albedo does not considerably affect total entropy generation rate. This parametric analysis demonstrates that the optical thickness and wall emissivities have a significant effect on the entropy generation in the system at radiative equilibrium. Considering the parameters affecting radiative entropy generation significantly, provides an opportunity to optimally design or increase overall performance and efficiency by applying entropy minimization techniques for the systems at radiative equilibrium.

  12. Magnetization dynamics of single-domain nanodots and minimum energy dissipation during either irreversible or reversible switching

    NASA Astrophysics Data System (ADS)

    Madami, Marco; Gubbiotti, Gianluca; Tacchi, Silvia; Carlotti, Giovanni

    2017-11-01

    Single- or multi-layered planar magnetic dots, with lateral dimensions ranging from tens to hundreds of nanometers, are used as elemental switches in current and forthcoming devices for information and communication technology (ICT), including magnetic memories, spin-torque oscillators and nano-magnetic logic gates. In this review article, we will first discuss energy dissipation during irreversible switching protocols of dots of different dimensions, ranging from a few tens of nanometers to the micrometric range. Then we will focus on the fundamental energy limits of adiabatic (slow) erasure and reversal of a magnetic nanodot, showing that dissipationless operation is achievable, provided that both dynamic reversibility (arbitrarily slow application of external fields) and entropic reversibility (no free entropy increase) are insured. However, recent theoretical and experimental tests of magnetic-dot erasure reveal that intrinsic defects related to materials imperfections such as roughness or polycrystallinity, may cause an excess of dissipation if compared to the minimum theoretical limit. We will conclude providing an outlook on the most promising strategies to achieve a new generation of power-saving nanomagnetic logic devices based on clusters of interacting dots and on straintronics.

  13. Quantum tomography for collider physics: illustrations with lepton-pair production

    NASA Astrophysics Data System (ADS)

    Martens, John C.; Ralston, John P.; Takaki, J. D. Tapia

    2018-01-01

    Quantum tomography is a method to experimentally extract all that is observable about a quantum mechanical system. We introduce quantum tomography to collider physics with the illustration of the angular distribution of lepton pairs. The tomographic method bypasses much of the field-theoretic formalism to concentrate on what can be observed with experimental data. We provide a practical, experimentally driven guide to model-independent analysis using density matrices at every step. Comparison with traditional methods of analyzing angular correlations of inclusive reactions finds many advantages in the tomographic method, which include manifest Lorentz covariance, direct incorporation of positivity constraints, exhaustively complete polarization information, and new invariants free from frame conventions. For example, experimental data can determine the entanglement entropy of the production process. We give reproducible numerical examples and provide a supplemental standalone computer code that implements the procedure. We also highlight a property of complex positivity that guarantees in a least-squares type fit that a local minimum of a χ 2 statistic will be a global minimum: There are no isolated local minima. This property with an automated implementation of positivity promises to mitigate issues relating to multiple minima and convention dependence that have been problematic in previous work on angular distributions.

  14. The Nature of Grand Minima and Maxima from Fully Nonlinear Flux Transport Dynamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inceoglu, Fadil; Arlt, Rainer; Rempel, Matthias, E-mail: finceoglu@aip.de

    We aim to investigate the nature and occurrence characteristics of grand solar minimum and maximum periods, which are observed in the solar proxy records such as {sup 10}Be and {sup 14}C, using a fully nonlinear Babcock–Leighton type flux transport dynamo including momentum and entropy equations. The differential rotation and meridional circulation are generated from the effect of turbulent Reynolds stress and are subjected to back-reaction from the magnetic field. To generate grand minimum- and maximum-like periods in our simulations, we used random fluctuations in the angular momentum transport process, namely the Λ-mechanism, and in the Babcock–Leighton mechanism. To characterize themore » nature and occurrences of the identified grand minima and maxima in our simulations, we used the waiting time distribution analyses, which reflect whether the underlying distribution arises from a random or a memory-bearing process. The results show that, in the majority of the cases, the distributions of grand minima and maxima reveal that the nature of these events originates from memoryless processes. We also found that in our simulations the meridional circulation speed tends to be smaller during grand maximum, while it is faster during grand minimum periods. The radial differential rotation tends to be larger during grand maxima, while it is smaller during grand minima. The latitudinal differential rotation, on the other hand, is found to be larger during grand minima.« less

  15. High Order Entropy-Constrained Residual VQ for Lossless Compression of Images

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen

    1995-01-01

    High order entropy coding is a powerful technique for exploiting high order statistical dependencies. However, the exponentially high complexity associated with such a method often discourages its use. In this paper, an entropy-constrained residual vector quantization method is proposed for lossless compression of images. The method consists of first quantizing the input image using a high order entropy-constrained residual vector quantizer and then coding the residual image using a first order entropy coder. The distortion measure used in the entropy-constrained optimization is essentially the first order entropy of the residual image. Experimental results show very competitive performance.

  16. Using entropy measures to characterize human locomotion.

    PubMed

    Leverick, Graham; Szturm, Tony; Wu, Christine Q

    2014-12-01

    Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.

  17. Giant onsite electronic entropy enhances the performance of ceria for water splitting.

    PubMed

    Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris

    2017-08-18

    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.

  18. Crowd macro state detection using entropy model

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Yuan, Mengqi; Su, Guofeng; Chen, Tao

    2015-08-01

    In the crowd security research area a primary concern is to identify the macro state of crowd behaviors to prevent disasters and to supervise the crowd behaviors. The entropy is used to describe the macro state of a self-organization system in physics. The entropy change indicates the system macro state change. This paper provides a method to construct crowd behavior microstates and the corresponded probability distribution using the individuals' velocity information (magnitude and direction). Then an entropy model was built up to describe the crowd behavior macro state. Simulation experiments and video detection experiments were conducted. It was verified that in the disordered state, the crowd behavior entropy is close to the theoretical maximum entropy; while in ordered state, the entropy is much lower than half of the theoretical maximum entropy. The crowd behavior macro state sudden change leads to the entropy change. The proposed entropy model is more applicable than the order parameter model in crowd behavior detection. By recognizing the entropy mutation, it is possible to detect the crowd behavior macro state automatically by utilizing cameras. Results will provide data support on crowd emergency prevention and on emergency manual intervention.

  19. Develop and Test a Solvent Accessible Surface Area-Based Model in Conformational Entropy Calculations

    PubMed Central

    Wang, Junmei; Hou, Tingjun

    2012-01-01

    It is of great interest in modern drug design to accurately calculate the free energies of protein-ligand or nucleic acid-ligand binding. MM-PBSA (Molecular Mechanics-Poisson Boltzmann Surface Area) and MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) have gained popularity in this field. For both methods, the conformational entropy, which is usually calculated through normal mode analysis (NMA), is needed to calculate the absolute binding free energies. Unfortunately, NMA is computationally demanding and becomes a bottleneck of the MM-PB/GBSA-NMA methods. In this work, we have developed a fast approach to estimate the conformational entropy based upon solvent accessible surface area calculations. In our approach, the conformational entropy of a molecule, S, can be obtained by summing up the contributions of all atoms, no matter they are buried or exposed. Each atom has two types of surface areas, solvent accessible surface area (SAS) and buried SAS (BSAS). The two types of surface areas are weighted to estimate the contribution of an atom to S. Atoms having the same atom type share the same weight and a general parameter k is applied to balance the contributions of the two types of surface areas. This entropy model was parameterized using a large set of small molecules for which their conformational entropies were calculated at the B3LYP/6-31G* level taking the solvent effect into account. The weighted solvent accessible surface area (WSAS) model was extensively evaluated in three tests. For the convenience, TS, the product of temperature T and conformational entropy S, were calculated in those tests. T was always set to 298.15 K through the text. First of all, good correlations were achieved between WSAS TS and NMA TS for 44 protein or nucleic acid systems sampled with molecular dynamics simulations (10 snapshots were collected for post-entropy calculations): the mean correlation coefficient squares (R2) was 0.56. As to the 20 complexes, the TS changes upon binding, TΔS, were also calculated and the mean R2 was 0.67 between NMA and WSAS. In the second test, TS were calculated for 12 proteins decoy sets (each set has 31 conformations) generated by the Rosetta software package. Again, good correlations were achieved for all decoy sets: the mean, maximum, minimum of R2 were 0.73, 0.89 and 0.55, respectively. Finally, binding free energies were calculated for 6 protein systems (the numbers of inhibitors range from 4 to 18) using four scoring functions. Compared to the measured binding free energies, the mean R2 of the six protein systems were 0.51, 0.47, 0.40 and 0.43 for MM-GBSA-WSAS, MM-GBSA-NMA, MM-PBSA-WSAS and MM-PBSA-NMA, respectively. The mean RMS errors of prediction were 1.19, 1.24, 1.41, 1.29 kcal/mol for the four scoring functions, correspondingly. Therefore, the two scoring functions employing WSAS achieved a comparable prediction performance to that of the scoring functions using NMA. It should be emphasized that no minimization was performed prior to the WSAS calculation in the last test. Although WSAS is not as rigorous as physical models such as quasi-harmonic analysis and thermodynamic integration (TI), it is computationally very efficient as only surface area calculation is involved and no structural minimization is required. Moreover, WSAS has achieved a comparable performance to normal mode analysis. We expect that this model could find its applications in the fields like high throughput screening (HTS), molecular docking and rational protein design. In those fields, efficiency is crucial since there are a large number of compounds, docking poses or protein models to be evaluated. A list of acronyms and abbreviations used in this work is provided for quick reference. PMID:22497310

  20. Evolution of cyclic mixmaster universes with noncomoving radiation

    NASA Astrophysics Data System (ADS)

    Ganguly, Chandrima; Barrow, John D.

    2017-12-01

    We study a model of a cyclic, spatially homogeneous, anisotropic, "mixmaster" universe of Bianchi type IX, containing a radiation field with noncomoving ("tilted" with respect to the tetrad frame of reference) velocities and vorticity. We employ a combination of numerical and approximate analytic methods to investigate the consequences of the second law of thermodynamics on the evolution. We model a smooth cycle-to-cycle evolution of the mixmaster universe, bouncing at a finite minimum, by the device of adding a comoving "ghost" field with negative energy density. In the absence of a cosmological constant, an increase in entropy, injected at the start of each cycle, causes an increase in the volume maxima, increasing approach to flatness, falling velocities and vorticities, and growing anisotropy at the expansion maxima of successive cycles. We find that the velocities oscillate rapidly as they evolve and change logarithmically in time relative to the expansion volume. When the conservation of momentum and angular momentum constraints are imposed, the spatial components of these velocities fall to smaller values when the entropy density increases, and vice versa. Isotropization is found to occur when a positive cosmological constant is added because the sequence of oscillations ends and the dynamics expand forever, evolving towards a quasi-de Sitter asymptote with constant velocity amplitudes. The case of a single cycle of evolution with a negative cosmological constant added is also studied.

  1. YamiPred: A Novel Evolutionary Method for Predicting Pre-miRNAs and Selecting Relevant Features.

    PubMed

    Kleftogiannis, Dimitrios; Theofilatos, Konstantinos; Likothanassis, Spiros; Mavroudi, Seferina

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which play a significant role in gene regulation. Predicting miRNA genes is a challenging bioinformatics problem and existing experimental and computational methods fail to deal with it effectively. We developed YamiPred, an embedded classification method that combines the efficiency and robustness of support vector machines (SVM) with genetic algorithms (GA) for feature selection and parameters optimization. YamiPred was tested in a new and realistic human dataset and was compared with state-of-the-art computational intelligence approaches and the prevalent SVM-based tools for miRNA prediction. Experimental results indicate that YamiPred outperforms existing approaches in terms of accuracy and of geometric mean of sensitivity and specificity. The embedded feature selection component selects a compact feature subset that contributes to the performance optimization. Further experimentation with this minimal feature subset has achieved very high classification performance and revealed the minimum number of samples required for developing a robust predictor. YamiPred also confirmed the important role of commonly used features such as entropy and enthalpy, and uncovered the significance of newly introduced features, such as %A-U aggregate nucleotide frequency and positional entropy. The best model trained on human data has successfully predicted pre-miRNAs to other organisms including the category of viruses.

  2. An unbalanced spectra classification method based on entropy

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-bao; Zhao, Wen-juan

    2017-05-01

    How to solve the problem of distinguishing the minority spectra from the majority of the spectra is quite important in astronomy. In view of this, an unbalanced spectra classification method based on entropy (USCM) is proposed in this paper to deal with the unbalanced spectra classification problem. USCM greatly improves the performances of the traditional classifiers on distinguishing the minority spectra as it takes the data distribution into consideration in the process of classification. However, its time complexity is exponential with the training size, and therefore, it can only deal with the problem of small- and medium-scale classification. How to solve the large-scale classification problem is quite important to USCM. It can be easily obtained by mathematical computation that the dual form of USCM is equivalent to the minimum enclosing ball (MEB), and core vector machine (CVM) is introduced, USCM based on CVM is proposed to deal with the large-scale classification problem. Several comparative experiments on the 4 subclasses of K-type spectra, 3 subclasses of F-type spectra and 3 subclasses of G-type spectra from Sloan Digital Sky Survey (SDSS) verify USCM and USCM based on CVM perform better than kNN (k nearest neighbor) and SVM (support vector machine) in dealing with the problem of rare spectra mining respectively on the small- and medium-scale datasets and the large-scale datasets.

  3. Bilayer graphene phonovoltaic-FET: In situ phonon recycling

    NASA Astrophysics Data System (ADS)

    Melnick, Corey; Kaviany, Massoud

    2017-11-01

    A new heat harvester, the phonovoltaic (pV) cell, was recently proposed. The device converts optical phonons into power before they become heat. Due to the low entropy of a typical hot optical phonon population, the phonovoltaic can operate at high fractions of the Carnot limit and harvest heat more efficiently than conventional heat harvesting technologies such as the thermoelectric generator. Previously, the optical phonon source was presumed to produce optical phonons with a single polarization and momentum. Here, we examine a realistic optical phonon source in a potential pV application and the effects this has on pV operation. Supplementing this work is our investigation of bilayer graphene as a new pV material. Our ab initio calculations show that bilayer graphene has a figure of merit exceeding 0.9, well above previously investigated materials. This allows a room-temperature pV to recycle 65% of a highly nonequilibrium, minimum entropy population of phonons. However, full-band Monte Carlo simulations of the electron and phonon dynamics in a bilayer graphene field-effect transistor (FET) show that the optical phonons emitted by field-accelerated electrons can only be recycled in situ with an efficiency of 50%, and this efficiency falls as the field strength grows. Still, an appropriately designed FET-pV can recycle the phonons produced therein in situ with a much higher efficiency than a thermoelectric generator can harvest heat produced by a FET ex situ.

  4. An information-theoretic approach to motor action decoding with a reconfigurable parallel architecture.

    PubMed

    Craciun, Stefan; Brockmeier, Austin J; George, Alan D; Lam, Herman; Príncipe, José C

    2011-01-01

    Methods for decoding movements from neural spike counts using adaptive filters often rely on minimizing the mean-squared error. However, for non-Gaussian distribution of errors, this approach is not optimal for performance. Therefore, rather than using probabilistic modeling, we propose an alternate non-parametric approach. In order to extract more structure from the input signal (neuronal spike counts) we propose using minimum error entropy (MEE), an information-theoretic approach that minimizes the error entropy as part of an iterative cost function. However, the disadvantage of using MEE as the cost function for adaptive filters is the increase in computational complexity. In this paper we present a comparison between the decoding performance of the analytic Wiener filter and a linear filter trained with MEE, which is then mapped to a parallel architecture in reconfigurable hardware tailored to the computational needs of the MEE filter. We observe considerable speedup from the hardware design. The adaptation of filter weights for the multiple-input, multiple-output linear filters, necessary in motor decoding, is a highly parallelizable algorithm. It can be decomposed into many independent computational blocks with a parallel architecture readily mapped to a field-programmable gate array (FPGA) and scales to large numbers of neurons. By pipelining and parallelizing independent computations in the algorithm, the proposed parallel architecture has sublinear increases in execution time with respect to both window size and filter order.

  5. Acid monomer analysis in waterborne polymer systems by targeted labeling of carboxylic acid functionality, followed by pyrolysis - gas chromatography.

    PubMed

    Brooijmans, T; Okhuijsen, R; Oerlemans, I; Schoenmakers, P J; Peters, R

    2018-05-14

    Pyrolysis - gas chromatography - (PyGC) is a common method to analyse the composition of natural and synthetic resins. The analysis of acid functionality in, for example, waterborne polyacrylates and polyurethanes polymers has proven to be difficult due to solubility issues, inter- and intramolecular interaction effects, lack of detectability in chromatographic analysis, and lack of thermal stability. Conventional analytical techniques, such as PyGC, cannot be used for the direct detection and identification of acidic monomers, due to thermal rearrangements that take place during pyrolysis. To circumvent this, the carboxylic acid groups are protected prior to thermal treatment by reaction with 2-bromoacetophenone. Reaction conditions are investigated and optimised wrt. conversion measurements. The aproach is applied to waterborne polyacryalates and the results are discussed. This approach enables identification and (semi)quantitative analysis of different acid functionalities in waterborne polymers by PyGC. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A remote sensing and geographic information system approach to sampling malaria vector habitats in Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Beck, L.; Wood, B.; Whitney, S.; Rossi, R.; Spanner, M.; Rodriguez, M.; Rodriguez-Ramirez, A.; Salute, J.; Legters, L.; Roberts, D.; Rejmankova, E.; Washino, R.

    1993-08-01

    This paper describes a procedure whereby remote sensing and geographic information system (GIS) technologies are used in a sample design to study the habitat of Anopheles albimanus, one of the principle vectors of malaria in Central America. This procedure incorporates Landsat-derived land cover maps with digital elevation and road network data to identify a random selection of larval habitats accessible for field sampling. At the conclusion of the sampling season, the larval counts will be used to determine habitat productivity, and then integrated with information on human settlement to assess where people are at high risk of malaria. This aproach would be appropriate in areas where land cover information is lacking and problems of access constrain field sampling. The use of a GIS also permits other data (such as insecticide spraying data) to the incorporated in the sample design as they arise. This approach would also be pertinent for other tropical vector-borne diseases, particularly where human activities impact disease vector habitat.

  7. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems.

    PubMed

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-05-13

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process.

  8. Modeling Loop Entropy

    PubMed Central

    Chirikjian, Gregory S.

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting ‘the’ tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of ‘entropy’ is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice; each of the above with different solvation and solvent models; thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics and information theory. PMID:21187223

  9. Use of mutual information to decrease entropy: Implications for the second law of thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, S.

    1989-05-15

    Several theorems on the mechanics of gathering information are proved, and the possibility of violating the second law of thermodynamics by obtaining information is discussed in light of these theorems. Maxwell's demon can lower the entropy of his surroundings by an amount equal to the difference between the maximum entropy of his recording device and its initial entropy, without generating a compensating entropy increase. A demon with human-scale recording devices can reduce the entropy of a gas by a negligible amount only, but the proof of the demon's impracticability leaves open the possibility that systems highly correlated with their environmentmore » can reduce the environment's entropy by a substantial amount without increasing entropy elsewhere. In the event that a boundary condition for the universe requires it to be in a state of low entropy when small, the correlations induced between different particle modes during the expansion phase allow the modes to behave like Maxwell's demons during the contracting phase, reducing the entropy of the universe to a low value.« less

  10. Thermodynamic studies of aqueous and CCl4 solutions of 15-crown-5 at 298.15 K: an application of McMillan-Mayer and Kirkwood-Buff theories of solutions.

    PubMed

    Dagade, Dilip H; Shetake, Poonam K; Patil, Kesharsingh J

    2007-07-05

    The density and osmotic coefficient data for solutions of 15-crown-5 (15C5) in water and in CCl4 solvent systems at 298.15 K have been reported using techniques of densitometry and vapor pressure osmometry in the concentration range of 0.01-2 mol kg-1. The data are used to obtain apparent molar and partial molar volumes, activity coefficients of the components as a function of 15C5 concentration. Using the literature heat of dilution data for aqueous system, it has become possible to calculate entropy of mixing (DeltaS(mix)), excess entropy of solution (DeltaS(E)), and partial molar entropies of the components at different concentrations. The results of all these are compared to those obtained for aqueous 18-crown-6 solutions reported earlier. It has been observed that the partial molar volume of 15C5 goes through a minimum and that of water goes through a maximum at approximately 1.2 mol kg(-1) in aqueous solutions whereas the opposite is true in CCl4 medium but at approximately 0.5 mol kg(-1). The osmotic and activity coefficients of 15C5 and excess free energy change for solution exhibit distinct differences in the two solvent systems studied. These results have been explained in terms of hydrophobic hydration and interactions in aqueous solution while weak solvophobic association of 15C5 molecules in CCl4 solutions is proposed. The data are further subjected to analysis by applying McMillan-Mayer and Kirkwood-Buff theories of solutions. The analysis shows that osmotic second virial coefficient value for 15C5 is marginally less than that of 18C6 indicating that reduction in ring flexibility does not affect the energetics of the interactions much in aqueous solution while the same gets influenced much in nonpolar solvent CCl4.

  11. Tendency towards maximum complexity in a nonequilibrium isolated system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calbet, Xavier; Lopez-Ruiz, Ricardo

    2001-06-01

    The time evolution equations of a simplified isolated ideal gas, the {open_quotes}tetrahedral{close_quotes} gas, are derived. The dynamical behavior of the Lopez-Ruiz{endash}Mancini{endash}Calbet complexity [R. Lopez-Ruiz, H. L. Mancini, and X. Calbet, Phys. Lett. A >209, 321 (1995)] is studied in this system. In general, it is shown that the complexity remains within the bounds of minimum and maximum complexity. We find that there are certain restrictions when the isolated {open_quotes}tetrahedral{close_quotes} gas evolves towards equilibrium. In addition to the well-known increase in entropy, the quantity called disequilibrium decreases monotonically with time. Furthermore, the trajectories of the system in phase space approach themore » maximum complexity path as it evolves toward equilibrium.« less

  12. Thermodynamic sorption analysis and glass transition temperature of faba bean (Vicia faba L.) protein.

    PubMed

    Alpizar-Reyes, E; Castaño, J; Carrillo-Navas, H; Alvarez-Ramírez, J; Gallardo-Rivera, R; Pérez-Alonso, C; Guadarrama-Lezama, A Y

    2018-03-01

    Freeze-dried faba bean ( Vicia faba L.) protein adsorption isotherms were determined at 25, 35 and 40 °C and fitted with the Guggenheim-Anderson-de Boer model. The pore radius of protein was in the range of 0.87-6.44 nm, so that they were considered as micropores and mesopores. The minimum integral entropy ranged between 4.33 and 4.44 kg H 2 O/100 kg d.s., was regarded as the point of maximum of stability. The glass transition temperature of the protein equilibrated at the different conditions of storage was determined, showing that the protein remained in glassy state for all cases. The protein showed compact and rigid structures, evidenced by microscopy analysis.

  13. Renyi entropy measures of heart rate Gaussianity.

    PubMed

    Lake, Douglas E

    2006-01-01

    Sample entropy and approximate entropy are measures that have been successfully utilized to study the deterministic dynamics of heart rate (HR). A complementary stochastic point of view and a heuristic argument using the Central Limit Theorem suggests that the Gaussianity of HR is a complementary measure of the physiological complexity of the underlying signal transduction processes. Renyi entropy (or q-entropy) is a widely used measure of Gaussianity in many applications. Particularly important members of this family are differential (or Shannon) entropy (q = 1) and quadratic entropy (q = 2). We introduce the concepts of differential and conditional Renyi entropy rate and, in conjunction with Burg's theorem, develop a measure of the Gaussianity of a linear random process. Robust algorithms for estimating these quantities are presented along with estimates of their standard errors.

  14. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction.

  15. Entropy in molecular recognition by proteins

    PubMed Central

    Caro, José A.; Harpole, Kyle W.; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G.; Sharp, Kim A.

    2017-01-01

    Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein–ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein–ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein–ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or “entropy meter” also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water–protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins. PMID:28584100

  16. Statistical mechanical theory of liquid entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, D.C.

    The multiparticle correlation expansion for the entropy of a classical monatomic liquid is presented. This entropy expresses the physical picture in which there is no free particle motion, but rather, each atom moves within a cage formed by its neighbors. The liquid expansion, including only pair correlations, gives an excellent account of the experimental entropy of most liquid metals, of liquid argon, and the hard sphere liquid. The pair correlation entropy is well approximated by a universal function of temperature. Higher order correlation entropy, due to n-particle irreducible correlations for n{ge}3, is significant in only a few liquid metals, andmore » its occurrence suggests the presence of n-body forces. When the liquid theory is applied to the study of melting, the author discovers the important classification of normal and anomalous melting, according to whether there is not or is a significant change in the electronic structure upon melting, and he discovers the universal disordering entropy for melting of a monatomic crystal. Interesting directions for future research are: extension to include orientational correlations of molecules, theoretical calculation of the entropy of water, application to the entropy of the amorphous state, and correlational entropy of compressed argon. The author clarifies the relation among different entropy expansions in the recent literature.« less

  17. Characterization of time series via Rényi complexity-entropy curves

    NASA Astrophysics Data System (ADS)

    Jauregui, M.; Zunino, L.; Lenzi, E. K.; Mendes, R. S.; Ribeiro, H. V.

    2018-05-01

    One of the most useful tools for distinguishing between chaotic and stochastic time series is the so-called complexity-entropy causality plane. This diagram involves two complexity measures: the Shannon entropy and the statistical complexity. Recently, this idea has been generalized by considering the Tsallis monoparametric generalization of the Shannon entropy, yielding complexity-entropy curves. These curves have proven to enhance the discrimination among different time series related to stochastic and chaotic processes of numerical and experimental nature. Here we further explore these complexity-entropy curves in the context of the Rényi entropy, which is another monoparametric generalization of the Shannon entropy. By combining the Rényi entropy with the proper generalization of the statistical complexity, we associate a parametric curve (the Rényi complexity-entropy curve) with a given time series. We explore this approach in a series of numerical and experimental applications, demonstrating the usefulness of this new technique for time series analysis. We show that the Rényi complexity-entropy curves enable the differentiation among time series of chaotic, stochastic, and periodic nature. In particular, time series of stochastic nature are associated with curves displaying positive curvature in a neighborhood of their initial points, whereas curves related to chaotic phenomena have a negative curvature; finally, periodic time series are represented by vertical straight lines.

  18. Beyond the Shannon–Khinchin formulation: The composability axiom and the universal-group entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tempesta, Piergiulio, E-mail: p.tempesta@fis.ucm.es

    2016-02-15

    The notion of entropy is ubiquitous both in natural and social sciences. In the last two decades, a considerable effort has been devoted to the study of new entropic forms, which generalize the standard Boltzmann–Gibbs (BG) entropy and could be applicable in thermodynamics, quantum mechanics and information theory. In Khinchin (1957), by extending previous ideas of Shannon (1948) and Shannon and Weaver (1949), Khinchin proposed a characterization of the BG entropy, based on four requirements, nowadays known as the Shannon–Khinchin (SK) axioms. The purpose of this paper is twofold. First, we show that there exists an intrinsic group-theoretical structure behindmore » the notion of entropy. It comes from the requirement of composability of an entropy with respect to the union of two statistically independent systems, that we propose in an axiomatic formulation. Second, we show that there exists a simple universal family of trace-form entropies. This class contains many well known examples of entropies and infinitely many new ones, a priori multi-parametric. Due to its specific relation with Lazard’s universal formal group of algebraic topology, the new general entropy introduced in this work will be called the universal-group entropy. A new example of multi-parametric entropy is explicitly constructed.« less

  19. Formal groups and Z-entropies

    PubMed Central

    2016-01-01

    We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the Z-entropies. Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every Z-entropy is composable (Tempesta 2016 Ann. Phys. 365, 180–197. (doi:10.1016/j.aop.2015.08.013)). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon–Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the Z-entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies. PMID:27956871

  20. Entropy in molecular recognition by proteins.

    PubMed

    Caro, José A; Harpole, Kyle W; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G; Sharp, Kim A; Wand, A Joshua

    2017-06-20

    Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein-ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein-ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein-ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or "entropy meter" also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water-protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins.

  1. New classes of Lorenz curves by maximizing Tsallis entropy under mean and Gini equality and inequality constraints

    NASA Astrophysics Data System (ADS)

    Preda, Vasile; Dedu, Silvia; Gheorghe, Carmen

    2015-10-01

    In this paper, by using the entropy maximization principle with Tsallis entropy, new distribution families for modeling the income distribution are derived. Also, new classes of Lorenz curves are obtained by applying the entropy maximization principle with Tsallis entropy, under mean and Gini index equality and inequality constraints.

  2. Entropy change of biological dynamics in COPD.

    PubMed

    Jin, Yu; Chen, Chang; Cao, Zhixin; Sun, Baoqing; Lo, Iek Long; Liu, Tzu-Ming; Zheng, Jun; Sun, Shixue; Shi, Yan; Zhang, Xiaohua Douglas

    2017-01-01

    In this century, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of large amount of data in human physiological signals. Entropy is a key metric for quantifying the irregularity contained in physiological signals. In this review, we focus on how entropy changes in various physiological signals in COPD. Our review concludes that the entropy change relies on the types of physiological signals under investigation. For major physiological signals related to respiratory diseases, such as airflow, heart rate variability, and gait variability, the entropy of a patient with COPD is lower than that of a healthy person. However, in case of hormone secretion and respiratory sound, the entropy of a patient is higher than that of a healthy person. For mechanomyogram signal, the entropy increases with the increased severity of COPD. This result should give valuable guidance for the use of entropy for physiological signals measured by wearable medical device as well as for further research on entropy in COPD.

  3. Visualizing Entropy

    NASA Astrophysics Data System (ADS)

    Lechner, Joseph H.

    1999-10-01

    This report describes two classroom activities that help students visualize the abstract concept of entropy and apply the second law of thermodynamics to real situations. (i) A sealed "rainbow tube" contains six smaller vessels, each filled with a different brightly colored solution (low entropy). When the tube is inverted, the solutions mix together and react to form an amorphous precipitate (high entropy). The change from low entropy to high entropy is irreversible as long as the tube remains sealed. (ii) When U.S. currency is withdrawn from circulation, intact bills (low entropy) are shredded into small fragments (high entropy). Shredding is quick and easy; the reverse process is clearly nonspontaneous. It is theoretically possible, but it is time-consuming and energy-intensive, to reassemble one bill from a pile that contains fragments of hundreds of bills. We calculate the probability P of drawing pieces of only one specific bill from a mixture containing one pound of bills, each shredded into n fragments. This result can be related to Boltzmann's entropy formula S?=klnW.

  4. Backward transfer entropy: Informational measure for detecting hidden Markov models and its interpretations in thermodynamics, gambling and causality

    PubMed Central

    Ito, Sosuke

    2016-01-01

    The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics. PMID:27833120

  5. Backward transfer entropy: Informational measure for detecting hidden Markov models and its interpretations in thermodynamics, gambling and causality

    NASA Astrophysics Data System (ADS)

    Ito, Sosuke

    2016-11-01

    The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics.

  6. Wavelet entropy characterization of elevated intracranial pressure.

    PubMed

    Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao

    2008-01-01

    Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.

  7. The second law of thermodynamics under unitary evolution and external operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Tatsuhiko N., E-mail: ikeda@cat.phys.s.u-tokyo.ac.jp; Physics Department, Boston University, Boston, MA 02215; Sakumichi, Naoyuki

    The von Neumann entropy cannot represent the thermodynamic entropy of equilibrium pure states in isolated quantum systems. The diagonal entropy, which is the Shannon entropy in the energy eigenbasis at each instant of time, is a natural generalization of the von Neumann entropy and applicable to equilibrium pure states. We show that the diagonal entropy is consistent with the second law of thermodynamics upon arbitrary external unitary operations. In terms of the diagonal entropy, thermodynamic irreversibility follows from the facts that quantum trajectories under unitary evolution are restricted by the Hamiltonian dynamics and that the external operation is performed withoutmore » reference to the microscopic state of the system.« less

  8. Nonadditive entropies yield probability distributions with biases not warranted by the data.

    PubMed

    Pressé, Steve; Ghosh, Kingshuk; Lee, Julian; Dill, Ken A

    2013-11-01

    Different quantities that go by the name of entropy are used in variational principles to infer probability distributions from limited data. Shore and Johnson showed that maximizing the Boltzmann-Gibbs form of the entropy ensures that probability distributions inferred satisfy the multiplication rule of probability for independent events in the absence of data coupling such events. Other types of entropies that violate the Shore and Johnson axioms, including nonadditive entropies such as the Tsallis entropy, violate this basic consistency requirement. Here we use the axiomatic framework of Shore and Johnson to show how such nonadditive entropy functions generate biases in probability distributions that are not warranted by the underlying data.

  9. On determining absolute entropy without quantum theory or the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  10. Maximum Tsallis entropy with generalized Gini and Gini mean difference indices constraints

    NASA Astrophysics Data System (ADS)

    Khosravi Tanak, A.; Mohtashami Borzadaran, G. R.; Ahmadi, J.

    2017-04-01

    Using the maximum entropy principle with Tsallis entropy, some distribution families for modeling income distribution are obtained. By considering income inequality measures, maximum Tsallis entropy distributions under the constraint on generalized Gini and Gini mean difference indices are derived. It is shown that the Tsallis entropy maximizers with the considered constraints belong to generalized Pareto family.

  11. Diffusive mixing and Tsallis entropy

    DOE PAGES

    O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.

    2015-04-29

    Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.

  12. Holographic charged Rényi entropies

    NASA Astrophysics Data System (ADS)

    Belin, Alexandre; Hung, Ling-Yan; Maloney, Alexander; Matsuura, Shunji; Myers, Robert C.; Sierens, Todd

    2013-12-01

    We construct a new class of entanglement measures by extending the usual definition of Rényi entropy to include a chemical potential. These charged Rényi entropies measure the degree of entanglement in different charge sectors of the theory and are given by Euclidean path integrals with the insertion of a Wilson line encircling the entangling surface. We compute these entropies for a spherical entangling surface in CFT's with holographic duals, where they are related to entropies of charged black holes with hyperbolic horizons. We also compute charged Rényi entropies in free field theories.

  13. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    PubMed

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-12-01

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Characterization of complexity in the electroencephalograph activity of Alzheimer's disease based on fuzzy entropy.

    PubMed

    Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2015-08-01

    In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.

  15. Characterization of complexity in the electroencephalograph activity of Alzheimer's disease based on fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2015-08-01

    In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.

  16. Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Safari, Mehdi

    Analysis of local entropy generation is an effective means to optimize the performance of energy and combustion systems by minimizing the irreversibilities in transport processes. Large eddy simulation (LES) is employed to describe entropy transport and generation in turbulent reacting flows. The entropy transport equation in LES contains several unclosed terms. These are the subgrid scale (SGS) entropy flux and entropy generation caused by irreversible processes: heat conduction, mass diffusion, chemical reaction and viscous dissipation. The SGS effects are taken into account using a novel methodology based on the filtered density function (FDF). This methodology, entitled entropy FDF (En-FDF), is developed and utilized in the form of joint entropy-velocity-scalar-turbulent frequency FDF and the marginal scalar-entropy FDF, both of which contain the chemical reaction effects in a closed form. The former constitutes the most comprehensive form of the En-FDF and provides closure for all the unclosed filtered moments. This methodology is applied for LES of a turbulent shear layer involving transport of passive scalars. Predictions show favor- able agreements with the data generated by direct numerical simulation (DNS) of the same layer. The marginal En-FDF accounts for entropy generation effects as well as scalar and entropy statistics. This methodology is applied to a turbulent nonpremixed jet flame (Sandia Flame D) and predictions are validated against experimental data. In both flows, sources of irreversibility are predicted and analyzed.

  17. Use of information entropy measures of sitting postural sway to quantify developmental delay in infants

    PubMed Central

    Deffeyes, Joan E; Harbourne, Regina T; DeJong, Stacey L; Kyvelidou, Anastasia; Stuberg, Wayne A; Stergiou, Nicholas

    2009-01-01

    Background By quantifying the information entropy of postural sway data, the complexity of the postural movement of different populations can be assessed, giving insight into pathologic motor control functioning. Methods In this study, developmental delay of motor control function in infants was assessed by analysis of sitting postural sway data acquired from force plate center of pressure measurements. Two types of entropy measures were used: symbolic entropy, including a new asymmetric symbolic entropy measure, and approximate entropy, a more widely used entropy measure. For each method of analysis, parameters were adjusted to optimize the separation of the results from the infants with delayed development from infants with typical development. Results The method that gave the widest separation between the populations was the asymmetric symbolic entropy method, which we developed by modification of the symbolic entropy algorithm. The approximate entropy algorithm also performed well, using parameters optimized for the infant sitting data. The infants with delayed development were found to have less complex patterns of postural sway in the medial-lateral direction, and were found to have different left-right symmetry in their postural sway, as compared to typically developing infants. Conclusion The results of this study indicate that optimization of the entropy algorithm for infant sitting postural sway data can greatly improve the ability to separate the infants with developmental delay from typically developing infants. PMID:19671183

  18. The gravity dual of Rényi entropy.

    PubMed

    Dong, Xi

    2016-08-12

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Rényi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometric prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Rényi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Rényi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity.

  19. The gravity dual of Rényi entropy

    PubMed Central

    Dong, Xi

    2016-01-01

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Rényi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometric prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Rényi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Rényi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity. PMID:27515122

  20. Entropy-based financial asset pricing.

    PubMed

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.

  1. Entropy-Based Financial Asset Pricing

    PubMed Central

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return – entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy. PMID:25545668

  2. Entropy coders for image compression based on binary forward classification

    NASA Astrophysics Data System (ADS)

    Yoo, Hoon; Jeong, Jechang

    2000-12-01

    Entropy coders as a noiseless compression method are widely used as final step compression for images, and there have been many contributions to increase of entropy coder performance and to reduction of entropy coder complexity. In this paper, we propose some entropy coders based on the binary forward classification (BFC). The BFC requires overhead of classification but there is no change between the amount of input information and the total amount of classified output information, which we prove this property in this paper. And using the proved property, we propose entropy coders that are the BFC followed by Golomb-Rice coders (BFC+GR) and the BFC followed by arithmetic coders (BFC+A). The proposed entropy coders introduce negligible additional complexity due to the BFC. Simulation results also show better performance than other entropy coders that have similar complexity to the proposed coders.

  3. Entropy Generation Across Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  4. Nonparametric entropy estimation using kernel densities.

    PubMed

    Lake, Douglas E

    2009-01-01

    The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation.

  5. Entropy of Stationary Nonequilibrium Measures of Boundary Driven Symmetric Simple Exclusion Processes

    NASA Astrophysics Data System (ADS)

    Bernardin, Cédric; Landim, Claudio

    2010-12-01

    We examine the entropy of stationary nonequilibrium measures of boundary driven symmetric simple exclusion processes. In contrast with the Gibbs-Shannon entropy (Bahadoran in J. Stat. Phys. 126(4-5):1069-1082, 2007; Derrida et al. in J. Stat. Phys. 126(4-5):1083-1108, 2007), the entropy of nonequilibrium stationary states differs from the entropy of local equilibrium states.

  6. Classical and quantum entropy of parton distributions

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2018-05-01

    We introduce the semiclassical Wehrl entropy for the nucleon as a measure of complexity of the multiparton configuration in phase space. This gives a new perspective on the nucleon tomography. We evaluate the entropy in the small-x region and compare with the quantum von Neumann entropy. We also argue that the growth of entropy at small x is eventually slowed down due to the Pomeron loop effect.

  7. Information entropy to measure the spatial and temporal complexity of solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Li, Weiyao; Huang, Guanhua; Xiong, Yunwu

    2016-04-01

    The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.

  8. Time dependence of Hawking radiation entropy

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.

  9. Time-series analysis of sleep wake stage of rat EEG using time-dependent pattern entropy

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryuji; Shinba, Toshikazu; Mugishima, Go; Haraguchi, Hikaru; Inoue, Masayoshi

    2008-05-01

    We performed electroencephalography (EEG) for six male Wistar rats to clarify temporal behaviors at different levels of consciousness. Levels were identified both by conventional sleep analysis methods and by our novel entropy method. In our method, time-dependent pattern entropy is introduced, by which EEG is reduced to binary symbolic dynamics and the pattern of symbols in a sliding temporal window is considered. A high correlation was obtained between level of consciousness as measured by the conventional method and mean entropy in our entropy method. Mean entropy was maximal while awake (stage W) and decreased as sleep deepened. These results suggest that time-dependent pattern entropy may offer a promising method for future sleep research.

  10. Bayesian or Laplacien inference, entropy and information theory and information geometry in data and signal processing

    NASA Astrophysics Data System (ADS)

    Mohammad-Djafari, Ali

    2015-01-01

    The main object of this tutorial article is first to review the main inference tools using Bayesian approach, Entropy, Information theory and their corresponding geometries. This review is focused mainly on the ways these tools have been used in data, signal and image processing. After a short introduction of the different quantities related to the Bayes rule, the entropy and the Maximum Entropy Principle (MEP), relative entropy and the Kullback-Leibler divergence, Fisher information, we will study their use in different fields of data and signal processing such as: entropy in source separation, Fisher information in model order selection, different Maximum Entropy based methods in time series spectral estimation and finally, general linear inverse problems.

  11. Entropy change of biological dynamics in COPD

    PubMed Central

    Cao, Zhixin; Sun, Baoqing; Lo, Iek Long; Liu, Tzu-Ming; Zheng, Jun; Sun, Shixue; Shi, Yan; Zhang, Xiaohua Douglas

    2017-01-01

    In this century, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of large amount of data in human physiological signals. Entropy is a key metric for quantifying the irregularity contained in physiological signals. In this review, we focus on how entropy changes in various physiological signals in COPD. Our review concludes that the entropy change relies on the types of physiological signals under investigation. For major physiological signals related to respiratory diseases, such as airflow, heart rate variability, and gait variability, the entropy of a patient with COPD is lower than that of a healthy person. However, in case of hormone secretion and respiratory sound, the entropy of a patient is higher than that of a healthy person. For mechanomyogram signal, the entropy increases with the increased severity of COPD. This result should give valuable guidance for the use of entropy for physiological signals measured by wearable medical device as well as for further research on entropy in COPD. PMID:29066881

  12. Informational basis of sensory adaptation: entropy and single-spike efficiency in rat barrel cortex.

    PubMed

    Adibi, Mehdi; Clifford, Colin W G; Arabzadeh, Ehsan

    2013-09-11

    We showed recently that exposure to whisker vibrations enhances coding efficiency in rat barrel cortex despite increasing correlations in variability (Adibi et al., 2013). Here, to understand how adaptation achieves this improvement in sensory representation, we decomposed the stimulus information carried in neuronal population activity into its fundamental components in the framework of information theory. In the context of sensory coding, these components are the entropy of the responses across the entire stimulus set (response entropy) and the entropy of the responses conditional on the stimulus (conditional response entropy). We found that adaptation decreased response entropy and conditional response entropy at both the level of single neurons and the pooled activity of neuronal populations. However, the net effect of adaptation was to increase the mutual information because the drop in the conditional entropy outweighed the drop in the response entropy. The information transmitted by a single spike also increased under adaptation. As population size increased, the information content of individual spikes declined but the relative improvement attributable to adaptation was maintained.

  13. The Holographic Entropy Cone

    DOE PAGES

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; ...

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phasemore » space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.« less

  14. Thermality and excited state Rényi entropy in two-dimensional CFT

    NASA Astrophysics Data System (ADS)

    Lin, Feng-Li; Wang, Huajia; Zhang, Jia-ju

    2016-11-01

    We evaluate one-interval Rényi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate Rényi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the Rényi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its Rényi entropy to the thermal state one. As the Rényi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on how refined we look into the entanglement structure of the underlying pure excited state.

  15. Controlling the Shannon Entropy of Quantum Systems

    PubMed Central

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819

  16. Controlling the shannon entropy of quantum systems.

    PubMed

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.

  17. Comment on "Route from discreteness to the continuum for the Tsallis q -entropy"

    NASA Astrophysics Data System (ADS)

    Ou, Congjie; Abe, Sumiyoshi

    2018-06-01

    Several years ago, it had been discussed that nonlogarithmic entropies, such as the Tsallis q -entropy cannot be applied to systems with continuous variables. Now, in their recent paper [Phys. Rev. E 97, 012104 (2018), 10.1103/PhysRevE.97.012104], Oikonomou and Bagci have modified the form of the q -entropy for discrete variables in such a way that its continuum limit exists. Here, it is shown that this modification violates the expandability property of entropy, and their work is actually supporting evidence for the absence of the q -entropy for systems with continuous variables.

  18. Entanglement Entropy of Black Holes.

    PubMed

    Solodukhin, Sergey N

    2011-01-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  19. Entanglement Entropy of Black Holes

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2011-10-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  20. Excess Entropy Production in Quantum System: Quantum Master Equation Approach

    NASA Astrophysics Data System (ADS)

    Nakajima, Satoshi; Tokura, Yasuhiro

    2017-12-01

    For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by ln \\breve{ρ }_0 and ρ _0 where ρ _0 is the instantaneous steady state of the QME and \\breve{ρ }_0 is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.

  1. Coherence and entanglement measures based on Rényi relative entropies

    NASA Astrophysics Data System (ADS)

    Zhu, Huangjun; Hayashi, Masahito; Chen, Lin

    2017-11-01

    We study systematically resource measures of coherence and entanglement based on Rényi relative entropies, which include the logarithmic robustness of coherence, geometric coherence, and conventional relative entropy of coherence together with their entanglement analogues. First, we show that each Rényi relative entropy of coherence is equal to the corresponding Rényi relative entropy of entanglement for any maximally correlated state. By virtue of this observation, we establish a simple operational connection between entanglement measures and coherence measures based on Rényi relative entropies. We then prove that all these coherence measures, including the logarithmic robustness of coherence, are additive. Accordingly, all these entanglement measures are additive for maximally correlated states. In addition, we derive analytical formulas for Rényi relative entropies of entanglement of maximally correlated states and bipartite pure states, which reproduce a number of classic results on the relative entropy of entanglement and logarithmic robustness of entanglement in a unified framework. Several nontrivial bounds for Rényi relative entropies of coherence (entanglement) are further derived, which improve over results known previously. Moreover, we determine all states whose relative entropy of coherence is equal to the logarithmic robustness of coherence. As an application, we provide an upper bound for the exact coherence distillation rate, which is saturated for pure states.

  2. An Equation for Moist Entropy in a Precipitating and Icy Atmosphere

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, Joanne; Zeng, Xiping

    2003-01-01

    Moist entropy is nearly conserved in adiabatic motion. It is redistributed rather than created by moist convection. Thus moist entropy and its equation, as a healthy direction, can be used to construct analytical and numerical models for the interaction between tropical convective clouds and large-scale circulations. Hence, an accurate equation of moist entropy is needed for the analysis and modeling of atmospheric convective clouds. On the basis of the consistency between the energy and the entropy equations, a complete equation of moist entropy is derived from the energy equation. The equation expresses explicitly the internal and external sources of moist entropy, including those in relation to the microphysics of clouds and precipitation. In addition, an accurate formula for the surface flux of moist entropy from the underlying surface into the air above is derived. Because moist entropy deals "easily" with the transition among three water phases, it will be used as a prognostic variable in the next generation of cloud-resolving models (e. g. a global cloud-resolving model) for low computational noise. Its equation that is derived in this paper is accurate and complete, providing a theoretical basis for using moist entropy as a prognostic variable in the long-term modeling of clouds and large-scale circulations.

  3. Connectivity in the human brain dissociates entropy and complexity of auditory inputs☆

    PubMed Central

    Nastase, Samuel A.; Iacovella, Vittorio; Davis, Ben; Hasson, Uri

    2015-01-01

    Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. PMID:25536493

  4. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  5. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression

    PubMed Central

    Weiss, Brandi A.; Dardick, William

    2015-01-01

    This article introduces an entropy-based measure of data–model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data–model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data–model fit to assess how well logistic regression models classify cases into observed categories. PMID:29795897

  6. ECG contamination of EEG signals: effect on entropy.

    PubMed

    Chakrabarti, Dhritiman; Bansal, Sonia

    2016-02-01

    Entropy™ is a proprietary algorithm which uses spectral entropy analysis of electroencephalographic (EEG) signals to produce indices which are used as a measure of depth of hypnosis. We describe a report of electrocardiographic (ECG) contamination of EEG signals leading to fluctuating erroneous Entropy values. An explanation is provided for mechanism behind this observation by describing the spread of ECG signals in head and neck and its influence on EEG/Entropy by correlating the observation with the published Entropy algorithm. While the Entropy algorithm has been well conceived, there are still instances in which it can produce erroneous values. Such erroneous values and their cause may be identified by close scrutiny of the EEG waveform if Entropy values seem out of sync with that expected at given anaesthetic levels.

  7. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression.

    PubMed

    Weiss, Brandi A; Dardick, William

    2016-12-01

    This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data-model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data-model fit to assess how well logistic regression models classify cases into observed categories.

  8. Entropy of isolated quantum systems after a quench.

    PubMed

    Santos, Lea F; Polkovnikov, Anatoli; Rigol, Marcos

    2011-07-22

    A diagonal entropy, which depends only on the diagonal elements of the system's density matrix in the energy representation, has been recently introduced as the proper definition of thermodynamic entropy in out-of-equilibrium quantum systems. We study this quantity after an interaction quench in lattice hard-core bosons and spinless fermions, and after a local chemical potential quench in a system of hard-core bosons in a superlattice potential. The former systems have a chaotic regime, where the diagonal entropy becomes equivalent to the equilibrium microcanonical entropy, coinciding with the onset of thermalization. The latter system is integrable. We show that its diagonal entropy is additive and different from the entropy of a generalized Gibbs ensemble, which has been introduced to account for the effects of conserved quantities at integrability.

  9. Clausius entropy for arbitrary bifurcate null surfaces

    NASA Astrophysics Data System (ADS)

    Baccetti, Valentina; Visser, Matt

    2014-02-01

    Jacobson’s thermodynamic derivation of the Einstein equations was originally applied only to local Rindler horizons. But at least some parts of that construction can usefully be extended to give meaningful results for arbitrary bifurcate null surfaces. As presaged in Jacobson’s original article, this more general construction sharply brings into focus the questions: is entropy objectively ‘real’? Or is entropy in some sense subjective and observer-dependent? These innocent questions open a Pandora’s box of often inconclusive debate. A consensus opinion, though certainly not universally held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clausius relation {\\rm{d}}S = \\unicode{x111} Q/T) should be objectively real, but that the ontological status of statistical entropy (Shannon or von Neumann entropy) is much more ambiguous, and much more likely to be observer-dependent. This question is particularly pressing when it comes to understanding Bekenstein entropy (black hole entropy). To perhaps further add to the confusion, we shall argue that even the Clausius entropy can often be observer-dependent. In the current article we shall conclusively demonstrate that one can meaningfully assign a notion of Clausius entropy to arbitrary bifurcate null surfaces—effectively defining a ‘virtual Clausius entropy’ for arbitrary ‘virtual (local) causal horizons’. As an application, we see that we can implement a version of the generalized second law (GSL) for this virtual Clausius entropy. This version of GSL can be related to certain (nonstandard) integral variants of the null energy condition. Because the concepts involved are rather subtle, we take some effort in being careful and explicit in developing our framework. In future work we will apply this construction to generalize Jacobson’s derivation of the Einstein equations.

  10. Noise and complexity in human postural control: interpreting the different estimations of entropy.

    PubMed

    Rhea, Christopher K; Silver, Tobin A; Hong, S Lee; Ryu, Joong Hyun; Studenka, Breanna E; Hughes, Charmayne M L; Haddad, Jeffrey M

    2011-03-17

    Over the last two decades, various measures of entropy have been used to examine the complexity of human postural control. In general, entropy measures provide information regarding the health, stability and adaptability of the postural system that is not captured when using more traditional analytical techniques. The purpose of this study was to examine how noise, sampling frequency and time series length influence various measures of entropy when applied to human center of pressure (CoP) data, as well as in synthetic signals with known properties. Such a comparison is necessary to interpret data between and within studies that use different entropy measures, equipment, sampling frequencies or data collection durations. The complexity of synthetic signals with known properties and standing CoP data was calculated using Approximate Entropy (ApEn), Sample Entropy (SampEn) and Recurrence Quantification Analysis Entropy (RQAEn). All signals were examined at varying sampling frequencies and with varying amounts of added noise. Additionally, an increment time series of the original CoP data was examined to remove long-range correlations. Of the three measures examined, ApEn was the least robust to sampling frequency and noise manipulations. Additionally, increased noise led to an increase in SampEn, but a decrease in RQAEn. Thus, noise can yield inconsistent results between the various entropy measures. Finally, the differences between the entropy measures were minimized in the increment CoP data, suggesting that long-range correlations should be removed from CoP data prior to calculating entropy. The various algorithms typically used to quantify the complexity (entropy) of CoP may yield very different results, particularly when sampling frequency and noise are different. The results of this study are discussed within the context of the neural noise and loss of complexity hypotheses.

  11. Time dependence of Hawking radiation entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Don N., E-mail: profdonpage@gmail.com

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its originalmore » Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ≈ 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ≈ 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4πM{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.« less

  12. Quantifying selection and diversity in viruses by entropy methods, with application to the haemagglutinin of H3N2 influenza

    PubMed Central

    Pan, Keyao; Deem, Michael W.

    2011-01-01

    Many viruses evolve rapidly. For example, haemagglutinin (HA) of the H3N2 influenza A virus evolves to escape antibody binding. This evolution of the H3N2 virus means that people who have previously been exposed to an influenza strain may be infected by a newly emerged virus. In this paper, we use Shannon entropy and relative entropy to measure the diversity and selection pressure by an antibody in each amino acid site of H3 HA between the 1992–1993 season and the 2009–2010 season. Shannon entropy and relative entropy are two independent state variables that we use to characterize H3N2 evolution. The entropy method estimates future H3N2 evolution and migration using currently available H3 HA sequences. First, we show that the rate of evolution increases with the virus diversity in the current season. The Shannon entropy of the sequence in the current season predicts relative entropy between sequences in the current season and those in the next season. Second, a global migration pattern of H3N2 is assembled by comparing the relative entropy flows of sequences sampled in China, Japan, the USA and Europe. We verify this entropy method by describing two aspects of historical H3N2 evolution. First, we identify 54 amino acid sites in HA that have evolved in the past to evade the immune system. Second, the entropy method shows that epitopes A and B on the top of HA evolve most vigorously to escape antibody binding. Our work provides a novel entropy-based method to predict and quantify future H3N2 evolution and to describe the evolutionary history of H3N2. PMID:21543352

  13. Using heteroclinic orbits to quantify topological entropy in fluid flows

    NASA Astrophysics Data System (ADS)

    Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.

    2016-03-01

    Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.

  14. Cosmological Entropy Bounds

    NASA Astrophysics Data System (ADS)

    Brustein, R.

    I review some basic facts about entropy bounds in general and about cosmological entropy bounds. Then I review the causal entropy bound, the conditions for its validity and its application to the study of cosmological singularities. This article is based on joint work with Gabriele Veneziano and subsequent related research.

  15. Time evolution of Rényi entropy under the Lindblad equation.

    PubMed

    Abe, Sumiyoshi

    2016-08-01

    In recent years, the Rényi entropy has repeatedly been discussed for characterization of quantum critical states and entanglement. Here, time evolution of the Rényi entropy is studied. A compact general formula is presented for the lower bound on the entropy rate.

  16. Rogue waves and entropy consumption

    NASA Astrophysics Data System (ADS)

    Hadjihoseini, Ali; Lind, Pedro G.; Mori, Nobuhito; Hoffmann, Norbert P.; Peinke, Joachim

    2017-11-01

    Based on data from the Sea of Japan and the North Sea the occurrence of rogue waves is analyzed by a scale-dependent stochastic approach, which interlinks fluctuations of waves for different spacings. With this approach we are able to determine a stochastic cascade process, which provides information of the general multipoint statistics. Furthermore the evolution of single trajectories in scale, which characterize wave height fluctuations in the surroundings of a chosen location, can be determined. The explicit knowledge of the stochastic process enables to assign entropy values to all wave events. We show that for these entropies the integral fluctuation theorem, a basic law of non-equilibrium thermodynamics, is valid. This implies that positive and negative entropy events must occur. Extreme events like rogue waves are characterized as negative entropy events. The statistics of these entropy fluctuations changes with the wave state, thus for the Sea of Japan the statistics of the entropies has a more pronounced tail for negative entropy values, indicating a higher probability of rogue waves.

  17. Fundamental limits on quantum dynamics based on entropy change

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Khatri, Sumeet; Siopsis, George; Wilde, Mark M.

    2018-01-01

    It is well known in the realm of quantum mechanics and information theory that the entropy is non-decreasing for the class of unital physical processes. However, in general, the entropy does not exhibit monotonic behavior. This has restricted the use of entropy change in characterizing evolution processes. Recently, a lower bound on the entropy change was provided in the work of Buscemi, Das, and Wilde [Phys. Rev. A 93(6), 062314 (2016)]. We explore the limit that this bound places on the physical evolution of a quantum system and discuss how these limits can be used as witnesses to characterize quantum dynamics. In particular, we derive a lower limit on the rate of entropy change for memoryless quantum dynamics, and we argue that it provides a witness of non-unitality. This limit on the rate of entropy change leads to definitions of several witnesses for testing memory effects in quantum dynamics. Furthermore, from the aforementioned lower bound on entropy change, we obtain a measure of non-unitarity for unital evolutions.

  18. The maximum entropy production and maximum Shannon information entropy in enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš

    2018-04-01

    We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.

  19. The gravity dual of Rényi entropy

    DOE PAGES

    Dong, Xi

    2016-08-12

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Re´nyi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometricmore » prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Re´nyi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Re´nyi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity.« less

  20. Giant onsite electronic entropy enhances the performance of ceria for water splitting

    DOE PAGES

    Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.; ...

    2017-08-18

    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less

  1. On entropy, financial markets and minority games

    NASA Astrophysics Data System (ADS)

    Zapart, Christopher A.

    2009-04-01

    The paper builds upon an earlier statistical analysis of financial time series with Shannon information entropy, published in [L. Molgedey, W. Ebeling, Local order, entropy and predictability of financial time series, European Physical Journal B-Condensed Matter and Complex Systems 15/4 (2000) 733-737]. A novel generic procedure is proposed for making multistep-ahead predictions of time series by building a statistical model of entropy. The approach is first demonstrated on the chaotic Mackey-Glass time series and later applied to Japanese Yen/US dollar intraday currency data. The paper also reinterprets Minority Games [E. Moro, The minority game: An introductory guide, Advances in Condensed Matter and Statistical Physics (2004)] within the context of physical entropy, and uses models derived from minority game theory as a tool for measuring the entropy of a model in response to time series. This entropy conditional upon a model is subsequently used in place of information-theoretic entropy in the proposed multistep prediction algorithm.

  2. Entropy is in Flux V3.4

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.

    2017-05-01

    The science of thermodynamics was put together in the Nineteenth Century to describe large systems in equilibrium. One part of thermodynamics defines entropy for equilibrium systems and demands an ever-increasing entropy for non-equilibrium ones. Since thermodynamics does not define entropy out of equilibrium, pure thermodynamics cannot follow the details of how this increase occurs. However, starting with the work of Ludwig Boltzmann in 1872, and continuing to the present day, various models of non-equilibrium behavior have been put together with the specific aim of generalizing the concept of entropy to non-equilibrium situations. This kind of entropy has been termed kinetic entropy to distinguish it from the thermodynamic variety. Knowledge of kinetic entropy started from Boltzmann's insight about his equation for the time dependence of gaseous systems. In this paper, his result is stated as a definition of kinetic entropy in terms of a local equation for the entropy density. This definition is then applied to Landau's theory of the Fermi liquid thereby giving the kinetic entropy within that theory. The dynamics of many condensed matter systems including Fermi liquids, low temperature superfluids, and ordinary metals lend themselves to the definition of kinetic entropy. In fact, entropy has been defined and used for a wide variety of situations in which a condensed matter system has been allowed to relax for a sufficient period so that the very most rapid fluctuations have been ironed out. One of the broadest applications of non-equilibrium analysis considers quantum degenerate systems using Martin-Schwinger Green's functions (Phys Rev 115:1342-1373, 1959) as generalized Wigner functions, g^<({p},ω ,{R},T) and g^>({p},ω ,{R},T). This paper describes once again how the quantum kinetic equations for these functions give locally defined conservation laws for mass momentum and energy. In local thermodynamic equilibrium, this kinetic theory enables a reasonable definition of the density of kinetic entropy. However, when the system is outside of local equilibrium, this definition fails. It is speculated that quantum entanglement is the source of this failure.

  3. The third law of thermodynamics and the fractional entropies

    NASA Astrophysics Data System (ADS)

    Baris Bagci, G.

    2016-08-01

    We consider the fractal calculus based Ubriaco and Machado entropies and investigate whether they conform to the third law of thermodynamics. The Ubriaco entropy satisfies the third law of thermodynamics in the interval 0 < q ≤ 1 exactly where it is also thermodynamically stable. The Machado entropy, on the other hand, yields diverging inverse temperature in the region 0 < q ≤ 1, albeit with non-vanishing negative entropy values. Therefore, despite the divergent inverse temperature behavior, the Machado entropy fails the third law of thermodynamics. We also show that the aforementioned results are also supported by the one-dimensional Ising model with no external field.

  4. Entropy, complexity, and Markov diagrams for random walk cancer models.

    PubMed

    Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-19

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  5. Entropy, complexity, and Markov diagrams for random walk cancer models

    NASA Astrophysics Data System (ADS)

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  6. Multifractal Properties of Process Control Variables

    NASA Astrophysics Data System (ADS)

    Domański, Paweł D.

    2017-06-01

    Control system is an inevitable element of any industrial installation. Its quality affects overall process performance significantly. The assessment, whether control system needs any improvement or not, requires relevant and constructive measures. There are various methods, like time domain based, Minimum Variance, Gaussian and non-Gaussian statistical factors, fractal and entropy indexes. Majority of approaches use time series of control variables. They are able to cover many phenomena. But process complexities and human interventions cause effects that are hardly visible for standard measures. It is shown that the signals originating from industrial installations have multifractal properties and such an analysis may extend standard approach to further observations. The work is based on industrial and simulation data. The analysis delivers additional insight into the properties of control system and the process. It helps to discover internal dependencies and human factors, which are hardly detectable.

  7. Synergistic rate boosting of collagen fibrillogenesis in heterogeneous mixtures of crowding agents.

    PubMed

    Dewavrin, Jean-Yves; Abdurrahiem, Muhammed; Blocki, Anna; Musib, Mrinal; Piazza, Francesco; Raghunath, Michael

    2015-03-26

    The competition for access to space that arises between macromolecules is the basis of the macromolecular crowding phenomenon, known to modulate biochemical reactions in subtle ways. Crowding is a highly conserved physiological condition in and around cells in metazoans, and originates from a mixture of heterogeneous biomolecules. Here, using collagen fibrillogenesis as an experimental test platform and ideas from the theory of nonideal solutions, we show that an entropy-based synergy is created by a mixture of two different populations of artificial crowders, providing small crowders with extra volume occupancy when in the vicinity of bigger crowders. We present the physiological mechanism by which synergistic effects maximize volume exclusion with the minimum amount of heterogeneous crowders, demonstrating how the evolutionarily optimized crowded conditions found in vivo can be reproduced effectively in vitro.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavanaugh, J.E.; McQuarrie, A.D.; Shumway, R.H.

    Conventional methods for discriminating between earthquakes and explosions at regional distances have concentrated on extracting specific features such as amplitude and spectral ratios from the waveforms of the P and S phases. We consider here an optimum nonparametric classification procedure derived from the classical approach to discriminating between two Gaussian processes with unequal spectra. Two robust variations based on the minimum discrimination information statistic and Renyi's entropy are also considered. We compare the optimum classification procedure with various amplitude and spectral ratio discriminants and show that its performance is superior when applied to a small population of 8 land-based earthquakesmore » and 8 mining explosions recorded in Scandinavia. Several parametric characterizations of the notion of complexity based on modeling earthquakes and explosions as autoregressive or modulated autoregressive processes are also proposed and their performance compared with the nonparametric and feature extraction approaches.« less

  9. Non-extensive entropy of modified Gaussian quantum dot under polaron effects

    NASA Astrophysics Data System (ADS)

    Bahramiyan, H.; Khordad, R.; Sedehi, H. R. Rastegar

    2018-01-01

    The effect of electron-phonon (e-p) interaction on the non-extensive Tsallis entropy of a modified Gaussian quantum dot has been investigated. In this work, the LO-phonons, SO-phonons and LO + SO-phonons have been considered. It is found that the entropy increases with enhancing the confinement potential range and depth. The entropy decreases with considering the electron-phonon interaction. The electron-LO + SO-phonon interaction has the largest contribution to the entropy.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helinski, Ryan

    This Python package provides high-performance implementations of the functions and examples presented in "BiEntropy - The Approximate Entropy of a Finite Binary String" by Grenville J. Croll, presented at ANPA 34 in 2013. https://arxiv.org/abs/1305.0954 According to the paper, BiEntropy is "a simple algorithm which computes the approximate entropy of a finite binary string of arbitrary length" using "a weighted average of the Shannon Entropies of the string and all but the last binary derivative of the string."

  11. Third law of thermodynamics as a key test of generalized entropies.

    PubMed

    Bento, E P; Viswanathan, G M; da Luz, M G E; Silva, R

    2015-02-01

    The laws of thermodynamics constrain the formulation of statistical mechanics at the microscopic level. The third law of thermodynamics states that the entropy must vanish at absolute zero temperature for systems with nondegenerate ground states in equilibrium. Conversely, the entropy can vanish only at absolute zero temperature. Here we ask whether or not generalized entropies satisfy this fundamental property. We propose a direct analytical procedure to test if a generalized entropy satisfies the third law, assuming only very general assumptions for the entropy S and energy U of an arbitrary N-level classical system. Mathematically, the method relies on exact calculation of β=dS/dU in terms of the microstate probabilities p(i). To illustrate this approach, we present exact results for the two best known generalizations of statistical mechanics. Specifically, we study the Kaniadakis entropy S(κ), which is additive, and the Tsallis entropy S(q), which is nonadditive. We show that the Kaniadakis entropy correctly satisfies the third law only for -1<κ<+1, thereby shedding light on why κ is conventionally restricted to this interval. Surprisingly, however, the Tsallis entropy violates the third law for q<1. Finally, we give a concrete example of the power of our proposed method by applying it to a paradigmatic system: the one-dimensional ferromagnetic Ising model with nearest-neighbor interactions.

  12. Scaling of the entropy budget with surface temperature in radiative-convective equilibrium

    NASA Astrophysics Data System (ADS)

    Singh, Martin S.; O'Gorman, Paul A.

    2016-09-01

    The entropy budget of the atmosphere is examined in simulations of radiative-convective equilibrium with a cloud-system resolving model over a wide range of surface temperatures from 281 to 311 K. Irreversible phase changes and the diffusion of water vapor account for more than half of the irreversible entropy production within the atmosphere, even in the coldest simulation. As the surface temperature is increased, the atmospheric radiative cooling rate increases, driving a greater entropy sink that must be matched by greater irreversible entropy production. The entropy production resulting from irreversible moist processes increases at a similar fractional rate as the entropy sink and at a lower rate than that implied by Clausius-Clapeyron scaling. This allows the entropy production from frictional drag on hydrometeors and on the atmospheric flow to also increase with warming, in contrast to recent results for simulations with global climate models in which the work output decreases with warming. A set of approximate scaling relations is introduced for the terms in the entropy budget as the surface temperature is varied, and many of the terms are found to scale with the mean surface precipitation rate. The entropy budget provides some insight into changes in frictional dissipation in response to warming or changes in model resolution, but it is argued that frictional dissipation is not closely linked to other measures of convective vigor.

  13. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    PubMed

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (p<2.2e-16) than HK gene promoters. The entropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Connectivity in the human brain dissociates entropy and complexity of auditory inputs.

    PubMed

    Nastase, Samuel A; Iacovella, Vittorio; Davis, Ben; Hasson, Uri

    2015-03-01

    Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. Copyright © 2014. Published by Elsevier Inc.

  15. Finite entanglement entropy and spectral dimension in quantum gravity

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Calcagni, Gianluca

    2017-12-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations.

  16. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kaixuan; Wang, Jun

    2017-02-01

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model.

  17. Magnetization and isothermal magnetic entropy change of a mixed spin-1 and spin-2 Heisenberg superlattice

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Du, An

    2017-09-01

    A superlattice composed of spin-1 and spin-2 with ABAB … structure was described with Heisenberg model. The magnetizations and magnetic entropy changes under different magnetic fields were calculated by the Green's function method. The magnetization compensation phenomenon could be observed by altering the intralayer exchange interactions and the single-ion anisotropies of spins. Along with the temperature increasing, the system in the absence of magnetization compensation shows normal magnetic entropy change and displays a peak near the critical temperature, and yet the system with magnetization compensation shows normal magnetic entropy change near the compensation temperature but inverse magnetic entropy change near the critical temperature. Finally, we illustrated the reasons of different behaviors of magnetic entropy change by analyzing the contributions of two sublattices to the total magnetic entropy change.

  18. Entropy and econophysics

    NASA Astrophysics Data System (ADS)

    Rosser, J. Barkley

    2016-12-01

    Entropy is a central concept of statistical mechanics, which is the main branch of physics that underlies econophysics, the application of physics concepts to understand economic phenomena. It enters into econophysics both in an ontological way through the Second Law of Thermodynamics as this drives the world economy from its ecological foundations as solar energy passes through food chains in dissipative process of entropy rising and production fundamentally involving the replacement of lower entropy energy states with higher entropy ones. In contrast the mathematics of entropy as appearing in information theory becomes the basis for modeling financial market dynamics as well as income and wealth distribution dynamics. It also provides the basis for an alternative view of stochastic price equilibria in economics, as well providing a crucial link between econophysics and sociophysics, keeping in mind the essential unity of the various concepts of entropy.

  19. Bispectral index, entropy, and quantitative electroencephalogram during single-agent xenon anesthesia.

    PubMed

    Laitio, Ruut M; Kaskinoro, Kimmo; Särkelä, Mika O K; Kaisti, Kaike K; Salmi, Elina; Maksimow, Anu; Långsjö, Jaakko W; Aantaa, Riku; Kangas, Katja; Jääskeläinen, Satu; Scheinin, Harry

    2008-01-01

    The aim was to evaluate the performance of anesthesia depth monitors, Bispectral Index (BIS) and Entropy, during single-agent xenon anesthesia in 17 healthy subjects. After mask induction with xenon and intubation, anesthesia was continued with xenon only. BIS, State Entropy and Response Entropy, and electroencephalogram were monitored throughout induction, steady-state anesthesia, and emergence. The performance of BIS, State Entropy, and Response Entropy were evaluated with prediction probability, sensitivity, and specificity analyses. The power spectrum of the raw electroencephalogram signal was calculated. The mean (SD) xenon concentration during anesthesia was 66.4% (2.4%). BIS, State Entropy, and Response Entropy demonstrated low prediction probability values at loss of response (0.455, 0.656, and 0.619) but 1 min after that the values were high (0.804, 0.941, and 0.929). Thereafter, equally good performance was demonstrated for all indices. At emergence, the prediction probability values to distinguish between steady-state anesthesia and return of response for BIS, State Entropy, and Response Entropy were 0.988, 0.892, and 0.992. No statistical differences between the performances of the monitors were observed. Quantitative electroencephalogram analyses showed generalized increase in total power (P < 0.001), delta (P < 0.001) and theta activity (P < 0.001), and increased alpha activity (P = 0.003) in the frontal brain regions. Electroencephalogram-derived depth of sedation indices BIS and Entropy showed a delay to detect loss of response during induction of xenon anesthesia. Both monitors performed well in distinguishing between conscious and unconscious states during steady-state anesthesia. Xenon-induced changes in electroencephalogram closely resemble those induced by propofol.

  20. Entropy: Order or Information

    ERIC Educational Resources Information Center

    Ben-Naim, Arieh

    2011-01-01

    Changes in entropy can "sometimes" be interpreted in terms of changes in disorder. On the other hand, changes in entropy can "always" be interpreted in terms of changes in Shannon's measure of information. Mixing and demixing processes are used to highlight the pitfalls in the association of entropy with disorder. (Contains 3 figures.)

  1. Entropy Is Simple, Qualitatively.

    ERIC Educational Resources Information Center

    Lambert, Frank L.

    2002-01-01

    Suggests that qualitatively, entropy is simple. Entropy increase from a macro viewpoint is a measure of the dispersal of energy from localized to spread out at a temperature T. Fundamentally based on statistical and quantum mechanics, this approach is superior to the non-fundamental "disorder" as a descriptor of entropy change. (MM)

  2. Tsallis Entropy and the Transition to Scaling in Fragmentation

    NASA Astrophysics Data System (ADS)

    Sotolongo-Costa, Oscar; Rodriguez, Arezky H.; Rodgers, G. J.

    2000-12-01

    By using the maximum entropy principle with Tsallis entropy we obtain a fragment size distribution function which undergoes a transition to scaling. This distribution function reduces to those obtained by other authors using Shannon entropy. The treatment is easily generalisable to any process of fractioning with suitable constraints.

  3. A versatile entropic measure of grey level inhomogeneity

    NASA Astrophysics Data System (ADS)

    Piasecki, Ryszard

    2009-06-01

    An entropic measure for the analysis of grey level inhomogeneity (GLI) is proposed as a function of length scale. It allows us to quantify the statistical dissimilarity of the actual macrostate and the maximizing entropy of the reference one. The maximums (minimums) of the measure indicate those scales at which higher (lower) average grey level inhomogeneity appears compared to neighbour scales. Even a deeply hidden statistical grey level periodicity can be detected by the equally distant minimums of the measure. The striking effect of multiple intersecting curves (MICs) of the measure has been revealed for pairs of simulated patterns, which differ in shades of grey or symmetry properties only. In turn, for evolving photosphere granulation patterns, the stability in time of the first peak position has been found. Interestingly, the third peak is dominant at initial steps of the evolution. This indicates a temporary grouping of granules at a length scale that may belong to the mesogranulation phenomenon. This behaviour has similarities with that reported by Consolini, Berrilli et al. [G. Consolini, F. Berrilli, A. Florio, E. Pietropaolo, L.A. Smaldone, Astron. Astrophys. 402 (2003) 1115; F. Berrilli, D. Del Moro, S. Russo, G. Consolini, Th. Straus, Astrophys. J. 632 (2005) 677] for binarized granulation images of a different data set.

  4. Thermodynamic properties by Equation of state of liquid sodium under pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Sun, Yongli; Zhang, Xiaoxiao; Li, Mo

    Isothermal bulk modulus, molar volume and speed of sound of molten sodium are calculated through an equation of state of a power law form within good precision as compared with the experimental data. The calculated internal energy data show the minimum along the isothermal lines as the previous result but with slightly larger values. The calculated values of isobaric heat capacity show the unexpected minimum in the isothermal compression. The temperature and pressure derivative of various thermodynamic quantities in liquid Sodium are derived. It is discussed about the contribution from entropy to the temperature and pressure derivative of isothermal bulk modulus. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid Sodium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. By comparison with the results from experimental measurements and quasi-thermodynamic theory, the calculated values are found to be very close at melting point at ambient condition. Furthermore, several other thermodynamic quantities are also presented. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 11204200.

  5. A compositional framework for Markov processes

    NASA Astrophysics Data System (ADS)

    Baez, John C.; Fong, Brendan; Pollard, Blake S.

    2016-03-01

    We define the concept of an "open" Markov process, or more precisely, continuous-time Markov chain, which is one where probability can flow in or out of certain states called "inputs" and "outputs." One can build up a Markov process from smaller open pieces. This process is formalized by making open Markov processes into the morphisms of a dagger compact category. We show that the behavior of a detailed balanced open Markov process is determined by a principle of minimum dissipation, closely related to Prigogine's principle of minimum entropy production. Using this fact, we set up a functor mapping open detailed balanced Markov processes to open circuits made of linear resistors. We also describe how to "black box" an open Markov process, obtaining the linear relation between input and output data that holds in any steady state, including nonequilibrium steady states with a nonzero flow of probability through the system. We prove that black boxing gives a symmetric monoidal dagger functor sending open detailed balanced Markov processes to Lagrangian relations between symplectic vector spaces. This allows us to compute the steady state behavior of an open detailed balanced Markov process from the behaviors of smaller pieces from which it is built. We relate this black box functor to a previously constructed black box functor for circuits.

  6. Spatial bandwidth considerations for optical communication through a free space propagation link.

    PubMed

    Tyler, Glenn A

    2011-12-01

    This Letter concentrates on the transverse limitations imposed by a finite aperture optical propagation link that supports free space optical communication. Here it is assumed that a series of states, which are the spatial component of the message, are sent through the communication channel. The spatial bandwidth of the propagation link expressed as bits per transmitted photon is computed as the product of the average link efficiency times the entropy of the link. To facilitate the evaluation, it is assumed that the transmitted states are minimum energy loss orbital angular momentum states expressed in the form of f(nm)(r)exp(imθ), where the radial function is controlled to ensure that, for each quantum number denoted by the values of n and m, the minimum energy loss is obtained. The results illustrate that the bandwidth in units of bits per transmitted photon is very nearly equal to log(2)(N(2)(f)here log(2)(·) denotes the logarithm in base 2 and the Fresnel number, N(f)=(π/4)D(1)D(2)/(λz), where D(1) is the diameter of the transmitting aperture, D(2) is the diameter of the receiving aperture, λ is the wavelength of the light used, and z is the propagation distance. © 2011 Optical Society of America

  7. Consistent free energy landscapes and thermodynamic properties of small proteins based on a single all-atom force field employing an implicit solvation.

    PubMed

    Kim, Eunae; Jang, Soonmin; Pak, Youngshang

    2007-10-14

    We have attempted to improve the PARAM99 force field in conjunction with the generalized Born (GB) solvation model with a surface area correction for more consistent protein folding simulations. For this purpose, using an extended alphabeta training set of five well-studied molecules with various folds (alpha, beta, and betabetaalpha), a previously modified version of PARAM99/GBSA is further refined, such that all native states of the five training species correspond to their lowest free energy minimum states. The resulting modified force field (PARAM99MOD5/GBSA) clearly produces reasonably acceptable conformational free energy surfaces of the training set with correct identifications of their native states in the free energy minimum states. Moreover, due to its well-balanced nature, this new force field is expected to describe secondary structure propensities of diverse folds in a more consistent manner. Remarkably, temperature dependent behaviors simulated with the current force field are in good agreement with the experiment. This agreement is a significant improvement over the existing standard all-atom force fields. In addition, fundamentally important thermodynamic quantities, such as folding enthalpy (DeltaH) and entropy (DeltaS), agree reasonably well with the experimental data.

  8. Fast Diffusion to Self-Similarity: Complete Spectrum, Long-Time Asymptotics, and Numerology

    NASA Astrophysics Data System (ADS)

    Denzler, Jochen; McCann, Robert J.

    2005-03-01

    The complete spectrum is determined for the operator on the Sobolev space W1,2ρ(Rn) formed by closing the smooth functions of compact support with respect to the norm Here the Barenblatt profile ρ is the stationary attractor of the rescaled diffusion equation in the fast, supercritical regime m the same diffusion dynamics represent the steepest descent down an entropy E(u) on probability measures with respect to the Wasserstein distance d2. Formally, the operator H=HessρE is the Hessian of this entropy at its minimum ρ, so the spectral gap H≧α:=2-n(1-m) found below suggests the sharp rate of asymptotic convergence: from any centered initial data 0≦u(0,x) ∈ L1(Rn) with second moments. This bound improves various results in the literature, and suggests the conjecture that the self-similar solution u(t,x)=R(t)-nρ(x/R(t)) is always slowest to converge. The higher eigenfunctions which are polynomials with hypergeometric radial parts and the presence of continuous spectrum yield additional insight into the relations between symmetries of Rn and the flow. Thus the rate of convergence can be improved if we are willing to replace the distance to ρ with the distance to its nearest mass-preserving dilation (or still better, affine image). The strange numerology of the spectrum is explained in terms of the number of moments of ρ.

  9. From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager's Relations Revisited

    NASA Astrophysics Data System (ADS)

    Feidt, Michel; Costea, Monica

    2018-04-01

    Many works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager's theory were reported [4]. The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs. The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental. Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source. Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.

  10. Nonadditive entropy maximization is inconsistent with Bayesian updating

    NASA Astrophysics Data System (ADS)

    Pressé, Steve

    2014-11-01

    The maximum entropy method—used to infer probabilistic models from data—is a special case of Bayes's model inference prescription which, in turn, is grounded in basic propositional logic. By contrast to the maximum entropy method, the compatibility of nonadditive entropy maximization with Bayes's model inference prescription has never been established. Here we demonstrate that nonadditive entropy maximization is incompatible with Bayesian updating and discuss the immediate implications of this finding. We focus our attention on special cases as illustrations.

  11. Nonadditive entropy maximization is inconsistent with Bayesian updating.

    PubMed

    Pressé, Steve

    2014-11-01

    The maximum entropy method-used to infer probabilistic models from data-is a special case of Bayes's model inference prescription which, in turn, is grounded in basic propositional logic. By contrast to the maximum entropy method, the compatibility of nonadditive entropy maximization with Bayes's model inference prescription has never been established. Here we demonstrate that nonadditive entropy maximization is incompatible with Bayesian updating and discuss the immediate implications of this finding. We focus our attention on special cases as illustrations.

  12. Multiscale Shannon entropy and its application in the stock market

    NASA Astrophysics Data System (ADS)

    Gu, Rongbao

    2017-10-01

    In this paper, we perform a multiscale entropy analysis on the Dow Jones Industrial Average Index using the Shannon entropy. The stock index shows the characteristic of multi-scale entropy that caused by noise in the market. The entropy is demonstrated to have significant predictive ability for the stock index in both long-term and short-term, and empirical results verify that noise does exist in the market and can affect stock price. It has important implications on market participants such as noise traders.

  13. Holographic entanglement entropy and cyclic cosmology

    NASA Astrophysics Data System (ADS)

    Frampton, Paul H.

    2018-06-01

    We discuss a cyclic cosmology in which the visible universe, or introverse, is all that is accessible to an observer while the extroverse represents the total spacetime originating from the time when the dark energy began to dominate. It is argued that entanglement entropy of the introverse is the more appropriate quantity to render infinitely cyclic, rather than the entropy of the total universe. Since vanishing entanglement entropy implies disconnected spacetimes, at the turnaround when the introverse entropy is zero the disconnected extroverse can be jettisoned with impunity.

  14. Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence.

    PubMed

    Ryu, Shinsei; Takayanagi, Tadashi

    2006-05-12

    A holographic derivation of the entanglement entropy in quantum (conformal) field theories is proposed from anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We argue that the entanglement entropy in d + 1 dimensional conformal field theories can be obtained from the area of d dimensional minimal surfaces in AdS(d+2), analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our proposal agrees perfectly with the entanglement entropy in 2D CFT when applied to AdS(3). We also compare the entropy computed in AdS(5)XS(5) with that of the free N=4 super Yang-Mills theory.

  15. Computing a Non-trivial Lower Bound on the Joint Entropy between Two Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S.

    In this report, a non-trivial lower bound on the joint entropy of two non-identical images is developed, which is greater than the individual entropies of the images. The lower bound is the least joint entropy possible among all pairs of images that have the same histograms as those of the given images. New algorithms are presented to compute the joint entropy lower bound with a computation time proportional to S log S where S is the number of histogram bins of the images. This is faster than the traditional methods of computing the exact joint entropy with a computation timemore » that is quadratic in S .« less

  16. Discrete-time entropy formulation of optimal and adaptive control problems

    NASA Technical Reports Server (NTRS)

    Tsai, Yweting A.; Casiello, Francisco A.; Loparo, Kenneth A.

    1992-01-01

    The discrete-time version of the entropy formulation of optimal control of problems developed by G. N. Saridis (1988) is discussed. Given a dynamical system, the uncertainty in the selection of the control is characterized by the probability distribution (density) function which maximizes the total entropy. The equivalence between the optimal control problem and the optimal entropy problem is established, and the total entropy is decomposed into a term associated with the certainty equivalent control law, the entropy of estimation, and the so-called equivocation of the active transmission of information from the controller to the estimator. This provides a useful framework for studying the certainty equivalent and adaptive control laws.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.

    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xi

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Re´nyi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometricmore » prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Re´nyi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Re´nyi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity.« less

  19. The increase of the functional entropy of the human brain with age.

    PubMed

    Yao, Y; Lu, W L; Xu, B; Li, C B; Lin, C P; Waxman, D; Feng, J F

    2013-10-09

    We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy.

  20. Increased resting-state brain entropy in Alzheimer's disease.

    PubMed

    Xue, Shao-Wei; Guo, Yonghu

    2018-03-07

    Entropy analysis of resting-state functional MRI (R-fMRI) is a novel approach to characterize brain temporal dynamics and facilitates the identification of abnormal brain activity caused by several disease conditions. However, Alzheimer's disease (AD)-related brain entropy mapping based on R-fMRI has not been assessed. Here, we measured the sample entropy and voxel-wise connectivity of the network degree centrality (DC) of the intrinsic brain activity acquired by R-fMRI in 26 patients with AD and 26 healthy controls. Compared with the controls, AD patients showed increased entropy in the middle temporal gyrus and the precentral gyrus and also showed decreased DC in the precuneus. Moreover, the magnitude of the negative correlation between local brain activity (entropy) and network connectivity (DC) was increased in AD patients in comparison with healthy controls. These findings provide new evidence on AD-related brain entropy alterations.

  1. Quantum chaos: An entropy approach

    NASA Astrophysics Data System (ADS)

    Sl/omczyński, Wojciech; Życzkowski, Karol

    1994-11-01

    A new definition of the entropy of a given dynamical system and of an instrument describing the measurement process is proposed within the operational approach to quantum mechanics. It generalizes other definitions of entropy, in both the classical and quantum cases. The Kolmogorov-Sinai (KS) entropy is obtained for a classical system and the sharp measurement instrument. For a quantum system and a coherent states instrument, a new quantity, coherent states entropy, is defined. It may be used to measure chaos in quantum mechanics. The following correspondence principle is proved: the upper limit of the coherent states entropy of a quantum map as ℏ→0 is less than or equal to the KS-entropy of the corresponding classical map. ``Chaos umpire sits, And by decision more imbroils the fray By which he reigns: next him high arbiter Chance governs all.'' John Milton, Paradise Lost, Book II

  2. Entanglement entropy of ABJM theory and entropy of topological black hole

    NASA Astrophysics Data System (ADS)

    Nian, Jun; Zhang, Xinyu

    2017-07-01

    In this paper we discuss the supersymmetric localization of the 4D N = 2 offshell gauged supergravity on the background of the AdS4 neutral topological black hole, which is the gravity dual of the ABJM theory defined on the boundary {S}^1× H^2 . We compute the large- N expansion of the supergravity partition function. The result gives the black hole entropy with the logarithmic correction, which matches the previous result of the entanglement entropy of the ABJM theory up to some stringy effects. Our result is consistent with the previous on-shell one-loop computation of the logarithmic correction to black hole entropy. It provides an explicit example of the identification of the entanglement entropy of the boundary conformal field theory with the bulk black hole entropy beyond the leading order given by the classical Bekenstein-Hawking formula, which consequently tests the AdS/CFT correspondence at the subleading order.

  3. Nonequilibrium Entropy in a Shock

    DOE PAGES

    Margolin, Len G.

    2017-07-19

    In a classic paper, Morduchow and Libby use an analytic solution for the profile of a Navier–Stokes shock to show that the equilibrium thermodynamic entropy has a maximum inside the shock. There is no general nonequilibrium thermodynamic formulation of entropy; the extension of equilibrium theory to nonequililbrium processes is usually made through the assumption of local thermodynamic equilibrium (LTE). However, gas kinetic theory provides a perfectly general formulation of a nonequilibrium entropy in terms of the probability distribution function (PDF) solutions of the Boltzmann equation. In this paper I will evaluate the Boltzmann entropy for the PDF that underlies themore » Navier–Stokes equations and also for the PDF of the Mott–Smith shock solution. I will show that both monotonically increase in the shock. As a result, I will propose a new nonequilibrium thermodynamic entropy and show that it is also monotone and closely approximates the Boltzmann entropy.« less

  4. Exploring stability of entropy analysis for signal with different trends

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Li, Jin; Wang, Jun

    2017-03-01

    Considering the effects of environment disturbances and instrument systems, the actual detecting signals always are carrying different trends, which result in that it is difficult to accurately catch signals complexity. So choosing steady and effective analysis methods is very important. In this paper, we applied entropy measures-the base-scale entropy and approximate entropy to analyze signal complexity, and studied the effect of trends on the ideal signal and the heart rate variability (HRV) signals, that is, linear, periodic, and power-law trends which are likely to occur in actual signals. The results show that approximate entropy is unsteady when we embed different trends into the signals, so it is not suitable to analyze signal with trends. However, the base-scale entropy has preferable stability and accuracy for signal with different trends. So the base-scale entropy is an effective method to analyze the actual signals.

  5. The Increase of the Functional Entropy of the Human Brain with Age

    PubMed Central

    Yao, Y.; Lu, W. L.; Xu, B.; Li, C. B.; Lin, C. P.; Waxman, D.; Feng, J. F.

    2013-01-01

    We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy. PMID:24103922

  6. Double strand breaks may be a missing link between entropy and aging.

    PubMed

    Lenart, Peter; Bienertová-Vašků, Julie

    2016-07-01

    It has been previously suggested that an increase in entropy production leads to aging. However, the mechanisms linking increased entropy production in living mass to aging are currently unclear. Even though entropy cannot be easily associated with any specific molecular damage, the increase of entropy in structural mass may be connected with heat stress, which is known to generate double strand breaks. Double strand breaks, which are in turn known to play an important role in process of aging, are thus connected to both aging and an increase of entropy. In view of these associations, we propose a new model where the increase of entropy leads to the formation of double strand breaks, resulting in an aging phenotype. This not only offers a new perspective on aging research and facilitates experimental validation, but could also serve as a useful explanatory tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A Critical Look at Entropy-Based Gene-Gene Interaction Measures.

    PubMed

    Lee, Woojoo; Sjölander, Arvid; Pawitan, Yudi

    2016-07-01

    Several entropy-based measures for detecting gene-gene interaction have been proposed recently. It has been argued that the entropy-based measures are preferred because entropy can better capture the nonlinear relationships between genotypes and traits, so they can be useful to detect gene-gene interactions for complex diseases. These suggested measures look reasonable at intuitive level, but so far there has been no detailed characterization of the interactions captured by them. Here we study analytically the properties of some entropy-based measures for detecting gene-gene interactions in detail. The relationship between interactions captured by the entropy-based measures and those of logistic regression models is clarified. In general we find that the entropy-based measures can suffer from a lack of specificity in terms of target parameters, i.e., they can detect uninteresting signals as interactions. Numerical studies are carried out to confirm theoretical findings. © 2016 WILEY PERIODICALS, INC.

  8. Microscopic insights into the NMR relaxation based protein conformational entropy meter

    PubMed Central

    Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua

    2013-01-01

    Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504

  9. Nonequilibrium Entropy in a Shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolin, Len G.

    In a classic paper, Morduchow and Libby use an analytic solution for the profile of a Navier–Stokes shock to show that the equilibrium thermodynamic entropy has a maximum inside the shock. There is no general nonequilibrium thermodynamic formulation of entropy; the extension of equilibrium theory to nonequililbrium processes is usually made through the assumption of local thermodynamic equilibrium (LTE). However, gas kinetic theory provides a perfectly general formulation of a nonequilibrium entropy in terms of the probability distribution function (PDF) solutions of the Boltzmann equation. In this paper I will evaluate the Boltzmann entropy for the PDF that underlies themore » Navier–Stokes equations and also for the PDF of the Mott–Smith shock solution. I will show that both monotonically increase in the shock. As a result, I will propose a new nonequilibrium thermodynamic entropy and show that it is also monotone and closely approximates the Boltzmann entropy.« less

  10. Geometric entropy and edge modes of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Wall, Aron C.

    2016-11-01

    We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading-order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a long-standing puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.

  11. Secure self-calibrating quantum random-bit generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorentino, M.; Santori, C.; Spillane, S. M.

    2007-03-15

    Random-bit generators (RBGs) are key components of a variety of information processing applications ranging from simulations to cryptography. In particular, cryptographic systems require 'strong' RBGs that produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physical systems and therefore are expected to exhibit high entropy, but in current implementations their exact entropy content is unknown. Here we report a quantum random-bit generator (QRBG) that harvests entropy by measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum tomographicmore » method to measure a lower bound on the 'min-entropy' of the system, and we employ this value to distill a truly random-bit sequence. This approach is secure: even if an attacker takes control of the source of optical states, a secure random sequence can be distilled.« less

  12. Entropy of the Bose-Einstein-condensate ground state: Correlation versus ground-state entropy

    NASA Astrophysics Data System (ADS)

    Kim, Moochan B.; Svidzinsky, Anatoly; Agarwal, Girish S.; Scully, Marlan O.

    2018-01-01

    Calculation of the entropy of an ideal Bose-Einstein condensate (BEC) in a three-dimensional trap reveals unusual, previously unrecognized, features of the canonical ensemble. It is found that, for any temperature, the entropy of the Bose gas is equal to the entropy of the excited particles although the entropy of the particles in the ground state is nonzero. We explain this by considering the correlations between the ground-state particles and particles in the excited states. These correlations lead to a correlation entropy which is exactly equal to the contribution from the ground state. The correlations themselves arise from the fact that we have a fixed number of particles obeying quantum statistics. We present results for correlation functions between the ground and excited states in a Bose gas, so as to clarify the role of fluctuations in the system. We also report the sub-Poissonian nature of the ground-state fluctuations.

  13. Computing entropy change in synoptic-scale system

    NASA Astrophysics Data System (ADS)

    Wu, Y. P.; Hu, Y. Y.; Cao, H. X.; Fu, C. F.; Feng, G. L.

    2018-03-01

    Thermodynamic entropy is of great importance in the atmospheric physics and chemistry process, because it is a non-conserved state function which making a system's tendency towards spontaneous change. But how the entropy forces a synoptic-scale system is still not well known. In this paper, we analyzed the entropy change in atmosphere system, by calculating several examples of extra tropical cyclones over the Yellow River and its adjacent area in summer. The results show that a strong negative entropy flux appears over the north of a stationary front and the thresholds Fe S ≤ - 280 and ∂s / ∂t ≤ - 50 are satisfied. At the same time, the change of total entropy is smaller than zero. Therefore the cyclone developed quickly and daily precipitation reached 371 mm, which is heaviest rain over the Yellows River area in summer. We suggest the dynamical entropy should be developed to improve the forecasting technique of heavy rainfall event in synoptic-scale.

  14. Psychological Entropy: A Framework for Understanding Uncertainty-Related Anxiety

    ERIC Educational Resources Information Center

    Hirsh, Jacob B.; Mar, Raymond A.; Peterson, Jordan B.

    2012-01-01

    Entropy, a concept derived from thermodynamics and information theory, describes the amount of uncertainty and disorder within a system. Self-organizing systems engage in a continual dialogue with the environment and must adapt themselves to changing circumstances to keep internal entropy at a manageable level. We propose the entropy model of…

  15. Discovery and Entropy in the Revision of Technical Reports.

    ERIC Educational Resources Information Center

    Marder, Daniel

    A useful device in revising technical reports is the metaphor of entropy, which refers to the amount of disorder that is present in a system. Applied to communication theory, high entropy would correspond to increased amounts of unfamiliar or useless information in a text. Since entropy in rhetorical systems increases with the unfamiliarity of…

  16. Tachyon condensation and black hole entropy.

    PubMed

    Dabholkar, Atish

    2002-03-04

    String propagation on a cone with deficit angle 2pi(1-1 / N) is considered for the purpose of computing the entropy of a large mass black hole. The entropy computed using the recent results on condensation of twisted-sector tachyons in this theory is found to be in precise agreement with the Bekenstein-Hawking entropy.

  17. Content Based Image Retrieval and Information Theory: A General Approach.

    ERIC Educational Resources Information Center

    Zachary, John; Iyengar, S. S.; Barhen, Jacob

    2001-01-01

    Proposes an alternative real valued representation of color based on the information theoretic concept of entropy. A theoretical presentation of image entropy is accompanied by a practical description of the merits and limitations of image entropy compared to color histograms. Results suggest that image entropy is a promising approach to image…

  18. Determining Dynamical Path Distributions usingMaximum Relative Entropy

    DTIC Science & Technology

    2015-05-31

    entropy to a one-dimensional continuum labeled by a parameter η. The resulting η-entropies are equivalent to those proposed by Renyi [12] or by Tsallis [13...1995). [12] A. Renyi , “On measures of entropy and information,”Proc. 4th Berkeley Simposium on Mathematical Statistics and Probability, Vol 1, p. 547-461

  19. An Accessible Approach to Understanding Entropy and Change

    ERIC Educational Resources Information Center

    Johnson, Philip

    2018-01-01

    This article challenges the notion that entropy is something to be avoided. A line of argument is presented that is accessible to those not having specialist knowledge and that offers a new perspective to those more familiar with the concept. It shows that temperature is better understood by addressing entropy. Entropy change diagrams are…

  20. Entropy for quantum pure states and quantum H theorem

    NASA Astrophysics Data System (ADS)

    Han, Xizhi; Wu, Biao

    2015-06-01

    We construct a complete set of Wannier functions that are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution in quantum phase space, we define an entropy for a quantum pure state. We prove an inequality regarding the long-time behavior of our entropy's fluctuation. For a typical initial state, this inequality indicates that our entropy can relax dynamically to a maximized value and stay there most of time with small fluctuations. This result echoes the quantum H theorem proved by von Neumann [Zeitschrift für Physik 57, 30 (1929), 10.1007/BF01339852]. Our entropy is different from the standard von Neumann entropy, which is always zero for quantum pure states. According to our definition, a system always has bigger entropy than its subsystem even when the system is described by a pure state. As the construction of the Wannier basis can be implemented numerically, the dynamical evolution of our entropy is illustrated with an example.

  1. A new one-dimensional radiative equilibrium model for investigating atmospheric radiation entropy flux.

    PubMed

    Wu, Wei; Liu, Yangang

    2010-05-12

    A new one-dimensional radiative equilibrium model is built to analytically evaluate the vertical profile of the Earth's atmospheric radiation entropy flux under the assumption that atmospheric longwave radiation emission behaves as a greybody and shortwave radiation as a diluted blackbody. Results show that both the atmospheric shortwave and net longwave radiation entropy fluxes increase with altitude, and the latter is about one order in magnitude greater than the former. The vertical profile of the atmospheric net radiation entropy flux follows approximately that of the atmospheric net longwave radiation entropy flux. Sensitivity study further reveals that a 'darker' atmosphere with a larger overall atmospheric longwave optical depth exhibits a smaller net radiation entropy flux at all altitudes, suggesting an intrinsic connection between the atmospheric net radiation entropy flux and the overall atmospheric longwave optical depth. These results indicate that the overall strength of the atmospheric irreversible processes at all altitudes as determined by the corresponding atmospheric net entropy flux is closely related to the amount of greenhouse gases in the atmosphere.

  2. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system.

    PubMed

    Min, Jianliang; Wang, Ping; Hu, Jianfeng

    2017-01-01

    Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1-2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver.

  3. Large Eddy Simulation of Entropy Generation in a Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Sheikhi, Reza H.; Safari, Mehdi; Hadi, Fatemeh

    2013-11-01

    Entropy transport equation is considered in large eddy simulation (LES) of turbulent flows. The irreversible entropy generation in this equation provides a more general description of subgrid scale (SGS) dissipation due to heat conduction, mass diffusion and viscosity effects. A new methodology is developed, termed the entropy filtered density function (En-FDF), to account for all individual entropy generation effects in turbulent flows. The En-FDF represents the joint probability density function of entropy, frequency, velocity and scalar fields within the SGS. An exact transport equation is developed for the En-FDF, which is modeled by a system of stochastic differential equations, incorporating the second law of thermodynamics. The modeled En-FDF transport equation is solved by a Lagrangian Monte Carlo method. The methodology is employed to simulate a turbulent mixing layer involving transport of passive scalars and entropy. Various modes of entropy generation are obtained from the En-FDF and analyzed. Predictions are assessed against data generated by direct numerical simulation (DNS). The En-FDF predictions are in good agreements with the DNS data.

  4. Investigation of FeNiCrWMn - a new high entropy alloy

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Bălţătescu, O.; Florea, R. M.; Carcea, I.

    2015-11-01

    The term of high entropy alloys started from the analysis of multicomponent alloys, which were produced at an experimental level since 1995 by developing a new concept related to the development of metallic materials. Recent developments in the field of high-entropy alloys have revealed that they have versatile properties like: ductility, toughness, hardness and corrosion resistance [1]. Up until now, it has been demonstrated that the explored this alloys are feasible to be synthesized, processed and analyzed contrary to the misunderstanding based on traditional experiences. Moreover, there are many opportunities in this field for academic studies and industrial applications [1, 2]. As the combinations of composition and process for producing high entropy alloys are numerous and each high entropy alloy has its own microstructure and properties to be identified and understood, the research work is truly limitless. The novelty of these alloys consists of chemical composition. These alloys have been named high entropy alloys due to the atomic scale mixing entropies higher than traditional alloys. In this paper, I will present the microscopy and the mechanical properties of high entropy alloy FeNiCrWMn.

  5. New Fault Recognition Method for Rotary Machinery Based on Information Entropy and a Probabilistic Neural Network.

    PubMed

    Jiang, Quansheng; Shen, Yehu; Li, Hua; Xu, Fengyu

    2018-01-24

    Feature recognition and fault diagnosis plays an important role in equipment safety and stable operation of rotating machinery. In order to cope with the complexity problem of the vibration signal of rotating machinery, a feature fusion model based on information entropy and probabilistic neural network is proposed in this paper. The new method first uses information entropy theory to extract three kinds of characteristics entropy in vibration signals, namely, singular spectrum entropy, power spectrum entropy, and approximate entropy. Then the feature fusion model is constructed to classify and diagnose the fault signals. The proposed approach can combine comprehensive information from different aspects and is more sensitive to the fault features. The experimental results on simulated fault signals verified better performances of our proposed approach. In real two-span rotor data, the fault detection accuracy of the new method is more than 10% higher compared with the methods using three kinds of information entropy separately. The new approach is proved to be an effective fault recognition method for rotating machinery.

  6. Fusion information entropy method of rolling bearing fault diagnosis based on n-dimensional characteristic parameter distance

    NASA Astrophysics Data System (ADS)

    Ai, Yan-Ting; Guan, Jiao-Yue; Fei, Cheng-Wei; Tian, Jing; Zhang, Feng-Ling

    2017-05-01

    To monitor rolling bearing operating status with casings in real time efficiently and accurately, a fusion method based on n-dimensional characteristic parameters distance (n-DCPD) was proposed for rolling bearing fault diagnosis with two types of signals including vibration signal and acoustic emission signals. The n-DCPD was investigated based on four information entropies (singular spectrum entropy in time domain, power spectrum entropy in frequency domain, wavelet space characteristic spectrum entropy and wavelet energy spectrum entropy in time-frequency domain) and the basic thought of fusion information entropy fault diagnosis method with n-DCPD was given. Through rotor simulation test rig, the vibration and acoustic emission signals of six rolling bearing faults (ball fault, inner race fault, outer race fault, inner-ball faults, inner-outer faults and normal) are collected under different operation conditions with the emphasis on the rotation speed from 800 rpm to 2000 rpm. In the light of the proposed fusion information entropy method with n-DCPD, the diagnosis of rolling bearing faults was completed. The fault diagnosis results show that the fusion entropy method holds high precision in the recognition of rolling bearing faults. The efforts of this study provide a novel and useful methodology for the fault diagnosis of an aeroengine rolling bearing.

  7. Entropy, complexity, and Markov diagrams for random walk cancer models

    PubMed Central

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-01-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential. PMID:25523357

  8. Entropy Based Genetic Association Tests and Gene-Gene Interaction Tests

    PubMed Central

    de Andrade, Mariza; Wang, Xin

    2011-01-01

    In the past few years, several entropy-based tests have been proposed for testing either single SNP association or gene-gene interaction. These tests are mainly based on Shannon entropy and have higher statistical power when compared to standard χ2 tests. In this paper, we extend some of these tests using a more generalized entropy definition, Rényi entropy, where Shannon entropy is a special case of order 1. The order λ (>0) of Rényi entropy weights the events (genotype/haplotype) according to their probabilities (frequencies). Higher λ places more emphasis on higher probability events while smaller λ (close to 0) tends to assign weights more equally. Thus, by properly choosing the λ, one can potentially increase the power of the tests or the p-value level of significance. We conducted simulation as well as real data analyses to assess the impact of the order λ and the performance of these generalized tests. The results showed that for dominant model the order 2 test was more powerful and for multiplicative model the order 1 or 2 had similar power. The analyses indicate that the choice of λ depends on the underlying genetic model and Shannon entropy is not necessarily the most powerful entropy measure for constructing genetic association or interaction tests. PMID:23089811

  9. Correlation as a Determinant of Configurational Entropy in Supramolecular and Protein Systems

    PubMed Central

    2015-01-01

    For biomolecules in solution, changes in configurational entropy are thought to contribute substantially to the free energies of processes like binding and conformational change. In principle, the configurational entropy can be strongly affected by pairwise and higher-order correlations among conformational degrees of freedom. However, the literature offers mixed perspectives regarding the contributions that changes in correlations make to changes in configurational entropy for such processes. Here we take advantage of powerful techniques for simulation and entropy analysis to carry out rigorous in silico studies of correlation in binding and conformational changes. In particular, we apply information-theoretic expansions of the configurational entropy to well-sampled molecular dynamics simulations of a model host–guest system and the protein bovine pancreatic trypsin inhibitor. The results bear on the interpretation of NMR data, as they indicate that changes in correlation are important determinants of entropy changes for biologically relevant processes and that changes in correlation may either balance or reinforce changes in first-order entropy. The results also highlight the importance of main-chain torsions as contributors to changes in protein configurational entropy. As simulation techniques grow in power, the mathematical techniques used here will offer new opportunities to answer challenging questions about complex molecular systems. PMID:24702693

  10. On the Consequences of Clausius-Duhem Inequality for Electrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Reis, Martina; Bassi, Adalberto Bono Maurizio Sacchi

    2014-03-01

    Based on the fundamentals of thermo-statics, non-equilibrium thermodynamics theories frequently employ an entropy inequality, where the entropy flux is collinear to the heat flux, and the entropy supply is proportional to the energy supply. Although this assumption is suitable for many material bodies, e.g. heat-conducting viscous fluids, there is a class of materials for which these assumptions are not valid. By assuming that the entropy flux and the entropy supply are constitutive quantities, in this work it is demonstrated that the entropy flux for a reacting ionic mixture of non-volatile solutes presents a non-collinear term due to the diffusive fluxes. The consequences of the collinearity between the entropy flux and the heat flux, as well as the proportionality of the entropy supply and the energy supply on the stability of chemical systems are also investigated. Furthermore, by considering an electrolyte solution of non-volatile solutes in phase equilibrium with water vapor, and the constitutive nature of the entropy flux, the stability of a vapor-electrolyte solution interface is studied. Despite this work only deals with electrolyte solutions, the results presented can be easily extended to more complex chemical reacting systems. The first author acknowledges financial support from CNPq (National Counsel of Technological and Scientific Development).

  11. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations

    PubMed Central

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic. PMID:26177039

  12. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic.

  13. Financial time series analysis based on effective phase transfer entropy

    NASA Astrophysics Data System (ADS)

    Yang, Pengbo; Shang, Pengjian; Lin, Aijing

    2017-02-01

    Transfer entropy is a powerful technique which is able to quantify the impact of one dynamic system on another system. In this paper, we propose the effective phase transfer entropy method based on the transfer entropy method. We use simulated data to test the performance of this method, and the experimental results confirm that the proposed approach is capable of detecting the information transfer between the systems. We also explore the relationship between effective phase transfer entropy and some variables, such as data size, coupling strength and noise. The effective phase transfer entropy is positively correlated with the data size and the coupling strength. Even in the presence of a large amount of noise, it can detect the information transfer between systems, and it is very robust to noise. Moreover, this measure is indeed able to accurately estimate the information flow between systems compared with phase transfer entropy. In order to reflect the application of this method in practice, we apply this method to financial time series and gain new insight into the interactions between systems. It is demonstrated that the effective phase transfer entropy can be used to detect some economic fluctuations in the financial market. To summarize, the effective phase transfer entropy method is a very efficient tool to estimate the information flow between systems.

  14. Statistics of Infima and Stopping Times of Entropy Production and Applications to Active Molecular Processes

    NASA Astrophysics Data System (ADS)

    Neri, Izaak; Roldán, Édgar; Jülicher, Frank

    2017-01-01

    We study the statistics of infima, stopping times, and passage probabilities of entropy production in nonequilibrium steady states, and we show that they are universal. We consider two examples of stopping times: first-passage times of entropy production and waiting times of stochastic processes, which are the times when a system reaches a given state for the first time. Our main results are as follows: (i) The distribution of the global infimum of entropy production is exponential with mean equal to minus Boltzmann's constant; (ii) we find exact expressions for the passage probabilities of entropy production; (iii) we derive a fluctuation theorem for stopping-time distributions of entropy production. These results have interesting implications for stochastic processes that can be discussed in simple colloidal systems and in active molecular processes. In particular, we show that the timing and statistics of discrete chemical transitions of molecular processes, such as the steps of molecular motors, are governed by the statistics of entropy production. We also show that the extreme-value statistics of active molecular processes are governed by entropy production; for example, we derive a relation between the maximal excursion of a molecular motor against the direction of an external force and the infimum of the corresponding entropy-production fluctuations. Using this relation, we make predictions for the distribution of the maximum backtrack depth of RNA polymerases, which follow from our universal results for entropy-production infima.

  15. Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories

    NASA Astrophysics Data System (ADS)

    Ni, Yanshuo; Turitsyn, Konstantin; Baoyin, Hexi; Junfeng, Li

    2018-06-01

    This paper presents a method for measuring the periodicity of quasi-periodic trajectories by applying discrete Fourier transform (DFT) to the trajectories and analyzing the frequency domain within the concept of entropy. Having introduced the concept of entropy, analytical derivation and numerical results indicate that entropies increase as a logarithmic function of time. Periodic trajectories typically have higher entropies, and trajectories with higher entropies mean the periodicities of the motions are stronger. Theoretical differences between two trajectories expressed as summations of trigonometric functions are also derived analytically. Trajectories in the Henon-Heiles system and the circular restricted three-body problem (CRTBP) are analyzed with the indicator entropy and compared with orthogonal fast Lyapunov indicator (OFLI). The results show that entropy is a better tool for discriminating periodicity in quasiperiodic trajectories than OFLI and can detect periodicity while excluding the spirals that are judged as periodic cases by OFLI. Finally, trajectories in the vicinity of 243 Ida and 6489 Golevka are considered as examples, and the numerical results verify these conclusions. Some trajectories near asteroids look irregular, but their higher entropy values as analyzed by this method serve as evidence of frequency regularity in three directions. Moreover, these results indicate that applying DFT to the trajectories in the vicinity of irregular small bodies and calculating their entropy in the frequency domain provides a useful quantitative analysis method for evaluating orderliness in the periodicity of quasi-periodic trajectories within a given time interval.

  16. Brain entropy and human intelligence: A resting-state fMRI study

    PubMed Central

    Calderone, Daniel; Morales, Leah J.

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427

  17. Brain entropy and human intelligence: A resting-state fMRI study.

    PubMed

    Saxe, Glenn N; Calderone, Daniel; Morales, Leah J

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.

  18. Connecting complexity with spectral entropy using the Laplace transformed solution to the fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Liang, Yingjie; Chen, Wen; Magin, Richard L.

    2016-07-01

    Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (α and β) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing α and β, and that the normal or Gaussian case with α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration.

  19. Viscoelasticity and pattern formations in stock market indices

    NASA Astrophysics Data System (ADS)

    Gündüz, Güngör; Gündüz, Aydın

    2017-06-01

    The viscoelastic and thermodynamic properties of four stock indices, namely, DJI, Nasdaq-100, Nasdaq-Composite, and S&P were analyzed for a period of 30 years from 1986 to 2015. The asset values (or index) can be placed into Aristotelian `potentiality-actuality' framework by using scattering diagram. Thus, the index values can be transformed into vectorial forms in a scattering diagram, and each vector can be split into its horizontal and vertical components. According to viscoelastic theory, the horizontal component represents the conservative, and the vertical component represents the dissipative behavior. The related storage and the loss modulus of these components are determined and then work-like and heat-like terms are calculated. It is found that the change of storage and loss modulus with Wiener noise (W) exhibit interesting patterns. The loss modulus shows a featherlike pattern, whereas the storage modulus shows figurative man-like pattern. These patterns are formed due to branchings in the system and imply that stock indices do have a kind of `fine-order' which can be detected when the change of modulus values are plotted with respect to Wiener noise. In theoretical calculations it is shown that the tips of the featherlike patterns stay at negative W values, but get closer to W = 0 as the drift in the system increases. The shift of the tip point from W = 0 indicates that the price change involves higher number of positive Wiener number corrections than the negative Wiener. The work-like and heat-like terms also exhibit patterns but with different appearance than modulus patterns. The decisional changes of people are reflected as the arrows in the scattering diagram and the propagation path of these vectors resemble the path of crack propagation. The distribution of the angle between two subsequent vectors shows a peak at 90°, indicating that the path mostly obeys the crack path occurring in hard objects. Entropy mimics the Wiener noise in the evolution of stock index value although they describe different properties. Entropy fluctuates at fast increase and fast fall of index value, and fluctuation becomes very high at minimum values of the index. The curvature of a circle passing from the two ends of the vector and the point of intersection of its horizontal and vertical components designates the reactivity involved in the market and the radius of circle behaves somehow similar to entropy and Wiener noise. The change of entropy and Wiener noise with radius exhibits patterns with four branches.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattari, Sulimon, E-mail: ssattari2@ucmerced.edu; Chen, Qianting, E-mail: qchen2@ucmerced.edu; Mitchell, Kevin A., E-mail: kmitchell@ucmerced.edu

    Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or “ghost,” rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding ofmore » ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.« less

  1. Entropy of uremia and dialysis technology.

    PubMed

    Ronco, Claudio

    2013-01-01

    The second law of thermodynamics applies with local exceptions to patient history and therapy interventions. Living things preserve their low level of entropy throughout time because they receive energy from their surroundings in the form of food. They gain their order at the expense of disordering the nutrients they consume. Death is the thermodynamically favored state: it represents a large increase in entropy as molecular structure yields to chaos. The kidney is an organ dissipating large amounts of energy to maintain the level of entropy of the organism as low as possible. Diseases, and in particular uremia, represent conditions of rapid increase in entropy. Therapeutic strategies are oriented towards a reduction in entropy or at least a decrease in the speed of entropy increase. Uremia is a process accelerating the trend towards randomness and disorder (increase in entropy). Dialysis is a factor external to the patient that tends to reduce the level of entropy caused by kidney disease. Since entropy can only increase in closed systems, energy and work must be spent to limit the entropy of uremia. This energy should be adapted to the system (patient) and be specifically oriented and personalized. This includes a multidimensional effort to achieve an adequate dialysis that goes beyond small molecular weight solute clearance. It includes a biological plan for recovery of homeostasis and a strategy towards long-term rehabilitation of the patient. Such objectives can be achieved with a combination of technology and innovation to answer specific questions that are still present after 60 years of dialysis history. This change in the individual bioentropy may represent a local exception to natural trends as the patient could be considered an isolated universe responding to the classic laws of thermodynamics. Copyright © 2013 S. Karger AG, Basel.

  2. A retrospective analysis of the effect of blood transfusion on cerebral oximetry entropy and acute kidney injury.

    PubMed

    Engoren, Milo; Brown, Russell R; Dubovoy, Anna

    2017-01-01

    Acute anemia is associated with both cerebral dysfunction and acute kidney injury and is often treated with red blood cell transfusion. We sought to determine if blood transfusion changed the cerebral oximetry entropy, a measure of the complexity or irregularity of the oximetry values, and if this change was associated with subsequent acute kidney injury. This was a retrospective, case-control study of patients undergoing cardiac surgery with cardiopulmonary bypass at a tertiary care hospital, comparing those who received a red blood cell transfusion to those who did not. Acute kidney injury was defined as a perioperative increase in serum creatinine by ⩾26.4 μmol/L or by ⩾50% increase. Entropy was measured using approximate entropy, sample entropy, forbidden word entropy and basescale4 entropy in 500-point sets. Forty-four transfused patients were matched to 88 randomly selected non-transfused patients. All measures of entropy had small changes in the transfused group, but increased in the non-transfused group (p<0.05, for all comparisons). Thirty-five of 132 patients (27%) suffered acute kidney injury. Based on preoperative factors, patients who suffered kidney injury were similar to those who did not, including baseline cerebral oximetry levels. After analysis with hierarchical logistic regression, the change in basescale4 entropy (odds ratio = 1.609, 95% confidence interval = 1.057-2.450, p = 0.027) and the interaction between basescale entropy and transfusion were significantly associated with subsequent development of acute kidney injury. The transfusion of red blood cells was associated with a smaller rise in entropy values compared to non-transfused patients, suggesting a change in the regulation of cerebral oxygenation, and these changes in cerebral oxygenation are also associated with acute kidney injury.

  3. Noise and Complexity in Human Postural Control: Interpreting the Different Estimations of Entropy

    PubMed Central

    Rhea, Christopher K.; Silver, Tobin A.; Hong, S. Lee; Ryu, Joong Hyun; Studenka, Breanna E.; Hughes, Charmayne M. L.; Haddad, Jeffrey M.

    2011-01-01

    Background Over the last two decades, various measures of entropy have been used to examine the complexity of human postural control. In general, entropy measures provide information regarding the health, stability and adaptability of the postural system that is not captured when using more traditional analytical techniques. The purpose of this study was to examine how noise, sampling frequency and time series length influence various measures of entropy when applied to human center of pressure (CoP) data, as well as in synthetic signals with known properties. Such a comparison is necessary to interpret data between and within studies that use different entropy measures, equipment, sampling frequencies or data collection durations. Methods and Findings The complexity of synthetic signals with known properties and standing CoP data was calculated using Approximate Entropy (ApEn), Sample Entropy (SampEn) and Recurrence Quantification Analysis Entropy (RQAEn). All signals were examined at varying sampling frequencies and with varying amounts of added noise. Additionally, an increment time series of the original CoP data was examined to remove long-range correlations. Of the three measures examined, ApEn was the least robust to sampling frequency and noise manipulations. Additionally, increased noise led to an increase in SampEn, but a decrease in RQAEn. Thus, noise can yield inconsistent results between the various entropy measures. Finally, the differences between the entropy measures were minimized in the increment CoP data, suggesting that long-range correlations should be removed from CoP data prior to calculating entropy. Conclusions The various algorithms typically used to quantify the complexity (entropy) of CoP may yield very different results, particularly when sampling frequency and noise are different. The results of this study are discussed within the context of the neural noise and loss of complexity hypotheses. PMID:21437281

  4. An entropy-based analysis of lane changing behavior: An interactive approach.

    PubMed

    Kosun, Caglar; Ozdemir, Serhan

    2017-05-19

    As a novelty, this article proposes the nonadditive entropy framework for the description of driver behaviors during lane changing. The authors also state that this entropy framework governs the lane changing behavior in traffic flow in accordance with the long-range vehicular interactions and traffic safety. The nonadditive entropy framework is the new generalized theory of thermostatistical mechanics. Vehicular interactions during lane changing are considered within this framework. The interactive approach for the lane changing behavior of the drivers is presented in the traffic flow scenarios presented in the article. According to the traffic flow scenarios, 4 categories of traffic flow and driver behaviors are obtained. Through the scenarios, comparative analyses of nonadditive and additive entropy domains are also provided. Two quadrants of the categories belong to the nonadditive entropy; the rest are involved in the additive entropy domain. Driving behaviors are extracted and the scenarios depict that nonadditivity matches safe driving well, whereas additivity corresponds to unsafe driving. Furthermore, the cooperative traffic system is considered in nonadditivity where the long-range interactions are present. However, the uncooperative traffic system falls into the additivity domain. The analyses also state that there would be possible traffic flow transitions among the quadrants. This article shows that lane changing behavior could be generalized as nonadditive, with additivity as a special case, based on the given traffic conditions. The nearest and close neighbor models are well within the conventional additive entropy framework. In this article, both the long-range vehicular interactions and safe driving behavior in traffic are handled in the nonadditive entropy domain. It is also inferred that the Tsallis entropy region would correspond to mandatory lane changing behavior, whereas additive and either the extensive or nonextensive entropy region would match discretionary lane changing behavior. This article states that driver behaviors would be in the nonadditive entropy domain to provide a safe traffic stream and hence with vehicle accident prevention in mind.

  5. Two aspects of black hole entropy in Lanczos-Lovelock models of gravity

    NASA Astrophysics Data System (ADS)

    Kolekar, Sanved; Kothawala, Dawood; Padmanabhan, T.

    2012-03-01

    We consider two specific approaches to evaluate the black hole entropy which are known to produce correct results in the case of Einstein’s theory and generalize them to Lanczos-Lovelock models. In the first approach (which could be called extrinsic), we use a procedure motivated by earlier work by Pretorius, Vollick, and Israel, and by Oppenheim, and evaluate the entropy of a configuration of densely packed gravitating shells on the verge of forming a black hole in Lanczos-Lovelock theories of gravity. We find that this matter entropy is not equal to (it is less than) Wald entropy, except in the case of Einstein theory, where they are equal. The matter entropy is proportional to the Wald entropy if we consider a specific mth-order Lanczos-Lovelock model, with the proportionality constant depending on the spacetime dimensions D and the order m of the Lanczos-Lovelock theory as (D-2m)/(D-2). Since the proportionality constant depends on m, the proportionality between matter entropy and Wald entropy breaks down when we consider a sum of Lanczos-Lovelock actions involving different m. In the second approach (which could be called intrinsic), we generalize a procedure, previously introduced by Padmanabhan in the context of general relativity, to study off-shell entropy of a class of metrics with horizon using a path integral method. We consider the Euclidean action of Lanczos-Lovelock models for a class of metrics off shell and interpret it as a partition function. We show that in the case of spherically symmetric metrics, one can interpret the Euclidean action as the free energy and read off both the entropy and energy of a black hole spacetime. Surprisingly enough, this leads to exactly the Wald entropy and the energy of the spacetime in Lanczos-Lovelock models obtained by other methods. We comment on possible implications of the result.

  6. Bubble Entropy: An Entropy Almost Free of Parameters.

    PubMed

    Manis, George; Aktaruzzaman, Md; Sassi, Roberto

    2017-11-01

    Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors. Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors.

  7. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression

    ERIC Educational Resources Information Center

    Weiss, Brandi A.; Dardick, William

    2016-01-01

    This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…

  8. A Maximal Entropy Distribution Derivation of the Sharma-Taneja-Mittal Entropic Form

    NASA Astrophysics Data System (ADS)

    Scarfone, Antonio M.

    In this letter we derive the distribution maximizing the Sharma-Taneja-Mittal entropy under certain constrains by using an information inequality satisfied by the Br`egman divergence associated to this entropic form. The resulting maximal entropy distribution coincides with the one derived from the calculus according to the maximal entropy principle à la Jaynes.

  9. Entropy-based goodness-of-fit test: Application to the Pareto distribution

    NASA Astrophysics Data System (ADS)

    Lequesne, Justine

    2013-08-01

    Goodness-of-fit tests based on entropy have been introduced in [13] for testing normality. The maximum entropy distribution in a class of probability distributions defined by linear constraints induces a Pythagorean equality between the Kullback-Leibler information and an entropy difference. This allows one to propose a goodness-of-fit test for maximum entropy parametric distributions which is based on the Kullback-Leibler information. We will focus on the application of the method to the Pareto distribution. The power of the proposed test is computed through Monte Carlo simulation.

  10. RED: a set of molecular descriptors based on Renyi entropy.

    PubMed

    Delgado-Soler, Laura; Toral, Raul; Tomás, M Santos; Rubio-Martinez, Jaime

    2009-11-01

    New molecular descriptors, RED (Renyi entropy descriptors), based on the generalized entropies introduced by Renyi are presented. Topological descriptors based on molecular features have proven to be useful for describing molecular profiles. Renyi entropy is used as a variability measure to contract a feature-pair distribution composing the descriptor vector. The performance of RED descriptors was tested for the analysis of different sets of molecular distances, virtual screening, and pharmacological profiling. A free parameter of the Renyi entropy has been optimized for all the considered applications.

  11. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  12. Entropy as a measure of diffusion

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, Amir; Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad

    2013-10-01

    The time variation of entropy, as an alternative to the variance, is proposed as a measure of the diffusion rate. It is shown that for linear and time-translationally invariant systems having a large-time limit for the density, at large times the entropy tends exponentially to a constant. For systems with no stationary density, at large times the entropy is logarithmic with a coefficient specifying the speed of the diffusion. As an example, the large-time behaviors of the entropy and the variance are compared for various types of fractional-derivative diffusions.

  13. Entropic inequalities for a class of quantum secret-sharing states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarvepalli, Pradeep

    It is well known that von Neumann entropy is nonmonotonic, unlike Shannon entropy (which is monotonically nondecreasing). Consequently, it is difficult to relate the entropies of the subsystems of a given quantum state. In this paper, we show that if we consider quantum secret-sharing states arising from a class of monotone span programs, then we can partially recover the monotonicity of entropy for the so-called unauthorized sets. Furthermore, we can show for these quantum states that the entropy of the authorized sets is monotonically nonincreasing.

  14. Entropy of a (1+1)-dimensional charged black hole to all orders in the Planck length

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Wan; Park, Young-Jai

    2013-02-01

    We study the statistical entropy of a scalar field on the (1+1)-dimensional Maxwell-dilaton background without an artificial cutoff by considering corrections to all orders in the Planck length obtained from a generalized uncertainty principle applied to the quantum state density. In contrast to the previous results for d ≥ 3 dimensional cases, we obtain an unadjustable entropy due to the independence of the minimal length, which plays the role of an adjustable parameter. However, this entropy is still proportional to the Bekenstein-Hawking entropy.

  15. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains

    NASA Astrophysics Data System (ADS)

    Cofré, Rodrigo; Maldonado, Cesar

    2018-01-01

    We consider the maximum entropy Markov chain inference approach to characterize the collective statistics of neuronal spike trains, focusing on the statistical properties of the inferred model. We review large deviations techniques useful in this context to describe properties of accuracy and convergence in terms of sampling size. We use these results to study the statistical fluctuation of correlations, distinguishability and irreversibility of maximum entropy Markov chains. We illustrate these applications using simple examples where the large deviation rate function is explicitly obtained for maximum entropy models of relevance in this field.

  16. High Entropy Alloys: Criteria for Stable Structure

    NASA Astrophysics Data System (ADS)

    Tripathy, Snehashish; Gupta, Gaurav; Chowdhury, Sandip Ghosh

    2018-01-01

    An effort has been made to reassess the phase predicting capability of various thermodynamic and topological parameters across a wide range of HEA systems. These parameters are valence electron concentration, atomic mismatch ( δ), electronegativity difference (Δ χ), mixing entropy (Δ S mix), entropy of fusion (Δ S f), and mismatch entropy ( S σ ). In continuation of that, two new parameters (a) Modified Darken-Gurry parameter ( A = Sσ * χ) and (b) Modified Mismatch Entropy parameter ( B = δ* Sσ) have been designed to predict the stable crystal structure that would form in the HEA systems considered for assessment.

  17. Entropy in the interior of a higher-dimensional black hole

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Zhi; Liu, Wen-Biao

    2018-07-01

    Recently Christodoulou and Rovelli brought out a sensible description for the black hole volume as the largest volume. Later the entropy related to this volume in a 4-dimensional Schwarzschild black hole was investigated, which showed that such entropy is proportional to the surface area of the black hole. We will probe into these issues in the context of higher-dimensional case. It is found that the proportion between this entropy and the Bekenstein-Hawking entropy will go down through dramatic change along with the increase of spacetime dimension.

  18. Entropy production and nonlinear Fokker-Planck equations.

    PubMed

    Casas, G A; Nobre, F D; Curado, E M F

    2012-12-01

    The entropy time rate of systems described by nonlinear Fokker-Planck equations--which are directly related to generalized entropic forms--is analyzed. Both entropy production, associated with irreversible processes, and entropy flux from the system to its surroundings are studied. Some examples of known generalized entropic forms are considered, and particularly, the flux and production of the Boltzmann-Gibbs entropy, obtained from the linear Fokker-Planck equation, are recovered as particular cases. Since nonlinear Fokker-Planck equations are appropriate for the dynamical behavior of several physical phenomena in nature, like many within the realm of complex systems, the present analysis should be applicable to irreversible processes in a large class of nonlinear systems, such as those described by Tsallis and Kaniadakis entropies.

  19. The performance evaluation model of mining project founded on the weight optimization entropy value method

    NASA Astrophysics Data System (ADS)

    Mao, Chao; Chen, Shou

    2017-01-01

    According to the traditional entropy value method still have low evaluation accuracy when evaluating the performance of mining projects, a performance evaluation model of mineral project founded on improved entropy is proposed. First establish a new weight assignment model founded on compatible matrix analysis of analytic hierarchy process (AHP) and entropy value method, when the compatibility matrix analysis to achieve consistency requirements, if it has differences between subjective weights and objective weights, moderately adjust both proportions, then on this basis, the fuzzy evaluation matrix for performance evaluation. The simulation experiments show that, compared with traditional entropy and compatible matrix analysis method, the proposed performance evaluation model of mining project based on improved entropy value method has higher accuracy assessment.

  20. Application of a Real-Time, Calculable Limiting Form of the Renyi Entropy for Molecular Imaging of Tumors

    PubMed Central

    Marsh, J. N.; Wallace, K. D.; McCarthy, J. E.; Wickerhauser, M. V.; Maurizi, B. N.; Lanza, G. M.; Wickline, S. A.; Hughes, M. S.

    2011-01-01

    Previously, we reported new methods for ultrasound signal characterization using entropy, Hf; a generalized entropy, the Renyi entropy, If(r); and a limiting form of Renyi entropy suitable for real-time calculation, If,∞. All of these quantities demonstrated significantly more sensitivity to subtle changes in scattering architecture than energy-based methods in certain settings. In this study, the real-time calculable limit of the Renyi entropy, If,∞, is applied for the imaging of angiogenic murine neovasculature in a breast cancer xenograft using a targeted contrast agent. It is shown that this approach may be used to detect reliably the accumulation of targeted nanoparticles at five minutes post-injection in this in vivo model. PMID:20679020

  1. Sharpening the second law of thermodynamics with the quantum Bayes theorem.

    PubMed

    Gharibyan, Hrant; Tegmark, Max

    2014-09-01

    We prove a generalization of the classic Groenewold-Lindblad entropy inequality, combining decoherence and the quantum Bayes theorem into a simple unified picture where decoherence increases entropy while observation decreases it. This provides a rigorous quantum-mechanical version of the second law of thermodynamics, governing how the entropy of a system (the entropy of its density matrix, partial-traced over the environment and conditioned on what is known) evolves under general decoherence and observation. The powerful tool of spectral majorization enables both simple alternative proofs of the classic Lindblad and Holevo inequalities without using strong subadditivity, and also novel inequalities for decoherence and observation that hold not only for von Neumann entropy, but also for arbitrary concave entropies.

  2. Minimum relative entropy, Bayes and Kapur

    NASA Astrophysics Data System (ADS)

    Woodbury, Allan D.

    2011-04-01

    The focus of this paper is to illustrate important philosophies on inversion and the similarly and differences between Bayesian and minimum relative entropy (MRE) methods. The development of each approach is illustrated through the general-discrete linear inverse. MRE differs from both Bayes and classical statistical methods in that knowledge of moments are used as ‘data’ rather than sample values. MRE like Bayes, presumes knowledge of a prior probability distribution and produces the posterior pdf itself. MRE attempts to produce this pdf based on the information provided by new moments. It will use moments of the prior distribution only if new data on these moments is not available. It is important to note that MRE makes a strong statement that the imposed constraints are exact and complete. In this way, MRE is maximally uncommitted with respect to unknown information. In general, since input data are known only to within a certain accuracy, it is important that any inversion method should allow for errors in the measured data. The MRE approach can accommodate such uncertainty and in new work described here, previous results are modified to include a Gaussian prior. A variety of MRE solutions are reproduced under a number of assumed moments and these include second-order central moments. Various solutions of Jacobs & van der Geest were repeated and clarified. Menke's weighted minimum length solution was shown to have a basis in information theory, and the classic least-squares estimate is shown as a solution to MRE under the conditions of more data than unknowns and where we utilize the observed data and their associated noise. An example inverse problem involving a gravity survey over a layered and faulted zone is shown. In all cases the inverse results match quite closely the actual density profile, at least in the upper portions of the profile. The similar results to Bayes presented in are a reflection of the fact that the MRE posterior pdf, and its mean are constrained not by d=Gm but by its first moment E(d=Gm), a weakened form of the constraints. If there is no error in the data then one should expect a complete agreement between Bayes and MRE and this is what is shown. Similar results are shown when second moment data is available (e.g. posterior covariance equal to zero). But dissimilar results are noted when we attempt to derive a Bayesian like result from MRE. In the various examples given in this paper, the problems look similar but are, in the final analysis, not equal. The methods of attack are different and so are the results even though we have used the linear inverse problem as a common template.

  3. Correlation and agreement between the bispectral index vs. state entropy during hypothermic cardio-pulmonary bypass.

    PubMed

    Meybohm, P; Gruenewald, M; Höcker, J; Renner, J; Graesner, J-T; Ilies, C; Scholz, J; Bein, B

    2010-02-01

    The bispectral index (BIS) and spectral entropy enable monitoring the depth of anaesthesia. Mild hypothermia has been shown to affect the ability of electroencephalography monitors to reflect the anaesthetic drug effect. The purpose of this study was to investigate the effect of hypothermia during a cardio-pulmonary bypass on the correlation and agreement between the BIS and entropy variables compared with normothermic conditions. This prospective clinical study included coronary artery bypass grafting patients (n=25) evaluating correlation and agreement (Bland-Altman analysis) between the BIS and both spectral and response entropy during a hypothermic cardio-pulmonary bypass (31-34 degrees C) compared with nomothermic conditions (34-37.5 degrees C). Anaesthesia was maintained with propofol and sufentanil and adjusted clinically, while the anaesthetist was blinded to the monitors. The BIS and entropy values decreased during cooling (P<0.05), but the decrease was more pronounced for entropy variables compared with BIS (P<0.05). The correlation coefficients (bias+/-SD; percentage error) between the BIS vs. spectral state entropy and response entropy were r(2)=0.56 (1+/-11; 42%) and r(2)=0.58 (-2+/-11; 43%) under normothermic conditions, and r(2)=0.17 (10+/-12; 77%) and r(2)=0.18 (9+/-11; 68%) under hypothermic conditions, respectively. Bias was significantly increased under hypothermic conditions (P<0.001 vs. normothermia). Acceptable agreement was observed between the BIS and entropy variables under normothermic but not under hypothermic conditions. The BIS and entropy variables may therefore not be interchangeable during a hypothermic cardio-pulmonary bypass.

  4. Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model.

    PubMed

    Ugarte, Juan P; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John

    2014-01-01

    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping.

  5. From atomic structure to excess entropy: a neutron diffraction and density functional theory study of CaO-Al2O3-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Liu, Maoyuan; Jacob, Aurélie; Schmetterer, Clemens; Masset, Patrick J.; Hennet, Louis; Fischer, Henry E.; Kozaily, Jad; Jahn, Sandro; Gray-Weale, Angus

    2016-04-01

    Calcium aluminosilicate \\text{CaO}-\\text{A}{{\\text{l}}2}{{\\text{O}}3}-\\text{Si}{{\\text{O}}2} (CAS) melts with compositions {{≤ft(\\text{CaO}-\\text{Si}{{\\text{O}}2}\\right)}x}{{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}1-x} for x  <  0.5 and {{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}x}{{≤ft(\\text{Si}{{\\text{O}}2}\\right)}1-x} for x≥slant 0.5 are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S 2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O-M-O or M-O-M bond angles and Q N environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed.

  6. Influence of hypobaric hypoxia on bispectral index and spectral entropy in volunteers.

    PubMed

    Ikeda, T; Yamada, S; Imada, T; Matsuda, H; Kazama, T

    2009-08-01

    Hypoxia has been shown to change electroencephalogram parameters including frequency and amplitude, and may thus change bispectral index (BIS) and spectral entropy values. If hypoxia per se changes BIS and spectral entropy values, BIS and spectral entropy values may not correctly reflect the depth of anaesthesia during hypoxia. The aim of this study was to examine the changes in BIS and spectral entropy values during hypobaric hypoxia in volunteers. The study was conducted in a high-altitude chamber with 11 volunteers. After the subjects breathed 100% oxygen for 15 min at the ground level, the simulated altitude increased gradually to the 7620 m (25,000 ft) level while the subjects continued to breathe oxygen. Then, the subjects discontinued to breath oxygen and breathed room air at the 7620 m level for up to 5 min until they requested to stop hypoxic exposure. Oxygen saturation (SpO2), heart rate, 95% spectral edge frequency (SEF), BIS, response entropy (RE), and state entropy (SE) of spectral entropy were recorded throughout the study period. Of the 11 subjects, seven subjects who underwent hypoxic exposure for 4 min were analysed. SpO2 decreased to 69% at the 7620 m level without oxygen. However, SEF, BIS, RE, and SE before and during hypoxic exposure were almost identical. These data suggest that hypoxia of oxygen saturation around 70% does not have a strong effect on BIS and spectral entropy.

  7. Formulating the shear stress distribution in circular open channels based on the Renyi entropy

    NASA Astrophysics Data System (ADS)

    Khozani, Zohreh Sheikh; Bonakdari, Hossein

    2018-01-01

    The principle of maximum entropy is employed to derive the shear stress distribution by maximizing the Renyi entropy subject to some constraints and by assuming that dimensionless shear stress is a random variable. A Renyi entropy-based equation can be used to model the shear stress distribution along the entire wetted perimeter of circular channels and circular channels with flat beds and deposited sediments. A wide range of experimental results for 12 hydraulic conditions with different Froude numbers (0.375 to 1.71) and flow depths (20.3 to 201.5 mm) were used to validate the derived shear stress distribution. For circular channels, model performance enhanced with increasing flow depth (mean relative error (RE) of 0.0414) and only deteriorated slightly at the greatest flow depth (RE of 0.0573). For circular channels with flat beds, the Renyi entropy model predicted the shear stress distribution well at lower sediment depth. The Renyi entropy model results were also compared with Shannon entropy model results. Both models performed well for circular channels, but for circular channels with flat beds the Renyi entropy model displayed superior performance in estimating the shear stress distribution. The Renyi entropy model was highly precise and predicted the shear stress distribution in a circular channel with RE of 0.0480 and in a circular channel with a flat bed with RE of 0.0488.

  8. An Extension to Deng's Entropy in the Open World Assumption with an Application in Sensor Data Fusion.

    PubMed

    Tang, Yongchuan; Zhou, Deyun; Chan, Felix T S

    2018-06-11

    Quantification of uncertain degree in the Dempster-Shafer evidence theory (DST) framework with belief entropy is still an open issue, even a blank field for the open world assumption. Currently, the existed uncertainty measures in the DST framework are limited to the closed world where the frame of discernment (FOD) is assumed to be complete. To address this issue, this paper focuses on extending a belief entropy to the open world by considering the uncertain information represented as the FOD and the nonzero mass function of the empty set simultaneously. An extension to Deng’s entropy in the open world assumption (EDEOW) is proposed as a generalization of the Deng’s entropy and it can be degenerated to the Deng entropy in the closed world wherever necessary. In order to test the reasonability and effectiveness of the extended belief entropy, an EDEOW-based information fusion approach is proposed and applied to sensor data fusion under uncertainty circumstance. The experimental results verify the usefulness and applicability of the extended measure as well as the modified sensor data fusion method. In addition, a few open issues still exist in the current work: the necessary properties for a belief entropy in the open world assumption, whether there exists a belief entropy that satisfies all the existed properties, and what is the most proper fusion frame for sensor data fusion under uncertainty.

  9. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Annamalai, Kalyan

    2008-06-01

    The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  10. Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations

    NASA Technical Reports Server (NTRS)

    Shiuhong, Lui; Xu, Jun

    1999-01-01

    Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.

  11. Comparing Postural Stability Entropy Analyses to Differentiate Fallers and Non-Fallers

    PubMed Central

    Fino, Peter C.; Mojdehi, Ahmad R.; Adjerid, Khaled; Habibi, Mohammad; Lockhart, Thurmon E.; Ross, Shane D.

    2015-01-01

    The health and financial cost of falls has spurred research to differentiate the characteristics of fallers and non-fallers. Postural stability has received much of the attention with recent studies exploring various measures of entropy. This study compared the discriminatory ability of several entropy methods at differentiating two paradigms in the center-of-pressure (COP) of elderly individuals: 1.) eyes open (EO) versus eyes closed (EC) and 2.) fallers (F) versus non-fallers (NF). Methods were compared using the area under the curve (AUC) of the receiver-operating characteristic (ROC) curves developed from logistic regression models. Overall, multiscale entropy (MSE) and composite multiscale entropy (CompMSE) performed the best with AUCs of 0.71 for EO/EC and 0.77 for F/NF. When methods were combined together to maximize the AUC, the entropy classifier had an AUC of for 0.91 the F/NF comparison. These results suggest researchers and clinicians attempting to create clinical tests to identify fallers should consider a combination of every entropy method when creating a classifying test. Additionally, MSE and CompMSE classifiers using polar coordinate data outperformed rectangular coordinate data, encouraging more research into the most appropriate time series for postural stability entropy analysis. PMID:26464267

  12. Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses.

    PubMed

    Meysman, Filip J R; Bruers, Stijn

    2010-05-12

    The idea that entropy production puts a constraint on ecosystem functioning is quite popular in ecological thermodynamics. Yet, until now, such claims have received little quantitative verification. Here, we examine three 'entropy production' hypotheses that have been forwarded in the past. The first states that increased entropy production serves as a fingerprint of living systems. The other two hypotheses invoke stronger constraints. The state selection hypothesis states that when a system can attain multiple steady states, the stable state will show the highest entropy production rate. The gradient response principle requires that when the thermodynamic gradient increases, the system's new stable state should always be accompanied by a higher entropy production rate. We test these three hypotheses by applying them to a set of conventional food web models. Each time, we calculate the entropy production rate associated with the stable state of the ecosystem. This analysis shows that the first hypothesis holds for all the food webs tested: the living state shows always an increased entropy production over the abiotic state. In contrast, the state selection and gradient response hypotheses break down when the food web incorporates more than one trophic level, indicating that they are not generally valid.

  13. Atomic and electronic basis for the serrations of refractory high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Wang, William Yi; Shang, Shun Li; Wang, Yi; Han, Fengbo; Darling, Kristopher A.; Wu, Yidong; Xie, Xie; Senkov, Oleg N.; Li, Jinshan; Hui, Xi Dong; Dahmen, Karin A.; Liaw, Peter K.; Kecskes, Laszlo J.; Liu, Zi-Kui

    2017-06-01

    Refractory high-entropy alloys present attractive mechanical properties, i.e., high yield strength and fracture toughness, making them potential candidates for structural applications. Understandings of atomic and electronic interactions are important to reveal the origins for the formation of high-entropy alloys and their structure-dominated mechanical properties, thus enabling the development of a predictive approach for rapidly designing advanced materials. Here, we report the atomic and electronic basis for the valence-electron-concentration-categorized principles and the observed serration behavior in high-entropy alloys and high-entropy metallic glass, including MoNbTaW, MoNbVW, MoTaVW, HfNbTiZr, and Vitreloy-1 MG (Zr41Ti14Cu12.5Ni10Be22.5). We find that the yield strengths of high-entropy alloys and high-entropy metallic glass are a power-law function of the electron-work function, which is dominated by local atomic arrangements. Further, a reliance on the bonding-charge density provides a groundbreaking insight into the nature of loosely bonded spots in materials. The presence of strongly bonded clusters and weakly bonded glue atoms imply a serrated deformation of high-entropy alloys, resulting in intermittent avalanches of defects movement.

  14. Exact solutions for the entropy production rate of several irreversible processes.

    PubMed

    Ross, John; Vlad, Marcel O

    2005-11-24

    We investigate thermal conduction described by Newton's law of cooling and by Fourier's transport equation and chemical reactions based on mass action kinetics where we detail a simple example of a reaction mechanism with one intermediate. In these cases we derive exact expressions for the entropy production rate and its differential. We show that at a stationary state the entropy production rate is an extremum if and only if the stationary state is a state of thermodynamic equilibrium. These results are exact and independent of any expansions of the entropy production rate. In the case of thermal conduction we compare our exact approach with the conventional approach based on the expansion of the entropy production rate near equilibrium. If we expand the entropy production rate in a series and keep terms up to the third order in the deviation variables and then differentiate, we find out that the entropy production rate is not an extremum at a nonequilibrium steady state. If there is a strict proportionality between fluxes and forces, then the entropy production rate is an extremum at the stationary state even if the stationary state is far away from equilibrium.

  15. A new entropy based on a group-theoretical structure

    NASA Astrophysics Data System (ADS)

    Curado, Evaldo M. F.; Tempesta, Piergiulio; Tsallis, Constantino

    2016-03-01

    A multi-parametric version of the nonadditive entropy Sq is introduced. This new entropic form, denoted by S a , b , r, possesses many interesting statistical properties, and it reduces to the entropy Sq for b = 0, a = r : = 1 - q (hence Boltzmann-Gibbs entropy SBG for b = 0, a = r → 0). The construction of the entropy S a , b , r is based on a general group-theoretical approach recently proposed by one of us, Tempesta (2016). Indeed, essentially all the properties of this new entropy are obtained as a consequence of the existence of a rational group law, which expresses the structure of S a , b , r with respect to the composition of statistically independent subsystems. Depending on the choice of the parameters, the entropy S a , b , r can be used to cover a wide range of physical situations, in which the measure of the accessible phase space increases say exponentially with the number of particles N of the system, or even stabilizes, by increasing N, to a limiting value. This paves the way to the use of this entropy in contexts where the size of the phase space does not increase as fast as the number of its constituting particles (or subsystems) increases.

  16. Towards operational interpretations of generalized entropies

    NASA Astrophysics Data System (ADS)

    Topsøe, Flemming

    2010-12-01

    The driving force behind our study has been to overcome the difficulties you encounter when you try to extend the clear and convincing operational interpretations of classical Boltzmann-Gibbs-Shannon entropy to other notions, especially to generalized entropies as proposed by Tsallis. Our approach is philosophical, based on speculations regarding the interplay between truth, belief and knowledge. The main result demonstrates that, accepting philosophically motivated assumptions, the only possible measures of entropy are those suggested by Tsallis - which, as we know, include classical entropy. This result constitutes, so it seems, a more transparent interpretation of entropy than previously available. However, further research to clarify the assumptions is still needed. Our study points to the thesis that one should never consider the notion of entropy in isolation - in order to enable a rich and technically smooth study, further concepts, such as divergence, score functions and descriptors or controls should be included in the discussion. This will clarify the distinction between Nature and Observer and facilitate a game theoretical discussion. The usefulness of this distinction and the subsequent exploitation of game theoretical results - such as those connected with the notion of Nash equilibrium - is demonstrated by a discussion of the Maximum Entropy Principle.

  17. Rényi entropy of the totally asymmetric exclusion process

    NASA Astrophysics Data System (ADS)

    Wood, Anthony J.; Blythe, Richard A.; Evans, Martin R.

    2017-11-01

    The Rényi entropy is a generalisation of the Shannon entropy that is sensitive to the fine details of a probability distribution. We present results for the Rényi entropy of the totally asymmetric exclusion process (TASEP). We calculate explicitly an entropy whereby the squares of configuration probabilities are summed, using the matrix product formalism to map the problem to one involving a six direction lattice walk in the upper quarter plane. We derive the generating function across the whole phase diagram, using an obstinate kernel method. This gives the leading behaviour of the Rényi entropy and corrections in all phases of the TASEP. The leading behaviour is given by the result for a Bernoulli measure and we conjecture that this holds for all Rényi entropies. Within the maximal current phase the correction to the leading behaviour is logarithmic in the system size. Finally, we remark upon a special property of equilibrium systems whereby discontinuities in the Rényi entropy arise away from phase transitions, which we refer to as secondary transitions. We find no such secondary transition for this nonequilibrium system, supporting the notion that these are specific to equilibrium cases.

  18. On variational expressions for quantum relative entropies

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Fawzi, Omar; Tomamichel, Marco

    2017-12-01

    Distance measures between quantum states like the trace distance and the fidelity can naturally be defined by optimizing a classical distance measure over all measurement statistics that can be obtained from the respective quantum states. In contrast, Petz showed that the measured relative entropy, defined as a maximization of the Kullback-Leibler divergence over projective measurement statistics, is strictly smaller than Umegaki's quantum relative entropy whenever the states do not commute. We extend this result in two ways. First, we show that Petz' conclusion remains true if we allow general positive operator-valued measures. Second, we extend the result to Rényi relative entropies and show that for non-commuting states the sandwiched Rényi relative entropy is strictly larger than the measured Rényi relative entropy for α \\in (1/2, \\infty ) and strictly smaller for α \\in [0,1/2). The latter statement provides counterexamples for the data processing inequality of the sandwiched Rényi relative entropy for α < 1/2. Our main tool is a new variational expression for the measured Rényi relative entropy, which we further exploit to show that certain lower bounds on quantum conditional mutual information are superadditive.

  19. Comparing Postural Stability Entropy Analyses to Differentiate Fallers and Non-fallers.

    PubMed

    Fino, Peter C; Mojdehi, Ahmad R; Adjerid, Khaled; Habibi, Mohammad; Lockhart, Thurmon E; Ross, Shane D

    2016-05-01

    The health and financial cost of falls has spurred research to differentiate the characteristics of fallers and non-fallers. Postural stability has received much of the attention with recent studies exploring various measures of entropy. This study compared the discriminatory ability of several entropy methods at differentiating two paradigms in the center-of-pressure of elderly individuals: (1) eyes open (EO) vs. eyes closed (EC) and (2) fallers (F) vs. non-fallers (NF). Methods were compared using the area under the curve (AUC) of the receiver-operating characteristic curves developed from logistic regression models. Overall, multiscale entropy (MSE) and composite multiscale entropy (CompMSE) performed the best with AUCs of 0.71 for EO/EC and 0.77 for F/NF. When methods were combined together to maximize the AUC, the entropy classifier had an AUC of for 0.91 the F/NF comparison. These results suggest researchers and clinicians attempting to create clinical tests to identify fallers should consider a combination of every entropy method when creating a classifying test. Additionally, MSE and CompMSE classifiers using polar coordinate data outperformed rectangular coordinate data, encouraging more research into the most appropriate time series for postural stability entropy analysis.

  20. Harvesting Entropy for Random Number Generation for Internet of Things Constrained Devices Using On-Board Sensors

    PubMed Central

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-01-01

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things. PMID:26506357

  1. Population entropies estimates of proteins

    NASA Astrophysics Data System (ADS)

    Low, Wai Yee

    2017-05-01

    The Shannon entropy equation provides a way to estimate variability of amino acids sequences in a multiple sequence alignment of proteins. Knowledge of protein variability is useful in many areas such as vaccine design, identification of antibody binding sites, and exploration of protein 3D structural properties. In cases where the population entropies of a protein are of interest but only a small sample size can be obtained, a method based on linear regression and random subsampling can be used to estimate the population entropy. This method is useful for comparisons of entropies where the actual sequence counts differ and thus, correction for alignment size bias is needed. In the current work, an R based package named EntropyCorrect that enables estimation of population entropy is presented and an empirical study on how well this new algorithm performs on simulated dataset of various combinations of population and sample sizes is discussed. The package is available at https://github.com/lloydlow/EntropyCorrect. This article, which was originally published online on 12 May 2017, contained an error in Eq. (1), where the summation sign was missing. The corrected equation appears in the Corrigendum attached to the pdf.

  2. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system

    PubMed Central

    Min, Jianliang; Wang, Ping

    2017-01-01

    Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1–2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver. PMID:29220351

  3. Harvesting entropy for random number generation for internet of things constrained devices using on-board sensors.

    PubMed

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-10-22

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  4. A finite difference solution for the propagation of sound in near sonic flows

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Lester, H. C.

    1983-01-01

    An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.

  5. [Physical therapy].

    PubMed

    Chohnabayashi, Naohiko

    2008-01-01

    Recently, pulmonary rehabilitation program is widely considered one of the most effective and evidence-based treatment for not only chronic obstructive pulmonary disease (COPD) but many clinical situations including neuro-muscular disease, post-operative status and weaning period from the ventilator, etc. The essential components of a pulmonary rehabilitation program are team assessment, patient training, psycho-social intervention, exercise, and follow-up. In 2003, Japanese medical societies (J. Thoracic Society, J. Pul. Rehabilitation Society and J. Physiotherapist Society) made a new guideline for pulmonary rehabilitation, especially how to aproach the execise training. As for the duration after surgical operation, airway cleaning is the important technique to prevent post-operative complications including pneumonia. Postural dranage technique is well known for such condition, at the same time, several instruments (flutter vulve, positive expiratory mask, high frequecy oscillation, etc) were also used for the patient to expectrate airway mucus easier. Lung transplantation is a new method of treatment for the critically-ill patients with chronic respiratoy failure. Several techniques of physical therapy are must be needed before and after lung transplantation to prevent both pulmonary infection and osteoporosis.

  6. Raptor -- Mining the Sky in Real Time

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Borozdin, K.; Casperson, D.; McGowan, K.; Starr, D.; White, R.; Wozniak, P.; Wren, J.

    2004-06-01

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback...) is implemented with a ``component'' aproach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally: the Raptor architecture is entirely based on free software (sometimes referred to as "open source" software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  7. Entropy, matter, and cosmology.

    PubMed

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production.

  8. Wavelet Packet Entropy for Heart Murmurs Classification

    PubMed Central

    Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Ranga, Sri

    2012-01-01

    Heart murmurs are the first signs of cardiac valve disorders. Several studies have been conducted in recent years to automatically differentiate normal heart sounds, from heart sounds with murmurs using various types of audio features. Entropy was successfully used as a feature to distinguish different heart sounds. In this paper, new entropy was introduced to analyze heart sounds and the feasibility of using this entropy in classification of five types of heart sounds and murmurs was shown. The entropy was previously introduced to analyze mammograms. Four common murmurs were considered including aortic regurgitation, mitral regurgitation, aortic stenosis, and mitral stenosis. Wavelet packet transform was employed for heart sound analysis, and the entropy was calculated for deriving feature vectors. Five types of classification were performed to evaluate the discriminatory power of the generated features. The best results were achieved by BayesNet with 96.94% accuracy. The promising results substantiate the effectiveness of the proposed wavelet packet entropy for heart sounds classification. PMID:23227043

  9. Entropy Production in Chemical Reactors

    NASA Astrophysics Data System (ADS)

    Kingston, Diego; Razzitte, Adrián C.

    2017-06-01

    We have analyzed entropy production in chemically reacting systems and extended previous results to the two limiting cases of ideal reactors, namely continuous stirred tank reactor (CSTR) and plug flow reactor (PFR). We have found upper and lower bounds for the entropy production in isothermal systems and given expressions for non-isothermal operation and analyzed the influence of pressure and temperature in entropy generation minimization in reactors with a fixed volume and production. We also give a graphical picture of entropy production in chemical reactions subject to constant volume, which allows us to easily assess different options. We show that by dividing a reactor into two smaller ones, operating at different temperatures, the entropy production is lowered, going as near as 48 % less in the case of a CSTR and PFR in series, and reaching 58 % with two CSTR. Finally, we study the optimal pressure and temperature for a single isothermal PFR, taking into account the irreversibility introduced by a compressor and a heat exchanger, decreasing the entropy generation by as much as 30 %.

  10. Gradient Dynamics and Entropy Production Maximization

    NASA Astrophysics Data System (ADS)

    Janečka, Adam; Pavelka, Michal

    2018-01-01

    We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.

  11. Binding stability of peptides on major histocompatibility complex class I proteins: role of entropy and dynamics.

    PubMed

    Gul, Ahmet; Erman, Burak

    2018-01-16

    Prediction of peptide binding on specific human leukocyte antigens (HLA) has long been studied with successful results. We herein describe the effects of entropy and dynamics by investigating the binding stabilities of 10 nanopeptides on various HLA Class I alleles using a theoretical model based on molecular dynamics simulations. The fluctuational entropies of the peptides are estimated over a temperature range of 310-460 K. The estimated entropies correlate well with experimental binding affinities of the peptides: peptides that have higher binding affinities have lower entropies compared to non-binders, which have significantly larger entropies. The computation of the entropies is based on a simple model that requires short molecular dynamics trajectories and allows for approximate but rapid determination. The paper draws attention to the long neglected dynamic aspects of peptide binding, and provides a fast computation scheme that allows for rapid scanning of large numbers of peptides on selected HLA antigens, which may be useful in defining the right peptides for personal immunotherapy.

  12. Entropy generation in biophysical systems

    NASA Astrophysics Data System (ADS)

    Lucia, U.; Maino, G.

    2013-03-01

    Recently, in theoretical biology and in biophysical engineering the entropy production has been verified to approach asymptotically its maximum rate, by using the probability of individual elementary modes distributed in accordance with the Boltzmann distribution. The basis of this approach is the hypothesis that the entropy production rate is maximum at the stationary state. In the present work, this hypothesis is explained and motivated, starting from the entropy generation analysis. This latter quantity is obtained from the entropy balance for open systems considering the lifetime of the natural real process. The Lagrangian formalism is introduced in order to develop an analytical approach to the thermodynamic analysis of the open irreversible systems. The stationary conditions of the open systems are thus obtained in relation to the entropy generation and the least action principle. Consequently, the considered hypothesis is analytically proved and it represents an original basic approach in theoretical and mathematical biology and also in biophysical engineering. It is worth remarking that the present results show that entropy generation not only increases but increases as fast as possible.

  13. Neuronal Entropy-Rate Feature of Entopeduncular Nucleus in Rat Model of Parkinson's Disease.

    PubMed

    Darbin, Olivier; Jin, Xingxing; Von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K; Alam, Mesbah

    2016-03-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25 Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.

  14. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    PubMed

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Prediction of Protein Configurational Entropy (Popcoen).

    PubMed

    Goethe, Martin; Gleixner, Jan; Fita, Ignacio; Rubi, J Miguel

    2018-03-13

    A knowledge-based method for configurational entropy prediction of proteins is presented; this methodology is extremely fast, compared to previous approaches, because it does not involve any type of configurational sampling. Instead, the configurational entropy of a query fold is estimated by evaluating an artificial neural network, which was trained on molecular-dynamics simulations of ∼1000 proteins. The predicted entropy can be incorporated into a large class of protein software based on cost-function minimization/evaluation, in which configurational entropy is currently neglected for performance reasons. Software of this type is used for all major protein tasks such as structure predictions, proteins design, NMR and X-ray refinement, docking, and mutation effect predictions. Integrating the predicted entropy can yield a significant accuracy increase as we show exemplarily for native-state identification with the prominent protein software FoldX. The method has been termed Popcoen for Prediction of Protein Configurational Entropy. An implementation is freely available at http://fmc.ub.edu/popcoen/ .

  16. Binding stability of peptides on major histocompatibility complex class I proteins: role of entropy and dynamics

    NASA Astrophysics Data System (ADS)

    Gul, Ahmet; Erman, Burak

    2018-03-01

    Prediction of peptide binding on specific human leukocyte antigens (HLA) has long been studied with successful results. We herein describe the effects of entropy and dynamics by investigating the binding stabilities of 10 nanopeptides on various HLA Class I alleles using a theoretical model based on molecular dynamics simulations. The fluctuational entropies of the peptides are estimated over a temperature range of 310-460 K. The estimated entropies correlate well with experimental binding affinities of the peptides: peptides that have higher binding affinities have lower entropies compared to non-binders, which have significantly larger entropies. The computation of the entropies is based on a simple model that requires short molecular dynamics trajectories and allows for approximate but rapid determination. The paper draws attention to the long neglected dynamic aspects of peptide binding, and provides a fast computation scheme that allows for rapid scanning of large numbers of peptides on selected HLA antigens, which may be useful in defining the right peptides for personal immunotherapy.

  17. RELATIONSHIP BETWEEN ENTROPY OF SPIKE TIMING AND FIRING RATE IN ENTOPEDUNCULAR NUCLEUS NEURONS IN ANESTHETIZED RATS: FUNCTION OF THE NIGRO-STRIATAL PATHWAY

    PubMed Central

    Darbin, Olivier; Jin, Xingxing; von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K.; Alam, Mesbah

    2016-01-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus (entopeduncular nucleus, EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson’s disease (PD). In both control subjects and subjects with 6-OHDA lesion of the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15Hz and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25Hz. Our data establishes that nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions with movement disorders. PMID:26711712

  18. Random versus maximum entropy models of neural population activity

    NASA Astrophysics Data System (ADS)

    Ferrari, Ulisse; Obuchi, Tomoyuki; Mora, Thierry

    2017-04-01

    The principle of maximum entropy provides a useful method for inferring statistical mechanics models from observations in correlated systems, and is widely used in a variety of fields where accurate data are available. While the assumptions underlying maximum entropy are intuitive and appealing, its adequacy for describing complex empirical data has been little studied in comparison to alternative approaches. Here, data from the collective spiking activity of retinal neurons is reanalyzed. The accuracy of the maximum entropy distribution constrained by mean firing rates and pairwise correlations is compared to a random ensemble of distributions constrained by the same observables. For most of the tested networks, maximum entropy approximates the true distribution better than the typical or mean distribution from that ensemble. This advantage improves with population size, with groups as small as eight being almost always better described by maximum entropy. Failure of maximum entropy to outperform random models is found to be associated with strong correlations in the population.

  19. Entropy of hydrological systems under small samples: Uncertainty and variability

    NASA Astrophysics Data System (ADS)

    Liu, Dengfeng; Wang, Dong; Wang, Yuankun; Wu, Jichun; Singh, Vijay P.; Zeng, Xiankui; Wang, Lachun; Chen, Yuanfang; Chen, Xi; Zhang, Liyuan; Gu, Shenghua

    2016-01-01

    Entropy theory has been increasingly applied in hydrology in both descriptive and inferential ways. However, little attention has been given to the small-sample condition widespread in hydrological practice, where either hydrological measurements are limited or are even nonexistent. Accordingly, entropy estimated under this condition may incur considerable bias. In this study, small-sample condition is considered and two innovative entropy estimators, the Chao-Shen (CS) estimator and the James-Stein-type shrinkage (JSS) estimator, are introduced. Simulation tests are conducted with common distributions in hydrology, that lead to the best-performing JSS estimator. Then, multi-scale moving entropy-based hydrological analyses (MM-EHA) are applied to indicate the changing patterns of uncertainty of streamflow data collected from the Yangtze River and the Yellow River, China. For further investigation into the intrinsic property of entropy applied in hydrological uncertainty analyses, correlations of entropy and other statistics at different time-scales are also calculated, which show connections between the concept of uncertainty and variability.

  20. Entanglement entropy in a boundary impurity model.

    PubMed

    Levine, G C

    2004-12-31

    Boundary impurities are known to dramatically alter certain bulk properties of (1+1)-dimensional strongly correlated systems. The entanglement entropy of a zero temperature Luttinger liquid bisected by a single impurity is computed using a novel finite size scaling or bosonization scheme. For a Luttinger liquid of length 2L and UV cutoff epsilon, the boundary impurity correction (deltaSimp) to the logarithmic entanglement entropy (Sent proportional, variant lnL/epsilon scales as deltaSimp approximately yrlnL/epsilon, where yr is the renormalized backscattering coupling constant. In this way, the entanglement entropy within a region is related to scattering through the region's boundary. In the repulsive case (g<1), deltaSimp diverges (negatively) suggesting that the entropy vanishes. Our results are consistent with the recent conjecture that entanglement entropy decreases irreversibly along renormalization group flow.

  1. Quantitative characterization of brazing performance for Sn-plated silver alloy fillers

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2017-12-01

    Two types of AgCuZnSn fillers were prepared based on BAg50CuZn and BAg34CuZnSn alloy through a combinative process of electroplating and thermal diffusion. The models of wetting entropy and joint strength entropy of AgCuZnSn filler metals were established. The wetting entropy of the Sn-plated silver brazing alloys are lower than the traditional fillers, and its joint strength entropy value is slightly higher than the latter. The wetting entropy value of the Sn-plated brazing alloys and traditional filler metal are similar to the change trend of the wetting area. The trend of the joint strength entropy value with those fillers are consisted with the tensile strength of the stainless steel joints with the increase of Sn content.

  2. Application of a real-time, calculable limiting form of the Renyi entropy for molecular imaging of tumors.

    PubMed

    Marsh, Jon N; Wallace, Kirk D; McCarthy, John E; Wickerhauser, Mladen V; Maurizi, Brian N; Lanza, Gregory M; Wickline, Samuel A; Hughes, Michael S

    2010-08-01

    Previously, we reported new methods for ultrasound signal characterization using entropy, H(f); a generalized entropy, the Renyi entropy, I(f)(r); and a limiting form of Renyi entropy suitable for real-time calculation, I(f),(infinity). All of these quantities demonstrated significantly more sensitivity to subtle changes in scattering architecture than energy-based methods in certain settings. In this study, the real-time calculable limit of the Renyi entropy, I(f),(infinity), is applied for the imaging of angiogenic murine neovasculature in a breast cancer xenograft using a targeted contrast agent. It is shown that this approach may be used to reliably detect the accumulation of targeted nanoparticles at five minutes post-injection in this in vivo model.

  3. An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization

    NASA Astrophysics Data System (ADS)

    Chen, Li; Weng, Zhiqiang; Goh, LaiYoong; Garland, Marc

    2002-09-01

    A new algorithm for automatic phase correction of NMR spectra based on entropy minimization is proposed. The optimal zero-order and first-order phase corrections for a NMR spectrum are determined by minimizing entropy. The objective function is constructed using a Shannon-type information entropy measure. Entropy is defined as the normalized derivative of the NMR spectral data. The algorithm has been successfully applied to experimental 1H NMR spectra. The results of automatic phase correction are found to be comparable to, or perhaps better than, manual phase correction. The advantages of this automatic phase correction algorithm include its simple mathematical basis and the straightforward, reproducible, and efficient optimization procedure. The algorithm is implemented in the Matlab program ACME—Automated phase Correction based on Minimization of Entropy.

  4. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor.

    PubMed

    von Rohr, Fabian; Winiarski, Michał J; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-11-15

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.

  5. An alternative expression to the Sackur-Tetrode entropy formula for an ideal gas

    NASA Astrophysics Data System (ADS)

    Nagata, Shoichi

    2018-03-01

    An expression for the entropy of a monoatomic classical ideal gas is known as the Sackur-Tetrode equation. This pioneering investigation about 100 years ago incorporates quantum considerations. The purpose of this paper is to provide an alternative expression for the entropy in terms of the Heisenberg uncertainty relation. The analysis is made on the basis of fluctuation theory, for a canonical system in thermal equilibrium at temperature T. This new formula indicates manifestly that the entropy of macroscopic world is recognized as a measure of uncertainty in microscopic quantum world. The entropy in the Sackur-Tetrode equation can be re-interpreted from a different perspective viewpoint. The emphasis is on the connection between the entropy and the uncertainty relation in quantum consideration.

  6. General monogamy of Tsallis q -entropy entanglement in multiqubit systems

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Tian, Tian; Shao, Lian-He; Li, Yongming

    2016-06-01

    In this paper, we study the monogamy inequality of Tsallis q -entropy entanglement. We first provide an analytic formula of Tsallis q -entropy entanglement in two-qubit systems for 5/-√{13 } 2 ≤q ≤5/+√{13 } 2 . The analytic formula of Tsallis q -entropy entanglement in 2 ⊗d system is also obtained and we show that Tsallis q -entropy entanglement satisfies a set of hierarchical monogamy equalities. Furthermore, we prove the squared Tsallis q -entropy entanglement follows a general inequality in the qubit systems. Based on the monogamy relations, a set of multipartite entanglement indicators is constructed, which can detect all genuine multiqubit entangled states even in the case of N -tangle vanishes. Moreover, we study some examples in multipartite higher-dimensional system for the monogamy inequalities.

  7. Quantum thermodynamics and quantum entanglement entropies in an expanding universe

    NASA Astrophysics Data System (ADS)

    Farahmand, Mehrnoosh; Mohammadzadeh, Hosein; Mehri-Dehnavi, Hossein

    2017-05-01

    We investigate an asymptotically spatially flat Robertson-Walker space-time from two different perspectives. First, using von Neumann entropy, we evaluate the entanglement generation due to the encoded information in space-time. Then, we work out the entropy of particle creation based on the quantum thermodynamics of the scalar field on the underlying space-time. We show that the general behavior of both entropies are the same. Therefore, the entanglement can be applied to the customary quantum thermodynamics of the universe. Also, using these entropies, we can recover some information about the parameters of space-time.

  8. Defining chaos.

    PubMed

    Hunt, Brian R; Ott, Edward

    2015-09-01

    In this paper, we propose, discuss, and illustrate a computationally feasible definition of chaos which can be applied very generally to situations that are commonly encountered, including attractors, repellers, and non-periodically forced systems. This definition is based on an entropy-like quantity, which we call "expansion entropy," and we define chaos as occurring when this quantity is positive. We relate and compare expansion entropy to the well-known concept of topological entropy to which it is equivalent under appropriate conditions. We also present example illustrations, discuss computational implementations, and point out issues arising from attempts at giving definitions of chaos that are not entropy-based.

  9. Entropy Generation in Regenerative Systems

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1995-01-01

    Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.

  10. On the dispute between Boltzmann and Gibbs entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonsante, Pierfrancesco; Franzosi, Roberto, E-mail: roberto.franzosi@ino.it; Smerzi, Augusto

    2016-12-15

    The validity of the concept of negative temperature has been recently challenged by arguing that the Boltzmann entropy (that allows negative temperatures) is inconsistent from a mathematical and statistical point of view, whereas the Gibbs entropy (that does not admit negative temperatures) provides the correct definition for the microcanonical entropy. Here we prove that the Boltzmann entropy is thermodynamically and mathematically consistent. Analytical results on two systems supporting negative temperatures illustrate the scenario we propose. In addition we numerically study a lattice system to show that negative temperature equilibrium states are accessible and obey standard statistical mechanics prediction.

  11. Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2.

    PubMed

    Adesso, Gerardo; Girolami, Davide; Serafini, Alessio

    2012-11-09

    We demonstrate that the Rényi-2 entropy provides a natural measure of information for any multimode Gaussian state of quantum harmonic systems, operationally linked to the phase-space Shannon sampling entropy of the Wigner distribution of the state. We prove that, in the Gaussian scenario, such an entropy satisfies the strong subadditivity inequality, a key requirement for quantum information theory. This allows us to define and analyze measures of Gaussian entanglement and more general quantum correlations based on such an entropy, which are shown to satisfy relevant properties such as monogamy.

  12. First law of entanglement entropy in topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Cheng, Long; Hung, Ling-Yan; Liu, Si-Nong; Zhou, Hong-Zhe

    2016-09-01

    In this paper we explore the validity of the first law of entanglement entropy in the context of topologically massive gravity (TMG). We find that the variation of the holographic entanglement entropy under perturbation from the pure anti-de Sitter background satisfies the first law upon imposing the bulk equations of motion in a given time slice, despite the appearance of instabilities in the bulk for generic gravitational Chern-Simons coupling μ . The Noether-Wald entropy is different from the holographic entanglement entropy in a general boosted frame. However, this discrepancy does not affect the entanglement first law.

  13. High-Order Entropy Stable Formulations for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Fisher, Travis C.

    2013-01-01

    A systematic approach is presented for developing entropy stable (SS) formulations of any order for the Navier-Stokes equations. These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality. They are valid for smooth as well as discontinuous flows provided sufficient dissipation is added at shocks and discontinuities. Entropy stable formulations exist for all diagonal norm, summation-by-parts (SBP) operators, including all centered finite-difference operators, Legendre collocation finite-element operators, and certain finite-volume operators. Examples are presented using various entropy stable formulations that demonstrate the current state-of-the-art of these schemes.

  14. Psychoacoustic entropy theory and its implications for performance practice

    NASA Astrophysics Data System (ADS)

    Strohman, Gregory J.

    This dissertation attempts to motivate, derive and imply potential uses for a generalized perceptual theory of musical harmony called psychoacoustic entropy theory. This theory treats the human auditory system as a physical system which takes acoustic measurements. As a result, the human auditory system is subject to all the appropriate uncertainties and limitations of other physical measurement systems. This is the theoretic basis for defining psychoacoustic entropy. Psychoacoustic entropy is a numerical quantity which indexes the degree to which the human auditory system perceives instantaneous disorder within a sound pressure wave. Chapter one explains the importance of harmonic analysis as a tool for performance practice. It also outlines the critical limitations for many of the most influential historical approaches to modeling harmonic stability, particularly when compared to available scientific research in psychoacoustics. Rather than analyze a musical excerpt, psychoacoustic entropy is calculated directly from sound pressure waves themselves. This frames psychoacoustic entropy theory in the most general possible terms as a theory of musical harmony, enabling it to be invoked for any perceivable sound. Chapter two provides and examines many widely accepted mathematical models of the acoustics and psychoacoustics of these sound pressure waves. Chapter three introduces entropy as a precise way of measuring perceived uncertainty in sound pressure waves. Entropy is used, in combination with the acoustic and psychoacoustic models introduced in chapter two, to motivate the mathematical formulation of psychoacoustic entropy theory. Chapter four shows how to use psychoacoustic entropy theory to analyze the certain types of musical harmonies, while chapter five applies the analytical tools developed in chapter four to two short musical excerpts to influence their interpretation. Almost every form of harmonic analysis invokes some degree of mathematical reasoning. However, the limited scope of most harmonic systems used for Western common practice music greatly simplifies the necessary level of mathematical detail. Psychoacoustic entropy theory requires a greater deal of mathematical complexity due to its sheer scope as a generalized theory of musical harmony. Fortunately, under specific assumptions the theory can take on vastly simpler forms. Psychoacoustic entropy theory appears to be highly compatible with the latest scientific research in psychoacoustics. However, the theory itself should be regarded as a hypothesis and this dissertation an experiment in progress. The evaluation of psychoacoustic entropy theory as a scientific theory of human sonic perception must wait for more rigorous future research.

  15. How to determine an optimal threshold to classify real-time crash-prone traffic conditions?

    PubMed

    Yang, Kui; Yu, Rongjie; Wang, Xuesong; Quddus, Mohammed; Xue, Lifang

    2018-08-01

    One of the proactive approaches in reducing traffic crashes is to identify hazardous traffic conditions that may lead to a traffic crash, known as real-time crash prediction. Threshold selection is one of the essential steps of real-time crash prediction. And it provides the cut-off point for the posterior probability which is used to separate potential crash warnings against normal traffic conditions, after the outcome of the probability of a crash occurring given a specific traffic condition on the basis of crash risk evaluation models. There is however a dearth of research that focuses on how to effectively determine an optimal threshold. And only when discussing the predictive performance of the models, a few studies utilized subjective methods to choose the threshold. The subjective methods cannot automatically identify the optimal thresholds in different traffic and weather conditions in real application. Thus, a theoretical method to select the threshold value is necessary for the sake of avoiding subjective judgments. The purpose of this study is to provide a theoretical method for automatically identifying the optimal threshold. Considering the random effects of variable factors across all roadway segments, the mixed logit model was utilized to develop the crash risk evaluation model and further evaluate the crash risk. Cross-entropy, between-class variance and other theories were employed and investigated to empirically identify the optimal threshold. And K-fold cross-validation was used to validate the performance of proposed threshold selection methods with the help of several evaluation criteria. The results indicate that (i) the mixed logit model can obtain a good performance; (ii) the classification performance of the threshold selected by the minimum cross-entropy method outperforms the other methods according to the criteria. This method can be well-behaved to automatically identify thresholds in crash prediction, by minimizing the cross entropy between the original dataset with continuous probability of a crash occurring and the binarized dataset after using the thresholds to separate potential crash warnings against normal traffic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Entropy of electromyography time series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Zurcher, Ulrich; Sung, Paul S.

    2007-12-01

    A nonlinear analysis based on Renyi entropy is applied to electromyography (EMG) time series from back muscles. The time dependence of the entropy of the EMG signal exhibits a crossover from a subdiffusive regime at short times to a plateau at longer times. We argue that this behavior characterizes complex biological systems. The plateau value of the entropy can be used to differentiate between healthy and low back pain individuals.

  17. Entanglement distribution in multi-particle systems in terms of unified entropy.

    PubMed

    Luo, Yu; Zhang, Fu-Gang; Li, Yongming

    2017-04-25

    We investigate the entanglement distribution in multi-particle systems in terms of unified (q, s)-entropy. We find that for any tripartite mixed state, the unified (q, s)-entropy entanglement of assistance follows a polygamy relation. This polygamy relation also holds in multi-particle systems. Furthermore, a generalized monogamy relation is provided for unified (q, s)-entropy entanglement in the multi-qubit system.

  18. Investigating Friction as a Main Source of Entropy Generation in the Expansion of Confined Gas in a Piston-and-Cylinder Device

    ERIC Educational Resources Information Center

    Kang, Dun-Yen; Liou, Kai-Hsin; Chang, Wei-Lun

    2015-01-01

    The expansion or compression of gas confined in a piston-and-cylinder device is a classic working example used for illustrating the First and Second Laws of Thermodynamics. The balance of energy and entropy enables the estimation of a number of thermodynamic properties. The entropy generation (also called entropy production) resulting from this…

  19. A Graphical Proof of the Positive Entropy Change in Heat Transfer between Two Objects

    ERIC Educational Resources Information Center

    Kiatgamolchai, Somchai

    2015-01-01

    It is well known that heat transfer between two objects results in a positive change in the total entropy of the two-object system. The second law of thermodynamics states that the entropy change of a naturally irreversible process is positive. In other words, if the entropy change of any process is positive, it can be inferred that such a process…

  20. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  1. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  2. Various complexity measures in confined hydrogen atom

    NASA Astrophysics Data System (ADS)

    Majumdar, Sangita; Mukherjee, Neetik; Roy, Amlan K.

    2017-11-01

    Several well-known statistical measures similar to LMC and Fisher-Shannon complexity have been computed for confined hydrogen atom in both position (r) and momentum (p) spaces. Further, a more generalized form of these quantities with Rényi entropy (R) is explored here. The role of scaling parameter in the exponential part is also pursued. R is evaluated taking order of entropic moments α, β as (2/3, 3) in r and p spaces. Detailed systematic results of these measures with respect to variation of confinement radius rc is presented for low-lying states such as, 1 s - 3 d, 4 f and 5 g . For nodal states, such as 2 s, 3 s and 3 p , as rc progresses there appears a maximum followed by a minimum in r space, having certain values of the scaling parameter. However, the corresponding p-space results lack such distinct patterns. This study reveals many other interesting features.

  3. Entropic determination of the phase transition in a coevolving opinion-formation model.

    PubMed

    Burgos, E; Hernández, Laura; Ceva, H; Perazzo, R P J

    2015-03-01

    We study an opinion formation model by the means of a coevolving complex network where the vertices represent the individuals, characterized by their evolving opinions, and the edges represent the interactions among them. The network adapts to the spreading of opinions in two ways: not only connected agents interact and eventually change their thinking but an agent may also rewire one of its links to a neighborhood holding the same opinion as his. The dynamics, based on a global majority rule, depends on an external parameter that controls the plasticity of the network. We show how the information entropy associated to the distribution of group sizes allows us to locate the phase transition between a phase of full consensus and another, where different opinions coexist. We also determine the minimum size of the most informative sampling. At the transition the distribution of the sizes of groups holding the same opinion is scale free.

  4. Chemical potential of oxygen in (U, Pu) mixed oxide with Pu/(U+Pu) = 0.46

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Chandramouli, V.; Anthonysamy, S.

    2016-05-01

    Chemical potential of oxygen in (U,Pu) mixed oxide with Pu/(U + Pu) = 0.46 was measured for the first time using H2/H2O gas equilibration combined with solid electrolyte EMF technique at 1073, 1273 and 1473 K covering an oxygen potential range of -525 to -325 kJ mol-1. The effect of oxygen potential on the oxygen to metal ratio was determined. Increase in oxygen potential increases the O/M. In this study the minimum O/M obtained was 1.985 below which reduction was not possible. Partial molar enthalpy ΔHbar O2 and entropy ΔSbar O2 of oxygen were calculated from the oxygen potential data. The values of -752.36 kJ mol-1 and 0.25 kJ mol-1 were obtained for ΔHbar O2 and ΔSbar O2 respectively.

  5. Entropy Analyses of Four Familiar Processes.

    ERIC Educational Resources Information Center

    Craig, Norman C.

    1988-01-01

    Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)

  6. Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model

    PubMed Central

    Ugarte, Juan P.; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John

    2014-01-01

    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping. PMID:25489858

  7. Characterizing Brain Structures and Remodeling after TBI Based on Information Content, Diffusion Entropy

    PubMed Central

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P.; Zhang, Zheng Gang; Lehman, Norman L.; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    Background To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Methods Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Results Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Conclusions Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease. PMID:24143186

  8. Characterizing brain structures and remodeling after TBI based on information content, diffusion entropy.

    PubMed

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P; Zhang, Zheng Gang; Lehman, Norman L; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease.

  9. Spectral Entropy Can Predict Changes of Working Memory Performance Reduced by Short-Time Training in the Delayed-Match-to-Sample Task

    PubMed Central

    Tian, Yin; Zhang, Huiling; Xu, Wei; Zhang, Haiyong; Yang, Li; Zheng, Shuxing; Shi, Yupan

    2017-01-01

    Spectral entropy, which was generated by applying the Shannon entropy concept to the power distribution of the Fourier-transformed electroencephalograph (EEG), was utilized to measure the uniformity of power spectral density underlying EEG when subjects performed the working memory tasks twice, i.e., before and after training. According to Signed Residual Time (SRT) scores based on response speed and accuracy trade-off, 20 subjects were divided into two groups, namely high-performance and low-performance groups, to undertake working memory (WM) tasks. We found that spectral entropy derived from the retention period of WM on channel FC4 exhibited a high correlation with SRT scores. To this end, spectral entropy was used in support vector machine classifier with linear kernel to differentiate these two groups. Receiver operating characteristics analysis and leave-one out cross-validation (LOOCV) demonstrated that the averaged classification accuracy (CA) was 90.0 and 92.5% for intra-session and inter-session, respectively, indicating that spectral entropy could be used to distinguish these two different WM performance groups successfully. Furthermore, the support vector regression prediction model with radial basis function kernel and the root-mean-square error of prediction revealed that spectral entropy could be utilized to predict SRT scores on individual WM performance. After testing the changes in SRT scores and spectral entropy for each subject by short-time training, we found that 16 in 20 subjects’ SRT scores were clearly promoted after training and 15 in 20 subjects’ SRT scores showed consistent changes with spectral entropy before and after training. The findings revealed that spectral entropy could be a promising indicator to predict individual’s WM changes by training and further provide a novel application about WM for brain–computer interfaces. PMID:28912701

  10. Renyi Entropies in Multiparticle Production

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.

    2000-12-01

    Renyi entropies are calculated for some multiparticle systems. Arguments are presented that measurements of Renyi entropies as functions of the average number of particles produced in high energy collisions carry important information on the produced system.

  11. Transfer Entropy as a Log-Likelihood Ratio

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Bossomaier, Terry

    2012-09-01

    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.

  12. Transfer entropy as a log-likelihood ratio.

    PubMed

    Barnett, Lionel; Bossomaier, Terry

    2012-09-28

    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.

  13. The limit behavior of the evolution of the Tsallis entropy in self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Zheng, Yahui; Du, Jiulin; Liang, Faku

    2017-06-01

    In this letter, we study the limit behavior of the evolution of the Tsallis entropy in self-gravitating systems. The study is carried out under two different situations, drawing the same conclusion. No matter in the energy transfer process or in the mass transfer process inside the system, when the nonextensive parameter q is more than unity, the total entropy is bounded; on the contrary, when this parameter is less than unity, the total entropy is unbounded. There are proofs in both theory and observation that the q is always more than unity. So the Tsallis entropy in self-gravitating systems generally exhibits a bounded property. This indicates the existence of a global maximum of the Tsallis entropy. It is possible for self-gravitating systems to evolve to thermodynamically stable states.

  14. Entropy generation across Earth's collisionless bow shock.

    PubMed

    Parks, G K; Lee, E; McCarthy, M; Goldstein, M; Fu, S Y; Cao, J B; Canu, P; Lin, N; Wilber, M; Dandouras, I; Réme, H; Fazakerley, A

    2012-02-10

    Earth's bow shock is a collisionless shock wave but entropy has never been directly measured across it. The plasma experiments on Cluster and Double Star measure 3D plasma distributions upstream and downstream of the bow shock allowing calculation of Boltzmann's entropy function H and his famous H theorem, dH/dt≤0. The collisionless Boltzmann (Vlasov) equation predicts that the total entropy does not change if the distribution function across the shock becomes nonthermal, but it allows changes in the entropy density. Here, we present the first direct measurements of entropy density changes across Earth's bow shock and show that the results generally support the model of the Vlasov analysis. These observations are a starting point for a more sophisticated analysis that includes 3D computer modeling of collisionless shocks with input from observed particles, waves, and turbulences.

  15. Effect of Entropy Generation on Wear Mechanics and System Reliability

    NASA Astrophysics Data System (ADS)

    Gidwani, Akshay; James, Siddanth; Jagtap, Sagar; Karthikeyan, Ram; Vincent, S.

    2018-04-01

    Wear is an irreversible phenomenon. Processes such as mutual sliding and rolling between materials involve entropy generation. These processes are monotonic with respect to time. The concept of entropy generation is further quantified using Degradation Entropy Generation theorem formulated by Michael D. Bryant. The sliding-wear model can be extrapolated to different instances in order to further provide a potential analysis of machine prognostics as well as system and process reliability for various processes besides even mere mechanical processes. In other words, using the concept of ‘entropy generation’ and wear, one can quantify the reliability of a system with respect to time using a thermodynamic variable, which is the basis of this paper. Thus in the present investigation, a unique attempt has been made to establish correlation between entropy-wear-reliability which can be useful technique in preventive maintenance.

  16. Comparison of transfer entropy methods for financial time series

    NASA Astrophysics Data System (ADS)

    He, Jiayi; Shang, Pengjian

    2017-09-01

    There is a certain relationship between the global financial markets, which creates an interactive network of global finance. Transfer entropy, a measurement for information transfer, offered a good way to analyse the relationship. In this paper, we analysed the relationship between 9 stock indices from the U.S., Europe and China (from 1995 to 2015) by using transfer entropy (TE), effective transfer entropy (ETE), Rényi transfer entropy (RTE) and effective Rényi transfer entropy (ERTE). We compared the four methods in the sense of the effectiveness for identification of the relationship between stock markets. In this paper, two kinds of information flows are given. One reveals that the U.S. took the leading position when in terms of lagged-current cases, but when it comes to the same date, China is the most influential. And ERTE could provide superior results.

  17. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

  18. Entropy production in a photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad H.

    2017-05-01

    We evaluate entropy production in a photovoltaic cell that is modeled by four electronic levels resonantly coupled to thermally populated field modes at different temperatures. We use a formalism recently proposed, the so-called multiple parallel worlds, to consistently address the nonlinearity of entropy in terms of density matrix. Our result shows that entropy production is the difference between two flows: a semiclassical flow that linearly depends on occupational probabilities, and another flow that depends nonlinearly on quantum coherence and has no semiclassical analog. We show that entropy production in the cells depends on environmentally induced decoherence time and energy detuning. We characterize regimes where reversal flow of information takes place from a cold to hot bath. Interestingly, we identify a lower bound on entropy production, which sets limitations on the statistics of dissipated heat in the cells.

  19. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    PubMed Central

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-01-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials. PMID:27803330

  20. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE PAGES

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; ...

    2016-11-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

Top