NASA Astrophysics Data System (ADS)
Blain, E.; Daskalakis, A.; Danon, Y.
2014-05-01
Recent efforts have been made to improve the prompt fission neutron spectrum and nu-bar measurements for Uranium and Plutonium isotopes particularly in the keV region. A system has been designed at Rensselaer Polytechnic Institute (RPI) utilizing an array of EJ-301 liquid scintillators as well as lithium glass and plastic scintillators to experimentally determine these values. An array of BaF2 detectors was recently obtained from Oak Ridge National Laboratory to be used in conjunction with the neutron detectors. The system uses a novel gamma tagging method for fission which can offer an improvement over conventional fission chambers due to increased sample mass. A coincidence requirement on the gamma detectors from prompt fission gammas is used as the fission tag for the system as opposed to fission fragments in a conventional fission chamber. The system utilizes pulse digitization using Acqiris 8 bit digitizer boards which allow for gamma/neutron pulse height discrimination on the liquid scintillators during post processing. Additionally, a 252Cf fission chamber was designed and constructed at RPI which allowed for optimization and testing of the system without the need for an external neutron source. The characteristics of the gamma tagging method such as false detection rate and detection efficiency were determined using this fission chamber and verified using MCNP Polimi modeling. Prompt fission neutron spectrum data has been taken using the fission chamber focusing on the minimum detectable neutron energy for each of the various detectors. Plastic scintillators were found to offer a significant improvement over traditional liquid scintillators allowing energy measurements down to 50 keV. Background was also characterized for all detectors and will be discussed.
Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husko, Chad; Wulf, Matthias; Lefrancois, Simon
Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less
Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides
Husko, Chad; Wulf, Matthias; Lefrancois, Simon; ...
2016-04-15
Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less
NASA Astrophysics Data System (ADS)
Liu, Linyue; Liu, Jinliang; Zhang, Jianfu; Chen, Liang; Zhang, Xianpeng; Zhang, Zhongbing; Ruan, Jinlu; Jin, Peng; Bai, Song; Ouyang, Xiaoping
2017-12-01
Silicon carbide radiation detectors are attractive in the measurement of the total numbers of pulsed fast neutrons emitted from nuclear fusion and fission devices because of high neutron-gamma discrimination and good radiation resistance. A fast-neutron detection system was developed based on a large-area 4H-SiC Schottky diode detector and a 235U fission target. Excellent pulse-height spectra of fission fragments induced by mono-energy deuterium-tritium (D-T) fusion neutrons and continuous energy fission neutrons were obtained. The detector is proven to be a good candidate for pulsed fast neutron detection in a complex radiation field.
Neutron-flux profile monitor for use in a fission reactor
Kopp, M.K.; Valentine, K.H.
1981-09-15
A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occurred. Neutron flux profiles of reactor cores can be more accurately measured as a result.
Neutron flux profile monitor for use in a fission reactor
Kopp, Manfred K.; Valentine, Kenneth H.
1983-01-01
A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occured. Neutron flux profiles of reactor cores can be more accurately measured as a result.
de la Fuente, R; de Celis, B; del Canto, V; Lumbreras, J M; de Celis Alonso, B; Martín-Martín, A; Gutierrez-Villanueva, J L
2008-10-01
A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for alpha/beta/gamma-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of alpha/beta particles and X-rays/gamma particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by alpha/gamma coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg(-1) for 0.1 kg of soil and 1000 min counting.
1999-01-01
In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Based on Project Orion, an interplanetary vehicle using pulsed fission propulsion would incorporate modern technologies for momentum transfer, thermal management, and habitation design.
Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions
NASA Astrophysics Data System (ADS)
Gozani, Tsahi; King, Michael J.
2016-01-01
Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.
NASA Astrophysics Data System (ADS)
Slaughter, D. R.; Accatino, M. R.; Bernstein, A.; Church, J. A.; Descalle, M. A.; Gosnell, T. B.; Hall, J. M.; Loshak, A.; Manatt, D. R.; Mauger, G. J.; Moore, T. L.; Norman, E. B.; Pohl, B. A.; Pruet, J. A.; Petersen, D. C.; Walling, R. S.; Weirup, D. L.; Prussin, S. G.; McDowell, M.
2005-12-01
A concept for detecting the presence of special nuclear material (235U or 239Pu) concealed in intermodal cargo containers is described. It is based on interrogation with a pulsed beam of 7 MeV neutrons that produce fission events and their β-delayed neutron emission or β-delayed high-energy γ radiation between beam pulses provide the detection signature. Fission product β-delayed γ-rays above 3 MeV are nearly 10 times more abundant than β-delayed neutrons and are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified.
Propulsion issues, options and trades
NASA Technical Reports Server (NTRS)
Forsythe, Doug J.
1986-01-01
Several different types of propulsion concepts are discussed: pulsed fission; continuous nuclear fission; chemical; and chemical boost with advanced nuclear fission. Some of the key characteristics of each type are provided, and typical concepts of each are shown.
Nuclear Fission Investigation with Twin Ionization Chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.
2011-11-29
The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weightingmore » potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.« less
NASA Astrophysics Data System (ADS)
Clemett, Ceri D.; Martin, Philip N.; Hill, Cassie; Threadgold, James R.; Maddock, Robert C.; Campbell, Ben; O'Malley, John; Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.; Zier, Jacob C.; Jackson, Stuart L.; Commisso, Robert J.; Schumer, Joseph W.
2015-04-01
Active interrogation is a method used to enhance the likelihood of detection of shielded special nuclear material (SNM); an external source of radiation is used to interrogate a target and to stimulate fission within any SNM present. Radiation produced by the fission process can be detected and used to infer the presence of the SNM. The Atomic Weapons Establishment (AWE) and the Naval Research Laboratory (NRL) have carried out a joint experimental study into the use of single pulse, high-intensity sources of bremsstrahlung x-rays and D(γb, n)H photoneutrons in an active interrogation system. The source was operated in both x-ray-only and mixed x-ray/photoneutron modes, and was used to irradiate a depleted uranium (DU) target which was enclosed by up to 150 g·cm - 2 of steel shielding. Resulting radiation signatures were measured by a suite of over 80 detectors and the data used to characterise detectable fission signatures as a function of the areal mass of the shielding. This paper describes the work carried out and discusses data collected with 3He proportional counters, NaI(Tl) scintillators and Eljen EJ-309 liquid scintillators. Results with the x-ray-only source demonstrate detection ( > 3\\sigmab) of the DU target through a minimum of 113 g·cm - 2 of steel, dropping to 85 g·cm- 2 when using a mixed x-ray/photoneutron source. The 3He proportional counters demonstrate detection ( > 3\\sigmab) of the DU target through the maximum 149. 7 g·cm - 2 steel shielding deployed for both photon and mixed x-ray/photoneutron sources.
Two neutron correlations in photo-fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, D. S.; Kosinov, O.; Forest, T.
2016-01-01
A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of twomore » neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.« less
A single-shot nanosecond neutron pulsed technique for the detection of fissile materials
NASA Astrophysics Data System (ADS)
Gribkov, V.; Miklaszewski, R. A.; Chernyshova, M.; Scholz, M.; Prokopovicz, R.; Tomaszewski, K.; Drozdowicz, K.; Wiacek, U.; Gabanska, B.; Dworak, D.; Pytel, K.; Zawadka, A.
2012-07-01
A novel technique with the potential of detecting hidden fissile materials is presented utilizing the interaction of a single powerful and nanosecond wide neutron pulse with matter. The experimental system is based on a Dense Plasma Focus (DPF) device as a neutron source generating pulses of almost mono-energetic 2.45 MeV and/or 14.0 MeV neutrons, a few nanoseconds in width. Fissile materials, consisting of heavy nuclei, are detected utilizing two signatures: firstly by measuring those secondary fission neutrons which are faster than the elastically scattered 2.45 MeV neutrons of the D-D reaction in the DPF; secondly by measuring the pulses of the slower secondary fission neutrons following the pulse of the fast 14 MeV neutrons from the D-T reaction. In both cases it is important to compare the measured spectrum of the fission neutrons induced by the 2.45 MeV or 14 MeV neutron pulse of the DPF with theoretical spectra obtained by mathematical simulation. Therefore, results of numerical modelling of the proposed system, using the MCNP5 and the FLUKA codes are presented and compared with experimental data.
Fission Technology for Exploring and Utilizing the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,
Developing the Pulsed Fission-Fusion (PuFF) Engine
NASA Technical Reports Server (NTRS)
Adams, Robert B.; Cassibry, Jason; Bradley, David; Fabisinski, Leo; Statham, Geoffrey
2014-01-01
In September 2013 the NASA Innovative Advanced Concept (NIAC) organization awarded a phase I contract to the PuFF team. Our phase 1 proposal researched a pulsed fission-fusion propulsion system that compressed a target of deuterium (D) and tritium (T) as a mixture in a column, surrounded concentrically by Uranium. The target is surrounded by liquid lithium. A high power current would flow down the liquid lithium and the resulting Lorentz force would compress the column by roughly a factor of 10. The compressed column would reach criticality and a combination of fission and fusion reactions would occur. Our Phase I results, summarized herein, review our estimates of engine and vehicle performance, our work to date to model the fission-fusion reaction, and our initial efforts in experimental analysis.
Method for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, D.P.; Browning, J.F.
1999-02-16
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.
Method for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, David P.; Browning, James F.
1999-01-01
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.
System for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, David P.; Browning, James F.
1998-01-01
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.
System for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, D.P.; Browning, J.F.
1998-07-21
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.
Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.;
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.
Pairing-induced speedup of nuclear spontaneous fission
NASA Astrophysics Data System (ADS)
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.
2014-12-01
Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.
Pairing-induced speedup of nuclear spontaneous fission
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...
2014-12-22
Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less
10 CFR 60.113 - Performance of particular barriers after permanent closure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the engineered barrier system are dominated by fission product decay; and (B) any release of... the time during which the thermal pulse is dominated by the decay heat from the fission products; (3...
10 CFR 60.113 - Performance of particular barriers after permanent closure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the engineered barrier system are dominated by fission product decay; and (B) any release of... the time during which the thermal pulse is dominated by the decay heat from the fission products; (3...
Fast coincidence counting with active inspection systems
NASA Astrophysics Data System (ADS)
Mullens, J. A.; Neal, J. S.; Hausladen, P. A.; Pozzi, S. A.; Mihalczo, J. T.
2005-12-01
This paper describes 2nd and 3rd order time coincidence distributions measurements with a GHz processor that synchronously samples 5 or 10 channels of data from radiation detectors near fissile material. On-line, time coincidence distributions are measured between detectors or between detectors and an external stimulating source. Detector-to-detector correlations are useful for passive measurements also. The processor also measures the number of times n pulses occur in a selectable time window and compares this multiplet distribution to a Poisson distribution as a method of determining the occurrence of fission. The detectors respond to radiation emitted in the fission process induced internally by inherent sources or by external sources such as LINACS, DT generators either pulsed or steady state with alpha detectors, etc. Data can be acquired from prompt emission during the source pulse, prompt emissions immediately after the source pulse, or delayed emissions between source pulses. These types of time coincidence measurements (occurring on the time scale of the fission chain multiplication processes for nuclear weapons grade U and Pu) are useful for determining the presence of these fissile materials and quantifying the amount, and are useful for counter terrorism and nuclear material control and accountability. This paper presents the results for a variety of measurements.
High-Sensitivity Fast Neutron Detector KNK-2-8M
NASA Astrophysics Data System (ADS)
Koshelev, A. S.; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M.; Chuklyaev, S. V.; Pepyolyshev, Yu. N.
2017-12-01
The design of the fast neutron detector KNK-2-8M is outlined. The results of he detector study in the pulse counting mode with pulses from 238U nuclei fission in the radiator of the neutron-sensitive section and in the current mode with separation of functional section currents are presented. The possibilities of determination of the effective number of 238U nuclei in the radiator of the neutron-sensitive section are considered. The diagnostic capabilities of the detector in the counting mode are demonstrated, as exemplified by the analysis of reference data on characteristics of neutron fields in the BR-1 reactor hall. The diagnostic capabilities of the detector in the current mode are demonstrated, as exemplified by the results of measurements of 238U fission intensity in the power startup of the BR-K1 reactor in the fission pulse generation mode with delayed neutrons and the detector placed in the reactor cavity in conditions of large-scale variation of the reactor radiation fields.
Neutron threshold activation detectors (TAD) for the detection of fissions
NASA Astrophysics Data System (ADS)
Gozani, Tsahi; Stevenson, John; King, Michael J.
2011-10-01
Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique, called Threshold Activation Detection (TAD), is to utilize appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation and then measure the radioactively decaying activation products (typically beta and gamma rays) well after the source pulse. The activation material should possess certain properties: a suitable half-life of the order of seconds; an energy threshold below which the numerous source neutrons will not activate it (e.g., 3 MeV); easily detectable activation products (typically >1 MeV beta and gamma rays) and have a usable cross-section for the selected reaction. Ideally the substance would be a part of the scintillator. There are several good material candidates for the TAD, including fluorine, which is a major constituent of available scintillators such as BaF 2, CaF 2 and hydrogen free liquid fluorocarbon. Thus the fluorine activation products, in particular the beta particles, can be measured with a very high efficiency in the detector. The principles, applications and experimental results obtained with the fluorine based TAD are discussed.
Research on fission fragment excitation of gases and nuclear pumping of lasers
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Davie, R. N.; Davis, J. F.; Fuller, J. L.; Paternoster, R. R.; Shipman, G. R.; Sterritt, D. E.; Helmick, H. H.
1974-01-01
Experimental investigations of fission fragment excited gases are reported along with a theoretical analysis of population inversions in fission fragment excited helium. Other studies reported include: nuclear augmentation of gas lasers, direct nuclear pumping of a helium-xenon laser, measurements of a repetitively pulsed high-power CO2 laser, thermodynamic properties of UF6 and UF6/He mixtures, and nuclear waste disposal utilizing a gaseous core reactor.
Correlated fission data measurements with DANCE and NEUANCE
NASA Astrophysics Data System (ADS)
Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Hayes, A. C.; Ianakiev, K. D.; Iliev, M. L.; Kawano, T.; Mosby, S.; Rusev, G.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Walker, C. L.; Wilhelmy, J. B.
2018-02-01
To enhance the capabilities of the DANCE array, a new detector array NEUANCE was developed to enable simultaneous measurements of prompt fission neutrons and γ rays. NEUANCE was designed and constructed using 21 stilbene organic scintillator crystals. It was installed in the central cavity of the DANCE array. Signals from the 160 BaF2 detectors of DANCE and the 21 detectors of NEUANCE were merged into a newly designed high-density high-throughput data acquisition system. The excellent pulse shape discrimination properties of stilbene enabled detection of neutrons with energy thresholds as low as 30-40 keVee. A fission reaction tagging method was developed using a NEUANCE γ-ray or neutron signal. The probability of detecting a neutron from the spontaneous fission of 252Cf using NEUANCE is ∼47%. New correlated data for prompt fission neutrons and prompt fission γ rays were obtained for 252Cf using this high detection efficiency experimental setup. Average properties of prompt fission neutron emission as a function of prompt fission γ-ray quantities were also obtained, suggesting that neutron and γ-ray emission in fission are correlated.
NASA Astrophysics Data System (ADS)
Mis'kevich, A. I.; Guo, J.; Dyuzhov, Yu A.
2013-11-01
The spontaneous and induced emission of XeCl* excimer molecules upon excitation of Xe - CCl4 and Ar - Xe - CCl4 gas mixtures with a low CCl4 content by high-energy charged particles [a pulsed high-energy electron beam and products of neutron nuclear reaction 235U(n, f)] has been experimentally studied. The electron energy was 150 keV, and the pump current pulse duration and amplitude were 5 ns and 5 A, respectively. The energy of fission fragments did not exceed 100 MeV, the duration of the neutron pump pulse was 200 μs, and the specific power contribution to the gas was about 300 W cm-3. Electron beam pumping in a cell 4 cm long with a cavity having an output mirror transmittance of 2.7% gives rise to lasing on the B → X transition in the XeCl* molecule (λ = 308 nm) with a gain α = 0.0085 cm-1 and fluorescence efficiency η ≈ 10%. Pumping by fission fragments in a 250-cm-long cell with a cavity formed by a highly reflecting mirror and a quartz window implements amplified spontaneous emission (ASE) with an output power of 40 - 50 kW sr-1 and a base ASE pulse duration of ~200 ms.
NASA Astrophysics Data System (ADS)
Waguespack, Randy Paul
2011-12-01
Small scale radiation detectors sensitive to alpha, beta, electromagnetic, neutron radiation are needed to combat the threat of nuclear terrorism and maintain national security. There are many types of radiation detectors on the market, and the type of detector chosen is usually determined by the type of particle to be detected. In the case of fissionable material, an ideal detector needs to detect all four types of radiation, which is not the focus of many detectors. For fissionable materials, the two main types of radiation that must be detected are gamma rays and neutrons. Our detector uses a glass or quartz scintillator doped with 10B nanoparticles to detect all four types of radiation particles. Boron-10 has a thermal neutron cross section of 3,840 barns. The interaction between the neutron and boron results in a secondary charge particle in the form of an alpha particle to be emitted, which is detectable by the scintillator. Radiation impinging on the scintillator matrix produces varying optical pulses dependent on the energy of the particles. The optical pulses are then detected by a photomultiplier (PM) tube, creating a current proportional to the energy of the particle. Current pulses from the PM tube are differentiated by on-chip pulse height spectroscopy, allowing for source discrimination. The pulse height circuitry has been fabricated with discrete circuits and designed into an integrated circuit package. The ability to replace traditional PM tubes with a smaller, less expensive photomultiplier will further reduce the size of the device and enhance the cost effectiveness and portability of the detector.
Compound Nucleus Reactions in LENR, Analogy to Uranium Fission
NASA Astrophysics Data System (ADS)
Hora, Heinrich; Miley, George; Philberth, Karl
2008-03-01
The discovery of nuclear fission by Hahn and Strassmann was based on a very rare microanalytical result that could not initially indicate the very complicated details of this most important process. A similarity is discussed for the low energy nuclear reactions (LENRs) with analogies to the yield structure found in measurements of uranium fission. The LENR product distribution measured earlier in a reproducible way in experiments with thin film electrodes and a high density deuteron concentration in palladium has several striking similarities with the uranium fission fragment yield curve.ootnotetextG.H. Miley and J.A. Patterson, J. New Energy 1, 11 (1996); G.H. Miley et al, Proc ICCF6, p. 629 (1997).This comparison is specifically focussed to the Maruhn-Greiner local maximum of the distribution within the large-scale minimum when the fission nuclei are excited. Implications for uranium fission are discussed in comparison with LENR relative to the identification of fission a hypothetical compound nuclear reaction via a element ^306X126 with double magic numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandel, Marian; Baramsai, Baramsai; Bredeweg, Todd Allen
To enhance the capabilities of the DANCE array, a new detector array NEUANCE was developed to enable simultaneous measurements of prompt fission neutrons and γ rays. NEUANCE was designed and constructed using 21 stilbene organic scintillator crystals. It was installed in the central cavity of the DANCE array. Signals from the 160 BaF 2 detectors of DANCE and the 21 detectors of NEUANCE were merged into a newly designed high-density high-throughput data acquisition system. The excellent pulse shape discrimination properties of stilbene enabled detection of neutrons with energy thresholds as low as 30–40 keVee. A fission reaction tagging method wasmore » developed using a NEUANCE γ-ray or neutron signal. The probability of detecting a neutron from the spontaneous fission of 252Cf using NEUANCE is 47%. New correlated data for prompt fission neutrons and prompt fission rays were obtained for 252Cf using this high detection efficiency experimental setup. In conclusion, average properties of prompt fission neutron emission as a function of prompt fission γ-ray quantities were also obtained, suggesting that neutron and γ-ray emission in fission are correlated.« less
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
NASA Astrophysics Data System (ADS)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-01
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.
NASA Astrophysics Data System (ADS)
Brown, C.; Gozani, T.; Shaw, T.; Stevenson, J.
2011-10-01
In the search for concealed special nuclear materials (SNM) there are a number of fission specific signatures that can be measured. These include prompt and delayed neutron and gamma ray signatures. Here the focus will be on the delayed gamma signature with the assumption that a pulsed electron linac with a constant peak current will be used to generate bremsstrahlung radiation and induce photofission in 235U. In this case, the signal to background ratio (S/B) will depend on the choice of linac frequency, pulse mode, and "active" background due to linac activation products. The linac frequency is simply the rate at which it produces short bursts of radiation, typically 2-4 μs in duration. There are two pulse modes, micro-pulsing, and macro-pulsing. In the micro-pulsing mode, the linac runs continuously at its set frequency and data is collected between bursts. In the macro-pulsing mode, the linac is turned on for a given length of time, on the order of seconds, and then turned off for a period of time typically equal to the length of time it was turned on. Counting takes place during the time the linac is off and stops when the linac is turned on for another cycle. The time dependence of the delayed gamma population can be approximated by the use of 5 time groups with half-lives of 0.29, 1.7, 13, 100, and 940 s, respectively. Each group has its own relative population, which together with its half-life determines what time frame the group contributes most to the measured signal. For example, a group with a short half-life will contribute more signal to a short cycle macro pulsed measurement than it would to a macro pulse measurement with a very long cycle. An analytical expression can be derived that calculates the maximum obtainable signal (delayed gamma photons per fission gamma ray) in either a micro- or macro-pulsed measurement. Using this information along with the observed active background present in a given situation (which can constrain the micro-pulsing parameters), the preferred mode of operation can be chosen to maximize S/B and the detection sensitivity. The principles and experimental application of the optimization process will be shown.
Correlated fission data measurements with DANCE and NEUANCE
Jandel, Marian; Baramsai, Baramsai; Bredeweg, Todd Allen; ...
2017-11-16
To enhance the capabilities of the DANCE array, a new detector array NEUANCE was developed to enable simultaneous measurements of prompt fission neutrons and γ rays. NEUANCE was designed and constructed using 21 stilbene organic scintillator crystals. It was installed in the central cavity of the DANCE array. Signals from the 160 BaF 2 detectors of DANCE and the 21 detectors of NEUANCE were merged into a newly designed high-density high-throughput data acquisition system. The excellent pulse shape discrimination properties of stilbene enabled detection of neutrons with energy thresholds as low as 30–40 keVee. A fission reaction tagging method wasmore » developed using a NEUANCE γ-ray or neutron signal. The probability of detecting a neutron from the spontaneous fission of 252Cf using NEUANCE is 47%. New correlated data for prompt fission neutrons and prompt fission rays were obtained for 252Cf using this high detection efficiency experimental setup. In conclusion, average properties of prompt fission neutron emission as a function of prompt fission γ-ray quantities were also obtained, suggesting that neutron and γ-ray emission in fission are correlated.« less
1999-01-01
In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propulsive force.
NASA Astrophysics Data System (ADS)
Zier, J. C.; Mosher, D.; Allen, R. J.; Commisso, R. J.; Cooperstein, G.; Hinshelwood, D. D.; Jackson, S. L.; Murphy, D. P.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Swanekamp, S. B.; Weber, B. V.
2014-06-01
Intense pulsed active detection (IPAD) is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU) object in the bremsstrahlung far field by varying the anode-cathode (AK) diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.
A thrust-sheet propulsion concept using fissionable elements
NASA Technical Reports Server (NTRS)
Moeckel, W. E.
1976-01-01
A space propulsion concept is proposed and analyzed which consists of a thin sheet coated on one side with fissionable material, so that nuclear power is converted directly into propulsive power. Thrust is available both from ejected fission fragments and from thermal radiation. Optimum thicknesses are determined for the active and substrate layers. This concept is shown to have potential mission capability (in terms of velocity increments) superior to that of all other advanced propulsion concepts for which performance estimates are available. A suitable spontaneously fissioning material such as Cf254 could provide an extremely high-performance first stage beyond earth orbit. In contrast with some other advanced nuclear propulsion concepts, there is no minimum size below which this concept is infeasible.
A thrust-sheet propulsion concept using fissionable elements
NASA Technical Reports Server (NTRS)
Moeckel, W. E.
1976-01-01
A space propulsion concept is proposed and analyzed which consists of a thin sheet coated on one side with fissionable material, so that nuclear power is converted directly into propulsive power. Thrust is available both from ejected fission fragments and from thermal radiation. Optimum thicknesses are determined for the active and substrate layers. This concept is shown to have potential mission capability (in terms of velocity increments) superior to that of all other advanced propulsion concepts for which performance estimates are available. A suitable spontaneously fissioning material such as Cf-254 could provide an extremely high-performance first stage beyond earth orbit. In contrast with some other advanced nuclear propulsion concepts, there is no minimum size below which this concept is infeasible.
Current pulse amplifier transmits detector signals with minimum distortion and attenuation
NASA Technical Reports Server (NTRS)
Bush, N. E.
1967-01-01
Amplifier translates the square pulses generated by a boron-trifluoride neutron sensitive detector located adjacent to a nuclear reactor to slower, long exponential decay pulses. These pulses are transmitted over long coaxial cables with minimum distortion and loss of frequency.
Search for electron and gamma-ray decay of the ^238fPu fission
NASA Astrophysics Data System (ADS)
Beausang, C. W.; Gurdal, G.; Ressler, J.; Barton, C. J.; Caprio, M. A.; Casten, R. F.; Cooper, J. R.; Hecht, A. A.; Hutter, C.; Zamfir, N. V.; Hauschild, K.; Korten, W.; Mergel, E.
2002-04-01
The reaction ^9Be + ^232Th arrow ^241Pu, at beam energies of 50 and 55 MeV, was used in an attempt to populate states in the second minimum (fission isomer) of ^238Pu via the 3n evaporation channel. Prompt gamma-rays, detected using YRAST Ball and conversion electrons, detected using ICE Ball, were collected in coincidence with delayed fission events measured using elements of the Yale SCARY array of solar cell detectors. The solar cell detectors were shielded so as not to view the large prompt fission flux from the target. Instead the detectors were located so that they could detect delayed fission events, originating from the 6 ns fission isomer state in ^238Pu, which occur downstream from the target position. Data analysis is in progress and results to date will be presented. This work is partly supported by the U.S. DOE under grant numbers DE-FG02-91ER-40609, DE-FG02-88ER-40417.
Fusion Applications and Market Evaluation (FAME) Study
1988-02-01
fuel from the breeder. Pyrochemical reprocessing is identified as having the potential for low cost, but needs development . The fast-fission designs... Development Administration, "Alternatives for Man- aging Wastes from Reactors and Post-Fission Operations in the LWR Fuel Cycle," ERDA-76-43 (1976). 5...of the ICF program to produce pulsed radiation for military development applications. X-rays can be converted into UV at about 50% energy efficiency
An active drop counting device using condenser microphone for superheated emulsion detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Mala; Marick, C.; Kanjilal, D.
2008-11-15
An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of {sup 252}Cf fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrummore » of {sup 252}Cf. Frequency analysis of the detected signals was also carried out.« less
An active drop counting device using condenser microphone for superheated emulsion detector
NASA Astrophysics Data System (ADS)
Das, Mala; Arya, A. S.; Marick, C.; Kanjilal, D.; Saha, S.
2008-11-01
An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of C252f fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrum of C252f. Frequency analysis of the detected signals was also carried out.
Reducing uncertainties for short lived cumulative fission product yields
Stave, Sean; Prinke, Amanda; Greenwood, Larry; ...
2015-09-05
Uncertainties associated with short lived (halflives less than 1 day) fission product yields listed in databases such as the National Nuclear Data Center’s ENDF/B-VII are large enough for certain isotopes to provide an opportunity for new precision measurements to offer significant uncertainty reductions. A series of experiments has begun where small samples of 235U are irradiated with a pulsed, fission neutron spectrum at the Nevada National Security Site and placed between two broad-energy germanium detectors. The amount of various isotopes present immediately following the irradiation can be determined given the total counts and the calibrated properties of the detector system.more » The uncertainty on the fission yields for multiple isotopes has been reduced by nearly an order of magnitude.« less
Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirolf, P. G.; Gross, M.; Allinger, K.
We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH{sub 2} layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of {sup 232}Th with solid-state density can be generated from a Th target and a deuterated CD{sub 2} foil, both forming the production target assembly. Laser-accelerated Thmore » ions with about 7 MeV/u will pass through a thin CH{sub 2} layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD{sub 2} layer of the production target will be accelerated as well, inducing the fission process of {sup 232}Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10{sup 14} times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 10{sup 3} ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.« less
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-19
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritiummore » allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.« less
Target and method for the production of fission product molybdenum-99
Vandegrift, George F.; Vissers, Donald R.; Marshall, Simon L.; Varma, Ravi
1989-01-01
A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm.sup.2 of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99.
High-sensitivity fast neutron detector KNK-2-7M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Dovbysh, L. Ye.; Ovchinnikov, M. A.
2015-12-15
The construction of the fast neutron detector KNK-2-7M is briefly described. The results of the study of the detector in the pulse-counting mode are given for the fissions of {sup 237}Np nuclei in the radiator of the neutron-sensitive section and in the current mode with the separation of sectional currents of functional sections. The possibilities of determining the effective number of {sup 237}Np nuclei in the radiator of the neutronsensitive section are considered. The diagnostic possibilities of the detector in the counting mode are shown by example of the analysis of the reference data from the neutron-field characteristics in themore » working hall of the BR-K1 reactor. The diagnostic possibilities of the detector in the current operating mode are shown by example of the results of measuring the {sup 237}Np-fission intensity in the BR-K1 reactor power start-ups implemented in the mode of fission-pulse generation on delayed neutrons at the detector arrangement inside the reactor core cavity under conditions of a wide variation of the reactor radiation field.« less
Measurements of Short-Lived Fission Isomers
NASA Astrophysics Data System (ADS)
Finch, Sean; Bhike, Megha; Howell, Calvin; Krishichayan, Fnu; Tornow, Werner
2016-09-01
Fission yields of the short lived isomers 134mTe (T1 / 2 = 162 ns) and 136mXe (T1 / 2 = 2 . 95 μs) were measured for 235U and 238U. The isomers were detected by the γ rays associated with the decay of the isomeric states using high-purity germanium detectors. Fission was induced using both monoenergetic γ rays and neutrons. At TUNL's High-Intensity Gamma-ray Source (HI γS), γ rays of 9 and 11 MeV were produced . Monoenergetic 8 MeV neutrons were produced at TUNL's tandem accelerator laboratory. Both beams were pulsed to allow for precise time-gated spectroscopy of both prompt and delayed γ rays following fission. This technique offers a non-destructive probe of special nuclear materials that is sensitive to the isotopic identity of the fissile material.
NASA Astrophysics Data System (ADS)
Chai, Qing-Zhen; Zhao, Wei-Juan; Wang, Hua-Lei; Liu, Min-Liang; Xu, Fu-Rong
2018-05-01
The triaxiality and Coriolis effects on the first fission barrier in even-even nuclei with A=256 have been studied in terms of the approach of multidimensional total Routhian surface calculations. The present results are compared with available data and other theories, showing a good agreement. Based on the deformation energy or Routhian curves, the first fission barriers are analyzed, focusing on their shapes, heights, and evolution with rotation. It is found that, relative to the effect on the ground-state minimum, the saddle point, at least the first one, can be strongly affected by the triaxial deformation degree of freedom and Coriolis force. The evolution trends of the macroscopic and microscopic (shell and pairing) contributions as well as the triaxial fission barriers are briefly discussed.
Target and method for the production of fission product molybdenum-99
Vandegrift, G.F.; Vissers, D.R.; Marshall, S.L.; Varma, R.
1987-10-26
A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm/sup 2/ of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99. 2 figs.
Fission-neutrons source with fast neutron-emission timing
NASA Astrophysics Data System (ADS)
Rusev, G.; Baramsai, B.; Bond, E. M.; Jandel, M.
2016-05-01
A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.
NASA Astrophysics Data System (ADS)
Lahaye, S.; Huynh, T. D.; Tsilanizara, A.
2016-03-01
Uncertainty quantification of interest outputs in nuclear fuel cycle is an important issue for nuclear safety, from nuclear facilities to long term deposits. Most of those outputs are functions of the isotopic vector density which is estimated by fuel cycle codes, such as DARWIN/PEPIN2, MENDEL, ORIGEN or FISPACT. CEA code systems DARWIN/PEPIN2 and MENDEL propagate by two different methods the uncertainty from nuclear data inputs to isotopic concentrations and decay heat. This paper shows comparisons between those two codes on a Uranium-235 thermal fission pulse. Effects of nuclear data evaluation's choice (ENDF/B-VII.1, JEFF-3.1.1 and JENDL-2011) is inspected in this paper. All results show good agreement between both codes and methods, ensuring the reliability of both approaches for a given evaluation.
Development of a thin scintillation films fission-fragment detector and a novel neutron source
NASA Astrophysics Data System (ADS)
Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.
2015-08-01
Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Taylor; Parma, Edward J.
Delayed fission gamma-rays play an important role in determining the time dependent ioniz- ing dose for experiments in the central irradiation cavity of the Annular Core Research Reactor (ACRR). Delayed gamma-rays are produced from both fission product decay and from acti- vation of materials in the core, such as cladding and support structures. Knowing both the delayed gamma-ray emission rate and the time-dependent gamma-ray energy spectrum is nec- essary in order to properly determine the dose contributions from delayed fission gamma-rays. This information is especially important when attempting to deconvolute the time-dependent neutron, prompt gamma-ray, and delayed gamma-ray contribution tomore » the response of a diamond photo-conducting diode (PCD) or fission chamber in time frames of milliseconds to seconds following a reactor pulse. This work focused on investigating delayed gamma-ray character- istics produced from fission products from thermal, fast, and high energy fission of Th-232, U-233, U-235, U-238, and Pu-239. This work uses a modified version of CINDER2008, a transmutation code developed at Los Alamos National Laboratory, to model time and energy dependent photon characteristics due to fission. This modified code adds the capability to track photon-induced transmutations, photo-fission, and the subsequent radiation caused by fission products due to photo-fission. The data is compared against previous work done with SNL- modified CINDER2008 [ 1 ] and experimental data [ 2 , 3 ] and other published literature, includ- ing ENDF/B-VII.1 [ 4 ]. The ability to produce a high-fidelity (7,428 group) energy-dependent photon fluence at various times post-fission can improve the delayed photon characterization for radiation effects tests at research reactors, as well as other applications.« less
LIFE Materials: Thermomechanical Effects Volume 5 - Part I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caro, M; DeMange, P; Marian, J
2009-05-07
Improved fuel performance is a key issue in the current Laser Inertial-Confinement Fusion-Fission Energy (LIFE) engine design. LIFE is a fusion-fission engine composed of a {approx}40-tons fuel blanket surrounding a pulsed fusion neutron source. Fusion neutrons get multiplied and moderated in a Beryllium blanket before penetrating the subcritical fission blanket. The fuel in the blanket is composed of millions of fuel pebbles, and can in principle be burned to over 99% FIMA without refueling or reprocessing. This report contains the following chapters: Chapter A: LIFE Requirements for Materials -- LIFE Fuel; Chapter B: Summary of Existing Knowledge; Chapter C: Identificationmore » of Gaps in Knowledge & Vulnerabilities; and Chapter D: Strategy and Future Work.« less
KINETIC ENERGY AND MASS DISTRIBUTIONS FOR NUCLEAR FISSION AT MODERATE EXCITATION ENERGY (thesis)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, D.S.
1963-10-01
Fission fragment kinetic energy measurements using semiconductor detectors were made for the alpha-induced fission of Au/sup 197/, Bi/sup 209/, Th/ sup 232/, and U/sup 238/ at alpha energi es of 21 to 65 Mev. The data were recorded as the number of events at fragment energies E/sub 1/ and E/sub 2/, N(E/ sub 1/,E/sub 2/). The data were then transformed into mass--total kinetic energy maps and analyzed by means of moments. The Bi and Au data are in good agreement with quantitative theoretical predictions from the liquid drop model available for the lighter elements. The U and Th data aremore » discussed in terms of qualitative ideas that have been proposed to explain the properties of the fission process for the heavier elements. The changes in the U and Th mass and total kinetic energy distributions with excitation energy are emphasized. Pulse- height energy relations for the detectors used were obtained by a detailed comparison of detector and time-offlight results for the spontaneous fission of Cf/sup 252/. 54 references. (auth)« less
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-01
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-20
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.
Development of a thin scintillation films fission-fragment detector and a novel neutron source
Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; ...
2015-08-26
Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less
Sensitivity of the nuclear deformability and fission barriers to the equation of state
NASA Astrophysics Data System (ADS)
Seif, W. M.; Anwer, Hisham
2018-07-01
The model-dependent analysis of the fission data impacts the extracted fission-related quantities, which are not directly observables, such as the super- and hyperdeformed isomeric states and their energies. We investigated the model dependence of the deformability of a nucleus and its fission barriers on the nuclear equation of state. Within the microscopic-macroscopic model based on a large number of Skyrme nucleon-nucleon interactions, the total energy surfaces and the double-humped fission barrier of 230Th are calculated in a multidimensional deformation space. In addition to the ground-state (GS) and the superdeformed (SD) minima, all the investigated forces yielded a hyperdeformed (HD) minimum. The contour map of the shell-plus-pairing energy clearly displayed the three minima. We found that the GS binding energy and the deformation energy of the different deformation modes along the fission path increase with the incompressibility coefficient K0, while the fission barrier heights and the excitation energies of the SD and HD modes decrease with it. Conversely, the surface-energy coefficient asurf, the symmetry-energy, and its density-slope parameter decrease the GS energy and the deformation energies, but increase the fission barrier heights and the excitation energies. The obtained deformation parameters of the different deformation modes exhibit almost independence on K0, and on the symmetry-energy and its density-slope. The principle deformation parameters of the SD and HD isomeric states tend to decrease with asurf.
NEUTRON MEASURING METHOD AND APPARATUS
Seaborg, G.T.; Friedlander, G.; Gofman, J.W.
1958-07-29
A fast neutron fission detecting apparatus is described consisting of a source of fast neutrons, an ion chamber containing air, two electrodes within the ion chamber in confronting spaced relationship, a high voltage potential placed across the electrodes, a shield placed about the source, and a suitable pulse annplifier and recording system in the electrode circuit to record the impulse due to fissions in a sannple material. The sample material is coated onto the active surface of the disc electrode and shielding means of a material having high neutron capture capabilities for thermal neutrons are provided in the vicinity of the electrodes and about the ion chamber so as to absorb slow neutrons of thermal energy to effectively prevent their diffusing back to the sample and causing an error in the measurement of fast neutron fissions.
Effect of the fissile bead's and thermocouple wires' sizes on the response time of a fission couple.
Liang, Wenfeng; Lu, Yi; Li, Meng; Fan, Xiaoqiang; Lu, Wei
2014-05-01
The fission couple is proposed as a fast response miniature neutron detector in the measurement of time dependent energy depositions within the fissile material based on theoretical analysis, but the response time of a fission couple is relatively slow in practice. The time lag originated from heat transfer process was demonstrated to be the dominating factor by theoretical simulations and experimental verification in this paper. The response of a fission couple as a function of the bead size and the thermocouple wires' sizes are simulated using ANSYS workbench. The decrease of wires' diameter results in the decrease of response time, and the increase of bead's diameter leads to a slight increase of response time. During a pulse heating transient in the fuel of Chinese Fast Burst Reactor II with a FWHM of 181 μs, the time lag originated from heat transfer process is about tens of microseconds for the peaks of the change rate of temperature, and is of the order of milliseconds to achieve 85% of the temperature rise for a typical fission couple with a Φ 1 mm fissile bead and two Φ 0.05 mm thermocouple wires. The results obtained provide foundation for the optimization of fission couples.
Effect of the fissile bead's and thermocouple wires’ sizes on the response time of a fission couple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Wenfeng, E-mail: liang-wen-feng@163.com; Lu, Yi; Li, Meng
The fission couple is proposed as a fast response miniature neutron detector in the measurement of time dependent energy depositions within the fissile material based on theoretical analysis, but the response time of a fission couple is relatively slow in practice. The time lag originated from heat transfer process was demonstrated to be the dominating factor by theoretical simulations and experimental verification in this paper. The response of a fission couple as a function of the bead size and the thermocouple wires’ sizes are simulated using ANSYS workbench. The decrease of wires’ diameter results in the decrease of response time,more » and the increase of bead's diameter leads to a slight increase of response time. During a pulse heating transient in the fuel of Chinese Fast Burst Reactor II with a FWHM of 181μs, the time lag originated from heat transfer process is about tens of microseconds for the peaks of the change rate of temperature, and is of the order of milliseconds to achieve 85% of the temperature rise for a typical fission couple with a Φ 1 mm fissile bead and two Φ 0.05 mm thermocouple wires. The results obtained provide foundation for the optimization of fission couples.« less
Ultrafast dynamics of exciton fission in polycrystalline pentacene.
Wilson, Mark W B; Rao, Akshay; Clark, Jenny; Kumar, R Sai Santosh; Brida, Daniele; Cerullo, Giulio; Friend, Richard H
2011-08-10
We use ultrafast transient absorption spectroscopy with sub-20 fs time resolution and broad spectral coverage to directly probe the process of exciton fission in polycrystalline thin films of pentacene. We observe that the overwhelming majority of initially photogenerated singlet excitons evolve into triplet excitons on an ∼80 fs time scale independent of the excitation wavelength. This implies that exciton fission occurs at a rate comparable to phonon-mediated exciton localization processes and may proceed directly from the initial, delocalized, state. The singlet population is identified due to the brief presence of stimulated emission, which is emitted at wavelengths which vary with the photon energy of the excitation pulse, a violation of Kasha's Rule that confirms that the lowest-lying singlet state is extremely short-lived. This direct demonstration that triplet generation is both rapid and efficient establishes multiple exciton generation by exciton fission as an attractive route to increased efficiency in organic solar cells. © 2011 American Chemical Society
Modification of apparent fission yields by Chemical Fractionation following Fission (CFF)
NASA Astrophysics Data System (ADS)
Hohenberg, Charles; Meshik, Alex
2008-04-01
Grain-by-grain studies of the 2 billion year old Oklo natural reactor, using laser micro-extraction^1,2, yield detailed information about Oklo, a water-moderated pulsed reactor, cycle times, total neutron fluence and duration, but it also demonstrates Chemical Fractionation following Fission. In the CFF process, members of an isobaric yield chain with long half-lives are subject to migration before decay can occur. Of particular interest is the 129 isobar where 17 million ^129I can migrate out of the host grain before decay, and iodine compounds are water soluble. This is amply demonstated by the variation of Xe spectra between micron-sized uranium-bearing minerals and adjacent uranium-free minerals. Fission 129 yields for the spontaneous fission of ^238U generally come from measured ^129Xe in pitchblend^2, ores emplaced by aqueous activity, and are incorrect due to the CFF process. ^238U yields for the 131 and 129 chains, reported in Hyde^3, as 0.455 +- .02 and < 0.012, respectively, the latter being anomalously low. ^1A Meshik, C Hohenberg and O Pravdivtesva, PRL 93, 182302 (2004); A Meshik Sci. Am. Nov (2005), 55; ^2E K Hyde, Nucl Prop of Heavy Elements III (1964).
Improved Intrapulse Raman Scattering Control via Asymmetric Airy Pulses
NASA Astrophysics Data System (ADS)
Hu, Yi; Tehranchi, Amirhossein; Wabnitz, Stefan; Kashyap, Raman; Chen, Zhigang; Morandotti, Roberto
2015-02-01
We experimentally demonstrate the possibility of tuning the frequency of a laser pulse via the use of an Airy pulse-seeded soliton self-frequency shift. The intrinsically asymmetric nature of Airy pulses, typically featured by either leading or trailing oscillatory tails (relatively to the main lobe), is revealed through the nonlinear generation of both a primary and a secondary Raman soliton self-frequency shift, a phenomenon which is driven by the soliton fission processes. The resulting frequency shift can be carefully controlled by using time-reversed Airy pulses or, alternatively, by applying an offset to the cubic phase modulation used to generate the pulses. When compared with the use of conventional chirped Gaussian pulses, our technique brings about unique advantages in terms of both efficient frequency tuning and feasibility, along with the generation and control of multicolor Raman solitons with enhanced tunability. Our theoretical analysis agrees well with our experimental observations.
Coding for Communication Channels with Dead-Time Constraints
NASA Technical Reports Server (NTRS)
Moision, Bruce; Hamkins, Jon
2004-01-01
Coding schemes have been designed and investigated specifically for optical and electronic data-communication channels in which information is conveyed via pulse-position modulation (PPM) subject to dead-time constraints. These schemes involve the use of error-correcting codes concatenated with codes denoted constrained codes. These codes are decoded using an interactive method. In pulse-position modulation, time is partitioned into frames of Mslots of equal duration. Each frame contains one pulsed slot (all others are non-pulsed). For a given channel, the dead-time constraints are defined as a maximum and a minimum on the allowable time between pulses. For example, if a Q-switched laser is used to transmit the pulses, then the minimum allowable dead time is the time needed to recharge the laser for the next pulse. In the case of bits recorded on a magnetic medium, the minimum allowable time between pulses depends on the recording/playback speed and the minimum distance between pulses needed to prevent interference between adjacent bits during readout. The maximum allowable dead time for a given channel is the maximum time for which it is possible to satisfy the requirement to synchronize slots. In mathematical shorthand, the dead-time constraints for a given channel are represented by the pair of integers (d,k), where d is the minimum allowable number of zeroes between ones and k is the maximum allowable number of zeroes between ones. A system of the type to which the present schemes apply is represented by a binary- input, real-valued-output channel model illustrated in the figure. At the transmitting end, information bits are first encoded by use of an error-correcting code, then further encoded by use of a constrained code. Several constrained codes for channels subject to constraints of (d,infinity) have been investigated theoretically and computationally. The baseline codes chosen for purposes of comparison were simple PPM codes characterized by M-slot PPM frames separated by d-slot dead times.
Table of superdeformed nuclear bands and fission isomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, R.B.; Singh, B.
A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in {sup 152}Dy was predicted for {beta}{sub 2}-0.65. Subsequently, a discrete set of {gamma}-ray transitions in {sup 152}DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of {gamma}-ray detector arrays is already producing a wealth of information about the mechanisms for feeding andmore » deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra.« less
Chen, Shaoqiang; Diao, Shengxi; Li, Pengtao; Nakamura, Takahiro; Yoshita, Masahiro; Weng, Guoen; Hu, Xiaobo; Shi, Yanling; Liu, Yiqing; Akiyama, Hidefumi
2017-07-31
High power pulsed lasers with tunable pulse widths are highly favored in many applications. When combined with power amplification, gain-switched semiconductor lasers driven by broadband tunable electric pulsers can meet such requirements. For this reason, we designed and produced a low-cost integrated CMOS pulse generator with a minimum pulse width of 80 ps and a wide tuning range of up to 270 ns using a 40-nm microelectronic process technique. We used this pulser to drive a 1.3-µm semiconductor laser diode directly, and thereafter investigated the gain-switching properties of the laser system. The optical pulses consist of a spike followed by a steady state region. Tuning the width of the electrical pulse down to approximately 1.5 ns produces optical pulses consisting only of the spike, which has a minimum pulse-width of 100 ps. Moreover, the duration of the steady state can be tuned continuously by tuning the electrical pulse width, with a peak power of approximately 5 mW. The output voltage of the electric pulser has a tuning range of 0.8-1.5 V that can be used to directly drive semiconductor laser diodes with wavelengths in the near-infrared spectrum, which are suitable for power amplification with rare-earth doped fiber amplifiers.
Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A
2014-09-22
We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.
Measuring Fission Chain Dynamics Through Inter-event Timing of Correlated Particles
NASA Astrophysics Data System (ADS)
Monterial, Mateusz
Neutrons born from fission may go on to induce subsequent fissions in self-propagating series of reactions resulting in a fission chain. Fissile materials comprise all isotopes capable of sustaining nuclear fission chain reactions, and are therefore a necessary prerequisite for the construction of a nuclear weapon. As a result the accountancy and characterization of fissile material is of great importance for national security and the international community. The rate at which neutrons "multiply" in a fissile material is a function of the composition, total mass, density, and shape of the object. These are key characteristics sought out in areas of nuclear non-proliferation, safeguards, treaty verification and emergency response. This thesis demonstrates a novel technique of measuring the underlying fission chain dynamics in fissile material through temporal correlation of neutrons and gamma rays emitted from fission. Fissile material exhibits key detectable signatures through the emission of correlated neutrons and gamma rays from fission. The Non-Destructive Assay (NDA) community has developed mature techniques of assaying fissile material that detect these signatures, such as neutron counting by thermal capture based detectors, and gamma-ray spectroscopy. An alternative use of fast organic scintillators provides three additional capabilities: (1) discrimination between neutrons and gamma-ray pulses (2) sub-nanosecond scale timing between correlated events (3) measurement of deposited neutron energy in the detector. This thesis leverages these capabilities into to measure a new signature, which is demonstrated to be sensitive to both fissile neutron multiplication and presence of neutronically coupled reflectors. In addition, a new 3D imaging method of sources of correlated gamma rays and neutrons is presented, which can improve estimation of total source volume and localization.
Measurement of U-235 Fission Neutron Spectra Using a Multiple Gamma Coincidence Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Chuncheng; Kegel, G.H.R.; Egan, J.J.
2005-05-24
The Los Alamos Model of Madland and Nix predicts the shape of the fission neutron energy spectrum for incident primary neutrons of different energies. Verifications of the model normally are limited to measurements of the fission neutron spectra for energies higher than that of the primary neutrons because the low-energy spectrum is distorted by the admixture of elastically and inelastically scattered neutrons. This situation can be remedied by using a measuring technique that separates fission from scattering events. One solution consists of using a fissile sample so thin that fission fragments can be observed indicating the occurrence of a fissionmore » event. A different approach is considered in this paper. It has been established that a fission event is accompanied by the emission of between seven and eight gamma rays, while in a scattering interaction, between zero and two gammas are emitted, so that a gamma multiplicity detector should supply a datum to distinguish a fission event from a scattering event. We proceed as follows: A subnanosecond pulsed and bunched proton beam from the UML Van de Graaff generates nearly mono-energetic neutrons by irradiating a thin metallic lithium target. The neutrons irradiate a 235U sample. Emerging neutron energies are measured with a time-of-flight spectrometer. A set of four BaF2 detectors is located close to the 235U sample. These detectors together with their electronic components identify five different events for each neutron detected, i.e., whether four, three, two, one, or none of the BaF2 detectors received one (or more) gamma rays. We present work, preliminary to the final measurements, involving feasibility considerations based on gamma-ray coincidence measurements with four BaF2 detectors, and the design of a Fission-Scattering Discriminator under construction.« less
Research Activities in Fission Chamber Modeling in Support of the Nuclear Energy Industry
NASA Astrophysics Data System (ADS)
Jammes, C.; Filliatre, P.; Geslot, B.; Oriol, L.; Berhouet, F.; Villard, J.-F.; Vermeeren, L.
2010-12-01
Fission chambers are widely used in the nuclear industry. As an example, they play a major role in the control of any fission reactor and are thus regarded as a key component for ensuring their safety. They are also employed in the material testing reactors for monitoring irradiations. We have recently started a research program, the objective of which is to improve the performance of those neutron detectors in terms of lifetime, calibration, and online diagnosis. In this paper, we present several studies carried out in order to model the signal delivered by a fission chamber. First, the simulation of the deposit evolution allowed us to select the most appropriate fissile material for a given spectrum and fluence. Second, we studied the impact of the bias voltage and filling gas characteristics on the charge collection time. Finally, the simulation of a pulse signal prior to amplification showed how it is important to have a satisfactory knowledge of the energy for creating ion pairs to accurately assess the signal in current or Campbelling mode.
Active interrogation using low-energy nuclear reactions
NASA Astrophysics Data System (ADS)
Antolak, Arlyn; Doyle, Barney; Leung, Ka-Ngo; Morse, Daniel; Provencio, Paula
2005-09-01
High-energy photons and neutrons can be used to interrogate for heavily shielded fissile materials inside sealed cargo containers by detecting their prompt and/or delayed fission signatures. The FIND (Fissmat Inspection for Nuclear Detection) active interrogation system is based on a dual neutron+gamma source that uses low-energy (< 500 keV) proton- or deuteron-induced nuclear reactions to produce high intensities of mono-energetic gamma rays and/or neutrons. The source can be operated in either pulsed (e.g., to detect delayed photofission neutrons and gammas) or continuous (e.g., detecting prompt fission signatures) modes. For the gamma-rays, the source target can be segmented to incorporate different (p,γ) isotopes for producing gamma-rays at selective energies, thereby improving the probability of detection. The design parameters for the FIND system are discussed and preliminary accelerator-based measurements of gamma and neutron yields, background levels, and fission signals for several target materials under consideration are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Samuel S.; Clark, Sue B.; Eggemeyer, Tere A.
Activation analysis of gold (Au) is used to estimate neutron fluence resulting from a criticality event; however, such analyses are complicated by simultaneous production of other gamma-emitting fission products. Confidence in neutron fluence estimates can be increased by quantifying additional activation products such as platinum (Pt), tantalum (Ta), and tungsten (W). This work describes a radiochemical separation procedure for the determination of these activation products. Anion exchange chromatography is used to separate anionic forms of these metals in a nitric acid matrix; thiourea is used to isolate the Au and Pt fraction, followed by removal of the Ta fraction usingmore » hydrogen peroxide. W, which is not retained on the first anion exchange column, is transposed to an HCl/HF matrix to enhance retention on a second anion exchange column and finally eluted using HNO3/HF. Chemical separations result in a reduction in the minimum detectable activity by a factor of 287, 207, 141, and 471 for 182Ta, 187W, 197Pt, and 198Au respectively, with greater than 90% recovery for all elements. These results represent the highest recoveries and lowest minimum detectable activities for 182Ta, 187W, 197Pt, and 198Au from mixed fission-activation product samples to date, enabling considerable refinement in the measurement uncertainties for neutron fluences in highly complex sample matrices.« less
The new double energy-velocity spectrometer VERDI
NASA Astrophysics Data System (ADS)
Jansson, Kaj; Frégeau, Marc Olivier; Al-Adili, Ali; Göök, Alf; Gustavsson, Cecilia; Hambsch, Franz-Josef; Oberstedt, Stephan; Pomp, Stephan
2017-09-01
VERDI (VElocity foR Direct particle Identification) is a fission-fragment spectrometer recently put into operation at JRC-Geel. It allows measuring the kinetic energy and velocity of both fission fragments simultaneously. The velocity provides information about the pre-neutron mass of each fission fragment when isotropic prompt-neutron emission from the fragments is assumed. The kinetic energy, in combination with the velocity, provides the post-neutron mass. From the difference between pre- and post-neutron masses, the number of neutrons emitted by each fragment can be determined. Multiplicity as a function of fragment mass and total kinetic energy is one important ingredient, essential for understanding the sharing of excitation energy between fission fragments at scission, and may be used to benchmark nuclear de-excitation models. The VERDI spectrometer design is a compromise between geometrical efficiency and mass resolution. The spectrometer consists of an electron detector located close to the target and two arrays of silicon detectors, each located 50 cm away from the target. In the present configuration pre-neutron and post-neutron mass distributions are in good agreement with reference data were obtained. Our latest measurements performed with spontaneously fissioning 252Cf is presented along with the developed calibration procedure to obtain pulse height defect and plasma delay time corrections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, Alberto; Gohar, Yousry
2016-06-01
This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the timemore » is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.« less
Modulational-instability-induced supercontinuum generation with saturable nonlinear response
NASA Astrophysics Data System (ADS)
Raja, R. Vasantha Jayakantha; Porsezian, K.; Nithyanandan, K.
2010-07-01
We theoretically investigate the supercontinuum generation (SCG) on the basis of modulational instability (MI) in liquid-core photonic crystal fibers (LCPCF) with CS2-filled central core. The effect of saturable nonlinearity of LCPCF on SCG in the femtosecond regime is studied using an appropriately modified nonlinear Schrödinger equation. We also compare the MI induced spectral broadening with SCG obtained by soliton fission. To analyze the quality of the pulse broadening, we study the coherence of the SC pulse numerically. It is evident from the numerical simulation that the response of the saturable nonlinearity suppresses the broadening of the pulse. We also observe that the MI induced SCG in the presence of saturable nonlinearity degrades the coherence of the SCG pulse when compared to unsaturated medium.
Modulational-instability-induced supercontinuum generation with saturable nonlinear response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raja, R. Vasantha Jayakantha; Porsezian, K.; Nithyanandan, K.
2010-07-15
We theoretically investigate the supercontinuum generation (SCG) on the basis of modulational instability (MI) in liquid-core photonic crystal fibers (LCPCF) with CS{sub 2}-filled central core. The effect of saturable nonlinearity of LCPCF on SCG in the femtosecond regime is studied using an appropriately modified nonlinear Schroedinger equation. We also compare the MI induced spectral broadening with SCG obtained by soliton fission. To analyze the quality of the pulse broadening, we study the coherence of the SC pulse numerically. It is evident from the numerical simulation that the response of the saturable nonlinearity suppresses the broadening of the pulse. We alsomore » observe that the MI induced SCG in the presence of saturable nonlinearity degrades the coherence of the SCG pulse when compared to unsaturated medium.« less
ERIC Educational Resources Information Center
Christie, Kathy
2005-01-01
In Physics "critical mass" refers to the minimum amount of fissionable material required to sustain a chain reaction. The adoption of state education policy isn't often equated with this concept, but occasionally solutions and ideas seem to gather around a common problem. If the solution at hand is simple, easily understood, and…
The Pulsed Fission-Fusion (PUFF) Concept for Deep Space Exploration and Terrestrial Power Generation
NASA Technical Reports Server (NTRS)
Adams, Robert; Cassibry, Jason; Schillo, Kevin
2017-01-01
This team is exploring a modified Z-pinch geometry as a propulsion system, imploding a liner of liquid lithium onto a pellet containing both fission and fusion fuel. The plasma resulting from the fission and fusion burn expands against a magnetic nozzle, for propulsion, or a magnetic confinement system, for terrestrial power generation. There is considerable synergy in the concept; the lithium acts as a temporary virtual cathode, and adds reaction mass for propulsion. Further, the lithium acts as a radiation shield against generated neutrons and gamma rays. Finally, the density profile of the column can be tailored using the lithium sheath. Recent theoretical and experimental developments (e.g. tailored density profile in the fuel injection, shear stabilization, and magnetic shear stabilization) have had great success in mitigating instabilities that have plagued previous fusion efforts. This paper will review the work in evaluating the pellet sizes and z-pinch conditions for optimal PuFF propulsion. Trades of pellet size and composition with z-pinch power levels and conditions for the tamper and lithium implosion are evaluated. Current models, both theoretical and computational, show that a z-pinch can ignite a small (1 cm radius) fission-fusion target with significant yield. Comparison is made between pure fission and boosted fission targets. Performance is shown for crewed spacecraft for high speed Mars round trip missions and near interstellar robotic missions. The PuFF concept also offers a solution for terrestrial power production. PuFF can, with recycling of the effluent, achieve near 100% burnup of fission fuel, providing a very attractive power source with minimal waste. The small size of PuFF relative to today's plants enables a more distributed power network and less exposure to natural or man-made disruptions.
Monterial, Mateusz; Marleau, Peter; Paff, Marc; ...
2017-01-20
Here, we present the results from the first measurements of the Time-Correlated Pulse-Height (TCPH) distributions from 4.5 kg sphere of α-phase weapons-grade plutonium metal in five configurations: bare, reflected by 1.27 cm and 2.54 cm of tungsten, and 2.54 cm and 7.62 cm of polyethylene. A new method for characterizing source multiplication and shielding configuration is also demonstrated. The method relies on solving for the underlying fission chain timing distribution that drives the spreading of the measured TCPH distribution. We found that a gamma distribution fits the fission chain timing distribution well and that the fit parameters correlate with bothmore » multiplication (rate parameter) and shielding material types (shape parameter). The source-to-detector distance was another free parameter that we were able to optimize, and proved to be the most well constrained parameter. MCNPX-PoliMi simulations were used to complement the measurements and help illustrate trends in these parameters and their relation to multiplication and the amount and type of material coupled to the subcritical assembly.« less
NASA Astrophysics Data System (ADS)
Monterial, Mateusz; Marleau, Peter; Paff, Marc; Clarke, Shaun; Pozzi, Sara
2017-04-01
We present the results from the first measurements of the Time-Correlated Pulse-Height (TCPH) distributions from 4.5 kg sphere of α-phase weapons-grade plutonium metal in five configurations: bare, reflected by 1.27 cm and 2.54 cm of tungsten, and 2.54 cm and 7.62 cm of polyethylene. A new method for characterizing source multiplication and shielding configuration is also demonstrated. The method relies on solving for the underlying fission chain timing distribution that drives the spreading of the measured TCPH distribution. We found that a gamma distribution fits the fission chain timing distribution well and that the fit parameters correlate with both multiplication (rate parameter) and shielding material types (shape parameter). The source-to-detector distance was another free parameter that we were able to optimize, and proved to be the most well constrained parameter. MCNPX-PoliMi simulations were used to complement the measurements and help illustrate trends in these parameters and their relation to multiplication and the amount and type of material coupled to the subcritical assembly.
Mayer, Michael F.; Nattress, J.; Jovanovic, I.
2016-06-27
Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n γ) 12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time- dependent buildup and decay of delayed neutron emission from 238Umore » were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. Furthermore, this method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.« less
Neutron Detection With Ultra-Fast Digitizer and Pulse Identification Techniques on DIII-D
NASA Astrophysics Data System (ADS)
Zhu, Y. B.; Heidbrink, W. W.; Piglowski, D. A.
2013-10-01
A prototype system for neutron detection with an ultra-fast digitizer and pulse identification techniques has been implemented on the DIII-D tokamak. The system consists of a cylindrical neutron fission chamber, a charge sensitive amplifier, and a GaGe Octopus 12-bit CompuScope digitizer card installed in a Linux computer. Digital pulse identification techniques have been successfully performed at maximum data acquisition rate of 50 MSPS with on-board memory of 2 GS. Compared to the traditional approach with fast nuclear electronics for pulse counting, this straightforward digital solution has many advantages, including reduced expense, improved accuracy, higher counting rate, and easier maintenance. The system also provides the capability of neutron-gamma pulse shape discrimination and pulse height analysis. Plans for the upgrade of the old DIII-D neutron counting system with these techniques will be presented. Work supported by the US Department of Energy under SC-G903402, and DE-FC02-04ER54698.
The all-fiber cladding-pumped Yb-doped gain-switched laser.
Larsen, C; Hansen, K P; Mattsson, K E; Bang, O
2014-01-27
Gain-switching is an alternative pulsing technique of fiber lasers, which is power scalable and has a low complexity. From a linear stability analysis of rate equations the relaxation oscillation period is derived and from it, the pulse duration is defined. Good agreement between the measured pulse duration and the theoretical prediction is found over a wide range of parameters. In particular we investigate the influence of an often present length of passive fiber in the cavity and show that it introduces a finite minimum in the achievable pulse duration. This minimum pulse duration is shown to occur at longer active fibers length with increased passive length of fiber in the cavity. The peak power is observed to depend linearly on the absorbed pump power and be independent of the passive fiber length. Given these conclusions, the pulse energy, duration, and peak power can be estimated with good precision.
Explosives (and other threats) detection using pulsed neutron interrogation and optimized detectors
NASA Astrophysics Data System (ADS)
Strellis, Dan A.; Elsalim, Mashal; Gozani, Tsahi
2011-06-01
We have previously reported results from a human-portable system using neutron interrogation to detect contraband and explosives. We summarized our methodology for distinguishing threat materials such as narcotics, C4, and mustard gas in the myriad of backgrounds present in the maritime environment. We are expanding our mission for the Domestic Nuclear Detection Office (DNDO) to detect Special Nuclear Material (SNM) through the detection of multiple fission signatures without compromising the conventional threat detection performance. This paper covers our initial investigations into using neutrons from compact pulsed neutron generators via the d(D,n)3He or d(T,n)α reactions with energies of ~2.5 and 14 MeV, respectively, for explosives (and other threats) detection along with a variety of gamma-ray detectors. Fast neutrons and thermal neutrons (after successive collisions) can stimulate the emission of various threat detection signatures. For explosives detection, element-specific gamma-ray signatures via the (n,n'γ) inelastic scattering reaction and the (n,'γ) thermal capture reaction are detected. For SNM, delayed gamma-rays following fission can be measured with the same detector. Our initial trade-off investigations of several gamma-ray detectors types (NaI, CsI, LaBr3, HPGe) for measuring gamma-ray signatures in a pulsed neutron environment for potential application in a human-portable active interrogation system are covered in this paper.
NASA Astrophysics Data System (ADS)
Lemoine, F.
1997-09-01
Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup, which, under overpower conditions, can lead to solid fuel pressurization and swelling causing severe PCMI (pellet clad mechanical interaction). In order to assess the reliability of high burnup fuel under RIAs, experimental programs have been initiated which have provided important data concerning the transient fission gas behavior and the clad loading mechanisms. The importance of the rim zone is demonstrated based on three experiments resulting in clad failure at low enthalpy, which are explained by energetic considerations. High gas release in non-failure tests with low energy deposition underlines the importance of grain boundary and porosity gas. Measured final releases are strongly correlated to the microstructure evolution, depending on energy deposition, pulse width, initial and refabricated fuel rod design. Observed helium release can also increase internal pressure and gives hints to the gas behavior understanding.
Multiplicity counting from fission detector signals with time delay effects
NASA Astrophysics Data System (ADS)
Nagy, L.; Pázsit, I.; Pál, L.
2018-03-01
In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).
Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum
NASA Technical Reports Server (NTRS)
Tennant, Allyn F.; Becker, Werner; Juda, Michael X.; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.; Shibazaki, Noriaki;
1999-01-01
The Chandra X-ray Observatory observed the Crab Nebula and Pulsar using the Low-Energy Transmission Grating (LETG) with the High-Resolution Camera (HRC). Time-resolved zeroth-order images reveal that the pulsar emits x rays at all pulse phases. Analysis of the flux at minimum -- most likely nonthermal in origin -- places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile appears to confirm the absolute timing of the Observatory to within about 0.2 ms.
Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum
NASA Technical Reports Server (NTRS)
Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.
2001-01-01
The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.
Pulsed Magnetic Field Driven Gas Core Reactors for Space Power & Propulsion Applications
NASA Technical Reports Server (NTRS)
Anghaie, Samim; Smith, Blair; Knight, Travis; Butler, Carey
2003-01-01
The present results indicated that: 1. A pulsed magnetic driven fission power concept, PMD-GCR is developed for closed (NER) and semi-open (NTR) operations. 2. In power mode, power is generated at alpha less than 1 for power levels of hundreds of KW or higher 3. IN semi open NTR mode, PMD-GCR generates thrust at I(sub sp) approx. 5,000 s and jet power approx. 5KW/Kg. 4. PMD-GCR is highly subcritical and is actively driven to critically. 5. Parallel path with fusion R&D needs in many areas including magnet and plasma.
Pappas, Daniel S.
1989-01-01
Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.
Target Glint Suppression Technology.
1980-09-01
report is organized into two principal sections. Section 2 addresses the impact of target effects on the noncoherent detection problem associated with...zero pulse-to-pulse correlation. Results are presented for a scanning search radar which is assumed to noncoherently integrate N pulses. Generally...speaking, detection performance is shown to be a maximum when the pulse-to-pulse correlation is a minimum. As a result noncoherent search radars should
Hart, Stephanie M.; Silva, W. Ruchira
2017-01-01
Singlet fission is a spin-allowed process in which an excited singlet state evolves into two triplet states. We use femtosecond stimulated Raman spectroscopy, an ultrafast vibrational technique, to follow the molecular structural evolution during singlet fission in order to determine the mechanism of this process. In crystalline pentacene, we observe the formation of an intermediate characterized by pairs of excited state peaks that are red- and blue-shifted relative to the ground state features. We hypothesize that these features arise from the formation of cationic and anionic species due to partial transfer of electron density from one pentacene molecule to a neighboring molecule. These observations provide experimental evidence for the role of states with significant charge-transfer character which facilitate the singlet fission process in pentacene. Our work both provides new insight into the singlet fission mechanism in pentacene and demonstrates the utility of structurally-sensitive time-resolved spectroscopic techniques in monitoring ultrafast processes. PMID:29675170
Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V
2012-08-01
This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.
Detection of fissionable material in cargo containers using active neutron interrogation
NASA Astrophysics Data System (ADS)
Church, Jennifer
2006-10-01
Roughly 6 million cargo containers will be shipped to U.S. seaports in a single year, each container carrying up to 30 tons of freight in varied configurations. Highly enriched uranium and other fissionable material concealed inside these containers is a challenge for existing portal monitors, due in part to the attenuation of signals in the cargo. A system is currently being developed to overcome these challenges without slowing the flow of commerce through the port, keeping the likelihood of false-negative and false- positive detections to a minimum. The technique utilizes a neutron beam to induce fission, and a wall of plastic scintillators to detect subsequent delayed high-energy γ- rays after β-decay of the fission products Decay curves utilizing these delayed γ-rays with energies above 3 MeV are an efficient diagnostic. New experimental work using a 3-7 MeV broad spectrum neutron source will be presented and compared to simulations and past experimental results. This work is performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory contract No. W-7405-Eng-4, UCRL-ABS-219231. E.B.,orman et al., Nucl. Instr. Methods Phys. Res. A, 521, 608 (2004).
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.
2018-01-01
Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of neutron flux in the reactor core.
NASA Astrophysics Data System (ADS)
Ashenfelter, J.; Balantekin, B.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bowes, A.; Brodsky, J. P.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Commeford, K.; Davee, D.; Dean, D.; Deichert, G.; Diwan, M. V.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Goddard, B. W.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Langford, T. J.; Littlejohn, B. R.; Martinez Caicedo, D. A.; McKeown, R. D.; Mendenhall, M. P.; Mueller, P.; Mumm, H. P.; Napolitano, J.; Neilson, R.; Norcini, D.; Pushin, D.; Qian, X.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Sheets, S.; Stemen, N. T.; Surukuchi, P. T.; Varner, R. L.; Viren, B.; Wang, W.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y. R.; Zangakis, G.; Zhang, C.; Zhang, X.
2015-11-01
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.
Development and evaluation of a technique for in vivo monitoring of 60Co in human lungs
NASA Astrophysics Data System (ADS)
de Mello, J. Q.; Lucena, E. A.; Dantas, A. L. A.; Dantas, B. M.
2016-07-01
60Co is a fission product of 235U and represents a risk of internal exposure of workers in nuclear power plants, especially those involved in the maintenance of potentially contaminated parts and equipment. The control of 60Co intake by inhalation can be performed through in vivo monitoring. This work describes the evaluation of a technique through the minimum detectable activity and the corresponding minimum detectable effective doses, based on biokinetic and dosimetric models of 60Co in the human body. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intake.
Pulse Profiles, Accretion Column Dips and a Flare in GX 1+4 During a Faint State
NASA Technical Reports Server (NTRS)
Giles, A. B.; Galloway, D. K.; Greenhill, J. G.; Storey, M. C.; Wilson, C. A.
1999-01-01
The Rossi X-ray Timing Explorer (RXTE) spacecraft observed the X-ray GX 1+4 for it period of 34 hours on July 19/20 1996. The source faded front an intensity of approximately 20 mcrab to a minimum of <= 0.7 mcrab and then partially recovered towards the end of the observation. This extended minimum lasted approximately 40,000 seconds. Phase folded light curves at a barycentric rotation period of 124.36568 +/- 0.00020 seconds show that near the center of the extended minimum the source stopped pulsing in the traditional sense but retained a weak dip feature at the rotation period. Away from the extended minimum the dips are progressively narrower at higher energies and may be interpreted as obscurations or eclipses of the hot spot by the accretion column. The pulse profile changed from leading-edge bright before the extended minimum to trailing-edge bright after it. Data from the Burst and Transient Source Experiment (BATSE) show that a torque reversal occurred < 10 days after our observation. Our data indicate that the observed rotation departs from a constant period with a P/P value of approximately -1.5% per year at a 4.5sigma significance. We infer that we may have serendipitously obtained data, with high sensitivity and temporal resolution about the time of an accretion disk spin reversal. We also observed a rapid flare which had some precursor activity close to the center of the extended minimum.
NASA Astrophysics Data System (ADS)
Li, Ziyi
2017-12-01
Generalized uncertainty principle (GUP), also known as the generalized uncertainty relationship, is the modified form of the classical Heisenberg’s Uncertainty Principle in special cases. When we apply quantum gravity theories such as the string theory, the theoretical results suggested that there should be a “minimum length of observation”, which is about the size of the Planck-scale (10-35m). Taking into account the basic scale of existence, we need to fix a new common form of Heisenberg’s uncertainty principle in the thermodynamic system and make effective corrections to statistical physical questions concerning about the quantum density of states. Especially for the condition at high temperature and high energy levels, generalized uncertainty calculations have a disruptive impact on classical statistical physical theories but the present theory of Femtosecond laser is still established on the classical Heisenberg’s Uncertainty Principle. In order to improve the detective accuracy and temporal resolution of the Femtosecond laser, we applied the modified form of generalized uncertainty principle to the wavelength, energy and pulse time of Femtosecond laser in our work. And we designed three typical systems from micro to macro size to estimate the feasibility of our theoretical model and method, respectively in the chemical solution condition, crystal lattice condition and nuclear fission reactor condition.
Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu
NASA Astrophysics Data System (ADS)
Verbeke, J. M.; Nakae, L. F.; Vogt, R.
2018-04-01
Background: Angular anisotropy has been observed between prompt neutrons emitted during the fission process. Such an anisotropy arises because the emitted neutrons are boosted along the direction of the parent fragment. Purpose: To measure the neutron-neutron angular correlations from the spontaneous fission of 252Cf and 240Pu oxide samples using a liquid scintillator array capable of pulse-shape discrimination. To compare these correlations to simulations combining the Monte Carlo radiation transport code MCNPX with the fission event generator FREYA. Method: Two different analysis methods were used to study the neutron-neutron correlations with varying energy thresholds. The first is based on setting a light output threshold while the second imposes a time-of-flight cutoff. The second method has the advantage of being truly detector independent. Results: The neutron-neutron correlation modeled by FREYA depends strongly on the sharing of the excitation energy between the two fragments. The measured asymmetry enabled us to adjust the FREYA parameter x in 240Pu, which controls the energy partition between the fragments and is so far inaccessible in other measurements. The 240Pu data in this analysis was the first available to quantify the energy partition for this isotope. The agreement between data and simulation is overall very good for 252Cf(sf ) and 240Pu(sf ) . Conclusions: The asymmetry in the measured neutron-neutron angular distributions can be predicted by FREYA. The shape of the correlation function depends on how the excitation energy is partitioned between the two fission fragments. Experimental data suggest that the lighter fragment is disproportionately excited.
Simultaneous multislice refocusing via time optimal control.
Rund, Armin; Aigner, Christoph Stefan; Kunisch, Karl; Stollberger, Rudolf
2018-02-09
Joint design of minimum duration RF pulses and slice-selective gradient shapes for MRI via time optimal control with strict physical constraints, and its application to simultaneous multislice imaging. The minimization of the pulse duration is cast as a time optimal control problem with inequality constraints describing the refocusing quality and physical constraints. It is solved with a bilevel method, where the pulse length is minimized in the upper level, and the constraints are satisfied in the lower level. To address the inherent nonconvexity of the optimization problem, the upper level is enhanced with new heuristics for finding a near global optimizer based on a second optimization problem. A large set of optimized examples shows an average temporal reduction of 87.1% for double diffusion and 74% for turbo spin echo pulses compared to power independent number of slices pulses. The optimized results are validated on a 3T scanner with phantom measurements. The presented design method computes minimum duration RF pulse and slice-selective gradient shapes subject to physical constraints. The shorter pulse duration can be used to decrease the effective echo time in existing echo-planar imaging or echo spacing in turbo spin echo sequences. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.
2018-04-01
We study the influence of a nonstationary nonlinear response of a medium on self-compression of soliton-like laser pulses in active fibres with a finite gain bandwidth. Based on the variational approach, we qualitatively analyse the self-action of the wave packet in the system under consideration in order to classify the main evolution regimes and to determine the minimum achievable laser pulse duration during self-compression. The existence of stable soliton-type structures is shown in the framework of the parabolic approximation of the gain profile (in the approximation of the Gnizburg – Landau equation). An analysis of the self-action of laser pulses in the framework of the nonlinear Schrödinger equation with a sign-constant gain profile demonstrate a qualitative change in the dynamics of the wave field in the case of a nonstationary nonlinear response that shifts the laser pulse spectrum from the amplification region and stops the pulse compression. Expressions for a minimum duration of a soliton-like laser pulse are obtained as a function of the problem parameters, which are in good agreement with the results of numerical simulation.
Control of the electrode metal transfer by means of the welding current pulse generator
NASA Astrophysics Data System (ADS)
Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.
2016-04-01
The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan
2018-07-01
Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.
Ashenfelter, J.; Jaffe, D.; Diwan, M. V.; ...
2015-11-06
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.
NASA Astrophysics Data System (ADS)
Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael
2017-09-01
In search of reliable and light-weight ignition systems for re-ignitable upper stage engines, a laser ignition system was adapted and tested on an experimental combustion chamber for propellant injection into low combustion chamber pressures at 50-80 mbar. The injector head pattern consisted of five coaxial injector elements. Both, laser-ablation-driven ignition and laser-plasma-driven ignition were tested for the propellant combination liquid oxygen and gaseous hydrogen. The 122 test runs demonstrated the reliability of the ignition system for different ignition configurations and negligible degradation due to testing. For the laser-plasma-driven scheme, minimum laser pulse energies needed for 100% ignition probability were found to decrease when increasing the distance of the ignition location from the injector faceplate with a minimum of 2.6 mJ. For laser-ablation-driven ignition, the minimum pulse energy was found to be independent of the ablation material tested and was about 1.7 mJ. The ignition process was characterized using both high-speed Schlieren and OH* emission diagnostics. Based on these findings and on the increased fiber-based pulse transport capabilities recently published, new ignition system configurations for space propulsion systems relying on fiber-based pulse delivery are formulated. If the laser ignition system delivers enough pulse energy, the laser-plasma-driven configuration represents the more versatile configuration. If the laser ignition pulse power is limited, the application of laser-ablation-driven ignition is an option to realize ignition, but implies restrictions concerning the location of ignition.
Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew
2010-01-01
Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less
Proliferation of Small Nuclear Forces.
1983-04-30
character of conflict, arm control issues, conventional arms competition and U.S. forces; 3) Assess how new nuclear powers will behave and how their...neighbors 0and other nuclear powers will react; "--- 5) Identify the likely patterns and outcars of nuclear and other military interaction, including...Regional Nuclear Powers , 1990-2010 A small nuclear force (SNF) would comprise at a minimum from 5 to 10 deliverable and militarily serviceable fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Heinrichs, D; Biswas, D
2009-05-27
Neutron detectors and control panels transferred from the Rocky Flats Plant (RFP) were recalibrated and retested for redeployment to the CEF. Testing and calibration were successful with no failure to any equipment. Detector sensitivity was tested at a TRIGA reactor, and the response to thermal neutron flux was satisfactory. MCNP calculated minimum fission yield ({approx} 2 x 10{sup 15} fissions) was applied to determine the thermal flux at selected detector positions at the CEF. Thermal flux levels were greater than 6.39 x 10{sup 6} (n/cm{sup 2}-sec), which was about four orders of magnitude greater than the minimum alarm flux. Calculationsmore » of detector survivable distances indicate that, to be out of lethal area, a detector needs to be placed greater than 15 ft away from a maximum credible source. MCNP calculated flux/dose results were independently verified by COG. CAAS calibration and the testing confirmed that the RFP CAAS system is performing its functions as expected. New criteria for the CAAS detector placement and 12-rad zone boundaries at the CEF are established. All of the CAAS related documents and hardware have been transferred from LLNL to NSTec for installation at the CEF high bay areas.« less
Active-Interrogation Measurements of Induced-Fission Neutrons from Low-Enriched Uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Dolan; M. J. Marcath; M. Flaska
2012-07-01
Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a sample’s mass and enrichment. Using MCNPX-PoliMi, amore » system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5” by 5” EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX-PoliMi code when used for active-interrogation simulations.« less
Parallel approach on sorting of genes in search of optimal solution.
Kumar, Pranav; Sahoo, G
2018-05-01
An important tool for comparing genome analysis is the rearrangement event that can transform one given genome into other. For finding minimum sequence of fission and fusion, we have proposed here an algorithm and have shown a transformation example for converting the source genome into the target genome. The proposed algorithm comprises of circular sequence i.e. "cycle graph" in place of mapping. The main concept of algorithm is based on optimal result of permutation. These sorting processes are performed in constant running time by showing permutation in the form of cycle. In biological instances it has been observed that transposition occurs half of the frequency as that of reversal. In this paper we are not dealing with reversal instead commencing with the rearrangement of fission, fusion as well as transposition. Copyright © 2017 Elsevier Inc. All rights reserved.
Two detector arrays for fast neutrons at LANSCE
NASA Astrophysics Data System (ADS)
Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; O'Donnell, J. M.; Perdue, B. A.; Fotiades, N.; Devlin, M.; Ullmann, J. L.; Laptev, A.; Bredeweg, T.; Jandel, M.; Nelson, R. O.; Wender, S. A.; White, M. C.; Wu, C. Y.; Kwan, E.; Chyzh, A.; Henderson, R.; Gostic, J.
2012-03-01
The neutron spectrum from neutron-induced fission needs to be known in designing new fast reactors, predicting criticality for safety analyses, and developing techniques for global security application. The experimental data base of fission neutron spectra is very incomplete and most present evaluated libraries are based on the approach of the Los Alamos Model. To validate these models and to provide improved data for applications, a program is underway to measure the fission neutron spectrum for a wide range of incident neutron energies using the spallation source of fast neutrons at the Weapons Neutron Research (WNR) facility at the Los Alamos Neutron Science Center (LANSCE). In a double time-of-flight experiment, fission neutrons are detected by arrays of neutron detectors to increase the solid angle and also to investigate possible angular dependence of the fission neutrons. The challenge is to measure the spectrum from low energies, down to 100 keV or so, to energies over 10 MeV, where the evaporation-like spectrum decreases by 3 orders of magnitude from its peak around 1 MeV. For these measurements, we are developing two arrays of neutron detectors, one based on liquid organic scintillators and the other on 6Li-glass detectors. The range of fission neutrons detected by organic liquid scintillators extends from about 600 keV to well over 10 MeV, with the lower limit being defined by the limit of pulse-shape discrimination. The 6Li-glass detectors have a range from very low energies to about 1 MeV, where their efficiency then becomes small. Various considerations and tests are in progress to understand important contributing factors in designing these two arrays and they include selection and characterization of photomultiplier tubes (PM), the performance of relatively thin (1.8 cm) 6Li-glass scintillators on 12.5 cm diameter PM tubes, use of 17.5 cm diameter liquid scintillators with 12.5 cm PM tubes, measurements of detector efficiencies with tagged neutrons from the WNR/LANSCE neutron beam, and efficiency calibration with 252Cf spontaneous fission neutrons. Design considerations and test results are presented.
NASA Astrophysics Data System (ADS)
Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.
2017-09-01
Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.
The Transuranium Elements: Early History (Nobel Lecture)
DOE R&D Accomplishments Database
McMillan, E. M.
1951-12-12
In this talk the author tells of the circumstances that led to the discovery of neptunium, the first element beyond uranium, and the partial identification of plutonium, the next one beyond that. The part of the story that lies before 1939 has already been recounted here in the Nobel lectures of Fermi and Hahn. Rather the author starts with the discovery of fission by Hahn and Strassmann. News of this momentous discovery reached Berkeley early in 1939. The staff of the Radiation Laboratory was put into a state of great excitement and several experiments of a nature designed to check and extend the announced results were started, using ionization chambers and pulse amplifiers, cloud chambers, chemical methods, and so forth. The author decided to do an experiment of a very simple kind. When a nucleus of uranium absorbs a neutron and fission takes place, the two resulting fragments fly apart with great violence, sufficient to propel them through air or other matter for some distance. This distance, called the "range", is quantity of some interest, and the author undertook to measure it by observing the depth of penetration of the fission fragments in a stack of thin aluminum foils. The fission fragments came from a thin layer of uranium oxide spread on a sheet of paper, and exposed to neutrons from a beryllium target bombarded by 8 Mev deuterons in the 37-inch cyclotron. The aluminum foils, each with a thickness of about half a milligram per square centimeter, were stacked like the pages of a book in immediate contact with the layer of uranium oxide. After exposure to the neutrons, the sheets of aluminum were separated and examined for radioactivity by means of an ionization chamber. The fission fragments of course are radioactive atoms, and their activity is found where they stop.
Simulations of Multi-Gamma Coincidences From Neutron-Induced Fission in Special Nuclear Materials
NASA Astrophysics Data System (ADS)
Kane, Steven; Gozani, Tsahi; King, Michael J.; Kwong, John; Brown, Craig; Gary, Charles; Firestone, Murray I.; Nikkel, James A.; McKinsey, Daniel N.
2013-04-01
A study is presented on the detection of illicit special nuclear materials (SNM) in cargo containers using a conceptual neutron-based inspection system with xenon-doped liquefied argon (LAr(Xe)) scintillation detectors for coincidence gamma-ray detection. For robustness, the system is envisioned to exploit all fission signatures, namely both prompt and delayed neutron and gamma emissions from fission reactions induced in SNM. However, this paper focuses exclusively on the analysis of the prompt gamma ray emissions. The inspection system probes a container using neutrons produced either by (d, D) or (d, T) in pulsed form or from an associated particle neutron generator to exploit the associated particle imaging (API) technique, thereby achieving background reduction and imaging. Simulated signal and background estimates were obtained in MCNPX (2.7) for a 2 kg sphere of enriched uranium positioned at the center of a 1m × 1m × 1m container, which is filled uniformly with wood or iron cargos at 0.1 g/cc or 0.4 g/cc. Detection time estimates are reported assuming probabilities of detection of 95% and false alarm of 0.5%.
Modulational Instability in a Pair of Non-identical Coupled Nonlinear Electrical Transmission Lines
NASA Astrophysics Data System (ADS)
Eric, Tala-Tebue; Aurelien, Kenfack-Jiotsa; Marius Hervé, Tatchou-Ntemfack; Timoléon Crépin, Kofané
2013-07-01
In this work, we investigate the dynamics of modulated waves non-identical coupled nonlinear transmission lines. Traditional methods for avoiding mode mixing in identical coupled nonlinear electrical lines consist of adding the same number of linear inductors in each branch. Adding linear inductors in a single line leads to asymmetric coupled nonlinear electrical transmission lines which propagate the signal and the mode mixing. On one hand, the difference between the two lines induced the fission for only one mode of propagation. This fission is influenced by the amplitude of the signal and the amount of the input energy as well; it also narrows the width of the input pulse soliton, leading to a possible increasing of the bit rate. On the other hand, the dissymmetry of the two lines converts the network into a good amplifier for the ω_ mode which corresponds to the regime admitting low frequencies.
NASA Astrophysics Data System (ADS)
Koglin, Johnathon
Accurate nuclear reaction data from a few keV to tens of MeV and across the table of nuclides is essential to a number of applications of nuclear physics, including national security, nuclear forensics, nuclear astrophysics, and nuclear energy. Precise determination of (n, f) and neutron capture cross sections for reactions in high- ux environments are particularly important for a proper understanding of nuclear reactor performance and stellar nucleosynthesis. In these extreme environments reactions on short-lived and otherwise difficult-to-produce isotopes play a significant role in system evolution and provide insights into the types of nuclear processes taking place; a detailed understanding of these processes is necessary to properly determine cross sections far from stability. Indirect methods are often attempted to measure cross sections on isotopes that are difficult to separate in a laboratory setting. Using the surrogate approach, the same compound nucleus from the reaction of interest is created through a "surrogate" reaction on a different isotope and the resulting decay is measured. This result is combined with appropriate reaction theory for compound nucleus population, from which the desired cross sections can be inferred. This method has shown promise, but the theoretical framework often lacks necessary experimental data to constrain models. In this work, dual arrays of silicon telescope particle identification detectors and photovoltaic (solar) cell fission fragment detectors have been used to measure the fission probability of the 240Pu(alpha, alpha'f) reaction - a surrogate for the 239Pu(n, f) - and fission of 35.9(2)MeV at eleven scattering angles from 40° to 140° in 10° intervals and at nuclear excitation energies up to 16MeV. Within experimental uncertainty, the maximum fission probability was observed at the neutron separation energy for each alpha scattering angle. Fission probabilities were separated into five 500 keV bins from 5:5MeV to 8:0MeV and one bin from 4:5MeV to 5:5MeV. Across energy bins the fission probability increases approximately linearly with increasing alpha' scattering angle. At 90° the fission probability increases from 0:069(6) in the lowest energy bin to 0:59(2) in the highest. Likewise, within a single energy bin the fission probability increases with alpha' scattering angle. Within the 6:5MeV and 7:0MeV energy bin, the fission probability increased from 0:41(1) at 60° to 0:81(10) at 140°. Fission fragment angular distributions were also measured integrated over each energy bin. These distributions were fit to theoretical distributions based on combinations of transitional nuclear vibrational and rotational excitations at the saddle point. Contributions from specific K vibrational states were extracted and combined with fission probability measurements to determine the relative fission probability of each state as a function of nuclear excitation energy. Within a given excitation energy bin, it is found that contributions from K states greater than the minimum K = 0 state tend to increase with the increasing alpha' scattering angle. This is attributed to an increase in the transferred angular momentum associated with larger scattering angles. The 90° alpha' scattering angle produced the highest quality results. The relative contributions of K states do not show a discernible trend across the energy spectrum. The energy-binned results confirm existing measurements that place a K = 2 state in the first energy bin with the opening of K = 1 and K = 4 states at energies above 5:5MeV. This experiment represents the first of its kind in which fission probabilities and angular distributions are simultaneously measured at a large number of scattering angles. The acquired fission probability, angular distribution, and K state contribution provide a diverse dataset against which microscopic fission models can be constrained and further the understanding of the properties of the 240Pu fission.
Calibration of LiBaF3: Ce Scintillator for Fission Spectrum Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeder, Paul L.; Bowyer, Sonya M.
2002-05-21
The scintillator LiBaF3 doped with small amounts of Ce+3 has the ability to distinguish heavy charged particles (p, d, t, or a) from beta and/or gamma radiation based on the presence or absence of ns components in the scintillation light output. Because the neutron capture reaction on 6Li produces recoil alphas and tritons, this scintillator also discriminates between neutron induced events and beta or gamma interactions. An experimental technique using a time-tagged 252Cf source has been used to measure the efficiency of this scintillator for neutron capture, the calibration of neutron capture pulse height, and the pulse height resolution -more » all as a function of incident neutron energy.« less
Spectroscopic neutron detection using composite scintillators
NASA Astrophysics Data System (ADS)
Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.
2016-09-01
Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.
Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up
NASA Astrophysics Data System (ADS)
Venkiteswaran, C. N.; Jayaraj, V. V.; Ojha, B. K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B. P. C.; Kasiviswanathan, K. V.; Jayakumar, T.
2014-06-01
The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel-clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel-clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.
The Revised OB-1 Method for Metal-Water Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westfall, Robert Michael; Wright, Richard Q
The OB-1 method for the calculation of the minimum critical mass (mcm) of fissile actinides in metal/water systems was described in a 2008 Nuclear Science and Engineering (NS&E) article. The purpose of the present work is to update and expand the application of this method with current nuclear data, including data uncertainties. The mcm and the hypothetical fissile metal density ({rho}{sub F}) in grams of metal/liter are obtained by a fit to values predicted with transport calculations. The input parameters required are thermal values for fission and absorption cross sections and nubar. A factor of ({radical}{pi})/2 is used to convertmore » to Maxwellian averaged values. The uncertainties for the fission and capture cross sections and the estimated nubar uncertainties are used to determine the uncertainties in the mcm, either in percent or grams.« less
Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haori
2016-03-31
Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signalsmore » are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238U and 239Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two-fold approach was used to address the high-rate challenge in used nuclear fuel assay based on photofission technique. First, a standard HPGe preamplifier was modified to improve its capabilities in high-rate pulsed photofission environment. Second, advanced pulse processing algorithms were shown to greatly improve throughput rate without large sacrifice in energy resolution at ultra-high input count rate. Two customized gamma spectroscopy systems were also developed in real-time on FPGAs. They were shown to have promising performance matching available commercial units.« less
Temperature dependence of the pulse-duration memory effect in NbSe3
NASA Astrophysics Data System (ADS)
Jones, T. C.; Simpson, C. R., Jr.; Clayhold, J. A.; McCarten, J. P.
2000-04-01
The temperature dependence of the oscillatory response of the 59 K charge-density wave in NbSe3 to a sequence of repetitive current pulses was investigated. For 52 K>T>45 K the learned behavior commonly referred to as the pulse-duration memory effect (PDME) is very evident; after training the voltage oscillation always finishes the pulse at a minimum. At lower temperatures the PDME changes qualitatively. In nonswitching samples the voltage oscillation always finishes the pulse increasing. In switching samples there is a conduction delay which becomes fixed after training, but no learning of the duration of the pulse.
Thermomechanical analysis of fast-burst reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J.D.
1994-08-01
Fast-burst reactors are designed to provide intense, short-duration pulses of neutrons. The fission reaction also produces extreme time-dependent heating of the nuclear fuel. An existing transient-dynamic finite element code was modified specifically to compute the time-dependent stresses and displacements due to thermal shock loads of reactors. Thermomechanical analysis was then applied to determine structural feasibility of various concepts for an EDNA-type reactor and to optimize the mechanical design of the new SPR III-M reactor.
Near-Field Propagation of Sub-Nanosecond Electric Pulses into Amorphous Masses
2012-02-01
the Idaho National Engineering Laboratory, Idaho Falls, ID, as a Senior Research Engineer, involved with fission reactor diagnostic measurements. He...temperature probe tip was just submerged in the cell buffer, less than 1 mm deep. For other positions, the maximum temperatures decreased to 34 ± 1 ◦C...422, Apr. 2008. [21] R. P. Joshi, J. Song, K. H. Schoenbach, and V. Sridhara, “Aspects of lipid membrane bio -responses to subnanosecond, ultrahigh
Cosmic ray neutron background reduction using localized coincidence veto neutron counting
Menlove, Howard O.; Bourret, Steven C.; Krick, Merlyn S.
2002-01-01
This invention relates to both the apparatus and method for increasing the sensitivity of measuring the amount of radioactive material in waste by reducing the interference caused by cosmic ray generated neutrons. The apparatus includes: (a) a plurality of neutron detectors, each of the detectors including means for generating a pulse in response to the detection of a neutron; and (b) means, coupled to each of the neutrons detectors, for counting only some of the pulses from each of the detectors, whether cosmic ray or fission generated. The means for counting includes a means that, after counting one of the pulses, vetos the counting of additional pulses for a prescribed period of time. The prescribed period of time is between 50 and 200 .mu.s. In the preferred embodiment the prescribed period of time is 128 .mu.s. The veto means can be an electronic circuit which includes a leading edge pulse generator which passes a pulse but blocks any subsequent pulse for a period of between 50 and 200 .mu.s. Alternately, the veto means is a software program which includes means for tagging each of the pulses from each of the detectors for both time and position, means for counting one of the pulses from a particular position, and means for rejecting those of the pulses which originate from the particular position and in a time interval on the order of the neutron die-away time in polyethylene or other shield material. The neutron detectors are grouped in pods, preferably at least 10. The apparatus also includes means for vetoing the counting of coincidence pulses from all of the detectors included in each of the pods which are adjacent to the pod which includes the detector which produced the pulse which was counted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deyglun, C.; Simony, B.; Perot, B.
The quantification of radioactive material is essential in the fields of safeguards, criticality control of nuclear processes, dismantling of nuclear facilities and components, or radioactive waste characterization. The Nuclear Measurement Laboratory (LMN) of CEA is involved in the development of time-correlated neutron detection techniques using plastic scintillators. Usually, 3He proportional counters are used for passive neutron coincidence counting owing to their high thermal neutron capture efficiency and gamma insensitivity. However, the global {sup 3}He shortage in the past few years has made these detectors extremely expensive. In addition, contrary to {sup 3}He counters for which a few tens of microsecondsmore » are needed to thermalize fast neutrons, in view to maximize the {sup 3}He(n,p){sup 3}H capture cross section, plastic scintillators are based on elastic scattering and therefore the light signal is formed within a few nanoseconds, correlated pulses being detected within a few dozen- or hundred nanoseconds. This time span reflects fission particles time of flight, which allows reducing accordingly the duration of the coincidence gate and thus the rate of random coincidences, which may totally blind fission coincidences when using {sup 3}He counters in case of a high (α,n) reaction rate. However, plastic scintillators are very sensitive to gamma rays, requiring the use of a thick metallic shield to reduce the corresponding background. Cross talk between detectors is also a major issue, which consists on the detection of one particle by several detectors due to elastic or inelastic scattering, leading to true but undesired coincidences. Data analysis algorithms are tested to minimize cross-talk in simultaneously activated detectors. The distinction between useful fission coincidences and the correlated background due to cross-talk, (α,n) and induced (n,2n) or (n,n'γ) reactions, is achieved by measuring 3-fold coincidences. The performances of a passive neutron coincidence counting system for radioactive waste drums using plastic scintillators have been studied using the Monte Carlo radiation transport code MCNPX-PoliMi v2.0 coupled to data processing algorithms developed with ROOT data analysis software. In addition to the correlated background, accidental coincidences are taken into account in the simulation by randomly merging pulses from different calculations with fission and (α,n) sources. (authors)« less
The investigation of fast neutron Threshold Activation Detectors (TAD)
NASA Astrophysics Data System (ADS)
Gozani, T.; King, M. J.; Stevenson, J.
2012-02-01
The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ``flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major constituent of available scintillators (e.g., BaF2, CaF2, hydrogen free liquid fluorocarbon). Thus the activation products of the fast prompt neutrons, in particular, the beta particles, can be measured with a very high efficiency in the detector. Other detectors and substances were investigated, such as 6Li and even common detectors such as NaI. The principles and experimental results obtained with F, NaI and 6Li based TAD are shown. The various contributing activation products are identified. The insensitivity of the fluorine based TAD to (d,D) neutrons is demonstrated. Ways and means to reduce or subtract the various neutron induced activations of NaI detector are elucidated along with its fast neutron detection capabilities. 6Li could also be a useful TAD.
Hisatake, S; Kobayashi, T
2006-12-25
We demonstrate a time-to-space mapping of an optical signal with a picosecond time resolution based on an electrooptic beam deflection. A time axis of the optical signal is mapped into a spatial replica by the deflection. We theoretically derive a minimum time resolution of the time-to-space mapping and confirm it experimentally on the basis of the pulse width of the optical pulses picked out from the deflected beam through a narrow slit which acts as a temporal window. We have achieved the minimum time resolution of 1.6+/-0.2 ps.
Ultra-narrow pulse generator with precision-adjustable pulse width
NASA Astrophysics Data System (ADS)
Fu, Zaiming; Liu, Hanglin
2018-05-01
In this paper, a novel ultra-narrow pulse generation approach is proposed. It is based on the decomposition and synthesis of pulse edges. Through controlling their relative delay, an ultra-narrow pulse could be generated. By employing field programmable gate array digital synthesis technology, the implemented pulse generator is with programmable ability. The amplitude of pulse signals is controlled by the radio frequency amplifiers and bias tees, and high precision can be achieved. More importantly, the proposed approach can break through the limitation of device's propagation delay and optimize the resolution and the accuracy of the pulse width significantly. The implemented pulse generator has two channels, whose minimum pulse width, frequency range, and amplitude range are 100 ps, 15 MHz-1.5 GHz, and 0.1 Vpp-1.8 Vpp, respectively. Both resolution of pulse width and channel delay are 1 ps, and amplitude resolution is 10 mVpp.
Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes
Atalar, Ergin; McVeigh, Elliot R.
2007-01-01
With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900
Development of a Lead Slowing Down Spectrometer for fission cross section measurements at LANSCE
NASA Astrophysics Data System (ADS)
Rochman, Dimitri; Haight, Robert C.; Wender, Stephen A.; O'Donnell, John M.; Michaudon, Andre; Vieira, Dave J.; Rundberg, Robert S.; Kronenberg, Andreas; Bond, Evelyn; Wilhelmy, Jerry B.; Bredeweg, Todd; Ethvignot, Thierry; Granier, Thierry; Petit, Michael; Danon, Yaron
2004-05-01
The Lead Slowing Down Spectrometer (LSDS) recently installed at the Los Alamos Neutron Science Center (LANSCE) consists of a 1.2 meter cube of lead surrounding a tungsten target, which is bombarded by pulses of 800 MeV protons from the Proton Storage Ring (PSR). Neutrons are produced by spallation from the interaction of the proton pulse with the target. The aim of the LSDS is to keep the neutrons inside the lead volume for few hundreds of microseconds and to slow them down by small steps in energy before they leave the spectrometer. The advantage of the LSDS is the large amount of neutrons available in the lead volume compared to traditional time-of-flight experiments. Driving the LSDS with a pulsed proton beam increases the neutron flux per watt of beam power significantly over similar spectrometers driven by electron linear accelerators. The first measurements to characterize the properties of the LSDS are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Papadias, Dionissios D.
2015-01-01
The Transient Reactor Test Facility (TREAT) is a graphite-reflected, graphitemoderated, and air-cooled reactor fueled with 93.1% enriched UO2 particles dispersed in graphite, with a carbon-to-235U ratio of ~10000:1. TREAT was used to simulate accident conditions by subjecting fuel test samples placed at the center of the core to high energy transient pulses. The transient pulse production is based on the core’s selflimiting nature due to the negative reactivity feedback provided by the fuel graphite as the core temperature rises. The analysis of the conversion of TREAT to low enriched uranium (LEU) is currently underway. This paper presents the analytical methodsmore » used to calculate the transient performance of TREAT in terms of power pulse production and resulting peak core temperatures. The validation of the HEU neutronics TREAT model, the calculation of the temperature distribution and the temperature reactivity feedback as well as the number of fissions generated inside fuel test samples are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, S.K.; Russell, G.J.; Foell, W.K.
The Doppler effect for /sup 235/U-enriched UO/sub 2/ fuel pellets has been measured by the Pulsed Activation Doppler (PAD) technique in a TRIGA reactor. A combination of static electrical preheating and pulsed fission heating during irradiation was used to perform the measurements at temperatures extending from 300 K to the melting point of UO/sub 2/ (3115 K). The /sup 235/U enrichment in the experimental samples investigated ranged from 0.22 to 12 percent by weight. Measurements were made at under partially molten conditions of UO/sub 2/. Two sizes of pellets were used, with nominal surface-to-mass ratio values of 0.63 and 1.08more » cm/sup 2//g, respectively. The experimentally determined values of the Doppler ratio were in good agreement with resonance integral ratios determined from GAROL calculations and extrapolations of the low-temperature Hellstrand correlation.« less
NASA Astrophysics Data System (ADS)
Hora, H.; Miley, G. H.
2007-12-01
One of the most convincing facts about LENR due to deuterons of very high concentration in host metals as palladium is the measurement of the large scale minimum of the reaction probability depending on the nucleon number A of generated elements at A = 153 where a local maximum was measured. This is similar to the fission of uranium at A = 119 where the local maximum follows from the Maruhn-Greiner theory if the splitting nuclei are excited to about MeV energy. The LENR generated elements can be documented any time after the reaction by SIMS or K-shell X-ray excitation to show the very unique distribution with the local maximum. An explanation is based on the strong Debye screening of the Maxwellian deuterons within the degenerate rigid electron background especially within the swimming electron layer at the metal surface or at interfaces. The deuterons behave like neutrals at distances of about 2 picometers. They may form clusters due to soft attraction in the range above thermal energy. Clusters of 10 pm diameter may react over long time probabilities (megaseconds) with Pd nuclei leading to a double magic number compound nucleus which splits like in fission to the A = 153 element distribution.
NASA Astrophysics Data System (ADS)
Richardson, Norman E., IV
Since the beginning of the nuclear age, there has been a strong demand for the development of efficient technologies for the detection of ionizing radiation. According to the United States' Department of Energy, the accurate assessment of fissile materials is essential in achieving the nonproliferation goals of enhancing safety and security of nuclear fuel cycle and nuclear energy facilities. Nuclear materials can be characterized by the measurement of prompt and delayed neutrons and gamma rays emitted in spontaneous or induced fission reactions and neutrons emitted in fission reactions are the distinctive signatures of nuclear materials. Today, the most widely used neutron detection technologies rely on thermal neutron capture reactions using a moderating material to cause the neutron to lose its energy prior to the detection event. This is necessary because as the fission event occurs, neutrons are emitted carrying high amounts of energy, typically on the order of mega electron volts (MeV). These energetic particles are classified as "fast" neutrons. For detecting the thermal neutrons, the Helium-3 (3He) gas-filled counters are arguably the most widely used technology of neutron detection. 3He counters have been the scientific standard for the nuclear engineering community for several decades, and have earned their place as a reliable technique for the detection of neutrons. However, 3He gas-filled counters have several disadvantages. First, gas-filled counters are not rigid and are sensitive to vibrations. Secondly, gas-filled counters are prone to the count rate limitations due to the physical processes of charge multiplication and transport in the gas medium in the electric field. Lastly, 3He gas-filled counters suffer from a supply shortage of the 3He isotope. As it is stated in [3], this shortage is created by the new demand for Helium-3 due to the deployment of neutron detectors at the borders after the 9/11 attack to help secure the nation against smuggled nuclear and radiological material. Moreover, the production of 3He isotope as a byproduct of security programs was drastically decreased. This isotope shortage coupled with the disadvantages of relying on a detector that requires neutron moderation before the detection of fission neutrons, poses a significant challenge in supporting the existing detection systems and the development of future technologies. To address this problem, a reliable and accurate alternative technology to detect neutrons emitted in fissions must be developed. One such alternative technology that shows promise in this application is the use of scintillators based on solid state materials (plastics) which are sensitive to fast neutrons. However, plastic scintillators are also sensitive to photons. Hence, it is necessary to separate the neutron signals from the photon signals, using the pulse shape discrimination (PSD) analysis. The PSD is based on the comparison of the pulse shapes of digitized signal waveforms. This approach allows for the measurement of fast neutrons without the necessity of their moderation. Because the fission spectrum neutrons are mainly fast, methods employing fast neutron detection are applicable for the assay of fissile materials. In addition, the average time of scintillation of the plastic medium is much shorter than those of the gaseous counters, thus allowing scintillation detectors to be used in high count rate environments. Furthermore, the temporal information of the fast neutron detection using multiple sensors enables the time correlation analysis of the fission neutron multiplicity. The study of time correlation measurements of fast neutrons using the array of plastic scintillators is the basis of this work. The array of four plastic scintillator detectors equipped with the digital data acquisition and analysis system was developed. The digital PSD analysis of detector signals "on-the-fly" was implemented for the array. The time coincidence measurement technique using the list mode was employed for two detectors operating on the single time scale. This was necessary as no fission source was available to be used as a fast neutron multiplicity source. The detection technology was tested using isotopic photon sources and a plutonium-beryllium neutron source. It was shown that the system can be effectively used for fast-neutron multiplicity measurements, through a "proof-of-concept" model, enabling a shorter width of the time coincidence window compared to the 3He counters. This result opens prospects to reduce the false coincidence rates in the neutron multiplicity measurements, thus increasing the sensitivity of nuclear material detection.
Minimum envelope roughness pulse design for reduced amplifier distortion in parallel excitation.
Grissom, William A; Kerr, Adam B; Stang, Pascal; Scott, Greig C; Pauly, John M
2010-11-01
Parallel excitation uses multiple transmit channels and coils, each driven by independent waveforms, to afford the pulse designer an additional spatial encoding mechanism that complements gradient encoding. In contrast to parallel reception, parallel excitation requires individual power amplifiers for each transmit channel, which can be cost prohibitive. Several groups have explored the use of low-cost power amplifiers for parallel excitation; however, such amplifiers commonly exhibit nonlinear memory effects that distort radio frequency pulses. This is especially true for pulses with rapidly varying envelopes, which are common in parallel excitation. To overcome this problem, we introduce a technique for parallel excitation pulse design that yields pulses with smoother envelopes. We demonstrate experimentally that pulses designed with the new technique suffer less amplifier distortion than unregularized pulses and pulses designed with conventional regularization.
NASA Astrophysics Data System (ADS)
Tartaglione, A.; Di Lorenzo, F.; Mayer, R. E.
2009-07-01
Cargo interrogation in search for special nuclear materials like highly-enriched uranium or 239Pu is a first priority issue of international borders security. In this work we present a thermal-pulsed neutron-based approach to a technique which combines the time-of-flight method and demonstrates a capability to detect small quantities of highly-enriched uranium shielded with high or low Z materials providing, in addition, a manner to know the approximate position of the searched material.
2014-10-07
aligned at 45° so that the two radiation detectors view the DU plate at near normal incidence. Delayed neutrons were measured using a single He-3...bremsstrahlung converter. TLDs and an x-ray pinhole camera are used to measure the angular and radial x-ray dose distributions, 43 , 45 and He-3 detectors are...explanation is supported by x-ray pinhole images which show that the radial distribution of bremsstrahlung from the converter shifts to larger
Performance characterization tests of three 0.44-N (0.1 lbf) hydrazine catalytic thrusters
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Bjorklund, R. A.
1973-01-01
The 0.44-N (0.1-lbf) class of hydrazine catalytic thruster has been evaluated to assess its capability for spacecraft limit-cycle attitude control with thruster pulse durations on the order of 10 milliseconds. Dynamic-environment and limit-cycle simulation tests were performed on three commercially available thruster/valve assemblies, purchased from three different manufacturers. The results indicate that this class of thruster can sustain a launch environment and, when properly temperature-conditioned, can perform limit-cycle operations over the anticipated life span of a multi-year mission. The minimum operating temperature for very short pulse durations was determined for each thruster. Pulsing life tests were then conducted on each thruster under a thermally controlled condition which maintained the catalyst bed at both a nominal 93 C (200 F) and 205 C (400 F). These were the temperatures believed to be slightly below and very near the minimum recommended operating temperature, respectively. The ensuing life tests ranged from 100,000 to 250,000 pulses at these temperatures, as would be required for spacecraft limit-cycle attitude control applications.
Exploiting Fission Chain Reaction Dynamics to Image Fissile Materials
NASA Astrophysics Data System (ADS)
Chapman, Peter Henry
Radiation imaging is one potential method to verify nuclear weapons dismantlement. The neutron coded aperture imager (NCAI), jointly developed by Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL), is capable of imaging sources of fast (e.g., fission spectrum) neutrons using an array of organic scintillators. This work presents a method developed to discriminate between non-multiplying (i.e., non-fissile) neutron sources and multiplying (i.e., fissile) neutron sources using the NCAI. This method exploits the dynamics of fission chain-reactions; it applies time-correlated pulse-height (TCPH) analysis to identify neutrons in fission chain reactions. TCPH analyzes the neutron energy deposited in the organic scintillator vs. the apparent neutron time-of-flight. Energy deposition is estimated from light output, and time-of-flight is estimated from the time between the neutron interaction and the immediately preceding gamma interaction. Neutrons that deposit more energy than can be accounted for by their apparent time-of-flight are identified as fission chain-reaction neutrons, and the image is reconstructed using only these neutron detection events. This analysis was applied to measurements of weapons-grade plutonium (WGPu) metal and 252Cf performed at the Nevada National Security Site (NNSS) Device Assembly Facility (DAF) in July 2015. The results demonstrate it is possible to eliminate the non-fissile 252Cf source from the image while preserving the fissileWGPu source. TCPH analysis was also applied to additional scenes in which theWGPu and 252Cf sources were measured individually. The results of these separate measurements further demonstrate the ability to remove the non-fissile 252Cf source and retain the fissileWGPu source. Simulations performed using MCNPX-PoliMi indicate that in a one hour measurement, solid spheres ofWGPu are retained at a 1sigma level for neutron multiplications M -˜ 3.0 and above, while hollowWGPu spheres are retained for M -˜ 2.7 and above.
Supercontinuum Emission from Water using 40 fs Pulses in the External Tight Focusing Limit
NASA Astrophysics Data System (ADS)
Sreeja, S.; Rao, S. Venugopal; Bagchi, Suman; Sreedhar, S.; Prashant, T. Shuvan; Radhakrishnan, P.; Tewari, Surya P.; Kiran, P. Prem
2011-10-01
We present our results from the measurements of Supereonlinuum emission (SCE) resulting from the propagation ol" tightly foe used 40 femtosecond laser pulses through distilled water. The e fleet of linearly polarized (LP) and circularly polarized (CP) light pulses on the SCE: in different external focal geometries (f/6 & f/12) is studied in detail. A considerable shift in the minimum wavelength of SCF under tighter focusing limit is observed.
Pulsed Thrust Method for Hover Formation Flying
NASA Technical Reports Server (NTRS)
Hope, Alan; Trask, Aaron
2003-01-01
A non-continuous thrust method for hover type formation flying has been developed. This method differs from a true hover which requires constant range and bearing from a reference vehicle. The new method uses a pulsed loop, or pogo, maneuver sequence that keeps the follower spacecraft within a defined box in a near hover situation. Equations are developed for the hover maintenance maneuvers. The constraints on the hover location, pulse interval, and maximum/minimum ranges are discussed.
NASA Astrophysics Data System (ADS)
Girdyuk, A. E.; Gorshkov, A. N.; Egorov, V. V.; Kolikov, V. A.; Snetov, V. N.; Shneerson, G. A.
2018-02-01
The aim of this study is to determine the optimal parameters of the electric pulses and shock waves generated by them for the soft destruction of the virus and yeast envelopes with no changes in the structure of antigenic surface albumin and in the cell morphology in order to use them to produce antivirus vaccines and in biotechnology. The pulse electric discharges in water have been studied for different values of amplitude, pulse duration and the rate of the rise in the current. A mathematical model has been developed to estimate the optimal parameters of pulsed electric charges and shock waves for the complete destruction of the yeast cell envelopes and virus particles at a minimum of pulses.
12 mJ Yb:YAG/Cr:YAG microchip laser
NASA Astrophysics Data System (ADS)
Guo, Xiaoyang; Tokita, Shigeki; Kawanaka, Junji
2018-02-01
By cryogenically cooling the Yb:YAG/Cr:YAG medium, one can break through the damage limit of Yb:YAG/Cr:YAG passively Q-switched microchip lasers at room temperature and thus achieve a shorter minimum pulse duration. In the proof of principle experiment we carried out, a 160.6 ps pulse duration was obtained. To the best of our knowledge, this is the first realization of sub-200 ps pulse operation for an Yb:YAG/Cr:YAG microchip laser
In-situ verification techniques for fast critical assembly cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumbach, S.B.; Amundson, P.I.; Roche, C.T.
1979-01-01
Active and passive autoradiographic techniques were used to obtain piece counts of fuel plates in fast critical assembly drawers and to verify the assembly loading pattern. Active autoradiography using prompt-fission and fission-product radiation was more successful with uranium fuel while passive autoradiography was more successful with plutonium fuel. A source multiplication technique was used to measure changes in reactivity when small quantities (2-2.5 kg) of fissile material were removed from a subcritical reference core of the Zero Power Plutonium Reactor. Efforts to compensate for unsuccessful. Some compensation was achieved by replacing U-238 with polyethylene. The sensitivity for detection of partiallymore » compensated fuel removed from minimum worth regions was approximately 2.5 kg (fissile) for a core containing 2600 kg (fissile). Substitution of polyethylene was detected with a spectral index which was the ratio of the rate of the In-115 (n,..gamma..) reaction to the rate of the In-115 (n,n') reaction. This spectral index was sensitive to the presence of an 0.64-cm-thick, 5.08-cm-high polyethylene column 10-15 cm away from the indium foil. The reactivity worth of Pu-239 was also obtained as a function of location in the reactor core with the use of an inverse kinetics technique. Reactivity worths for Pu-239 varied from a maximum of 58.67 Ih/kg near the core center to a minimum of 14.86 Ih/kg at the core edge.« less
Integral cross section measurement of the U 235 ( n , n ' ) U 235 m reaction in a pulsed reactor
Bélier, G.; Bond, E. M.; Vieira, D. J.; ...
2015-04-08
The integral measurement of the neutron inelastic cross section leading to the 26-minute half-life 235mU isomer in a fission-like neutron spectrum is presented. The experiment has been performed at a pulsed reactor, where the internal conversion decay of the isomer was measured using a dedicated electron detector after activation. The sample preparation, efficiency measurement, irradiation, radiochemistry purification, and isomer decay measurement will be presented. We determined the integral cross section for the ²³⁵U(n,n') 235mU reaction to be 1.00±0.13b. This result supports an evaluation performed with TALYS-1.4 code with respect to the isomer excitation as well as the total neutron inelasticmore » scattering cross section.« less
X-ray radiography for container inspection
Katz, Jonathan I [Clayton, MO; Morris, Christopher L [Los Alamos, NM
2011-06-07
Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containment and inertial plasma compression are being pursued in distinctively different fusion experiments in the terrestrial fusion power program. Fusion schemes that attempt to combine the favorable attributes of these two aspects into one single integrated fusion scheme appear to have benefits that are worth exploring for propulsion application.
On Use of Multi-Chambered Fission Detectors for In-Core, Neutron Spectroscopy
NASA Astrophysics Data System (ADS)
Roberts, Jeremy A.
2018-01-01
Presented is a short, computational study on the potential use of multichambered fission detectors for in-core, neutron spectroscopy. Motivated by the development of very small fission chambers at CEA in France and at Kansas State University in the U.S., it was assumed in this preliminary analysis that devices can be made small enough to avoid flux perturbations and that uncertainties related to measurements can be ignored. It was hypothesized that a sufficient number of chambers with unique reactants can act as a real-time, foilactivation experiment. An unfolding scheme based on maximizing (Shannon) entropy was used to produce a flux spectrum from detector signals that requires no prior information. To test the method, integral, detector responses were generated for singleisotope detectors of various Th, U, Np, Pu, Am, and Cs isotopes using a simplified, pressurized-water reactor spectrum and fluxweighted, microscopic, fission cross sections, in the WIMS-69 multigroup format. An unfolded spectrum was found from subsets of these responses that had a maximum entropy while reproducing the responses considered and summing to one (that is, they were normalized). Several nuclide subsets were studied, and, as expected, the results indicate inclusion of more nuclides leads to better spectra but with diminishing improvements, with the best-case spectrum having an average, relative, group-wise error of approximately 51%. Furthermore, spectra found from minimum-norm and Tihkonov-regularization inversion were of lower quality than the maximum entropy solutions. Finally, the addition of thermal-neutron filters (here, Cd and Gd) provided substantial improvement over unshielded responses alone. The results, as a whole, suggest that in-core, neutron spectroscopy is at least marginally feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, C.E.
The In-Tank Precipitation process (ITP) receives High Level Waste (HLW) supernatant liquid containing radionuclides in waste processing tank 48H. Sodium tetraphenylborate, NaTPB, and monosodium titanate (MST), NaTi{sub 2}O{sub 5}H, are added for removal of radioactive Cs and Sr, respectively. In addition to removal of radio-strontium, MST will also remove plutonium and uranium. The majority of the feed solutions to ITP will come from the dissolution of supernate that had been concentrated by evaporation to a crystallized salt form, commonly referred to as saltcake. The concern for criticality safety arises from the adsorption of U and Pt onto MST. If sufficientmore » mass and optimum conditions are achieved then criticality is credible. The concentration of u and Pt from solution into the smaller volume of precipitate represents a concern for criticality. This report supplements WSRC-TR-93-171, Nuclear Criticality Safety Bounding Analysis For The In-Tank-Precipitation (ITP) Process. Criticality safety in ITP can be analyzed by two bounding conditions: (1) the minimum safe ratio of MST to fissionable material and (2) the maximum fissionable material adsorption capacity of the MST. Calculations have provided the first bounding condition and experimental analysis has established the second. This report combines these conditions with canyon facility data to evaluate the potential for criticality in the ITP process due to the adsorption of the fissionable material from solution. In addition, this report analyzes the potential impact of increased U loading onto MST. Results of this analysis demonstrate a greater safety margin for ITP operations than the previous analysis. This report further demonstrates that the potential for criticality in the ITP process due to adsorption of fissionable material by MST is not credible.« less
NASA Astrophysics Data System (ADS)
Huh, Chih-An; Hsu, Shih-Chieh; Lin, Chuan-Yao
2012-02-01
The 2011 Fukushima nuclear accident in Japan was the worst nuclear disaster following the 1986 Chernobyl accident. Fission products (nuclides) released from the Fukushima plant site since March 12, 2011 had been detected around the northern hemisphere in about two weeks and also in the southern hemisphere about one month later. We report here detailed time series of radioiodine and radiocesium isotopes monitored in a regional network around Taiwan, including one high-mountain and three ground-level sites. Our results show several pulses of emission from a sequence of accidents in the Fukushima facility, with the more volatile 131I released preferentially over 134Cs and 137Cs at the beginning. In the middle of the time series, there was a pronounced peak of radiocesium observed in northern Taiwan, with activity concentrations of 134Cs and 137Cs far exceeding that of 131I during that episode. From the first arrival time of these fission nuclides and their spatial and temporal variations at our sampling sites and elsewhere, we suggest that Fukushima-derived radioactive nuclides were transported to Taiwan and its vicinity via two pathways at different altitudes. One was transported in the free troposphere by the prevailing westerly winds around the globe; the other was transported in the planetary boundary layer by the northeast monsoon wind directly toward Taiwan.
Development of a homogeneous pulse shape discriminating flow-cell radiation detection system
NASA Astrophysics Data System (ADS)
Hastie, K. H.; DeVol, T. A.; Fjeld, R. A.
1999-02-01
A homogeneous flow-cell radiation detection system which utilizes coincidence counting and pulse shape discrimination circuitry was assembled and tested with five commercially available liquid scintillation cocktails. Two of the cocktails, Ultima Flo (Packard) and Mono Flow 5 (National Diagnostics) have low viscosities and are intended for flow applications; and three of the cocktails, Optiphase HiSafe 3 (Wallac), Ultima Gold AB (Packard), and Ready Safe (Beckman), have higher viscosities and are intended for static applications. The low viscosity cocktails were modified with 1-methylnaphthalene to increase their capability for alpha/beta pulse shape discrimination. The sample loading and pulse shape discriminator setting were optimized to give the lowest minimum detectable concentration for alpha radiation in a 30 s count time. Of the higher viscosity cocktails, Optiphase HiSafe 3 had the lowest minimum detectable activities for alpha and beta radiation, 0.2 and 0.4 Bq/ml for 233U and 90Sr/ 90Y, respectively, for a 30 s count time. The sample loading was 70% and the corresponding alpha/beta spillover was 5.5%. Of the low viscosity cocktails, Mono Flow 5 modified with 2.5% (by volume) 1-methylnaphthalene resulted in the lowest minimum detectable activities for alpha and beta radiation; 0.3 and 0.5 Bq/ml for 233U and 90Sr/ 90Y, respectively, for a 30 s count time. The sample loading was 50%, and the corresponding alpha/beta spillover was 16.6%. HiSafe 3 at a 10% sample loading was used to evaluate the system under simulated flow conditions.
Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle
Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza; ...
2017-05-18
We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less
Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza
We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less
Role of (n,2n) reactions in transmutation of long-lived fission products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apse, V. A.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kulikov, E. G.
2016-12-15
The conditions under which (n,γ) and (n,2n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, {sup 79}Se, {sup 93}Zr, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, and {sup 135}Cs, are considered. The effect of (n,2n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of (n,2n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 andmore » the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of (n,2n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes ({sup 126}Sn, {sup 129}I, and {sup 135}Cs), (n,γ) and (n,2n) reactions are partners facilitating neutron transmutation. The strongest effect of (n,2n) reaction is found for {sup 126}Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).« less
NASA Technical Reports Server (NTRS)
Hyland, R. E.; Wohl, M. L.; Finnegan, P. M.
1973-01-01
A preliminary study was conducted of the feasibility of space disposal of the actinide class of radioactive waste material. This waste was assumed to contain 1 and 0.1 percent residual fission products, since it may not be feasible to completely separate the actinides. The actinides are a small fraction of the total waste but they remain radioactive much longer than the other wastes and must be isolated from human encounter for tens of thousands of years. Results indicate that space disposal is promising but more study is required, particularly in the area of safety. The minimum cost of space transportation would increase the consumer electric utility bill by the order of 1 percent for earth escape and 3 percent for solar escape. The waste package in this phase of the study was designed for normal operating conditions only; the design of next phase of the study will include provisions for accident safety. The number of shuttle launches per year required to dispose of all U.S. generated actinide waste with 0.1 percent residual fission products varies between 3 and 15 in 1985 and between 25 and 110 by 2000. The lower values assume earth escape (solar orbit) and the higher values are for escape from the solar system.
Ettabib, Mohamed A; Xu, Lin; Bogris, Adonis; Kapsalis, Alexandros; Belal, Mohammad; Lorent, Emerick; Labeye, Pierre; Nicoletti, Sergio; Hammani, Kamal; Syvridis, Dimitris; Shepherd, David P; Price, Jonathan H V; Richardson, David J; Petropoulos, Periklis
2015-09-01
We demonstrate broadband supercontinuum generation (SCG) in a dispersion-engineered silicon-germanium waveguide. The 3 cm long waveguide is pumped by femtosecond pulses at 2.4 μm, and the generated supercontinuum extends from 1.45 to 2.79 μm (at the -30 dB point). The broadening is mainly driven by the generation of a dispersive wave in the 1.5-1.8 μm region and soliton fission. The SCG was modeled numerically, and excellent agreement with the experimental results was obtained.
Pulse height response of an optical particle counter to monodisperse aerosols
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.; Grice, S. S.; Cuda, V.
1976-01-01
The pulse height response of a right angle scattering optical particle counter has been investigated using monodisperse aerosols of polystyrene latex spheres, di-octyl phthalate and methylene blue. The results confirm previous measurements for the variation of mean pulse height as a function of particle diameter and show good agreement with the relative response predicted by Mie scattering theory. Measured cumulative pulse height distributions were found to fit reasonably well to a log normal distribution with a minimum geometric standard deviation of about 1.4 for particle diameters greater than about 2 micrometers. The geometric standard deviation was found to increase significantly with decreasing particle diameter.
NASA Astrophysics Data System (ADS)
Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.
2016-11-01
Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.
Arruda-Neto, J D; Likhachev, V P; Nogueira, G P; Araujo, G W; Camargo, S P; Cavalcante, G T; Cestari, A C; Craveiro, A M; Deppman, A; Ferreira, J W; Garcia, F; Geraldo, L P; Guzman, F; Helene, O M; Manso, M V; Martins, M N; Mesa, J; Oliveira, M F; Perez, G; Rodriguez, O; Tavares, M V; Vanin, V R
2001-06-01
Groups of animals (Wistar rats) were fed with rations doped with uranyl nitrate at concentrations ranging from 0.5 to 100 ppm. The uranium content in the ashes of the organs was measured by the neutron-fission track counting technique. The most striking result is that the transfer coefficients, as a function of the uranium concentration, exhibit a concave shape with a minimum around 20 ppm-U for all organs. Explanations to interpret this finding are tentatively given.
Policy and Technical Issues Facing a Fissile Material (Cutoff) Treaty
von Hippel, Frank; Mian, Zia
2015-05-18
We report the largest obstacle to creating nuclear weapons, starting with the ones that destroyed Hiroshima and Nagasaki, has been to make sufficient quantities of fissile materials – highly enriched uranium (HEU) and plutonium – to sustain an explosive fission chain reaction.1 Recognition of this fact has, for more than fifty years, underpinned both the support for and the opposition to adoption of an international treaty banning at a minimum the production of more fissile materials for nuclear weapons, commonly referred to as a fissile material cutoff treaty (FMCT).
Advances in the computation of the Sjöstrand, Rossi, and Feynman distributions
Talamo, A.; Gohar, Y.; Gabrielli, F.; ...
2017-02-01
This study illustrates recent computational advances in the application of the Sjöstrand (area), Rossi, and Feynman methods to estimate the effective multiplication factor of a subcritical system driven by an external neutron source. The methodologies introduced in this study have been validated with the experimental results from the KUKA facility of Japan by Monte Carlo (MCNP6 and MCNPX) and deterministic (ERANOS, VARIANT, and PARTISN) codes. When the assembly is driven by a pulsed neutron source generated by a particle accelerator and delayed neutrons are at equilibrium, the Sjöstrand method becomes extremely fast if the integral of the reaction rate frommore » a single pulse is split into two parts. These two integrals distinguish between the neutron counts during and after the pulse period. To conclude, when the facility is driven by a spontaneous fission neutron source, the timestamps of the detector neutron counts can be obtained up to the nanosecond precision using MCNP6, which allows obtaining the Rossi and Feynman distributions.« less
Voyager Uranus encounter 0.2lbf T/VA short pulse test report
NASA Technical Reports Server (NTRS)
1986-01-01
The attitude control thrusters on the Voyager spacecraft were tested for operation at electrical pulse widths of less than the current 10-millisecond minimum to reduce impulse bit and, therefore, reduce image smear of pictures taken during the Uranus encounter. Thrusters with the identical configuration of the units on the spacecraft were fired in an altitude chamber to characterize impulse bit and impulse bit variations as a function of electrical pulse widths and to determine if the short pulses decreased thruster life. Pulse widths of 4.0 milliseconds provide approximately 45 percent of the impulse provided by a 10-ms pulse, and thruster-to-thruster and pulse-to-pulse variation is approximately plus or minus 10 percent. Pulse widths shorter than 4 ms showed wide variation, and no pulse was obtained at 3 ms. Three thrusters were each subjected to 75,000 short pulses of 4 ms or less without performance degradation. A fourth thruster exhibited partial flow blockage after 13,000 short pulses, but this was attributed to prevous test history and not short pulse exposure. The Voyager attitude control thrusters should be considered flight qualified for short pulse operation at pulse widths of 4.0 ms or more.
Measurement of the^ 235U(n,n')^235mU Integral Cross Section in a Pulsed Reactor
NASA Astrophysics Data System (ADS)
Vieira, D. J.; Bond, E. M.; Belier, G.; Meot, V.; Becker, J. A.; Macri, R. A.; Authier, N.; Hyneck, D.; Jacquet, X.; Jansen, Y.; Legrendre, J.
2009-10-01
We will present the integral measurement of the neutron inelastic cross section of ^235U leading to the 26-minute, E*=76.5 eV isomer state. Small samples (5-20 microgm) of isotope-enriched ^235U were activated in the central cavity of the CALIBAN pulsed reactor at Valduc where a nearly pure fission neutron spectrum is produced with a typical fluence of 3x10^14 n/cm^2. After 30 minutes the samples were removed from the reactor and counted in an electrostatic-deflecting electron spectrometer that was optimized for the detection of ^235mU conversion electrons. From the decay curve analysis of the data, the 26-minute ^235mU component was extracted. Preliminary results will be given and compared to gamma-cascade calculations assuming complete K-mixing or with no K-mixing.
NASA Technical Reports Server (NTRS)
Parker, J. Morgan; Wilson, Michael J.
2005-01-01
The Minimum Impulse Thruster (MIT) was developed to improve the state-of-the-art minimum impulse capability of hydrazine monopropellant thrusters. Specifically, a new fast response solenoid valve was developed, capable of responding to a much shorter electrical pulse width, thereby reducing the propellant flow time and the minimum impulse bit. The new valve was combined with the Aerojet MR-103, 0.2 lbf (0.9 N) thruster and put through an extensive Delta-qualification test program, resulting in a factor of 5 reduction in the minimum impulse bit, from roughly 1.1 milli-lbf-seconds (5 milliNewton seconds) to - 0.22 milli-lbf-seconds (1 mN-s). To maintain it's extensive heritage, the thruster itself was left unchanged. The Minimum Impulse Thruster provides mission and spacecraft designers new design options for precision pointing and precision translation of spacecraft.
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.
2017-08-01
Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.
Radioactive ion beams produced by neutron-induced fission at ISOLDE
NASA Astrophysics Data System (ADS)
Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.; Isolde Collaboration
2003-05-01
The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high- Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC 2/graphite and ThO 2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N-Particle Transport Code, Version 4C, LA-13709-M] libraries, of the neutron flux from the converters interacting with the actinide targets.
Radioactive ion beams produced by neutron-induced fission at ISOLDE
NASA Astrophysics Data System (ADS)
Isolde Collaboration; Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.
2003-05-01
The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high-/Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N-Particle Transport Code, Version 4C, LA-13709-M] libraries, of the neutron flux from the converters interacting with the actinide targets.
Wigington, P.J.; DeWalle, David R.; Murdoch, Peter S.; Kretser, W.A.; Simonin, H.A.; Van Sickle, J.; Baker, J.P.
1996-01-01
As part of the Episodic Response Project (ERP), we intensively monitored discharge and stream chemistry of 13 streams located in the Northern Appalachian region of Pennsylvania and in the Catskill and Adirondack Mountains of New York from fall 1988 to spring 1990. The ERP clearly documented the occurrence of acidic episodes with minimum episodic pH ??? 5 and inorganic monomeric Al (Alim) concentrations >150 ??g/L in at least two study streams in each region. Several streams consistently experienced episodes with maximum Alim concentrations >350 ??g/L. Acid neutralizing capacity (ANC) depressions resulted from complex interactions of multiple ions. Base cation decreases often made the most important contributions to ANC depressions during episodes. Organic acid pulses were also important contributors to ANC depressions in the Adirondack streams, and to a lesser extent, in the Catskill and Pennsylvania streams. Nitrate concentrations were low in the Pennsylvania streams, whereas the Catskill and Adirondack study streams had high NO3- concentrations and large episodic pulses (???54 ??eq/L). Most of the Pennsylvania study streams also frequently experienced episodic pulses of SO42- (???78 ??eq/L), whereas the Adirondack and Catskill streams did not. High baseline concentrations of SO42- (all three study areas) and NO3- (Adirondacks and Catskills) reduced episodic minimum ANC, even when these ions did not change during episodes. The ion changes that controlled the most severe episodes (lowest minimum episodic ANC) differed from the ion changes most important to smaller, more frequent episodes. Pulses of NO3- (Catskills and Adirondacks), SO42- (Pennsylvania), or organic acids became more important during major episodes. Overall, the behavior of streamwater SO42- and NO4- is an indicator that acidic deposition has contributed to the severity of episodes in the study streams.
Dolan, C.R.; Miranda, L.E.; Henry, T.B.
2002-01-01
Continuous direct current (DC) and pulsed DC (PDC) of varying frequency and pulse period are commonly used to immobilize and collect crappies Pomoxis spp. in freshwater. However, little information is available about the minimum electrical-setting thresholds required for immobilization or how the settings relate to incidence of injury. We investigated the effect of increasing power densities on the immobilization and injury of black crappies P. nigromaculatus (average total length = 154 mm) treated with DC and various PDC settings. Forced swimming toward the electrodes was observed in black crappies exposed to DC, but that was less apparent for PDC. The minimum peak power densities required to immobilize black crappies ranged from 0.10 to 6.5 mW/cm3 and depended on pulse frequency and period. The incidence of hemorrhaging ranged from 0% to 50% and that of spinal damage from 9% to 45%. However, the severity of injury also depended on pulse frequency and period. No fish suffered mortality at or below the immobilization thresholds, but mortality ranged from 0% to 15% at settings above the thresholds. Mortality was observed with PDC settings of 15 Hz only. Fish that were tetanized following electrical treatment were more prone to injury than those that exhibited narcosis.
Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.
Handa, Shinya; Domalain, Thierry; Kose, Katsumi
2007-08-01
A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADmicroC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62 kbytes of flash memory, 8 kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40 bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100 ns and a minimum time delay between successive events of approximately 9 micros. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.
Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller
NASA Astrophysics Data System (ADS)
Handa, Shinya; Domalain, Thierry; Kose, Katsumi
2007-08-01
A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADμC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62kbytes of flash memory, 8kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100ns and a minimum time delay between successive events of approximately 9μs. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.
Spatial structure of the arc in a pulsed GMAW process
NASA Astrophysics Data System (ADS)
Kozakov, R.; Gött, G.; Schöpp, H.; Uhrlandt, D.; Schnick, M.; Häßler, M.; Füssel, U.; Rose, S.
2013-06-01
A pulsed gas metal arc welding (GMAW) process of steel under argon shielding gas in the globular mode is investigated by measurements and simulation. The analysis is focussed on the spatial structure of the arc during the current pulse. Therefore, the radial profiles of the temperature, the metal vapour species and the electric conductivity are determined at different heights above the workpiece by optical emission spectroscopy (OES). It is shown that under the presence of metal vapour the temperature minimum occurs at the centre of the arc. This minimum is preserved at different axial positions up to 1 mm above the workpiece. In addition, estimations of the electric field in the arc from the measurements are given. All these results are compared with magneto-hydrodynamic simulations which include the evaporation of the wire material and the change of the plasma properties due to the metal vapour admixture in particular. The experimental method and the simulation model are validated by means of the satisfactory correspondence between the results. Possible reasons for the remaining deviations and improvements of the methods which should be aspired are discussed.
Kostenbauder, Adnah G.
1988-01-01
A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode.
Kostenbauder, A.G.
1988-06-28
A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode. 4 figs.
Takahashi, M; Usui, Y; Ichiman, Y; Yoshida, K; Yonaha, T
1985-01-01
Using strain SMK-101 of K. pneumoniae its nephelometric absorbencies, viable cell numbers and morphological changes were studied during the time course cultured in a broth medium containing cephapirin (CEPR), and following results were obtained. After 1 to 3 hours culture in the presence of varying concentration of the antibiotic, the absorbency increased in spite of without change in the viable cell number. Morphologically, elongation and swelling of central portion of the cells were observed though differences of the degree of these findings varied depending upon the concentration of the antibiotic. At the concentration higher than 1/4 MIC, indistinct structure was shown in cytoplasm. After 6 hours culture, 3 directions of absorbence curves, ascending, descending and no change, and 2 directions of viable cell numbers, decreasing and increasing were shown. As the morphological changes of the cells, filamentation, leaking of intracellular components were shown in rather upper concentration of the antibiotic. Fission was demonstrated around the end of cells cultured in rather lower concentration of the antibiotic. After 9 hours culture, absorbency and viable cell number were parallel. In this period, structural findings of cytoplasm became clear and fission was also demonstrated by light microscope except for the cells cultured in more than 1 MIC of the antibiotic. After 24 hours culture, both absorbency and viable cell number increased again and fission was observed in the cell which showed filamentation in 1 MIC of the antibiotic.
Metabolism and pathophysiology of sodium and chlorine in tissue after neutron irradiation.
Koester, L; Knopf, K; Auberger, T
1994-01-01
The photon emission of tissue was measured after radiotherapy with various doses of fission neutrons. Spectral analyses of the decay rates resulted in data for the exchange of sodium and chlorine between the irradiated tissue and the whole body. In 12 cases we found that about three fifths of Na and Cl exchange rapidly between the extravascular and vascular liquids with a turnover half-life of 13 +/- 2 min. Slowly exchangeable or non-exchangeable fractions are deposited in the soft tissue. New defined mass exchange rates for Na and Cl amount to an average of 0.8 mval min-1 kg-1 of soft tissue. The turnover of the electrolytes in tissue with large tumours is about twice that in tissues with small metastasis. Depending on dose, radiotherapy led in all cases to distinct variations of the metabolism. A maximum of the exchange of Cl combined with a minimum of Na occurs at about 85 Gy of conventional or at 10 Gy of lead-filtered fission neutron radiation. These results show directly for the first time the local response of the electrolyte metabolism to therapy.
Summary of Altitude Pulse Testing of a 100-lbf L02/LCH4 Reaction Control Engine
NASA Technical Reports Server (NTRS)
Marshall, William M.; Kleinhenz, Julie E.
2011-01-01
Recently, liquid oxygen-liquid methane (LO2/LCH4) has been considered as a potential "green" propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project has been tasked by NASA to develop this propulsion combination to enable safe and cost effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating the viability of implementing such a system. The NASA Glenn Research Center has conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes a unique propellant conditioning feed system (PCFS) which allows precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed mode operation portion of testing, with a focus on minimum impulse bit (I-bit) and repeatable pulse performance. The engine successfully demonstrated target minimum impulse bit performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon which was not noted in previous test programs for this engine.
Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide.
Ciret, Charles; Leo, François; Kuyken, Bart; Roelkens, Gunther; Gorza, Simon-Pierre
2016-01-11
We report on the first experimental observation of an optical analogue of an event horizon in integrated nanophotonic waveguides, through the reflection of a continuous wave on an intense pulse. The experiment is performed in a dispersion-engineered silicon-on-insulator waveguide. In this medium, solitons do not suffer from Raman induced self-frequency shift as in silica fibers, a feature that is interesting for potential applications of optical event horizons. As shown by simulations, this also allows the observation of multiple reflections at the same time on fundamental solitons ejected by soliton fission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashenfelter, J.; Jaffe, D.; Diwan, M. V.
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.
Shield materials recommended for space power nuclear reactors
NASA Technical Reports Server (NTRS)
Kaszubinski, L. J.
1973-01-01
Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.
Study of field shifts of Ramsey resonances on ultracold atoms and ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabatchikova, K. S., E-mail: k.tabatchikova@gmail.com; Taichenachev, A. V.; Dmitriev, A. K.
2015-02-15
The effect of the finite laser radiation line width and spontaneous relaxation of levels on the efficiency of the suppression of the field shift of the central resonance for the generalized Ramsey scheme with pulses of different lengths and with a phase jump in the second pulse has been considered. The optimal parameters of the scheme corresponding to the minimum frequency shift and maximum amplitude of the resonance have been determined.
Gattinger, Norbert; Moessnang, Georg; Gleich, Bernhard
2012-07-01
Transcranial magnetic stimulation (TMS) is able to noninvasively excite neuronal populations due to brief magnetic field pulses. The efficiency and the characteristics of stimulation pulse shapes influence the physiological effect of TMS. However, commercial devices allow only a minimum of control of different pulse shapes. Basically, just sinusoidal and monophasic pulse shapes with fixed pulse widths are available. Only few research groups work on TMS devices with controllable pulse parameters such as pulse shape or pulse width. We describe a novel TMS device with a full-bridge circuit topology incorporating four insulated-gate bipolar transistor (IGBT) modules and one energy storage capacitor to generate arbitrary waveforms. This flexible TMS (flexTMS ) device can generate magnetic pulses which can be adjusted with respect to pulse width, polarity, and intensity. Furthermore, the equipment allows us to set paired pulses with a variable interstimulus interval (ISI) from 0 to 20 ms with a step size of 10 μs. All user-defined pulses can be applied continually with repetition rates up to 30 pulses per second (pps) or, respectively, up to 100 pps in theta burst mode. Offering this variety of flexibility, flexTMS will allow the enhancement of existing TMS paradigms and novel research applications.
Enhancing nutrition with pulses: defining a recommended serving size for adults
Marinangeli, Christopher P F; Curran, Julianne; Barr, Susan I; Slavin, Joanne; Puri, Seema; Swaminathan, Sumathi; Tapsell, Linda; Patterson, Carol Ann
2017-01-01
Abstract Pulses, defined as dry-harvested leguminous crops, include several varieties of beans, peas, lentils, and chickpeas. There is no consensus around a recommended serving size of pulses within a balanced diet, which prevents the development of transregional strategies that rely on consistent messaging to drive increases in consumption. The purpose of this review is to define and disseminate an appropriate target for a minimum serving size of pulses on any given day that can be used in international or collaborative strategies to promote the consumption of pulses. Relevant data were reviewed to examine dietary guidelines across jurisdictions, determine consumption levels of pulses across the globe, evaluate the nutritional composition of pulses in the context of dietary nutrient insufficiency, and assess the impact of pulses on dietary quality. Across a variety of pulses, 100 g of cooked pulses aligned with most regional serving sizes for pulses and provides significant levels of nutrients that are underconsumed by specific age-sex groups. Moreover, 100 g of pulses provides a number of nutrients that qualify for nutrient content claims under regional regulatory frameworks. The data demonstrate that 100 g or 125 mL (0.5 metric cup) of cooked pulses is a reasonable target for aligning strategies that promote the dietary and nutritional attributes of these legumes. PMID:29202192
The US Spallation Neutron Source Project
NASA Astrophysics Data System (ADS)
Olsen, David K.
1997-10-01
Slow neutrons, with wavelengths between a few tenths to a few tens of angstroms, are an important probe for condensed-matter physics and are produced with either fission reactors or accelerator-based spallation sources. The Spallation Neutron Source (SNS) is a collaborative project between DOE National Laboratories including LBNL, LANL, BNL, ANL and ORNL to build the next research neutron source in the US. This source will be sited at ORNL and is being designed to serve the needs of the neutron science community well into the next century. The SNS consists of a 1.1-mA H- front end and a 1.0-GeV high-intensity pulsed proton linac. The 1-ms pulses from the linac will be compressed in a 221-m-circumference accumulator ring to produce 600-ns pulses at a 60-Hz rate. This accelerator system will produce spallation neutrons from a 1.0-MW liquid Hg target for a broad spectrum of neutron scattering research with an initial target hall containing 18 instruments. The baseline conceptual design, critical issues, upgrade possibilities, and the collaborative arrangement will be discussed. It is expected that SNS construction will commence in FY99 and, following a seven year project, start operation in 2006.
Fission Surface Power Technology Demonstration Unit Test Results
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.
2016-01-01
The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.
Fission Limit And Surface Disruption Criteria For Asteroids: The Case Of Kleopatra
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, D. J.
2012-05-01
Asteroid structural failure due to a rapid rotation may occur by two fundamentally different ways: by spinning so fast that surface particles are lofted off due to centripetal accelerations overcoming gravitational attractions or through fission of the body. We generalize these failure modes for real asteroid shapes. How a rubble pile asteroid will fail depends on which of these failure criterion occur first if its spin rate is increased due to the YORP effect, impacts, or planetary flybys. The spin rate at which the interior of an arbitrary uniformly rotating body will undergo tension (and conservatively be susceptible to fission) is computed by taking planar cuts through the shape model, computing the mutual gravitational attraction between the two segments, and determining the spin rate at which the centrifugal force between the two components equals the mutual gravitational attraction. The gravitational attraction computation uses an improved version of the algorithm presented in Werner et al. (2005). To determine the interior point that first undergoes tension, we consider this planar cut perpendicular to the axis of minimum moment of inertia at different cross-sections. On the other hand, we define the surface disruption as follows. For an arbitrary body uniformly rotating at a constant spin rate there are at least four synchronous orbits, which represent circular orbits with the same period as the asteroid spin rate. Surface disruption occurs when the body spins fast enough so that at least one of these synchronous orbits touches the asteroid surface. Kleopatra currently spins with a period of 5.38 hours. The spin period for surface disruption is computed to be 3.02 hours, while the spin period for the interior of the asteroid to go into tension is about 4.8 hours. Thus Kleopatra’s internal fission could occur at spin periods longer than when surface disruption occurs.
Fission Surface Power Technology Demonstration Unit Test Results
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven; Sanzi, James
2016-01-01
The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7% resulting in a net system power of 8.1 kW and a system level efficiency of 17.2%. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to GRC. The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3%. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 %.
Neutron Imaging at LANSCE—From Cold to Ultrafast
Nelson, Ronald Owen; Vogel, Sven C.; Hunter, James F.; ...
2018-02-23
In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE), covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center), Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutronsmore » and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR) facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns), time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.« less
Neutron Imaging at LANSCE—From Cold to Ultrafast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Ronald Owen; Vogel, Sven C.; Hunter, James F.
In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE), covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center), Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutronsmore » and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR) facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns), time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.« less
Linear Transformer Drivers for Z-pinch Based Propulsion
NASA Technical Reports Server (NTRS)
Adams, Robert; Seidler, William; Giddens, Patrick; Fabisinski, Leo; Cassibry, Jason
2017-01-01
The MSFC/UAH team has been developing of a novel power management and distribution system called a Linear Transformer Driver (LTD). LTD's hold the promise of dramatically reducing the required mass to drive a z-pinch by replacing the capacitor banks which constitute half the mass of the entire system. The MSFC?UAH tea, is developing this technology in hope of integrating it with the Pulsed Fission Fusion (PuFF) propulsion concept. High-Voltage pulsed power systems used for Z-Pinch experimentation have in the past largely been based on Marx Generators. Marx generators deliver the voltage and current required for the Z-Pinch, but suffer from two significant drawbacks when applied to a flight system: they are very massive, consisting of high-voltage capacitor banks insulated in oil-filled tanks and they do not lend themselves to rapid pulsing. The overall goal of Phase 2 is to demonstrate the construction of a higher voltage stack from a number of cavities each of the design proven in Phase 1 and to characterize and understand the techniques for designing the stack. The overall goal of Phase 3 is to demonstrate the feasibility of constructing a higher energy cavity from a number of smaller LTD stacks, to characterize and understand the way in which the constituent stacks combine, and to extend this demonstration LTD to serve as the basis for a 64 kJ pulse generator for Z-Pinch experiments.
Validation of new and existing decision rules for the estimation of beat-to-beat pulse transit time.
Zhou, Xiaolin; Peng, Rongchao; Ding, Hongxia; Zhang, Ningling; Li, Pan
2015-01-01
Pulse transit time (PTT) is a pivotal marker of vascular stiffness. Because the actual PTT duration in vivo is unknown and the complicated variation in waveform may occur, the robust determination of characteristic point is still a very difficult task in the PTT estimation. Our objective is to devise a method for real-time estimation of PTT duration in pulse wave. It has an ability to reduce the interference caused by both high- and low-frequency noise. The reproducibility and performance of these methods are assessed on both artificial and clinical pulse data. Artificial data are generated to investigate the reproducibility with various signal-to-noise ratios. For all artificial data, the mean biases obtained from all methods are less than 1 ms; collectively, this newly proposed method has minimum standard deviation (SD, <1 ms). A set of data from 33 participants together with the synchronously recorded continuous blood pressure data are used to investigate the correlation coefficient (CC). The statistical analysis shows that our method has maximum values of mean CC (0.5231), sum of CCs (17.26), and median CC (0.5695) and has the minimum SD of CCs (0.1943). Overall, the test results in this study indicate that the newly developed method has advantages over traditional decision rules for the PTT measurement.
Effect of attochirp on attosecond streaking time delay in photoionization of atoms
NASA Astrophysics Data System (ADS)
Goldsmith, C.; Jaroń-Becker, A.; Becker, A.
2018-01-01
We present a theoretical analysis of the effect of the attochirp on the streaking time delay, intrinsic to photoionization of an atom by an attosecond laser pulse at extreme ultraviolet wavelengths superposed by a femtosecond streaking pulse. To this end, we determine the expectation value of the delay in a chirped pulse using a recently developed model formula. Results of our calculations show that the attochirp can be relevant for photoemission from the 3p shell in argon atom at frequencies near the Cooper minimum, while it is negligible if the photoionization cross section as a function of frequency varies smoothly.
Online clustering algorithms for radar emitter classification.
Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max
2005-08-01
Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.
[Echolocation calls of free-flying Himalayan swiftlets (Aerodramus brevirostris)].
Wang, Bin; Ma, Jian-Zhang; Chen, Yi; Tan, Liang-Jing; Liu, Qi; Shen, Qi-Qi; Liao, Qing-Yi; Zhang, Li-Biao
2013-02-01
Here, we present our findings of free-flying echolocation calls of Himalayan swiftlets (Aerodramus brevirostris), which were recorded in Shenjing Cave, Hupingshan National Reserve, Shimen County, Hunan Province in June 2012, using Avisoft-UltraSoundGate 116(e). We noted that after foraging at dusk, the Himalayan swiftlets flew fast into the cave without clicks, and then slowed down in dark area in the cave, but with sounds. The echolocation sounds of Himalayan swiftlets are broadband, double noise burst clicks, separated by a short pause. The inter-pulse intervals between double clicks (99.3±3.86 ms)were longer than those within double clicks (6.6±0.42 ms) (P<0.01). With the exception of peak frequency, between 6.2±0.08 kHz and 6.2±0.10 kHz, (P>0.05) and pulse duration 2.9±0.12 ms, 3.2±0.17 ms, (P>0.05) between the first and second, other factors-maximum frequency, minimum frequency, frequency bandwidth, and power-were significantly different between the clicks. The maximum frequency of the first pulse (20.1±1.10 kHz) was higher than that of second (15.4±0.98 kHz) (P<0.01), while the minimum frequency of the first pulse (3.7±0.12 kHz) was lower than that of second (4.0±0.09 kHz) (P<0.05); resulting in the frequency bandwidth of the first pulse (16.5±1.17 kHz) longer than that of second (11.4±1.01 kHz) (P<0.01). The power of the first pulse (-32.5±0.60 dB) was higher than that of second (-35.2±0.94 dB) (P<0.05). More importantly, we found that Himalayan swiftlets emitted echolocation pulses including ultrasonic sound, with a maximum frequency reaching 33.2 kHz.
Industrial femtosecond lasers for machining of heat-sensitive polymers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hendricks, Frank; Bernard, Benjamin; Matylitsky, Victor V.
2017-03-01
Heat-sensitive materials, such as polymers, are used increasingly in various industrial sectors such as medical device manufacturing and organic electronics. Medical applications include implantable devices like stents, catheters and wires, which need to be structured and cut with minimum heat damage. Also the flat panel display market moves from LCD displays to organic LED (OLED) solutions, which utilize heat-sensitive polymer substrates. In both areas, the substrates often consist of multilayer stacks with different types of materials, such as metals, dielectric layers and polymers with different physical characteristic. The different thermal behavior and laser absorption properties of the materials used makes these stacks difficult to machine using conventional laser sources. Femtosecond lasers are an enabling technology for micromachining of these materials since it is possible to machine ultrafine structures with minimum thermal impact and very precise control over material removed. An industrial femtosecond Spirit HE laser system from Spectra-Physics with pulse duration <400 fs, pulse energies of >120 μJ and average output powers of >16 W is an ideal tool for industrial micromachining of a wide range of materials with highest quality and efficiency. The laser offers process flexibility with programmable pulse energy, repetition rate, and pulse width. In this paper, we provide an overview of machining heat-sensitive materials using Spirit HE laser. In particular, we show how the laser parameters (e.g. laser wavelength, pulse duration, applied energy and repetition rate) and the processing strategy (gas assisted single pass cut vs. multi-scan process) influence the efficiency and quality of laser processing.
Constrained coding for the deep-space optical channel
NASA Technical Reports Server (NTRS)
Moision, B. E.; Hamkins, J.
2002-01-01
We investigate methods of coding for a channel subject to a large dead-time constraint, i.e. a constraint on the minimum spacing between transmitted pulses, with the deep-space optical channel as the motivating example.
Power pulsing of the CMOS sensor Mimosa 26
NASA Astrophysics Data System (ADS)
Kuprash, Oleg
2013-12-01
Mimosa 26 is a monolithic active pixel sensor developed by IPHC (Strasbourg) & IRFU (Saclay) as a prototype for the ILC vertex detector studies. The resolution requirements for the ILC tracking detector are very extreme, demanding very low material in the detector, thus only air cooling can be considered. Power consumption has to be reduced as far as possible. The beam structure of the ILC allows the possibility of power pulsing: only for about the 1 ms long bunch train full power is required, and during the 199 ms long pauses between the bunch trains the power can be reduced to a minimum. Not being adapted for the power pulsing, the sensor shows in laboratory tests a good performance under power pulsing. The power pulsing allows to significantly reduce the heating of the chip and divides power consumption approximately by a factor of 6. In this report a summary of power pulsing studies using the digital readout of Mimosa 26 is given.
Plasma ``anti-assistance'' and ``self-assistance'' to high power impulse magnetron sputtering
NASA Astrophysics Data System (ADS)
Anders, André; Yushkov, Georgy Yu.
2009-04-01
A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.
Laser ignition of liquid petroleum gas at elevated pressures
NASA Astrophysics Data System (ADS)
Loktionov, E.; Pasechnikov, N.; Telekh, V.
2017-11-01
Recent development of laser spark plugs for internal combustion engines have shown lack of data on laser ignition of fuel mixtures at multi-bar pressures needed for laser pulse energy and focusing optimisation. Methane and hydrogen based mixtures are comparatively well investigated, but propane and butane based ones (LPG), which are widely used in vehicles, are still almost unstudied. Optical breakdown thresholds in gases decrease with pressure increase up to ca. 100 bar, but breakdown is not a sufficient condition for combustion ignition. So minimum ignition energy (MIE) becomes more important for combustion core onset, and its dependency on mixture composition and pressure has several important features. For example, unlike breakdown threshold, is poorly dependent on laser pulse length, at least in pico- and to microsecond range. We have defined experimentally the dependencies of minimum picosecond laser pulse energies (MIE related value) needed for ignition of LPG based mixtures of 1.0 to 1.6 equivalence ratios and pressure of 1.0 to 3.5 bar. In addition to expected values decrease, low-energy flammability range broadening has been found at pressure increase. Laser ignition of LPG in Wankel rotary engine is reported for the first time.
Neutron interrogation of high-enriched uranium by a 4 MeV linac
NASA Astrophysics Data System (ADS)
Lakosi, László; Nguyen, Cong Tam
2008-07-01
For revealing unauthorized transport (illicit trafficking) of nuclear materials, a non-destructive method reported earlier, utilizing a 4 MeV linear accelerator for photoneutron interrogation, was further developed. The linac served as a pulsed neutron source for assay of highly enriched uranium. Produced in beryllium or heavy water by bremsstrahlung, neutrons subsequently induced fission in the samples. Delayed neutrons were detected by a newly designed neutron collar built up of 14 3He counters embedded in a polyethylene moderator. A PC controlled multiscaler served as a time analyzer, triggering the detector startup by the beam pulse. Significant progress was achieved in enhancing the detector response, hence the sensitivity for revealing illicit material. A lower sensitivity limit of the order of 10 mg 235U was determined in a 20 s measurement time with a reasonable amount of beryllium (170 g) or of heavy water (100 g) and a mean electron current of 10 μA. Sensitivity can be further enhanced by increasing the measurement time.
Wei, Fang-Fei; Li, Yan; Zhang, Lu; Xu, Ting-Yan; Ding, Feng-Hua; Wang, Ji-Guang; Staessen, Jan A
2014-04-01
Whether target organ damage is associated with blood pressure (BP) variability independent of level remains debated. We assessed these associations from 10-minute beat-to-beat, 24-hour ambulatory, and 7-day home BP recordings in 256 untreated subjects referred to a hypertension clinic. BP variability indices were variability independent of the mean, maximum-minimum difference, and average real variability. Effect sizes (standardized β) were computed using multivariable regression models. In beat-to-beat recordings, left ventricular mass index (n=128) was not (P≥0.18) associated with systolic BP but increased with all 3 systolic variability indices (+2.97-3.53 g/m(2); P<0.04); the urinary albumin-to-creatinine ratio increased (P≤0.03) with systolic BP (+1.14-1.17 mg/mmol) and maximum-minimum difference (+1.18 mg/mmol); and pulse wave velocity increased with systolic BP (+0.69 m/s; P<0.001). In 24-hour recordings, all 3 indices of organ damage increased (P<0.03) with systolic BP, whereas the associations with BP variability were nonsignificant (P≥0.15) except for increases in pulse wave velocity (P<0.05) with variability independent of the mean (+0.16 m/s) and maximum-minimum difference (+0.17 m/s). In home recordings, the urinary albumin-to-creatinine ratio (+1.27-1.30 mg/mmol) and pulse wave velocity (+0.36-0.40 m/s) increased (P<0.05) with systolic BP, whereas all associations of target organ damage with the variability indices were nonsignificant (P≥0.07). In conclusion, while accounting for BP level, associations of target organ damage with BP variability were readily detectable in beat-to-beat recordings, least noticeable in home recordings, with 24-hour ambulatory monitoring being informative only for pulse wave velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, R.P., E-mail: rpkelley@ufl.edu; Ray, H.; Jordan, K.A.
An empirical investigation of the scintillation mechanism in a pressurized {sup 4}He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a {sup 252}Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empiricalmore » analysis of the mechanism of scintillation inside the {sup 4}He detector. A further understanding of this mechanism in the {sup 4}He detector will advance the use of this system as a neutron spectrometer. For {sup 252}Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a {sup 252}Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.« less
Development of slow positron beam lines and applications
NASA Astrophysics Data System (ADS)
Mondal, Nagendra Nath
2018-05-01
A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.
Metrology with Weak Value Amplification and Related Topics
2013-10-12
sensitivity depend crucially on the relative time scales involved, which include: 4 +- PBS PC HWP SBC Piezo Pulsed Laser Split Detector 50:50 FIG. 1. Simple...reasons why this may be impossible or inadvisable given a laboratory set-up. There may be a minimum quiet time between laser pulses, for example, or...measurements is a full 100 ms, our filtering limits the laser noise to time scales of about 30 ms. For analysis, we take this as our integration time in
Determining the minimum required uranium carbide content for HTGR UCO fuel kernels
McMurray, Jacob W.; Lindemer, Terrence B.; Brown, Nicholas R.; ...
2017-03-10
There are three important failure mechanisms that must be controlled in high-temperature gas-cooled reactor (HTGR) fuel for certain higher burnup applications are SiC layer rupture, SiC corrosion by CO, and coating compromise from kernel migration. All are related to high CO pressures stemming from free O generated when uranium present as UO 2 fissions and the O is not subsequently bound by other elements. Furthermore, in the HTGR UCO kernel design, CO buildup from excess O is controlled by the inclusion of additional uranium in the form of a carbide, UC x. An approach for determining the minimum UC xmore » content to ensure negligible CO formation was developed and demonstrated using CALPHAD models and the Serpent 2 reactor physics and depletion analysis tool. Our results are intended to be more accurate than previous estimates by including more nuclear and chemical factors, in particular the effect of transmutation products on the oxygen distribution as the fuel kernel composition evolves with burnup.« less
Current Pulses Momentarily Enhance Thermoelectric Cooling
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui
2004-01-01
The rates of cooling afforded by thermoelectric (Peltier) devices can be increased for short times by applying pulses of electric current greater than the currents that yield maximum steady-state cooling. It has been proposed to utilize such momentary enhancements of cooling in applications in which diode lasers and other semiconductor devices are required to operate for times of the order of milliseconds at temperatures too low to be easily obtainable in the steady state. In a typical contemplated application, a semiconductor device would be in contact with the final (coldest) somewhat taller stage of a multistage thermoelectric cooler. Steady current would be applied to the stages to produce steady cooling. Pulsed current would then be applied, enhancing the cooling of the top stage momentarily. The principles of operation are straightforward: In a thermoelectric device, the cooling occurs only at a junction at one end of the thermoelectric legs, at a rate proportional to the applied current. However, Joule heating occurs throughout the device at a rate proportional to the current squared. Hence, in the steady state, the steady temperature difference that the device can sustain increases with current only to the point beyond which the Joule heating dominates. If a pulse of current greater than the optimum current (the current for maximum steady cooling) is applied, then the junction becomes momentarily cooled below its lowest steady temperature until thermal conduction brings the resulting pulse of Joule heat to the junction and thereby heats the junction above its lowest steady temperature. A theoretical and experimental study of such transient thermoelectric cooling followed by transient Joule heating in response to current pulses has been performed. The figure presents results from one of the experiments. The study established the essential parameters that characterize the pulse cooling effect, including the minimum temperature achieved, the maximum temperature overshoot, the time to reach minimum temperature, the time while cooled, and the time between pulses. It was found that at large pulse amplitude, the amount of pulse supercooling is about a fourth of the maximum steady-state temperature difference. For the particular thermoelectric device used in one set of the experiments, the practical optimum pulse amplitude was found to be about 3 times the optimum steady-state current. In a further experiment, a pulse cooler was integrated into a small commercial thermoelectric threestage cooler and found to provide several degrees of additional cooling for a time long enough to operate a semiconductor laser in a gas sensor.
High-pressure swing system for measurements of radioactive fission gases in air samples
NASA Astrophysics Data System (ADS)
Schell, W. R.; Vives-Battle, J.; Yoon, S. R.; Tobin, M. J.
1999-01-01
Radionuclides emitted from nuclear reactors, fuel reprocessing facilities and nuclear weapons tests are distributed widely in the atmosphere but have very low concentrations. As part of the Comprehensive Test Ban Treaty (CTBT), identification and verification of the emission of radionuclides from such sources are fundamental in maintaining nuclear security. To detect underground and underwater nuclear weapons tests, only the gaseous components need to be analyzed. Equipment has now been developed that can be used to collect large volumes of air, separate and concentrate the radioactive gas constituents, such as xenon and krypton, and measure them quantitatively. By measuring xenon isotopes with different half-lives, the time since the fission event can be determined. Developments in high-pressure (3500 kPa) swing chromatography using molecular sieve adsorbents have provided the means to collect and purify trace quantities of the gases from large volumes of air automatically. New scintillation detectors, together with timing and pulse shaping electronics, have provided the low-background levels essential in identifying the gamma ray, X-ray, and electron energy spectra of specific radionuclides. System miniaturization and portability with remote control could be designed for a field-deployable production model.
NASA Astrophysics Data System (ADS)
Hora, Heinrich; Miley, George
2007-03-01
One of the most convincing facts about LENR due to deuterons (ds) or protons of very high concentration in host metals of palladium is the measurement of the large scale minimum in the reaction probability with product elements centered around the nucleon number A = 153. The local maximum was measured in this region is similar to fission of uranium at A = 119 where the local maximum follows the Maruhn-Greiner mechanism^1. We suggest this phenomenon can be explained by the strong screening of the Maxwellian ds on the degenerate rigid electron background within the swimming electrons at the metal surface or thin filem interfaces. The deuterons behave like neutrals at distances of above 2 picometers (pm) and form clusters due to soft attraction in the range of thermal energy; 10 pm diameter clusters can react over long time scales (10^6 s) with Pd leading to double magic number compound nuclei 306x126 decaying via fission to an A=153 element distribution. J. Maruhn et al, Phys. Rev. Letters 32, 548 (1974) H. Hora, G.H. Miley, CzechJ. Phys. 48, 1111 (1998)
Fusion for Space Propulsion and Plasma Liner Driven MTF
NASA Technical Reports Server (NTRS)
Thio, Y.C. Francis; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a low atomic weight propellant cannot overcome the problem. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. There are similarities as well as differences at the system level between applying fusion to propulsion and to terrestrial electrical power generation. The differences potentially provide a wider window of opportunities for applying fusion to propulsion. For example, pulsed approaches to fusion may be attractive for the propulsion application. This is particularly so in the light of significant development of the enabling pulsed power component technologies that have occurred in the last two decades because of defense and other energy requirements. The extreme states of matter required to produce fusion reactions may be more readily realizable in the pulsed states with less system mass than in steady states. Significant saving in system mass may result in pulsed fusion systems using plasmas in the appropriate density regimes. Magnetized target fusion, which attempts to combine the favorable attributes of magnetic confinement and inertial compression-containment into one single integrated fusion scheme, appears to have benefits that are worth exploring for propulsion application.
Nonlinear side effects of fs pulses inside corneal tissue during photodisruption
NASA Astrophysics Data System (ADS)
Heisterkamp, A.; Ripken, T.; Mamom, T.; Drommer, W.; Welling, H.; Ertmer, W.; Lubatschowski, H.
In order to evaluate the potential for refractive surgery, fs laser pulses of 150-fs pulse duration were used to process corneal tissue of dead and living animal eyes. By focusing the laser radiation down to spot sizes of several microns, very precise cuts could be achieved inside the treated cornea, accompanied with minimum collateral damage to the tissue by thermal or mechanical effects. During histo-pathological analysis by light and transmission electron microscopy considerable side effects of fs photodisruption were found. Due to the high intensities at the focal region several nonlinear effects occurred. Self-focusing, photodissociation, UV-light production were observed, leading to streak formation inside the cornea.
Effective excitation of DBD lamp with a long feedline
NASA Astrophysics Data System (ADS)
Schitz, D. V.; Nechoroshev, V. O.
2016-01-01
The proposed solution makes possible the transfer of high-voltage excitation pulses through the long coaxial cable with the minimum losses and the excilamp efficiency. Use of resonant topology of the pulse converter provides ZCS at switching-ON and ZVC at switching- OFF of the transistors. The values of efficiency of radiation of ∼ 9% at the feedline of 2.5 m in length obtained during the experiments are about twice as much as the efficiency at the XeCl- excilamp excitation by the quasi-square pulses power supply due to the decrease of losses at switching and the increase of electric efficiency of a resonant power supply with the long coaxial feedline.
Spacecraft dielectric material properties and spacecraft charging
NASA Technical Reports Server (NTRS)
Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.
1986-01-01
The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Weicheng; Chen Guojie; Han Dingan
A fibre laser with a SESAM as a passive mode-locker is constructed for obtaining a vector soliton with the Kelly sidebands. The analysis of the peculiarities of the sidebands shows that the polarisation states are nonuniform across the entire pulse spectral profile from the leading edge to the trailing edge. Polarisation filtering effect is proposed to obtain a vector soliton with a uniform polarisation state. It is shown that during the polarisation filtering by a polariser incorporated into the laser cavity, the spectral width of the vector solitons gradually broadens and the pulse power decreases. It is found that atmore » a maximum spectral width and a minimum pulse power, vector solitons with a uniform polarisation state are generated. (nonlinear optical phenomena)« less
Room-temperature Q-switched Tm:BaY2F8 laser pumped by CW diode laser
NASA Astrophysics Data System (ADS)
Coluccelli, Nicola; Galzerano, Gianluca; Laporta, Paolo; Parisi, Daniela; Toncelli, Alessandra; Tonelli, Mauro
2006-02-01
We report on the realization of CW diode-pumped Tm:BaY2F8 Q-switched laser at 1.93 µm. Active Q-switching was obtained by means of an intracavity Pockels cell. A functional characterization of the laser performance is presented with particular attention to output energy, pulse duration, pulse stability, and wavelength tunability. Pulses with time duration as short as 170 ns were demonstrated at the minimum repetition rate of 5 Hz with an energy of 3.2 mJ (corresponding to a peak power of 19 kW). A wavelength tunability range from 1905 nm to 1990 nm has been observed.
Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köcher, S. S.; Institute of Energy and Climate Research; Heydenreich, T.
Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoreticallymore » predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.« less
Characterizing the graded structure of false killer whale (Pseudorca crassidens) vocalizations.
Murray, S O; Mercado, E; Roitblat, H L
1998-09-01
The vocalizations from two, captive false killer whales (Pseudorca crassidens) were analyzed. The structure of the vocalizations was best modeled as lying along a continuum with trains of discrete, exponentially damped sinusoidal pulses at one end and continuous sinusoidal signals at the other end. Pulse trains were graded as a function of the interval between pulses where the minimum interval between pulses could be zero milliseconds. The transition from a pulse train with no inter-pulse interval to a whistle could be modeled by gradations in the degree of damping. There were many examples of vocalizations that were gradually modulated from pulse trains to whistles. There were also vocalizations that showed rapid shifts in signal type--for example, switching immediately from a whistle to a pulse train. These data have implications when considering both the possible function(s) of the vocalizations and the potential sound production mechanism(s). A short-time duty cycle measure was developed to characterize the graded structure of the vocalizations. A random sample of 500 vocalizations was characterized by combining the duty cycle measure with peak frequency measurements. The analysis method proved to be an effective metric for describing the graded structure of false killer whale vocalizations.
A comparative study of optimum and suboptimum direct-detection laser ranging receivers
NASA Technical Reports Server (NTRS)
Abshire, J. B.
1978-01-01
A summary of previously proposed receiver strategies for direct-detection laser ranging receivers is presented. Computer simulations are used to compare performance of candidate implementation strategies in the 1- to 100-photoelectron region. Under the condition of no background radiation, the maximum-likelihood and minimum mean-square error estimators were found to give the same performance for both bell-shaped and rectangular optical-pulse shapes. For signal energies greater than 100 photoelectrons, the root-mean-square range error is shown to decrease as Q to the -1/2 power for bell-shaped pulses and Q to the -1 power for rectangular pulses, where Q represents the average pulse energy. Of several receiver implementations presented, the matched-filter peak detector was found to be preferable. A similar configuration, using a constant-fraction discriminator, exhibited a signal-level dependent time bias.
Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles
NASA Astrophysics Data System (ADS)
Smith, Kandler; Wang, Chao-Yang
A 1D electrochemical, lumped thermal model is used to explore pulse power limitations and thermal behavior of a 6 Ah, 72 cell, 276 V nominal Li-ion hybrid-electric vehicle (HEV) battery pack. Depleted/saturated active material Li surface concentrations in the negative/positive electrodes consistently cause end of high-rate (∼25 C) pulse discharge at the 2.7 V cell -1 minimum limit, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell -1 maximum limit, meant to protect the negative electrode from lithium deposition side reaction during charge, is overly conservative for high-rate (∼15 C) pulse charges initiated from states-of-charge (SOCs) less than 100%. Two-second maximum pulse charge rate from the 50% SOC initial condition can be increased by as much as 50% without risk of lithium deposition. Controlled to minimum/maximum voltage limits, the pack meets partnership for next generation vehicles (PNGV) power assist mode pulse power goals (at operating temperatures >16 °C), but falls short of the available energy goal. In a vehicle simulation, the pack generates heat at a 320 W rate on a US06 driving cycle at 25 °C, with more heat generated at lower temperatures. Less aggressive FUDS and HWFET cycles generate 6-12 times less heat. Contact resistance ohmic heating dominates all other mechanisms, followed by electrolyte phase ohmic heating. Reaction and electronic phase ohmic heats are negligible. A convective heat transfer coefficient of h = 10.1 W m -2 K -1 maintains cell temperature at or below the 52 °C PNGV operating limit under aggressive US06 driving.
NASA Astrophysics Data System (ADS)
Labin, N. A.; Bulychev, N. A.; Kazaryan, M. A.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.
2015-12-01
Research on CVL installations with an average power of 20-25 W of cutting and drilling has shown wide range of applications of these lasers for micromachining of metals and a wide range of non-metallic materials up to 1-2 mm. From the analysis indicated that peak power density in the focused light spot of 10-30 μm diameter must be 109 -1012 W/cm2 the productivity and quality micromachining, when the treatment material is preferably in the evaporative mode micro explosions, followed by the expansion of the superheated vapor and the liquid. To achieve such levels of power density, a minimum heat affected zone (5- 10 μm) and a minimum surface roughness of the cut (1-2 μm), the quality of the output beam of radiation should be as high. Ideally, to ensure the quality of the radiation, the structure of CVL output beam must be single-beam, diffraction divergence and have at duration pulses τi = 20-40 ns. The pulse energy should have low values of 0.1-1 mJ at pulse repetition rates of 10-20 kHz. Axis of the radiation beam instability of the pattern to be three orders of magnitude smaller than the diffraction limit of the divergence. The spot of the focused radiation beam must have a circular shape with clear boundary, and a Gaussian intensity distribution.
Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds
NASA Astrophysics Data System (ADS)
Bundgaard, Jeremy; Niffte Collaboration
2015-10-01
Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.
Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity
NASA Astrophysics Data System (ADS)
Domanski, Jaroslaw; Badziak, Jan
2018-01-01
One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th) ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.
External pulsed plasma propulsion and its potential for the near future
NASA Astrophysics Data System (ADS)
Bonometti, J. A.; Morton, P. J.; Schmidt, G. R.
2000-01-01
This paper examines External Pulsed Plasma Propulsion (EPPP), a propulsion concept that derives its thrust from plasma waves generated from a series of small, supercritical fission/fusion pulses behind an object in space. For spacecraft applications, a momentum transfer mechanism translates the intense plasma wave energy into a vehicle acceleration that is tolerable to the rest of the spacecraft and its crew. This propulsion concept offers extremely high performance in terms of both specific impulse (Isp) and thrust-to-weight ratio, something that other concepts based on available technology cannot do. The political concerns that suspended work on this type of system (i.e., termination of Project ORION) may now not be as insurmountable as they were in 1965. The appeal of EPPP stems from its relatively low cost and reusability, fast interplanetary transit times, safety and reliability, and independence from major technological breakthroughs. In fact, a first generation EPPP system based on modern-day technology (i.e., GABRIEL-an evolutionary framework of EPPP concepts) may very well be the only form of propulsion that could realistically be developed to perform ambitious human exploration beyond Mars in the 21st century. It could also provide the most effective approach for deterrence against collision between earth and small planetary objects-a growing concern over recent years. .
External Pulsed Plasma Propulsion and Its Potential for the Near Future
NASA Technical Reports Server (NTRS)
Bonometti, J. A.; Morton, P. J.; Schmidt, G. R.
1999-01-01
This paper examines External Pulsed Plasma Propulsion (EPPP), a propulsion concept that derives its thrust from plasma waves generated from a series of small, supercritical fission/fusion pulses behind an object in space. For spacecraft applications, a momentum transfer mechanism translates the intense plasma wave energy into a vehicle acceleration that is tolerable to the rest of the spacecraft and its crew. This propulsion concept offers extremely high performance in terms of both specific impulse (Isp) and thrust-to-weight ratio, something that other concepts based on available technology cannot do, The political concerns that suspended work on this type of system (i.e. termination of Project ORION) may now not be as insurmountable as they were in 1965. The appeal of EPPP stems from its relatively low cost and reusability, fast interplanetary transit times, safety and reliability, and independence from major technological breakthroughs. In fact, a first generation EPPP system based on modern-day technology (i.e., GABRIEL - an evolutionary framework- of EPPP concepts) may very well be the only form of propulsion that could realistically be developed to perform ambitious human exploration beyond Mars in the 21st century. It could also provide the most effective approach for deterrence against collision between earth and small planetary objects - a growing concern over recent years.
Sub-luminal pulses from cosmic ray air showers
NASA Technical Reports Server (NTRS)
Linsley, J.
1985-01-01
Some of the signals produced by air showers in scintillators possess a distinctive feature, a sub-luminal pulse (SLP) following the normal one with a time delay of approximately 1.5 r/c. The average amplitude of the SLP corresponds to an energy deposit of about 50 MeV, three times as much as is deposited in a typical scintillator by vertical minimum ionizing muons. The SLP account for approximately 5% of the energy deposited in the atmosphere by IR showers with energy 10 to the 10th power GeV at impact parameters 1 km. Assuming that these pulses are due to neutrons travelling with a speed slightly less than c, they provide a unique means of estimating E sub h, the energy deposited by slow hadrons, in showers of this very high energy. On the other hand, if not allowed for properly, these pulses are liable to cause errors in estimating the impact parameters of large showers from pulse width observations.
Quantitative NDA of isotopic neutron sources.
Lakosi, L; Nguyen, C T; Bagi, J
2005-01-01
A non-destructive method for assaying transuranic neutron sources was developed, using a combination of gamma-spectrometry and neutron correlation technique. Source strength or actinide content of a number of PuBe, AmBe, AmLi, (244)Cm, and (252)Cf sources was assessed, both as a safety issue and with respect to combating illicit trafficking. A passive neutron coincidence collar was designed with (3)He counters embedded in a polyethylene moderator (lined with Cd) surrounding the sources to be measured. The electronics consist of independent channels of pulse amplifiers and discriminators as well as a shift register for coincidence counting. The neutron output of the sources was determined by gross neutron counting, and the actinide content was found out by adopting specific spontaneous fission and (alpha,n) reaction yields of individual isotopes from the literature. Identification of an unknown source type and constituents can be made by gamma-spectrometry. The coincidences are due to spontaneous fission in the case of Cm and Cf sources, while they are mostly due to neutron-induced fission of the Pu isotopes (i.e. self-multiplication) and the (9)Be(n,2n)(8)Be reaction in Be-containing sources. Recording coincidence rate offers a potential for calibration, exploiting a correlation between the Pu amount and the coincidence-to-total ratio. The method and the equipment were tested in an in-field demonstration exercise, with participation of national public authorities and foreign observers. Seizure of the illicit transport of a PuBe source was simulated in the exercise, and the Pu content of the source was determined. It is expected that the method could be used for identification and assay of illicit, found, or not documented neutron sources.
A physics investigation of deadtime losses in neutron counting at low rates with Cf252
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Louise G; Croft, Stephen
2009-01-01
{sup 252}Cf spontaneous fission sources are used for the characterization of neutron counters and the determination of calibration parameters; including both neutron coincidence counting (NCC) and neutron multiplicity deadtime (DT) parameters. Even at low event rates, temporally-correlated neutron counting using {sup 252}Cf suffers a deadtime effect. Meaning that in contrast to counting a random neutron source (e.g. AmLi to a close approximation), DT losses do not vanish in the low rate limit. This is because neutrons are emitted from spontaneous fission events in time-correlated 'bursts', and are detected over a short period commensurate with their lifetime in the detector (characterizedmore » by the system die-away time, {tau}). Thus, even when detected neutron events from different spontaneous fissions are unlikely to overlap in time, neutron events within the detected 'burst' are subject to intrinsic DT losses. Intrinsic DT losses for dilute Pu will be lower since the multiplicity distribution is softer, but real items also experience self-multiplication which can increase the 'size' of the bursts. Traditional NCC DT correction methods do not include the intrinsic (within burst) losses. We have proposed new forms of the traditional NCC Singles and Doubles DT correction factors. In this work, we apply Monte Carlo neutron pulse train analysis to investigate the functional form of the deadtime correction factors for an updating deadtime. Modeling is based on a high efficiency {sup 3}He neutron counter with short die-away time, representing an ideal {sup 3}He based detection system. The physics of dead time losses at low rates is explored and presented. It is observed that new forms are applicable and offer more accurate correction than the traditional forms.« less
NASA Astrophysics Data System (ADS)
Ross, J. Ole; Ceranna, Lars
2016-04-01
The radionuclide component of the International Monitoring System (IMS) to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is in place to detect tiny traces of fission products from nuclear explosions in the atmosphere. The challenge for the interpretation of IMS radionuclide data is to discriminate radionuclide sources of CTBT relevance against emissions from nuclear facilities. Remarkable activity concentrations of Ba/La-140 occurred at the IMS radionuclide stations RN 37 (Okinawa) and RN 58 (Ussurysk) mid of May 2010. In those days also an elevated Xe-133 level was measured at RN 38 (Takasaki). Additional regional measurements of radioxenon were reported in the press and further analyzed in various publications. The radionuclide analysis gives evidence for the presence of a nuclear fission source between 10 and 12 May 2010. Backward Atmospheric Transport Modelling (ATM) with HYSPLIT driven by 0.2° ECMWF meteorological data for the IMS samples indicates that, assuming a single source, a wide range of source regions is possible including the Korean Peninsula, the Sea of Japan (East Sea), and parts of China and Russia. Further confinement of the possible source location can be provided by atmospheric backtracking for the assumed sampling periods of the reported regional xenon measurements. New studies indicate a very weak seismic event at the DPRK test site on early 12 May 2010. Forward ATM for a pulse release caused by this event shows fairly good agreement with the observed radionuclide signature. Nevertheless, the underlying nuclear fission scenario remains quite unclear and speculative even if assuming a connection between the waveform and the radionuclide event.
Polarization-dependent Rabi oscillations in single InGaAs quantum dots
NASA Astrophysics Data System (ADS)
Besombes, L.; Baumberg, J. J.; Motohisa, J.
2004-04-01
Measurements of optical Rabi oscillations in the excited states of individual InGaAs are presented. Under pulsed resonant excitation we observe Rabi oscillations with increasing pulse area, which are damped after the first maximum and minimum. We show that the observed damping comes from an additional non-resonant generation of carriers in the quantum dot. The observation of Rabi oscillations provides an efficient way of directly measuring the excitonic transitions' dipole moments. A polarization anisotropy of the dipole moment is resolved in some of the quantum dots.
35 GHz mode-locking of 1.3 μm quantum dot lasers
NASA Astrophysics Data System (ADS)
Kuntz, M.; Fiol, G.; Lämmlin, M.; Bimberg, D.; Thompson, M. G.; Tan, K. T.; Marinelli, C.; Penty, R. V.; White, I. H.; Ustinov, V. M.; Zhukov, A. E.; Shernyakov, Yu. M.; Kovsh, A. R.
2004-08-01
35GHz passive mode-locking of 1.3μm (InGa)As/GaAs quantum dot lasers is reported. Hybrid mode-locking was achieved at frequencies up to 20GHz. The minimum pulse width of the Fourier-limited pulses was 7ps with a peak power of 6mW. Low uncorrelated timing jitter below 1ps was found in cross correlation experiments. High-frequency operation of the lasers was eased by a ridge waveguide design that includes etching through the active layer.
Porcine skin damage thresholds for pulsed nanosecond-scale laser exposure at 1064-nm
NASA Astrophysics Data System (ADS)
DeLisi, Michael P.; Peterson, Amanda M.; Noojin, Gary D.; Shingledecker, Aurora D.; Tijerina, Amanda J.; Boretsky, Adam R.; Schmidt, Morgan S.; Kumru, Semih S.; Thomas, Robert J.
2018-02-01
Pulsed high-energy lasers operating in the near-infrared (NIR) band are increasingly being used in medical, industrial, and military applications, but there are little available experimental data to characterize their hazardous effects on skin tissue. The current American National Standard for the Safe Use of Lasers (ANSI Z136.1-2014) defines the maximum permissible exposure (MPE) on the skin as either a single-pulse or total exposure time limit. This study determined the minimum visible lesion (MVL) damage thresholds in Yucatan miniature pig skin for the single-pulse case and several multiple-pulse cases over a wide range of pulse repetition frequencies (PRFs) (10, 125, 2,000, and 10,000 Hz) utilizing nanosecond-scale pulses (10 or 60 ns). The thresholds are expressed in terms of the median effective dose (ED50) based on varying individual pulse energy with other laser parameters held constant. The results confirm a decrease in MVL threshold as PRF increases for exposures with a constant number of pulses, while also noting a PRF-dependent change in the threshold as a function of the number of pulses. Furthermore, this study highlights a change in damage mechanism to the skin from melanin-mediated photomechanical events at high irradiance levels and few numbers of pulses to bulk tissue photothermal additivity at lower irradiance levels and greater numbers of pulses. The observed trends exceeded the existing exposure limits by an average factor of 9.1 in the photothermally-damaged cases and 3.6 in the photomechanicallydamaged cases.
NASA Technical Reports Server (NTRS)
Mach, D. M.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.
2004-01-01
The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect time resolved optical pulse data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses. Most of these observations were made while close to the top of the storms. We divided our data into two amplitude groups based on prior NASA U2 aircraft optical data and our pulse characteristics. The group of large pulses with radiance greater than 2.1 mW /sq m sr had mean and median 10 - 10% optical pulse widths of 765 and 735 microns respectively, the 50-50% pulse widths of 396 and 355 microns respectively, and 10-90% rise times of 290 and 260 microns. These values are very similar to the previous U2 based optical results The other group of pulses consisting of slightly more than a quarter of the total pulses observed had radiances less than the minimum values detected in the U2 study. The small pulses were narrower than the large pulses with 5040% mean and median values of 198 and 160 ps respectively. Only 12 % of the flashes contained only small pulses, minimizing the impact of this data on the estimates of detection efficiencies of the orbital instruments, the Lightning Imaging Sensor and Optical Transient Detector.
NASA Astrophysics Data System (ADS)
Haji Heidari, Mehdi; Mozaffarzadeh, Moein; Manwar, Rayyan; Nasiriavanaki, Mohammadreza
2018-02-01
In recent years, the minimum variance (MV) beamforming has been widely studied due to its high resolution and contrast in B-mode Ultrasound imaging (USI). However, the performance of the MV beamformer is degraded at the presence of noise, as a result of the inaccurate covariance matrix estimation which leads to a low quality image. Second harmonic imaging (SHI) provides many advantages over the conventional pulse-echo USI, such as enhanced axial and lateral resolutions. However, the low signal-to-noise ratio (SNR) is a major problem in SHI. In this paper, Eigenspace-based minimum variance (EIBMV) beamformer has been employed for second harmonic USI. The Tissue Harmonic Imaging (THI) is achieved by Pulse Inversion (PI) technique. Using the EIBMV weights, instead of the MV ones, would lead to reduced sidelobes and improved contrast, without compromising the high resolution of the MV beamformer (even at the presence of a strong noise). In addition, we have investigated the effects of variations of the important parameters in computing EIBMV weights, i.e., K, L, and δ, on the resolution and contrast obtained in SHI. The results are evaluated using numerical data (using point target and cyst phantoms), and the proper parameters of EIBMV are indicated for THI.
NASA Astrophysics Data System (ADS)
Matsumoto, Ayumu; Ohba, Hironori; Toshimitsu, Masaaki; Akaoka, Katsuaki; Ruas, Alexandre; Sakka, Tetsuo; Wakaida, Ikuo
2018-04-01
The decommissioning of the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Plant is an essential issue in nuclear R&D. Fiber-optic laser-induced breakdown spectroscopy (Fiber-optic LIBS) could be used for in-situ elemental analysis of the inside of the damaged reactors. To improve the performances under difficult conditions, using a long-pulse laser can be an efficient alternative. In this work, the emission spectra of zirconium metal in air obtained for a normal-pulse laser (6 ns) and a long-pulse laser (100 ns) (wavelength: 1064 nm, pulse energy: 12.5 mJ, spot diameter: 0.35 mm) are compared to investigate the fundamental aspects of fiber-optic LIBS with the long-pulse laser. The spectral features are considerably different: when the long-pulse laser is used, the atomic and molecular emission is remarkably enhanced. The enhancement of the atomic emission at the near infrared (NIR) region would lead to the observation of emission lines with minimum overlapping. To understand the differences in the spectra induced respectively from the normal-pulse laser and the long-pulse laser, photodiode signals, time-resolved spectra, plasma parameters, emission from the ambient air, and emission regions are investigated, showing the particular characteristics of the plasma produced by the long-pulse laser.
Virtual active touch using randomly patterned intracortical microstimulation.
O'Doherty, Joseph E; Lebedev, Mikhail A; Li, Zheng; Nicolelis, Miguel A L
2012-01-01
Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices.
O'Sullivan, P. B.; Moore, Thomas E.; Murphy, J.M.; Oldow, J.S.; Ave Lallemant, H.G.
1998-01-01
The Mt. Doonerak antiform is a northeast-trending, doubly plunging antiform located along the axial part of the central Brooks Range. This antiform is a crustal-scale duplex estimated to have a vertical displacement of ~15 km. The antiform folds the Amawk thrust, which separates relatively less displaced lower plate rocks in a window in the core of the antiform from allochthonous upper plate rocks of the Endicott Mountains allochthon. Because regional geological relations indicate that displacement on the Amawk thrust occurred between early Neocomian and early Albian time, uplift of the antiform is post-early Neocomian in age.Zircon fission-track data from the Mt. Doonerak antiform suggest -8-12 km of vertical denudation has occurred within the antiform region since -70-65 Ma. whereas apatite fission-track data indicate the antiform has experienced a minimum of -46 km of denudation since late Oligocene time. Following rapid denudation at -24 + 3 Ma, the rocks have experienced continued denudation to present surface conditions at a slower rate.We conclude from the relative relations and timing that the Mt. Doonerak duplex was constructed in part during the late Oligocene by reactivation of an older duplex formed during the latest Cretaceous to Paleocene. Deformation and uplift of Oligocene age for the axial part of the Brooks Range orogen is anomalously young, but it is the same age as the youngest episode of north-vergent contractional uplift in the northeastern Brooks Range. Because the Mt. Doonerak antiform displays structural characteristics similar to those of antiforms in the northeastern Brooks Range and because both regions experienced simultaneous rapid denudation, we suggest that the Mt. Doonerak antiform formed in response to an episode of contractional deformation that affected both areas in the late Oligocene.
Pressure-dependent kinetics of initial reactions in iso-octane pyrolysis.
Ning, HongBo; Gong, ChunMing; Li, ZeRong; Li, XiangYuan
2015-05-07
This study focuses on the studies of the main pressure-dependent reaction types of iso-octane (iso-C8H18) pyrolysis, including initial C-C bond fission of iso-octane, isomerization, and β-scission reactions of the alkyl radicals produced by the C-C bond fission of iso-octane. For the C-C bond fission of iso-octane, the minimum energy potentials are calculated at the CASPT2(2e,2o)/6-31+G(d,p)//CAS(2e,2o)/6-31+G(d,p) level of theory. For the isomerization and the β-scission reactions of the alkyl radicals, the optimization of the geometries and the vibrational frequencies of the reactants, transition states, and products are performed at the B3LYP/CBSB7 level, and their single point energies are calculated by using the composite CBS-QB3 method. Variable reaction coordinate transition state theory (VRC-TST) is used for the high-pressure limit rate constant calculation and Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) is used to calculate the pressure-dependent rate constants of these channels with pressure varying from 0.01-100 atm. The rate constants obtained in this work are in good agreement with those available from literatures. We have updated the rate constants and thermodynamic parameters for species involved in these reactions into a current chemical kinetic mechanism and also have improved the concentration profiles of main products such as C3H6 and C4H6 in the shock tube pyrolysis of iso-octane. The results of this study provide insight into the pyrolysis of iso-octane and will be helpful in the future development of branched paraffin kinetic mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark
The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminatemore » background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Furthermore, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirolf, P. G., E-mail: Peter.Thirolf@lmu.de
2015-02-24
High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanismsmore » for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional nuclear reaction schemes even at next-generation radioactive beam facilities, underlining the attractive perspectives offered, e.g., by ELI-NP.« less
Theoretical detection threshold of the proton-acoustic range verification technique.
Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei
2015-10-01
Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1-10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. The calculated noise in the transducer was 12-28 mPa, depending on the transducer central frequency (70-380 kHz). The minimum number of protons detectable by the technique was on the order of 3-30 × 10(6) per pulse, with 30-800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10(6) protons/pulse and beam current.
Theoretical detection threshold of the proton-acoustic range verification technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu
2015-10-15
Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method.more » Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10{sup 6} protons/pulse and beam current.« less
Theoretical detection threshold of the proton-acoustic range verification technique
Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei
2015-01-01
Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 106 protons/pulse and beam current. PMID:26429247
The method of pulsed x-ray detection with a diode laser.
Liu, Jun; Ouyang, Xiaoping; Zhang, Zhongbing; Sheng, Liang; Chen, Liang; Tan, Xinjian; Weng, Xiufeng
2016-12-01
A new class of pulsed X-ray detection methods by sensing carrier changes in a diode laser cavity has been presented and demonstrated. The proof-of-principle experiments on detecting pulsed X-ray temporal profile have been done through the diode laser with a multiple quantum well active layer. The result shows that our method can achieve the aim of detecting the temporal profile of a pulsed X-ray source. We predict that there is a minimum value for the pre-bias current of the diode laser by analyzing the carrier rate equation, which exists near the threshold current of the diode laser chip in experiments. This behaviour generally agrees with the characterizations of theoretical analysis. The relative sensitivity is estimated at about 3.3 × 10 -17 C ⋅ cm 2 . We have analyzed the time scale of about 10 ps response with both rate equation and Monte Carlo methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang Gao
2015-11-30
A diode-pumped, passively Q-switched, intracavity frequency-doubled YVO{sub 4}/Nd : YVO{sub 4}/KTP green laser is realised using a GaAs saturable absorber. Two pieces of GaAs wafers are employed in the experiment. In using a 400-μm-thick GaAs wafer and an incident pump power of 10.5 W, the maximum output power of the passively Q-switched green laser is 362 mW at a pulse repetition rate of 84 kHz and a pulse duration of 2.5 ns. When use is made of a 700-mm-thick GaAs wafer, the minimum pulse duration is 1.5 ns at a repetition rate of 67 kHz, pulse energy of 4.18 μJmore » and peak power of 2.8 kW. (control of laser radiation parameters)« less
DOT National Transportation Integrated Search
1971-11-01
The recent introduction of strobe lights for anticollision purposes raises the possibility of using temporal patterns of short duration flashes as information carrying signals. The current experiments are concerned with the detection of the minimum d...
Matthews, Leanna P; Parks, Susan E; Fournet, Michelle E H; Gabriele, Christine M; Womble, Jamie N; Klinck, Holger
2017-03-01
Source levels of harbor seal breeding vocalizations were estimated using a three-element planar hydrophone array near the Beardslee Islands in Glacier Bay National Park and Preserve, Alaska. The average source level for these calls was 144 dB RMS re 1 μPa at 1 m in the 40-500 Hz frequency band. Source level estimates ranged from 129 to 149 dB RMS re 1 μPa. Four call parameters, including minimum frequency, peak frequency, total duration, and pulse duration, were also measured. These measurements indicated that breeding vocalizations of harbor seals near the Beardslee Islands of Glacier Bay National Park are similar in duration (average total duration: 4.8 s, average pulse duration: 3.0 s) to previously reported values from other populations, but are 170-220 Hz lower in average minimum frequency (78 Hz).
A gated LaBr3(Ce) detector for border protection applications
NASA Astrophysics Data System (ADS)
Etile, A.; Denis-Petit, D.; Gaudefroy, L.; Meot, V.; Roig, O.
2018-01-01
We report on the dedicated implementation of the blocking technique for a LaBr3(Ce) detector as well as associated electronics and data acquisition system for border protection applications. The detector is meant to perform delayed γ-ray spectroscopy of fission fragments produced via photofission induced by a high intensity pulsed photon beam. The gating technique avoids saturation of the detection chain during irradiation. The resulting setup allows us to successfully perform delayed γ-ray spectroscopy starting only 30 ns after the gating operation. The measured energy resolution ranges from 5% to 6.5% at 662 keV depending on the γ-ray detection time after the gating operation.
NASA Astrophysics Data System (ADS)
Kaltenbach, André; Hofmann, Julian; Seidel, Dirk; Lauritsen, Kristian; Bugge, Frank; Fricke, Jörg; Paschke, Katrin; Erdmann, Rainer; Tränkle, Günther
2017-02-01
A miniaturized picosecond pulsed semiconductor laser source in the spectral range around 560nm is realized by integrating a frequency doubled distributed Bragg reflector ridge waveguide laser (DBR-RWL) into a micromodule. Such compact laser sources are suitable for mobile application, e.g. in microscopes. The picosecond optical pulses are generated by gain-switching which allows for arbitrary pulse repetition frequencies. For frequency conversion a periodically poled magnesium doped lithium niobate ridge waveguide crystal (PPLN) is used to provide high conversion efficiency with single-pass second harmonic generation (SHG). The coupling of the pulsed radiation into the PPLN crystal is realized by a GRIN-lens. Such types of lenses collect the divergent laser radiation and focus it into the crystal waveguide providing high coupling efficiency at a minimum of space compared to the usage of fast axis collimator(FAC)/slow axis collimator (SAC) lens combinations. The frequency doubled output pulses show a pulse width of about 60 ps FWHM and a spectral width around 0.06nm FWHM at a central wavelength of 557nm at 15Å. The pulse peak power could be determined to be more than 300mW at a repetition frequency of 40 MHz.
Radiochemistry and the Study of Fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered:more » In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.« less
Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharibyan, Narek
2016-10-25
Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially bemore » investigated in this manner include (but are not limited to) Pu-239 and U-237.« less
Computer program FPIP-REV calculates fission product inventory for U-235 fission
NASA Technical Reports Server (NTRS)
Brown, W. S.; Call, D. W.
1967-01-01
Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.
NASA Astrophysics Data System (ADS)
Pellereau, E.; Taïeb, J.; Chatillon, A.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Benlliure, J.; Boutoux, G.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Ebran, A.; Farget, F.; Fernández-Domínguez, B.; Gorbinet, T.; Grente, L.; Heinz, A.; Johansson, H.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Laurent, B.; Martin, J.-F.; Nociforo, C.; Paradela, C.; Pietri, S.; Rodríguez-Sánchez, J. L.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.; Weick, H.
2017-05-01
SOFIA (Studies On Fission with Aladin) is a novel experimental program, dedicated to accurate measurements of fission-fragment isotopic yields. The setup allows us to fully identify, in nuclear charge and mass, both fission fragments in coincidence for the whole fission-fragment range. It was installed at the GSI facility (Darmstadt), to benefit from the relativistic heavy-ion beams available there, and thus to use inverse kinematics. This paper reports on fission yields obtained in electromagnetically induced fission of 238U.
Nuclear fission: a review of experimental advances and phenomenology
NASA Astrophysics Data System (ADS)
Andreyev, A. N.; Nishio, K.; Schmidt, K.-H.
2018-01-01
In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies. This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams. The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed. A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion–fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around {\\hspace{0pt}}180 Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined. The unprecedented high-quality data for fission fragments, completely identified in Z and A, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions. Some aspects of heavy-ion induced fusion–fission and quasifission reactions will be also discussed, which reveal their dynamical features, such as the fission time scale. The crucial role of the multi-chance fission, probed by means of multinucleon-transfer induced fission reactions, will be highlighted. The review will conclude with the discussion of the new experimental fission facilities which are presently being brought into operation, along with promising ‘next-generation’ fission approaches, which might become available within the next decade.
Peterchev, Angel V; Krystal, Andrew D; Rosa, Moacyr A; Lisanby, Sarah H
2015-08-01
Electroconvulsive therapy (ECT) at conventional current amplitudes (800-900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112-174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST.
NASA Astrophysics Data System (ADS)
Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.
2010-05-01
In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigni, M.T., E-mail: pignimt@ornl.gov; Francis, M.W.; Gauld, I.C.
A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for {supmore » 235,238}U and {sup 239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less
High-pressure 4He drift tubes for fissile material detection
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Morris, Christopher L.; Gray, F. E.; Bacon, J. D.; Brockwell, M. I.; Chang, D. Y.; Chung, K.; Dai, W. G.; Greene, S. J.; Hogan, G. E.; Lisowski, P. W.; Makela, M. F.; Mariam, F. G.; McGaughey, P. L.; Mendenhall, M.; Milner, E. C.; Miyadera, H.; Murray, M. M.; Perry, J. O.; Roybal, J. D.; Saunders, A.; Spaulding, R. J.; You, Z.
2013-03-01
A detector efficiency model based on energy extraction from neutrons is described and used to compare 4He detectors with liquid scintillators (EJ301/NE-213). Detector efficiency can be divided into three regimes: single neutron scattering, multiple neutron scattering, and a transition regime in-between. For an average fission neutron of 2 MeV, the amount of 4He needed would be about 1/4 of the amount of the mass of EJ301/NE-213 in the single-scattering regime. For about 50% neutron energy extraction (1 MeV out of 2 MeV), the two types of detectors (4He in the transition regime, EJ301 still in the single-scattering regime) have comparable mass, but 4He detectors can be much larger depending on the number density. A six-tube 11-bar-pressure 4He detector prototype is built and tested. Individual electrical pulses from the detector are recorded using a 12-bit digitizer. Differences in pulse rise time and amplitudes, due to different energy loss of neutrons and gamma rays, are used for neutron/gamma separation. Several energy spectra are also obtained and analyzed.
Barker, C.E.
1991-01-01
A short-term rapid heating and cooling of the rock in well M-94 below 1300 m was caused by a pulse of hot water passing through the edge of the Cerro Prieto, Mexico, geothermal system. Below 1300 m, the peak paleotemperatures were about 225-250??C, but equilibrium well log temperatures indicate a decrease to 150-210??C at present. This hot water pulse sharply increased vitrinite reflectance to levels comparable to those measured in the central part of the system, even though studies of apatite fission-track annealing indicate that the duration of heating was only 100-101 yr in M-94, in contrast to 103-104 yr in the central part of the system. The quick change of the vitrinite reflectance geothermometer indicates that thermal maturation reactions can stabilize, after a geologically short period of heating, to a level consistent with peak temperature under moderate to high-temperature diagenesis in open, fluid-rich, geothermal systems. -from Author
Real-time multi-mode neutron multiplicity counter
Rowland, Mark S; Alvarez, Raymond A
2013-02-26
Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.
External Pulsed Plasma Propulsion (EPPP) Analysis Maturation
NASA Technical Reports Server (NTRS)
Bonometti, Joesph A.; Morton, P. Jeff; Schmidt, George R. (Technical Monitor)
2000-01-01
External Pulsed Plasma Propulsion (EPPP) systems are at the stage of engineering infancy with evolving paradigms for application. performance and general characteristics. Recent efforts have focused on an approach that employs existing technologies with near term EPPP development for usage in interplanetary exploration and asteroid/comet deflection. if mandated. The inherent advantages of EPPP are discussed and its application to a variety of propulsion concepts is explored. These include, but are not limited to, utilizing energy sources such as fission. fusion and antimatter, as well as, improved chemical explosives. A mars mission scenario is presented as a demonstration of its capability using existing technologies. A suggested alternate means to improve EPPP efficiencies could also lead to a heavy lift (non-nuclear) launch vehicle capability. Conceivably, true low-cost, access to space is possible using advanced explosive propellants and/or coupling the EPPP vehicle to a "beam propellant" concept. EPPP systems appear to offer an approach that can potentially cover ETO through interstellar transportation capability. A technology roadmap is presented that shows mutual benefits pertaining to a substantial number of existing space propulsion and research areas.
Fission Reaction Event Yield Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmann, Christian; Verbeke, Jerome; Vogt, Ramona
FREYA (Fission Reaction Event Yield Algorithm) is a code that simulated the decay of a fissionable nucleus at specified excitation energy. In its present form, FREYA models spontaneous fission and neutron-induced fission up to 20 MeV. It includes the possibility of neutron emission from the nuclear prior to its fussion (nth chance fission).
JONAH algorithms: C-2 the ratio option
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rego, J.
1979-02-01
Information concerning input is given first. Then formulas are given for calculation of atoms/millimeter, fissions, kiloton yield, R-value, atoms/fission, fissions/fission, bomb fraction, fissions/atoms, atoms, atoms/atoms, fissions/atoms, atom ratio, total atoms formed, and thermonuclear bomb fraction. Some of the terminology used is elucidated in an appendix. (RWR)
Space Fission Propulsion System Development Status
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana;
2001-01-01
The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.
Picosecond resolution on relativistic heavy ions' time-of-flight measurement
NASA Astrophysics Data System (ADS)
Ebran, A.; Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.
2013-11-01
We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment-which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron-accelerator (ELSA) at CEA-DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution.
NASA Astrophysics Data System (ADS)
Bundgaard, Jeremy J.
Nuclear physicists have been recently called upon for new, high precision fission measurements to improve existing fission models, ultimately enabling engineers to design next generation reactors as well as guarding the nation's stockpile. In response, a resurgence in fission research is aimed at developing detectors to design and build new experiments to meet these needs. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unprecedented precision. The fissionTPC is annually deployed to the Los Alamos Neutron Science Center LANSCE where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's (LLNL) TPC lab, where it is tested with spontaneous fission (SF) from radioactive sources, typically 252Cf and 244Cm, to characterize detector response, improve performance, and evolve the design. One of the experiments relevant for both nuclear energy and nonproliferation is to measure the neutron induced fission of 239Pu, which exhibits a high alpha activity, generating a large unwanted background for the fission measurements. The ratio of alpha to fission present in our neutron induced fission measurement of 239Pu is on the same order of magnitude as the 244Cm alpha/SF branching ratio. The high alpha rate required the TPC to be triggering on fission signals during beam time and we set out to build a trigger system, which, using 244Cm to produce a similar alpha to fission ratio as 239Pu in the neutron beam, we successfully demonstrated the viability of this approach. The trigger design has been evolved for use in NIFFTE's current measurements at LANSCE. In addition to several hardware and software contributions in the development and operation of the fissionTPC, a central purpose of this thesis was also to develop analyses to demonstrate the fissionTPC's performance abilities/limitations in measuring the alpha/SF branching ratio of 252Cf and 244Cm. Our method results in benchmarking the fissionTPC's ability to produce a competitive alpha/SF ratio for 252Cf with sub-percent precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chyzh, A.; Jaffke, P.; Wu, C. Y.
Prompt γ-ray spectra were measured for the spontaneous fission of 240,242Pu and the neutron-induced fission of 239,241Pu with incident neutron energies ranging from thermal to about 100 keV. Measurements were made using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments using a parallel-plate avalanche counter. The unfolded prompt fission γ-ray energy spectra can be reproduced reasonably well by Monte Carlo Hauser–Feshbach statistical model for the neutron-induced fission channel but not for the spontaneous fission channel. However, this entrance-channel dependence of the prompt fission γ-ray emission can be described qualitatively by themore » model due to the very different fission-fragment mass distributions and a lower average fragment spin for spontaneous fission. The description of measurements and the discussion of results under the framework of a Monte Carlo Hauser–Feshbach statistical approach are presented.« less
Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber
NASA Astrophysics Data System (ADS)
Manning, Brett; Niffte Collaboration
2015-10-01
Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.
Chyzh, A.; Jaffke, P.; Wu, C. Y.; ...
2018-06-07
Prompt γ-ray spectra were measured for the spontaneous fission of 240,242Pu and the neutron-induced fission of 239,241Pu with incident neutron energies ranging from thermal to about 100 keV. Measurements were made using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments using a parallel-plate avalanche counter. The unfolded prompt fission γ-ray energy spectra can be reproduced reasonably well by Monte Carlo Hauser–Feshbach statistical model for the neutron-induced fission channel but not for the spontaneous fission channel. However, this entrance-channel dependence of the prompt fission γ-ray emission can be described qualitatively by themore » model due to the very different fission-fragment mass distributions and a lower average fragment spin for spontaneous fission. The description of measurements and the discussion of results under the framework of a Monte Carlo Hauser–Feshbach statistical approach are presented.« less
Shen, Huan; Chen, Jianjun; Hua, Linqiang; Zhang, Bing
2014-06-26
The photodissociation dynamics of allyl chloride at 200 and 266 nm has been studied by femtosecond time-resolved mass spectrometry coupled with photoelectron imaging. The molecule was prepared to different excited states by selectively pumping with 400 or 266 nm pulse. The dissociated products were then probed by multiphoton ionization with 800 nm pulse. After absorbing two photons at 400 nm, several dissociation channels were directly observed from the mass spectrum. The two important channels, C-Cl fission and HCl elimination, were found to decay with multiexponential functions. For C-Cl fission, two time constants, 48 ± 1 fs and 85 ± 40 ps, were observed. The first one was due to the fast predissociation process on the repulsive nσ*/πσ* state. The second one could be ascribed to dissociation on the vibrationally excited ground state which is generated after internal conversion from the initially prepared ππ* state. HCl elimination, which is a typical example of a molecular elimination reaction, was found to proceed with two time constants, 600 ± 135 fs and 14 ± 2 ps. We assigned the first one to dissociation on the excited state and the second one to the internal conversion from the ππ* state to the ground state and then dissociation on the ground state. As we excited the molecule with 266 nm light, the transient signals decayed exponentially with a time constant of ∼48 fs, which is coincident with the time scale of C-halogen direct dissociation. Photoelectron images, which provided translational and angular distributions of the generated electron, were also recorded. Detailed analysis of the kinetic energy distribution strongly suggested that C3H4(+) and C3H5(+) were generated from ionization of the neutral radical. The present study reveals the dissociation dynamics of allyl chloride in a time-resolved way.
A time projection chamber for high accuracy and precision fission cross-section measurements
Heffner, M.; Asner, D. M.; Baker, R. G.; ...
2014-05-22
The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance ofmore » the fissionTPC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigni, Marco T; Francis, Matthew W; Gauld, Ian C
A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order tomore » provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less
NASA Astrophysics Data System (ADS)
Oberstedt, Stephan; Dragic, Aleksandar; Gatera, Angelique; Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Andreas
2017-09-01
The investigation of prompt γ-ray emission in nuclear fission has a great relevance for the assessment of prompt heat generation in a reactor core and for the better understanding of the de-excitation mechanism of fission fragments. Some years ago experimental data was scarce and available only from a few fission reactions, 233,235U(nth, f), 239Pu(nth, f), and 252Cf(sf). Initiated by a high priority data request published by the OECD/NEA a dedicated prompt fission γ-ray measurement program is being conducted at the Joint Research Centre Geel. In recent years we obtained new and accurate prompt fission γ-ray spectrum (PFGS) characteristics (average number of photons per fission, average total energy per fission and mean photon energy) from 252Cf(sf), 235U(nth, f) and 239,241Pu(nth, f) within 2% of uncertainty. In order to understand the dependence of prompt fission γ-ray emission on the compound nuclear mass and excitation energy, we started a first measurement campaign on spontaneously fissioning plutonium and curium isotopes. Results on PFGS characteristics from 240,242Pu(sf) show a dependence on the fragment mass distribution rather than on the average prompt neutron multiplicity, pointing to a more complex competition between prompt fission γ-ray and neutron emission.
NASA Astrophysics Data System (ADS)
Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei
2018-03-01
Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.
Three-dimensional cell to tissue development process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)
2008-01-01
An improved three-dimensional cell to tissue development process using a specific time varying electromagnetic force, pulsed, square wave, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.
NASA Astrophysics Data System (ADS)
Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.
2018-06-01
A new approach to constructing the source of radiation in the sub-THz frequency range is discussed. It is based on the strong-field ionization of heavy rare gases with Ramsauer minimum in the transport cross-section by a two-color () femtosecond laser pulse. Then a four-photon nonlinear process ( are the frequencies from the spectral width of the pulse with frequency ω, and is the frequency from the spectral width of the second harmonic 2ω) with a transition to the initial state results in a low-frequency spontaneous emission that can be amplified in the strongly nonequilibrium laser plasma if the position of the photoelectron peaks is located in the region of growing energy transport cross-section.
NASA Astrophysics Data System (ADS)
Zaima, Kazunori; Sasaki, Koichi
2016-08-01
We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experimental results reveal the oscillation of the rates of combustion chemical reactions as a response to the activation by pulsed DBD. The cycle of the oscillation was 0.18-0.2 ms, which could be understood as the eigenfrequency of the plasma-assisted combustion reaction system.
Delayed fission of atomic nuclei (To the 50th anniversary of the discovery)
NASA Astrophysics Data System (ADS)
Skobelev, N. K.
2017-09-01
The history of the discovery of delayed nuclear fission is presented, and the retrospective of investigations into this phenomenon that were performed at various research centers worldwide is outlined. The results obtained by measuring basic delayed-fission features, including the fission probability, the total kinetic energy of fission fragments, and their mass distributions, are analyzed. Recommendations concerning further studies in various regions of nuclear map with the aim of searches for and investigation of atomic nuclei undergoing delayed fission are given. Lines of further research into features of delayed fission with the aim of solving current problems of fission physics are discussed.
Measurement of the prompt fissionγ-ray spectrum of 242Pu
NASA Astrophysics Data System (ADS)
Urlass, Sebastian; Beyer, Roland; Junghans, Arnd Rudolf; Kögler, Toni; Schwengner, Ronald; Wagner, Andreas
2018-03-01
The prompt γ-ray spectrum of fission fragments is important in understanding the dynamics of the fission process, as well as for nuclear engineering in terms of predicting the γ-ray heating in nuclear reactors. The γ-ray spectrum measured from the fission fragments of the spontaneous fission of 242Pu will be presented here. A fission chamber containing in total 37mg of 242Pu was used as active sample. The γ-quanta were detected with high time- and energy-resolution using LaBr3 and HPGe detectors, respectively, in coincidence with spontaneous fission events detected by the fission chamber. The acquired γ-ray spectra were corrected for the detector response using the spectrum stripping method. About 70 million fission events were detected which results in a very low statistical uncertainty and a wider energy range covered compared to previous measurements. The prompt fission γ-ray spectrum measured with the HPGe detectors shows structures that allow conclusions about the nature of γ-ray transitions in the fission fragments. The average photon multiplicity of 8.2 and the average total energy release by prompt photons per fission event of about 6.8 MeV were determined for both detector types.
NASA Astrophysics Data System (ADS)
Verbeke, Jérôme M.; Petit, Odile; Chebboubi, Abdelhazize; Litaize, Olivier
2018-01-01
Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using either FREYA or FIFRELIN, are compared to experimental results. For 240Pu(sf), the measured correlations were used to tune the model parameters.
Activity of amikacin against Mycobacterium avium complex under simulated in vivo conditions.
Gangadharam, P R; Kesavalu, L; Rao, P N; Perumal, V K; Iseman, M D
1988-01-01
We studied the activity of amikacin against Mycobacterium avium complex strain 101 by using continuous-level, changing concentrations which simulated levels in serum in a patient, and pulsed exposures. Amikacin at a concentration of 5 or 15 micrograms/ml showed rapid bactericidal action following constant exposure of the organisms. With the in vitro model, using a peak concentration of 10 or 20 micrograms/ml, complete sterilization was obtained by day 7. In pulsed-exposure studies, a minimum period of contact of 72 or 96 h at a concentration of 10 micrograms/ml was needed for complete sterilization. PMID:3415209
Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm.
Coluccelli, Nicola; Lagatsky, Alexander; Di Lieto, Alberto; Tonelli, Mauro; Galzerano, Gianluca; Sibbett, Wilson; Laporta, Paolo
2011-08-15
We demonstrate the passive mode-locking operation of an in-band-pumped Ho:YLiF(4) laser at 2.06 μm using a semiconductor saturable absorber mirror based on InGaAsSb quantum wells. A transform-limited pulse train with minimum duration of 1.1 ps and average power of 0.58 W has been obtained at a repetition frequency of 122 MHz. A maximum output power of 1.7 W has been generated with a corresponding pulse duration of 1.9 ps. © 2011 Optical Society of America
Foret, J; Aguirre, A; Touitou, Y; Clodoré, M; Benoit, O
1993-06-11
Using 24 h constant conditions, time course of body temperature, plasma cortisol and wrist motility was measured in response to a 3 day morning 2 h bright light pulse. This protocol demonstrated that a 2000 lux illumination was sufficient to elicit a shift of about 2 h of temperature minimum and cortisol peak. In reference session, actimetric recordings showed a circadian time course, closely in relation with core temperature. Bright light pulse resulted in a decrease of amplitude and a disappearance of circadian pattern of actimetry.
High Energy, Single-Mode, All-Solid-State Nd:YAG Laser
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Hovis, Floyd
2006-01-01
In this paper, recent progress made in the design and development of an all-solid-state, single longitudinal mode, conductively cooled Nd:YAG laser operating at 1064 nm wavelength for UV lidar for ozone sensing applications is presented. Currently, this pump laser provides an output pulse energy of greater than 1.1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns. The spatial profile of the output beam is a rectangular super Gaussian. Electrical-to-optical system efficiency of greater than 7% and a minimum M(sup 2) value of less than 2 have been achieved.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, D.A.; Keller, R.A.
1982-06-08
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be rlated to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10/sup -5/ cm/sup -1/ has been demonstrated using this technique.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, D.A.; Keller, R.A.
1985-10-01
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10[sup [minus]5] cm[sup [minus]1] has been demonstrated using this technique. 6 figs.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, David A.; Keller, Richard A.
1985-01-01
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10.sup.-5 cm.sup.-1 has been demonstrated using this technique.
First principles pulse pile-up balance equation and fast deterministic solution
NASA Astrophysics Data System (ADS)
Sabbatucci, Lorenzo; Fernández, Jorge E.
2017-08-01
Pulse pile-up (PPU) is an always present effect which introduces a distortion into the spectrum measured with radiation detectors and that worsen with the increasing emission rate of the radiation source. It is fully ascribable to the pulse handling circuitry of the detector and it is not comprised in the detector response function which is well explained by a physical model. The PPU changes both the number and the height of the recorded pulses, which are related, respectively, with the number of detected particles and their energy. In the present work, it is derived a first principles balance equation for second order PPU to obtain a post-processing correction to apply to X-ray measurements. The balance equation is solved for the particular case of rectangular pulse shape using a deterministic iterative procedure for which it will be shown the convergence. The proposed method, deterministic rectangular PPU (DRPPU), requires minimum amount of information and, as example, it is applied to a solid state Si detector with active or off-line PPU suppression circuitry. A comparison shows that the results obtained with this fast and simple approach are comparable to those from the more sophisticated procedure using precise detector pulse shapes.
Extended optical model for fission
Sin, M.; Capote, R.; Herman, M. W.; ...
2016-03-07
A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less
Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400
NASA Technical Reports Server (NTRS)
Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.
Potential operating orbits for fission electric propulsion systems driven by the SAFE-400
NASA Astrophysics Data System (ADS)
Houts, Mike; Kos, Larry; Poston, David
2002-01-01
Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp>3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially non-radioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified. .
Radiation detectors and sources enhanced with micro/nanotechnology
NASA Astrophysics Data System (ADS)
Whitney, Chad Michael
The ongoing threat of nuclear terrorism presents major challenges to maintaining national security. Currently, only a small percentage of the cargo containers that enter America are searched for fissionable bomb making materials. This work reports on a multi-channel radiation detection platform enabled with nanoparticles that is capable of detecting and discriminating all types of radiation emitted from fissionable bomb making materials. Typical Geiger counters are limited to detecting only beta and gamma radiation. The micro-Geiger counter reported here detects all species of radiation including beta particles, gamma/X-rays, alpha particles, and neutrons. The multi-species detecting micro-Geiger counter contains a hermetically sealed and electrically biased fill gas. Impinging radiation interacts with tailored nanoparticles to release secondary charged particles that ionize the fill gas. The ionized particles collect on respectively biased electrodes resulting in a characteristic electrical pulse. Pulse height spectroscopy and radiation energy binning techniques can then be used to analyze the pulses to determine the specific radiation isotope. The ideal voltage range of operation for energy discrimination was found to be in the proportional region at 1000VDC. In this region, specific pulse heights for different radiation species resulted. The amplification region strength which determines the device sensitivity to radiation energy can be tuned with the electrode separation distance. Considerable improvements in count rates were achieved by using the charge conversion nanoparticles with the highest cross sections for particular radiation species. The addition of tungsten nanoparticles to the microGeiger counter enabled the device to be four times more efficient at detecting low level beta particles with a dose rate of 3.2uR/hr (micro-Roentgen per hour) and just under three times more efficient than an off the shelf Geiger counter. The addition of lead nanoparticles enabled the gamma/X-ray microGeiger counter channel to be 28 times more efficient at detecting low level gamma rays with a dose rate of 10uR/hr when compared to a device without nanoparticles. The addition of 10B nanoparticles enabled the neutron microGeiger counter channel to be 17 times more efficient at detecting neutrons. The device achieved a neutron count rate of 9,866 counts per minute when compared to a BF3 tube which resulted in a count rate of 9,000 counts per minute. By using a novel micro-injection ceramic molding and low temperature (950°C) silver paste metallizing process, the batch fabrication of essentially disposable micro-devices can be achieved. This novel fabrication technique was then applied to a MEMS neutron gun and water spectroscopy device that also utilizes the high voltage/temperature insulating packaging.
Virtual Active Touch Using Randomly Patterned Intracortical Microstimulation
O’Doherty, Joseph E.; Lebedev, Mikhail A.; Li, Zheng; Nicolelis, Miguel A.L.
2012-01-01
Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices. PMID:22207642
A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.
Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin
2018-07-01
Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Novel control system of the high-voltage IGBT-switch
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.; Mamontov, Y. I.; Gusev, A. I.; Pedos, M. S.
2017-05-01
HV solid-state switch control circuit was developed and tested. The switch was made with series connection IGBT-transistors. The distinctive feature of the circuit is an ability to fine-tune the switching time of every transistor. Simultaneous switching provides balancing of the dynamic voltage at all switch elements. A separate control board switches on and off every transistor. On and off signals from the main conductor are sent to the board by current pulses of different polarity. A positive pulse provides the transistor switch-on, while a negative pulse provides their switch-off. The time interval between pulses defines the time when the switch is turned on. The minimum time when the switch is turned on equals to a few microseconds, while the maximum time is not limited. This paper shows the test results of 4 kV switch prototype. The switch was used to produce rectangular pulses of a microsecond range under resistive load. The possibility to generate the damped harmonic oscillations was also tested. On the basis of this approach, positive testing results open up a possibility to design switches under an operating voltage of tens kilovolts.
NASA Astrophysics Data System (ADS)
Pakmanesh, M. R.; Shamanian, M.
2018-02-01
In this study, the optimization of pulsed Nd:YAG laser welding parameters was done on the lap-joint of a 316L stainless steel foil with the aim of reducing weld defects through response surface methodology. For this purpose, the effects of peak power, pulse-duration, and frequency were investigated. The most important weld defects seen in this method include underfill and undercut. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to balance the welding parameters. The results showed that underfill increased with the increased power and reduced frequency, it first increased and then decreased with the increased pulse-duration; and the most important parameter affecting it was the power, whose effect was 65%. The undercut increased with the increased power, pulse-duration, and frequency; and the most important parameter affecting it was the power, whose effect was 64%. Finally, by superimposing different responses, improved conditions were presented to attain a weld with no defects.
Fundamentals and industrial applications of ultrashort pulsed lasers at Bosch
NASA Astrophysics Data System (ADS)
König, Jens; Bauer, Thorsten
2011-03-01
Fundamental results of ablation processes of metals with ultrashort laser pulses in the far threshold fluence regime are shown and discussed. Time-resolved measurements of the plasma transmission exhibit two distinctive minima. The minima occurring within the first nanoseconds can be attributed to electrons and sublimated material emitted from the target surface, whereas the subsequent minimum after several 10 ns is due to particles and droplets after a thermal boiling process. Industrial applications of ultrashort pulsed laser micro machining in the Bosch Group are also shown with the production of exhaust gas sensors and common rail diesel systems. Since 2007, ultrashort laser pulses are used at the BOSCH plant in Bamberg for producing lambda-probes, which are made of a special ceramic layer system and can measure the exhaust gas properties faster and more accurately. This enables further reduction of emissions by optimized combustion control. Since 2009, BOSCH uses ultrashort pulsed lasers for micro-structuring the injector of common rail diesel systems. A drainage groove allows a tight system even at increased pressures up to 2000 bar. Diesel injection is thus even more reliable, powerful and environment-friendly.
Lam, Jessica; Rennick, Christopher J; Softley, Timothy P
2015-05-01
A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br2 and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80,000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br2. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.
High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging
Persoons, Tim; O’Donovan, Tadhg S.
2011-01-01
The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods. PMID:22346564
Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge
NASA Astrophysics Data System (ADS)
Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu
2018-03-01
The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.
Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.
Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu
2018-03-01
The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.
A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins.
Luís, Ana Rita; Couchinho, Miguel N; Dos Santos, Manuel E
2016-01-01
Common bottlenose dolphins (Tursiops truncatus), produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011-2014), and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval) were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories). According to the discriminant function analysis (Wilk's Λ = 0.11, F3, 2.41 = 282.75, P < 0.001), repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98). Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001), inter-click-interval (P < 0.001) and duration (P < 0.001). We document the occurrence of a distinct signal type-short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the contexts of emission, geographic variation and the functional significance of pulsed signals.
Hemi-fused structure mediates and controls fusion and fission in live cells
Zhao, Wei-Dong; Hamid, Edaeni; Shin, Wonchul; Wen, Peter J.; Krystofiak, Evan S.; Villarreal, Seth A.; Chiang, Hsueh-Cheng; Kachar, Bechara; Wu, Ling-Gang
2016-01-01
Membrane fusion and fission are vital to eukaryotes’ life1–5. For three decades, it has been proposed that fusion is mediated by fusion between proximal leaflets of two bilayers (hemi-fusion) that produces a hemi-fused structure, followed by fusion between distal leaflets, whereas fission is via hemi-fission, which also produces a hemi-fused structure, followed by full fission1, 4, 6–10. This hypothesis remained unsupported owing to the lack of observation of hemi-fusion/hemi-fission in live cells. A competing fusion hypothesis involving protein-lined pore formation has also been proposed2, 11–15. Using confocal and super-resolution STED microscopy, we observed the hemi-fused Ω-shaped structure for the first time in live cells, neuroendocrine chromaffin cells and pancreatic β-cells. This structure was generated from fusion pore opening or closure (fission) at the plasma membrane. Unexpectedly, its transition to full fusion or fission was determined by competition between fusion and calcium/dynamin-dependent fission mechanisms, and was surprisingly slow (seconds to tens of seconds) in a significant fraction of the events. These results provide key missing evidence over the past three decades proving the hemi-fusion and hemi-fission hypothesis in live cells, and reveal the hemi-fused intermediate as a key structure controlling fusion/fission, as fusion and fission mechanisms compete to determine its transition to fusion or fission. PMID:27309816
Energy production using fission fragment rockets
NASA Astrophysics Data System (ADS)
Chapline, G.; Matsuda, Y.
1991-08-01
Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: approximately twice the efficiency if the fission fragment energy can be directly converted into electricity; reduction of the buildup of a fission fragment inventory in the reactor could avoid a Chernobyl type disaster; and collection of the fission fragments outside the reactor could simplify the waste disposal problem.
The Fission of Thorium with Alpha Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newton, Amos S.
1948-04-15
The fission distribution of fission of thorium with alpha particle of average energy 37.5 Mev has been measured by the chemical method. The distribution found shows that the characteristic dip in the fission yield mass spectrum has been raised to within a factor of two of the peaks compared to a factor of 600 in slow neutron fission of U{sup 235}. The raise in the deip has caused a corresponding lowering in fission yield of these elements at the peaks. The cross section for fission of thorium with 37.5 Mev alphas was found to be about 0.6 barn, and themore » threshold for fission was found to be 23 to 24 Mev.« less
Measurement of Fission Product Yields from Fast-Neutron Fission
NASA Astrophysics Data System (ADS)
Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.
2014-09-01
One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.
The SPIDER fission fragment spectrometer for fission product yield measurements
Meierbachtol, K.; Tovesson, F.; Shields, D.; ...
2015-04-01
We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less
Ji, Wei-ke; Hatch, Anna L; Merrill, Ronald A; Strack, Stefan; Higgs, Henry N
2015-01-01
While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites. DOI: http://dx.doi.org/10.7554/eLife.11553.001 PMID:26609810
Driben, Rodislav; Mitschke, Fedor; Zhavoronkov, Nickolai
2010-12-06
The complex mechanism of multiple interactions between solitary and dispersive waves at the advanced stage of supercontinuum generation in photonic crystal fiber is studied in experiment and numerical simulations. Injection of high power negatively chirped pulses near zero dispersion frequency results in an effective soliton fission process with multiple interactions between red shifted Raman solitons and dispersive waves. These interactions may result in relative acceleration of solitons with further collisions between them of quasi-elastic or quasi-plastic kinds. In the spectral domain these processes result in enhancement of certain wavelength regions within the spectrum or development of a new significant band at the long wavelength side of the spectrum.
The radiation chemistry of ionic liquids: A review
Mincher, Bruce J.; Wishart, James F.
2014-07-03
Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less
Options For Development of Space Fission Propulsion Systems
NASA Technical Reports Server (NTRS)
Houta, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission system have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed.
Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong
2015-02-01
The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.
NASA Technical Reports Server (NTRS)
Burkard, R.; Jones, S.; Jones, T.
1994-01-01
Rate-dependent changes in the chick brain-stem auditory evoked response (BAER) using conventional averaging and a cross-correlation technique were investigated. Five 15- to 19-day-old white leghorn chicks were anesthetized with Chloropent. In each chick, the left ear was acoustically stimulated. Electrical pulses of 0.1-ms duration were shaped, attenuated, and passed through a current driver to an Etymotic ER-2 which was sealed in the ear canal. Electrical activity from stainless-steel electrodes was amplified, filtered (300-3000 Hz) and digitized at 20 kHz. Click levels included 70 and 90 dB peSPL. In each animal, conventional BAERs were obtained at rates ranging from 5 to 90 Hz. BAERs were also obtained using a cross-correlation technique involving pseudorandom pulse sequences called maximum length sequences (MLSs). The minimum time between pulses, called the minimum pulse interval (MPI), ranged from 0.5 to 6 ms. Two BAERs were obtained for each condition. Dependent variables included the latency and amplitude of the cochlear microphonic (CM), wave 2 and wave 3. BAERs were observed in all chicks, for all level by rate combinations for both conventional and MLS BAERs. There was no effect of click level or rate on the latency of the CM. The latency of waves 2 and 3 increased with decreasing click level and increasing rate. CM amplitude decreased with decreasing click level, but was not influenced by click rate for the 70 dB peSPL condition. For the 90 dB peSPL click, CM amplitude was uninfluenced by click rate for conventional averaging. For MLS BAERs, CM amplitude was similar to conventional averaging for longer MPIs.(ABSTRACT TRUNCATED AT 250 WORDS).
Peterchev, Angel V; Krystal, Andrew D; Rosa, Moacyr A; Lisanby, Sarah H
2015-01-01
Electroconvulsive therapy (ECT) at conventional current amplitudes (800–900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112–174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST. PMID:25920013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Jessica; Rennick, Christopher J.; Softley, Timothy P.
A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br{sub 2} and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80 000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br{sub 2}. The duration is consistent with a simple analyticalmore » model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.« less
Maximizing fluid delivered by bubble-free electroosmotic pump with optimum pulse voltage waveform.
Tawfik, Mena E; Diez, Francisco J
2017-03-01
In generating high electroosmotic (EO) flows for use in microfluidic pumps, a limiting factor is faradaic reactions that are more pronounced at high electric fields. These reactions lead to bubble generation at the electrodes and pump efficiency reduction. The onset of gas generation for high current density EO pumping depends on many parameters including applied voltage, working fluid, and pulse duration. The onset of gas generation can be delayed and optimized for maximum volume pumped in the minimum time possible. This has been achieved through the use of a novel numerical model that predicts the onset of gas generation during EO pumping using an optimized pulse voltage waveform. This method allows applying current densities higher than previously reported. Optimal pulse voltage waveforms are calculated based on the previous theories for different current densities and electrolyte molarity. The electroosmotic pump performance is investigated by experimentally measuring the fluid volume displaced and flow rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pulsed electron beam propagation in gases under pressure of 6.6 kPa in drift tube
NASA Astrophysics Data System (ADS)
Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Poloskov, A. V.
2017-02-01
This paper presents the results of an investigation of pulsed electron beam transport propagated in a drift tube filled with different gases (He, H2, N2, Ar, SF6, and CO2). The total pressure in the drift tube was 6.6 kPa. The experiments were carried out using a TEA-500 pulsed electron accelerator. The electron beam was propagated in the drift tube composed of two sections equipped with reverse current shunts. Under a pressure of 6.6 kPa, the maximum value of the electron beam charge closed on the walls of the drift tube was recorded when the beam was propagated in hydrogen and carbon dioxide. The minimum value of the electron beam charge closed on the walls of the drift tube was recorded for sulfur hexafluoride. The visualization of the pulsed electron beam energy losses onto the walls of the drift chamber was carried out using radiation-sensitive film.
TECHNICAL SCOPE OF GAS-COOLED REACTOR FUEL ELEMENT IRRADIATION PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A set of 55 experiments hss been outiined to provide a minimum irradiation program for selection of UO/sub 2/, pellet geometry and fabricntion techniques, and canning technology. These experiments fall into three catagories: prototype: untts in which radial dimension and heat fluxes sre close to proposed design values, but irradiation times are long; reduced-size prototype for accelerated tests in which most variables will be studied; and miniaurized pellet irradiation to obtain high burnup for fission gas release studies. Reactor space has been found generally available and several installations are now examining their capabilities to participate in the program. A tentativemore » schedule has been drawn to illustrate the feasibility of the program. (auth)« less
Shell Corrections Stabilizing Superheavy Nuclei and Semi-spheroidal Atomic Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poenaru, Dorin N.
2008-01-24
The macroscopic-microscopic method is used to illustrate the shell effect stabilizing superheavy nuclei and to study the stability of semi-spheroidal clusters deposited on planar surfaces. The alpha decay of superheavy nuclei is calculated using three models: the analytical superasymmetric fission model; the universal curve, and the semiempirical formula taking into account the shell effects. Analytical relationships are obtained for the energy levels of the new semi-spheroidal harmonic oscillator (SSHO) single-particle model and for the surface and curvature energies of the semi-spheroidal clusters. The maximum degeneracy of the SSHO is reached at a super-deformed prolate shape for which the minimum ofmore » the liquid drop model energy is also attained.« less
Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses.
Smith, Kyle C; Weaver, James C
2011-08-19
Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. Copyright © 2011 Elsevier Inc. All rights reserved.
Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses
Smith, Kyle C.; Weaver, James C.
2012-01-01
Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (~16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. PMID:21756883
Sato, Chiaki; Nakano, Toru; Nakagawa, Atsuhiro; Yamada, Masato; Yamamoto, Hiroaki; Kamei, Takashi; Miyata, Go; Sato, Akira; Fujishima, Fumiyoshi; Nakai, Masaaki; Niinomi, Mitsuo; Takayama, Kazuyoshi; Tominaga, Teiji; Satomi, Susumu
2013-05-01
A current drawback of endoscopic submucosal dissection (ESD) for early-stage gastrointestinal tumors is the lack of instruments that can safely assist with this procedure. We have developed a pulsed jet device that can be incorporated into a gastrointestinal endoscope. Here, we investigated the mechanical profile of the pulsed jet device and demonstrated the usefulness of this instrument in esophageal ESD in swine. The device comprises a 5-Fr catheter, a 14-mm long stainless steel tube for generating the pulsed water jet, a nozzle and an optical quartz fiber. The pulsed water jet was generated at pulse rates of 3 Hz by irradiating the physiological saline (4°C) within the stainless steel tube with an holmium-doped yttrium-aluminum-garnet (Ho:YAG) laser at 1.1 J/pulse. Mechanical characteristics were evaluated using a force meter. The device was used only for the part of submucosal dissection in the swine ESD model. Tissues removed using the pulsed jet device and a conventional electrocautery device, and the esophagus, were histologically examined to assess thermal damage. The peak impact force was observed at a stand-off distance of 40 mm (1.1 J/pulse). ESD using the pulsed jet device was successful, as the tissue specimens showed precise dissection of the submucosal layer. The extent of thermal injury was significantly lower in the dissected bed using the pulsed jet device. The results showed that the present endoscopic pulsed jet system is a useful alternative for a safe ESD with minimum tissue injury. © 2012 The Authors. Digestive Endoscopy © 2012 Japan Gastroenterological Endoscopy Society.
Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations
Fensin, Michael Lorne; Umbel, Marissa
2015-09-18
Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less
Fission Systems for Mars Exploration
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne
2012-01-01
Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.
Cain, Clarence P; Schuster, Kurt J; Zohner, Justin J; Stockton, Kevin L; Stolarski, David J; Thomas, Robert J; Rockwell, Benjamin A; Roach, William P
2006-01-01
Er:glass lasers have been in operation with both long pulses (hundreds of microseconds) and Q-switched pulses (50 to 100 ns) for more than 35 yr. The ocular hazards of this laser were reported early, and it was determined that damage to the eye from the 1.54-microm wavelength occurred mainly in the cornea where light from this wavelength is highly absorbed. Research on skin hazards has been reported only in the past few years because of limited pulse energies from these lasers. Currently, however, with pulse energies in the hundreds of joules, these lasers may be hazardous to the skin in addition to being eye hazards. We report our minimum visible lesion (MVL) threshold measurements for two different pulse durations and three different spot sizes for the 1.54-microm wavelength using porcine skin as an in vivo model. We also compare our measurements to results from our model, based on the heat transfer equation and the rate process equation. Our MVL-ED50 thresholds for the long pulse (600 micros) at 24 h postexposure were measured to be 20, 8.1, and 7.4 J cm(-2) for spot diameters of 0.7, 1.0, and 5 mm, respectively. Q-switched laser pulses of 31 ns had lower ED50 (estimated dose for a 50% probability of laser-induced damage) thresholds of 6.1 J cm(-2) for a 5-mm-diam, top-hat spatial profile laser pulse.
High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode.
Ji, Encai; Liu, Qiang; Nie, Mingming; Cao, Xuezhe; Fu, Xing; Gong, Mali
2016-03-15
We first demonstrate the laser performance of a compact 2.06 μm Ho: YLF laser resonantly pumped by a broadband fiber-coupled diode. In continuous-wave (CW) operation, maximum output power of 1.63 W, corresponding to a slope efficiency of 89.2%, was obtained with a near diffraction-limited beam quality. In actively Q-switched operation, maximum pulse energy of 1.1 mJ was achieved at the repetition frequency of 100 Hz. The minimum pulse duration was 43 ns. The performance in both the CW and Q-switched regimes indicates that the current fiber-coupled diode in-band pumped Ho: YLF laser has great potential in certain conditions that require several watts of output power or several millijoules of short pulse energy.
Picosecond and femtosecond lasers for industrial material processing
NASA Astrophysics Data System (ADS)
Mayerhofer, R.; Serbin, J.; Deeg, F. W.
2016-03-01
Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.
NASA Technical Reports Server (NTRS)
Nerheim, N. M.
1977-01-01
The population densities of both the ground and the 2D(5/2) metastable states of copper atoms in a double-pulsed copper-chloride laser are correlated with laser energy as a function of time after the dissociation current pulse. Time-resolved density variations of the ground and excited copper atoms were derived from measurements of optical absorption at 324.7 and 510.6 nm, respectively, over a wide range of operating conditions in laser tubes with diameters of 4 to 40 mm. The minimum delay between the two current pulses at which lasing was observed is shown to be a function of the initial density and subsequent decay of the metastable state. Similarly, the maximum delay is shown to be a function of the initial density and decay of the ground state.
Space Fission Propulsion System Development Status
NASA Astrophysics Data System (ADS)
Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.
2001-01-01
The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability of a SAFE-powered electric propulsion system to outer planet science missions will also be discussed.
Elastocapillary Instability in Mitochondrial Fission
NASA Astrophysics Data System (ADS)
Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien
2015-08-01
Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaja, Ivan; Bai, Xiaowen, E-mail: xibai@mcw.edu; Liu, Yanan
Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1more » (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of mitochondrial fission; and (2) the increased mitochondrial fission is resulted from both increased activation and decreased inactivation of Drp1 through Cdk1, PKCδ, and calcineurin-mediated pathways, respectively.« less
NASA Astrophysics Data System (ADS)
Bhike, Megha; Tornow, W.; Krishichayan, Tonchev, A. P.
2017-02-01
Measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of
Bhike, Megha; Tornow, W.; Krishichayan, -; ...
2017-02-14
Here, measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of 239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratorymore » on 239Pu at E γ = 11 MeV. In this exploratory study the yield of eight fission products ranging from 91Sr to 143Ce has been obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhike, Megha; Tornow, W.; Krishichayan, -
Here, measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of 239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratorymore » on 239Pu at E γ = 11 MeV. In this exploratory study the yield of eight fission products ranging from 91Sr to 143Ce has been obtained.« less
Does Compound Nucleus remember its Isospin- An Evidence from the Fission Widths
NASA Astrophysics Data System (ADS)
Garg, Swati; Jain, Ashok Kumar
2018-05-01
We present an evidence of isospin effects in nuclear fission by comparing the fission widths for reactions involving different isospin states of the same compound nucleus (CN). Yadrovsky [1] suggested this possibility in 1975. Yadrovsky obtained the fission widths for two reaction data sets, namely 206Pb(α,f) and 209Bi(p,f), both leading to same CN, and concluded that "a nucleus remembers the isospin value of the nuclear states leading to fission". We obtain the fission decay widths for both the T0 + ½ and T0 - ½ states of CN by using two appropriate reaction data sets. We then compare the fission widths for the two isospin states of CN. More specifically, we have chosen the combination of 206Pb(α,f) and 209Bi(p,f) same as presented in Yadrovsky's paper [1] in this study. A significant difference between the ratios of fission decay widths to total decay widths for different isospin values suggests that isospin plays an important role in fission.
Simulations of a PSD Plastic Neutron Collar for Assaying Fresh Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis
The potential performance of a notional active coincidence collar for assaying uranium fuel based on segmented detectors constructed from the new PSD plastic fast organic scintillator with pulse shape discrimination capability was investigated in simulation. Like the International Atomic Energy Agency's present Uranium Neutron Collar for LEU (UNCL), the PSD plastic collar would also function by stimulating fission in the 235U content of the fuel with a moderated 241Am/Li neutron source and detecting instances of induced fission via neutron coincidence counting. In contrast to the moderated detectors of the UNCL, the fast time scale of detection in the scintillator eliminatesmore » statistical errors due to accidental coincidences that limit the performance of the UNCL. However, the potential to detect a single neutron multiple times historically has been one of the properties of organic scintillator detectors that has prevented their adoption for international safeguards applications. Consequently, as part of the analysis of simulated data, a method was developed by which true neutron-neutron coincidences can be distinguished from inter-detector scatter that takes advantage of the position and timing resolution of segmented detectors. Then, the performance of the notional simulated coincidence collar was evaluated for assaying a variety of fresh fuels, including some containing burnable poisons and partial defects. In these simulations, particular attention was paid to the analysis of fast mode measurements. In fast mode, a Cd liner is placed inside the collar to shield the fuel from the interrogating source and detector moderators, thereby eliminating the thermal neutron flux that is most sensitive to the presence of burnable poisons that are ubiquitous in modern nuclear fuels. The simulations indicate that the predicted precision of fast mode measurements is similar to what can be achieved by the present UNCL in thermal mode. For example, the statistical accuracy of a ten-minute measurement of fission coincidences collected in fast mode will be approximately 1% for most fuels of interest, yielding a ~1.4% error after subtraction of a five minute measurement of the spontaneous fissions from 238U in the fuel, a ~2% error in analyzed linear density after accounting for the slope of the calibration curve, and a ~2.9% total error after addition of an assumed systematic error of 2%.« less
Introduction to Nuclear Physics (4/4)
Goutte, D.
2018-05-04
The last lecture of the summer student program devoted to nuclear physics. I'm going to talk about nuclear reaction and the fission process. There are two kinds of fission: spontaneous fission and induced fission.
Fission yield calculation using toy model based on Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Jubaidah, Kurniadi, Rizal
2015-09-01
Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (Rc), mean of left curve (μL) and mean of right curve (μR), deviation of left curve (σL) and deviation of right curve (σR). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90
NASA Astrophysics Data System (ADS)
Praveen, L.; Geeta Krishna, P.; Venugopal, L.; Prasad, N. E. C.
2018-03-01
Electrical Discharge Machining (EDM) is an unconventional metal removal process that is extensively used for removing the difficult-to-machine metal such as Ti alloys, super alloys and metal matrix composites. This paper investigates the effects of pulse (ON/OFF) time on EDM machining characteristics of Ti-6Al-4V alloy using copper and graphite as electrodes in reverse polarity condition. Full factorial design method was used to design the experiments. Two variables (Pulse On and OFF) with three levels are considered. The output variables are the tool wear rate and the material removal rate. The important findings from the present work are: (1) the material removal rate (MRR) increases gradually with an increase of the Pulse ON time whereas the change is insignificant with an increase of the Pulse OFF time, (2) Between copper and graphite electrodes, the copper electrode is proved to be good in terms of MRR, (3) a combination of high pulse ON time and OFF time is desirable for high MRR rate in the Cu electrode whereas for the graphite electrode, a combination of high pulse ON time and low pulse OFF time is desirable for high MRR rate, (4) the tool wear rate (TWR) reduces with the Pulse On or OFF time, the rate of TWR is uniform for the graphite electrode in contrast to abrupt decrease from 25 to 50 μs (pulse ON time) in the copper electrode, (5) In order to keep the TWR as minimum possible, it is desirable to have a combination of high pulse ON time and OFF time for both the copper and the graphite electrode.
Fission products behaviour during a power transient: Their inventory in an intragranular bubble
NASA Astrophysics Data System (ADS)
Desgranges, L.; Blay, Th.; Lamontagne, J.; Roure, I.; Bienvenu, Ph.
2017-09-01
The behaviour of fission products is a key issue during Anticipated Operational Occurrences (AOOs) or Condition II transients or accidental sequence for nuclear fuel. Here we characterized how fission products behaved inside chromium doped UO2 pellet during a power ramp. At the pellet centre fission products have left the UO2 lattice and can be found in bubbles. The composition of the bubbles was determined using an original experimental methodology. The existence of separated precipitates made of metallic fission products for the one, and volatile fission products for the other, was evidenced. This result is discussed with regards to the behaviour of fission products during a power ramp.
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.
2014-09-01
A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.
NASA Astrophysics Data System (ADS)
Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok
2014-07-01
The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.
NASA Astrophysics Data System (ADS)
Blain, E.; Daskalakis, A.; Block, R. C.; Danon, Y.
2017-06-01
The prompt fission neutron spectrum from spontaneous fission of 252Cf is an integral part of several aspects of nuclear data. Not only is the spectrum itself of interest, but neutron detectors often use the spectrum for calibration, and other prompt fission neutron spectra are measured as a ratio to 252Cf. Therefore, reducing the uncertainties in this spectrum will allow for more accurate nuclear data to be available across a wide range of fields. The prompt fission neutron spectrum for the spontaneous fission of 252Cf was measured at Rensselaer Polytechnic Institute using the multiple γ tagging method with a 18.4-ng fission sample. An EJ-301 liquid scintillator fast neutron detector was used to measure the high energy portion of the spectrum, 0.5-7 MeV, and a thin EJ-204 plastic scintillator was used to measure the low energy portion of the spectrum, from 50 keV to 2 MeV. These spectra both show good agreement with the current evaluation of 252Cf and have low associated uncertainties providing a new high precision measurement that helps reduce the uncertainties in the prompt fission neutron spectrum for the spontaneous fission of 252Cf.
Fission of actinide nuclei using multi-nucleon transfer reactions
NASA Astrophysics Data System (ADS)
Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki
2014-09-01
We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.
Hsieh, I-Hui; Saberi, Kourosh
2016-02-01
How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.
Self-referenced continuous-variable quantum key distribution protocol
Soh, Daniel Beom Soo; Sarovar, Mohan; Brif, Constantin; ...
2015-10-21
We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of themore » protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. Furthermore, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.« less
Self-referenced continuous-variable quantum key distribution protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soh, Daniel Beom Soo; Sarovar, Mohan; Brif, Constantin
We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of themore » protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. Furthermore, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.« less
Varela, José E; Page, Juan E; Esteban, Jaime
2010-09-01
The interaction between electromagnetic fields and biological media, particularly regarding very high power, short pulses as in radar signals, is not a fully understood phenomenon. In the past few years, many in vitro, cellular communications-oriented exposure studies have been carried out. This article presents a high-power waveguide exposure system capable of dealing with monochromatic, multicarrier or pulsed signals between 1.8 and 3.2 GHz (L- and S-band) with a pulse duration as low as 90 ns, minimum pulse repetition of 100 Hz, and maximum instantaneous power of 100 W. The setup is currently being used with a 2.2 GHz carrier modulated by 5 micros pulses with a 100 Hz repetition period and approximately 30 W of instantaneous power. After a worst-case temperature analysis, which does not account for conduction and convection thermal effects, the experiment's exposure is considered sub-thermal. Evaluation of the results through the specific absorption rate distribution is not considered sufficient enough in these cases. An electromagnetic field distribution analysis is needed. For monochromatic signals, the representation of the modulus of the electric and magnetic field components is proposed as a suitable method of assessment. 2010 Wiley-Liss, Inc.
Self-Referenced Continuous-Variable Quantum Key Distribution Protocol
NASA Astrophysics Data System (ADS)
Soh, Daniel B. S.; Brif, Constantin; Coles, Patrick J.; Lütkenhaus, Norbert; Camacho, Ryan M.; Urayama, Junji; Sarovar, Mohan
2015-10-01
We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice's and Bob's measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.
Cain, C P; Polhamus, G D; Roach, W P; Stolarski, D J; Schuster, K J; Stockton, K L; Rockwell, B A; Chen, Bo; Welch, A J
2006-01-01
With the advent of such systems as the airborne laser and advanced tactical laser, high-energy lasers that use 1315-nm wavelengths in the near-infrared band will soon present a new laser safety challenge to armed forces and civilian populations. Experiments in nonhuman primates using this wavelength have demonstrated a range of ocular injuries, including corneal, lenticular, and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser safety standards have traditionally been based on experimental data, and there is scant data for this wavelength. We are reporting minimum visible lesion (MVL) threshold measurements using a porcine skin model for two different pulse durations and spot sizes for this wavelength. We also compare our measurements to results from our model based on the heat transfer equation and rate process equation, together with actual temperature measurements on the skin surface using a high-speed infrared camera. Our MVL-ED50 thresholds for long pulses (350 micros) at 24-h postexposure are measured to be 99 and 83 J cm(-2) for spot sizes of 0.7 and 1.3 mm diam, respectively. Q-switched laser pulses of 50 ns have a lower threshold of 11 J cm(-2) for a 5-mm-diam top-hat laser pulse.
Experimental Measurements at the MASURCA Facility
NASA Astrophysics Data System (ADS)
Assal, W.; Bosq, J. C.; Mellier, F.
2012-12-01
Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning “mock-up facility for fast breeder reactor studies at CADARACHE”) is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems ...). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented.
The Neutrons for Science Facility at SPIRAL-2
NASA Astrophysics Data System (ADS)
Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-détat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Sublet, J. C.; Taieb, J.; Tassan-Got, L.; Tarrio, D.; Takibayev, A.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.
2014-05-01
The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in 238U for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.
Feasibility study of a fission-suppressed Tokamak fusion breeder
NASA Astrophysics Data System (ADS)
Moir, R. W.; Lee, J. D.; Neef, W. S., Jr.; Berwald, D. H.; Garner, J. K.; Whitley, R. H.; Ghoniem, N.; Wong, C. P. C.; Maya, I.; Schultz, K. R.
1984-12-01
The preliminary conceptual design of a tokama fissile fuel producer is described. The blanket technology is based on the fission suppressed breeding concept where neutron multiplication occurs in a bed of 2 cm diameter beryllium pebbles which are cooled by helium at 50 atmospheres pressure. Uranium-233 is bred in thorium metal fuel elements which are in the form of snap rings attached to each beryllium pebble. Tritium is bred in lithium bearing material contained in tubes immersed in the pebble bed and is recovered by a purge flow of helium. The neutron wall load is 3 MW/m(2) and the blanket material is ferritic steel. The net fissile breeding ratio is 0.54 plus or minus 30% per fusion reaction. This results in the production of 4900 kg of (223)U per year from 3000 MW of fusion power. This quantity of fuel will provide makeup fuel for about 12 LWRs of equal thermal power or about 18 1 GW sub e LWRs. The calculated cost of the produced uranium-233 is between $23/g and $53/g or equivalent to $10/kg to $90/kg of U308 depending on government financing or utility financing assumptions. Additional topics discussed include the Tokamak operating mode (both steady state and long pulse considered), the design and breeding implications of using a poloidal divertor for impurity control, reactor safety, the choice of a tritium breeder, and fuel management.
The Development of a Control System for a 5 Kilowatt Free Piston Stirling Space Convertor
NASA Technical Reports Server (NTRS)
Kirby, Raymond L.; Vitale, Nicholas
2008-01-01
The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled "Affordable Fission Surface Power Study" recommended a 40 kWe, 900 K, NaK-cooled, Stirling conversion for 2020 launch. Use of two of the nominal 5 kW converters allows the system to be dynamically balanced. A group of four dual-converter combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the FSPE convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.
The Development of a Control System for a 5 Kilowatt Free Piston Stirling Engine Convertor
NASA Technical Reports Server (NTRS)
Kirby, Raymond L.; Vitale, Nick
2008-01-01
The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled "Affordable Fission Surface Power Study" recommended a 40 kWe, 900 K, NaK-cooled, Stirling convertors for 2020 launch. Use of two of the nominal 5 kW convertors allows the system to be dynamically balanced. A group of four dual-convertor combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the Free Piston Stirling Engine (FPSE) convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.
NASA Astrophysics Data System (ADS)
Seno, S.; Decarlis, A.; Fellin, M. G.; Maino, M.; Beltrando, M.; Ferrando, S.; Manatschal, G.; Gaggero, L.; Stuart, F. M.
2017-12-01
The aim of the present study is to analyse, through thermochronological investigations, the thermal evolution of a fossil distal margin owing to the Alpine Tethys rifting system. The studied distal margin section consists of a polymetamorphic basement (Calizzano basement) and of a well-developed Mesozoic sedimentary cover (Case Tuberto unit) of the Ligurian Alps (NW Italy). The incomplete reset of zircon (U-Th)/He ages and the non-reset of the zircon fission track ages during the Alpine metamorphism indicate that during the subduction and the orogenic stages these rocks were subjected to temperatures lower than 200 ºC. Thus, the Alpine metamorphic overprint occurred during a short-lived, low temperature pulse. The lack of a pervasive orogenic reset, allowed the preservation of an older heating-cooling event that occurred during Alpine Tethys rifting. Zircon fission-track data indicate, in fact, that the Calizzano basement records a cooling under 240 °C, at 156 Ma (early Upper Jurassic). This cooling followed a Middle Jurassic syn-rift heating at temperatures of about 300-350°C, typical of greenschist facies conditions occurred at few kilometres depth, as indicated by stratigraphic and petrologic constraints. Thus, in our interpretation, major crustal thinning likely promoted high geothermal gradients ( 60-90°C/km) triggering the circulation of hot, deep-seated fluids along brittle faults, causing the observed thermal anomaly at shallow crustal level.
Adam, Zachary R
2016-06-01
Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70-100 °C, followed by a sustained period of temperatures in the range of 30-70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 10(5)-10(6) years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, S; Ahmad, M; Xiang, L
Purpose: To report our investigations of proton acoustic imaging, including computer simulations and preliminary experimental studies at clinical facilities. The ultimate achievable accuracy, sensitivity and clinical translation challenges are discussed. Methods: The acoustic pulse due to pressure rise was estimated using finite element model. Since the ionoacoustic pulse is highly dependent on the proton pulse width and energy, multiple pulse widths were studied. Based on the received signal spectrum at piezoelectric ultrasound transducer with consideration of random thermal noise, maximum spatial resolution of the proton-acoustic imaging modality was calculated. The simulation studies defined the design specifications of the system tomore » detect proton acoustic signal from Hitachi and Mevion clinical machines. A 500 KHz hydrophone with 100 dB amplification was set up in a water tank placed in front of the proton nozzle A 40 MHz data acquisition was synchronized by a trigger signal provided by the machine. Results: Given 30–800 mGy dose per pulse at the Bragg peak, the minimum number of protons detectable by the proton acoustic technique was on the order of 10×10^6 per pulse. The broader pulse widths produce signal with lower acoustic frequencies, with 10 µs pulses producing signals with frequency less than 100 kHz. As the proton beam pulse width increases, a higher dose rate is required to measure the acoustic signal. Conclusion: We have established the minimal detection limit for protonacoustic range validation for a variety of pulse parameters. Our study indicated practical proton-acoustic range verification can be feasible with a pulse shorter than 10 µs, 5×10^6 protons/pulse, 50 nA beam current and a highly sensitive ultrasonic transducer. The translational challenges into current clinical machines include proper magnetic shielding of the measurement equipment, providing a clean trigger signal from the proton machine, providing a shorter proton beam pulse and higher dose per pulse.« less
A Geant4 evaluation of the Hornyak button and two candidate detectors for the TREAT hodoscope
NASA Astrophysics Data System (ADS)
Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark J.; McGregor, Douglas S.; Roberts, Jeremy A.
2018-05-01
The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminate background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Moreover, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.
A Geant4 evaluation of the Hornyak button and two candidate detectors for the TREAT hodoscope
Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark; ...
2018-02-05
The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminatemore » background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Furthermore, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meierbachtol, K.; Tovesson, F.; Shields, D.
We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less
Structural inhibition of dynamin-mediated membrane fission by endophilin
Galli, Valentina; Shen, Peter S; Humbert, Frédéric; De Camilli, Pietro
2017-01-01
Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here, we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission. PMID:28933693
Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.
2016-12-01
A complete kinematics measurement of the two fission fragments was used for the first time to investigate fission dynamics at small and large deformations. Fissioning systems with high excitation energies, compact shapes, and low angular momenta were produced in inverse kinematics by using spallation reactions of lead projectiles. A new generation experimental setup allowed for the first full and unambiguous identification in mass and atomic number of both fission fragments. This measurement permitted us to accurately determine fission cross sections, the charge distribution, and the neutron excess of the fission fragments as a function of the atomic number of the fissioning system. These data are compared with different model calculations to extract information on the value of the dissipation parameter at small and large deformations. The present results do not show any sizable dependence of the nuclear dissipation parameter on temperature or deformation.
Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy
NASA Astrophysics Data System (ADS)
Stetcu, I.; Talou, P.; Kawano, T.
2016-06-01
We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).
A transferable model for singlet-fission kinetics.
Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy
2014-06-01
Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications.
Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel
Herrmann, Steven Douglas
2014-05-27
Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.
Study of fission using multi-nucleon transfer reactions
NASA Astrophysics Data System (ADS)
Nishio, Katsuhisa; Hirose, Kentaro; Mark, Vermeulen; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Asai, Masato; Toyoshima, Atsushi; Sato, Tetsuya K.; Nagame, Yuichiro; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei
2017-11-01
It is shown that multi-nucleon transfer reaction is a powerful tool to study fission of exotic neutronrich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U, 18O+248Cm, and 18O+237Np were used to measure fission-fragment mass distribution for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all the studied cases, with an increase of the symmetric fission towards high excitation energies. Experimental data are compared with predictions of the fluctuation-dissipation model, where effects of multi-chance fission (neutron evaporation prior to fission) was introduced. It is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited and less neutronrich excited nuclei due to higher-order chance fissions.
Robust singlet fission in pentacene thin films with tuned charge transfer interactions.
Broch, K; Dieterle, J; Branchi, F; Hestand, N J; Olivier, Y; Tamura, H; Cruz, C; Nichols, V M; Hinderhofer, A; Beljonne, D; Spano, F C; Cerullo, G; Bardeen, C J; Schreiber, F
2018-03-05
Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jammes, C.; Filliatre, P.; Izarra, G. de
France has a long experience of about 50 years in designing, building and operating sodium-cooled fast reactors (SFR) such as RAPSODIE, PHENIX and SUPER PHENIX. Fast reactors feature the double capability of reducing nuclear waste and saving nuclear energy resources by burning actinides. Since this reactor type is one of those selected by the Generation IV International Forum, the French government asked, in the year 2006, CEA, namely the French Alternative Energies and Atomic Energy Commission, to lead the development of an innovative GEN-IV nuclear- fission power demonstrator. The major objective is to improve the safety and availability of anmore » SFR. The neutron flux monitoring (NFM) system of any reactor must, in any situation, permit both reactivity control and power level monitoring from startup to full power. It also has to monitor possible changes in neutron flux distribution within the core region in order to prevent any local melting accident. The neutron detectors will have to be installed inside the reactor vessel because locations outside the vessel will suffer from severe disadvantages; radially the neutron shield that is also contained in the reactor vessel will cause unacceptable losses in neutron flux; below the core the presence of a core-catcher prevents from inserting neutron guides; and above the core the distance is too large to obtain decent neutron signals outside the vessel. Another important point is to limit the number of detectors placed in the vessel in order to alleviate their installation into the vessel. In this paper, we show that the architecture of the NFM system will rely on high-temperature fission chambers (HTFC) featuring wide-range flux monitoring capability. The definition of such a system is presented and the justifications of technological options are brought with the use of simulation and experimental results. Firstly, neutron-transport calculations allow us to propose two in-vessel regions, namely the above-core and under-core structures. We verify that they comply with the main objective, that is the neutron power and flux distribution monitoring. HTFC placed in these two regions can detect an inadvertent control rod withdrawal that is a postulated initiating event for safety demonstration. Secondly, we show that the HTFC reliability is enhanced thanks to a more robust physical design and the fact that it has been justified that the mineral insulation is insensitive to any increase in temperature. Indeed, the HTFC insulation is subject to partial discharges at high temperature when the electric field between their electrodes is greater than about 200 V/mm or so. These discharges give rise to signals similar to the neutron pulses generated by a fission chamber itself, which may bias the HTFC count rate at start-up only. However, as displayed in Figure 1, we have experimentally verified that one can discriminate neutron pulses from partial discharges using online estimation of pulse width. Thirdly, we propose to estimate the count rate of a HTFC using the third order cumulant of its signal that is described by a filtered Poisson process. For such a statistic process, it is known that any cumulant, also called cumulative moment, is proportional to the process intensity that is here the count rate of a fission chamber. One recalls that the so-called Campbelling mode of such a detector is actually based on the signal variance, which is the second-order cumulant as well. The use of this extended Campbelling mode based on the third-order cumulant will permit to ensure the HTFC response linearity over the entire neutron flux range using a signal processing technique that is simple enough to satisfy design constraints on electric devices important for nuclear safety. We also show that this technique, named high order Campbelling method (HOC), is significantly more robust than another technique based on the change in the HTFC filling gas, which consists in adding a few percent of nitrogen. Finally, we also present an experimental campaign devoted to the required calibration process of the so-called HOC method. The Campbelling results show a good agreement with the simple pulse counting estimation at low count rates. It is also shown that the HOC technique provides a linear estimation of the count rates at higher power levels as well.« less
Wölfler, Andreas; Stüwe, Kurt; Danišík, Martin; Evans, Noreen J.
2012-01-01
According to new apatite fission track, zircon- and apatite (U–Th)/He data, we constrain the near-surface history of the southeastern Tauern Window and adjacent Austrolapine units. The multi-system thermochronological data demonstrate that age-elevation correlations may lead to false implications about exhumation and cooling in the upper crust. We suggest that isothermal warping in the Penninic units that are in the position of a footwall, is due to uplift, erosion and the buildup of topography. Additionally we propose that exhumation rates in the Penninic units did not increase during the Middle Miocene, thus during the time of lateral extrusion. In contrast, exhumation rates of the Austroalpine hangingwall did increase from the Paleogene to the Neogene and the isotherms in this unit were not warped. The new zircon (U–Th)/He ages as well as zircon fission track ages from the literature document a Middle Miocene exhumation pulse which correlates with a period of enhanced sediment accumulation during that time. However, enhanced sedimentation- and exhumation rates at the Miocene/Pliocene boundary, as observed in the Western- and Central Alps, cannot be observed in the Eastern Alps. This contradicts a climatic trigger for surface uplift, and makes a tectonic trigger and/or deep-seated mechanism more obvious to explain surface uplift in the Eastern Alps. In combination with already published geochronological ages, our new data demonstrate Oligocene to Late Miocene fault activity along the Möll valley fault that constitutes a major shear zone in the Eastern Alps. In this context we suggest a geometrical and temporal relationship of the Katschberg-, Polinik–Möll valley- and Mur–Mürz faults that define the extruding wedge in the eastern part of the Eastern Alps. Equal deformation- and fission track cooling ages along the Katschberg–Brenner- and Simplon normal faults demonstrate overall Middle Miocene extension in the whole alpine arc. PMID:27065501
Process for treating fission waste
Rohrmann, Charles A.; Wick, Oswald J.
1983-01-01
A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.
Fourier Method for Calculating Fission Chain Neutron Multiplicity Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, David H.; Chandrasekaran, Hema; Walston, Sean E.
Here, a new way of utilizing the fast Fourier transform is developed to compute the probability distribution for a fission chain to create n neutrons. We then extend this technique to compute the probability distributions for detecting n neutrons. Lastly, our technique can be used for fission chains initiated by either a single neutron inducing a fission or by the spontaneous fission of another isotope.
Fourier Method for Calculating Fission Chain Neutron Multiplicity Distributions
Chambers, David H.; Chandrasekaran, Hema; Walston, Sean E.
2017-03-27
Here, a new way of utilizing the fast Fourier transform is developed to compute the probability distribution for a fission chain to create n neutrons. We then extend this technique to compute the probability distributions for detecting n neutrons. Lastly, our technique can be used for fission chains initiated by either a single neutron inducing a fission or by the spontaneous fission of another isotope.
Optimally moderated nuclear fission reactor and fuel source therefor
Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID
2008-07-22
An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.
NASA Astrophysics Data System (ADS)
Kim, Hoon-Young; Choi, Won-Suk; Ji, Suk-Young; Shin, Young-Gwan; Jeon, Jin-Woo; Ahn, Sanghoon; Cho, Sung-Hak
2018-02-01
This study compares the ablation morphologies obtained with a femtosecond laser of both Gaussian and quasi-flat top beam profiles when applied to indium tin oxide (ITO) thin films for the purpose of OLED repair. A femtosecond laser system with a wavelength of 1030 nm and pulse duration of 190 fs is used to pattern an ITO thin film. The laser fluence is optimized for patterning at 1.38 J/cm2. The patterned ITO thin film is then evaluated through both optical microscope and atomic force microscope. Ablations with a square quasi-flat top beam are demonstrated using slits with varying x- y axes. With the Gaussian beam, the pattern width of the ablated area is shown to range from 9.17 to 9.99 μm when the number of irradiation pulse increases from one to six. In contrast, when slit control is used to obtain a quasi-flat top beam, the ablated pattern width remains constant at 10 μm, despite the increase in the number of pulse. The improved surface roughness is correlated with the quasi-flat top beam through measured Ra values. Furthermore, when using the Gaussian beam, the minimum resolution of the controllable ablation depth on the ITO thin film is found to be 60 nm. In contrast, when the quasi-flat top beam is used, the minimum ablation depth decreases to 40 nm.
NASA Astrophysics Data System (ADS)
Wang, W. B.; Wang, F.; Yu, Q.; Zhang, X.; Lu, Y. X.; Gu, J.
2016-11-01
We propose and experimentally demonstrate a bidirectional erbium-doped fiber laser delivering dispersion-managed soliton (DMS) and Q-switched pulse based on a graphene-polyvinyl alcohol (PVA) and nonlinear optical loop mirror (NOLM) saturable absorbers (SAs). In proposed structure, the DMS is achieved in clockwise (CW) direction and Q-switched pulse is obtained in counter-clockwise (CCW) direction. By properly adjusting the intracavity attenuators (ATT) and polarizer controllers (PCs), DMS in the CW direction and Q-switched pulse in the CCW direction can be obtained, respectively or simultaneously. The DMS with full width at half maximum (FWHM) of ~480 fs, signal to noise ratio (SNR) of ~60 dB and repetition frequency about 3.907 MHz is obtained. The Q-switched pulse is established at a pump power of 180 mW with a repetition rate of ~43.5 kHz and FWHM of ~8.18 μs. When the pump power is increased to 700 mW, Q-switched pulse with a repetition rate of ~107.1 kHz and FWHM of ~2.15 μs is generated. When the two type pulses are formed simultaneously, the maximum repetition rate of Q-switched pulse is 55.8 kHz and minimum FWHM is 2.81 μs, the DMS can be formed by properly adjusting PC and ATT in this case. To the best of our knowledge, it is the first time that Q-switched pulse and DMS have been acquired respectively or simultaneously in a fiber laser.
Remote sensing of the lightning heating effect duration with ground-based microwave radiometer
NASA Astrophysics Data System (ADS)
Jiang, Sulin; Pan, Yun; Lei, Lianfa; Ma, Lina; Li, Qing; Wang, Zhenhui
2018-06-01
Artificially triggered lightning events from May 26, 2017 to July 16, 2017 in Guangzhou Field Experiment Site for Lightning Research and Test (GFESL) were intentionally remotely sensed with a ground-based microwave radiometer for the first time in order to obtain the features of lightning heating effect. The microwave radiometer antenna was adjusted to point at a certain elevation angle towards the expected artificially triggered lightning discharging path. Eight of the 16 successfully artificially triggered lightning events were captured and the brightness temperature data at four frequencies in K and V bands were obtained. The results from data time series analysis show that artificially triggered lightning can make the radiometer generate brightness temperature pulses, and the amplitudes of these pulses are in the range of 2.0 K to 73.8 K. The brightness temperature pulses associated with 7 events can be used to estimate the duration of lightning heating effect through accounting the number of the pulses in the continuous pulse sequence and the sampling interval between four frequencies. The maximum duration of the lightning heating effect is 1.13 s, the minimum is 0.172 s, and the average is 0.63 s.
Influence of Time-Pickoff Circuit Parameters on LiDAR Range Precision
Wang, Hongming; Yang, Bingwei; Huyan, Jiayue; Xu, Lijun
2017-01-01
A pulsed time-of-flight (TOF) measurement-based Light Detection and Ranging (LiDAR) system is more effective for medium-long range distances. As a key ranging unit, a time-pickoff circuit based on automatic gain control (AGC) and constant fraction discriminator (CFD) is designed to reduce the walk error and the timing jitter for obtaining the accurate time interval. Compared with Cramer–Rao lower bound (CRLB) and the estimation of the timing jitter, four parameters-based Monte Carlo simulations are established to show how the range precision is influenced by the parameters, including pulse amplitude, pulse width, attenuation fraction and delay time of the CFD. Experiments were carried out to verify the relationship between the range precision and three of the parameters, exclusing pulse width. It can be concluded that two parameters of the ranging circuit (attenuation fraction and delay time) were selected according to the ranging performance of the minimum pulse amplitude. The attenuation fraction should be selected in the range from 0.2 to 0.6 to achieve high range precision. The selection criterion of the time-pickoff circuit parameters is helpful for the ranging circuit design of TOF LiDAR system. PMID:29039772
Investigation of energy transport within a pulse tube
NASA Astrophysics Data System (ADS)
Waldauf, A.; Schmauder, T.; Thürk, M.; Seidel, P.
2002-05-01
A compact Four-Valve Pulse Tube Refrigerator (FVPTR) in U-tube configuration without a reservoir has been built. At present, the cooler provides a minimum temperature of 32 K and 100 W of cooling power at 90 K with a nominal input power of 5.6 kW. Experiments were performed to study the special refrigeration mechanisms of the FVPTR. The highly instrumented system that includes gas temperature sensors, hot wire anemometers and pressure sensors is used to assess the p-V work and enthalpy flow at the key locations in the pulse tube. The experiments have enabled us to verify the various analytical models of the FVPTR. Based on the first law of thermodynamics for open systems we have estimated the gross refrigeration power for this special type of pulse tube refrigerator. Furthermore our model takes typical loss processes into consideration to analyze the real FVPTR process. These calculations need some assumptions about the real flow behavior and the time-dependent temperatures within the pulse tube. The accuracy of these assumptions will be checked by our experiments. By using these results a further technical improvement of our FVPTR should be possible.
DIII-D Neutron Measurement: Status and Plan for Simplification and Upgrade
NASA Astrophysics Data System (ADS)
Zhu, Y. B.; Heidbrink, W. W.; Taylor, P. L.; Finkenthal, D.
2017-10-01
Neutron diagnostics play key essential roles on DIII-D. Historically an 18-channel 2.45MeV D-D neutron measurement system based on 3He and BF3 proportional counters was inherited from Doublet-III including associated electronics and CAMAC data acquisition. Three fission chambers and two neutron scintillators were added in the 1980s and middle 1990s respectively. For Tritium burn-up studies, two 14MeV D-T neutron measurement systems were installed in 2009 and 2010. Operation and maintenance experience have led to a plan to simplify and upgrade these aging systems to provide a more economical and reliable solution for future DIII-D experiments. On simplification, most conventional expensive NIM and CAMAC modules will be removed. Advanced technologies like ultra-fast data acquisition and software-based pulse identification have been successfully tested. Significant data reduction and efficiency improvement will be achieved by real-time digital pulse identification with a field-programmable gate array. The partly renewed system will consist of 4 neutron counters for absolute calibration and 4 relatively calibrated neutron scintillators covering a wide measurement range. Work supported by US DOE under DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Wan, Bo; Zhang, Xue-Ying; Chen, Liang; Ge, Hong-Lin; Ma, Fei; Zhang, Hong-Bin; Ju, Yong-Qin; Zhang, Yan-Bin; Li, Yan-Yan; Xu, Xiao-Wei
2015-11-01
A digital pulse shape discrimination system based on a programmable module NI-5772 has been established and tested with an EJ-301 liquid scintillation detector. The module was operated by running programs developed in LabVIEW, with a sampling frequency up to 1.6 GS/s. Standard gamma sources 22Na, 137Cs and 60Co were used to calibrate the EJ-301 liquid scintillation detector, and the gamma response function was obtained. Digital algorithms for the charge comparison method and zero-crossing method have been developed. The experimental results show that both digital signal processing (DSP) algorithms can discriminate neutrons from γ-rays. Moreover, the zero-crossing method shows better n-γ discrimination at 80 keVee and lower, whereas the charge comparison method gives better results at higher thresholds. In addition, the figure-of-merit (FOM) for detectors of two different dimensions were extracted at 9 energy thresholds, and it was found that the smaller detector presented better n-γ separation for fission neutrons. Supported by National Natural Science Foundation of China (91226107, 11305229) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03030300)
Rapid response sensor for analyzing Special Nuclear Material
Mitra, S. S.; Doron, O.; Chen, A. X.; ...
2015-06-18
Rapid in-situ analytical techniques are attractive for characterizing Special Nuclear Material (SNM). Present techniques are time consuming, and require sample dissolution. Proof-of-principal studies are performed to demonstrate the utility of employing low energy neutrons from a portable pulsed neutron generator for non-destructive isotopic analysis of nuclear material. In particular, time-sequenced data acquisition, operating synchronously with the pulsing of a neutron generator, partitions the characteristic elemental prompt gamma-rays according to the type of the reaction; inelastic neutron scattering reactions during the ON state and thermal neutron capture reactions during the OFF state of the generator. Thus, the key challenge is isolatingmore » these signature gamma- rays from the prompt fission and β-delayed gamma-rays that are also produced during the neutron interrogation. A commercial digital multi-channel analyzer has been specially customized to enable time-resolved gamma-ray spectral data to be acquired in multiple user-defined time bins within each of the ON/OFF gate periods of the neutron generator. Preliminary results on new signatures from depleted uranium as well as modeling and benchmarking of the concept are presented, however this approach should should be applicable for virtually all forms of SNM.« less
Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa
The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.
Cross section for the subthreshold fission of 236U
NASA Astrophysics Data System (ADS)
Alekseev, A. A.; Bergman, A. A.; Berlev, A. I.; Koptelov, E. A.; Samylin, B. F.; Trufanov, A. M.; Fursov, B. I.; Shorin, V. S.
2008-08-01
The cross section for 236U fission in the neutron-energy range E n = 0.001 20 keV was measured by using the INR RAS (Institute of Nuclear Research, Russian Academy of Sciences, Moscow) LSDS-100 neutron spectrometer of the lead slowing-down spectrometer type. The resonance fission areas of the resonances at 5.45 eV and 1.28 keV were found, and the fission widths of these resonances were evaluated. The cross section for the 238U( n, f) fission process was measured, and the threshold sensitivity of the LSDS-100 to small values of fission cross sections was estimated. The well-known intermediate structure in the cross section for the neutron-induced subbarrier fission of 236U was confirmed.
Timing of uplift peripheral to the Red Sea, Saudi Arabia
Naeser, C.W.; Zimmermann, R.A.; Bohannon, R.G.; Schmidt, D.L.; ,
1990-01-01
A Prominent escarpment is found along the western margin of the Arabian Shield. Elevations along this escarpment are up to 3200 m above the Red Sea. Between the Red Sea and the crest of the escarpment is a relatively featureless coastal plane that is ??? 50 km across. The coastal plane abruptly gives way to the steep mountainous terrain, the elevation of which increases abruptly towards the high crest. The elevation slowly decreases to the east of the high crest. Forty-four apatite fission-track ages have been determined on rocks from the Proterozoic Arabian Shield in southwestern Saudi Arabia. These ages range from 13.8 to 568 Ma. In general, the youngest ages are found at low elevations along the base of the escarpment near the eastern edge of the coastal plane. The oldest ages are from along and to the east of the crest. The fission-track data from Saudi Arabia show that there was a period of minor uplift and cooling during the Cretaceous. This was followed by a relatively stable period which lasted until the Mid to Upper Miocene. The latest uplift and erosion began slightly younger than 13.8 Ma. This latest episode resulted in a minimum uplift of 3 km and is related to the Red Sea Rift. Samples totally annealed prior to this latest episode of uplift and cooling have not yet reached the surface.
SPIDER: A new tool for measuring fission yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meierbachtol, Krista C.
2014-03-27
The goals of this project are to measure fission-fragment yields as a function of (En, Z,A, TKE); develop theory in order to evaluate fission yield data; and provide an evaluation of the Pu-239 fission yields.
NASA Astrophysics Data System (ADS)
Gearhart, Joshua; Niffte Collaboration
2017-09-01
Fission fragment mass distributions are important observables for developing next generation dynamical models of fission. Many previous measurements have utilized ionization chambers to measure fission fragment energies and emission angles which are then used for mass calculations. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has built a time projection chamber (fissionTPC) that is capable of measuring additional quantities such as the ionization profiles of detected particles, allowing for the association of an individual fragment's ionization profile with its mass. The fragment masses are measured using the previously established 2E method. The fissionTPC takes its data using a continuous incident neutron energy spectrum provided by the Los Alamos Neutron Science CEnter (LANSCE). Mass distribution measurements across a continuous range of neutron energies put stronger constraints on fission models than similar measurements conducted at a handful of discrete neutron energies. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Numbers DE-NA0003180 and DE-NA0002921.
Anomalies in the Charge Yields of Fission Fragments from the U ( n , f ) 238 Reaction
Wilson, J. N.; Lebois, M.; Qi, L.; ...
2017-06-01
Fast-neutron-induced fission of 238U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fissionmore » fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. Finally, this has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.« less
Excitation-energy influence at the scission configuration
NASA Astrophysics Data System (ADS)
Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M.-D.; Schmitt, C.
2017-09-01
Transfer- and fusion-induced fission in inverse kinematics was proven to be a powerful tool to investigate nuclear fission, widening the information of the fission fragments and the access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign for fission investigation has being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through transfer and fusion reactions, with excitation energies that range from few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer permitted the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. The neutron excess, the total neutron multiplicity, and the even-odd staggering in the nuclear charge of fission fragments are presented as a function of the excitation energy of the fissioning system. Structure effects are observed at Z˜50 and Z˜55, where their impact evolves with the excitation energy.
Experimental fission study using multi-nucleon transfer reactions
NASA Astrophysics Data System (ADS)
Nishio, Katsuhisa; Hirose, Kentaro; Léguillon, Romain; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Smallcombe, James; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei
2017-09-01
It is shown that the multi-nucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U and 18O+248Cm are used to study fission for various nuclei from many excited states. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model. Role of multi-chance fission in fission fragment mass distributions is discussed, where it is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited nuclei by evaporation of neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Dana Lynn
2015-11-12
This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fissionmore » measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.« less
Process for treating fission waste. [Patent application
Rohrmann, C.A.; Wick, O.J.
1981-11-17
A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.
NASA Astrophysics Data System (ADS)
Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.
2018-03-01
Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.
Late-time emission of prompt fission γ rays
Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; ...
2016-12-22
The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, asmore » well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu( nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.« less
Fission yield measurements at IGISOL
NASA Astrophysics Data System (ADS)
Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.
2016-06-01
The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.
Advanced model for the prediction of the neutron-rich fission product yields
NASA Astrophysics Data System (ADS)
Rubchenya, V. A.; Gorelov, D.; Jokinen, A.; Penttilä, H.; Äystö, J.
2013-12-01
The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP).
Develop minimum thrustor control laws and select orbits for a geodesy drag-free satellite
NASA Technical Reports Server (NTRS)
Breakwell, J. V.; Debra, D. B.
1974-01-01
The original motivation for studying control laws for pulse plasma systems was based on the improved life characteristics possible with pulse plasma jets. These pulse plasma units are relatively massive compared with cold gas thrustors. As a result, therefore, significant mass savings can be achieved by minimizing the the number of thrustors. The control laws, therefore, were developed for thrust available from two thrustors only. In a spinning satellite, these thrustors are sufficient to completely control the vehicle as long as the spin rate is sufficiently high for a given level of external disturbance. The thrustors are canted so that a component of each is along the plus and minus spin axis. The other component of each thrustor acts in the radial direction. It is sufficient to analyze the behavior in the plane of spin assuming a single thrustor.
Ferrer-Mileo, V; Guede-Fernandez, F; Fernandez-Chimeno, M; Ramos-Castro, J; Garcia-Gonzalez, M A
2015-08-01
This work compares several fiducial points to detect the arrival of a new pulse in a photoplethysmographic signal using the built-in camera of smartphones or a photoplethysmograph. Also, an optimization process for the signal preprocessing stage has been done. Finally we characterize the error produced when we use the best cutoff frequencies and fiducial point for smartphones and photopletysmograph and compare if the error of smartphones can be reasonably be explained by variations in pulse transit time. The results have revealed that the peak of the first derivative and the minimum of the second derivative of the pulse wave have the lowest error. Moreover, for these points, high pass filtering the signal between 0.1 to 0.8 Hz and low pass around 2.7 Hz or 3.5 Hz are the best cutoff frequencies. Finally, the error in smartphones is slightly higher than in a photoplethysmograph.
Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids.
Dey, Indranuj; Jana, Kamalesh; Fedorov, Vladimir Yu; Koulouklidis, Anastasios D; Mondal, Angana; Shaikh, Moniruzzaman; Sarkar, Deep; Lad, Amit D; Tzortzakis, Stelios; Couairon, Arnaud; Kumar, G Ravindra
2017-10-30
Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup. In this work, we demonstrate the generation of terahertz radiation via ultrashort pulse induced filamentation in liquids-a counterintuitive observation due to their large absorption coefficient in the terahertz regime. The generated terahertz energy is more than an order of magnitude higher than that obtained from the two-color filamentation of air (the most standard table-top technique). Such high terahertz energies would generate electric fields of the order of MV cm -1 , which opens the doors for various nonlinear terahertz spectroscopic applications. The counterintuitive phenomenon has been explained via the solution of nonlinear pulse propagation equation in the liquid medium.
Intrastromal refractive sugery with ultrashort laser pulses in living animals
NASA Astrophysics Data System (ADS)
Heisterkamp, Alexander; Mamom, Thanongsak; Kermani, Omid; Drommer, Wolfgang; Welling, Herbert; Ertmer, Wolfgang; Lubatschowski, Holger
2002-06-01
In order to perform refractive surgery, fs-laser pulses of 130-fs pulse duration were focused into animal cornea. By focusing the radiation down to spot-sizes of 5 micrometers , very precise cuts could be achieved inside the treated eyes, accompanied with minimum collateral damage to the tissue by thermal or mechanical effects. Due to these low side effects, micrometers -cutting precisions at preparing of corneal flaps and lenticules can be achieved. Thus, animal studies with 8 living rabbits were performed, in which intrastromal lenticules and flaps were created and extracted. Wound healing reactions were studied by histo- pathological analysis of the treated eyes in intervals at one, 7, 14 and 28 days after surgery. The treated eyes showed mild wound healing reactions with comparable results to what is known from Excimer-LASIK. Moreover the use of the fs-laser offered new possibilities in preparation of corneal flaps, providing advantages to the use of the mechanical keratome.
NASA Astrophysics Data System (ADS)
Vorontsov, S. V.; Kuvshinov, M. I.; Narozhnyi, A. T.; Popov, V. A.; Solov'ev, V. P.; Yuferev, V. I.
2017-12-01
A reactor with a destructible core (RIR reactor) generating a pulse with an output of 1.5 × 1019 fissions and a full width at half maximum of 2.5 μs was developed and tested at VNIIEF. In the course of investigation, a computational-experimental method for laboratory calibration of the reactor was created and worked out. This method ensures a high accuracy of predicting the energy release in a real experiment with excess reactivity of 3βeff above prompt criticality. A transportable explosion-proof chamber was also developed, which ensures the safe localization of explosion products of the core of small-sized nuclear devices and charges of high explosives with equivalent mass of up to 100 kg of TNT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Patrick J.
2016-10-05
The code is used to provide an unfolded/adjusted energy-dependent fission reactor neutron spectrum based upon an input trial spectrum and a set of measured activities. This is part of a neutron environment characterization that supports doing testing in a given reactor environment. An iterative perturbation method is used to obtain a "best fit" neutron flux spectrum for a given input set of infinitely dilute foil activities. The calculational procedure consists of the selection of a trial flux spectrum to serve as the initial approximation to the solution, and subsequent iteration to a form acceptable as an appropriate solution. The solutionmore » is specified either as time-integrated flux (fluence) for a pulsed environment or as a flux for a steady-state neutron environment.« less
Individuality embedded in the isolation calls of captive beluga whales (Delphinapterus leucas).
Mishima, Yuka; Morisaka, Tadamichi; Itoh, Miho; Matsuo, Ikuo; Sakaguchi, Aiko; Miyamoto, Yoshinori
2015-01-01
Species with fission-fusion social systems tend to exchange individualized contact calls to maintain group cohesion. Signature whistles by bottlenose dolphins are unique compared to the contact calls of other non-human animals in that they include identity information independent of voice cues. Further, dolphins copy the signatures of conspecifics and use them to label specific individuals. Increasing our knowledge of the contact calls of other cetaceans that have a fluid social structure may thus help us better understand the evolutionary and adaptive significance of all forms of individually distinctive calls. It was recently reported that one type of broadband pulsed sounds (PS1), rather than whistles, may function as individualized contact calls in captive belugas. The objective of this study was to assess the function and individual distinctiveness of PS1 calls in an isolation context. Recordings were made from five captive belugas, including both sexes and various ages. PS1 was the predominant call type (38 % in total) out of five broader sound categories. One sub-adult and three adults had individually distinctive and stereotyped pulse repetition pattern in PS1; one calf showed no clear stereotyped pulse repetition pattern. While visual inspection of the PS1 power spectra uncovered no apparent individual specificity, statistical analyses revealed that both temporal and spectral parameters had inter-individual differences and that there was greater inter-individual than intra-individual variability. Discriminant function analysis based on five temporal and spectral parameters classified PS1 calls into individuals with an overall correct classification rate of 80.5 %, and the most informative parameter was the average Inter-pulse interval, followed by peak frequency. These results suggest that belugas use individually distinctive contact calls in an isolation context. If belugas encode signature information in PS1 calls, as seen in bottlenose dolphins, the pulse repetition pattern may be the carrier, as it is individually stereotyped and appears to require vocal development. This idea is supported by the finding that the average inter-pulse interval is the most powerful discriminator in discriminant analysis. Playback experiments will elucidate which parameters are perceived as individual characteristics, and whether one of the parameters functions as a signature.
NASA Astrophysics Data System (ADS)
Zhang, Guojie; Müller, Marcus
2017-08-01
Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.
Fission yield calculation using toy model based on Monte Carlo simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubaidah, E-mail: jubaidah@student.itb.ac.id; Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221; Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id
2015-09-30
Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. Theremore » are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90« less
Zhang, Guojie; Müller, Marcus
2017-08-14
Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale k B T.
Sequential character of low-energy ternary and quaternary nuclear fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bulychev, A. O.
2016-09-15
An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collectivemore » deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.« less
Impact of fission neutron energies on reactor antineutrino spectra
NASA Astrophysics Data System (ADS)
Littlejohn, B. R.; Conant, A.; Dwyer, D. A.; Erickson, A.; Gustafson, I.; Hermanek, K.
2018-04-01
Recent measurements of reactor-produced antineutrino fluxes and energy spectra are inconsistent with models based on measured thermal fission beta spectra. In this paper, we examine the dependence of antineutrino production on fission neutron energy. In particular, the variation of fission product yields with neutron energy has been considered as a possible source of the discrepancies between antineutrino observations and models. In simulations of low-enriched and highly-enriched reactor core designs, we find a substantial fraction of fissions (from 5% to more than 40%) are caused by nonthermal neutrons. Using tabulated evaluations of nuclear fission and decay, we estimate the variation in antineutrino emission by the prominent fission parents
Student Experiments in Spontaneous Fission.
ERIC Educational Resources Information Center
Becchetti, F. D.; Ying, J. S.
1981-01-01
Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…
NASA Technical Reports Server (NTRS)
Clement, J. D.
1973-01-01
Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.
Fractal Model of Fission Product Release in Nuclear Fuel
NASA Astrophysics Data System (ADS)
Stankunas, Gediminas
2012-09-01
A model of fission gas migration in nuclear fuel pellet is proposed. Diffusion process of fission gas in granular structure of nuclear fuel with presence of inter-granular bubbles in the fuel matrix is simulated by fractional diffusion model. The Grunwald-Letnikov derivative parameter characterizes the influence of porous fuel matrix on the diffusion process of fission gas. A finite-difference method for solving fractional diffusion equations is considered. Numerical solution of diffusion equation shows correlation of fission gas release and Grunwald-Letnikov derivative parameter. Calculated profile of fission gas concentration distribution is similar to that obtained in the experimental studies. Diffusion of fission gas is modeled for real RBMK-1500 fuel operation conditions. A functional dependence of Grunwald-Letnikov derivative parameter with fuel burn-up is established.
Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.
2014-05-01
To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.
Pan, Lichao; Zhou, Lin; Yin, Weijia; Bai, Jia; Liu, Rong
2018-01-01
Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA-125a (miR-125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro-apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR-125a enhanced mitochondria-dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC-1 cell migration by preserving the F-actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a-mediated mitochondrial fission. Low contents of miR-125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR-125a and Mfn2 are regulated by hypoxia-inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR-125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR-125a/Mfn2 pathways, acting to restrict PANC-1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy. PMID:29749475
Pan, Lichao; Zhou, Lin; Yin, Weijia; Bai, Jia; Liu, Rong
2018-07-01
Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA‑125a (miR‑125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro‑apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR‑125a enhanced mitochondria‑dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC‑1 cell migration by preserving the F‑actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a‑mediated mitochondrial fission. Low contents of miR‑125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR‑125a and Mfn2 are regulated by hypoxia‑inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR‑125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR‑125a/Mfn2 pathways, acting to restrict PANC‑1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy.
Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)
NASA Astrophysics Data System (ADS)
Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; Manning, Brett; Geppert-Kleinrath, Verena
2017-09-01
Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incident energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.
Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)
Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; ...
2017-09-13
Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less
Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana
Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, J.S.; Russell, G.J.; Robinson, H.
Axial distributions of fissions and of fertile-to-fissile conversions in thick depleted uranium and thorium targets bombarded by 800-MeV protons have been measured. The amounts of /sup 239/Pu and /sup 233/U produced were determined by measuring the yields of /sup 239/Np and /sup 233/Pa, respectively. The number of fissions was deduced from fission product mass-yield curves. Integration of the axial distributions gave the total number of conversions and fissions occurring in the targets. For the uranium target, experimental results were 5.90 +- 0.25 fissions and 3.81 +- 0.01 atoms of /sup 239/Pu produced per incident portion. Corresponding calculated results were 6.14more » +- 0.04 and 3.88 +- 0.03. In the thorium target, 1.56 +- 0.25 fissions and 1.25 +- 0.01 atoms of /sup 233/U per incident proton were measured; the calculated values were 1.54 +- 0.01 fissions and 1.27 +- 0.01 atom/proton.« less
Fission-like events in the 12C+169Tm system at low excitation energies
NASA Astrophysics Data System (ADS)
Sood, Arshiya; Singh, Pushpendra P.; Sahoo, Rudra N.; Kumar, Pawan; Yadav, Abhishek; Sharma, Vijay R.; Shuaib, Mohd.; Sharma, Manoj K.; Singh, Devendra P.; Gupta, Unnati; Kumar, R.; Aydin, S.; Singh, B. P.; Wollersheim, H. J.; Prasad, R.
2017-07-01
Background: Fission has been found to be a dominating mode of deexcitation in heavy-ion induced reactions at high excitation energies. The phenomenon of heavy-ion induced fission has been extensively investigated with highly fissile actinide nuclei, yet there is a dearth of comprehensive understanding of underlying dynamics, particularly in the below actinide region and at low excitation energies. Purpose: Prime objective of this work is to study different aspects of heavy-ion induced fission ensuing from the evolution of composite system formed via complete and/or incomplete fusion in the 12C+169Tm system at low incident energies, i.e., Elab≈6.4 , 6.9, and 7.4 A MeV, as well as to understand charge and mass distributions of fission fragments. Method: The recoil-catcher activation technique followed by offline γ spectroscopy was used to measure production cross sections of fission-like events. The evaporation residues were identified by their characteristic γ rays and vetted by the decay-curve analysis. Charge and mass distributions of fission-like events were studied to obtain dispersion parameters of fission fragments. Results: In the present work, 26 fission-like events (32 ≤Z ≤49 ) were identified at different excitation energies. The mass distribution of fission fragments is found to be broad and symmetric, manifesting their production via compound nuclear processes. The dispersion parameters of fission fragments obtained from the analysis of mass and isotopic yield distributions are found to be in good accord with the reported values obtained for different fissioning systems. A self-consistent approach was employed to determine the isobaric yield distribution. Conclusions: The present work suggests that fission is one of the competing modes of deexcitation of complete and/or incomplete fusion composites at low excitation energies, i.e., E*≈57 , 63, and 69 MeV, where evaporation of light nuclear particle(s) and/or γ rays are assumed to be the sole contributors. A single peaked broad Gaussian mass dispersion curve has corroborated the absence of any noncompound nuclear fission at the studied energies.
ABSORPTION METHOD FOR SEPARATING METAL CATIONS
Tompkins, E.R.; Parker, G.W.
1959-03-10
An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.
Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu
NASA Astrophysics Data System (ADS)
Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.
2015-10-01
During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.
NASA Astrophysics Data System (ADS)
Petit, Odile; Jouanne, Cédric; Litaize, Olivier; Serot, Olivier; Chebboubi, Abdelhazize; Pénéliau, Yannick
2017-09-01
TRIPOLI-4® Monte Carlo transport code and FIFRELIN fission model have been coupled by means of external files so that neutron transport can take into account fission distributions (multiplicities and spectra) that are not averaged, as is the case when using evaluated nuclear data libraries. Spectral effects on responses in shielding configurations with fission sampling are then expected. In the present paper, the principle of this coupling is detailed and a comparison between TRIPOLI-4® fission distributions at the emission of fission neutrons is presented when using JEFF-3.1.1 evaluated data or FIFRELIN data generated either through a n/g-uncoupled mode or through a n/g-coupled mode. Finally, an application to a modified version of the ASPIS benchmark is performed and the impact of using FIFRELIN data on neutron transport is analyzed. Differences noticed on average reaction rates on the surfaces closest to the fission source are mainly due to the average prompt fission spectrum. Moreover, when working with the same average spectrum, a complementary analysis based on non-average reaction rates still shows significant differences that point out the real impact of using a fission model in neutron transport simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.
2006-03-13
Neutron capture cross section measurements on many of the actinides are complicated by low-energy neutron-induced fission, which competes with neutron capture to varying degrees depending on the nuclide of interest. Measurements of neutron capture on 235U using the Detector for Advanced Neutron Capture Experiments (DANCE) have shown that we can partially resolve capture from fission events based on total photon calorimetry (i.e. total {gamma}-ray energy and {gamma}-ray multiplicity per event). The addition of a fission-tagging detector to the DANCE array will greatly improve our ability to separate these two competing processes so that improved neutron capture and (n,{gamma})/(n,fission) cross sectionmore » ratio measurements can be obtained. The addition of a fission-tagging detector to the DANCE array will also provide a means to study several important issues associated with neutron-induced fission, including (n,fission) cross sections as a function of incident neutron energy, and total energy and multiplicity of prompt fission photons. We have focused on two detector designs with complementary capabilities, a parallel-plate avalanche counter and an array of solar cells.« less
Rose, Sunniva J.; Zeiser, Fabio; Wilson, J. N.; ...
2017-07-05
Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the 233U(d,pf) reaction for excitation energies between 4.8 and 10 MeV, and for the 239Pu(d,pf) reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energymore » above the fission barrier, despite the fact that an extra ~5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ-ray emission with the fission model code gef. In conclusion, further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.« less
Coincident measurements of prompt fission γ rays and fission fragments at DANCE
NASA Astrophysics Data System (ADS)
Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.
2015-10-01
Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.
DOE R&D Accomplishments Database
Segre, Emilio
1950-11-22
The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.
Venting of fission products and shielding in thermionic nuclear reactor systems
NASA Technical Reports Server (NTRS)
Salmi, E. W.
1972-01-01
Most thermionic reactors are designed to allow the fission gases to escape out of the emitter. A scheme to allow the fission gases to escape is proposed. Because of the low activity of the fission products, this method should pose no radiation hazards.
NASA Astrophysics Data System (ADS)
Hou, Liqiang; Cai, Yuanli; Liu, Jin; Hou, Chongyuan
2016-04-01
A variable fidelity robust optimization method for pulsed laser orbital debris removal (LODR) under uncertainty is proposed. Dempster-shafer theory of evidence (DST), which merges interval-based and probabilistic uncertainty modeling, is used in the robust optimization. The robust optimization method optimizes the performance while at the same time maximizing its belief value. A population based multi-objective optimization (MOO) algorithm based on a steepest descent like strategy with proper orthogonal decomposition (POD) is used to search robust Pareto solutions. Analytical and numerical lifetime predictors are used to evaluate the debris lifetime after the laser pulses. Trust region based fidelity management is designed to reduce the computational cost caused by the expensive model. When the solutions fall into the trust region, the analytical model is used to reduce the computational cost. The proposed robust optimization method is first tested on a set of standard problems and then applied to the removal of Iridium 33 with pulsed lasers. It will be shown that the proposed approach can identify the most robust solutions with minimum lifetime under uncertainty.
10 K high frequency pulse tube cryocooler with precooling
NASA Astrophysics Data System (ADS)
Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie
2016-07-01
A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.
Plasma Channel Lenses and Plasma Tornadoes for Optical Beam Focusing and Transport
NASA Astrophysics Data System (ADS)
Hubbard, R. F.; Kaganovich, D.; Johnson, L. A.; Gordon, D. F.; Penano, J. R.; Hafizi, B.; Helle, M. H.; Mamonau, A. A.
2017-10-01
Shaped plasmas offer the possibility of manipulating laser pulses at intensities far above the damage limits for conventional optics. An example is the plasma channel, which is a cylindrical plasma column with an on-axis density minimum. Long plasma channels have been widely used to guide intense laser pulses, particularly in laser wakefield accelerators. A new concept, the ``plasma tornado'', offers the possibility of creating long plasma channels with no nearby structures and at densities lower than can be achieved by capillary discharges. A short plasma channel can focus a laser pulse in much the same manner as a conventional lens or off-axis parabola. When placed in front of the focal point of an intense laser pulse, a plasma channel lens (PCL) can reduce the effective f-number of conventional focusing optics. When placed beyond the focal point, it can act as a collimator. We will present experimental and modeling results for a new plasma tornado design, review experimental methods for generating short PCLs, and discuss potential applications. Supported by the Naval Research Laboratory Base Program.
Recent Development Status of Stirling Type Pulse Tube Cryocooler for HTS
NASA Astrophysics Data System (ADS)
Hiratsuka, Y.; Nakano, K.; Kato, T.
2014-05-01
Sumitomo Heavy Industries, Ltd. (SHI) has been developing a high power stirling type pulse tube cryocooler. For the purpose of cooling high-temperature superconductor (HTS) devices, such as superconductor motor, SMES and current fault limiter, requested specifications from the devices to a cryocooler are compact size, light weight, high efficiency and high reliability. Especially, the cryocooler must be demanded COP > 0.1 in the efficiency. The experimental results of prototype pulse tube cryocooler were reported in June 2012 [1]. For an In-line type expander, the cooling capacity was 210 W at 77 K and the minimum temperature was 37 K when the compressor input power was 3.8 kW and the operating frequency was 49 Hz. Accordingly, COP was about 0.055. Moreover, for miniaturization a U type expander was tested and the performance is about 10 % less than that of an In-line type expander. After that, we have estimated that the cooling performance is influenced by the environment such as the effect of the pulse-tube inclination, the temperature and the flowing quantity of cooling water. The detailed results are reported in this paper.
High power parallel ultrashort pulse laser processing
NASA Astrophysics Data System (ADS)
Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse
2016-03-01
The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.
Feature Modeling of HfO2 Atomic Layer Deposition Using HfCl4/H2O
NASA Astrophysics Data System (ADS)
Stout, Phillip J.; Adams, Vance; Ventzek, Peter L. G.
2003-03-01
A Monte Carlo based feature scale model (Papaya) has been applied to atomic layer deposition (ALD) of HfO2 using HfCl_4/H_20. The model includes physical effects of transport to surface, specular and diffusive reflection within feature, adsorption, surface diffusion, deposition and etching. Discussed will be the 3D feature modeling of HfO2 deposition in assorted features (vias and trenches). The effect of feature aspect ratios, pulse times, cycle number, and temperature on film thickness, feature coverage, and film Cl fraction (surface/bulk) will be discussed. Differences between HfO2 ALD on blanket wafers and in features will be highlighted. For instance, the minimum pulse times sufficient for surface reaction saturation on blanket wafers needs to be increased when depositing on features. Also, HCl products created during the HfCl4 and H_20 pulses are more likely to react within a feature than at the field, reducing OH coverage within the feature (vs blanket wafer) thus limiting the maximum coverage attainable for a pulse over a feature.
Spectroscopic investigation of the high-current phase of a pulsed GMAW process
NASA Astrophysics Data System (ADS)
Rouffet, M. E.; Wendt, M.; Goett, G.; Kozakov, R.; Schoepp, H.; Weltmann, K. D.; Uhrlandt, D.
2010-11-01
While metal vapours have an important impact on the efficiency of the pulsed gas metal arc welding process, only a few papers are focused on this effect. In this paper, methods based on emission spectroscopy are performed to improve the understanding of the physical phenomena occurring during the high-current pulse. Boltzmann plots applied to iron lines, the Stark broadening of the 696.5 nm argon line and composition calculations assuming local thermodynamic equilibrium are used to determine characteristic parameters of the plasma. It is observed that the central part of the arc is composed mainly of iron. The percentage of iron increases quickly at the beginning of the high-current pulse, and slowly decreases when the central part broadens. During the high-current phase the temperature profile has a minimum value of around 8000 K at the axis of the arc while the argon envelope of the central part reaches temperatures of approximately 13.000 K. The high percentage of iron and the high radiation of the plasma at the centre can explain the measured shape of the temperature profile.
Zhang, Fangzheng; Pan, Shilong
2013-11-04
A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.
Interaction of excitable waves emitted from two defects by pulsed electric fields
NASA Astrophysics Data System (ADS)
Chen, Jiang-Xing; Zhang, Han; Qiao, Li-Yan; Liang, Hong; Sun, Wei-Gang
2018-01-01
In response to a pulsed electric field, spatial distributed heterogeneities in excitable media can serve as nucleation sites for the generation of intramural electrical waves, a phenomenon called as ;wave emission from heterogeneities; (WEH effect). Heterogeneities in cardiac tissue strongly influence each other in the WEH effect. We study the WEH effect in a medium possessing two defects. The role of two defects and their interaction by pulsed DC electric fields (DEF) and rotating electric fields (REF) are investigated. The direction of the applied electric field plays a major role not only in the minimum electrical field necessary to originate wave propagation, but also in the degree of influences of nearby defects. The distance between two defects, i.e. the density of defects, also play an important role in the WEH effect. Generally, the REF is better than the DEF when pulsed electric fields are applied. These results may contribute to the improved application of WEH, especially in older patients with fibrosis and scarring, which are accompanied by a higher incidence of conductivity discontinuities.
Quadrature-quadrature phase-shift keying
NASA Astrophysics Data System (ADS)
Saha, Debabrata; Birdsall, Theodore G.
1989-05-01
Quadrature-quadrature phase-shift keying (Q2PSK) is a spectrally efficient modulation scheme which utilizes available signal space dimensions in a more efficient way than two-dimensional schemes such as QPSK and MSK (minimum-shift keying). It uses two data shaping pulses and two carriers, which are pairwise quadrature in phase, to create a four-dimensional signal space and increases the transmission rate by a factor of two over QPSK and MSK. However, the bit error rate performance depends on the choice of pulse pair. With simple sinusoidal and cosinusoidal data pulses, the Eb/N0 requirement for Pb(E) = 10 to the -5 is approximately 1.6 dB higher than that of MSK. Without additional constraints, Q2PSK does not maintain constant envelope. However, a simple block coding provides a constant envelope. This coded signal substantially outperforms MSKS and TFM (time-frequency multiplexing) in bandwidth efficiency. Like MSK, Q2PSK also has self-clocking and self-synchronizing ability. An optimum class of pulse shapes for use in Q2PSK-format is presented. One suboptimum realization achieves the Nyquist rate of 2 bits/s/Hz using binary detection.
Time-resolved spectroscopy using a chopper wheel as a fast shutter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shicong; Wendt, Amy E.; Boffard, John B.
Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsedmore » light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.« less
Development and Utilization of Space Fission Power Systems
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.
2009-01-01
Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.
Development and Utilization of Space Fission Power Systems
NASA Technical Reports Server (NTRS)
Houts, Michael; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.
2008-01-01
Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.
Preparation of Simulated LBL Defects for Round Robin Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerczak, Tyler J.; Baldwin, Charles A.; Hunn, John D.
2016-01-01
A critical characteristic of the TRISO fuel design is its ability to retain fission products. During reactor operation, the TRISO layers act as barriers to release of fission products not stabilized in the kernel. Each component of the TRISO particle and compact construction plays a unique role in retaining select fission products, and layer performance is often interrelated. The IPyC, SiC, and OPyC layers are barriers to the release of fission product gases such as Kr and Xe. The SiC layer provides the primary barrier to release of metallic fission products not retained in the kernel, as transport across themore » SiC layer is rate limiting due to the greater permeability of the IPyC and OPyC layers to many metallic fission products. These attributes allow intact TRISO coatings to successfully retain most fission products released from the kernel, with the majority of released fission products during operation being due to defective, damaged, or failed coatings. This dominant release of fission products from compromised particles contributes to the overall source term in reactor; causing safety and maintenance concerns and limiting the lifetime of the fuel. Under these considerations, an understanding of the nature and frequency of compromised particles is an important part of predicting the expected fission product release and ensuring safe and efficient operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooden, Matthew; Arnold, Charles; Bhike, Megha
Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurementmore » of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations.« less
Lamborot, M
1998-06-01
A multiple Robertsonian fission chromosomal race of the Liolaemus monticola complex in Chile is described and is shown to be the most derived and the most complex among the Liolaemus examined thus far. The 29 karyotyped lizards analysed from the locality of Mina Hierro Viejo, Petorca, Provincia de Valparaiso, Chile, exhibited a diploid chromosomal number ranging from 42 to 44, and several polymorphisms. The polymorphisms included: a pair 1 fission; a pair 2 fission plus a pericentric inversion in one of the fission products, which moved the NOR and satellite from the tip of the long arm of the metacentric 2 to the short arm of the fission product; a fission in pair 3; a polymorphism for an enlarged chromosome pair 6; and a polymorphism for a pericentric inversion in pair 7. This population is fixed for a fission of chromosome pair 4. A total of 76% of the lizards analysed were polymorphic for one or more pairs of chromosomes. We have compared these data with other Liolaemus monticola chromosomal races and calculated the Hardy-Weinberg ratios for the polymorphic chromosome pairs in this Multiple-Fission race. Karyotypic differences between the Northern (2n = 38-40) and the Multiple-Fission (2n = 42-44) races were attributed mainly to Robertsonian fissions, an enlarged chromosome and pericentric inversions involving the macrochromosomes and one microchromosome pair.
NASA Astrophysics Data System (ADS)
Gooden, Matthew; Bredeweg, Todd; Fowler, Malcolm; Vieira, David; Wilhelmy, Jerry; Tonchev, Anton; Stoyer, Mark; Bhike, Megha; Finch, Sean; Krishichayan, Fnu; Tornow, Werner
2017-09-01
The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi- monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combi- nation of fission counting using specially designed dual-fission chambers and -ray counting. Each dual-fission chamber is a back-to-back ioniza- tion chamber encasing an activation target in the center with thin de- posits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activa- tion target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of 2 months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6 and 14.8 MeV. New data in the second chance fission region of 5.5 - 9 MeV are included. Work performed for the U.S. Department of Energy by Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.
Gooden, Matthew; Arnold, Charles; Bhike, Megha; ...
2017-09-13
Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurementmore » of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations.« less
Fission Product Yields from {sup 232}Th, {sup 238}U, and {sup 235}U Using 14 MeV Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, B.D., E-mail: bpnuke@umich.edu; Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352; Greenwood, L.R.
Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets–thorium-oxide, depleted uranium metal, and highly enriched uranium metal–at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields ofmore » short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for {sup 89}Kr, −90, and −92 and {sup 138}Xe, −139, and −140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were −10.2%, 4.5%, and −12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from {sup 84}As to {sup 146}La are presented.« less
Fission Reaction Event Yield Algorithm FREYA 2.0.2
Verbeke, J. M.; Randrup, J.; Vogt, R.
2017-09-01
The purpose of this paper is to present the main differences between FREYA versions 1.0 and 2.0.2. FREYA (Fission Reaction Event Yield Algorithm) is a fission event generator which models complete fission events. As such, it automatically includes fluctuations as well as correlations between observables, resulting from conservation of energy and momentum. The main differences between the two versions are: additional fissionable isotopes, angular momentum conservation, Giant Dipole Resonance form factor for the statistical emission of photons, improved treatment of fission photon emission using RIPL database, and dependence on the incident neutron direction. FREYA 2.0.2 has been integrated into themore » LLNL Fission Library 2.0.2, which has itself been integrated into MCNP6.2, TRIPOLI-4.10, and can be called from Geant4.10.« less
Method for correcting for isotope burn-in effects in fission neutron dosimeters
Gold, Raymond; McElroy, William N.
1988-01-01
A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.
NASA Astrophysics Data System (ADS)
Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun
2018-05-01
A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.
NASA Technical Reports Server (NTRS)
Guman, W. J. (Editor)
1972-01-01
Design details are presented of the solid propellant pulsed plasma microthruster which was analyzed during the Task 1 effort. The design details presented show that the inherent functional simplicity underlying the flight proven LES-6 design can be maintained in the SMS systems design even with minimum weight constraints imposed. A 1293 hour uninterrupted vacuum test with the engineering thermal model, simulating an 18.8 to 33 g environment of the propellant, its feed system and electrode assembly, revealed that program thruster performance requirements could be met. This latter g environment is a more severe environment than will be ever encountered in the SMS spacecraft.
NASA Astrophysics Data System (ADS)
Duxbury, Geoffrey; Hay, Kenneth G.; Langford, Nigel; Johnson, Mark P.; Black, John D.
2011-09-01
It has been demonstrated that an intra-pulse scanned quantum cascade laser spectrometer may be used to obtain real-time diagnostics of the amounts of carbon monoxide, carbon dioxide, and water, in the exhaust of an aero gas turbine (turbojet) engine operated in a sea level test cell. Measurements have been made of the rapid changes in composition following ignition, the composition under steady state operating conditions, and the composition changes across the exhaust plume. The minimum detection limit for CO in a double pass through a typical gas turbine plume of 50 cm in diameter, with 0.4 seconds integration time, is approximately 2 ppm.
Ablative Laser Propulsion Using Multi-Layered Material Systems
NASA Technical Reports Server (NTRS)
Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.
2002-01-01
Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.
Spheromak Formation and Current Sustainment Using a Repetitively Pulsed Source
NASA Astrophysics Data System (ADS)
Woodruff, S.; Macnab, A. I. D.; Ziemba, T. M.; Miller, K. E.
2009-06-01
By repeated injection of magnetic helicity ( K = 2φψ) on time-scales short compared with the dissipation time (τinj << τ K ), it is possible to produce toroidal currents relevant to POP-level experiments. Here we discuss an effective injection rate, due to the expansion of a series of current sheets and their subsequent reconnection to form spheromaks and compression into a copper flux-conserving chamber. The benefits of repeated injection are that the usual limits to current amplification can be exceeded, and an efficient quasi-steady sustainment scenario is possible (within minimum impact on confinement). A new experiment designed to address the physics of pulsed formation and sustainment is described.
NASA Astrophysics Data System (ADS)
Gnilitskyi, Iaroslav; Gruzdev, Vitaly; Bulgakova, Nadezhda M.; Mocek, Tomáš; Orazi, Leonardo
2016-10-01
Silicon is one of the most abundant materials which is used in many areas of modern research and technology. A variety of those applications require surface nanopatterning with minimum structure defects. However, the high-quality nanostructuring of large areas of silicon surface at industrially acceptable speed is still a challenge. Here, we report a rapid formation of highly regular laser-induced periodic surface structures (HR-LIPSS) in the regime of strong ablation by infrared femtosecond laser pulses at sub-MHz repetition rate. Parameters of the laser-surface interactions and obtained experimental results suggest an important role of electrostatically assisted bond softening in initiating the HR-LIPSS formation.
Joksimovic, Boban; Szelenyi, Andrea; Seifert, Volker; Damjanovic, Aleksandar; Damjanovic, Aleksandra; Rasulic, Lukas
2015-05-01
To evaluate the relationship between stimulus intensity by constant current transcranial electric stimulation and interstimulus interval (ISI) for eliciting muscle motor evoked potentials (MEPs) in three different hand muscles and the tibialis anterior muscles. We tested intraoperatively different monophasic constant current pulses and ISIs in 22 patients with clinically normal motor function. Motor thresholds of contralateral muscle MEPs were determined at 0.5 milliseconds (ms) pulse duration and ISIs of 1, 2, 3, 4, 5, and 10 ms using a train of 2, 3, and 5 monophasic constant current pulses of 62 to 104 mA before craniotomy and after closure of the dura mater. The lowest stimulation threshold to elicit MEPs in the examined muscles was achieved with a train of 5 pulses (ISI: 3 ms) before craniotomy, which was statistically significant compared with 2 pulses (ISI: 3 ms) as well as 3 pulses (ISIs: 3 and 10 ms). An ISI of 3 ms gave the lowest motor thresholds with statistical significance compared with the ISIs of 4 ms (2 pulses) and of 1 ms (3 pulses). All current intensity (mA) and ISI (ms) relationship graphs had a trend of the exponential function as y = a + bx + c ρ (x), where y is intensity (mA) and x is ISI (ms). The minimum of the function was determined for each patient and each muscle. The difference was statistically significant between 3 and 5 pulses before craniotomy and between 3 and 5 pulses and 2 and 5 pulses after closure of the dura mater. In adult neurosurgical patients with a normal motor status, a train of 5 pulses and an ISI of 3 ms provide the lowest motor thresholds. We provided evidence of the dependence of required stimulation current on ISI. Georg Thieme Verlag KG Stuttgart · New York.
Quantum dynamics of the Einstein-Rosen wormhole throat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunstatter, Gabor; Peltola, Ari; Louko, Jorma
2011-02-15
We consider the polymer quantization of the Einstein wormhole throat theory for an eternal Schwarzschild black hole. We numerically solve the difference equation describing the quantum evolution of an initially Gaussian, semiclassical wave packet. As expected from previous work on loop quantum cosmology, the wave packet remains semiclassical until it nears the classical singularity at which point it enters a quantum regime in which the fluctuations become large. The expectation value of the radius reaches a minimum as the wave packet is reflected from the origin and emerges to form a near-Gaussian but asymmetrical semiclassical state at late times. Themore » value of the minimum depends in a nontrivial way on the initial mass/energy of the pulse, its width, and the polymerization scale. For wave packets that are sufficiently narrow near the bounce, the semiclassical bounce radius is obtained. Although the numerics become difficult to control in this limit, we argue that for pulses of finite width the bounce persists as the polymerization scale goes to zero, suggesting that in this model the loop quantum gravity effects mimicked by polymer quantization do not play a crucial role in the quantum bounce.« less
Psycho-Physiological Responses by Listening to Some Sounds from Our Daily Life
NASA Astrophysics Data System (ADS)
Sakamoto, H.; Hayashi, F.; Tsujikawa, M.; Sugiura, S.
1997-08-01
This study was made to clarify the relationship between mode of identification, mode of emotion and physiological response to noise. Twenty-six subjects, young females, listened to six different daily sounds for 150 s through head phones. The level of sound was 60-61LAcq. The pulse wave and blood pressure were observed, and pulse wave interval, wave height and maximum and minimum blood pressures were measured. Measurements were taken twice once 30 s before listening and again during the final 30 s of listening. The ratio of the latter value to the former value was used as the index for the evaluation of change. Immediately after the listening session, identification of the sound source and emotional response were surveyed via a questionnaire and the sounds were judged as related to comfort or discomfort. In the case of incorrect identification, physiological functions were not seen to change significantly. However, in the case of correct identification, maximum and minimum blood pressures were significantly increased form the pre-listening values. The physiological functions of the discomfort group did not change significantly. In the comfort group, wave height was decreased and blood pressure was significantly elevated.
Ablative overlays for Space Shuttle leading edge ascent heat protection
NASA Technical Reports Server (NTRS)
Strauss, E. L.
1975-01-01
Ablative overlays were evaluated via a plasma-arc simulation of the ascent pulse on the leading edge of the Space Shuttle Orbiter. Overlay concepts included corkboard, polyisocyanurate foam, low-density Teflon, epoxy, and subliming salts. Their densities ranged from 4.9 to 81 lb per cu ft, and the thicknesses varied from 0.107 to 0.330 in. Swept-leading-edge models were fabricated from 30-lb per cu ft silicone-based ablators. The overlays were bonded to maintain the surface temperature of the base ablator below 500 F during ascent. Foams provided minimum-weight overlays, and subliming salts provided minimum-thickness overlays. Teflon left the most uniform surface after ascent heating.
2014-06-01
14 Figure 3. Distribution of mass of fission fragments from the fission of uranium-235 by a thermal neutron (after Krane, 1988...1962 to the present underscores how critical this effect can be to the Department of Defense (DOD) and to the Nation. In addition to the...overhead of Johnston Island.”3 Fission of an actinide generally produces two ionized fission fragments. These fission fragments are highly ionized
Nuclear Forensics and Radiochemistry: Fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.
Fission Activities of the Nuclear Reactions Group in Uppsala
NASA Astrophysics Data System (ADS)
Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Jansson, K.; Koning, A.; Lantz, M.; Mattera, A.; Prokofiev, A. V.; Rakopoulos, V.; Sjöstrand, H.; Solders, A.; Tarrío, D.; Österlund, M.; Pomp, S.
This paper highlights some of the main activities related to fission of the nuclear reactions group at Uppsala University. The group is involved for instance in fission yield experiments at the IGISOL facility, cross-section measurements at the NFS facility, as well as fission dynamics studies at the IRMM JRC-EC. Moreover, work is ongoing on the Total Monte Carlo (TMC) methodology and on including the GEF fission code into the TALYS nuclear reaction code. Selected results from these projects are discussed.
Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.
2011-09-29
A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.
NASA Astrophysics Data System (ADS)
Le Gall, C.; Geiger, E.; Gallais-During, A.; Pontillon, Y.; Lamontagne, J.; Hanus, E.; Ducros, G.
2017-11-01
Qualitative and quantitative analyses on the VERDON-1 sample made it possible to obtain valuable information on fission product behaviour in the fuel during the test. A promising methodology based on the quantitative results of post-test characterisations has been implemented to assess the release fraction of non γ-emitter fission products. The order of magnitude of the estimated release fractions for each fission product was consistent with their class of volatility.
NASA Astrophysics Data System (ADS)
Qi, L.; Wilson, J. N.; Lebois, M.; Al-Adili, A.; Chatillon, A.; Choudhury, D.; Gatera, A.; Georgiev, G.; Göök, A.; Laurent, B.; Maj, A.; Matea, I.; Oberstedt, A.; Oberstedt, S.; Rose, S. J.; Schmitt, C.; Wasilewska, B.; Zeiser, F.
2018-03-01
Prompt fission gamma-ray spectra (PFGS) have been measured for the 239Pu(n,f) reaction using fast neutrons at Ēn=1.81 MeV produced by the LICORNE directional neutron source. The setup makes use of LaBr3 scintillation detectors and PARIS phoswich detectors to measure the emitted prompt fission gamma rays (PFG). The mean multiplicity, average total energy release per fission and average energy of photons are extracted from the unfolded PFGS. These new measurements provide complementary information to other recent work on thermal neutron induced fission of 239Pu and spontaneous fission of 252Cf.
Edwards, E. R.; Cassata, W. S.; Velsko, C. A.; ...
2016-09-22
Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility (NIF) induce fission in depleted uranium (DU) contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. Here, the results from this experiment and England and Rider are in agreement, except for the 85mKr/ 88Kr ratio, which may be the result of incorrect nuclear data.
Edwards, E R; Cassata, W S; Velsko, C A; Yeamans, C B; Shaughnessy, D A
2016-11-01
Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88 Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85m Kr/ 88 Kr ratio, which may be the result of incorrect nuclear data.
High repetition rate sealed CO2 TEA lasers using heterogeneous catalysts
NASA Astrophysics Data System (ADS)
Price, H. T.; Shaw, S. R.
1987-04-01
The significant operational advantages offered by CO2 lasers, operating in the 10.6 micron region of the spectrum, over current solid state lasers, emitting in the near IR region, have prompted increased interest in the development of compact, reliable, rugged CO2 laser sources. Perhaps the most critical aspect associated with achieving a laser compatible with military use is the development of lasers which require no gas replenishment. Sealed, single shot, CO2 TEA lasers have been available for a number of years. Stark et al were first to demonstrate reliable sealed operation in single shot CO2 TEA lasers in 1975 using gas catalysis. GEC Avionics reported the compact, environmentally qualified, MKIII CO2 TEA laser with a pulse life of greater than 10 to the 6th power pulses in 1980. A sealed laser lifetime of greater than 10 to the 6th power pulses is acceptable for single shot cases, such as direct detection rangefinders for tank laser sights. However, in many other applications, such as tracking of fast moving targets, it is essential that a repetition rate of typically 30Hz to 100Hz is employed. In such cases, a pulse lifetime of 10 to the 6th power pulses is no longer sufficient and a minimum pulse lifetime 10 to the 7th power pulses is essential to ensure a useful service life. In 1983 Stark el al described a sealed, 100Hz CO2 TEA laser, with a life of greater than 2.6 x 10 to the 6th power, which employed heterogeneous catalysis. Following this pioneering work, GEC Avionics has been engaged in the development of sealed high repetition rate lasers with a pulse lifetime of 20 million pulses.
High repetition rate sealed CO2 TEA lasers using heterogeneous catalysts
NASA Technical Reports Server (NTRS)
Price, H. T.; Shaw, S. R.
1987-01-01
The significant operational advantages offered by CO2 lasers, operating in the 10.6 micron region of the spectrum, over current solid state lasers, emitting in the near IR region, have prompted increased interest in the development of compact, reliable, rugged CO2 laser sources. Perhaps the most critical aspect associated with achieving a laser compatible with military use is the development of lasers which require no gas replenishment. Sealed, single shot, CO2 TEA lasers have been available for a number of years. Stark et al were first to demonstrate reliable sealed operation in single shot CO2 TEA lasers in 1975 using gas catalysis. GEC Avionics reported the compact, environmentally qualified, MKIII CO2 TEA laser with a pulse life of greater than 10 to the 6th power pulses in 1980. A sealed laser lifetime of greater than 10 to the 6th power pulses is acceptable for single shot cases, such as direct detection rangefinders for tank laser sights. However, in many other applications, such as tracking of fast moving targets, it is essential that a repetition rate of typically 30Hz to 100Hz is employed. In such cases, a pulse lifetime of 10 to the 6th power pulses is no longer sufficient and a minimum pulse lifetime 10 to the 7th power pulses is essential to ensure a useful service life. In 1983 Stark el al described a sealed, 100Hz CO2 TEA laser, with a life of greater than 2.6 x 10 to the 6th power, which employed heterogeneous catalysis. Following this pioneering work, GEC Avionics has been engaged in the development of sealed high repetition rate lasers with a pulse lifetime of 20 million pulses.
Investigation of Plasma Surface Interactions with the PISCES ELM Laser System
NASA Astrophysics Data System (ADS)
Umstadter, K. R.; Baldwin, M.; Hanna, J.; Doerner, R.; Lynch, T.; Palmer, T.; Tynan, G. R.
2007-11-01
When an ELM occurs in tokamaks, up to 30% of the pedestal energy can be deposited on the wall of the tokamak causing heating & material loss due to sublimation, evaporation and melt splashing of plasma facing components (PFCs) and expansion of the ejected material into the plasma. We have explored heat pulses using an electrical power circuit to draw electrons from the plasma to heat samples ohmically. This system is limited in power to ˜250kJ/m^2 at the minimum pulse width of 10ms and depletes the plasma column, complicating spectroscopy. We have completed calculations that indicate that a pulsed laser system can be used to simulate the heat pulse of ELMs. We are integrating laser systems into the existing PFC research program in PISCES, a laboratory facility capable of reproducing plasma-materials interactions expected during normal operation of large tokamaks. Two Nd:YAG lasers capable of delivering up to 50J of energy over various pulsewidths are used for the experiments. Laser heat pulse only, H+/D+ plasma only, and laser+plasma experiments were conducted and initial results indicate that metals behave very differently while exposed to plasma and simultaneous heat pulses. We will also discuss initial results for carbon PFCs and material transport into the plasma. Supported by US DoE grant DE-FG02-07ER-54912.
NASA Astrophysics Data System (ADS)
An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng
2018-05-01
Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koglin, J. D.; Burke, J. T.; Fisher, S. E.
Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less
Unit mechanisms of fission gas release: Current understanding and future needs
Tonks, Michael; Andersson, David; Devanathan, Ram; ...
2018-03-01
Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less
NASA Astrophysics Data System (ADS)
Koglin, J. D.; Burke, J. T.; Fisher, S. E.; Jovanovic, I.
2017-05-01
The Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE - E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution of 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.
Koglin, J. D.; Burke, J. T.; Fisher, S. E.; ...
2017-02-20
Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less
Le, Aaron K.; Bender, Jon A.; Arias, Dylan H.; ...
2017-12-14
Due to its ability to offset thermalization losses in photoharvesting systems, singlet fission has become a topic of research interest. During singlet fission, a high energy spin-singlet state in an organic semiconductor divides its energy to form two lower energy spin-triplet excitations on neighboring chromophores. While key insights into mechanisms leading to singlet fission have been gained recently, developing photostable compounds that undergo quantitative singlet fission remains a key challenge. In this report, we explore triplet exciton production via singlet fission in films of perylenediimides, a class of compounds with a long history of use as industrial dyes and pigmentsmore » due to their photostability. As singlet fission necessitates electron transfer between neighboring molecules, its rate and yield depend sensitively on their local arrangement. Here, by adding different functional groups at their imide positions, we control how perylenediimides pack in the solid state.« less
Unit mechanisms of fission gas release: Current understanding and future needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, Michael; Andersson, David; Devanathan, Ram
Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less
Prompt fission gamma-ray studies at DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandel, M.; Rusev, G.; Bond, E. M.
2014-11-26
Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL,more » for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.« less
NASA Astrophysics Data System (ADS)
Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.
2010-12-01
The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.
NASA Astrophysics Data System (ADS)
Abdelaziz, Chebboubi; Grégoire, Kessedjian; Olivier, Serot; Sylvain, Julien-Laferriere; Christophe, Sage; Florence, Martin; Olivier, Méplan; David, Bernard; Olivier, Litaize; Aurélien, Blanc; Herbert, Faust; Paolo, Mutti; Ulli, Köster; Alain, Letourneau; Thomas, Materna; Michal, Rapala
2017-09-01
The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. In the past with the LOHENGRIN spectrometer of the ILL, priority has been given for the studies in the light fission fragment mass range. The LPSC in collaboration with ILL and CEA has developed a measurement program on symmetric and heavy mass fission fragment distributions. The combination of measurements with ionisation chamber and Ge detectors is necessary to describe precisely the heavy fission fragment region in mass and charge. Recently, new measurements of fission yields and kinetic energy distributions are has been made on the 233U(nth,f) reaction. The focus of this work has been on the new optical and statistical methodology and the self-normalization of the data to provide new absolute measurements, independently of any libraries, and the associated experimental covariance matrix.
Unit mechanisms of fission gas release: Current understanding and future needs
NASA Astrophysics Data System (ADS)
Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael
2018-06-01
Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.
Study of fission fragment de-excitation by gamma-ray spectrometry with the EXILL experiment
NASA Astrophysics Data System (ADS)
Materna, Thomas; a, Michal Rapał; Letourneau, Alain; Marchix, Anthony; Litaize, Olivier; Sérot, Olivier; Urban, Waldemar; Blanc, Aurélien; Jentschel, Michael; Köster, Ulli; Mutti, Paolo; Soldner, Torsten; Simpson, Gary; Ur, Călin A.; France, Gilles de
2017-09-01
A large array of Ge detectors installed at ILL, around a 235U target irradiated with cold neutrons, (EXILL) allowed measurement of prompt gamma-ray cascades occurring in fission fragments with an unambiguous determination of fragments. Here we present preliminary results of a systematic comparison between experimental γ-ray intensities and those obtained from the Monte-Carlo simulation code FIFRELIN, which is dedicated to the de-excitation of fission fragments. Major γ-ray intensities in the 142Ba and 92Kr fission products, extracted from EXILL data, were compared to FIFRELIN, as well as to reported values (when available) obtained with EUROGAM2 in the spontaneous fission of 248Cm. The evolution of γ-ray intensities in 92Kr versus the complementary partner in fission (i.e. versus the total number of evaporated neutrons by the fission pair) was then extracted and compared to FIFRELIN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Aaron K.; Bender, Jon A.; Arias, Dylan H.
Due to its ability to offset thermalization losses in photoharvesting systems, singlet fission has become a topic of research interest. During singlet fission, a high energy spin-singlet state in an organic semiconductor divides its energy to form two lower energy spin-triplet excitations on neighboring chromophores. While key insights into mechanisms leading to singlet fission have been gained recently, developing photostable compounds that undergo quantitative singlet fission remains a key challenge. In this report, we explore triplet exciton production via singlet fission in films of perylenediimides, a class of compounds with a long history of use as industrial dyes and pigmentsmore » due to their photostability. As singlet fission necessitates electron transfer between neighboring molecules, its rate and yield depend sensitively on their local arrangement. Here, by adding different functional groups at their imide positions, we control how perylenediimides pack in the solid state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Sunniva J.; Zeiser, Fabio; Wilson, J. N.
Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the 233U(d,pf) reaction for excitation energies between 4.8 and 10 MeV, and for the 239Pu(d,pf) reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energymore » above the fission barrier, despite the fact that an extra ~5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ-ray emission with the fission model code gef. In conclusion, further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.« less
High precision measurements on fission-fragment de-excitation
NASA Astrophysics Data System (ADS)
Oberstedt, Stephan; Gatera, Angélique; Geerts, Wouter; Göök, Alf; Hambsch, Franz-Josef; Vidali, Marzio; Oberstedt, Andreas
2017-11-01
In recent years nuclear fission has gained renewed interest both from the nuclear energy community and in basic science. The first, represented by the OECD Nuclear Energy Agency, expressed the need for more accurate fission cross-section and fragment yield data for safety assessments of Generation IV reactor systems. In basic science modelling made much progress in describing the de-excitation mechanism of neutron-rich isotopes, e.g. produced in nuclear fission. Benchmarking the different models require a precise experimental data on prompt fission neutron and γ-ray emission, e.g. multiplicity, average energy per particle and total dissipated energy per fission, preferably as function of fission-fragment mass and total kinetic energy. A collaboration of scientists from JRC Geel (formerly known as JRC IRMM) and other institutes took the lead in establishing a dedicated measurement programme on prompt fission neutron and γ-ray characteristics, which has triggered even more measurement activities around the world. This contribution presents new advanced instrumentation and methodology we use to generate high-precision spectral data and will give a flavour of future data needs and opportunities.
NASA Astrophysics Data System (ADS)
Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David
2015-09-01
Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.
Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am
NASA Astrophysics Data System (ADS)
Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.
2016-09-01
Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.
Fission product yield measurements using monoenergetic photon beams
NASA Astrophysics Data System (ADS)
Krishichayan; Bhike, M.; Tonchev, A. P.; Tornow, W.
2017-09-01
Measurements of fission products yields (FPYs) are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.
Galloway, Chad A; Lee, Hakjoo; Brookes, Paul S; Yoon, Yisang
2014-09-15
Mitochondria produce the majority of cellular ATP through oxidative phosphorylation, and their capacity to do so is influenced by many factors. Mitochondrial morphology is recently suggested as an important contributor in controlling mitochondrial bioenergetics. Mitochondria divide and fuse continuously, which is affected by environmental factors, including metabolic alterations. Underscoring its bioenergetic influence, altered mitochondrial morphology is reported in tissues of patients and in animal models of metabolic dysfunction. In this study, we found that mitochondrial fission plays a vital role in the progression of nonalcoholic fatty liver disease (NAFLD). The development of hepatic steatosis, oxidative/nitrative stress, and hepatic tissue damage, induced by a high-fat diet, were alleviated in genetically manipulated mice suppressing mitochondrial fission. The alleviation of steatosis was recapitulated in primary hepatocytes with the inhibition of mitochondrial fission. Mechanistically, our study indicates that fission inhibition enhances proton leak under conditions of free fatty acid incubation, implicating bioenergetic change through manipulating mitochondrial fission. Taken together, our results suggest a mechanistic role for mitochondrial fission in the etiology of NAFLD. The efficacy of decreasing mitochondrial fission in the suppression of NAFLD suggests that mitochondrial fission represents a novel target for therapeutic treatment of NAFLD. Copyright © 2014 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.
2015-12-01
Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.
NASA Astrophysics Data System (ADS)
Gooden, M.; Arnold, C.; Bredeweg, T.; Vieira, D.; Wilhelmy, J.; Tonchev, A.; Stoyer, M.; Bhike, M.; Krishichayan, F.; Tornow, W.; Fowler, M.
2015-10-01
Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and ?-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. ?-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of 2 months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. These results are compared to previous measurements and theoretical estimates. This work was performed under the auspices of the USDoE by Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.
Improved Fission Neutron Data Base for Active Interrogation of Actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozzi, Sara; Czirr, J. Bart; Haight, Robert
2013-11-06
This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems bothmore » with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).« less
Prompt neutron emission and energy balance in 235U(n,f)
NASA Astrophysics Data System (ADS)
Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan
2017-09-01
Investigations of prompt fission neutron (PFN) emission are of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at JRC-Geel on PFN emission in response to OECD/NEA nuclear data requests is presented in this contribution. The focus lies on on-going investigations of PFN emission from the reaction 235U(n,f) in the region of the resolved resonances taking place at the GELINA facility. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed as a function of incident neutron energy in the resonance region. In addition, fluctuations of prompt neutron multiplicities have also been observed. The goal of the present study is to verify the current knowledge of PFN multiplicity fluctuations and to study correlations with fission fragment properties. The experiment employs a scintillation detector array for neutron detection, while fission fragment properties are determined via the double kinetic energy technique using a position sensitive twin ionization chamber. Results on PFN multiplicity correlations with fission fragment properties from the present study show significant differences compared to earlier studies on this reaction, induced by thermal neutrons. Specifically, the total kinetic energy dependence of the neutron multiplicity per fission shows an inverse slope FX1TKE/FX2ν approximately 35% weaker than observed in earlier studies of thermal neutron induced fission on 235U. The inverse slope is related to the energy carried away per emitted neutron and is, thereby, closely connected to the energy balance of the fission reaction. The present result should have strong impact on the modeling of both prompt neutron and prompt γ-ray emission in fission of the 236U compound nucleus.