Sample records for minimum flow velocity

  1. Flow Boiling Critical Heat Flux in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  2. Glottal volume velocity waveform characteristics in subjects with and without vocal training, related to gender, sound intensity, fundamental frequency, and age.

    PubMed

    Sulter, A M; Wit, H P

    1996-11-01

    Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity conditions. The glottal volume velocity waveforms were obtained by inverse filtering the oral flow. Glottal volume velocity waveforms were parameterized with flow-based (minimum flow, ac flow, average flow, maximum flow declination rate) and time-based parameters (closed quotient, closing quotient, speed quotient), as well as with derived parameters (vocal efficiency and glottal resistance). Higher sound-pressure levels, intra-oral pressures, and flow-parameter values (ac flow, maximum flow declination rate) were observed, when compared with previous investigations. These higher values might be the result of the specific phonation tasks (stressed /ae/ vowel in a word and a sentence) or filtering processes. Few statistically significant (p < 0.01) differences in parameters were found between untrained and trained subjects [the maximum flow declination rate and the closing quotient were higher in trained women (p < 0.001), and the speed quotient was higher in trained men (p < 0.005)]. Several statistically significant parameter differences were found between men and women [minimum flow, ac flow, average flow, maximum flow declination rate, closing quotient, glottal resistance (p < 0.001), and closed quotient (p < 0.005)]. Significant effects of intensity condition were observed on ac flow, maximum flow declination rate, closing quotient, and vocal efficiency in women (p < 0.005), and on minimum flow, ac flow, average flow, maximum flow declination rate, closed quotient, and vocal efficiency in men (p < 0.01).

  3. A simple device for measuring the minimum current velocity to maintain semi-buoyant fish eggs in suspension

    USGS Publications Warehouse

    Mueller, Julia S.; Cheek, Brandon D.; Chen, Qingman; Groeschel, Jillian R.; Brewer, Shannon K.; Grabowski, Timothy B.

    2013-01-01

    Pelagic broadcast spawning cyprinids are common to Great Plains rivers and streams. This reproductive guild produces non-adhesive semi-buoyant eggs that require sufficient current velocity to remain in suspension during development. Although studies have shown that there may be a minimum velocity needed to keep the eggs in suspension, this velocity has not been estimated directly nor has the influence of physicochemical factors on egg buoyancy been determined. We developed a simple, inexpensive flow chamber that allowed for evaluation of minimum current velocity needed to keep semi-buoyant eggs in suspension at any time frame during egg development. The device described here has the capability of testing the minimum current velocity needed to keep semi-buoyant eggs in suspension at a wide range of physicochemical conditions. We used gellan beads soaked in freshwater for 0, 24, and 48 hrs as egg surrogates and evaluated minimum current velocities necessary to keep them in suspension at different combinations of temperature (20.0 ± 1.0° C, 25.0 ± 1.0° C, and 28.0 ± 1.0° C) and total dissolved solids (TDS; 1,000 mg L-1, 3,000 mg L-1, and 6,000 mg L-1). We found that our methodology generated consistent, repeatable results within treatment groups. Current velocities ranging from 0.001–0.026 needed to keep the gellan beads in suspension were negatively correlated to soak times and TDS and positively correlated with temperature. The flow chamber is a viable approach for evaluating minimum current velocities needed to keep the eggs of pelagic broadcast spawning cyprinids in suspension during development.

  4. Definition of hydraulic stability of KVGM-100 hot-water boiler and minimum water flow rate

    NASA Astrophysics Data System (ADS)

    Belov, A. A.; Ozerov, A. N.; Usikov, N. V.; Shkondin, I. A.

    2016-08-01

    In domestic power engineering, the methods of quantitative and qualitative-quantitative adjusting the load of the heat supply systems are widely distributed; furthermore, during the greater part of the heating period, the actual discharge of network water is less than estimated values when changing to quantitative adjustment. Hence, the hydraulic circuits of hot-water boilers should ensure the water velocities, minimizing the scale formation and excluding the formation of stagnant zones. The results of the calculations of hot-water KVGM-100 boiler and minimum water flow rate for the basic and peak modes at the fulfillment of condition of the lack of surface boil are presented in the article. The minimal flow rates of water at its underheating to the saturation state and the thermal flows in the furnace chamber were defined. The boiler hydraulic calculation was performed using the "Hydraulic" program, and the analysis of permissible and actual velocities of the water movement in the pipes of the heating surfaces was carried out. Based on the thermal calculations of furnace chamber and thermal- hydraulic calculations of heating surfaces, the following conclusions were drawn: the minimum velocity of water movement (by condition of boiling surface) at lifting movement of environment increases from 0.64 to 0.79 m/s; it increases from 1.14 to 1.38 m/s at down movement of environmental; the minimum water flow rate by the boiler in the basic mode (by condition of the surface boiling) increased from 887 t/h at the load of 20% up to 1074 t/h at the load of 100%. The minimum flow rate is 1074 t/h at nominal load and is achieved at the pressure at the boiler outlet equal to 1.1 MPa; the minimum water flow rate by the boiler in the peak mode by condition of surface boiling increases from 1669 t/h at the load of 20% up to 2021 t/h at the load of 100%.

  5. Method and system for gas flow mitigation of molecular contamination of optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, Gildardo; Johnson, Terry; Arienti, Marco

    A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and amore » purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.« less

  6. The Compressible Potential Flow Past Elliptic Symmetrical Cylinders at Zero Angle of Attack and with No Circulation

    NASA Technical Reports Server (NTRS)

    Hantzsche, W.; Wendt, H.

    1942-01-01

    For the tunnel corrections of compressible flows those profiles are of interest for which at least the second approximation of the Janzen-Rayleigh method can be applied in closed form. One such case is presented by certain elliptical symmetrical cylinders located in the center of a tunnel with fixed walls and whose maximum velocity, incompressible, is twice the velocity of flow. In the numerical solution the maximum velocity at the profile and the tunnel wall as well as the entry of sonic velocity is computed. The velocity distribution past the contour and in the minimum cross section at various Mach numbers is illustrated on a worked out-example.

  7. Bounds of cavitation inception in a creeping flow between eccentric cylinders rotating with a small minimum gap

    NASA Astrophysics Data System (ADS)

    Monakhov, A. A.; Chernyavski, V. M.; Shtemler, Yu.

    2013-09-01

    Bounds of cavitation inception are experimentally determined in a creeping flow between eccentric cylinders, the inner one being static and the outer rotating at a constant angular velocity, Ω. The geometric configuration is additionally specified by a small minimum gap between cylinders, H, as compared with the radii of the inner and outer cylinders. For some values H and Ω, cavitation bubbles are observed, which are collected on the surface of the inner cylinder and equally distributed over the line parallel to its axis near the downstream minimum gap position. Cavitation occurs for the parameters {H,Ω} within a region bounded on the right by the cavitation inception curve that passes through the plane origin and cannot exceed the asymptotic threshold value of the minimum gap, Ha, in whose vicinity cavitation may occur at H < Ha only for high angular rotation velocities.

  8. Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics.

    PubMed

    Morales, Hernán G; Bonnefous, Odile

    2015-02-26

    Arterial flow rate affects intra-aneurysmal hemodynamics but it is not clear how their relationship is. This uncertainty hinders the comparison among studies, including clinical evaluations, like a pre- and post-treatment status, since arterial flow rates may differ at each time acquisition. The purposes of this work are as follows: (1) To study how intra-aneurysmal hemodynamics changes within the full physiological range of arterial flow rates. (2) To provide characteristic curves of intra-aneurysmal velocity, wall shear stress (WSS) and pressure as functions of the arterial flow rate. Fifteen image-based aneurysm models were studied using computational fluid dynamics (CFD) simulations. The full range of physiological arterial flow rates reported in the literature was covered by 11 pulsatile simulations. For each aneurysm, the spatiotemporal-averaged blood flow velocity, WSS and pressure were calculated. Spatiotemporal-averaged velocity inside the aneurysm linearly increases as a function of the mean arterial flow (minimum R(2)>0.963). Spatiotemporal-averaged WSS and pressure at the aneurysm wall can be represented by quadratic functions of the arterial flow rate (minimum R(2)>0.996). Quantitative characterizations of spatiotemporal-averaged velocity, WSS and pressure inside cerebral aneurysms can be obtained with respect to the arterial flow rate. These characteristic curves provide more information of the relationship between arterial flow and aneurysm hemodynamics since the full range of arterial flow rates is considered. Having these curves, it is possible to compare experimental studies and clinical evaluations when different flow conditions are used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Calculating e-flow using UAV and ground monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, C. S.; Zhang, C. B.; Yang, S. T.; Liu, C. M.; Xiang, H.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Shao, N. F.; Yu, Q.

    2017-09-01

    Intense human activity has led to serious degradation of basin water ecosystems and severe reduction in the river flow available for aquatic biota. As an important water ecosystem index, environmental flows (e-flows) are crucial for maintaining sustainability. However, most e-flow measurement methods involve long cycles, low efficiency, and transdisciplinary expertise. This makes it impossible to rapidly assess river e-flows at basin or larger scales. This study presents a new method to rapidly assessing e-flows coupling UAV and ground monitorings. UAV was firstly used to calculate river-course cross-sections with high-resolution stereoscopic images. A dominance index was then used to identify key fish species. Afterwards a habitat suitability index, along with biodiversity and integrity indices, was used to determine an appropriate flow velocity with full consideration of the fish spawning period. The cross-sections and flow velocity values were then combined into AEHRA, an e-flow assessment method for studying e-flows and supplying-rate. To verify the results from this new method, the widely used Tennant method was employed. The root-mean-square errors of river cross-sections determined by UAV are less than 0.25 m, which constitutes 3-5% water-depth of the river cross-sections. In the study area of Jinan city, the ecological flow velocity (VE) is equal to or greater than 0.11 m/s, and the ecological water depth (HE) is greater than 0.8 m. The river ecosystem is healthy with the minimum e-flow requirements being always met when it is close to large rivers, which is beneficial for the sustainable development of the water ecosystem. In the south river channel of Jinan, the upstream flow mostly meets the minimum e-flow requirements, and the downstream flow always meets the minimum e-flow requirements. The north of Jinan consists predominantly of artificial river channels used for irrigation. Rainfall rarely meets the minimum e-flow and irrigation water requirements. We suggest that the water shortage problem can be partly solved by diversion of the Yellow River. These results can provide useful information for ecological operations and restoration. The method used in this study for calculating e-flow based on a combination of UAV and ground monitoring can effectively promote research progress into basin e-flow, and provide an important reference for e-flow monitoring around the world.

  10. Effects of ice formation on hydrology and water quality in the lower Bradley River, Alaska; implications for salmon incubation habitat

    USGS Publications Warehouse

    Rickman, Ronald L.

    1998-01-01

    A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate habitat for salmon incubation. The study that determined this minimum flow did not account for the effects of ice formation on habitat. The limiting factor for determining the minimal acceptable flow limit appears to be stream-water velocity. The minimum short-term flow needed to ensure adequate salmon incubation habitat when ice is present is about 30 cubic feet per second. For long-term flows, 40 cubic feet per second is adequate when ice is present. Long-term minimum discharge needed to ensure adequate incubation habitat--which is based on mean velocity alone--is as follows: 40 cubic feet per second when ice is forming; 35 cubic feet per second for stable and eroding ice conditions; and 30 cubic feet per second for ice-free conditions. The effects of long-term streamflow less than 40 cubic feet per second on fine-sediment deposition and dissolved-oxygen interchange could not be extrapolated from the data. Hydrologic properties and water-quality data were measured in winter only from March 1993 to April 1998 at six transects in the lower Bradley River under three phases of icing: forming, stable, and eroding. Discharge in the lower Bradley River ranged from 33.3 to 73.0 cubic feet per second during all phases of ice formation and ice conditions, which ranged from ice free to 100 percent ice cover. Hydrostatic head was adequate for habitat protection for all ice phases and discharges. Mean stream velocity was adequate for all but one ice-forming episode. Velocity distribution within each transect varied significantly from one sampling period to the next. No relation was found between ice phase, discharge, and wetted perimeter. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface- and intragravel-water dissolved-oxygen levels were adequate for all ice phases and discharges. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Fine-sediment deposition was greatest at the downstream end of the study reach because of low shear velocities and tide-induced deposition. Dissolved-oxygen interchange was adequate for all discharges and ice conditions. Stranding potential of salmon fry was found to be low throughout the study reach. Minimum flows from the fish-water bypass needed to maintain 40 cubic feet per second in the lower Bradley River are estimated.

  11. The flame structure and vorticity generated by a chemically reacting transverse jet

    NASA Technical Reports Server (NTRS)

    Karagozian, A. R.

    1986-01-01

    An analytical model describing the behavior of a turbulent fuel jet injected normally into a cross flow is developed. The model places particular emphasis on the contrarotating vortex pair associated with the jet, and predicts the flame length and shape based on entrainment of the oxidizer by the fuel jet. Effects of buoyancy and density variations in the flame are neglected in order to isolate the effects of large-scale mixing. The results are compared with a simulation of the transverse reacting jet in a liquid (acid-base) system. For a wide range of ratios of the cross flow to jet velocity, the model predicts flame length quite well. In particular, the observed transitional behavior in the flame length between cross-flow velocity to jet velocity of orifice ratios of 0.0 to 0.1, yielding an approximate minimum at the ratio 0.05, is reproduced very clearly by the present model. The transformation in flow structure that accounts for this minimum arises from the differing components of vorticity dominant in the near-field and far-field regions of the jet.

  12. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  13. Model of Transition from Laminar to Turbulent Flow

    NASA Astrophysics Data System (ADS)

    Kanda, Hidesada

    2001-11-01

    For circular pipe flows, a model of transition from laminar to turbulent flow has already been proposed and the minimum critical Reynolds number of approximately 2040 was obtained (Kanda, 1999). In order to prove the validity of the model, another verification is required. Thus, for plane Poiseuille flow, results of previous investigations were studied, focusing on experimental data on the critical Reynolds number Rc, the entrance length, and the transition length. Consequently, concerning the natural transition, it was confirmed from the experimental data that (i) the transition occurs in the entrance region, (ii) Rc increases as the contraction ratio in the inlet section increases, and (iii) the minimum Rc is obtained when the contraction ratio is the smallest or one, and there is no-bellshaped entrance or straight parallel plates. Its value exists in the neighborhood of 1300, based on the channel height and the average velocity. Although, for Hagen-Poiseuille flow, the minimum Rc is approximately 2000, based on the pipe diameter and the average velocity, there seems to be no significant difference in the transition from laminar to turbulent flow between Hagen-Poiseuille flow and plane Poiseuille flow (Kanda, 2001). Rc is determined by the shape of the inlet. Kanda, H., 1999, Proc. of ASME Fluids Engineering Division - 1999, FED-Vol. 250, pp. 197-204. Kanda, H., 2001, Proc. of ASME Fluids Engineering Division - 2001.

  14. The minimum record time for PIV measurement in a vessel agitated by a Rushton turbine

    NASA Astrophysics Data System (ADS)

    Šulc, Radek; Ditl, Pavel; Fořt, Ivan; Jašíkova, Darina; Kotek, Michal; Kopecký, Václav; Kysela, Bohuš

    In PIV studies published in the literature focusing on the investigation of the flow field in an agitated vessel the record time is ranging from the tenths and the units of seconds. The aim of this work was to determine minimum record time for PIV measurement in a vessel agitated by a Rushton turbine that is necessary to obtain relevant results of velocity field. The velocity fields were measured in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a Rushton turbine 133 mm in diameter using 2-D Time Resolved Particle Image Velocimetry in the impeller Reynolds number range from 50 000 to 189 000. This Re range secures the fully-developed turbulent flow of agitated liquid. Three liquids of different viscosities were used as the agitated liquid. On the basis of the analysis of the radial and axial components of the mean- and fluctuation velocities measured outside the impeller region it was found that dimensionless minimum record time is independent of impeller Reynolds number and is equalled N.tRmin = 103 ± 19.

  15. Magnetic Footpoint Velocities: A Combination Of Minimum Energy Fit AndLocal Correlation Tracking

    NASA Astrophysics Data System (ADS)

    Belur, Ravindra; Longcope, D.

    2006-06-01

    Many numerical and time dependent MHD simulations of the solar atmosphererequire the underlying velocity fields which should be consistent with theinduction equation. Recently, Longcope (2004) introduced a new techniqueto infer the photospheric velocity field from sequence of vector magnetogramswhich are in agreement with the induction equation. The method, the Minimum Energy Fit (MEF), determines a set of velocities and selects the velocity which is smallest overall flow speed by minimizing an energy functional. The inferred velocity can be further constrained by information aboutthe velocity inferred from other techniques. With this adopted techniquewe would expect that the inferred velocity will be close to the photospheric velocity of magnetic footpoints. Here, we demonstrate that the inferred horizontal velocities from LCT can be used to constrain the MEFvelocities. We also apply this technique to actual vector magnetogramsequences and compare these velocities with velocities from LCT alone.This work is supported by DoD MURI and NSF SHINE programs.

  16. Effects of regulated river flows on habitat suitability for the robust redhorse

    USGS Publications Warehouse

    Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.

    2015-01-01

    The Robust Redhorse Moxostoma robustum is a rare and imperiled fish, with wild populations occurring in three drainages from North Carolina to Georgia. Hydroelectric dams have altered the species’ habitat and restricted its range. An augmented minimum-flow regime that will affect Robust Redhorse habitat was recently prescribed for Blewett Falls Dam, a hydroelectric facility on the Pee Dee River, North Carolina. Our objective was to quantify suitable spawning and nonspawning habitat under current and proposed minimum-flow regimes. We implanted radio transmitters into 27 adult Robust Redhorses and relocated the fish from spring 2008 to summer 2009, and we described habitat at 15 spawning capture locations. Nonspawning habitat consisted of deep, slow-moving pools (mean depth D 2.3 m; mean velocity D 0.23 m/s), bedrock and sand substrates, and boulders or coarse woody debris as cover. Spawning habitat was characterized as shallower, faster-moving water (mean depth D 0.84 m; mean velocity D 0.61 m/s) with gravel and cobble as substrates and boulders as cover associated with shoals. Telemetry relocations revealed two behavioral subgroups: a resident subgroup (linear range [mean § SE] D 7.9 § 3.7 river kilometers [rkm]) that remained near spawning areas in the Piedmont region throughout the year; and a migratory subgroup (linear range D 64.3 § 8.4 rkm) that migrated extensively downstream into the Coastal Plain region. Spawning and nonspawning habitat suitability indices were developed based on field microhabitat measurements and were applied to model suitable available habitat (weighted usable area) for current and proposed augmented minimum flows. Suitable habitat (both spawning and nonspawning) increased for each proposed seasonal minimum flow relative to former minimum flows, with substantial increases for spawning sites. Our results contribute to an understanding of how regulated flows affect available habitats for imperiled species. Flow managers can use these findings to regulate discharge more effectively and to create and maintain important habitats during critical periods for priority species.

  17. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S.; McDermott, Wayne T.; Givens, Edwin N.

    1985-01-01

    A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

  18. Dilution jet configurations in a reverse flow combustor. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Zizelman, J.

    1985-01-01

    Results of measurements of both temperature and velocity fields within a reverse flow combustor are presented. Flow within the combustor is acted upon by perpendicularly injected cooling jets introduced at three different locations along the inner and outer walls of the combustor. Each experiment is typified by a group of parameters: density ratio, momentum ratio, spacing ratio, and confinement parameter. Measurements of both temperature and velocity are presented in terms of normalized profiles at azimuthal positions through the turn section of the combustion chamber. Jet trajectories defined by minimum temperature and maximum velocity give a qualitative indication of the location of the jet within the cross flow. Results of a model from a previous temperature study are presented in some of the plots of data from this work.

  19. Velocity encoding with the slice select refocusing gradient for faster imaging and reduced chemical shift-induced phase errors.

    PubMed

    Middione, Matthew J; Thompson, Richard B; Ennis, Daniel B

    2014-06-01

    To investigate a novel phase-contrast MRI velocity-encoding technique for faster imaging and reduced chemical shift-induced phase errors. Velocity encoding with the slice select refocusing gradient achieves the target gradient moment by time shifting the refocusing gradient, which enables the use of the minimum in-phase echo time (TE) for faster imaging and reduced chemical shift-induced phase errors. Net forward flow was compared in 10 healthy subjects (N = 10) within the ascending aorta (aAo), main pulmonary artery (PA), and right/left pulmonary arteries (RPA/LPA) using conventional flow compensated and flow encoded (401 Hz/px and TE = 3.08 ms) and slice select refocused gradient velocity encoding (814 Hz/px and TE = 2.46 ms) at 3 T. Improved net forward flow agreement was measured across all vessels for slice select refocused gradient compared to flow compensated and flow encoded: aAo vs. PA (1.7% ± 1.9% vs. 5.8% ± 2.8%, P = 0.002), aAo vs. RPA + LPA (2.1% ± 1.7% vs. 6.0% ± 4.3%, P = 0.03), and PA vs. RPA + LPA (2.9% ± 2.1% vs. 6.1% ± 6.3%, P = 0.04), while increasing temporal resolution (35%) and signal-to-noise ratio (33%). Slice select refocused gradient phase-contrast MRI with a high receiver bandwidth and minimum in-phase TE provides more accurate and less variable flow measurements through the reduction of chemical shift-induced phase errors and a reduced TE/repetition time, which can be used to increase the temporal/spatial resolution and/or reduce breath hold durations. Copyright © 2013 Wiley Periodicals, Inc.

  20. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.

    PubMed

    Frolov, S V; Sindeev, S V; Liepsch, D; Balasso, A

    2016-05-18

    According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the Newtonian fluid. For the non-Newtonian fluid the wall shear stress minimum is 2.94 mPa; the maximum is 9.14 Pa. The lowest value of the wall shear stress for both fluids was obtained at the dome of the aneurysm while the highest wall shear stress was at the beginning of the outlet segment. The vortex in the aneurysm region is unstable during the cardiac cycle. The clockwise rotation of the streamlines at the inlet segment for Newtonian and non-Newtonian fluid is shown. The results of the present study are in agreement with the hemodynamics theory of aneurysm genesis. Low value of wall shear stress is observed at the aneurysm dome which can cause a rupture of an aneurysm.

  1. Particle Flow Cell Formation at Minimum Fluidization Flow Rates in a Rectangular Gas-Fluidized Bed.

    DTIC Science & Technology

    1981-03-01

    G’ Fluid mass velocity based on voidage area. Ga Galileo number ( Archimedes number). Ge Hypothetical fluid mass velocity required to merely expand a...eighteen inches high above the distributor plate. All joints were glued together and wood screws added in mounting the distributor plate for additional...inch center to center intervals along its length. The air ports are located at the underside of the tube allowing the air to exhaust downward into the

  2. Relationship between fluid bed aerosol generator operation and the aerosol produced

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less

  3. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor.

    PubMed

    Artetxe, Maite; Lopez, Gartzen; Amutio, Maider; Barbarias, Itsaso; Arregi, Aitor; Aguado, Roberto; Bilbao, Javier; Olazar, Martin

    2015-11-01

    Continuous pyrolysis of polystyrene has been studied in a conical spouted bed reactor with the main aim of enhancing styrene monomer recovery. Thermal degradation in a thermogravimetric analyser was conducted as a preliminary study in order to apply this information in the pyrolysis in the conical spouted bed reactor. The effects of temperature and gas flow rate in the conical spouted bed reactor on product yield and composition have been determined in the 450-600°C range by using a spouting velocity from 1.25 to 3.5 times the minimum one. Styrene yield is strongly influenced by both temperature and gas flow rate, with the maximum yield being 70.6 wt% at 500°C and a gas velocity twice the minimum one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Slip analysis of squeezing flow using doubly stratified fluid

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-06-01

    The non-isothermal flow is modeled and explored for squeezed fluid. The influence of velocity, thermal and solutal slip effects on transport features of squeezed fluid are analyzed through Darcy porous channel when fluid is moving due to squeezing of upper plate towards the stretchable lower plate. Dual stratification effects are illustrated in transport equations. A similarity analysis is performed and reduced governing flow equations are solved using moderated and an efficient convergent approach i.e. Homotopic technique. The significant effects of physical emerging parameters on flow velocity, temperature and fluid concentration are reporting through various plots. Graphical explanations for drag force, Nusselt and Sherwood numbers are stated and examined. The results reveal that minimum velocity field occurs near the plate, whereas it increases far away from the plate for strong velocity slip parameter. Furthermore, temperature and fluid concentration significantly decreases with increased slip effects. The current analysis is applicable in some advanced technological processes and industrial fluid mechanics.

  5. Gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow.

    PubMed

    Shono, Tomoki; Masumoto, Kenji; Fujishima, Kazutaka; Hotta, Noboru; Ogaki, Tetsuro; Adachi, Takahiro

    2007-11-01

    This study sought to determine the characteristics of gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow. Eight female subjects (61.4+/-3.9 y) performed underwater and land treadmill walking at varying exercise intensities and velocities. During underwater walking (water level at the xiphoid process) using the Flowmill, which has a treadmill at the base of a water flume, the simultaneous belt and water flow velocities were set to 20, 30 and 4 m.min(-1). Land walking velocities were set to 40, 60 and 80 m.min(-1). Oxygen uptake and heart rate were measured during both walking exercises. Maximum and minimum knee joint angles, and mean angular velocities of knee extension and knee flexion in the swing phase were calculated using two-dimensional motion analysis. Electromyograms were recorded using bipolar surface electrodes for five muscles: the tibialis anterior (TA), medial gastrocnemius (MG), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF). At the same exercise intensity level, cadence was almost half that on land. Step length did not differ significantly because velocity was halved. Compared to land walking, the maximum and minimum knee joint angles were significantly smaller and the mean angular velocity of knee extension was significantly lower. Knee extension in the swing phase was limited by water resistance. While the muscle activity levels of TA, VM and BF were almost the same as during land walking, those of MG and RF were lower. At the same velocity, exercise intensity was significantly higher than during land walking, cadence was significantly lower, and step length significantly larger. The knee joint showed significantly smaller maximum and minimum angles, and the mean angular velocity of knee flexion was significantly larger. The muscle activity levels of TA, VM, and BF increased significantly in comparison with land walking, although those of MG and RF did not significantly differ. Given our findings, it appears that buoyancy, lower cadence, and a moving floor influenced the muscle activity level of MG and RF at the same exercise intensity level and at the same velocity. These results show promise of becoming the basic data of choice for underwater walking exercise prescription.

  6. Canonical fluid thermodynamics. [variational principles of stability for compressible adiabatic flow

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1974-01-01

    The space-time integral of the thermodynamic pressure plays in a certain sense the role of the thermodynamic potential for compressible adiabatic flow. The stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and temperature to be generalized velocities. In the fluid context, the definition of proper-time differentiation involves the fluid velocity expressed in terms of three particle identity parameters. The pressure function is then converted into a functional which is the Lagrangian density of the variational principle. Being also a minimum principle, the variational principle provides a means for comparing the relative stability of different flows. For boundary conditions with a high degree of symmetry, as in the case of a uniformly expanding spherical gas box, the most stable flow is a rectilinear flow for which the world-trajectory of each particle is a straight line. Since the behavior of the interior of a freely expanding cosmic cloud may be expected to be similar to that of the fluid in the spherical box of gas, this suggests that the cosmic principle is a consequence of the laws of thermodynamics, rather than just an ad hoc postulate.

  7. Airfoil profiles for minimum pressure drag at supersonic velocities -- general analysis with application to linearized supersonic flow

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R

    1952-01-01

    A theoretical investigation is made of the airfoil profile for minimum pressure drag at zero lift in supersonic flow. In the first part of the report a general method is developed for calculating the profile having the least pressure drag for a given auxiliary condition, such as a given structural requirement or a given thickness ratio. The various structural requirements considered include bending strength, bending stiffness, torsional strength, and torsional stiffness. No assumption is made regarding the trailing-edge thickness; the optimum value is determined in the calculations as a function of the base pressure. To illustrate the general method, the optimum airfoil, defined as the airfoil having minimum pressure drag for a given auxiliary condition, is calculated in a second part of the report using the equations of linearized supersonic flow.

  8. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    PubMed Central

    Persoons, Tim; O’Donovan, Tadhg S.

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods. PMID:22346564

  9. Energetics of swimming by the ferret: consequences of forelimb paddling.

    PubMed

    Fish, Frank E; Baudinette, Russell V

    2008-06-01

    The domestic ferret (Mustela putorius furo) swims by alternate strokes of the forelimbs. This pectoral paddling is rare among semi-aquatic mammals. The energetic implications of swimming by pectoral paddling were examined by kinematic analysis and measurement of oxygen consumption. Ferrets maintained a constant stroke frequency, but increased swimming speed by increasing stroke amplitude. The ratio of swimming velocity to foot stroke velocity was low, indicating a low propulsive efficiency. Metabolic rate increased linearly with increasing speed. The cost of transport decreased with increasing swimming speed to a minimum of 3.59+/-0.28 J N(-1) m(-1) at U=0.44 m s(-1). The minimum cost of transport for the ferret was greater than values for semi-aquatic mammals using hind limb paddling, but lower than the minimum cost of transport for the closely related quadrupedally paddling mink. Differences in energetic performance may be due to the amount of muscle recruited for propulsion and the interrelationship hydrodynamic drag and interference between flow over the body surface and flow induced by propulsive appendages.

  10. CFD-DEM modeling the effect of column size and bed height on minimum fluidization velocity in micro fluidized beds with Geldart B particles

    DOE PAGES

    Xu, Yupeng; Li, Tingwen; Musser, Jordan; ...

    2017-06-07

    The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less

  11. CFD-DEM modeling the effect of column size and bed height on minimum fluidization velocity in micro fluidized beds with Geldart B particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yupeng; Li, Tingwen; Musser, Jordan

    The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less

  12. Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1991-01-01

    Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.

  13. Combined buoyancy and flow direction effects on saturated boiling critical heat flux in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1972-01-01

    Buoyancy effects on the critical heat flux and general data trends for a liquid nitrogen internal flow system were determined by comparison of upflow and downflow data under identical test conditions. The test section had a 1.28 cm diameter flow passage and a 30.5 cm heated length which was subjected to uniform heat fluxes through resistance heating. Test conditions covered a range of pressures from 3.4 to 10.2 atm, inlet velocities from 0.23 to 3.51 m/sec, with the liquid nitrogen temperature at saturated inlet conditions. Data comparisons showed that the critical heat flux for downflow could be up to 36 percent lower than for upflow. A nonmonotonic relationship between the critical heat flux and velocity was determined for upflow but not for downflow. A limiting inlet velocity of 4.12 m/sec was determined to be the minimum velocity required to completely suppress the influence of buoyancy on the critical heat flux for this saturated inlet flow system. A correlation of this limiting fluid velocity is presented that was developed from previously published subcooled liquid nitrogen data and the saturated data of this investigation.

  14. Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects

    NASA Technical Reports Server (NTRS)

    Olson, S. L.

    1991-01-01

    Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.

  15. Cross-correlation-based transverse flow measurements using optical resolution photoacoustic microscopy with a digital micromirror device.

    PubMed

    Liang, Jinyang; Zhou, Yong; Maslov, Konstantin I; Wang, Lihong V

    2013-09-01

    A cross-correlation-based method is proposed to quantitatively measure transverse flow velocity using optical resolution photoacoustic (PA) microscopy enhanced with a digital micromirror device (DMD). The DMD is used to alternately deliver two spatially separated laser beams to the target. Through cross-correlation between the slow-time PA profiles measured from the two beams, the speed and direction of transverse flow are simultaneously derived from the magnitude and sign of the time shift, respectively. Transverse flows in the range of 0.50 to 6.84  mm/s are accurately measured using an aqueous suspension of 10-μm-diameter microspheres, and the root-mean-squared measurement accuracy is quantified to be 0.22  mm/s. The flow measurements are independent of the particle size for flows in the velocity range of 0.55 to 6.49  mm/s, which was demonstrated experimentally using three different sizes of microspheres (diameters: 3, 6, and 10 μm). The measured flow velocity follows an expected parabolic distribution along the depth direction perpendicular to the flow. Both maximum and minimum measurable velocities are investigated for varied distances between the two beams and varied total time for one measurement. This technique shows an accuracy of 0.35  mm/s at 0.3-mm depth in scattering chicken breast, making it promising for measuring flow in biological tissue.

  16. Minimum tailwater flows in relation to habitat suitability and sport-fish harvest

    USGS Publications Warehouse

    Jacobs, K.E.; Swink, W.D.; Novotny, J.F.

    1987-01-01

    The instream flow needs of four sport fishes (rainbow trout Salmo gairdneri, channel catfish Ictalurus punctatus, smallmouth bass Micropterus dolomieui, and white crappie Pomoxis annularis) were evaluated in the tailwater below Green River Lake, Kentucky. The Newcombe method, a simple procedure developed in British Columbia that is based on the distribution of water depths and velocities at various flows, was used to predict usable habitat at seven flows. Predicted usable habitat was two to six times greater for rainbow trout than for any of the other species at all flows. Angler harvest corresponded to the predicted abundance for rainbow trout and smallmouth bass, but the catch of channel catfish and white crappies was seasonally greater than expected. The presence of the dam and reservoir apparently disrupted the normal movement and feeding patterns of these species and periodically overrode the relation between usable habitat and abundance assumed in the Newcombe method. The year-round minimum flow of 4.6 m 3/s recommended for the tailwater would generally increase the amount of habitat available in the tailwater from April through October, and the minimum flow of 2.4 m3/s recommended for periods of drought would allow the maintenance of a trout fishery.

  17. Experimental investigation of the effect of air velocity on a unit cooler under frosting condition: a case study

    NASA Astrophysics Data System (ADS)

    Bayrak, Ergin; Çağlayan, Akın; Konukman, Alp Er S.

    2017-10-01

    Finned tube evaporators are used in a wide range of applications such as commercial and industrial cold/freezed storage rooms with high traffic loading under frosting conditions. In this case study, an evaporator with an integrated fan was manufactured and tested under frosting conditions by only changing the air flow rate in an ambient balanced type test laboratory compared to testing in a wind tunnel with a more uniform flow distribution in order to detect the effect of air flow rate on frosting. During the test, operation was performed separately based on three different air flow rates. The parameters concerning test operation such as the changes of air temperature, air relative humidity, surface temperature, air-side pressure drop and refrigerant side capacity etc. were followed in detail for each air flow rate. At the same time, digital images were captured in front of the evaporator; thus, frost thicknesses and blockage ratios at the course of fan stall were determined by using an image-processing technique. Consequently, the test and visual results showed that the trendline of air-side pressure drop increased slowly at the first stage of test operations, then increased linearly up to a top point and then the linearity was disrupted instantly. This point speculated the beginning of defrost operation for each case. In addition, despite detecting a velocity that needs to be avoided, a test applied at minimum air velocity is superior to providing minimum capacity in terms of loss of capacity during test operations.

  18. Circulation of fluids in the gastrovascular system of a stoloniferan octocoral.

    PubMed

    Parrin, Austin P; Netherton, Sarah E; Bross, Lori S; McFadden, Catherine S; Blackstone, Neil W

    2010-10-01

    Cilia-based transport systems characterize sponges and placozoans. Cilia are employed in cnidarian gastrovascular systems as well, but typically function in concert with muscular contractions. Previous reports suggest that anthozoans may be an exception to this pattern, utilizing only cilia in their gastrovascular systems. With an inverted microscope and digital image analysis, we used stoloniferan octocoral colonies growing on microscope cover glass to quantitatively describe the movement of fluids in this system for the first time. Flow in stolons (diameter ≈300 μm) is simultaneously bidirectional, with average velocities of 100-200 μm/s in each direction. Velocities are maximal immediately adjacent to the stolon wall and decrease to a minimum in the center of the stolon. Flow velocity is unaffected by stolonal contractions, suggesting that muscular peristalsis is not a factor in propelling the flow. Stolon intersections (diameter ≈500 μm) occur below polyps and serve as traffic roundabouts with unidirectional, circular flow. Such cilia-driven transport may be the plesiomorphic state for the gastrovascular system of cnidarians.

  19. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, Rob K.

    2011-04-14

    Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds showmore » that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.« less

  20. Doppler ultrasound to detect pulpal blood flow changes during local anaesthesia.

    PubMed

    Yoon, M J; Lee, S J; Kim, E; Park, S H

    2012-01-01

      To examine whether Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia.   Changes in pulpal blood flow in maxillary central incisor teeth of 18 patients (mean age 26.7 years, 13 men, five women) after infiltration anaesthesia were examined. Before infiltration anaesthesia, the pulpal blood flow was measured using Doppler ultrasound. A local anaesthetic solution containing 2% lidocaine with 1:80,000 epinephrine was injected into the submucosa above the experimental tooth. The Doppler ultrasound test was carried out at 5, 10, 20, 30, 45 and 60 min after infiltration. The parameters were Vas (maximum linear velocity, cm s(-1) ), Vam (average linear velocity, cm s(-1) ) and Vakd (minimum linear velocity, cm s(-1) ), which are indicators of the level of blood flow. The mixed procedure at the 95% confidence interval was used to examine the changes in pulpal blood flow after the injection.   The linear velocity profiles (Vas, Vam, and Vakd) decreased sharply 5 min after anaesthesia and then reduced continuously for 30 min. The maximum degree of blood flow reduction in Vas, Vam and Vakd was 58%, 83% and 82%, respectively. After 30 min, the linear velocities increased gradually. The Vam returned to the pre-anaesthesia state at 60 minutes but the Vas and Vakd did not recover completely.   Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia. In the future, Doppler ultrasound can be used as a tool for measuring pulpal blood flow. © 2011 International Endodontic Journal.

  1. A Study on The Development of Local Exhaust Ventilation System (LEV’s) for Installation of Laser Cutting Machine

    NASA Astrophysics Data System (ADS)

    Harun, S. I.; Idris, S. R. A.; Tamar Jaya, N.

    2017-09-01

    Local exhaust ventilation (LEV) is an engineering system frequently used in the workplace to protect operators from hazardous substances. The objective of this project is design and fabricate the ventilation system as installation for chamber room of laser cutting machine and to stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed. LEV’s fabricated with rated voltage D.C 10.8V and 1.5 ampere. Its capacity 600 ml, continuously use limit approximately 12-15 minute, overall length LEV’s fabricated is 966 mm with net weight 0.88 kg and maximum airflow is 1.3 meter cubic per minute. Stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed and fabricated overall result get 2 main gas vapor which air and carbon dioxide. For air gas which experimented by using anemometer, general duct velocity that produce is same with other gas produce, carbon dioxide which 5 m/s until 10 m/s. Overall result for 5 m/s and 10 m/s as minimum and maximum duct velocity produce for both air and carbon dioxide. The air gas flow velocity that captured by LEV’s fabricated, 3.998 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 79.960% and 7.667 m/s average velocity captured from 10 m/s duct velocity with efficiency of 76.665%. For carbon dioxide gas flow velocity that captured by LEV’s fabricated, 3.674 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 73.480% and 8.255 m/s average velocity captured from 10 m/s duct velocity with efficiency of 82.545%.

  2. Canonical fluid thermodynamics

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1972-01-01

    The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.

  3. Numerical analysis of flows of rarefied gases in long channels with octagonal cross section shapes

    NASA Astrophysics Data System (ADS)

    Szalmas, L.

    2014-12-01

    Isothermal, pressure driven rarefied gas flows through long channels with octagonal cross section shapes are analyzed computationally. The capillary is between inlet and outlet reservoirs. The cross section is constant along the axial direction. The boundary condition at the solid-gas interface is assumed to be diffuse reflection. Since the channel is long, the gaseous velocity is small compared to the average molecular speed. Consequently, a linearized description can be used. The flow is described by the linearized Bhatnagar-Gross-Krook kinetic model. The solution of the problem is divided into two stages. First, the local flow field is determined by assuming the local pressure gradient. Secondly, the global flow behavior is deduced by the consideration of the conservation of the mass along the axis of the capillary. The kinetic equation is solved by the discrete velocity method on the cross section. Both spatial and velocity spaces are discretized. A body fitted rectangular grid is used for the spatial space. Near the boundary, first-order, while in the interior part of the flow domain, second-order finite-differences are applied to approximate the spatial derivatives. This combination results into an efficient and straightforward numerical treatment. The velocity space is represented by a Gauss-Legendre quadrature. The kinetic equation is solved in an iterative manner. The local dimensionless flow rate is calculated and tabulated for a wide range of the gaseous rarefaction for octagonal cross sections with various geometrical parameters. It exhibits the Knudsen minimum phenomenon. The flow rates in the octagonal channel are compared to those through capillaries with circular and square cross sections. Typical velocity profiles are also shown. The mass flow rate and the distribution of the pressure are determined and presented for global pressure driven flows.

  4. Cross-correlation-based transverse flow measurements using optical resolution photoacoustic microscopy with a digital micromirror device

    PubMed Central

    Liang, Jinyang; Zhou, Yong; Maslov, Konstantin I.

    2013-01-01

    Abstract. A cross-correlation-based method is proposed to quantitatively measure transverse flow velocity using optical resolution photoacoustic (PA) microscopy enhanced with a digital micromirror device (DMD). The DMD is used to alternately deliver two spatially separated laser beams to the target. Through cross-correlation between the slow-time PA profiles measured from the two beams, the speed and direction of transverse flow are simultaneously derived from the magnitude and sign of the time shift, respectively. Transverse flows in the range of 0.50 to 6.84  mm/s are accurately measured using an aqueous suspension of 10-μm-diameter microspheres, and the root-mean-squared measurement accuracy is quantified to be 0.22  mm/s. The flow measurements are independent of the particle size for flows in the velocity range of 0.55 to 6.49  mm/s, which was demonstrated experimentally using three different sizes of microspheres (diameters: 3, 6, and 10 μm). The measured flow velocity follows an expected parabolic distribution along the depth direction perpendicular to the flow. Both maximum and minimum measurable velocities are investigated for varied distances between the two beams and varied total time for one measurement. This technique shows an accuracy of 0.35  mm/s at 0.3-mm depth in scattering chicken breast, making it promising for measuring flow in biological tissue. PMID:24002191

  5. Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Bae, Hyun J.; Moin, Parviz

    2016-08-01

    Minimum-dissipation models are a simple alternative to the Smagorinsky-type approaches to parametrize the subfilter turbulent fluxes in large-eddy simulation. A recently derived model of this type for subfilter stress tensor is the anisotropic minimum-dissipation (AMD) model [Rozema et al., Phys. Fluids 27, 085107 (2015), 10.1063/1.4928700], which has many desirable properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately switches off in laminar and transitional flows, and it is consistent with the exact subfilter stress tensor on both isotropic and anisotropic grids. In this study, an extension of this approach to modeling the subfilter scalar flux is proposed. The performance of the AMD model is tested in the simulation of a high-Reynolds-number rough-wall boundary-layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the AMD model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. In particular, the AMD model is capable of accurately predicting the expected surface-layer similarity profiles and power spectra for both velocity and scalar concentration.

  6. Transition of unsteady velocity profiles with reverse flow

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channel for arbitrary piston motions. By changing the piston speed and the length of piston travel we cover a range of values of Reynolds number and boundary layer thickness. The velocity profiles during the decay of the flow are unsteady with reverse flow near the wall, and are highly unstable due to their inflectional nature. In the pipe, we observe from flow visualization that the flow becomes unstable with the formation of what appears to be a helical vortex. The wavelength of the instability [simeq R: similar, equals]3[delta] where [delta] is the average boundary layer thickness, the average being taken over the time the flow is unstable. The time of formation of the vortices scales with the average convective time scale and is [simeq R: similar, equals]39/([Delta]u/[delta]), where [Delta]u=(umax[minus sign]umin) and umax, umin and [delta] are the maximum velocity, minimum velocity and boundary layer thickness respectively at each instant of time. The time to transition to turbulence is [simeq R: similar, equals]33/([Delta]u/[delta]). Quasi-steady linear stability analysis of the velocity profiles brings out two important results. First that the stability characteristics of velocity profiles with reverse flow near the wall collapse when scaled with the above variables. Second that the wavenumber corresponding to maximum growth does not change much during the instability even though the velocity profile does change substantially. Using the results from the experiments and the stability analysis, we are able to explain many aspects of transition in oscillating pipe flow. We postulate that unsteady boundary layer separation at high Reynolds numbers is probably related to instability of the reverse flow region.

  7. Discrete-vortex simulation of pulsating flow on a turbulent leading-edge separation bubble

    NASA Technical Reports Server (NTRS)

    Sung, Hyung Jin; Rhim, Jae Wook; Kiya, Masaru

    1992-01-01

    Studies are made of the turbulent separation bubble in a two-dimensional semi-infinite blunt plate aligned to a uniform free stream with a pulsating component. The discrete-vortex method is applied to simulate this flow situation because this approach is effective for representing the unsteady motions of the turbulent shear layer and the effect of viscosity near the solid surface. The numerical simulation provides reasonable predictions when compared with the experimental results. A particular frequency with a minimum reattachment is related to the drag reduction. The most effective frequency is dependent on the amplified shedding frequency. The turbulent flow structure is scrutinized. This includes the time-mean and fluctuations of the velocity and the surface pressure, together with correlations between the fluctuating components. A comparison between the pulsating flow and the non-pulsating flow at the particular frequency of the minimum reattachment length of the separation bubble suggests that the large-scale vortical structure is associated with the shedding frequency and the flow instabilities.

  8. Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro.

    PubMed

    Sul, Bora; Oppito, Zachary; Jayasekera, Shehan; Vanger, Brian; Zeller, Amy; Morris, Michael; Ruppert, Kai; Altes, Talissa; Rakesh, Vineet; Day, Steven; Robinson, Risa; Reifman, Jaques; Wallqvist, Anders

    2018-05-01

    Computational models are useful for understanding respiratory physiology. Crucial to such models are the boundary conditions specifying the flow conditions at truncated airway branches (terminal flow rates). However, most studies make assumptions about these values, which are difficult to obtain in vivo. We developed a computational fluid dynamics (CFD) model of airflows for steady expiration to investigate how terminal flows affect airflow patterns in respiratory airways. First, we measured in vitro airflow patterns in a physical airway model, using particle image velocimetry (PIV). The measured and computed airflow patterns agreed well, validating our CFD model. Next, we used the lobar flow fractions from a healthy or chronic obstructive pulmonary disease (COPD) subject as constraints to derive different terminal flow rates (i.e., three healthy and one COPD) and computed the corresponding airflow patterns in the same geometry. To assess airflow sensitivity to the boundary conditions, we used the correlation coefficient of the shape similarity (R) and the root-mean-square of the velocity magnitude difference (Drms) between two velocity contours. Airflow patterns in the central airways were similar across healthy conditions (minimum R, 0.80) despite variations in terminal flow rates but markedly different for COPD (minimum R, 0.26; maximum Drms, ten times that of healthy cases). In contrast, those in the upper airway were similar for all cases. Our findings quantify how variability in terminal and lobar flows contributes to airflow patterns in respiratory airways. They highlight the importance of using lobar flow fractions to examine physiologically relevant airflow characteristics.

  9. The Aeroacoustics of Supersonic Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    1994-01-01

    Instability waves have been established as the dominant source of mixing noise radiating into the downstream arc of a supersonic jet when the waves have phase velocities that are supersonic relative to ambient conditions. Recent theories for supersonic jet noise have used the concepts of growing and decaying linear instability waves for predicting radiated noise. This analysis is extended to the prediction of noise radiation from supersonic coaxial jets. Since the analysis requires a known mean flow and the coaxial jet mean flow is not described easily in terms of analytic functions, a numerical prediction is made for its development. The Reynolds averaged, compressible, boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed for the effects of velocity and temperature ratios and Mach number. Both normal and inverted velocity profile coaxial jets are considered. Comparisons with measurements for both single and coaxial jets show good agreement. The results from mean flow and stability calculations are used to predict the noise radiation from coaxial jets with different operating conditions. Comparisons are made between different coaxial jets and a single equivalent jet with the same total thrust, mass flow, and exit area. Results indicate that normal velocity profile jets can have noise reductions compared to the single equivalent jet. No noise reductions are found for inverted velocity profile jets operated at the minimum noise condition compared to the single equivalent jet. However, it is inferred that changes in area ratio may provide noise reduction benefits for inverted velocity profile jets.

  10. Analysis of the three-dimensional structure of a bubble wake using PIV and Galilean decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1999-07-01

    Bubbly flow plays a key role in a variety of natural and industrial processes. An accurate and complete description of the phase interactions in two-phase bubbly flow is not available at this time. These phase interactions are, in general, always three-dimensional and unsteady. Therefore, measurement techniques utilized to obtain qualitative and quantitative data from two-phase flow should be able to acquire transient and three-dimensional data, in order to provide information to test theoretical models and numerical simulations. Even for dilute bubble flows, in which bubble interaction is at a minimum, the turbulent motion of the liquid generated by the bubblemore » is yet to be completely understood. For many years, the design of systems with bubbly flows was based primarily on empiricism. Dilute bubbly flows are an extension of single bubble dynamics, and therefore improvements in the description and modeling of single bubble motion, the flow field around the bubble, and the dynamical interactions between the bubble and the flow will consequently improve bubbly flow modeling. The improved understanding of the physical phenomena will have far-reaching benefits in upgrading the operation and efficiency of current processes and in supporting the development of new and innovative approaches. A stereoscopic particle image velocimetry measurement of the flow generated by the passage of a single air-bubble rising in stagnant water, in a circular pipe is presented. Three-dimensional velocity fields within the measurement zone were obtained. Ensemble-averaged instantaneous velocities for a specific bubble path were calculated and interpolated to obtain mean three-dimensional velocity fields. A Galilean velocity decomposition is used to study the vorticity generated in the flow.« less

  11. CHARACTERISTICS OF SOLAR MERIDIONAL FLOWS DURING SOLAR CYCLE 23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Sarbani; Antia, H. M., E-mail: sarbani.basu@yale.ed, E-mail: antia@tifr.res.i

    2010-07-01

    We have analyzed available full-disk data from the Michelson Doppler Imager on board SOHO using the 'ring diagram' technique to determine the behavior of solar meridional flows over solar cycle 23 in the outer 2% of the solar radius. We find that the dominant component of meridional flows during solar maximum was much lower than that during the minima at the beginning of cycles 23 and 24. There were differences in the flow velocities even between the two minima. The meridional flows show a migrating pattern with higher-velocity flows migrating toward the equator as activity increases. Additionally, we find thatmore » the migrating pattern of the meridional flow matches those of sunspot butterfly diagram and the zonal flows in the shallow layers. A high-latitude band in meridional flow appears around 2004, well before the current activity minimum. A Legendre polynomial decomposition of the meridional flows shows that the latitudinal pattern of the flow was also different during the maximum as compared to that during the two minima. The different components of the flow have different time dependences, and the dependence is different at different depths.« less

  12. Aerodynamic performances of three fan stator designs operating with rotor having tip speed of 337 meters per second and pressure ratio of 1.54. Relation of analytical code calculations to experimental performance

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Schmidt, J. F.; Esgar, G. M.

    1980-01-01

    A hub-to-shroud and a blade-to-blade internal-flow analysis code, both inviscid and basically subsonic, were used to calculate the flow parameters within four stator-blade rows. The produced ratios of maximum suction-surface velocity to trailing-edge velocity correlated well in the midspan region, with the measured total-parameters over the minimum-loss to near stall operating range for all stators and speeds studied. The potential benefits of a blade designed with the aid of these flow analysis codes are illustrated by a proposed redesign of one of the four stators studied. An overall efficiency improvement of 1.6 points above the peak measured for that stator is predicted for the redesign.

  13. A water framework directive (WFD) compliant determination of eologically acceptable flows in alpine rivers - a river type specific approach

    NASA Astrophysics Data System (ADS)

    Jäger, Paul; Zitek, Andreas

    2010-05-01

    Currently the EU-Water Framework Directive (WFD) represents the driving force behind the assessment for rehabilitation and conservation of aquatic resources throughout Europe. Hydropower production, often considered as "green energy", in the past has put significant pressures on river systems like fragmentation by weirs, impoundment, hydropeaking and water abstraction. Due to the limited availability of data for determining ecologically acceptable flow for rivers at water abstraction sites, a special monitoring program was conducted in the federal state of Salzburg in Austria from 2006 to 2009. Water abstraction sites at 19 hydropower plants, mostly within the trout region of the River Salzach catchment, were assessed in detail with regard to the effect of water abstraction on fish and macrozoobenthos. Based on a detailed assessment of the specific local hydro-morphological and biological situations, the validity of natural low flow criteria (Absolute Minimum Flow - AMF, the lowest daily average flow ever measured and Mean Annual Daily Low Flow - MADLF) as starting points for the determination of an ecologically acceptable flow was tested. It was assessed, if a good ecological status in accordance with the EU-WFD can be maintained at natural AMF. Additionally it was tested, if important habitat parameters describing connectivity, river type specific flow variability and river type specific habitats are maintained at this discharge. Habitat modelling was applied in some situations. Hydraulic results showed that at AMF the highest flow velocity classes were lost in most situations. When AMF was significantly undercut, flow velocities between 0,0 - 0,4 m/s became dominant, describing the loss of the river type specific flow character, leading to a loss of river type specific flow variability and habitats and increased sedimentation of fines. Furthermore limits for parameters describing connectivity for fish like maximum depth at the pessimum profile and minimum flow velocity in thalweg were undercut. Additionally a significant loss of wetted width in relation to the wetted width at MADLF was documented, leading to significantly reduced ecologically available habitats. At AMF the existence of a minimum amount of usable habitat prevented a total loss of adult fish, and a good ecological status was documented by the Fish Index Austria (FIA) in all situations, where water abstraction represented the only human pressure, and AMF was left in the river as residual flow. The fish ecological status was significantly worse in river stretches where minimum flow was significantly below the AMF. However, in about one third of these stretches a good ecological status was documented by fish. Fine grained habitat structures, expressed by mean choriotope sizes (> 20 cm) and relative roughness were found to provide enough shelter, especially for brown trout, to maintain a high variance of fish lengths influencing both, the age structure and biomass. Both variables are especially highly relevant when calculating the ecological status of rivers using the FIA, when only brown trout occurs as leading species, accompanied only by the bullhead, Cottus gobio L.. However, mean fish lengths and weights were significantly smaller in most water abstraction sites. The method currently applied for determining the ecological status by macrozoobenthos failed, because the method is still based on some types of water pollution and the flow velocity as dominating factor in rivers is not adequately considered. However, a species specific analysis of the data showed a consistent loss of rheophilic species at water abstraction sites. Based on this, recommendations for a more specified assessment of the ecological status by benthic invertebrates were developed. Natural factors like slope with significant effects on hydraulic stress (bottom shear stress, maximum flow velocities, etc.) strongly overlaid the effects of water abstraction within the whole dataset. Therefore an adequate consideration of natural factors like slope, hydraulic stress and structure parameters like mean choriotope size, and a realistic identification of the significant driving pressures (water abstraction, fragmentation, and channelization) proved to be a crucial pre-requisite for a meaningful analysis and interpretation of data and determination of efficient restoration measures. Summarizing, it can be concluded that the AMF represents a valid base for determining the ecologically acceptable flow. In most cases parameters for connectivity and river type specific habitat availability are met at this discharge. However, as this discharge represents a natural catastrophic event, it is recommended to add a dynamic component to this minimum base flow to maintain at least to some extent the river type specific flow variability, contributing to a maintenance of natural geomorphologic and ecological processes linked to natural flow patterns. Especially higher discharges, able to move substrates and flush fine sediments, should be provided in their river type specific seasonal dynamics. This seasonal clearing of sediments has been proved to be strongly related to the reproductive success of trout in the past and provides interstitial habitats for invertebrates at ecologically meaningful times of the year. Finally, re-establishment of river connectivity at weirs and the morphological restructuring of highly channelized rivers can be seen as other important pre-requisites to achieve the good ecological status in alpine river systems.

  14. Erosion of water-based fracturing fluid containing particles in a sudden contraction of horizontal pipe

    NASA Astrophysics Data System (ADS)

    Cheng, Jiarui; Cao, Yinping; Dou, Yihua; Li, Zhen

    2017-10-01

    A lab experiment was carried out to study the effects of pipe flow rate, particle concentration and pipe inner diameter ratio on proppant erosion of the reducing wall in hydraulic fracturing. The results show that the erosion rate and erosion distribution are different not only in radial direction but also in circumferential direction of the sample. The upper part of sample always has a minimum erosion rate and erosion area. Besides, the erosion rate of reducing wall is most affected by fluid flow velocity, and the erosion area is most sensitive to the change in the diameter ratio. Meanwhile, the erosion rate of reducing wall in crosslinked fracturing fluid is mainly determined by the fluid flowing state due to the high viscosity of the liquid. In general, the increase in flow velocity and diameter ratio not only cause the expansion of erosion-affected flow region in sudden contraction section, but also lead to more particles impact the wall.

  15. A map for heavy inertial particles in fluid flows

    NASA Astrophysics Data System (ADS)

    Vilela, Rafael D.; de Oliveira, Vitor M.

    2017-06-01

    We introduce a map which reproduces qualitatively many fundamental properties of the dynamics of heavy particles in fluid flows. These include a uniform rate of decrease of volume in phase space, a slow-manifold effective dynamics when the single parameter s (analogous of the Stokes number) approaches zero, the possibility of fold caustics in the "velocity field", and a minimum, as a function of s, of the Lyapunov (Kaplan-Yorke) dimension of the attractor where particles accumulate.

  16. Propeller Study. Part 2: the Design of Propellers for Minimum Noise

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Woan, C. J.

    1977-01-01

    The design of propellers which are efficient and yet produce minimum noise requires accurate determinations of both the flow over the propeller. Topics discussed in relating aerodynamic propeller design and propeller acoustics include the necessary approximations and assumptions involved, the coordinate systems and their transformations, the geometry of the propeller blade, and the problem formulations including the induced velocity, required in the determination of mean lines of blade sections, and the optimization of propeller noise. The numerical formulation for the lifting-line model are given. Some applications and numerical results are included.

  17. Disentangling the role of athermal walls on the Knudsen paradox in molecular and granular gases

    NASA Astrophysics Data System (ADS)

    Gupta, Ronak; Alam, Meheboob

    2018-01-01

    The nature of particle-wall interactions is shown to have a profound impact on the well-known "Knudsen paradox" [or the "Knudsen minimum" effect, which refers to the decrease of the mass-flow rate of a gas with increasing Knudsen number Kn, reaching a minimum at Kn˜O (1 ) and increasing logarithmically with Kn as Kn→∞ ] in the acceleration-driven Poiseuille flow of rarefied gases. The nonmonotonic variation of the flow rate with Kn occurs even in a granular or dissipative gas in contact with thermal walls. The latter result is in contradiction with recent work [Alam et al., J. Fluid Mech. 782, 99 (2015), 10.1017/jfm.2015.523] that revealed the absence of the Knudsen minimum in granular Poiseuille flow for which the flow rate was found to decrease at large values of Kn. The above conundrum is resolved by distinguishing between "thermal" and "athermal" walls, and it is shown that, for both molecular and granular gases, the momentum transfer to athermal walls is much different than that to thermal walls which is directly responsible for the anomalous flow-rate variation with Kn in the rarefied regime. In the continuum limit of Kn→0 , the athermal walls are shown to be closely related to "no-flux" ("adiabatic") walls for which the Knudsen minimum does not exist either. A possible characterization of athermal walls in terms of (1) an effective specularity coefficient for the slip velocity and (2) a flux-type boundary condition for granular temperature is suggested based on simulation results.

  18. Preferential flow, connectivity and the principle of "minimum time to equilibrium": a new perspective on environmental water flow

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Blume, T.; Bloeschl, G.

    2008-12-01

    Preferential/rapid flow and transport is known as one key process in soil hydrology for more than 20 years. It seems to be rather the rule, than the exception. It occurs in soils, in surface rills and river networks. If connective preferential are present at any scale, they crucially control water flow and solute transport. Why? Is there an underlying principle? If energy is conserved a system follows Fermat's principle of minimum action i.e. it follows the trajectory that minimise the integral of the total energy/ La Grangian over time. Hydrological systems are, however, non-conservative as surface and subsurface water flows dissipate energy. From thermodynamics it is well known that natural processes minimize the free energy of the system. For hydrological systems we suggest, therefore, that flow in a catchment arranges in such a way that time to a minimum of free energy becomes minimal for a given rainfall input (disturbance) and under given constraints. Free energy in a soil is determined by potential energy and capillary energy. The pore size distribution of the soil, soil structures, depth to groundwater and most important vegetation make up the constraints. The pore size distribution determines whether potential energy or capillarity dominates the free energy of the soil system. The first term is minimal when the pore space is completely de-saturated the latter becomes minimal at soil saturation. Hence, the soil determines a) the amount of excess (gravity) water that has to be exported from the soil to reach a minimum state of free energy and b) whether redistribution or groundwater recharge is more efficient to reach that equilibrium. On the other hand, the pore size distribution of the soil and the connectivity of preferential pathways (root channels, worm holes and cracks) determine flow velocities and the redistribution of water within the pore space. As water flow and ground water recharge are fast in sandy soils and capillary energy is of minor importance, connective preferential pathways do not mean any advantage for an efficient transition to an equilibrium in these systems. In fine grained soils Darcy velocities and therefore redistribution of water is 2-4 orders of magnitude slower. As capillary energy dominates in these soils an effective redistribution of water within the pore space is crucial for a fast transition of system to an equilibrium state. Connective preferential pathways ore even cracks allow a faster redistribution of water and seem therefore necessary for a fast transition into a state of minimum free energy. The suggested principle "of minimum time to equilibrium" may explain the "advantage" of preferential flow as a much more efficient dissipation of energy in fine grained soils and therefore why connective preferential pathways control environmental flow. From a fundamental, long term perspective the principle may help us to understand whether and why soil structures and even cracks evolve in different landscapes and climates and b) to link soil hydrology and (landscape) ecology. Along the lines the proposed study will present model results to test the stated hypothesis.

  19. Engine Hydraulic Stability. [injector model for analyzing combustion instability

    NASA Technical Reports Server (NTRS)

    Kesselring, R. C.; Sprouse, K. M.

    1977-01-01

    An analytical injector model was developed specifically to analyze combustion instability coupling between the injector hydraulics and the combustion process. This digital computer dynamic injector model will, for any imposed chamber of inlet pressure profile with a frequency ranging from 100 to 3000 Hz (minimum) accurately predict/calculate the instantaneous injector flowrates. The injector system is described in terms of which flow segments enter and leave each pressure node. For each flow segment, a resistance, line lengths, and areas are required as inputs (the line lengths and areas are used in determining inertance). For each pressure node, volume and acoustic velocity are required as inputs (volume and acoustic velocity determine capacitance). The geometric criteria for determining inertances of flow segments and capacitance of pressure nodes was set. Also, a technique was developed for analytically determining time averaged steady-state pressure drops and flowrates for every flow segment in an injector when such data is not known. These pressure drops and flowrates are then used in determining the linearized flow resistance for each line segment of flow.

  20. Fluid flow analysis behind heliostat using LES and RANS: A step towards optimized field design in desert regions

    NASA Astrophysics Data System (ADS)

    Boddupalli, Nibodh; Goenka, Vikash; Chandra, Laltu

    2017-06-01

    Heliostats are used for concentrating beam radiation onto a receiver. The flow induced dust deposition on these reflectors will lead to failure of the receiver. For this purpose, the wake behind a heliostat is analyzed at 25° of inclination and at a Reynolds number of 60000. In this paper the Reynolds Averaged Navier-Stokes (RANS) and the Large Eddy Simulation (LES) approaches are used for analyzing the air-flow behind a heliostat. LES and RANS are performed with a wall-resolved grid. For the purpose of validation, the horizontal velocity is measured in a wind-tunnel with a model heliostat using laser Doppler velocimetry technique. RANS and LES approaches are found to qualitatively predict the statistical quantities, like the mean horizontal-velocity in comparison to experiment. RANS under-predicts root-mean-square of the horizontal-velocity and even failed to capture the flow features behind heliostat. Thus, it is concluded that RANS will suffice with well-resolved grid for analyzing mean flow features. For analyzing wake and to understand the induced dust deposition LES is required. Further, the analysis reveals that the wake-affected region is up to three times the length of the heliostat's mirror. This can be recommended as the minimum distance between any two aligned heliostats in Jodhpur.

  1. Experimental study on the effects of fixed boundaries in channelized free surface dry granular flows

    NASA Astrophysics Data System (ADS)

    Sarno, Luca; Carleo, Luigi; Nicolina Papa, Maria

    2017-04-01

    The dynamics of granular mixtures, involved in geophysical flows like avalanches and debris flows, is far from being completely understood. Several features of their motion, such as rheological stratification, non-local and boundary effects, still represent open problems. Experimental investigations at laboratory scale are an important tool that can provide insights about the dynamics of gravity driven granular flows. The measuring techniques should be non-invasive in order to measure undisturbed flows. In this work we present an experimental campaign devoted to the measurement of the velocity profiles of free surface steady granular flows in an open channel. To achieve this goal the flows were recorded by two cameras and velocity profiles were obtained by image analysis. The employed granular medium consists of acetal-polymeric beads with a mean diameter of 3mm and an estimated internal friction angle of 27°. All the experiments have been performed in a 2m-long plexiglas flume with a rectangular cross-section and a slope angle of 30°. The upper part of the channel was used as a reservoir where the material was loaded before each run and then let flow down through an adjustable gate. Several mass flow rates were investigated. Three different basal surfaces were employed so as to observe slip and non-slip boundary conditions: a smooth Bakelite surface, a roughened surface, obtained by gluing a layer of grains on the bed surface and a sandpaper surface with characteristic length of the roughness equal to 425 µm. The flume is equipped with two high-speed cameras, one placed aside the channel and the other one perpendicular to the channel bed, as to get both side-wall and free surface velocity profiles. The particle image velocimetry open-source code, PIVlab, is employed for estimating the flow velocities. All the free surface velocity profiles show an approximately parabolic shape with a maximum at the cross-section midpoint and a minimum at the side-walls, due to the wall friction. Different kinds of side-wall velocity profiles are observed. As regards the smooth basal surface, a slip velocity at the bed is observed. The profiles are Bagnold-type near the free surface and become linear as the depth increases. On the glued-grain basal surface the flow velocity at the bed is null and all the velocity profiles show a rheological stratification with a lower exponential tail and an upper linear profile. Grain rolling is observed at the sandpaper bed, instead. With the increase of flow depths, the velocity profiles gradually shift from the ones observed on the smooth bed to the ones observed on the glued-grain bed. In order to further understand the constitutive behaviour of granular mixtures, it is useful to perform simultaneous measurements of flow velocity and volume fraction. In this perspective, a new series of experiments is actually undergoing for the measurement of the volume fraction.

  2. Investigation into aerodynamic and heat transfer of annular channel with inner and outer surface of the shape truncated cone and swirling fluid flow

    NASA Astrophysics Data System (ADS)

    Leukhin, Yu L.; Pankratov, E. V.; Karpov, S. V.

    2017-11-01

    We have carried out Investigation into aerodynamic and convective heat transfer of the annular channel. Inner or outer surface of annular channel has shape of blunt-nosed cone tapering to outlet end. Truncated cone connects to a cyclone swirling flow generator. Asymmetric and unsteady flow from the swirling generator in the shape of periodic process gives rise to the formation of secondary flows of the type Taylor-Görtler vortices. These vortices occupy the whole space of the annular channel, with the axes, which coincide with the motion direction of the major stream. Contraction of cross-sectional area of channel (in both cases 52%) causes a marked increase in total velocity of flow, primarily due to its axial component and promotes a more intensive vortex generation. Vortex structures have a significant influence on both average heat transfer and surface distribution. At cross-sections of the annular channel we observe similarity of curves describing distribution of total velocity about wall and heat flux density on the surface. The coordinates of maximum and minimum values of velocity and heat flux coincide. At the average cross-section channel of maximum value of heat transfer is greater than minimum of about by a factor of 2.7 times for outer heat transfer surface and about by a factor of 1.7 times for inner heat transfer surface. Taper channel has a much higher influence on heat transfer of the inner surface than the outer surface and manifests itself at lower values of dimensionless axial coordinate. For the investigated taper cone geometry of the annular channel the heat transfer coefficient of inner surface increases at the outlet section and exceeds value in comparison with straight-line section by 91 … 98%. Heat transfer of the outer cylinder in the same section increases only by 5 … 11%. The increase in average heat transfer over the surfaces is 36% and 4% respectively.

  3. Instability of superfluid Fermi gases induced by a rotonlike density mode in optical lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunomae, Yoshihiro; Yamamoto, Daisuke; Danshita, Ippei

    2009-12-15

    We study the stability of superfluid Fermi gases in deep optical lattices in the BCS-Bose-Einstein condensation (BEC) crossover at zero temperature. Within the tight-binding attractive Hubbard model, we calculate the spectrum of the low-energy Anderson-Bogoliubov (AB) mode as well as the single-particle excitations in the presence of superfluid flow in order to determine the critical velocities. To obtain the spectrum of the AB mode, we calculate the density response function in the generalized random-phase approximation applying the Green's function formalism developed by Cote and Griffin to the Hubbard model. We find that the spectrum of the AB mode is separatedmore » from the particle-hole continuum having the characteristic rotonlike minimum at short wavelength due to the strong charge-density-wave fluctuations. The energy of the rotonlike minimum decreases with increasing the lattice velocity and it reaches zero at the critical velocity which is smaller than the pair-breaking velocity. This indicates that the superfluid state is energetically unstable due to the spontaneous emission of the short-wavelength rotonlike excitations of the AB mode instead due to pair breaking. We determine the critical velocities as functions of the interaction strength across the BCS-BEC crossover regime.« less

  4. Liquid Jet Cavitation via Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ashurst, W. T.

    1997-11-01

    A two-dimensional molecular dynamics simulation of a liquid jet is used to investigate cavitation in a diesel-like fuel injector. A channel with a length four times its width has been examined at various system sizes (widths of 20 to 160 σ, where σ is the zero energy location in the Lennard-Jones potential). The wall boundary condition is Maxwell's diffuse reflection, similar to the work by Sun & Ebner (Phys. Rev A 46, 4813, 1992). Currently, the jet exhausts into a vacuum, but a second, low density gas will be incorporated to represent the compressed air in a diesel chamber. Four different flow rates are examined. With ρ U equal to √mɛ/σ^2 (the largest flow rate) the static pressure decreases by a factor of twenty between the channel entrance and exit. The largest flow rate has a parabolic velocity profile with almost constant density across the channel. The smallest flow rate has the same velocity profile but the density exhibits a large variation, with the minimum value in the channel center. Thus, the product ρ U is nearly constant across the channel at this flow rate. The discharge coefficient CD has a small variation with flow rate, but the velocity coefficient CV varies with the amount of two-phase fluid within the channel. The ratio of CV to CD varies from 1.3 (largest flow rate) to 2.0 (the smallest flow rate, which is one-eighth of the largest).

  5. Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects

    NASA Astrophysics Data System (ADS)

    Sher Akbar, Noreen; Bintul Huda, A.; Tripathi, D.

    2016-09-01

    We investigate the velocity slip and thermal slip effects on peristaltically driven thermal transport of nanofluids through the vertical parallel plates under the influence of transverse magnetic field. The wall surface is propagating with sinusoidal wave velocity c. The flow characteristics are governed by the mass, momentum and energy conservation principle. Low Reynolds number and large wavelength approximations are taken into consideration to simplify the non-linear terms. Analytical solutions for axial velocity, temperature field, pressure gradient and stream function are obtained under certain physical boundary conditions. Two types of nanoparticles, SiO2 and Ag, are considered for analysis with water as base fluid. This is the first article in the literature that discusses the SiO2 and Ag nanoparticles for a peristaltic flow with variable viscosity. The effects of physical parameters on velocity, temperature, pressure and trapping are discussed. A comparative study of SiO2 nanofluid, Ag nanofluid and pure water is also presented. This model is applicable in biomedical engineering to make thermal peristaltic pumps and other pumping devices like syringe pumps, etc. It is observed that pressure for pure water is maximum and pressure for Ag nanofluid is minimum.

  6. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension.

    PubMed

    Novak, Vera; Yang, Albert C C; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang

    2004-10-25

    This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 +/- 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure.

  7. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  8. Effects of Cone-Shaped Bend Inlet Cannulas of an Axial Blood Pump on Thrombus Formation: An Experiment and Simulation Study.

    PubMed

    Liu, Guangmao; Zhou, Jianye; Sun, Hansong; Zhang, Yan; Chen, Haibo; Hu, Shengshou

    2017-04-05

    BACKGROUND Cannula shape and connection style influence the risk of thrombus formation in the blood pump by varying the blood flow characteristics inside the pump. Inlet cannulas should be designed based on the need for anatomical fit and reducing the risk of thrombus generation in the blood pump. The effects on thrombus formation of the cone-shaped bend inlet cannulas of axial blood pumps should be studied. MATERIAL AND METHODS The cannulas were designed as cone-shaped, with 1 bent section connecting 2 straight sections. Both the silicone tube and novel cone-shaped cannula were simulated for comparison. The flow fields of a blood pump with inlet cannula were simulated by computational fluid dynamics (CFD) at flows of 2.0, 2.5, and 3.0 liters per minute (lpm), with pump rotational speeds of 7500, 8000, and 8500 rpm, respectively. Then, 6 two-dimensional (2D) particle image velocimetry (PIV) tests were conducted and the velocity distributions were analyzed. RESULTS A low-velocity region was located inside the pump entrance when a soft silicone tube was used. At 8500 rpm and 3.0 lpm working condition, the minimum velocity inside the pump with cone-shaped cannulas was 2.5×10^-1 m/s. The cone-shaped cannulas eliminated the low-velocity region inside the pump. Both CFD and PIV results showed that the low-velocity region did not spread to the entrance of the blood pump within the flow range from 2.0 lpm to 7.0 lpm. CONCLUSIONS The designed cone-shaped bent cannulas can eliminate the low-velocity region inside the blood pump and reduce the risk of thrombus formation in the blood pump.

  9. A Simple Criterion to Estimate Performance of Pulse Jet Mixed Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, Leonard F.; Bamberger, Judith A.; Mahoney, Lenna A.

    Pulse jet mixed process vessels comprise a key element of the U.S. Department of Energy’s strategy to process millions of gallons of legacy nuclear waste slurries. Slurry suctioned into a pulse jet mixer (PJM) tube at the end of one pulse is pneumatically driven from the PJM toward the bottom of the vessel at the beginning of the next pulse, forming a jet. The jet front traverses the distance from nozzle outlet to the bottom of the vessel and spreads out radially. Varying numbers of PJMs are typically arranged in a ring configuration within the vessel at a selected radiusmore » and operated concurrently. Centrally directed radial flows from neighboring jets collide to create a central upwell that elevates the solids in the center of the vessel when the PJM tubes expel their contents. An essential goal of PJM operation is to elevate solids to the liquid surface to minimize stratification. Solids stratification may adversely affect throughput of the waste processing plant. Unacceptably high slurry densities at the base of the vessel may plug the pipeline through which the slurry exits the vessel. Additionally, chemical reactions required for processing may not achieve complete conversion. To avoid these conditions, a means of predicting the elevation to which the solids rise in the central upwell that can be used during vessel design remains essential. In this paper we present a simple criterion to evaluate the extent of solids elevation achieved by a turbulent upwell jet. The criterion asserts that at any location in the central upwell the local velocity must be in excess of a cutoff velocity to remain turbulent. We find that local velocities in excess of 0.6 m/s are necessary for turbulent jet flow through both Newtonian and yield stress slurries. By coupling this criterion with the free jet velocity equation relating the local velocity to elevation in the central upwell, we estimate the elevation at which turbulence fails, and consequently the elevation at which the upwell fails to further lift the slurry. Comparing this elevation to the vessel fill level predicts whether the jet flow will achieve the full vertical extent of the vessel at the center. This simple local-velocity criterion determines a minimum PJM nozzle velocity at which the full vertical extent of the central upwell in PJM vessels will be turbulent. The criterion determines a minimum because flow in regions peripheral to the central upwelling jet may not be turbulent, even when the center of the vessel in the upwell is turbulent, if the jet pulse duration is too short. The local-velocity criterion ensures only that there is sufficient wherewithal for the turbulent jet flow to drive solids to the surface in the center of the vessel in the central upwell.« less

  10. Erosive events in dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Douillet, G.; Kueppers, U.; Rasmussen, K.; Merrison, J. P.; Dingwell, D. B.

    2011-12-01

    Our understanding of the dynamics of pyroclastic density currents (PDCs) is largely based on the study of their deposits. However, sedimentological structures reflect only the low energy, depositional phases of a flow. To enlarge the source of information on PDC behaviour, we provided wind-tunnel experiments to measure the minimal velocity necessary to erode dry, volcanic ash. Our results permit to link erosive surfaces that are often found in PDC deposits to the minimum velocity that must have acted to produce them. We apply the method to field examples and discuss the occurrence of hydraulic-jumps in dilute PDCs. We measured the threshold of surface friction-velocity for erosion of two types of volcanic ash: 1) a mixture of fragments of vesiculated scoria containing also lithics and crystals and 2) pumice clasts from the Plinian Laacher See eruption. Both were sampled in quarries from the East Eifel volcanic field (Germany). For each type, we measured the threshold for particles from 63 μm to 2 mm in 1 phi-size steps. Static threshold friction-velocities have been measured experimentally in an open, 6 m-long wind-tunnel at Aarhus University. In order to quickly guarantee the downwind equilibrium-dynamics of the saltating sand-surface, we produced roughness-carpets upstream of the study area. The roughness-carpets consist of particles of the measured sample fixed onto the bed in order to create an appropriate static roughness. The measuring section (1 m in length) is located at the downwind end of the wind-tunnel and covered with 10 mm of sample. The wind velocity in the wind-tunnel was progressively increased until a small but continuous number of grains left the surface. This wind velocity was taken as the threshold, and the associated surface friction-velocity was deduced by calibration from wind-profiles data taken over the fixed surface of material of the same characteristics. We apply our results to sedimentary features found in natural deposits and usually interpreted as "chute and pool" structures. These are characterized by erosional events producing a steep side facing the flow, and lensoidal layers deposited on the stoss face of the un-eroded, remaining strata. Our experimental results allow for quantifying the minimum current-velocity required for the observed erosion. Based on this, we discuss the interpretation of such erosional features as "chute and pool" structures, which are the sedimentary record of hydraulic-jumps. There is no clear evidence of the presence of internal hydraulic-jumps in the sedimentary record of PDCs. Moreover, such flows can decelerate drastically and eventually stop without leaving the supercritical flow regime due to their highly depositional nature. Accordingly, they would not experience a hydraulic-jump.

  11. Calculation of linearized supersonic flow over slender cones of arbitrary cross section

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1972-01-01

    Supersonic linearized conical-flow theory is used to determine the flow over slender pointed cones having horizontal and vertical planes of symmetry. The geometry of the cone cross sections and surface velocities are expanded in Fourier series. The symmetry condition permits the uncoupling of lifting and nonlifting solutions. The present method reduces to Ward's theory for flow over a cone of elliptic cross section. Results are also presented for other shapes. Results by this method diverge for cross-sectional shapes where the maximum thickness is large compared with the minimum thickness. However, even for these slender-body shapes, lower order solutions are good approximations to the complete solution.

  12. Real-time high-velocity resolution color Doppler OCT

    NASA Astrophysics Data System (ADS)

    Westphal, Volker; Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2001-05-01

    Color Doppler optical coherence tomography (CDOCT), also called Optical Doppler Tomography) is a noninvasive optical imaging technique, which allows for micron-scale physiological flow mapping simultaneous with morphological OCT imaging. Current systems for real-time endoscopic optical coherence tomography (EOCT) would be enhanced by the capability to visualize sub-surface blood flow for applications in early cancer diagnosis and the management of bleeding ulcers. Unfortunately, previous implementations of CDOCT have either been sufficiently computationally expensive (employing Fourier or Hilbert transform techniques) to rule out real-time imaging of flow, or have been restricted to imaging of excessively high flow velocities when used in real time. We have developed a novel Doppler OCT signal-processing strategy capable of imaging physiological flow rates in real time. This strategy employs cross-correlation processing of sequential A-scans in an EOCT image, as opposed to autocorrelation processing as described previously. To measure Doppler shifts in the kHz range using this technique, it was necessary to stabilize the EOCT interferometer center frequency, eliminate parasitic phase noise, and to construct a digital cross correlation unit able to correlate signals of megahertz bandwidth by a fixed lag of up to a few ms. The performance of the color Doppler OCT system was demonstrated in a flow phantom, demonstrating a minimum detectable flow velocity of ~0.8 mm/s at a data acquisition rate of 8 images/second (with 480 A-scans/image) using a handheld probe. Dynamic flow as well as using it freehanded was shown. Flow was also detectable in a phantom in combination with a clinical usable endoscopic probe.

  13. Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Rolland, Jannick P.

    2010-01-01

    Phase-Resolved Doppler Optical Coherence Tomography (PR-DOCT) allows visualization and characterization of the location, direction, velocity, and profile of flow activity embedded in a static sample structure. The detectable Velocity Dynamic Range (VDR) of each particular PR-DOCT system is governed by a detectable Doppler phase shift, a flow angle, and an acquisition time interval used to determine the Doppler phase shift. In general, the lower boundary of the detectable Doppler phase shift is limited by the phase stability of the system, while the upper boundary is limited by the π phase ambiguity. For a given range of detectable Doppler phase shift, shortening the acquisition duration will increase not only the maximum detectable velocity but unfortunately also the minimum detectable velocity, which may lead to the invisibility of a slow flow. In this paper, we present an alternative acquisition scheme for PR-DOCT that extends the lower limit of the velocity dynamic range, while maintaining the maximum detectable velocity, hence increasing the overall VDR of PR-DOCT system. The essence of the approach is to implement a technique of multi-scale measurement to simultaneously acquire multiple VDRs in a single measurement. We demonstrate an example of implementation of the technique in a dual VDR DOCT, where two Doppler maps having different detectable VDRs were simultaneously detected, processed, and displayed in real time. One was a fixed VDR DOCT capable of measuring axial velocity of up to 10.9 mm/s without phase unwrapping. The other was a variable VDR DOCT capable of adjusting its detectable VDR to reveal slow flow information down to 11.3 μm/s. The technique is shown to effectively extend the overall detectable VDR of the PR-DOCT system. Examples of real time Doppler imaging of an African frog tadpole are demonstrated using the dual-VDR DOCT system. PMID:21258521

  14. Calculations of Laminar Heat Transfer Around Cylinders of Arbitrary Cross Section and Transpiration-Cooled Walls with Application to Turbine Blade Cooling

    NASA Technical Reports Server (NTRS)

    Eckert, E.R.G.; Livingood, John N.B.

    1951-01-01

    An approximate method for development of flow and thermal boundary layers in laminar regime on cylinders with arbitrary cross section and transpiration-cooled walls is obtained by use of Karman's integrated momentum equation and an analogous heat-flow equation. Incompressible flow with constant property values throughout boundary layer is assumed. Shape parameters for approximated velocity and temperature profiles and functions necessary for solution of boundary-layer equations are presented as charts, reducing calculations to a minimum. The method is applied to determine local heat-transfer coefficients and surface temperature-cooled turbine blades for a given flow rate. Coolant flow distributions necessary for maintaining uniform blade temperatures are also determined.

  15. An analysis of steady/unsteady electroosmotic flows through charged cylindrical nano-channels

    NASA Astrophysics Data System (ADS)

    Nayak, A. K.

    2013-11-01

    The steady/unsteady electroosmotic flow in an infinitely extended cylindrical channel with diameters ranging from 10 to 100 nm has been investigated. A mixture of (NaCl + H2O) is considered for the numerical calculation of the mass, potential, velocity, and mixing efficiency. Results are obtained for the channel diameters are small, equal, or greater than the electric double layer (EDL) both for steady and unsteady cases. In the present discussion, a symmetrical distribution of mole fractions is considered at the wall interface. Hence, the velocity and potential are symmetrical in nature toward the centerline of the channel, and also identical in nature at maximum and minimum time levels (i.e., at π/2 and 3 π/2 for a periodic function) in the transient case. In case of steady flows, the velocity and potential satisfy the chemical equilibrium condition at the centerline. It is observed that the electric double layer reaches a local equilibrium in the presence of electroosmosis when the channel length is long compared to the characteristic hydraulic diameter and the flow is essentially one-dimensional, which depends only on channel diameter. Comparisons of NP (Nernst Plank) model with PB (Poisson-Boltzmann) model are achieved out for different published results at larger channel diameters.

  16. OFF-DESIGN PERFORMANCE OF RADIAL INFLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Wasserbauer, C. A.

    1994-01-01

    This program calculates off design performance of radial inflow turbines. The program uses a one dimensional solution of flow conditions through the turbine along the main streamline. The loss model accounts for stator, rotor, incidence, and exit losses. Program features include consideration of stator and rotor trailing edge blockage and computation of performance to limiting load. Stator loss (loss in kinetic energy across the stator) is proportional to the average kinetic energy in the blade row and is represented in the program by an equation which includes a stator loss coefficient determined from design point performance and then assumed to be constant for the off design calculations. Minimum incidence loss does not occur at zero incidence angle with respect to the rotor blade, but at some optimum flow angle. At high pressure ratios the level of rotor inlet velocity seemed to have an excessive influence on the loss. Using the component of velocity in the direction of the optimum flow angle gave better correlations with experimental results. Overall turbine geometry and design point values of efficiency, pressure ratio, and mass flow are needed as input information. The output includes performance and velocity diagram parameters for any number of given speeds over a range of turbine pressure ratio. The program has been implemented on the IBM 7094 and operates in batch mode.

  17. An investigation of several NACA 1-series nose inlets with and without protruding central bodies at high-subsonic Mach numbers and at a Mach number of 1.2

    NASA Technical Reports Server (NTRS)

    Pendley, Robert E; Robinson, Harold L

    1950-01-01

    An investigation of three NACA 1-series nose inlets, two of which were fitted with protruded central bodies, was conducted in the Langley 8-foot high-speed tunnel. An elliptical-nose body, which had a critical Mach number approximately equal to that of one of the nose inlets, was also tested. Tests were made near zero angle of attack for a Mach number range from 0.4 to 0.925 and for the supersonic Mach number of 1.2. The inlet-velocity-ratio range extended from zero to a maximum value of 1.34. Measurements included pressure distribution, external drag, and total-pressure loss of the internal flow near the inlet. Drag was not measured for the tests at the supersonic Mach number. Over the range of inlet-velocity ratio investigated, the calculated external pressure-drag coefficient at a Mach number of 1.2 was consecutively lower for the nose inlets of higher critical Mach number, and the pressure-drag coefficient of the longest nose inlet was in the range of pressure-drag coefficient for two solid noses of fineness ratio 2.4 and 6.0. For Mach numbers below the Mach number of the supercritical drag rise, extrapolation of the test data indicated that the external drag of the nose inlets was little affected by the addition of central bodies at or slightly below the minimum inlet-velocity ratio for unseparated central-body flow. The addition of central bodies to the nose inlets also led to no appreciable effects on either the Mach number of the supercritical drag rise, or, for inlet-velocity ratios high enough to avoid a pressure peak at the inlet lip, on the critical Mach number. The total-pressure recovery of the inlets tested, which were of a subsonic type, was sensibly unimpaired at the supersonic Mach number of 1.2 Low-speed measurements of the minimum inlet-velocity ratio for unseparated central-body flow appear to be applicable for Mach numbers extending to 1.2.

  18. On methods of estimating cosmological bulk flows

    NASA Astrophysics Data System (ADS)

    Nusser, Adi

    2016-01-01

    We explore similarities and differences between several estimators of the cosmological bulk flow, B, from the observed radial peculiar velocities of galaxies. A distinction is made between two theoretical definitions of B as a dipole moment of the velocity field weighted by a radial window function. One definition involves the three-dimensional (3D) peculiar velocity, while the other is based on its radial component alone. Different methods attempt at inferring B for either of these definitions which coincide only for the case of a velocity field which is constant in space. We focus on the Wiener Filtering (WF) and the Constrained Minimum Variance (CMV) methodologies. Both methodologies require a prior expressed in terms of the radial velocity correlation function. Hoffman et al. compute B in Top-Hat windows from a WF realization of the 3D peculiar velocity field. Feldman et al. infer B directly from the observed velocities for the second definition of B. The WF methodology could easily be adapted to the second definition, in which case it will be equivalent to the CMV with the exception of the imposed constraint. For a prior with vanishing correlations or very noisy data, CMV reproduces the standard Maximum Likelihood estimation for B of the entire sample independent of the radial weighting function. Therefore, this estimator is likely more susceptible to observational biases that could be present in measurements of distant galaxies. Finally, two additional estimators are proposed.

  19. Estimating flow rates to optimize winter habitat for centrarchid fish in Mississippi River (USA) backwaters

    USGS Publications Warehouse

    Johnson, Barry L.; Knights, Brent C.; Barko, John W.; Gaugush, Robert F.; Soballe, David M.; James, William F.

    1998-01-01

    The backwaters of large rivers provide winter refuge for many riverine fish, but they often exhibit low dissolved oxygen levels due to high biological oxygen demand and low flows. Introducing water from the main channel can increase oxygen levels in backwaters, but can also increase current velocity and reduce temperature during winter, which may reduce habitat suitability for fish. In 1993, culverts were installed to introduce flow to the Finger Lakes, a system of six backwater lakes on the Mississippi River, about 160 km downstream from Minneapolis, Minnesota. The goal was to improve habitat for bluegills and black crappies during winter by providing dissolved oxygen concentrations >3 mg/L, current velocities <1 cm/s, and temperatures >1°C. To achieve these conditions, we used data on lake volume and oxygen demand to estimate the minimum flow required to maintain 3 mg/L of dissolved oxygen in each lake. Estimated flows ranged from 0.02 to 0.14 m3/s among lakes. Data gathered in winter 1994 after the culverts were opened, indicated that the estimated flows met habitat goals, but that thermal stratification and lake morphometry can reduce the volume of optimal habitat created.

  20. Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.

    PubMed

    Luo, W-J

    2004-10-15

    This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.

  1. Downstream fish passage guide walls: A hydraulic scale model analysis

    USGS Publications Warehouse

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2018-01-01

    Partial-depth guide walls are used to improve passage efficiency and reduce the delay of out-migrating anadromous fish species by guiding fish to a bypass route (i.e. weir, pipe, sluice gate) that circumvents the turbine intakes, where survival is usually lower. Evaluation and monitoring studies, however, indicate a high propensity for some fish to pass underneath, rather than along, the guide walls, compromising their effectiveness. In the present study we evaluated a range of guide wall structures to identify where/if the flow field shifts from sweeping (i.e. flow direction primarily along the wall and towards the bypass) to downward-dominant. Many migratory fish species, particularly juveniles, are known to drift with the flow and/or exhibit rheotactic behaviour during their migration. When these behaviours are present, fish follow the path of the flow field. Hence, maintaining a strong sweeping velocity in relation to the downward velocity along a guide wall is essential to successful fish guidance. Nine experiments were conducted to measure the three-dimensional velocity components upstream of a scale model guide wall set at a wide range of depths and angles to flow. Results demonstrated how each guide wall configuration affected the three-dimensional velocity components, and hence the downward and sweeping velocity, along the full length of the guide wall. In general, the velocities produced in the scale model were sweeping dominant near the water surface and either downward dominant or close to the transitional depth near the bottom of the guide wall. The primary exception to this shift from sweeping do downward flow was for the minimum guide wall angle tested in this study (15°). At 15° the flow pattern was fully sweeping dominant for every cross-section, indicating that a guide wall with a relatively small angle may be more likely to produce conditions favorable to efficient guidance. A critical next step is to evaluate the behaviour of migratory fish as they approach and swim along a guide wall in a controlled laboratory environment.

  2. An animal model for the analysis of cochlear blood flow [corrected] disturbance and hearing threshold in vivo.

    PubMed

    Canis, Martin; Arpornchayanon, Warangkana; Messmer, Catalina; Suckfuell, Markus; Olzowy, Bernhard; Strieth, Sebastian

    2010-02-01

    Impairment of cochlear blood flow (CBF) is considered to be important in inner ear pathology. However, direct measurement of CBF is difficult and has not been investigated in combination with hearing function. Six guinea pigs were used to show feasibility of an animal model for the analysis of cochlear microcirculation by intravital microscopy in combination with investigation of the hearing threshold by brainstem response audiometry (ABR). By the application of sodium nitroprusside (SNP), CBF was increased over 30 min. Reproducibility of measurements was shown by retest measurements. Mean baseline velocity of CBF was 109 +/- 19 mum/s. Vessel diameters had a mean value of 9.4 +/- 2.7 mum. Mean hearing threshold was 19 +/- 6 dB. In response to SNP, CBF velocity increased significantly to 161 +/- 26 mum/s. Mean arterial pressure decreased significantly to 36 +/- 11 mmHg. After the end of the application, CBF velocity recovered to a minimum of 123 +/- 17 microm/s. Within the retest, CBF velocity significantly increased to a maximum of 160 +/- 31 microm/s. Second recovery of CBF velocity was 125 +/- 14 mum/s. Within the second retest, CBF increased significantly to 157 +/- 25 microm/s. ABR thresholds did not change significantly. The increase in blood flow velocity occurred in spite of substantial hypotension as induced by a vasodilator. This may explain the fact that ABR threshold remained unchanged reflecting a maintained blood supply in this part of the brain. This technique can be used to evaluate effects of treatments aimed at cochlear microcirculation in inner ear pathologies.

  3. Salt flow direction and velocity during subsalt normal faulting and syn-kinematic sedimentation—implications from analytical calculations

    NASA Astrophysics Data System (ADS)

    Warsitzka, M.; Kukowski, N.; Kley, J.

    2018-04-01

    Salt flow induced by subsalt normal faulting is mainly controlled by tilting of the salt layer, the amount of differential loading due to syn-kinematic deposition, and tectonic shearing at the top or the base of the salt layer. Our study addresses the first two mechanisms and aims to examine salt flow patterns above a continuously moving subsalt normal fault and beneath a syn-kinematic minibasin. In such a setting, salt either tends to flow down towards the basin centre driven by its own weight or is squeezed up towards the footwall side owing to loading differences between the minibasin and the region above the footwall block. Applying isostatic balancing in analytical models, we calculated the steady-state flow velocity in a salt layer. This procedure gives insights into (1) the minimum vertical offset required for upward flow to occur, (2) the magnitude of the flow velocity, and (3) the average density of the supra-salt cover layer at the point at which upward flow starts. In a sensitivity study, we examined how the point of flow reversal and the velocity patterns are influenced by changes of the salt and cover layer thickness, the geometry of the cover flexure, the dip of the subsalt fault, compaction parameters of the supra-salt cover, the salt viscosity and the salt density. Our model results reveal that in most geological scenarios, salt flow above a continuously displacing subsalt normal fault goes through an early phase of downward flow. At sufficiently high fault offset in the range of 700-2600 m, salt is later squeezed upward towards the footwall side. This flow reversal occurs at smaller vertical fault displacement, if the thickness of the pre-kinematic layer is larger, the sedimentation rate of the syn-kinematic cover is higher, the compaction coefficient of cover sediments (i.e. the density increase with depth) is larger or the average density of the salt is lower. Other geometrical parameters such as the width of the cover monocline, the dip of the basement fault or the thickness of the salt layer have no significant influence on the point of reversal, but modify the velocity of the salt flow.

  4. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems.

    PubMed

    Clearwater, Michael J; Luo, Zhiwei; Mazzeo, Mariarosaria; Dichio, Bartolomeo

    2009-12-01

    The external heat ratio method is described for measurement of low rates of sap flow in both directions through stems and other plant organs, including fruit pedicels, with diameters up to 5 mm and flows less than 2 g h(-1). Calibration was empirical, with heat pulse velocity (v(h)) compared to gravimetric measurements of sap flow. In the four stem types tested (Actinidia sp. fruit pedicels, Schefflera arboricola petioles, Pittosporum crassifolium stems and Fagus sylvatica stems), v(h) was linearly correlated with sap velocity (v(s)) up to a v(s) of approximately 0.007 cm s(-1), equivalent to a flow of 1.8 g h(-1) through a 3-mm-diameter stem. Minimum detectable v(s) was approximately 0.0001 cm s(-1), equivalent to 0.025 g h(-1) through a 3-mm-diameter stem. Sensitivity increased with bark removal. Girdling had no effect on short-term measurements of in vivo sap flow, suggesting that phloem flows were too low to be separated from xylem flows. Fluctuating ambient temperatures increased variability in outdoor sap flow measurements. However, a consistent diurnal time-course of fruit pedicel sap flow was obtained, with flows towards 75-day-old kiwifruit lagging behind evaporative demand and peaking at 0.3 g h(-1) in the late afternoon.

  5. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension

    PubMed Central

    Novak, Vera; Yang, Albert CC; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang

    2004-01-01

    Background This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. Methods We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 ± 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. Results A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. Conclusion In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure. PMID:15504235

  6. PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and DEC VAX series computers running VMS. Format statements in the code may need to be rewritten depending on your FORTRAN compiler. The source code and sample data are available on a 5.25 inch 360K MS-DOS format diskette. This program was developed in 1972 and was last updated in 1991. IBM and IBM PC are registered trademarks of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. DEC VAX, and VMS are trademarks of Digital Equipment Corporation.

  7. Using Laboratory Experiments to Improve Ice-Ocean Parameterizations

    NASA Astrophysics Data System (ADS)

    McConnochie, C. D.; Kerr, R. C.

    2017-12-01

    Numerical models of ice-ocean interactions are typically unable to resolve the transport of heat and salt to the ice face. Instead, models rely upon parameterizations that have not been sufficiently validated by observations. Recent laboratory experiments of ice-saltwater interactions allow us to test the standard parameterization of heat and salt transport to ice faces - the three-equation model. The three-equation model predicts that the melt rate is proportional to the fluid velocity while the experimental results typically show that the melt rate is independent of the fluid velocity. By considering an analysis of the boundary layer that forms next to a melting ice face, we suggest a resolution to this disagreement. We show that the three-equation model makes the implicit assumption that the thickness of the diffusive sublayer next to the ice is set by a shear instability. However, at low flow velocities, the sublayer is instead set by a convective instability. This distinction leads to a threshold velocity of approximately 4 cm/s at geophysically relevant conditions, above which the form of the parameterization should be valid. In contrast, at flow speeds below 4 cm/s, the three-equation model will underestimate the melt rate. By incorporating such a minimum velocity into the three-equation model, predictions made by numerical simulations could be easily improved.

  8. Investigation of Critical Heat Flux in Reduced Gravity Using Photomicrographic Techniques

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Zhang, Hui

    2003-01-01

    Experiments were performed to examine the effects of body force on flow boiling critical heat flux (CHF). FC-72 was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface just prior to CHF. High-speed video imaging techniques were used to identify dominant CHF mechanisms corresponding to different flow orientations and liquid velocities. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed significant sensitivity to orientation for flow velocities below 0.2 m/s, where extremely low CHF values where measured, especially with downward-facing heated wall and downflow orientations. High flow velocities dampened the effects of orientation considerably. The CHF data were used to assess the suitability of previous CHF models and correlations. It is shown the Interfacial Lift-off Model is very effective at predicting CHF for high velocities at all orientations. The flooding limit, on the other hand, is useful at estimating CHF at low velocities and for downflow orientations. A new method consisting of three dimensionless criteria is developed for determining the minimum flow velocity required to overcome body force effects on near-saturated flow boiling CHF. Vertical upflow boiling experiments were performed in pursuit of identifying the trigger mechanism for subcooled flow boiling CHF. While virtually all prior studies on flow boiling CHF concern the prediction or measurement of conditions that lead to CHF, this study was focused on events that take place during the CHF transient. High-speed video imaging and photomicrographic techniques were used to record the transient behavior of interfacial features from the last steady-state power level before CHF until the moment of power cut-off following CHF. The video records show the development of a wavy vapor layer which propagates along the heated wall, permitting cooling prior to CHF only in wetting fronts corresponding to the wave troughs. Image analysis software was developed to estimate void fraction from the individual video images. The void fraction records for subcooled flow boiling show the CHF transient is accompanied by gradual lift-off of wetting fronts culminating in some maximum vapor layer mean thickness, following which the vapor layer begins to thin down as the transition to film boiling ensues. This study proves the Interfacial Lift-off Model, which has been validated for near-saturated flow boiling CHF, is equally valid for subcooled conditions.

  9. High speed flow past wings

    NASA Technical Reports Server (NTRS)

    Norstrud, H.

    1973-01-01

    The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.

  10. An experimental investigation of two-dimensional thrust augmenting ejectors, part 2

    NASA Technical Reports Server (NTRS)

    Bernal, L.; Sarohia, V.

    1984-01-01

    The flow-field within a two-dimensional thrust augmenting ejector has been documented experimentally. Results are presented on the mean velocity field and the turbulent correlations by Laser Doppler Velocimeter, surface pressure distribution, surface temperature distribution, and thrust performance for two shroud geometries. The maximum primary nozzle pressure ratio tested was 3.0. The tests were conducted at primary nozzle temperature ratios of 1.0, 1.8 and 2.7. Two ejector characteristic lengths have been identified based on the dynamics of the ejector flow field, i.e., a minimum length L sub m below which no significant mixing occurs, and a critical length L sub c associated with the development of U'V' correlation in the ejector. These characteristic lengths divide the ejector flow field into three distinctive regions: the entrance region where there is no direct interaction between the primary flow and the ejector shroud; the interaction region where there is an increased momentum of induced flow near the shroud surface; and a pipe flow region characterized by an increased skin friction where x is the distance downstream from the ejector inlet. The effect of the coflowing induced flow has been shown to produce inside the ejector a centerline velocity that has increased over the free-jet data.

  11. Applications of the discrete Enskog-Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Chu, Kwang-Hua Rainer

    1998-08-01

    The continuous progress of micromachining technology has led to a growing interest in MicroElectroMechanical System (MEMS) for applications ranging from simple microsensors and microactuators to sophisticated microsystems. The characteristic length scale of these microdevices will be of the order of sub-microns so that the gas flow in this environment is within the rarified gas (RG) regime. In this PhD work, the mass/momentum/energy transport of the monatomic gases along the microchannel and the dispersion/attenuation of 1-D ultrasound propagation (plane wave) of RG are investigated by using the Discrete Enskog-Boltzmann approaches. We applied the 4-velocity coplanar model to plane Poiseuille flow of RG in microchannels. Firstly we reported a steady-state solution for this flow with a final-stage uniform density distribution. Then, we modified the model by introducing a density ratio to accomodate the density variations along the microchannel and to include the grazing-collision effects. We also borrowed thee idea from the Extended Irreversible/Reversible Thermodynamics to derive the pressure-gradient for the dimensional velocity field. Our results show the Knudsen minimum of the non- dimensional volume flow rate for Knudsen number (Kn) around 1.5. Using the macroscopic velocity fields, with Cercignani's comments for the 'Kinetic Temperature', we can calculate the related temperature distribution across the microchannel. We also checked the thermodynamic or equilibrium properties of 4-, 6-, and 8-velocity models, by calculating the dispersion relation of 1-D plane ultrasound wave propagation in the RG regime which has large Kn of O(1). The results (after comparison with the measurements) confirmed that the 4-velocity model is the most suitable model for our applications.

  12. Measurements With a Split-Fiber Probe in Complex Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2004-01-01

    A split-fiber probe was used to acquire unsteady data in a research compressor. A calibration method was devised for a split-fiber probe, and a new algorithm was developed to decompose split-fiber probe signals into velocity magnitude and direction. The algorithm is based on the minimum value of a merit function that is built over the entire range of flow velocities for which the probe was calibrated. The split-fiber probe performance and signal decomposition was first verified in a free-jet facility by comparing the data from three thermo-anemometric probes, namely a single-wire, a single-fiber, and the split-fiber probe. All three probes performed extremely well as far as the velocity magnitude was concerned. However, there are differences in the peak values of measured velocity unsteadiness in the jet shear layer. The single-wire probe indicates the highest unsteadiness level, followed closely by the split-fiber probe. The single-fiber probe indicates a noticeably lower level of velocity unsteadiness. Experiments in the NASA Low Speed Axial Compressor facility revealed similar results. The mean velocities agreed well, and differences in the velocity unsteadiness are similar to the case of a free jet. A reason for these discrepancies is in the different frequency response characteristics of probes used. It follows that the single-fiber probe has the slowest frequency response. In summary, the split-fiber probe worked reliably during the entire program. The acquired data averaged in time followed closely data acquired by conventional pneumatic probes.

  13. Comparison of direct numerical simulation databases of turbulent channel flow at Reτ = 180

    NASA Astrophysics Data System (ADS)

    Vreman, A. W.; Kuerten, J. G. M.

    2014-01-01

    Direct numerical simulation (DNS) databases are compared to assess the accuracy and reproducibility of standard and non-standard turbulence statistics of incompressible plane channel flow at Reτ = 180. Two fundamentally different DNS codes are shown to produce maximum relative deviations below 0.2% for the mean flow, below 1% for the root-mean-square velocity and pressure fluctuations, and below 2% for the three components of the turbulent dissipation. Relatively fine grids and long statistical averaging times are required. An analysis of dissipation spectra demonstrates that the enhanced resolution is necessary for an accurate representation of the smallest physical scales in the turbulent dissipation. The results are related to the physics of turbulent channel flow in several ways. First, the reproducibility supports the hitherto unproven theoretical hypothesis that the statistically stationary state of turbulent channel flow is unique. Second, the peaks of dissipation spectra provide information on length scales of the small-scale turbulence. Third, the computed means and fluctuations of the convective, pressure, and viscous terms in the momentum equation show the importance of the different forces in the momentum equation relative to each other. The Galilean transformation that leads to minimum peak fluctuation of the convective term is determined. Fourth, an analysis of higher-order statistics is performed. The skewness of the longitudinal derivative of the streamwise velocity is stronger than expected (-1.5 at y+ = 30). This skewness and also the strong near-wall intermittency of the normal velocity are related to coherent structures.

  14. Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.

    PubMed

    Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R

    2017-08-21

    Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.

  15. Flow convergence caused by a salinity minimum in a tidal channel

    USGS Publications Warehouse

    Warner, John C.; Schoellhamer, David H.; Burau, Jon R.; Schladow, S. Geoffrey

    2006-01-01

    Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged) circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign) of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1) A simple one-dimensional (1D) finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2) A three-dimensional (3D) hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient) and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3) A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to transport through a constant direction density gradient. (4) A sediment transport model demonstrates increased deposition at the near-bed null point of the salinity minimum, as compared to the constant direction gradient null point. These results are corroborated by historically noted large sedimentation rates and a local maximum of selenium accumulation in clams at the null point in Mare Island Strait.

  16. Analog laboratory experiments on the influence of substrate roughness on the run out distance of pyroclastic flows

    NASA Astrophysics Data System (ADS)

    Roche, O.; Chedevile, C.

    2012-12-01

    We carried out scaled experiments on gas-particles flows propagating on a rough substrate in order to investigate the emplacement of pyroclastic flows. The flows were generated from the release of non-fluidized or gas-fluidized columns of fine (80 μm) glass beads of height of 30 cm into a 3 m-long horizontal channel. The base of the channel was either smooth or was made rough by gluing a monodisperse layer of spherical particles of diameter of 80 μm to 3 mm. We defined the substrate roughness as the size of the glued particles, which corresponded to up to several tens of centimeters when scaled to the natural system. The flow front kinematics and the detailed interactions between the base of the flow and the rough substrate were investigated from high speed videos. We measured systematically the run out distance of the flows, and experiments were repeated 8-10 times for each configuration to obtain a mean value. The run out distance increased with the substrate roughness for both initially non-fluidized and fluidized flows. The run out had a minimum value for a smooth base and was about twice that value for the highest roughness of 3 mm. Analysis of the flow kinematics revealed that the increase in run out was caused by higher front velocities essentially at late stages of emplacement, during which the head of the flows stretched considerably. High speed videos made at the base of the flows showed that their head first slid over the substrate before aggregates of particles fell into the interstices between the particles forming the rough substrate, at a mean speed of several centimeters per second. In contrast, complementary experiments on flows of coarse beads of 350 μm showed that the substrate roughness did not influence their run out, and at the flow base their particles bumped into those of the substrate before falling individually into the interstices. These observations suggest that the positive correlation between the flow run out and the substrate roughness for flows of fine particles could result from two mechanisms. The first was the reduction of the contact area between the flow base and the substrate as the roughness increased because of the reduced number of particles per unit length. The second, main mechanism was auto-fluidization generated as the fine particles falling into the interstices expulsed the air upward at a velocity much larger than the minimum fluidization velocity. This promoted at least partial fluidization or additional pore pressure in case of initially non-fluidized or fluidized flows, respectively. This experimental investigation provides some counterintuitive results and has implication for hazards assessment. Other things being equal, the run out distance of fines-rich pyroclastic flows is expected to increase with the roughness of the terrain on which they propagate.

  17. Noncoplanar minimum delta V two-impulse and three-impulse orbital transfer from a regressing oblate earth assembly parking ellipse onto a flyby trans-Mars asymptotic velocity vector.

    NASA Technical Reports Server (NTRS)

    Bean, W. C.

    1971-01-01

    Comparison of two-impulse and three-impulse orbital transfer, using data from a 63-case numerical study. For each case investigated for which coplanarity of the regressing assembly parking ellipse was attained with the target asymptotic velocity vector, a two-impulse maneuver (or a one-impulse equivalent) was found for which the velocity expenditure was within 1% of a reference absolute minimum lower bound. Therefore, for the coplanar cases, use of a minimum delta-V three-impulse maneuver afforded scant improvement in velocity penalty. However, as the noncoplanarity of the parking ellipse and the target asymptotic velocity vector increased, there was a significant increase in the superiority of minimum delta-V three-impulse maneuvers for slowing the growth of velocity expenditure. It is concluded that a multiple-impulse maneuver should be contemplated if nonnominal launch conditions could occur.

  18. Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea.

    PubMed

    Mihaescu, Mihai; Murugappan, Shanmugam; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim

    2008-07-19

    Computational fluid dynamics techniques employing primarily steady Reynolds-Averaged Navier-Stokes (RANS) methodology have been recently used to characterize the transitional/turbulent flow field in human airways. The use of RANS implies that flow phenomena are averaged over time, the flow dynamics not being captured. Further, RANS uses two-equation turbulence models that are not adequate for predicting anisotropic flows, flows with high streamline curvature, or flows where separation occurs. A more accurate approach for such flow situations that occur in the human airway is Large Eddy Simulation (LES). The paper considers flow modeling in a pharyngeal airway model reconstructed from cross-sectional magnetic resonance scans of a patient with obstructive sleep apnea. The airway model is characterized by a maximum narrowing at the site of retropalatal pharynx. Two flow-modeling strategies are employed: steady RANS and the LES approach. In the RANS modeling framework both k-epsilon and k-omega turbulence models are used. The paper discusses the differences between the airflow characteristics obtained from the RANS and LES calculations. The largest discrepancies were found in the axial velocity distributions downstream of the minimum cross-sectional area. This region is characterized by flow separation and large radial velocity gradients across the developed shear layers. The largest difference in static pressure distributions on the airway walls was found between the LES and the k-epsilon data at the site of maximum narrowing in the retropalatal pharynx.

  19. A novel technique to control the bubble formation process in a co-flow configuration with planar geometry

    NASA Astrophysics Data System (ADS)

    Ruiz-Rus, Javier; Bolaños-Jiménez, Rocío; Gutiérrez-Montes, Cándido; Martínez-Bazán, Carlos; Sevilla, Alejandro

    2015-11-01

    We present a novel technique to properly control the bubble formation frequency and size by forcing the water stream in a co-flow configuration with planar geometry through the modulation of the water velocity at the nozzle exit. The main goal of this work is to experimentally explore whether the bubbling regime, which is naturally established for certain values of the water-to-air velocity ratio, Λ =uw /ua , and the Weber number, We =ρwuw2Ho / σ , can be controlled by the imposed disturbances. A detailed experimental characterization of the forcing effect has been performed by measuring the pressure fluctuations in both the water and the air streams. In addition, the velocity amplitude, which characterizes the process, is obtained. The results show that a minimum disturbance amplitude is needed for an effective control of the bubbling process. Moreover, the process is governed by kinematic non-linear effects, and the position of the maximum deformation is shown to be described through a one-dimensional flow model for the water sheet, based on the exact solution of the Euler equation. Supported by the Spanish MINECO, Junta de Andalucía and EU Funds under projects DPI2014-59292-C3-3-P, P11-TEP7495 and UJA2013/08/05.

  20. Effect of LES models on the entrainment characteristics in a turbulent planar jet

    NASA Astrophysics Data System (ADS)

    Chambel Lopes, Diogo; da Silva, Carlos; Raman, Venkat

    2012-11-01

    The effect of subgrid-scale (SGS) models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent: it has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. In this work direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. LES show that different SGS modes lead to different spreading rates for the velocity and scalar fields, and the scalar quantities are more affected than the velocity e.g. SGS models affect strongly the centreline mean scalar decay than the centreline mean velocity decay. The results suggest the need for a minimum resolution close to the Taylor micro-scale in order to recover the correct results for the integral quantities and this can be explained by recent results on the dynamics of the T/NT interface.

  1. Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry

    NASA Astrophysics Data System (ADS)

    Schäfer, L.; Dierksheide, U.; Klaas, M.; Schröder, W.

    2011-03-01

    A new method to describe statistical information from passive scalar fields has been proposed by Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006)]. They used direct numerical simulations (DNS) of homogeneous shear flow to introduce the innovative concept. This novel method determines the local minimum and maximum points of the fluctuating scalar field via gradient trajectories, starting from every grid point in the direction of the steepest ascending and descending scalar gradients. Relying on gradient trajectories, a dissipation element is defined as the region of all the grid points, the trajectories of which share the same pair of maximum and minimum points. The procedure has also been successfully applied to various DNS fields of homogeneous shear turbulence using the three velocity components and the kinetic energy as scalar fields [L. Wang and N. Peters, "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. In this spirit, dissipation elements are, for the first time, determined from experimental data of a fully developed turbulent channel flow. The dissipation elements are deduced from the gradients of the instantaneous fluctuation of the three velocity components u', v', and w' and the instantaneous kinetic energy k', respectively. The measurements are conducted at a Reynolds number of 1.7×104 based on the channel half-height δ and the bulk velocity U. The required three-dimensional velocity data are obtained investigating a 17.75×17.75×6 mm3 (0.355δ×0.355δ×0.12δ) test volume using tomographic particle-image velocimetry. Detection and analysis of dissipation elements from the experimental velocity data are discussed in detail. The statistical results are compared to the DNS data from Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006); "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. Similar characteristics have been found especially for the pdf's of the large dissipation element length regarding the exponential decay. In agreement with the DNS results, over 99% of the experimental dissipation elements possess a length that is smaller than three times the average element length.

  2. Verification on spray simulation of a pintle injector for liquid rocket engine

    NASA Astrophysics Data System (ADS)

    Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye

    2016-02-01

    The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.

  3. Optimal flow for brown trout: Habitat - prey optimization.

    PubMed

    Fornaroli, Riccardo; Cabrini, Riccardo; Sartori, Laura; Marazzi, Francesca; Canobbio, Sergio; Mezzanotte, Valeria

    2016-10-01

    The correct definition of ecosystem needs is essential in order to guide policy and management strategies to optimize the increasing use of freshwater by human activities. Commonly, the assessment of the optimal or minimum flow rates needed to preserve ecosystem functionality has been done by habitat-based models that define a relationship between in-stream flow and habitat availability for various species of fish. We propose a new approach for the identification of optimal flows using the limiting factor approach and the evaluation of basic ecological relationships, considering the appropriate spatial scale for different organisms. We developed density-environment relationships for three different life stages of brown trout that show the limiting effects of hydromorphological variables at habitat scale. In our analyses, we found that the factors limiting the densities of trout were water velocity, substrate characteristics and refugia availability. For all the life stages, the selected models considered simultaneously two variables and implied that higher velocities provided a less suitable habitat, regardless of other physical characteristics and with different patterns. We used these relationships within habitat based models in order to select a range of flows that preserve most of the physical habitat for all the life stages. We also estimated the effect of varying discharge flows on macroinvertebrate biomass and used the obtained results to identify an optimal flow maximizing habitat and prey availability. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Spark ignition of flowing gases I : energies to ignite propane-air mixtures in pressure range of 2 to 4 inches mercury absolute

    NASA Technical Reports Server (NTRS)

    Swett, Clyde C , Jr

    1949-01-01

    Ignition studies of flowing gases were made to obtain information applicable to ignition problems in gas-turbine and ram-jet aircraft propulsion systems operating at altitude conditions.Spark energies required for ignition of a flowing propane-air mixture were determined for pressure of 2 to 4 inches mercury absolute, gas velocities of 5.0 to 54.2 feet per second, fuel-air ratios of 0.0607 to 0.1245, and spark durations of 1.5 to 24,400 microseconds. The results showed that at a pressure of 3 inches mercury absolute the minimum energy required for ignition occurred at fuel-air ratios of 0.08 to 0.095. The energy required for ignition increased almost linearly with increasing gas velocity. Shortening the spark duration from approximately 25,000 to 125 microseconds decreased the amount of energy required for ignition. A spark produced by the discharge of a condenser directly into the spark gap and having a duration of 1.5 microseconds required ignition energies larger than most of the long-duration sparks.

  5. A two-dimensional adaptive-wall test section with ventilated walls in the Ames 2- by 2-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Lee, George; Mcdevitt, T. Kevin

    1989-01-01

    The first tests conducted in the adaptive-wall test section of the Ames Research Center's 2- by 2-Foot Transonic Wind Tunnel are described. A procedure was demonstrated for reducing wall interference in transonic flow past a two-dimensional airfoil by actively controlling flow through the slotted walls of the test section. Flow through the walls was controlled by adjusting pressures in compartments of plenums above and below the test section. Wall interference was assessed by measuring (with a laser velocimeter) velocity distributions along a contour surrounding the model, and then checking those measurements for their compatibility with free-air far-field boundary conditions. Plenum pressures for minimum wall interference were determined from empirical influence coefficients. An NACA 0012 airfoil was tested at angles of attach of 0 and 2, and at Mach numbers between 0.70 and 0.85. In all cases the wall-setting procedure greatly reduced wall interference. Wall interference, however, was never completely eliminated, primarily because the effect of plenum pressure changes on the velocities along the contour could not be accurately predicted.

  6. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Feldmann, Daniel; Bauer, Christian; Wagner, Claus

    2018-03-01

    We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.

  7. Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen-air flames

    NASA Astrophysics Data System (ADS)

    Hoferichter, Vera; Hirsch, Christoph; Sattelmayer, Thomas

    2017-05-01

    Flame flashback is a major challenge in premixed combustion. Hence, the prediction of the minimum flow velocity to prevent boundary layer flashback is of high technical interest. This paper presents an analytic approach to predicting boundary layer flashback limits for channel and tube burners. The model reflects the experimentally observed flashback mechanism and consists of a local and global analysis. Based on the local analysis, the flow velocity at flashback initiation is obtained depending on flame angle and local turbulent burning velocity. The local turbulent burning velocity is calculated in accordance with a predictive model for boundary layer flashback limits of duct-confined flames presented by the authors in an earlier publication. This ensures consistency of both models. The flame angle of the stable flame near flashback conditions can be obtained by various methods. In this study, an approach based on global mass conservation is applied and is validated using Mie-scattering images from a channel burner test rig at ambient conditions. The predicted flashback limits are compared to experimental results and to literature data from preheated tube burner experiments. Finally, a method for including the effect of burner exit temperature is demonstrated and used to explain the discrepancies in flashback limits obtained from different burner configurations reported in the literature.

  8. Settling of hot particles through turbulence

    NASA Astrophysics Data System (ADS)

    Coletti, Filippo; Frankel, Ari; Pouransari, Hadi; Mani, Ali

    2014-11-01

    Particle-laden flows in which the dispersed phase is not isothermal with the continuous phase are common in a wealth of natural and industrial setting. In this study we consider the case of inertial particles heated by thermal radiation while settling through a turbulent transparent gas. Particles much smaller than the minimum flow scales are considered. The particle Stokes number (based on the Kolmogorov time scale) and the nominal settling velocity (normalized by the root-mean-square fluid velocity fluctuation) are both of order unity. In the considered dilute and optically thin regime, each particle receives the same heat flux. Numerical simulations are performed in which the two-way coupling between dispersed and continuous phase is taken into account. The momentum and energy equations are solved in a triply periodic domain, resolving all spatial and temporal scales. While falling, the heated particles shed plumes of buoyant gas, modifying the turbulence structure and enhancing velocity fluctuations in the vertical direction. The radiative forcing does not affect preferential concentration (clustering of particles in low vorticity regions), but reduces preferential sweeping (particle sampling regions of downward fluid motion). Overall, the mean settling velocity varies slightly when heating the particles, while its variance is greatly increased. We gratefully acknowledges support from DOE PSAAP II program.

  9. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao

    2017-06-01

    High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.

  10. Effects of bisoprolol and cilazapril on the central retinal artery blood flow in patients with essential hypertension—preliminary results

    PubMed Central

    2010-01-01

    Background A growing body of evidence suggests that effective blood pressure reduction may inhibit the progression of microvascular damage in patients with essential arterial hypertension. However, the potential influence of anti-hypertensive drugs on ocular circulation has not been studied sufficiently. Purpose The aim of our study was to evaluate the effects of anti-hypertensive therapy on blood flow in the central retinal artery in patients with systemic arterial hypertension. Material and methods Twenty patients with essential arterial hypertension, aged 32–46 years, were examined with Doppler ultrasonography (10 MHz ultrasound probe). Blood flow velocities, pulsatility, and vascular resistance were determined before and 3 hours after systemic application of either bisoprolol 5 mg or cilazapril 2.5 mg. Results Administered bisoprolol significantly decreased maximum (9.8 ± 0.5 cm/s versus 8.5 ± 0.6 cm/s; P < 0.05) and minimum (2.75 ± 0.19 cm/s versus 1.75 ± 0.27 cm/s; P < 0.02) velocity, increased the Pourcellot's index (0.71 to 0.79; P < 0.05) in central retinal artery. There were no statistically significant changes in central retinal artery blood flow after administration of cilazapril. Conclusion Systemic application of beta-blockers may unfavourably disturb the ocular blood flow. PMID:20858158

  11. Gas-solid fluidized bed reactors: Scale-up, flow regimes identification and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zaid, Faraj Muftah

    This research studied the scale-up, flow regimes identification and hydrodynamics of fluidized beds using 6-inch and 18- inch diameter columns and different particles. One of the objectives was to advance the scale-up of gas-solid fluidized bed reactors by developing a new mechanistic methodology for hydrodynamic similarity based on matching the radial or diameter profile of gas phase holdup, since gas dynamics dictate the hydrodynamics of these reactors. This has been successfully achieved. However, the literature reported scale-up methodology based on matching selected dimensionless groups was examined and it was found that it was not easy to match the dimensionless groups and hence, there was some deviation in the hydrodynamics of the studied two different fluidized beds. A new technique based on gamma ray densitometry (GRD) was successfully developed and utilized to on-line monitor the implementation of scale-up, to identify the flow regime, and to measure the radial or diameter profiles of gas and solids holdups. CFD has been demonstrated as a valuable tool to enable the implementation of the newly developed scale-up methodology based on finding the conditions that provide similar or closer radial profile or cross sectional distribution of the gas holdup. As gas velocity increases, solids holdup in the center region of the column decreases in the fully developed region of both 6 inch and 18 inch diameter columns. Solids holdup increased with the increase in the particles size and density. Upflowing particles velocity increased with the gas velocity and became steeper at high superficial gas velocity at all axial heights where the center line velocity became higher than that in the wall region. Smaller particles size and lower density gave larger upflowing particles velocity. Minimum fluidization velocity and transition velocity from bubbly to churn turbulent flow regimes were found to be lower in 18 inch diameter column compared to those obtained in 6 inch diameter column. Also the absolute fluctuation of upflowing particles velocity multiplied by solids holdups vś 3ś as one of the terms for solids mass flux estimation was found to be larger in 18-inch diameter column than that in 6-inch diameter column using same particles size and density.

  12. The effect of riser end geometry on gas-solid hydrodynamics in a CFB riser operating in the core annular and dilute homogeneous flow regimes

    DOE PAGES

    Breault, Ronald W.; Monazam, Esmail R.; Shadle, Lawrence J.; ...

    2017-02-12

    Riser hydrodynamics are a function of the flow rates of gas and solids as well as the exit geometry, particularly when operated above the upper transport velocity. This work compares the exit voidage for multiple geometries and two different solids: Geldart group A glass beads and Geldart group B coke. Geometries were changed by modifying the volume of an abrupt T-shaped exit above the lateral riser exit. This was accomplished by positioning a plunger at various heights above the exit from zero to 0.38 m. A dimensionless expression used to predict smooth exit voidage was modified to account for themore » effect of the depth of the blind-T. The new correlation contains the solids-gas load ratio, solids-to-gas density ratio, bed-to-particle diameter ratio, gas Reynolds Number, as well as a term for the exit geometry. This study also found that there was a minimum riser roof height above the blind-T exit beyond which the riser exit voidage was not affected by the exit geometry. A correlation for this minimum riser roof height has also been developed in this study. This study covered riser superficial gas velocities of 4.35 to 7.7 m/s and solids circulation rates of 1.3 to 11.5 kg/s.« less

  13. Combustion Limits and Efficiency of Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Barnett, H. C.; Jonash, E. R.

    1956-01-01

    Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.

  14. The Optical Flow Technique on the Research of Solar Non-potentiality

    NASA Astrophysics Data System (ADS)

    Liu, Ji-hong; Zhang, Hong-qi

    2010-06-01

    Several optical flow techniques, which have being applied to the researches of solar magnetic non-potentiality recently, have been summarized here. And a few new non-potential parameters which can be derived from them have been discussed, too. The main components of the work are presented as follows: (1) The optical flow techniques refers to a series of new image analyzing techniques arisen recently on the researches of solar magnetic non-potentiality. They mainly include LCT (local correlation tracking), ILCT (inductive equation combining with LCT), MEF (minimum energy effect), DAVE (differential affine velocity estimator) and NAVE (nonlinear affine velocity estimator). Their calculating and applying conditions, merits and deficiencies, all have been discussed detailedly in this work. (2) Benefit from the optical flow techniques, the transverse velocity fields of the magnetic features on the solar surface may be determined by a time sequence of high-quality images currently produced by high-resolution observations either from the ground or in space. Consequently, several new non-potential parameters may be acquired, such as the magnetic helicity flux, the induced electric field in the photosphere, the non-potential magnetic stress (whose area integration is the Lorentz force), etc. Then we can determine the energy flux across the photosphere, and subsequently evaluate the energy budget. Former works on them by small or special samples have shown that they are probably related closely to the erupting events, such as flare, filament eruptions and coronal mass ejections.

  15. Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath

    NASA Astrophysics Data System (ADS)

    Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia

    2017-04-01

    Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.

  16. Mixing zone hydrodynamics in a large confluence: a case study of the Snake and Clearwater Rivers confluence

    NASA Astrophysics Data System (ADS)

    Shehata, M. M.; Petrie, J.

    2015-12-01

    Confluences are a basic component in all fluvial systems, which are often characterized by complex flow and sediment transport patterns. Addressing confluences, however, started only recently in parallel with new advances of flow measurement tools and computational techniques. A limited number of field studies exist investigating flow hydrodynamics through confluences, particularly for large confluences with central zone widths of 100 m or greater. Previous studies have indicated that the size of the confluent rivers and the post-confluence zone may impact flow and sediment transport processes in the confluence zone, which consequently could impact the biodiversity within the river network. This study presents the results of a field study conducted at the confluence of the Snake and the Clearwater rivers near the towns of Clarkston, WA and Lewiston, ID (average width of 700 m at the confluence center). This confluence supports many different and, sometimes, conflicting purposes including commercial navigation, recreation, and fish and wildlife conservation. The confluence properties are affected by dredging operations carried out periodically to maintain the minimum water depth required for safe flow conveyance and navigation purposes. Also, a levee system was constructed on the confluence banks as an extra flood control measure. In the recent field work, an Acoustic Doppler Current Profiler was used to measure water velocity profiles at cross sections in the confluence region. Fixed and moving vessel measurements were taken at selected locations to evaluate both the spatial and temporal variation in velocity throughout the confluence. The confluence bathymetry was surveyed with a multi-beam sonar to investigate existent bed morphological elements. The results identify the velocity pattern in the mixing zone between the two rivers. The present findings are compared to previous studies on small confluences to demonstrate the influence of scale on flow processes.

  17. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.

    PubMed

    Ramiar, Abas; Larimi, Morsal Momenti; Ranjbar, Ali Akbar

    2017-01-01

    Hemodynamic factors, such as Wall Shear Stress (WSS), play a substantial role in arterial diseases. In the larger arteries, such as the carotid artery, interaction between the vessel wall and blood flow affects the distribution of hemodynamic factors. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid and the effects of viscoelastic on blood flow in carotid artery is investigated. Pulsatile flow studies were carried out in a 3D model of carotid artery. The governing equations were solved using finite volume C++ based on open source code, OpenFOAM. To describe blood flow, conservation of mass and momentum, a constitutive relation of simplified Phan-Thien-Tanner (sPTT), and appropriate relations were used to explain shear thinning behavior. The first recirculation was observed at t = 0.2 s, in deceleration phase. In the acceleration phase from t = 0.3 s to t = 0.5 s, vortex and recirculation sizes in bulb regions in both ECA and ICA gradually increased. As is observed in the line graphs based on extracted data from ICA, at t = 0.2 s, τyy is the maximum amount of wall shear stress and τxy the minimum one. The maximum shear stress occurred in the inner side of the main branch (inner side of ICA and ECA) because the velocity of blood flow in the inner side of the bulb region was maximum due to the created recirculation zone in the opposite side in this area. The rheology of blood flow and shear stress in various important parts (the area that are in higher rates of WSS such as bifurcation region and the regions after bulb areas in both branches, Line1-4 in Fig. 7) were also analyzed. The investigation of velocity stream line, velocity profile and shear stress in various sections of carotid artery showed that the maximum shear stress occurred in acceleration phase and in the bifurcation region between ECA and ICA which is due to velocity gradients and changes in thinning behavior of blood and increasing strain rate in Newtonian stress part.

  18. A stationary bulk planar ideal flow solution for the double shearing model

    NASA Astrophysics Data System (ADS)

    Lyamina, E. A.; Kalenova, N. V.; Date, P. P.

    2018-04-01

    This paper provides a general ideal flow solution for the double shearing model of pressure-dependent plasticity. This new solution is restricted to a special class of stationary planar flows. A distinguished feature of this class of solutions is that one family of characteristic lines is straight. The solution is analytic. The mapping between Cartesian and principal lines based coordinate systems is given in parametric form with characteristic coordinates being the parameters. A simple relation that connects the scale factor for one family of coordinate curves of the principal lines based coordinate system and the magnitude of velocity is derived. The original ideal flow theory is widely used as the basis for inverse methods for the preliminary design of metal forming processes driven by minimum plastic work. The new theory extends this area of application to granular materials.

  19. The influence of current speed and vegetation density on flow structure in two macrotidal eelgrass canopies

    USGS Publications Warehouse

    Lacy, Jessica R.; Wyllie-Echeverria, Sandy

    2011-01-01

    The influence of eelgrass (Zostera marina) on near-bed currents, turbulence, and drag was investigated at three sites in two eelgrass canopies of differing density and at one unvegetated site in the San Juan archipelago of Puget Sound, Washington, USA. Eelgrass blade length exceeded 1 m. Velocity profiles up to 1.5 m above the sea floor were collected over a spring-neap tidal cycle with a downward-looking pulse-coherent acoustic Doppler profiler above the canopies and two acoustic Doppler velocimeters within the canopies. The eelgrass attenuated currents by a minimum of 40%, and by more than 70% at the most densely vegetated site. Attenuation decreased with increasing current speed. The data were compared to the shear-layer model of vegetated flows and the displaced logarithmic model. Velocity profiles outside the meadows were logarithmic. Within the canopies, most profiles were consistent with the shear-layer model, with a logarithmic layer above the canopy. However, at the less-dense sites, when currents were strong, shear at the sea floor and above the canopy was significant relative to shear at the top of the canopy, and the velocity profiles more closely resembled those in a rough-wall boundary layer. Turbulence was strong at the canopy top and decreased with height. Friction velocity at the canopy top was 1.5–2 times greater than at the unvegetated, sandy site. The coefficient of drag CD on the overlying flow derived from the logarithmic velocity profile above the canopy, was 3–8 times greater than at the unvegetated site (0.01–0.023 vs. 2.9 × 10−3).

  20. Influence of blood flow velocity on arterial distensibility of carotid artery in healthy men.

    PubMed

    Tomoto, Tsubasa; Maeda, Seiji; Sugawara, Jun

    2017-01-01

    Decreased distensibility of carotid artery is independently associated with the incidence of cardiovascular and cerebrovascular events. Arterial distensibility is determined by vascular tone. Since shear stress is an important driving force of vasodilatory substances production form endothelial cells, we hypothesized that local basal (i.e., resting) arterial blood flow velocity is associated with regional arterial distensibility. To test this hypothesis, we determined the influence of local blood flow velocity on carotid arterial distensibility in cross-sectional study design. In a total of 73 apparent healthy men (18-64 years), carotid arterial properties, including measures of carotid arterial distensibility and BFV at rest, were evaluated via B-mode and Doppler ultrasound imaging and applanation tonometry system. Carotid arterial peak BFV and the absolute and normalized pulsatile BFV significantly correlated with age (r = -0.453 to -0.600, p < 0.0001), whereas mean and minimum BFV were not influenced by age. Distensibility coefficient of carotid artery correlated with peak BFV (r = 0.305, p < 0.01) and more strongly with pulsatile (i.e., systolic minus end-diastolic) BFV (r = 0.406, p < 0.0001) and the normalized pulsatile BFV by time-averaged velocity (r = 0.591, p < 0.0001). Multi-regression analysis revealed that age (β = -0.57, p < 0.0001) was the primary independent determinant for distensibility coefficient. In addition with this, carotid lumen diameter (β = -0.202, p < 0.01) and the normalized pulsatile BFV (β = 0.237, p < 0.05) were significant independent determinants of distensibility coefficient. Qualitatively similar results (although inverse in direction) were obtained by use of β-stiffness index. These results suggest that greater gradient of blood flow velocity during a cardiac cycle are favorably associated with distensibility of carotid artery.

  1. Regional Patterns of Stress Transfer in the Ablation Zone of the Western Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Andrews, L. C.; Hoffman, M. J.; Neumann, T.; Catania, G. A.; Luethi, M. P.; Hawley, R. L.

    2016-12-01

    Current understanding of the subglacial system indicates that the seasonal evolution of ice flow is strongly controlled by the gradual upstream progression of an inefficient - efficient transition within the subglacial hydrologic system followed by the reduction of melt and a downstream collapse of the efficient system. Using a spatiotemporally dense network of GPS-derived surface velocities from the Pâkitsoq Region of the western Greenland Ice Sheet, we find that this pattern of subglacial development is complicated by heterogeneous bed topography, resulting in complex patterns of ice flow. Following low elevation melt onset, early melt season strain rate anomalies are dominated by regional extension, which then gives way to spatially expansive compression. However, once daily minimum ice velocities fall below the observed winter background velocities, an alternating spatial pattern of extension and compression prevails. This pattern of strain rate anomalies is correlated with changing basal topography and differences in the magnitude of diurnal surface ice speeds. Along subglacial ridges, diurnal variability in ice speed is large, suggestive of a mature, efficient subglacial system. In regions of subglacial lows, diurnal variability in ice velocity is relatively low, likely associated with a less developed efficient subglacial system. The observed pattern suggests that borehole observations and modeling results demonstrating the importance of longitudinal stress transfer at a single field location are likely widely applicable in our study area and other regions of the Greenland Ice Sheet with highly variable bed topography. Further, the complex pattern of ice flow and evidence of spatially extensive longitudinal stress transfer add to the body of work indicating that the bed character plays an important role in the development of the subglacial system; closely matching diurnal ice velocity patterns with subglacial models may be difficult without coupling these models to high order ice flow models.

  2. Determination of the Residence Time of Food Particles During Aseptic Sterilization

    NASA Technical Reports Server (NTRS)

    Carl, J. R.; Arndt, G. D.; Nguyen, T. X.

    1994-01-01

    The paper describes a non-invasive method to measure the time an individual particle takes to move through a length of stainless steel pipe. The food product is in two phase flow (liquids and solids) and passes through a pipe with pressures of approximately 60 psig and temperatures of 270-285 F. The proposed problem solution is based on the detection of transitory amplitude and/or phase changes in a microwave transmission path caused by the passage of the particles of interest. The particles are enhanced in some way, as will be discussed later, such that they will provide transitory changes that are distinctive enough not to be mistaken for normal variations in the received signal (caused by the non-homogeneous nature of the medium). Two detectors (transmission paths across the pipe) will be required and place at a known separation. A minimum transit time calculation is made from which the maximum velocity can be determined. This provides the minimum residence time. Also average velocity and statistical variations can be computed so that the amount of 'over-cooking' can be determined.

  3. Rayleigh Scattering Diagnostic for Dynamic Measurement of Velocity and Temperature

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, J.

    2001-01-01

    A new technique for measuring dynamic gas velocity and temperature is described. The technique is based on molecular Rayleigh scattering of laser light, so no seeding of the flow is necessary. The Rayleigh scattered light is filtered with a fixed cavity, planar mirror Fabry-Perot interferometer. A minimum number of photodetectors were used in order to allow the high data acquisition rate needed for dynamic measurements. One photomultiplier tube (PMT) was used to measure the total Rayleigh scattering, which is proportional to the gas density. Two additional PMTs were used to detect light that passes through two apertures in a mask located in the interferometer fringe plane. An uncertainty analysis was used to select the optimum aperture parameters and to predict the measurement uncertainty due to photon shot-noise. Results of an experiment to measure the velocity of a subsonic free jet are presented.

  4. AXIALLY ORIENTED SECTIONS OF NUMMULITIDS: A TOOL TO INTERPRET LARGER BENTHIC FORAMINIFERAL DEPOSITS.

    PubMed

    Hohenegger, Johann; Briguglio, Antonino

    2012-04-01

    The "critical shear velocity" and "settling velocity" of foraminiferal shells are important parameters for determining hydrodynamic conditions during deposition of Nummulites banks. These can be estimated by determining the size, shape, and density of nummulitid shells examined in axial sections cut perpendicular to the bedding plane. Shell size and shape can be determined directly from the shell diameter and thickness, but density must be calculated indirectly from the thin section. Calculations using the half-tori method approximate shell densities by equalizing the chamber volume of each half whorl, based on the half whorl's lumen area and its center of gravity. Results from this method yield the same lumen volumes produced empirically by micro-computed tomography. The derived hydrodynamic parameters help estimate the minimum flow velocities needed to entrain nummulitid tests and provide a potential tool to account for the nature of their accumulations.

  5. Effect of Spacecraft Environmental Variables on the Flammability of Fire Resistant Fabrics

    NASA Astrophysics Data System (ADS)

    Osorio, A. F.; Fernandez-Pello, C.; Takahashi, S.; Rodriguez, J.; Urban, D. L.; Ruff, G.

    2012-01-01

    Fire resistant fabrics are used for firefighter, racecar drivers as well as astronaut suits. However, their fire resistant characteristics depend on the environment conditions and require study. Particularly important is the response of these fabrics to elevated oxygen concentration environments and radiant heat from a source such as an adjacent fire. In this work, experiments using two fire resistant fabrics were conducted to study the effect of oxygen concentration, external radiant flux and oxidizer flow velocity in concurrent flame spread. Results show that for a given fabric the minimum oxygen concentration for flame spread depends strongly on the magnitude of the external radiant flux. At increased oxygen concentrations the external radiant flux required for flame spread decreases. Oxidizer flow velocity influences the external radiant flux only when the convective heat flux from the flame has similar values to the external radiant flux. The results of this work provide further understanding of the flammability characteristics of fire resistant fabrics in environments similar to those of future spacecrafts.

  6. Study on Effects of the Stochastic Delay Probability for 1d CA Model of Traffic Flow

    NASA Astrophysics Data System (ADS)

    Xue, Yu; Chen, Yan-Hong; Kong, Ling-Jiang

    Considering the effects of different factors on the stochastic delay probability, the delay probability has been classified into three cases. The first case corresponding to the brake state has a large delay probability if the anticipant velocity is larger than the gap between the successive cars. The second one corresponding to the following-the-leader rule has intermediate delay probability if the anticipant velocity is equal to the gap. Finally, the third case is the acceleration, which has minimum delay probability. The fundamental diagram obtained by numerical simulation shows the different properties compared to that by the NaSch model, in which there exist two different regions, corresponding to the coexistence state, and jamming state respectively.

  7. Numerical studies of convective heat transfer in an inclined semiannular enclosure

    NASA Technical Reports Server (NTRS)

    Wang, Lin-Wen; Yung, Chain-Nan; Chai, An-Ti; Rashidnia, Nasser

    1989-01-01

    Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.

  8. 30 CFR 75.371 - Mine ventilation plan; contents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (see § 75.325(a)(3)). (k) The minimum mean entry air velocity in exhausting face ventilation systems where coal is being cut, mined, drilled for blasting, or loaded, if the velocity will be less than 60... loaded, where at least 60 feet per minute or some other minimum mean entry air velocity will be...

  9. 30 CFR 75.371 - Mine ventilation plan; contents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (see § 75.325(a)(3)). (k) The minimum mean entry air velocity in exhausting face ventilation systems where coal is being cut, mined, drilled for blasting, or loaded, if the velocity will be less than 60... loaded, where at least 60 feet per minute or some other minimum mean entry air velocity will be...

  10. 30 CFR 75.371 - Mine ventilation plan; contents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (see § 75.325(a)(3)). (k) The minimum mean entry air velocity in exhausting face ventilation systems where coal is being cut, mined, drilled for blasting, or loaded, if the velocity will be less than 60... loaded, where at least 60 feet per minute or some other minimum mean entry air velocity will be...

  11. A ram-pressure threshold for star formation

    NASA Astrophysics Data System (ADS)

    Whitworth, A. P.

    2016-05-01

    In turbulent fragmentation, star formation occurs in condensations created by converging flows. The condensations must be sufficiently massive, dense and cool to be gravitationally unstable, so that they start to contract; and they must then radiate away thermal energy fast enough for self-gravity to remain dominant, so that they continue to contract. For the metallicities and temperatures in local star-forming clouds, this second requirement is only met robustly when the gas couples thermally to the dust, because this delivers the capacity to radiate across the full bandwidth of the continuum, rather than just in a few discrete spectral lines. This translates into a threshold for vigorous star formation, which can be written as a minimum ram pressure PCRIT ˜ 4 × 10-11 dyne. PCRIT is independent of temperature, and corresponds to flows with molecular hydrogen number density n_{{H_2.FLOW}} and velocity vFLOW satisfying n_{{H_2.FLOW}} v_{FLOW}^2≳ 800 cm^{-3} (km s^{-1})^2. This in turn corresponds to a minimum molecular hydrogen column density for vigorous star formation, N_{{H_2.CRIT}} ˜ 4 × 10^{21} cm^{-2} (ΣCRIT ˜ 100 M⊙ pc-2), and a minimum visual extinction AV, CRIT ˜ 9 mag. The characteristic diameter and line density for a star-forming filament when this threshold is just exceeded - a sweet spot for local star formation regions - are 2RFIL ˜ 0.1 pc and μFIL ˜ 13 M⊙ pc-2. The characteristic diameter and mass for a prestellar core condensing out of such a filament are 2RCORE ˜ 0.1 pc and MCORE ˜ 1 M⊙. We also show that fragmentation of a shock-compressed layer is likely to commence while the convergent flows creating the layer are still ongoing, and we stress that, under this circumstance, the phenomenology and characteristic scales for fragmentation of the layer are fundamentally different from those derived traditionally for pre-existing layers.

  12. Eta Carinae: X-ray Line Variations during the 2003 X-ray Minimum, and the Orbit Orientation

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Henley, D.; Hamaguchi, K.; Khibashi, K.; Pittard, J. M.; Stevens, I. R.; Gull, T. R.

    2007-01-01

    The future evolution of Eta Carinae will be as a supernova (or hypernova) and black hole. The evolution is highly contingent on mass and angular momentum changes and instabilities. The presence of a companion can serve to trigger instabilities and provide pathways for mass and angular momentum exchange loss. X-rays can be used a a key diagnostic tool: x-ray temperatures trace pre-shock wind velocities, periodic x-ray variability traces the orbit, and x-ray line variations traces the flow and orientation of shocked gas. This brief presentation highlights x-ray line variations from the HETG and presents a model of the colliding wind flow.

  13. Hydraulic and water-quality data collection for the investigation of Great Lakes tributaries for Asian carp spawning and egg-transport suitability

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Jackson, P. Ryan

    2013-01-01

    While hydraulic data from all four rivers indicated settling of eggs is possible in some locations, all four rivers also exhibited sufficient temperatures, water-quality characteristics, turbulence, and transport times outside of settling zones for successful suspension and development of Asian carp eggs to the hatching stage before the threat of settlement. These observed data indicate that these four Great Lakes tributaries have sufficient hydraulic and water-quality characteristics to support successful spawning and recruitment of Asian carps. The data indicate that with the right temperature and flow conditions, river reaches as short as 25 km may allow Asian carp eggs sufficient time to develop to hatching. Additionally, examining the relation between critical shear velocity and mean velocity, egg settling appears to take place at mean velocities in the range of 15–25 centimeters per second, a much lower value than is generally cited in the literature. A first-order estimate of the minimum transport velocity for Asian carp eggs in a river can be obtained by using mean flow depth and river substrate data, and curves were constructed to show this relation. These findings would expand the number of possible tributaries suitable for Asian carp spawning and contribute to the understanding of how hydraulic and water-quality information can be used to screen additional rivers in the future.

  14. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...

  15. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...

  16. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...

  17. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...

  18. Numerical Studies of a Fluidic Diverter for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  19. Experimental proof of faster-is-slower in systems of frictional particles flowing through constrictions.

    PubMed

    Pastor, José M; Garcimartín, Angel; Gago, Paula A; Peralta, Juan P; Martín-Gómez, César; Ferrer, Luis M; Maza, Diego; Parisi, Daniel R; Pugnaloni, Luis A; Zuriguel, Iker

    2015-12-01

    The "faster-is-slower" (FIS) effect was first predicted by computer simulations of the egress of pedestrians through a narrow exit [D. Helbing, I. J. Farkas, and T. Vicsek, Nature (London) 407, 487 (2000)]. FIS refers to the finding that, under certain conditions, an excess of the individuals' vigor in the attempt to exit causes a decrease in the flow rate. In general, this effect is identified by the appearance of a minimum when plotting the total evacuation time of a crowd as a function of the pedestrian desired velocity. Here, we experimentally show that the FIS effect indeed occurs in three different systems of discrete particles flowing through a constriction: (a) humans evacuating a room, (b) a herd of sheep entering a barn, and (c) grains flowing out a 2D hopper over a vibrated incline. This finding suggests that FIS is a universal phenomenon for active matter passing through a narrowing.

  20. Sufficient condition for finite-time singularity and tendency towards self-similarity in a high-symmetry flow

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    A highly symmetric Euler flow, first proposed by Kida (1985), and recently simulated by Boratav and Pelz (1994) is considered. It is found that the fourth order spatial derivative of the pressure (pxxxx) at the origin is most probably positive. It is demonstrated that if pxxxx grows fast enough, there must be a finite-time singularity (FTS). For a random energy spectrum E(k) ∞ k-v, a FTS can occur if the spectral index v<3. Furthermore, a positive pxxxx has the dynamical consequence of reducing the third derivative of the velocity uxxx at the origin. Since the expectation value of uxxx is zero for a random distribution of energy, an ever decreasing uxxx means that the Kida flow has an intrinsic tendency to deviate from a random state. By assuming that uxxx reaches the minimum value for a given spectral profile, the velocity and pressure are found to have locally self-similar forms similar in shape to what are found in numerical simulations. Such a quasi self-similar solution relaxes the requirement for FTS to v<6. A special self-similar solution that satisfies Kelvin's circulation theorem and exhibits a FTS is found for v=2.

  1. A debris avalanche at Forest Falls, San Bernardino County, California, July 11, 1999

    USGS Publications Warehouse

    Morton, Douglas M.; Hauser, Rachel M.

    2001-01-01

    This publication consists of the online version of a CD-ROM publication, U.S. Geological Survey Open-File Report 01-146. The data for this publication total 557 MB on the CD-ROM. For speed of transfer, the main PDF document has been compressed (with a subsequent loss of image quality) from 145 to 18.1 MB. The community of Forest Falls, California, is frequently subject to relatively slow moving debris flows. Some 11 debris flow events that were destructive to property have been recorded between 1955 and 1998. On July 11 and 13, 1999, debris flows again occurred, produced by high-intensity, short-duration monsoon rains. Unlike previous debris flow events, the July 11 rainfall generated a high-velocity debris avalanche in Snow Creek, one of the several creeks crossing the composite, debris flow dominated, alluvial fan on which Forest Falls is located. This debris avalanche overshot the bank of the active debris flow channel of Snow Creek, destroying property in the near vicinity and taking a life. The minimum velocity of this avalanche is calculated to have been in the range of 40 to 55 miles per hour. Impact from high-velocity boulders removed trees where the avalanche overshot the channel bank. Further down the fan, the rapidly moving debris fragmented the outer parts of the upslope side of large pine trees and embedded rock fragments into the tree trunks. Unlike the characteristic deposits formed by debris flows, the avalanche spread out down-slope and left no deposit suggestive of a debris avalanche. This summer monsoon-generated debris avalanche is apparently the first recorded for Forest Falls. The best indications of past debris avalanches may be the degree of permanent scars produced by extensive abrasion and splintering of the outer parts of pine trees that were in the path of an avalanche.

  2. Subject-Specific Fully-Coupled and One-Way Fluid-Structure Interaction Models for Modeling of Carotid Atherosclerotic Plaques in Humans

    PubMed Central

    Tao, Xiaojuan; Gao, Peiyi; Jing, Lina; Lin, Yan; Sui, Binbin

    2015-01-01

    Background Hemodynamics play an important role in the development and progression of carotid atherosclerosis, and may be important in the assessment of plaque vulnerability. The aim of this study was to develop a system to assess the hemodynamics of carotid atherosclerotic plaques using subject-specific fluid-structure interaction (FSI) models based on magnetic resonance imaging (MRI). Material/Methods Models of carotid bifurcations (n=86 with plaques from 52 patients, n=14 normal carotids from 12 participants) were obtained at the Department of Radiology, Beijing Tian Tan Hospital between 2010 and 2013. The maximum von Mises stress, minimum pressure, and flow velocity values were assessed at the most stenotic site in patients, or at the carotid bifurcations in healthy volunteers. Results of one-way FSI were compared with fully-coupled FSI for the plaques of 19 randomly selected models. Results The maximum von Mises stress and the minimum pressure and velocity were significantly increased in the stenosis group compared with controls based on one-way FSI (all P<0.05). The maximum von Mises stress and the minimum pressure were significantly higher and the velocity was significantly lower based on fully coupled FSI compared with on-way FSI (all P<0.05). Although there were differences in numerical values, both methods were equivalent. The maximum von Mises stress of vulnerable plaques was significantly higher than stable plaques (P<0.001). The maximum von Mises stress of the group with fibrous cap defect was significantly higher than the group without fibrous cap defect (P=0.001). Conclusions The hemodynamics of atherosclerotic plaques can be assessed noninvasively using subject-specific models of FSI based on MRI. PMID:26510514

  3. Dynamics of Trees of Fragmenting Granules in the Quiet Sun: Hinode/SOT Observations Compared to Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Malherbe, J.-M.; Roudier, T.; Stein, R.; Frank, Z.

    2018-01-01

    We compare horizontal velocities, vertical magnetic fields, and the evolution of trees of fragmenting granules (TFG, also named families of granules) derived in the quiet Sun at disk center from observations at solar minimum and maximum of the Solar Optical Telescope (SOT on board Hinode) and results of a recent 3D numerical simulation of the magneto-convection. We used 24-hour sequences of a 2D field of view (FOV) with high spatial and temporal resolution recorded by the SOT Broad band Filter Imager (BFI) and Narrow band Filter Imager (NFI). TFG were evidenced by segmentation and labeling of continuum intensities. Horizontal velocities were obtained from local correlation tracking (LCT) of proper motions of granules. Stokes V provided a proxy of the line-of-sight magnetic field (BLOS). The MHD simulation (performed independently) produced granulation intensities, velocity, and magnetic field vectors. We discovered that TFG also form in the simulation and show that it is able to reproduce the main properties of solar TFG: lifetime and size, associated horizontal motions, corks, and diffusive index are close to observations. The largest (but not numerous) families are related in both cases to the strongest flows and could play a major role in supergranule and magnetic network formation. We found that observations do not reveal any significant variation in TFG between solar minimum and maximum.

  4. An experimental study on the design, performance and suitability of evaporative cooling system using different indigenous materials

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur

    2017-06-01

    The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.

  5. Analysis of oscillatory pressure data including dynamic stall effects

    NASA Technical Reports Server (NTRS)

    Carta, F. O.

    1974-01-01

    The dynamic stall phenomenon was examined in detail by analyzing an existing set of unsteady pressure data obtained on an airfoil oscillating in pitch. Most of the data were for sinusoidal oscillations which penetrated the stall region in varying degrees, and here the effort was concentrated on the chordwise propagation of pressure waves associated with the dynamic stall. It was found that this phenomenon could be quantified in terms of a pressure wave velocity which is consistently much less than free-stream velocity, and which varies directly with frequency. It was also found that even when the stall region has been deeply penetrated and a substantial dynamic stall occurs during the downstroke, stall recovery near minimum incidence will occur, followed by a potential flow behavior up to stall inception.

  6. Preliminary Results of the Third Test Series of Nonmetal Material Flammability Evaluation In SKOROST Apparatus on the Space Station Mir

    NASA Technical Reports Server (NTRS)

    Ivanov, A. V.; Alymov, V. F.; Smirnov, A. B.; Shalayev, S. P.; Ye.Belov, D.; Balashov, Ye.V.; Andreeva, T. V.; Semenov, A. V.; Melikhov, A. S.; Bolodyan, I. A.; hide

    1999-01-01

    The work has been done according to the US/Russian Joint Project "Experimental Evaluation of the Material Flammability in Microgravity" a continued combustion study in the SKOROST test apparatus on the OS Mir. The objective of the project was to evaluate the flammability and flame-spread rate for the selected polymer materials in low velocity flow in microgravity. Lately, the issue of nonmetal material combustion in microgravity has become of great importance, based on the necessity to develop the fire safety system for the new International Space Station (ISS). Lack of buoyant flow in microgravity reduces oxygen transfer into the combustion zone, which leads to flame extinction when the flow velocity is less than the limiting flow velocity V(sub lim) for the material. The ISS FGB fire-safety system was developed based on this phenomenon. The existence of minimum flow velocity V(sub lim) to sustain fire for the selected materials was determined both theoretically and experimentally. In the latter, it is shown that, even for thermally thin nonmetal materials with a very low oxygen index C(sub lim) of 12.5% (paper sheets with the thickness of 0.1 mm), a limiting flow velocity V(sub lim) exists at oxygen concentration Co(sub OX) = 17-21%, and is about 1.0 - 0.1 cm/sec. This might be explained by the relative increase in thermal losses due to radiation from the surface and from the gaseous phase. In the second series of experiments in Skorost apparatus on Orbital Station Mir the existence of the limiting flow velocity V(sub lim) for combustion was confirmed for PMMA and glass-epoxy composite strip samples 2 mm thick at oxygen concentration C(sub OX) = 21.5%. It was concluded that V(sub lim) depends on C(sub OX) for the PMMA sample with a low oxygen index of 15.5%, the limiting flow velocity V(sub lim) was less than 0.5 cm/sec, and for the glass-epoxy composite sample with a high oxygen index of 19%, the limiting flow velocity V(sub lim) was higher than 15 cm/sec. As of now only those materials that maintain their integrity during combustion were investigated. The materials that disintegrate when burning present more danger for fire safety because the flame can spread farther with the parts of the structure, ejected melt drops, et cetera. Materials such as polyethylene are of great interest since they form a lengthy melt zone during the combustion in normal gravity. This melt zone generates drops of liquids that promote faster flame spread compared to usual combustion. The preliminary results of polyethylene insulation flammability evaluation in microgravity are shown in the NASA Wire Insulation Flammability (WIF) experiment during Space Shuttle flight STS-50. A lot of interesting data was collected during the WIF test program. However, one of the most important results was that, in microgravity, the extinction of the polyethylene occurred almost immediately when the flow of relatively low oxygen concentration (C(sub OX)=21%) was stopped. The purpose of the work reported here is to expand the existing data base on material flammability in microgravity and to conduct the third series of the space experiment using Skorost apparatus on Orbiatl Station Mir with melting polymers, which might increase the probability of fire and its propagation in ventilated microgravity environment of orbiting spacecraft.

  7. Interaction of a trailing vortex with an oscillating wing

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Fishman, G.; Rockwell, D.

    2018-01-01

    A technique of particle image velocimetry is employed to characterize the flow structure of a trailing vortex incident upon the tip region of an oscillating wing (plate). The amplitude and velocity of the wing are nearly two orders of magnitude smaller than the wing chord and free stream velocity, respectively. Depending upon the outboard displacement of the incident vortex relative to the wing tip, distinctive patterns of upwash, downwash, and shed vorticity are observed. These patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash attains minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. The magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase and then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. All of the foregoing features are interpreted in conjunction with the flow topology in the form of streamlines and critical points, superposed on patterns of vorticity. It is shown that despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the velocity of the wing tip, that is, they are not symmetric.

  8. Magnetic resonance imaging study on near miscible supercritical CO2 flooding in porous media

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Zhu, Ningjun; Zhao, Yuechao; Liu, Yu; Jiang, Lanlan; Wang, Tonglei

    2013-05-01

    CO2 flooding is one of the most popular secondary or tertiary recoveries for oil production. It is also significant for studying the mechanisms of the two-phase and multiphase flow in porous media. In this study, an experimental study was carried out by using magnetic resonance imaging technique to examine the detailed effects of pressure and rates on CO2/decane flow in a bead-pack porous media. The displacing processes were conducted under various pressures in a region near the minimum miscibility pressure (the system tuned from immiscible to miscible as pressure is increasing in this region) and the temperature of 37.8 °C at several CO2 injection volumetric rates of 0.05, 0.10, and 0.15 ml/min (or linear rates of 3.77, 7.54, and 11.3 ft/day). The evolution of the distribution of decane and the characteristics of the two phase flow were investigated and analyzed by considering the pressure and rate. The area and velocity of the transition zone between the two phases were calculated and analyzed to quantify mixing. The area of transition zone decreased with pressure at near miscible region and a certain injection rate and the velocity of the transition zone was always less than the "volumetric velocity" due to mutual solution and diffusion of the two phases. Therefore, these experimental results give the fundamental understanding of tertiary recovery processes at near miscible condition.

  9. Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption.

    PubMed

    Roche, O; Buesch, D C; Valentine, G A

    2016-03-07

    Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ∼ 70-90 cm diameter from the substrates along the flow paths. Here we combine these data with new experimental results to show that the flow's base had high-particle concentration and relatively modest speeds of ∼ 5-20 m s(-1), fed by an eruption discharging magma at rates up to ∼ 10(7)-10(8) m(3) s(-1) for a minimum of 2.5-10 h. We conclude that sustained high-eruption discharge and long-lived high-pore pressure in dense granular dispersion can be more important than large initial velocity and turbulent transport with dilute suspension in promoting long pyroclastic flow distance.

  10. A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.; ,

    2002-01-01

    Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.

  11. Upper mantle structure of the Tonga-Lau-Fiji region from Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    Wei, S. Shawn; Zha, Yang; Shen, Weisen; Wiens, Douglas A.; Conder, James A.; Webb, Spahr C.

    2016-11-01

    We investigate the upper mantle seismic structure in the Tonga-Lau-Fiji region by jointly fitting the phase velocities of Rayleigh waves from ambient-noise and two-plane-wave tomography. The results suggest a wide low-velocity zone beneath the Lau Basin, with a minimum SV-velocity of about 3.7 ± 0.1 km/s, indicating upwelling hot asthenosphere with extensive partial melting. The variations of velocity anomalies along the Central and Eastern Lau Spreading Centers suggest varying mantle porosity filled with melt. In the north where the spreading centers are distant from the Tonga slab, the inferred melting commences at about 70 km depth, and forms an inclined zone in the mantle, dipping to the west away from the arc. This pattern suggests a passive decompression melting process supplied by the Australian plate mantle from the west. In the south, as the supply from the Australian mantle is impeded by the Lau Ridge lithosphere, flux melting controlled by water from the nearby slab dominates in the back-arc. This source change results in the rapid transition in geochemistry and axial morphology along the spreading centers. The remnant Lau Ridge and the Fiji Plateau are characterized by a 60-80 km thick lithosphere underlain by a low-velocity asthenosphere. Our results suggest the removal of the lithosphere of the northeastern Fiji Plateau-Lau Ridge beneath the active Taveuni Volcano. Azimuthal anisotropy shows that the mantle flow direction rotates from trench-perpendicular beneath Fiji to spreading-perpendicular beneath the Lau Basin, which provides evidence for the southward flow of the mantle wedge and the Samoan plume.

  12. Optical tweezers for measuring the interaction of the two single red blood cells in flow condition

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander

    2017-03-01

    Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)

  13. Experimental and analytical investigation of a freezing point depressant fluid ice protection system. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Albright, A. E.

    1984-01-01

    A glycol-exuding porous leading edge ice protection system was tested in the NASA Icing Research Tunnel. Stainless steel mesh, laser drilled titanium, and composite panels were tested on two general aviation wing sections. Two different glycol-water solutions were evaluated. Minimum glycol flow rates required for anti-icing were obtained as a function of angle of attack, liquid water content, volume median drop diameter, temperature, and velocity. Ice accretions formed after five minutes of icing were shed in three minutes or less using a glycol fluid flow equal to the anti-ice flow rate. Two methods of predicting anti-ice flow rates are presented and compared with a large experimental data base of anti-ice flow rates over a wide range of icing conditions. The first method presented in the ADS-4 document typically predicts flow rates lower than the experimental flow rates. The second method, originally published in 1983, typically predicts flow rates up to 25 percent higher than the experimental flow rates. This method proved to be more consistent between wing-panel configurations. Significant correlation coefficients between the predicted flow rates and the experimental flow rates ranged from .867 to .947.

  14. Change in Coronary Blood Flow After Percutaneous Coronary Intervention in Relation to Baseline Lesion Physiology Results of the JUSTIFY-PCI Study

    PubMed Central

    Nijjer, Sukhjinder S.; Petraco, Ricardo; van de Hoef, Tim P.; Sen, Sayan; van Lavieren, Martijn A.; Foale, Rodney A.; Meuwissen, Martijn; Broyd, Christopher; Echavarria-Pinto, Mauro; Al-Lamee, Rasha; Foin, Nicolas; Sethi, Amarjit; Malik, Iqbal S.; Mikhail, Ghada W.; Hughes, Alun D.; Mayet, Jamil; Francis, Darrel P.; Di Mario, Carlo; Escaned, Javier; Piek, Jan J.; Davies, Justin E.

    2016-01-01

    Background Percutaneous coronary intervention (PCI) aims to increase coronary blood flow by relieving epicardial obstruction. However, no study has objectively confirmed this and assessed changes in flow over different phases of the cardiac cycle. We quantified the change in resting and hyperemic flow velocity after PCI in stenoses defined physiologically by fractional flow reserve and other parameters. Methods and Results Seventy-five stenoses (67 patients) underwent paired flow velocity assessment before and after PCI. Flow velocity was measured over the whole cardiac cycle and the wave-free period. Mean fractional flow reserve was 0.68±0.02. Pre-PCI, hyperemic flow velocity is diminished in stenoses classed as physiologically significant compared with those classed nonsignificant (P<0.001). In significant stenoses, flow velocity over the resting wave-free period and hyperemic flow velocity did not differ statistically. After PCI, resting flow velocity over the wave-free period increased little (5.6±1.6 cm/s) and significantly less than hyperemic flow velocity (21.2±3 cm/s; P<0.01). The greatest increase in hyperemic flow velocity was observed when treating stenoses below physiological cut points; treating stenoses with fractional flow reserve ≤0.80 gained Δ28.5±3.8 cm/s, whereas those fractional flow reserve >0.80 had a significantly smaller gain (Δ4.6±2.3 cm/s; P<0.001). The change in pressure-only physiological indices demonstrated a curvilinear relationship to the change in hyperemic flow velocity but was flat for resting flow velocity. Conclusions Pre-PCI physiology is strongly associated with post-PCI increase in hyperemic coronary flow velocity. Hyperemic flow velocity increases 6-fold more when stenoses classed as physiologically significant undergo PCI than when nonsignificant stenoses are treated. Resting flow velocity measured over the wave-free period changes at least 4-fold less than hyperemic flow velocity after PCI. PMID:26025217

  15. Change in coronary blood flow after percutaneous coronary intervention in relation to baseline lesion physiology: results of the JUSTIFY-PCI study.

    PubMed

    Nijjer, Sukhjinder S; Petraco, Ricardo; van de Hoef, Tim P; Sen, Sayan; van Lavieren, Martijn A; Foale, Rodney A; Meuwissen, Martijn; Broyd, Christopher; Echavarria-Pinto, Mauro; Al-Lamee, Rasha; Foin, Nicolas; Sethi, Amarjit; Malik, Iqbal S; Mikhail, Ghada W; Hughes, Alun D; Mayet, Jamil; Francis, Darrel P; Di Mario, Carlo; Escaned, Javier; Piek, Jan J; Davies, Justin E

    2015-06-01

    Percutaneous coronary intervention (PCI) aims to increase coronary blood flow by relieving epicardial obstruction. However, no study has objectively confirmed this and assessed changes in flow over different phases of the cardiac cycle. We quantified the change in resting and hyperemic flow velocity after PCI in stenoses defined physiologically by fractional flow reserve and other parameters. Seventy-five stenoses (67 patients) underwent paired flow velocity assessment before and after PCI. Flow velocity was measured over the whole cardiac cycle and the wave-free period. Mean fractional flow reserve was 0.68±0.02. Pre-PCI, hyperemic flow velocity is diminished in stenoses classed as physiologically significant compared with those classed nonsignificant (P<0.001). In significant stenoses, flow velocity over the resting wave-free period and hyperemic flow velocity did not differ statistically. After PCI, resting flow velocity over the wave-free period increased little (5.6±1.6 cm/s) and significantly less than hyperemic flow velocity (21.2±3 cm/s; P<0.01). The greatest increase in hyperemic flow velocity was observed when treating stenoses below physiological cut points; treating stenoses with fractional flow reserve ≤0.80 gained Δ28.5±3.8 cm/s, whereas those fractional flow reserve >0.80 had a significantly smaller gain (Δ4.6±2.3 cm/s; P<0.001). The change in pressure-only physiological indices demonstrated a curvilinear relationship to the change in hyperemic flow velocity but was flat for resting flow velocity. Pre-PCI physiology is strongly associated with post-PCI increase in hyperemic coronary flow velocity. Hyperemic flow velocity increases 6-fold more when stenoses classed as physiologically significant undergo PCI than when nonsignificant stenoses are treated. Resting flow velocity measured over the wave-free period changes at least 4-fold less than hyperemic flow velocity after PCI. © 2015 American Heart Association, Inc.

  16. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  17. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  18. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  19. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  20. Analysis of Trajectory Parameters for Probe and Round-Trip Missions to Venus

    NASA Technical Reports Server (NTRS)

    Dugan, James F., Jr.; Simsic, Carl R.

    1960-01-01

    For one-way transfers between Earth and Venus, charts are obtained that show velocity, time, and angle parameters as functions of the eccentricity and semilatus rectum of the Sun-focused vehicle conic. From these curves, others are obtained that are useful in planning one-way and round-trip missions to Venus. The analysis is characterized by circular coplanar planetary orbits, successive two-body approximations, impulsive velocity changes, and circular parking orbits at 1.1 planet radii. For round trips the mission time considered ranges from 65 to 788 days, while wait time spent in the parking orbit at Venus ranges from 0 to 467 days. Individual velocity increments, one-way travel times, and departure dates are presented for round trips requiring the minimum total velocity increment. For both single-pass and orbiting Venusian probes, the time span available for launch becomes appreciable with only a small increase in velocity-increment capability above the minimum requirement. Velocity-increment increases are much more effective in reducing travel time for single-pass probes than they are for orbiting probes. Round trips composed of a direct route along an ellipse tangent to Earth's orbit and an aphelion route result in the minimum total velocity increment for wait times less than 100 days and mission times ranging from 145 to 612 days. Minimum-total-velocity-increment trips may be taken along perihelion-perihelion routes for wait times ranging from 300 to 467 days. These wait times occur during missions lasting from 640 to 759 days.

  1. Study on of Seepage Flow Velocity in Sand Layer Profile as Affected by Water Depth and Slope Gradience

    NASA Astrophysics Data System (ADS)

    Han, Z.; Chen, X.

    2017-12-01

    BACKGROUND: The subsurface water flow velocity is of great significance in understanding the hydrodynamic characteristics of soil seepage and the influence of interaction between seepage flow and surface runoff on the soil erosion and sediment transport process. OBJECTIVE: To propose a visualized method and equipment for determining the seepage flow velocity and measuring the actual flow velocity and Darcy velocity as well as the relationship between them.METHOD: A transparent organic glass tank is used as the test soil tank, the white river sand is used as the seepage test material and the fluorescent dye is used as the indicator for tracing water flow, so as to determine the thickness and velocity of water flow in a visualized way. Water is supplied at the same flow rate (0.84 L h-1) to the three parts with an interval of 1m at the bottom of the soil tank and the pore water velocity and the thickness of each water layer are determined under four gradient conditions. The Darcy velocity of each layer is calculated according to the water supply flow and the discharge section area. The effective discharge flow pore is estimated according to the moisture content and porosity and then the relationship between Darcy velocity and the measured velocity is calculated based on the water supply flow and the water layer thickness, and finally the correctness of the calculation results is verified. RESULTS: According to the velocity calculation results, Darcy velocity increases significantly with the increase of gradient; in the sand layer profile, the flow velocity of pore water at different depths increases with the increase of gradient; under the condition of the same gradient, the lower sand layer has the maximum flow velocity of pore water. The air-filled porosity of sand layer determines the proportional relationship between Darcy velocity and pore flow velocity. CONCLUSIONS: The actual flow velocity and Darcy velocity can be measured by a visualized method and the relationship between Darcy velocity and pore velocity can be expressed well by the air-filled porosity of sand layer. The flow velocity measurement and test method adopted in the research is effective and feasible. IMPLICATIONS: The visualized flow velocity measurement method can be applied to simulate and measure the characteristics of subsurface water flow in the soil.

  2. TANK48 CFD MODELING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.« less

  3. Characteristics of low reynolds number shear-free turbulence at an impermeable base.

    PubMed

    Wan Mohtar, W H M; ElShafie, A

    2014-01-01

    Shear-free turbulence generated from an oscillating grid in a water tank impinging on an impermeable surface at varying Reynolds number 74 ≤ Re(l) ≤ 570 was studied experimentally, where the Reynolds number is defined based on the root-mean-square (r.m.s) horizontal velocity and the integral length scale. A particular focus was paid to the turbulence characteristics for low Re(l) < 150 to investigate the minimum limit of Re l obeying the profiles of rapid distortion theory. The measurements taken at near base included the r.m.s turbulent velocities, evolution of isotropy, integral length scales, and energy spectra. Statistical analysis of the velocity data showed that the anisotropic turbulence structure follows the theory for flows with Re(l) ≥ 117. At low Re(l) < 117, however, the turbulence profile deviated from the prediction where no amplification of horizontal velocity components was observed and the vertical velocity components were seen to be constant towards the tank base. Both velocity components sharply decreased towards zero at a distance of ≈ 1/3 of the integral length scale above the base due to viscous damping. The lower limit where Re(l) obeys the standard profile was found to be within the range 114 ≤ Re(l) ≤ 116.

  4. Characteristics of Low Reynolds Number Shear-Free Turbulence at an Impermeable Base

    PubMed Central

    Wan Mohtar, W. H. M.; ElShafie, A.

    2014-01-01

    Shear-free turbulence generated from an oscillating grid in a water tank impinging on an impermeable surface at varying Reynolds number 74 ≤ Re l ≤ 570 was studied experimentally, where the Reynolds number is defined based on the root-mean-square (r.m.s) horizontal velocity and the integral length scale. A particular focus was paid to the turbulence characteristics for low Re l < 150 to investigate the minimum limit of Re l obeying the profiles of rapid distortion theory. The measurements taken at near base included the r.m.s turbulent velocities, evolution of isotropy, integral length scales, and energy spectra. Statistical analysis of the velocity data showed that the anisotropic turbulence structure follows the theory for flows with Re l ≥ 117. At low Re l < 117, however, the turbulence profile deviated from the prediction where no amplification of horizontal velocity components was observed and the vertical velocity components were seen to be constant towards the tank base. Both velocity components sharply decreased towards zero at a distance of ≈1/3 of the integral length scale above the base due to viscous damping. The lower limit where Re l obeys the standard profile was found to be within the range 114 ≤ Re l ≤ 116. PMID:25250384

  5. Complex regression Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2018-04-01

    We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.

  6. A Highly Similar Mathematical Model for Cerebral Blood Flow Velocity in Geriatric Patients with Suspected Cerebrovascular Disease

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Qi; Wang, Jisheng; Xiang, Hu; Ge, Hong; Wang, Hui; Xie, Peng

    2015-10-01

    Cerebral blood flow velocity(CBFV) is an important parameter for study of cerebral hemodynamics. However, a simple and highly similar mathematical model has not yet been established for analyzing CBFV. To alleviate this issue, through TCD examination in 100 geriatric patients with suspected cerebrovascular disease (46 males and 54 females), we established a representative eighth-order Fourier function Vx(t) that simulates the CBFV. The measured TCD waveforms were compared to those derived from Vx(t), an illustrative Kolmogorov-Smirnov test was employed to determine the validity. The results showed that the TCD waves could been reconstructed for patients with different CBFVs by implementing their variable heart rates and the formulated maximum/minimum of Vx(t). Comparisons between derived and measured TCD waveforms suggest that the two waveforms are very similar. The results confirm that CBFV can be well-modeled through an eighth-order Fourier function. This function Vx(t) can be used extensively for a prospective study of cerebral hemodynamics in geriatric patients with suspected cerebrovascular disease.

  7. Wake characteristics of an eight-leg tower for a MOD-0 type wind turbine

    NASA Technical Reports Server (NTRS)

    Savino, J. M.; Wagner, L. H.; Sinclair, D.

    1977-01-01

    Low speed wind tunnel tests were conducted to determine the flow characteristics of the wake downwind of a 1/25th scale, all tubular eight leg tower concept suitable for application to the DOE-NASA MOD-0 wind power turbine. Measurements were made of wind speed profiles, and from these were determined the wake local minimum velocity, average velocity, and width for several wind approach angles. These data are presented herein along with tower shadow photographs and comparisons with data from an earlier lattice type, four leg tower model constructed of tubular members. Values of average wake velocity defect ratio and average ratio of wake width to blade radius for the eight leg model were estimated to be around 0.17 and 0.30, respectively, at the plane of the rotor blade. These characteristics suggest that the tower wake of the eight leg concept is slightly less than that of the four leg design.

  8. In-flight leading-edge extension vortex flow-field survey measurements on a F-18 aircraft at high angle of attack

    NASA Technical Reports Server (NTRS)

    Richwine, David M.; Fisher, David F.

    1992-01-01

    Flow-field measurements on the leading-edge extension (LEX) of the F-18 High Alpha Research Vehicle (HARV) were obtained using a rotating rake with 16 hemispherical-tipped five-hole probes. Detailed pressure, velocity, and flow direction data were obtained through the LEX vortex core. Data were gathered during 1-g quasi-stabilized flight conditions at angles of attack alpha from 10 degrees to 52 degrees and at Reynolds numbers based on mean aerodynamic cord up to 16 x 10(exp 6). Normalized dynamic pressures and crossflow velocities clearly showed the primary vortex above the LEX and formation of a secondary vortex at higher angles of attack. The vortex was characterized by a ring of high dynamic pressure surrounding a region of low dynamic pressure at the vortex core center. The vortex core, subcore diameter, and vertical location of the core above the LEX increased with angle of attack. Minimum values for static pressure were obtained in the vortex subcore and decreased nearly linearly with increasing angle of attack until vortex breakdown. Rake-measured static pressures were consistent with previously documented surface pressures and showed good agreement with flow visualization flight test results. Comparison of the LEX vortex flight test data to computational solutions at alpha approximately equals 19 degrees and 30 degrees showed fair correlation.

  9. The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics

    NASA Astrophysics Data System (ADS)

    Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.

    2017-10-01

    A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  10. Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Dabiri, John O.

    2017-04-01

    Large eddy simulation (LES) is coupled with a turbine model to study the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a tuning-free anisotropic minimum dissipation model is used to parameterise the subfilter stress tensor, while the turbine-induced forces are modelled with an actuator line technique. The LES framework is first validated in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit can be well characterised by a two-dimensional multivariate Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine. Also, a simple parameterisation of VAWTs for LES with very coarse grid resolutions is proposed, in which the turbine is modelled as a rectangular porous plate with the same thrust coefficient. The simulation results show that, after some downwind distance (x/D ≈ 6), both actuator line and rectangular porous plate models have similar predictions for the mean velocity deficit. These results are of particular importance in simulations of large wind farms where, due to the coarse spatial resolution, the flow around individual VAWTs is not resolved.

  11. Use of complex hydraulic variables to predict the distribution and density of unionids in a side channel of the Upper Mississippi River

    USGS Publications Warehouse

    Steuer, J.J.; Newton, T.J.; Zigler, S.J.

    2008-01-01

    Previous attempts to predict the importance of abiotic and biotic factors to unionids in large rivers have been largely unsuccessful. Many simple physical habitat descriptors (e.g., current velocity, substrate particle size, and water depth) have limited ability to predict unionid density. However, more recent studies have found that complex hydraulic variables (e.g., shear velocity, boundary shear stress, and Reynolds number) may be more useful predictors of unionid density. We performed a retrospective analysis with unionid density, current velocity, and substrate particle size data from 1987 to 1988 in a 6-km reach of the Upper Mississippi River near Prairie du Chien, Wisconsin. We used these data to model simple and complex hydraulic variables under low and high flow conditions. We then used classification and regression tree analysis to examine the relationships between hydraulic variables and unionid density. We found that boundary Reynolds number, Froude number, boundary shear stress, and grain size were the best predictors of density. Models with complex hydraulic variables were a substantial improvement over previously published discriminant models and correctly classified 65-88% of the observations for the total mussel fauna and six species. These data suggest that unionid beds may be constrained by threshold limits at both ends of the flow regime. Under low flow, mussels may require a minimum hydraulic variable (Rez.ast;, Fr) to transport nutrients, oxygen, and waste products. Under high flow, areas with relatively low boundary shear stress may provide a hydraulic refuge for mussels. Data on hydraulic preferences and identification of other conditions that constitute unionid habitat are needed to help restore and enhance habitats for unionids in rivers. ?? 2008 Springer Science+Business Media B.V.

  12. Evidence of extreme storm events from coral boulder deposits on the southern coast of Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Gao, S.

    2017-12-01

    The southern coast of Hainan Island in China is one of the most frequently hit areas of tropical cyclones in the Pacific Northwest regions. Long-term storm data are important to reconstruct past extreme wave events, for understanding present-day coastal vulnerability. However, the magnitude of storm and typhoon events in the historical period over the northwestern South China Sea is still poorly understood. A primary study was carried out to investigate into the characteristics of a carbonate boulder field found at the Xiaodonghai (XDH) site on the southern coast of Hainan Island, in order to derive the maximum spatial extent, wave height, and velocity of coastal flooding and to determine the type of extreme wave events responsible for the boulder distributions. We recorded the position, shape, size, and the long axis orientation of 1247 of the boulders, with the a-axes being between 0.52 and 3.76 m. A morphometric analysis of the boulders shows that they are distributed within 160 m of the reef edge, with an exponential fining trend shoreward. Numerical models are used to estimate the minimum wave height and minimum flow velocity required to move these boulders. Flow velocities of 1.76-14.73 m/s and storm wave height of 0.47-15.87 m are needed to displace the measured boulders deposited near the mean sea level. These values are consistent with the dataset of storm boulder transport at other sites in the Asia-Pacific region and local instrumental records. Overall, the carbonate boulder deposits at the XDH site implies that the area is exposed to giant storm waves capable of displacing the very large boulders observed here. The recurrence of a similar storm event in the future will have the potential to cause severe coastal flooding damage on this densely populated part of the low-lying coastlines of Hainan Island.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polat, Orhan, E-mail: orhan.polat@deu.edu.tr; Özer, Çaglar, E-mail: caglar.ozer@deu.edu.tr; Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Geophysical Engineering, Izmir-Turkey

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improvedmore » by using new minimum velocity structure.« less

  14. Method of particle trajectory recognition in particle flows of high particle concentration using a candidate trajectory tree process with variable search areas

    DOEpatents

    Shaffer, Franklin D.

    2013-03-12

    The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.

  15. The effect of porosity and flexibility on the hydrodynamics behind a mangrove-like root model

    NASA Astrophysics Data System (ADS)

    Kazemi, Amirkhosro; Parry, Samantha; van de Riet, Keith; Curet, Oscar

    2015-11-01

    Mangroves play a prominent role in coastal areas in subtropics regions. Mangrove forests are of special interest to protect shorelines against storm surges, hurricane winds, sea-level rise and tsunamis. In addition, mangroves play a critical role in filtering water and providing habitat to different organisms. In this work we study the complex interaction of water flow and mangrove roots which were modeled with a circular array of cylinders with different spacing between them as well as different configurations. In addition, we modeled the flexibility of the roots by attaching rigid cylinders to torsional connectors. The models were tested in a water tunnel for a range of Reynolds number from 2200 to 12000. In a series of experiments we measured the drag force, instant and mean velocity behind the models. We also performed 2D flow visualization for the models in a flowing soap film setup. The results show that the minimum velocity of the wake is highly dependent on the porosity and flexibility of the roots. We observed that there is a small-scale turbulent region. This turbulence is recombined downstream in a larger vortex structure eventually forming a von Karman vortex street wake. We compare the results from rigid cylinder and the flexible counterpart.

  16. Dynamically consistent hydrography and absolute velocity in the eastern North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Wunsch, Carl

    1994-01-01

    The problem of mapping a dynamically consistent hydrographic field and associated absolute geostrophic flow in the eastern North Atlantic between 24 deg and 36 deg N is related directly to the solution of the so-called thermocline equations. A nonlinear optimization problem involving Needler's P equation is solved to find the hydrography and resulting flow that minimizes the vertical mixing above about 1500 m in the ocean and is simultaneously consistent with the observations. A sharp minimum (at least in some dimensions) is found, apparently corresponding to a solution nearly conserving potential vorticity and with vertical eddy coefficient less than about 10(exp -5) sq m/s. Estimates of `residual' quantities such as eddy coefficients are extremely sensitive to slight modifications to the observed fields. Boundary conditions, vertical velocities, etc., are a product of the optimization and produce estimates differing quantitatively from prior ones relying directly upon observed hydrography. The results are generally insensitive to particular elements of the solution methodology, but many questions remain concerning the extent to which different synoptic sections can be asserted to represent the same ocean. The method can be regarded as a practical generalization of the beta spiral and geostrophic balance inverses for the estimate of absolute geostrophic flows. Numerous improvements to the methodology used in this preliminary attempt are possible.

  17. Flow over bedforms in a large sand-bed river: A field investigation

    USGS Publications Warehouse

    Holmes, Robert R.; Garcia, Marcelo H.

    2008-01-01

    An experimental field study of flows over bedforms was conducted on the Missouri River near St. Charles, Missouri. Detailed velocity data were collected under two different flow conditions along bedforms in this sand-bed river. The large river-scale data reflect flow characteristics similar to those of laboratory-scale flows, with flow separation occurring downstream of the bedform crest and flow reattachment on the stoss side of the next downstream bedform. Wave-like responses of the flow to the bedforms were detected, with the velocity decreasing throughout the flow depth over bedform troughs, and the velocity increasing over bedform crests. Local and spatially averaged velocity distributions were logarithmic for both datasets. The reach-wise spatially averaged vertical-velocity profile from the standard velocity-defect model was evaluated. The vertically averaged mean flow velocities for the velocity-defect model were within 5% of the measured values and estimated spatially averaged point velocities were within 10% for the upper 90% of the flow depth. The velocity-defect model, neglecting the wake function, was evaluated and found to estimate thevertically averaged mean velocity within 1% of the measured values.  

  18. Low-dose mannitol (0.3 g kg(-1)) improves the pulsatility index and minimum diastolic blood flow velocity in traumatic brain injury.

    PubMed

    Nincevic, Zeljko; Mestrovic, Julije; Nincevic, Jasna; Sundov, Zeljko; Kuscevic, Dorjan

    2015-01-01

    The aim of the study was to investigate the effects of using low-dose mannitol (0.3 g kg(-1)) on the pulsatility index (PI) and minimum diastolic blood flow velocity (FV-min) of the middle cerebral artery in a traumatic brain injury (TBI). Low-dose mannitol (0.3 g kg(-1)) was administered to a group of 20 patients with a TBI. Transcranial Doppler (TCD) ultrasonography was used to monitor the PI and FV-min. The study included patients with a diffuse traumatic brain injury and Glasgow coma score < 8. The initial TCD ultrasonography values were pathological (PI > 1.4 and FV-min < 20 cm s(-1)). TCD ultrasonography examinations were carried out before mannitol administration, immediately after administration and 1, 2 and 3 hours after the administration of mannitol. A one-way analysis of variance revealed significant changes in the PI (F = 8.392; p < 0.001) and FV-min (F = 8.291; p = 0.001) after the use of mannitol. Low-dose mannitol administration appears to be efficacious for improving the indicators of disturbed circulation in a TBI (FV-min increase, PI decrease). The maximum decrease in the PI was recorded 1 hour after the administration of mannitol and was 10.9% of the initial value. The maximum increase in the FV-min was recorded 1 hour after administration and was 29.7% of the initial value. These changes were significant ∼ 2 hours later.

  19. Optimal heliocentric trajectories for solar sail with minimum area

    NASA Astrophysics Data System (ADS)

    Petukhov, Vyacheslav G.

    2018-05-01

    The fixed-time heliocentric trajectory optimization problem is considered for planar solar sail with minimum area. Necessary optimality conditions are derived, a numerical method for solving the problem is developed, and numerical examples of optimal trajectories to Mars, Venus and Mercury are presented. The dependences of the minimum area of the solar sail from the date of departure from the Earth, the time of flight and the departing hyperbolic excess of velocity are analyzed. In particular, for the rendezvous problem (approaching a target planet with zero relative velocity) with zero departing hyperbolic excess of velocity for a flight duration of 1200 days it was found that the minimum area-to-mass ratio should be about 12 m2/kg for trajectory to Venus, 23.5 m2/kg for the trajectory to Mercury and 25 m2/kg for trajectory to Mars.

  20. Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Drapaca, Corina; Chen, Xiaolin; Xu, Jie

    2017-07-01

    Models of a droplet passing through narrow constrictions have wide applications in science and engineering. In this paper, we report our findings on the minimum impulse (momentum change) of pushing a droplet through a narrow circular constriction. The existence of this minimum impulse is mathematically derived and numerically verified. The minimum impulse happens at a critical velocity when the time-averaged Young-Laplace pressure balances the total minor pressure loss in the constriction. Finally, numerical simulations are conducted to verify these concepts. These results could be relevant to problems of energy optimization and studies of chemical and biomedical systems.

  1. Air velocity distribution in a commercial broiler house

    USDA-ARS?s Scientific Manuscript database

    Increasing air velocity during tunnel ventilation in commercial broiler production facilities improves production efficiency, and many housing design specifications require a minimum air velocity. Air velocities are typically assessed with a hand-held velocity meter at random locations, rather than ...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginn, Timothy R.; Weathers, Tess

    Biogeochemical modeling using PHREEQC2 and a streamtube ensemble approach is utilized to understand a well-to-well subsurface treatment system at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. Treatment involves in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. Reaction kinetics, equilibrium phases, and cation exchange are used within PHREEQC2 to track pH and levels of calcium, ammonium, urea, and calcite precipitation over time, within a series of one-dimensional advective-dispersive transport paths creating a streamtube ensemble representation of the well-to-well transport. An understandingmore » of the impact of physical heterogeneities within this radial flowfield is critical for remediation design; we address this via the streamtube approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is spatially-variable in a common way, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance in the case of ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized radial non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” pattern of non-uniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well.« less

  3. A double-gaussian, percentile-based method for estimating maximum blood flow velocity.

    PubMed

    Marzban, Caren; Illian, Paul R; Morison, David; Mourad, Pierre D

    2013-11-01

    Transcranial Doppler sonography allows for the estimation of blood flow velocity, whose maximum value, especially at systole, is often of clinical interest. Given that observed values of flow velocity are subject to noise, a useful notion of "maximum" requires a criterion for separating the signal from the noise. All commonly used criteria produce a point estimate (ie, a single value) of maximum flow velocity at any time and therefore convey no information on the distribution or uncertainty of flow velocity. This limitation has clinical consequences especially for patients in vasospasm, whose largest flow velocities can be difficult to measure. Therefore, a method for estimating flow velocity and its uncertainty is desirable. A gaussian mixture model is used to separate the noise from the signal distribution. The time series of a given percentile of the latter, then, provides a flow velocity envelope. This means of estimating the flow velocity envelope naturally allows for displaying several percentiles (e.g., 95th and 99th), thereby conveying uncertainty in the highest flow velocity. Such envelopes were computed for 59 patients and were shown to provide reasonable and useful estimates of the largest flow velocities compared to a standard algorithm. Moreover, we found that the commonly used envelope was generally consistent with the 90th percentile of the signal distribution derived via the gaussian mixture model. Separating the observed distribution of flow velocity into a noise component and a signal component, using a double-gaussian mixture model, allows for the percentiles of the latter to provide meaningful measures of the largest flow velocities and their uncertainty.

  4. Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.

    PubMed

    Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki

    2017-02-01

    Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.

  5. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  6. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  7. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  8. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  9. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  10. The X-Ray Lightcurve of Eta Carinae: Refinement of the Orbit and Evidence for Phase Dependent Mass Loss

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Ishibashi, K.; Swank, J. H.; Petre, R.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    We solve the RXTE X-ray lightcurve of the extremely luminous and massive star eta Carinae with a colliding wind emission model to refine the ground-based orbital elements. The sharp decline to X-ray minimum at the end of 1997 fixes the date of the last periastron passage at 1997.95 +/- 0.05, not 1998.13 as derived from ground-based radial velocities. This helps resolve a discrepancy between the ground-based radial velocities and spatially-resolved velocity measures obtained by STIS. The X-ray data are consistent with a mass function f(M) approx. = 1.5, lower than the value f(M) approx. = 7.5 previously reported, so that the masses of eta Carinae and the companion are M(sub eta) greater than or = 80 solar mass and M(sub c) approx. 30 solar mass respectively. In addition the X-ray data suggest that the mass loss rate from eta Carinae is generally less than 3 x 10(exp -4) solar mass/yr, about a factor of 5 lower than that derived from some observations in other wavebands. We could not match the duration of the X-ray minimum with any standard colliding wind model in which the wind is spherically symmetric and the mass loss rate is constant. However we show that we can match the variations around X-ray minimum if we include an increase of a factor of approx. 20 in the mass loss rate from eta Carinae for approximately 80 days following periastron. If real, this excess in M would be the first evidence of enhanced mass flow off the primary when the two stars are close (presumably driven by tidal interactions). Our interpretation of the X-ray data suggest that the ASCA and RXTE X-ray spectra near the X-ray minimum are significantly contaminated by unresolved hard emission (E greater than or = 2 keV) from sonic other nearby source, probably associated with scattering of tile colliding wind emission by circumstellar dust. Based on the X-ray fluxes the distance to n Carinae is 2300 pc with formal uncertainties of only approx. 10%.

  11. Modeling of Ureolytic Calcite Precipitation for the Remediation of Sr-90 Using a Variable Velocity Streamtube Ensemble

    NASA Astrophysics Data System (ADS)

    Weathers, T. S.; Ginn, T. R.; Spycher, N.; Barkouki, T. H.; Fujita, Y.; Smith, R. W.

    2009-12-01

    Subsurface contamination is often mitigated with an injection/extraction well system. An understanding of heterogeneities within this radial flowfield is critical for modeling, prediction, and remediation of the subsurface. We address this using a Lagrangian approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). A well-to-well treatment system that incorporates in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90 has been explored at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. PHREEQC2 provides a one-dimensional advective-dispersive transport option that can be and has been used in streamtube ensemble models. Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is variable in space, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance if kinetic reactions are present with multiple components, if kinetic reaction rates vary in space, if the reactions involve multiple phases (e.g. heterogeneous reactions), and/or if they impact physical characteristics (porosity/permeability), as does ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” nonuniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well. Breakthrough data from urea injection experiments performed at the VZRP are compared to the model results from the PHREEQC2 variable velocity ensemble.

  12. Mathematical simulation of boulder dislodgement by high-energy marine flows in the western coast of Portugal

    NASA Astrophysics Data System (ADS)

    Canelas, Ricardo; Oliveira, Maria; Crespo, Alejandro; Neves, Ramiro; Costa, Pedro; Freitas, Conceição; Andrade, César; Ferreira, Rui

    2014-05-01

    The study of coastal boulder deposits related with marine abrupt inundation events has been addressed by several authors using conventional numerical solutions that simulate particle transport by storm and tsunami, sometimes with contradictory results (Nandasena et al. 2011, Kain et al. 2012). The biggest challenge has been the differentiation of the events (storm or tsunami), and the reconstruction of wave parameters (e.g. wave height, length, direction) responsible for the entrainment and transport of these megaclasts. In this study we employ an inverse-problem strategy to determine the cause of dislodgement of megaclasts and to explain the pattern of deposition found in some locations of the Portuguese western coast, well above maximum records of sea level. It is envisaged that the causes are either flows originated by wave breaking, typically associated to storms, which would impart large momentum in a short time interval (herein impulsive motion), or long waves such as a tsunamis, that would transport the clasts in a mode analogous to bedload (herein sustained motion). The geometry of the problem is idealized but represents the key features of overhanging layers related with fractures, bedding and differential erosion of sub-horizontal layers. In plan view, concave and convex coastline shapes are testes to assess the influence of flow concentration. These geometrical features are representative of the western Portuguese coast. The fluid-solid model solves numerically the Navier-Stokes equations for the liquid phase and Newton's motion equations for solid bodies. The discretization of both fluid and solids is performed with Smooth Particle Hydrodynamics (SPH). The model is based DualSPHyics code (www.dual.sphysics.org) and represents an effort to avoid different discretization techniques for different phases in motion. This approach to boulder transport demonstrates that the ability of high-energy flow events to entrain and transport large particles largely depends on fluid velocity, flow characteristic wavelength and local geometry. The results of the model allow for a classification of the deposition patterns associated with the combinations of hydrodynamic parameters characteristic of short (storms) and long waves (tsunamis). Ackownledgements: Project RECI/ECM-HID/0371/2012, funded by the Portuguese Foundation for Science and Technology (FCT), has partially supported this work. References Nandasena, N.A.K., Paris, R. e Tanaka, N., 2011. Reassessment of hydrodynamic equations: Minimum flow velocity to initaite boulder transport by high energy events (storms, tsunamis). Marine Geology, 281: 70-84. Kain, C.L; Gomez, C.; Moghaddam, A.E. (2012) Comment on 'Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis), by N.A.K. Nandasena, R. Paris and N. Tanaka [Marine Geology 281, 70-84], Marine Geology, Volumes 319-322, 1, pp. 75-76, ISSN 0025-3227, http://dx.doi.org/10.1016/j.margeo.2011.08.008.

  13. Exploring load, velocity, and surface disorder dependence of friction with one-dimensional and two-dimensional models.

    PubMed

    Dagdeviren, Omur E

    2018-08-03

    The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.

  14. Torsional shear flow of granular materials: shear localization and minimum energy principle

    NASA Astrophysics Data System (ADS)

    Artoni, Riccardo; Richard, Patrick

    2018-01-01

    The rheological properties of granular matter submitted to torsional shear are investigated numerically by means of discrete element method. The shear cell is made of a cylinder filled by grains which are sheared by a bumpy bottom and submitted to a vertical pressure which is applied at the top. Regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. The effects of the (i) the applied pressure, (ii) sidewall friction, and (iii) angular velocity are investigated. A model, based on the purely local μ (I)-rheology and a minimum energy principle is able to capture the effect of the two former quantities but unable to account the effect of the latter. Although, an ad hoc modification of the model allows to reproduce all the numerical results, our results point out the need for an alternative rheology.

  15. Use of tree-ring chemistry to document historical ground-water contamination events

    USGS Publications Warehouse

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  16. Intragranular diffusion--An important mechanism influencing solute transport in clastic aquifers?

    USGS Publications Warehouse

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  17. WPVS 007: Dramatic Broad Absorption Line Variability in a Narrow-line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Cooper, Erin M.; Leighly, K.; Hamann, F. W.; Grupe, D.; Dietrich, M.

    2014-01-01

    Blue-shifted broad absorption lines are the manifestation of gaseous outflows in astrophysical phenomena. In active galaxies, these outflowing winds may play a key role in the central engine physics by removing angular momentum and in influencing host galaxy evolution by imparting energy and chemically enriched gas to the surrounding medium. AGN wind variability affords us a valuable tool to study this still poorly understood phenomenon. The existence of a high velocity broad line outflow in WPVS007 is especially extraordinary, as Seyfert-luminosity active galaxies are unexpected to produce them. With its lower luminosity and compact size, the NLS1 galaxy WPVS007 (M_V=-19.7, z=0.02882) provides us the ability to study even colossal variability on merely human timescales. Since its 1996 FOS observation, displaying miniBALs but no true broad absorption lines, WPVS007 has experienced a short but rich history of UV BAL variability. By the 2003 FUSE observation, WPVS007 had developed a BAL with v_max ~ 6000km/s, indicating an optically thick, high velocity outflow. We present the 2010 and 2013 June and December HST COS spectra. Between 2003 and 2010, both the maximum and minimum outflow velocity had increased substantially. As of 2013 June, the continuum emission has since dimmed by a factor of ~2 and the BALs have appeared to weaken, with both decreased maximum and minimum velocities. Such dramatic shifts in BAL velocity are unprecedented, as BAL variability is typically confined to changes in optical depth. What is the nature of the variability in this BAL wind? The upcoming (as of the writing of this abstract) December observation should give us more insight into tackling that question, whether it be the transient response of a continuous flow to a fluctuating continuum or perhaps the continued decline of a discrete outflow event.

  18. Pulsed Discharge Through Wetland Vegetation as a Control on Bed Shear Stress and Sediment Transport Affecting Everglades Restoration

    NASA Astrophysics Data System (ADS)

    Larsen, L. E.; Harvey, J. W.; Crimaldi, J. P.

    2007-12-01

    The ridge and slough landscape is a patterned peatland within the Florida Everglades in which elevated ridges of emergent vegetation are regularly interspersed among open-water sloughs with floating and submerged vegetation. Landscape features are aligned parallel to the historic flow direction. Degradation of patterning over the past 100 years coincides with diminished flow resulting from drainage and construction of levees and canals. A goal of restoration is to increase flow velocities and redistribution of particles and solutes in attempt to preserve remnant patterning and restore degraded portions of the ridge and slough landscape. To explore different management strategies that could induce sediment redistribution in the ridge and slough landscape, we simulated velocity profiles and bed shear stresses for different combinations of surface water stage, water surface slope, and vegetation community structure, based on field measurements and laboratory experiments. A mixing length approach, in which the minimum of stem spacing and distance from a solid boundary determined eddy scale, was used to simulate velocity profiles and bed shear stress in vegetated arrays. Simplified velocity profiles based only on vegetation frontal area above the bed and the Karman-Prandtl logarithmic law near the bed closely were used to approximate solutions of the one-dimensional Navier-Stokes equations for large-scale simulation. Estimates of bed shear stress were most sensitive to bed roughness, vegetation community structure, and energy slope. Importantly, our simulations illustrate that velocity and bed shear stress cannot be increased substantially in the Everglades simply by increasing surface-water stage. This result comes directly from the dependence of velocity and shear stress on vegetation frontal area and the fact that emergent vegetation stems protrude through the water column even during times of relatively deep water in the Everglades. Since merely increasing water depth is not likely to increase water velocity and entrainment, it is necessary instead that restoration focus on increasing energy slope as a means to entrain sediment within sloughs and redistribute it to ridges. Surface-water gravity waves caused by hurricanes or pulsed releases of water from impounded areas may be the most effective mechanism for achieving sediment redistribution in the Everglades and other wetland and riparian environments with abundant emergent vegetation.

  19. Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995

    USGS Publications Warehouse

    Haggard, Brian; Green, W. Reed

    2002-01-01

    The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.

  20. Flow and turbulence structure in a hypertidal estuary with the world's biggest tidal bore

    NASA Astrophysics Data System (ADS)

    Tu, Junbiao; Fan, Daidu

    2017-04-01

    Turbulent and flow structure associated with breaking tidal bores are deliberately investigated on the basis of field measurements. High-resolution velocity and hydrographic data are collected in the middle Qiantang Estuary by a vertical array of acoustic Doppler velocimeters and optical backscatter sensors, collaborated with a bottom-mounted acoustic Doppler current profiler. Besides obvious variations in diurnal and spring-neap tidal cycles, the estuarine dynamics is featured by extreme asymmetry in flood and ebb tides. The flood tide is abnormally accelerated to generate tidal bores at the first 10 min or more, with breaking or undular configurations at the front. The occurrence of peak flow velocity, turbulent kinetic energy (TKE), and TKE dissipation rate (ɛ) is definitely associated with breaking bores, with their values several times to 2 orders of magnitude larger than the corresponding secondary peak values during the maximum ebb flows. Flow and turbulence dynamics are significantly affected by the tidal-bore Froude number. A sandwich ɛ structure is clear exhibited with the maximum value at the surface, secondary maximum near the bed, and the minimum at the intermediate. Dual TKE sources are indicated by an approximate local balance between shear production and dissipation near the bottom, and a top-down TKE dissipation using the modified Froude scaling in the vertical water column. The highly elevated dissipation by breaking bores is comparable to that by intense breaking waves in the surf zone, and the former potentially penetrates the entire water column to produce extreme sediment-resuspension events in combination with intense bottom shear stress.

  1. The Effect of Flow Velocity on Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Lee, D.; Shin, S.; Chung, W.; Ha, J.; Lim, Y.; Kim, S.

    2017-12-01

    The waveform inversion is a velocity modeling technique that reconstructs accurate subsurface physical properties. Therefore, using the model in its final, updated version, we generated data identical to modeled data. Flow velocity, like several other factors, affects observed data in seismic exploration. Despite this, there is insufficient research on its relationship with waveform inversion. In this study, the generated synthetic data considering flow velocity was factored in waveform inversion and the influence of flow velocity in waveform inversion was analyzed. Measuring the flow velocity generally requires additional equipment. However, for situations where only seismic data was available, flow velocity was calculated by fixed-point iteration method using direct wave in observed data. Further, a new waveform inversion was proposed, which can be applied to the calculated flow velocity. We used a wave equation, which can work with the flow velocities used in the study by Käser and Dumbser. Further, we enhanced the efficiency of computation by applying the back-propagation method. To verify the proposed algorithm, six different data sets were generated using the Marmousi2 model; each of these data sets used different flow velocities in the range 0-50, i.e., 0, 2, 5, 10, 25, and 50. Thereafter, the inversion results from these data sets along with the results without the use of flow velocity were compared and analyzed. In this study, we analyzed the results of waveform inversion after flow velocity has been factored in. It was demonstrated that the waveform inversion is not affected significantly when the flow velocity is of smaller value. However, when the flow velocity has a large value, factoring it in the waveform inversion produces superior results. This research was supported by the Basic Research Project(17-3312, 17-3313) of the Korea Institute of Geoscience and Mineral Resources(KIGAM) funded by the Ministry of Science, ICT and Future Planning of Korea.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, Ronald W.; Monazam, Esmail R.; Shadle, Lawrence J.

    Riser hydrodynamics are a function of the flow rates of gas and solids as well as the exit geometry, particularly when operated above the upper transport velocity. This work compares the exit voidage for multiple geometries and two different solids: Geldart group A glass beads and Geldart group B coke. Geometries were changed by modifying the volume of an abrupt T-shaped exit above the lateral riser exit. This was accomplished by positioning a plunger at various heights above the exit from zero to 0.38 m. A dimensionless expression used to predict smooth exit voidage was modified to account for themore » effect of the depth of the blind-T. The new correlation contains the solids-gas load ratio, solids-to-gas density ratio, bed-to-particle diameter ratio, gas Reynolds Number, as well as a term for the exit geometry. This study also found that there was a minimum riser roof height above the blind-T exit beyond which the riser exit voidage was not affected by the exit geometry. A correlation for this minimum riser roof height has also been developed in this study. This study covered riser superficial gas velocities of 4.35 to 7.7 m/s and solids circulation rates of 1.3 to 11.5 kg/s.« less

  3. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.

    PubMed

    Park, H M; Kim, T W

    2009-01-21

    Electrokinetic flows through hydrophobic microchannels experience velocity slip at the microchannel wall, which affects volumetric flow rate and solute retention time. The usual method of predicting the volumetric flow rate and velocity profile for hydrophobic microchannels is to solve the Navier-Stokes equation and the Poisson-Boltzmann equation for the electric potential with the boundary condition of velocity slip expressed by the Navier slip coefficient, which is computationally demanding and defies analytic solutions. In the present investigation, we have devised a simple method of predicting the velocity profiles and volumetric flow rates of electrokinetic flows by extending the concept of the Helmholtz-Smoluchowski velocity to microchannels with Navier slip. The extended Helmholtz-Smoluchowski velocity is simple to use and yields accurate results as compared to the exact solutions. Employing the extended Helmholtz-Smoluchowski velocity, the analytical expressions for volumetric flow rate and velocity profile for electrokinetic flows through rectangular microchannels with Navier slip have been obtained at high values of zeta potential. The range of validity of the extended Helmholtz-Smoluchowski velocity is also investigated.

  4. Pollutant formation in fuel lean recirculating flows. Ph.D. Thesis. Final Report; [in an Opposed Reacting Jet Combustor

    NASA Technical Reports Server (NTRS)

    Schefer, R. W.; Sawyer, R. F.

    1976-01-01

    An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.

  5. Particle Velocity Measuring System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    1998-01-01

    Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.

  6. Experimental studies on flow visualization and velocity field of compression ramp with different incoming boundary layers

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yi, Shi-He; He, Lin; Chen, Zhi; Zhu, Yang-Zhu

    2014-11-01

    Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time-averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25°, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28°, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique “v”. Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.

  7. Smoothed particle hydrodynamic modeling of volcanic debris flows: Application to Huiloac Gorge lahars (Popocatépetl volcano, Mexico)

    NASA Astrophysics Data System (ADS)

    Haddad, Bouchra; Palacios, David; Pastor, Manuel; Zamorano, José Juan

    2016-09-01

    Lahars are among the most catastrophic volcanic processes, and the ability to model them is central to mitigating their effects. Several lahars recently generated by the Popocatépetl volcano (Mexico) moved downstream through the Huiloac Gorge towards the village of Santiago Xalitzintla. The most dangerous was the 2001 lahar, in which the destructive power of the debris flow was maintained throughout the extent of the flow. Identifying the zone of hazard can be based either on numerical or empirical models, but a calibration and validation process is required to ensure hazard map quality. The Geoflow-SPH depth integrated numerical model used in this study to reproduce the 2001 lahar was derived from the velocity-pressure version of the Biot-Zienkiewicz model, and was discretized using the smoothed particle hydrodynamics (SPH) method. The results of the calibrated SPH model were validated by comparing the simulated deposit depth with the field depth measured at 16 cross sections distributed strategically along the gorge channel. Moreover, the dependency of the results on topographic mesh resolution, initial lahar mass shape and dimensions is also investigated. The results indicate that to accurately reproduce the 2001 lahar flow dynamics the channel topography needed to be discretized using a mesh having a minimum 5 m resolution, and an initial lahar mass shape that adopted the source area morphology. Field validation of the calibrated model showed that there was a satisfactory relationship between the simulated and field depths, the error being less than 20% for 11 of the 16 cross sections. This study demonstrates that the Geoflow-SPH model was able to accurately reproduce the lahar path and the extent of the flow, but also reproduced other parameters including flow velocity and deposit depth.

  8. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  9. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  10. Design and optimization of resistance wire electric heater for hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Rehman, Khurram; Malik, Afzaal M.; Khan, I. J.; Hassan, Jehangir

    2012-06-01

    The range of flow velocities of high speed wind tunnels varies from Mach 1.0 to hypersonic order. In order to achieve such high speed flows, a high expansion nozzle is employed in the converging-diverging section of wind tunnel nozzle. The air for flow is compressed and stored in pressure vessels at temperatures close to ambient conditions. The stored air is dried and has minimum amount of moisture level. However, when this air is expanded rapidly, its temperature drops significantly and liquefaction conditions can be encountered. Air at near room temperature will liquefy due to expansion cooling at a flow velocity of more than Mach 4.0 in a wind tunnel test section. Such liquefaction may not only be hazardous to the model under test and wind tunnel structure; it may also affect the test results. In order to avoid liquefaction of air, a pre-heater is employed in between the pressure vessel and the converging-diverging section of a wind tunnel. A number of techniques are being used for heating the flow in high speed wind tunnels. Some of these include the electric arc heating, pebble bed electric heating, pebble bed natural gas fired heater, hydrogen burner heater, and the laser heater mechanisms. The most common are the pebble bed storage type heaters, which are inefficient, contaminating and time consuming. A well designed electrically heating system can be efficient, clean and simple in operation, for accelerating the wind tunnel flow up to Mach 10. This paper presents CFD analysis of electric preheater for different configurations to optimize its design. This analysis has been done using ANSYS 12.1 FLUENT package while geometry and meshing was done in GAMBIT.

  11. Fish passage and abundance around grade control structures on incised streams

    USGS Publications Warehouse

    Thomas, J.T.; Papanicolaou, A.N.; Pierce, C.L.; Dermisis, D.C.; Litvan, M.E.; Larson, C.J.

    2009-01-01

    This paper summarizes research from separate studies of fish passage over weirs (Larson et al., 2004; Litvan, 2006; Litvan, et al., 2008a-c) and weir hydraulics (Papanicolaou and Dermisis, 2006; Papanicolaou and Dermisis, in press). Channel incision in the deep loess region of western Iowa has caused decreased biodiversity because streams have high sediment loads, altered flow regimes, lost habitat, and lost lateral connectivity with their former floodplains. In-stream grade control structures (GCS) are built to prevent further erosion, protect infrastructure, and reduce sediment loads. However, GCS can have a detrimental impact on fisheries abundance and migration, biodiversity, and longitudinal connectivity. Fish mark-recapture studies were performed on stretches of streams with and without GCS. GCS with vertical or 1:4 (rise/run) downstream slopes did not allow fish migration, but GCS with slopes ??? 1:15 did. GCS sites were characterized by greater proportions of pool habitat, maximum depths, fish biomass, slightly higher index of biotic integrity (IBI) scores, and greater macroinvertebrate abundance and diversity than non-GCS sites. After modification of three GCS, IBI scores increased and fish species exhibiting truncated distributions before were found throughout the study area. Another study examined the hydraulic performance of GCS to facilitate unimpeded fish passage by determining the mean and turbulent flow characteristics in the vicinity of the GCS via detailed, non-intrusive field tests. Mean flow depth (Y) and velocity (V) atop the GCS were critical for evaluating GCS performance. Turbulent flow measurements illustrated that certain GCS designs cause sudden constrictions which form eddies large enough to disorient fish. GCS with slopes ??? 1:15 best met the minimum requirements to allow catfish passage of a flow depth of ??? 0.31 m and a mean flow velocity of ??? 1.22 m/s. ?? 2009 ASCE.

  12. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere.

    PubMed

    Lin, Pei-Ying Patty; Gaherty, James B; Jin, Ge; Collins, John A; Lizarralde, Daniel; Evans, Rob L; Hirth, Greg

    2016-07-28

    Convective flow in the mantle and the motions of tectonic plates produce deformation of Earth's interior, and the rock fabric produced by this deformation can be discerned using the anisotropy of the seismic wave speed. This deformation is commonly inferred close to lithospheric boundaries beneath the ocean in the uppermost mantle, including near seafloor-spreading centres as new plates are formed via corner flow, and within a weak asthenosphere that lubricates large-scale plate-driven flow and accommodates smaller scale convection. Seismic models of oceanic upper mantle differ as to the relative importance of these deformation processes: seafloor spreading fabric is very strong just beneath the crust-mantle boundary (the Mohorovičić discontinuity, or Moho) at relatively local scales, but at the global and ocean-basin scales, oceanic lithosphere typically appears weakly anisotropic when compared to the asthenosphere. Here we use Rayleigh waves, recorded across an ocean-bottom seismograph array in the central Pacific Ocean (the NoMelt Experiment), to provide unique localized constraints on seismic anisotropy within the oceanic lithosphere-asthenosphere system in the middle of a plate. We find that azimuthal anisotropy is strongest within the high-seismic-velocity lid, with the fast direction coincident with seafloor spreading. A minimum in the magnitude of azimuthal anisotropy occurs within the middle of the seismic low-velocity zone, and then increases with depth below the weakest portion of the asthenosphere. At no depth does the fast direction correlate with the apparent plate motion. Our results suggest that the highest strain deformation in the shallow oceanic mantle occurs during corner flow at the ridge axis, and via pressure-driven or buoyancy-driven flow within the asthenosphere. Shear associated with motion of the plate over the underlying asthenosphere, if present, is weak compared to these other processes.

  13. Routing Algorithm based on Minimum Spanning Tree and Minimum Cost Flow for Hybrid Wireless-optical Broadband Access Network

    NASA Astrophysics Data System (ADS)

    Le, Zichun; Suo, Kaihua; Fu, Minglei; Jiang, Ling; Dong, Wen

    2012-03-01

    In order to minimize the average end to end delay for data transporting in hybrid wireless optical broadband access network, a novel routing algorithm named MSTMCF (minimum spanning tree and minimum cost flow) is devised. The routing problem is described as a minimum spanning tree and minimum cost flow model and corresponding algorithm procedures are given. To verify the effectiveness of MSTMCF algorithm, extensively simulations based on OWNS have been done under different types of traffic source.

  14. Performance of J33 turbojet engine with shaft-power extraction III : turbine performance

    NASA Technical Reports Server (NTRS)

    Huppert, M C; Nettles, J C

    1949-01-01

    The performance of the turbine component of a J33 turbojet engine was determined over a range of turbine speeds from 8000 to 11,500 rpm.Turbine-inlet temperature was varied from the minimum required to drive the compressor to a maximum of approximately 2000 degrees R at each of several intermediate turbine speeds. Data are presented that show the horsepower developed by the turbine per pound of gas flow. The relation between turbine-inlet stagnation pressure, turbine-outlet stagnation pressure, and turbine-outlet static pressure was established. The turbine-weight-flow parameter varied from 39.2 to 43.6. The maximum turbine efficiency measured was 0.86 at a pressure ratio of 3.5 and a ratio of blade speed to theoretical nozzle velocity of 0.39. A generalized performance map of the turbine-horsepower parameter plotted against the turbine-speed parameter indicated that the best turbine efficiency is obtained when the turbine power is 10 percent greater than the compressor horsepower. The variation of efficiency with the ratio of blade speed to nozzle velocity indicated that the turbine operates at a speed above that for maximum efficiency when the engine is operated normally with the 19-inch-diameter jet nozzle.

  15. Statistics of the relative velocity of particles in turbulent flows: Monodisperse particles.

    PubMed

    Bhatnagar, Akshay; Gustavsson, K; Mitra, Dhrubaditya

    2018-02-01

    We use direct numerical simulations to calculate the joint probability density function of the relative distance R and relative radial velocity component V_{R} for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale invariant, with a scaling exponent that is related to the particle-particle correlation dimension in phase space, D_{2}. It was argued [K. Gustavsson and B. Mehlig, Phys. Rev. E 84, 045304 (2011)PLEEE81539-375510.1103/PhysRevE.84.045304; J. Turbul. 15, 34 (2014)1468-524810.1080/14685248.2013.875188] that the scale invariant part of the distribution has two asymptotic regimes: (1) |V_{R}|≪R, where the distribution depends solely on R, and (2) |V_{R}|≫R, where the distribution is a function of |V_{R}| alone. The probability distributions in these two regimes are matched along a straight line: |V_{R}|=z^{*}R. Our simulations confirm that this is indeed correct. We further obtain D_{2} and z^{*} as a function of the Stokes number, St. The former depends nonmonotonically on St with a minimum at about St≈0.7 and the latter has only a weak dependence on St.

  16. Statistics of the relative velocity of particles in turbulent flows: Monodisperse particles

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Akshay; Gustavsson, K.; Mitra, Dhrubaditya

    2018-02-01

    We use direct numerical simulations to calculate the joint probability density function of the relative distance R and relative radial velocity component VR for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale invariant, with a scaling exponent that is related to the particle-particle correlation dimension in phase space, D2. It was argued [K. Gustavsson and B. Mehlig, Phys. Rev. E 84, 045304 (2011), 10.1103/PhysRevE.84.045304; J. Turbul. 15, 34 (2014), 10.1080/14685248.2013.875188] that the scale invariant part of the distribution has two asymptotic regimes: (1) | VR|≪R , where the distribution depends solely on R , and (2) | VR|≫R , where the distribution is a function of | VR| alone. The probability distributions in these two regimes are matched along a straight line: | VR|= z*R . Our simulations confirm that this is indeed correct. We further obtain D2 and z* as a function of the Stokes number, St. The former depends nonmonotonically on St with a minimum at about St≈0.7 and the latter has only a weak dependence on St.

  17. Stability of isolated Barchan dunes

    NASA Astrophysics Data System (ADS)

    Fourrière, Antoine; Charru, François

    2010-11-01

    When sand grains are entrained by an air flow over a non-erodible ground, or with limited sediment supply from the bed, they form isolated dunes showing a remarkable crescentic shape with horns pointing downstream. These dunes, known as Barchan dunes, are commonly observed in deserts, with height of a few meters and velocity of a few meters per year (Bagnold 1941). These dunes also exist under water, at a much smaller, centimetric size (Franklin & Charru 2010). Their striking stability properties are not well understood yet. Two phenomena are likely to be involved in this stability: (i) relaxation effects of the sand flux which increases from the dune foot up to the crest, related to grain inertia or deposition, and (ii) a small transverse sand flux due to slope effects and the divergence of the streamlines of the fluid flow. We reproduced aqueous Barchan dunes in a channel, and studied their geometrical and dynamic properties (in particular their shape, velocity, minimum size, and rate of erosion). Using coloured glass beads (see the figure), we were then able to measure the particle flux over the whole dune surface. We will discuss the stability of these dunes in the light of our measurements.

  18. Linear Mechanisms and Pressure Fluctuations in Wall Turbulence

    NASA Astrophysics Data System (ADS)

    Septham, Kamthon; Morrison, Jonathan

    2014-11-01

    Full-domain, linear feedback control of turbulent channel flow at Reτ <= 400 via vU' at low wavenumbers is an effective method to attenuate turbulent channel flow such that it is relaminarised. The passivity-based control approach is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al .Phys .Fluids 2011). The linear forcing acts on the wall-normal velocity field and thus the pressure field via the linear (rapid) source term of the Poisson equation for pressure fluctuations, 2U'∂v/∂x . The minimum required spanwise wavelength resolution without losing control is constant at λz+ = 125, based on the wall friction velocity at t = 0 . The result shows that the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The effectiveness of linear control is qualitatively explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is much shorter than both the nonlinear and viscous timescales. The response of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control is examined and discussed.

  19. PADDLEFISH BUCCAL FLOW VELOCITY DURING RAM SUSPENSION FEEDING AND RAM VENTILATION

    PubMed

    Cech; Cheer

    1994-01-01

    A micro-thermistor probe was inserted into the buccal cavity of freely swimming paddlefish to measure flow velocity during ram ventilation, ram suspension feeding and prey processing. Swimming speed was measured from videotapes recorded simultaneously with the buccal flow velocity measurements. Both swimming velocity and buccal flow velocity were significantly higher during suspension feeding than during ram ventilation. As the paddlefish shifted from ventilation to feeding, buccal flow velocity increased to approximately 60 % of the swimming velocity. During prey processing, buccal flow velocity was significantly higher than the swimming velocity, indicating that prey processing involves the generation of suction. The Reynolds number (Re) for flow at the level of the paddlefish gill rakers during feeding is about 30, an order of magnitude lower than the Re calculated previously for pump suspension-feeding blackfish. These data, combined with data available from the literature, indicate that the gill rakers of ram suspension-feeding teleost fishes may operate at a substantially lower Re than the rakers of pump suspension feeders.

  20. Flow Velocity Computation, from Temperature and Number Density Measurements using Spontaneous Raman Scattering, for Supersonic Chemically Reacting Flows.

    NASA Astrophysics Data System (ADS)

    Satish Jeyashekar, Nigil; Seiner, John

    2006-11-01

    The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.

  1. A classification scheme for turbulent flows based on their joint velocity-intermittency structure

    NASA Astrophysics Data System (ADS)

    Keylock, C. J.; Nishimura, K.; Peinke, J.

    2011-12-01

    Kolmogorov's classic theory for turbulence assumed an independence between velocity increments and the value for the velocity itself. However, this assumption is questionable, particularly in complex geophysical flows. Here we propose a framework for studying velocity-intermittency coupling that is similar in essence to the popular quadrant analysis method for studying near-wall flows. However, we study the dominant (longitudinal) velocity component along with a measure of the roughness of the signal, given mathematically by its series of Hölder exponents. Thus, we permit a possible dependence between velocity and intermittency. We compare boundary layer data obtained in a wind tunnel to turbulent jets and wake flows. These flow classes all have distinct velocity-intermittency characteristics, which cause them to be readily distinguished using our technique. Our method is much simpler and quicker to apply than approaches that condition the velocity increment statistics at some scale, r, on the increment statistics at a neighbouring, larger spatial scale, r+Δ, and the velocity itself. Classification of environmental flows is then possible based on their similarities to the idealised flow classes and we demonstrate this using laboratory data for flow in a parallel-channel confluence where the region of flow recirculation in the lee of the step is discriminated as a flow class distinct from boundary layer, jet and wake flows. Hence, using our method, it is possible to assign a flow classification to complex geophysical, turbulent flows depending upon which idealised flow class they most resemble.

  2. Characterizing coarse bedload transport during floods with RFID and accelerometer tracers, in-stream RFID antennas and HEC-RAS modeling

    NASA Astrophysics Data System (ADS)

    Olinde, L.; Johnson, J. P.

    2013-12-01

    By monitoring the transport timing and distances of tracer grains in a steep mountains stream, we collected data that can constrain numerical bedload transport models considered for these systems. We captured bedload activity during a weeks-spanning snowmelt period in Reynolds Creek, Idaho by deploying Radio Frequency Identification (RFID) and accelerometer embedded tracers with in-stream stationary RFID antennas. During transport events, RFID dataloggers recorded the times when tracers passed over stationary antennas. The accelerometer tracers also logged x, y, z-axis accelerations every 10 minutes to identify times of motion and rest. After snowmelt flows receded, we found tracers with mobile antennas and surveyed their positions. We know the timing and tracer locations when accelerometer tracers were initially entrained, passed stationary antennas, and were finally deposited at the surveyed locations. The fraction of moving accelerometers over time correlates well with discharge. Comparisons of the transported tracer fraction between rising and falling limbs over multiple flood peaks suggest that some degree of clockwise hysteresis persisted during the snowmelt period. Additionally, we apply accelerometer transport durations and displacement distances to calculate virtual velocities over full tracer path lengths and over lengths between initial locations to stationary antennas as well as between stationary antennas to final positions. The accelerometer-based virtual velocities are significantly faster than those estimated from traditional tracer methods that estimate bedload transport durations by assuming threshold flow conditions. We also subsample the motion data to calculate how virtual velocities change over the measurement intervals. Regressions of these relations are in turn used to extrapolate virtual velocities at smaller sampling timescales. Minimum hop lengths are also evaluated for each accelerometer tracer. Finally, flow conditions during the snowmelt hydrograph are modeled over the 11 kilometers of surveyed stream by utilizing 1m airborne LiDAR and HEC-GeoRAS. Cross-sectional HEC-RAS results are used to estimate the spatial distribution of longitudinal shear velocities over the observed discharges. At final accelerometer tracer positions, we analyze the HEC-RAS generated flow conditions for each disentrainment discharge magnitude. The techniques developed here have the potential to link individual grain characteristics during floods to a range of time and length scales.

  3. Statistical independence of the initial conditions in chaotic mixing.

    PubMed

    García de la Cruz, J M; Vassilicos, J C; Rossi, L

    2017-11-01

    Experimental evidence of the scalar convergence towards a global strange eigenmode independent of the scalar initial condition in chaotic mixing is provided. This convergence, underpinning the independent nature of chaotic mixing in any passive scalar, is presented by scalar fields with different initial conditions casting statistically similar shapes when advected by periodic unsteady flows. As the scalar patterns converge towards a global strange eigenmode, the scalar filaments, locally aligned with the direction of maximum stretching, as described by the Lagrangian stretching theory, stack together in an inhomogeneous pattern at distances smaller than their asymptotic minimum widths. The scalar variance decay becomes then exponential and independent of the scalar diffusivity or initial condition. In this work, mixing is achieved by advecting the scalar using a set of laminar flows with unsteady periodic topology. These flows, that resemble the tendril-whorl map, are obtained by morphing the forcing geometry in an electromagnetic free surface 2D mixing experiment. This forcing generates a velocity field which periodically switches between two concentric hyperbolic and elliptic stagnation points. In agreement with previous literature, the velocity fields obtained produce a chaotic mixer with two regions: a central mixing and an external extensional area. These two regions are interconnected through two pairs of fluid conduits which transfer clean and dyed fluid from the extensional area towards the mixing region and a homogenized mixture from the mixing area towards the extensional region.

  4. Flow through a very porous obstacle in a shallow channel.

    PubMed

    Creed, M J; Draper, S; Nishino, T; Borthwick, A G L

    2017-04-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.

  5. Mixing in the shear superposition micromixer: three-dimensional analysis.

    PubMed

    Bottausci, Frederic; Mezić, Igor; Meinhart, Carl D; Cardonne, Caroline

    2004-05-15

    In this paper, we analyse mixing in an active chaotic advection micromixer. The micromixer consists of a main rectangular channel and three cross-stream secondary channels that provide ability for time-dependent actuation of the flow stream in the direction orthogonal to the main stream. Three-dimensional motion in the mixer is studied. Numerical simulations and modelling of the flow are pursued in order to understand the experiments. It is shown that for some values of parameters a simple model can be derived that clearly represents the flow nature. Particle image velocimetry measurements of the flow are compared with numerical simulations and the analytical model. A measure for mixing, the mixing variance coefficient (MVC), is analysed. It is shown that mixing is substantially improved with multiple side channels with oscillatory flows, whose frequencies are increasing downstream. The optimization of MVC results for single side-channel mixing is presented. It is shown that dependence of MVC on frequency is not monotone, and a local minimum is found. Residence time distributions derived from the analytical model are analysed. It is shown that, while the average Lagrangian velocity profile is flattened over the steady flow, Taylor-dispersion effects are still present for the current micromixer configuration.

  6. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.

    PubMed

    Cheri, Mohammad Sadegh; Latifi, Hamid; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Shahraki, Hamidreza; Hajghassem, Hasan

    2014-01-21

    Real-time and accurate measurement of flow rate is an important reqirement in lab on a chip (LOC) and micro total analysis system (μTAS) applications. In this paper, we present an experimental and numerical investigation of a cantilever-based optofluidic flow sensor for this purpose. Two sensors with thin and thick cantilevers were fabricated by engraving a 2D pattern of cantilever/base on two polymethylmethacrylate (PMMA) slabs using a CO2 laser system and then casting a 2D pattern with polydimethylsiloxane (PDMS). The basic working principle of the sensor is the fringe shift of the Fabry-Pérot (FP) spectrum due to a changing flow rate. A Finite Element Method (FEM) is used to solve the three dimensional (3D) Navier-Stokes and structural deformation equations to simulate the pressure distribution, velocity and cantilever deflection results of the flow in the channel. The experimental results show that the thin and thick cantilevers have a minimum detectable flow change of 1.3 and 4 (μL min(-1)) respectively. In addition, a comparison of the numerical and experimental deflection of the cantilever has been done to obtain the effective Young's modulus of the thin and thick PDMS cantilevers.

  7. The minimum or natural rate of flow and droplet size ejected by Taylor cone-jets: physical symmetries and scaling laws

    NASA Astrophysics Data System (ADS)

    Gañán-Calvo, A. M.; Rebollo-Muñoz, N.; Montanero, J. M.

    2013-03-01

    We aim to establish the scaling laws for both the minimum rate of flow attainable in the steady cone-jet mode of electrospray, and the size of the resulting droplets in that limit. Use is made of a small body of literature on Taylor cone-jets reporting precise measurements of the transported electric current and droplet size as a function of the liquid properties and flow rate. The projection of the data onto an appropriate non-dimensional parameter space maps a region bounded by the minimum rate of flow attainable in the steady state. To explain these experimental results, we propose a theoretical model based on the generalized concept of physical symmetry, stemming from the system time invariance (steadiness). A group of symmetries rising at the cone-to-jet geometrical transition determines the scaling for the minimum flow rate and related variables. If the flow rate is decreased below that minimum value, those symmetries break down, which leads to dripping. We find that the system exhibits two instability mechanisms depending on the nature of the forces arising against the flow: one dominated by viscosity and the other by the liquid polarity. In the former case, full charge relaxation is guaranteed down to the minimum flow rate, while in the latter the instability condition becomes equivalent to the symmetry breakdown by charge relaxation or separation. When cone-jets are formed without artificially imposing a flow rate, a microjet is issued quasi-steadily. The flow rate naturally ejected this way coincides with the minimum flow rate studied here. This natural flow rate determines the minimum droplet size that can be steadily produced by any electrohydrodynamic means for a given set of liquid properties.

  8. Effect of flow velocity on erosion-corrosion behaviour of QSn6 alloy

    NASA Astrophysics Data System (ADS)

    Huang, Weijiu; Zhou, Yongtao; Wang, Zhenguo; Li, Zhijun; Zheng, Ziqing

    2018-05-01

    The erosion-corrosion behaviour of QSn6 alloy used as propellers in marine environment was evaluated by erosion-corrosion experiments with/without cathodic protection, electrochemical tests and scanning electron microscope (SEM) observations. The analysis was focused on the effect of flow velocity. The dynamic polarization curves showed that the corrosion rate of the QSn6 alloy increased as the flow velocity increased, due to the protective surface film removal at higher velocities. The lowest corrosion current densities of 1.26 × 10‑4 A cm‑2 was obtained at the flow velocity of 7 m s‑1. Because of the higher particle kinetic energies at higher flow velocity, the mass loss rate of the QSn6 alloy increased as the flow velocity increased. The mass loss rate with cathodic protection was lower than that without cathodic protection under the same conditions. Also, the lowest mass loss rate of 0.7 g m‑2 · h‑1 was acquired at the flow velocity of 7 m s‑1 with cathodic protection. However, the increase rate of corrosion rate and mass loss were decreased with increasing the flow velocity. Through observation the SEM morphologies of the worn surfaces, the main wear mechanism was ploughing with/without cathodic protection. The removal rates of the QSn6 alloy increased as the flow velocity increased in both pure erosion and erosion-corrosion, whereas the erosion and corrosion intensified each other. At the flow velocity of 7 m s‑1, the synergy rate (ΔW) exceeded by 5 times the erosion rate (Wwear). Through establishment and observation the erosion-corrosion mechanism map, the erosion-corrosion was the dominant regime in the study due to the contribution of erosion on the mass loss rate exceeded the corrosion contribution. The QSn6 alloy with cathodic protection is feasible as propellers, there are higher security at lower flow velocity, such as the flow velocity of 7 m s‑1 in the paper.

  9. Comparison of thermal, salt and dye tracing to estimate shallow flow velocities: Novel triple-tracer approach

    NASA Astrophysics Data System (ADS)

    Abrantes, João R. C. B.; Moruzzi, Rodrigo B.; Silveira, Alexandre; de Lima, João L. M. P.

    2018-02-01

    The accurate measurement of shallow flow velocities is crucial to understand and model the dynamics of sediment and pollutant transport by overland flow. In this study, a novel triple-tracer approach was used to re-evaluate and compare the traditional and well established dye and salt tracer techniques with the more recent thermal tracer technique in estimating shallow flow velocities. For this purpose a triple tracer (i.e. dyed-salted-heated water) was used. Optical and infrared video cameras and an electrical conductivity sensor were used to detect the tracers in the flow. Leading edge and centroid velocities of the tracers were measured and the correction factors used to determine the actual mean flow velocities from tracer measured velocities were compared and investigated. Experiments were carried out for different flow discharges (32-1813 ml s-1) on smooth acrylic, sand, stones and synthetic grass bed surfaces with 0.8, 4.4 and 13.2% slopes. The results showed that thermal tracers can be used to estimate shallow flow velocities, since the three techniques yielded very similar results without significant differences between them. The main advantages of the thermal tracer were that the movement of the tracer along the measuring section was more easily visible than it was in the real image videos and that it was possible to measure space-averaged flow velocities instead of only one velocity value, with the salt tracer. The correction factors used to determine the actual mean velocity of overland flow varied directly with Reynolds and Froude numbers, flow velocity and slope and inversely with flow depth and bed roughness. In shallow flows, velocity estimation using tracers entails considerable uncertainty and caution must be taken with these measurements, especially in field studies where these variables vary appreciably in space and time.

  10. Validity of the Water Hammer Formula for Determining Regional Aortic Pulse Wave Velocity: Comparison of One-Point and Two-Point (Foot-to-Foot) Measurements Using a Multisensor Catheter in Human.

    PubMed

    Hanya, Shizuo

    2013-01-01

    Lack of high-fidelity simultaneous measurements of pressure and flow velocity in the aorta has impeded the direct validation of the water-hammer formula for estimating regional aortic pulse wave velocity (AO-PWV1) and has restricted the study of the change of beat-to-beat AO-PWV1 under varying physiological conditions in man. Aortic pulse wave velocity was derived using two methods in 15 normotensive subjects: 1) the conventional two-point (foot-to-foot) method (AO-PWV2) and 2) a one-point method (AO-PWV1) in which the pressure velocity-loop (PV-loop) was analyzed based on the water hammer formula using simultaneous measurements of flow velocity (Vm) and pressure (Pm) at the same site in the proximal aorta using a multisensor catheter. AO-PWV1 was calculated from the slope of the linear regression line between Pm and Vm where wave reflection (Pb) was at a minimum in early systole in the PV-loop using the water hammer formula, PWV1 = (Pm/Vm)/ρ, where ρ is the blood density. AO-PWV2 was calculated using the conventional two-point measurement method as the distance/traveling time of the wave between 2 sites for measuring P in the proximal aorta. Beat-to-beat alterations of AO-PWV1 in relationship to aortic pressure and linearity of the initial part of the PV-loop during a Valsalva maneuver were also assessed in one subject. The initial part of the loop became steeper in association with the beat-to-beat increase in diastolic pressure in phase 4 during the Valsalva maneuver. The linearity of the initial part of the PV-loop was maintained consistently during the maneuver. Flow velocity vs. pressure in the proximal aorta was highly linear during early systole, with Pearson's coefficients ranging from 0.9954 to 0.9998. The average values of AO-PWV1 and AO-PWV2 were 6.3 ± 1.2 and 6.7 ± 1.3 m/s, respectively. The regression line of AO-PWV1 on AO-PWV2 was y = 0.95x + 0.68 (r = 0.93, p <0.001). This study concluded that the water-hammer formula (one-point method) provides a reliable and conventional estimate of beat-to-beat aortic regional pulse wave velocity consistently regardless of the changes in physiological states in human clinically. (English Translation of J Jpn Coll Angiol 2011; 51: 215-221).

  11. Validity of the Water Hammer Formula for Determining Regional Aortic Pulse Wave Velocity: Comparison of One-Point and Two-Point (Foot-to-Foot) Measurements Using a Multisensor Catheter in Human

    PubMed Central

    2013-01-01

    Background: Lack of high-fidelity simultaneous measurements of pressure and flow velocity in the aorta has impeded the direct validation of the water-hammer formula for estimating regional aortic pulse wave velocity (AO-PWV1) and has restricted the study of the change of beat-to-beat AO-PWV1 under varying physiological conditions in man. Methods: Aortic pulse wave velocity was derived using two methods in 15 normotensive subjects: 1) the conventional two-point (foot-to-foot) method (AO-PWV2) and 2) a one-point method (AO-PWV1) in which the pressure velocity-loop (PV-loop) was analyzed based on the water hammer formula using simultaneous measurements of flow velocity (Vm) and pressure (Pm) at the same site in the proximal aorta using a multisensor catheter. AO-PWV1 was calculated from the slope of the linear regression line between Pm and Vm where wave reflection (Pb) was at a minimum in early systole in the PV-loop using the water hammer formula, PWV1 = (Pm/Vm)/ρ, where ρ is the blood density. AO-PWV2 was calculated using the conventional two-point measurement method as the distance/traveling time of the wave between 2 sites for measuring P in the proximal aorta. Beat-to-beat alterations of AO-PWV1 in relationship to aortic pressure and linearity of the initial part of the PV-loop during a Valsalva maneuver were also assessed in one subject. Results: The initial part of the loop became steeper in association with the beat-to-beat increase in diastolic pressure in phase 4 during the Valsalva maneuver. The linearity of the initial part of the PV-loop was maintained consistently during the maneuver. Flow velocity vs. pressure in the proximal aorta was highly linear during early systole, with Pearson’s coefficients ranging from 0.9954 to 0.9998. The average values of AO-PWV1 and AO-PWV2 were 6.3 ± 1.2 and 6.7 ± 1.3 m/s, respectively. The regression line of AO-PWV1 on AO-PWV2 was y = 0.95x + 0.68 (r = 0.93, p <0.001). Conclusion: This study concluded that the water-hammer formula (one-point method) provides a reliable and conventional estimate of beat-to-beat aortic regional pulse wave velocity consistently regardless of the changes in physiological states in human clinically. (*English Translation of J Jpn Coll Angiol 2011; 51: 215-221) PMID:23825494

  12. An entropy-based method for determining the flow depth distribution in natural channels

    NASA Astrophysics Data System (ADS)

    Moramarco, Tommaso; Corato, Giovanni; Melone, Florisa; Singh, Vijay P.

    2013-08-01

    A methodology for determining the bathymetry of river cross-sections during floods by the sampling of surface flow velocity and existing low flow hydraulic data is developed . Similar to Chiu (1988) who proposed an entropy-based velocity distribution, the flow depth distribution in a cross-section of a natural channel is derived by entropy maximization. The depth distribution depends on one parameter, whose estimate is straightforward, and on the maximum flow depth. Applying to a velocity data set of five river gage sites, the method modeled the flow area observed during flow measurements and accurately assessed the corresponding discharge by coupling the flow depth distribution and the entropic relation between mean velocity and maximum velocity. The methodology unfolds a new perspective for flow monitoring by remote sensing, considering that the two main quantities on which the methodology is based, i.e., surface flow velocity and flow depth, might be potentially sensed by new sensors operating aboard an aircraft or satellite.

  13. Does water content or flow rate control colloid transport in unsaturated porous media?

    PubMed

    Knappenberger, Thorsten; Flury, Markus; Mattson, Earl D; Harsh, James B

    2014-04-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  14. Calibration-free in vivo transverse blood flowmetry based on cross correlation of slow-time profiles from photoacoustic microscopy

    PubMed Central

    Zhou, Yong; Liang, Jinyang; Maslov, Konstantin I.; Wang, Lihong V.

    2013-01-01

    We propose a cross-correlation-based method to measure blood flow velocity by using photoacoustic microscopy. Unlike in previous auto-correlation-based methods, the measured flow velocity here is independent of particle size. Thus, an absolute flow velocity can be obtained without calibration. We first measured the flow velocity ex vivo, using defibrinated bovine blood. Then, flow velocities in vessels with different structures in a mouse ear were quantified in vivo. We further measured the flow variation in the same vessel and at a vessel bifurcation. All the experimental results indicate that our method can be used to accurately quantify blood velocity in vivo. PMID:24081077

  15. A study of methods to estimate debris flow velocity

    USGS Publications Warehouse

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Debris flow velocities are commonly back-calculated from superelevation events which require subjective estimates of radii of curvature of bends in the debris flow channel or predicted using flow equations that require the selection of appropriate rheological models and material property inputs. This research investigated difficulties associated with the use of these conventional velocity estimation methods. Radii of curvature estimates were found to vary with the extent of the channel investigated and with the scale of the media used, and back-calculated velocities varied among different investigated locations along a channel. Distinct populations of Bingham properties were found to exist between those measured by laboratory tests and those back-calculated from field data; thus, laboratory-obtained values would not be representative of field-scale debris flow behavior. To avoid these difficulties with conventional methods, a new preliminary velocity estimation method is presented that statistically relates flow velocity to the channel slope and the flow depth. This method presents ranges of reasonable velocity predictions based on 30 previously measured velocities. ?? 2008 Springer-Verlag.

  16. Flow behaviour and structure of heterogeneous particles-water mixture in horizontal and inclined pipes

    NASA Astrophysics Data System (ADS)

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří

    2018-06-01

    The effect of slurry velocity and mean concentration of heterogeneous particle-water mixture on flow behaviour and structure in the turbulent regime was studied in horizontal and inclined pipe sections of inner diameter D = 100 mm. The stratified flow pattern of heterogeneous particle-water mixture in the inclined pipe sections was revealed. The particles moved mostly near to the pipe invert. Concentration distribution in ascending and descending vertical pipe sections confirmed the effect of fall velocity on particle-carrier liquid slip velocity and increase of in situ concentration in the ascending pipe section. Slip velocity in two-phase flow, which is defined as the velocity difference between the solid and liquid phase, is one of mechanism of particle movement in two-phase flow. Due to the slip velocity, there is difference between transport and in situ concentrations, and the slip velocity can be determined from comparison of the in situ and transport concentration. For heterogeneous particle-water mixture flow the slip velocity depends on the flow structure.

  17. Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.

    PubMed

    Mohiaddin, R H; Yang, G Z; Kilner, P J

    1994-01-01

    We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.

  18. Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle.

    PubMed

    Wittsack, Hans-Jörg; Lanzman, Rotem S; Quentin, Michael; Kuhlemann, Julia; Klasen, Janina; Pentang, Gael; Riegger, Caroline; Antoch, Gerald; Blondin, Dirk

    2012-04-01

    To evaluate the influence of pulsatile blood flow on apparent diffusion coefficients (ADC) and the fraction of pseudodiffusion (F(P)) in the human kidney. The kidneys of 6 healthy volunteers were examined by a 3-T magnetic resonance scanner. Electrocardiogram (ECG)-gated and respiratory-triggered diffusion-weighted imaging (DWI) and phase-contrast flow measurements were performed. Flow imaging of renal arteries was carried out to quantify the dependence of renal blood flow on the cardiac cycle. ECG-triggered DWI was acquired in the coronal plane with 16 b values in the range of 0 s/mm(2) and 750 s/mm(2) at the time of minimum (MIN) (20 milliseconds after R wave) and maximum renal blood flow (MAX) (197 ± 24 milliseconds after R wave). The diffusion coefficients were calculated using the monoexponential approach as well as the biexponential intravoxel incoherent motion model and correlated to phase-contrast flow measurements. Flow imaging showed pulsatile renal blood flow depending on the cardiac cycle. The mean flow velocity at MIN was 45 cm/s as compared with 61 cm/s at MAX. F(p) at MIN (0.29) was significantly lower than at MAX (0.40) (P = 0.001). Similarly, ADC(mono), derived from the monoexponential model, also showed a significant difference (P < 0.001) between MIN (ADC(mono) = 2.14 ± 0.08 × 10(-3) mm(2)/s) and MAX (ADC(mono) = 2.37 ± 0.04 × 10(-3) mm(2)/s). The correlation between renal blood flow and F(p) (r = 0.85) as well as ADC(mono) (r = 0.67) was statistically significant. Temporally resolved ECG-gated DWI enables for the determination of the diffusion coefficients at different time points of the cardiac cycle. ADC(mono) and FP vary significantly among acquisitions at minimum (diastole) and maximum (systole) renal blood flow. Temporally resolved ECG-gated DWI might therefore serve as a novel technique for the assessment of pulsatility in the human kidney.

  19. Simulation of hydrodynamics, temperature, and dissolved oxygen in Table Rock Lake, Missouri, 1996-1997

    USGS Publications Warehouse

    Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.

    2003-01-01

    Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.

  20. Vortex reconnection in the K-type transitional channel flow

    NASA Astrophysics Data System (ADS)

    Zhao, Yaomin; Yang, Yue; Chen, Shiyi

    2016-11-01

    Vortex reconnection, as the topological change of vortex lines or surfaces, is a critical process in transitional flows, but is challenging to accurately characterize in shear flows. We apply the vortex-surface field (VSF), whose isosurface is the vortex surface consisting of vortex lines, to study vortex reconnection in the K-type temporal transition in channel flow. Based on the VSF, both qualitative visualization and quantitative analysis are used to investigate the reconnection between the hairpin-like vortical structures evolving from the opposite channel halves. The incipient vortex reconnection is characterized by the vanishing minimum distance between a pair of vortex surfaces and the reduction of vorticity flux through the region enclosed by the VSF isolines on the spanwise symmetric plane. In addition, we find that the surge of the wall friction coefficient begins at the identified reconnection time, which is discussed with the induced velocity during reconnection and the Biot-Sarvart law. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11522215 and 11521091), and the Thousand Young Talents Program of China.

  1. Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption

    USGS Publications Warehouse

    Roche, Olivier; Buesch, David C.; Valentine, Greg A.

    2016-01-01

    Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ~70–90 cm diameter from the substrates along the flow paths. Here we combine these data with new experimental results to show that the flow’s base had high-particle concentration and relatively modest speeds of ~5–20 m s−1, fed by an eruption discharging magma at rates up to ~107–108 m3 s−1 for a minimum of 2.5–10 h. We conclude that sustained high-eruption discharge and long-lived high-pore pressure in dense granular dispersion can be more important than large initial velocity and turbulent transport with dilute suspension in promoting long pyroclastic flow distance.

  2. Pressure-based high-order TVD methodology for dynamic stall control

    NASA Astrophysics Data System (ADS)

    Yang, H. Q.; Przekwas, A. J.

    1992-01-01

    The quantitative prediction of the dynamics of separating unsteady flows, such as dynamic stall, is of crucial importance. This six-month SBIR Phase 1 study has developed several new pressure-based methodologies for solving 3D Navier-Stokes equations in both stationary and moving (body-comforting) coordinates. The present pressure-based algorithm is equally efficient for low speed incompressible flows and high speed compressible flows. The discretization of convective terms by the presently developed high-order TVD schemes requires no artificial dissipation and can properly resolve the concentrated vortices in the wing-body with minimum numerical diffusion. It is demonstrated that the proposed Newton's iteration technique not only increases the convergence rate but also strongly couples the iteration between pressure and velocities. The proposed hyperbolization of the pressure correction equation is shown to increase the solver's efficiency. The above proposed methodologies were implemented in an existing CFD code, REFLEQS. The modified code was used to simulate both static and dynamic stalls on two- and three-dimensional wing-body configurations. Three-dimensional effect and flow physics are discussed.

  3. Subgrid-scale models for large-eddy simulation of rotating turbulent flows

    NASA Astrophysics Data System (ADS)

    Silvis, Maurits; Trias, Xavier; Abkar, Mahdi; Bae, Hyunji Jane; Lozano-Duran, Adrian; Verstappen, Roel

    2016-11-01

    This paper discusses subgrid models for large-eddy simulation of anisotropic flows using anisotropic grids. In particular, we are looking into ways to model not only the subgrid dissipation, but also transport processes, since these are expected to play an important role in rotating turbulent flows. We therefore consider subgrid-scale models of the form τ = - 2νt S +μt (SΩ - ΩS) , where the eddy-viscosity νt is given by the minimum-dissipation model, μt represents a transport coefficient; S is the symmetric part of the velocity gradient and Ω the skew-symmetric part. To incorporate the effect of mesh anisotropy the filter length is taken in such a way that it minimizes the difference between the turbulent stress in physical and computational space, where the physical space is covered by an anisotropic mesh and the computational space is isotropic. The resulting model is successfully tested for rotating homogeneous isotropic turbulence and rotating plane-channel flows. The research was largely carried out during the CTR SP 2016. M.S, and R.V. acknowledge the financial support to attend this Summer Program.

  4. LOW-VELOCITY COMPRESSIBLE FLOW THEORY

    EPA Science Inventory

    The widespread application of incompressible flow theory dominates low-velocity fluid dynamics, virtually preventing research into compressible low-velocity flow dynamics. Yet, compressible solutions to simple and well-defined flow problems and a series of contradictions in incom...

  5. RAPID REMOVAL OF A GROUNDWATER CONTAMINANT PLUME.

    USGS Publications Warehouse

    Lefkoff, L. Jeff; Gorelick, Steven M.; ,

    1985-01-01

    A groundwater management model is used to design an aquifer restoration system that removes a contaminant plume from a hypothetical aquifer in four years. The design model utilizes groundwater flow simulation and mathematical optimization. Optimal pumping and injection strategies achieve rapid restoration for a minimum total pumping cost. Rapid restoration is accomplished by maintaining specified groundwater velocities around the plume perimeter towards a group of pumping wells located near the plume center. The model does not account for hydrodynamic dispersion. Results show that pumping costs are particularly sensitive to injection capacity. An 8 percent decrease in the maximum allowable injection rate may lead to a 29 percent increase in total pumping costs.

  6. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water, which occurred preferentially at the pipe centre. For upward inclined multiphase flows RT#1 was found to give rise to water velocity profiles which are more consistent with results in the previous literature than was the case for RT#2—which leads to the tentative conclusion that the upward inclined multiphase flows investigated in the present study did not contain significant axisymmetric velocity components.

  7. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project n° 284461, www.eheroes.eu).

  8. Flow of colloid particle solution past macroscopic bodies and drag crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iordanskii, S. V., E-mail: iordansk@itp.ac.ru

    2013-11-15

    The motion of colloid particles in a viscous fluid flow is considered. Small sizes of colloid particles as compared to the characteristic scale of the flow make it possible to calculate their velocity relative to the liquid. If the density of a colloid particle is higher than the density of the liquid, the flow splits into regions in which the velocity of colloid particles coincides with the velocity of the liquid and regions of flow stagnation in which the colloid velocity is higher than the velocity of the fluid. This effect is used to explain qualitatively the decrease in themore » drag to the flows past macroscopic bodies and flows in pipes.« less

  9. Near Continuum Velocity and Temperature Coupled Compressible Boundary Layer Flow over a Flat Plate

    NASA Astrophysics Data System (ADS)

    He, Xin; Cai, Chunpei

    2017-04-01

    The problem of a compressible gas flows over a flat plate with the velocity-slip and temperature-jump boundary conditions are being studied. The standard single- shooting method is applied to obtain the exact solutions for velocity and temperature profiles when the momentum and energy equations are weakly coupled. A double-shooting method is applied if these two equations are closely coupled. If the temperature affects the velocity directly, more significant velocity slip happens at locations closer to the plate's leading edge, and inflections on the velocity profiles appear, indicating flows may become unstable. As a consequence, the temperature-jump and velocity-slip boundary conditions may trigger earlier flow transitions from a laminar to a turbulent flow state.

  10. Dynamic three-dimensional phase-contrast technique in MRI: application to complex flow analysis around the artificial heart valve

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo

    1998-07-01

    Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in totally implantable artificial heart (TAH). As a result we could observe the flow pattern around the valves of the sac, though complex flow can not be detected correctly in the conventional phase contrast method. In addition, we could calculate the cardiac output from TAH sac by quantitative measurement of the volume of flow across the outlet valve.

  11. SAMPEX science pointing with velocity avoidance. [solar anomalous and magnetospheric particle explorer

    NASA Technical Reports Server (NTRS)

    Frakes, Joseph P.; Henretty, Debra A.; Flatley, Thomas W.; Markley, F. L.; San, Josephine K.; Lightsey, E. G.

    1992-01-01

    The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) science pointing mode is presented with the additional constraint of velocity avoidance. This constraint has been added in light of the orbital debris and micrometeoroid fluxes that have been revealed by the Long Duration Exposure Facility (LDEF) recovered in January 1990. These fluxes are 50-100 times higher than the flux tables that were used in the September 1988 proposal to NASA for the SAMPEX mission. The SAMPEX Heavey Ion Large Telescope (HILT) sensor includes a flow-through isobutane proportional counter that is susceptible to penetration by orbital debris and micrometeoroids. Thus, keeping the HILT sensor pointed away from the velocity vector, the direction of maximum flux, will compensate for the higher than expected fluxes. Using an orbital debris model and a micrometeoroid model developed at the Johnson Space Center (JSC), and a SAMPEX dynamic simulator developed by the Guidance and Control Branch at the Goddard Space Flight Center (GSFC), an 'optimal' minimum ram angle (the angle between the HILT boresight and the velocity vector) of 90 degrees has been determined. It is optimal in the sense of minimizing the science pointing performance degradation while providing approximately an 89 percent chance of survival for the HILT sensor over a three year period.

  12. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows.

    PubMed

    Park, H M; Lee, W M

    2008-01-15

    Many biofluids such as blood and DNA solutions are viscoelastic and exhibit extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. However, the governing equations for viscoelastic flows are not easily solvable, especially for electroosmotic flows where the streamwise velocity varies rapidly from zero at the wall to a nearly uniform velocity at the outside of the very thin electric double layer. In the present investigation, we have devised a simple method to find the volumetric flow rate of viscoelastic electroosmotic flows through microchannels. It is based on the concept of the Helmholtz-Smoluchowski velocity which is widely adopted in the electroosmotic flows of Newtonian fluids. It is shown that the Helmholtz-Smoluchowski velocity for viscoelastic fluids can be found by solving a simple cubic algebraic equation. The volumetric flow rate obtained using this Helmholtz-Smoluchowski velocity is found to be almost the same as that obtained by solving the governing partial differential equations for various viscoelastic fluids.

  13. Measuring Taylor Slough boundary and internal flows, Everglades National Park, Florida

    USGS Publications Warehouse

    Tillis, G.M.

    2001-01-01

    Four intensive data-collection efforts, intended to represent the spectrum of precipitation events and associated flow conditions, were conducted during 1997 and 1998 in the Taylor Slough Basin, Everglades National Park. Flow velocities were measured by newly developed, portable Acoustic Doppler Velocity meters along three transects bisecting the Taylor Slough Basin from east to west, roughly perpendicular to the centerline axis of the slough as well as a fourth transect along the slough's axis. These meters provided the required levels of accuracy in flow-velocity measurements while enabling the rapid collection of multiple time series of flow data at remote sites. Concurrently, flow measurements were made along bordering road culverts and under L-31W and Taylor Slough bridges. Flows across the study area's boundaries provided net flow of water into the system and transect measurements provided flow data within the basin. Collected data are available through the World Wide Web (http://sofia.usgs.gov/projects/flow_velocity/). The high-water and low-water events corresponded with the highest and lowest flow velocities, respectively. The July 1998 data had lower than expected flow velocities and, in some cases, strong winds reversed flow direction.

  14. Exploiting LSPIV to assess debris-flow velocities in the field

    NASA Astrophysics Data System (ADS)

    Theule, Joshua I.; Crema, Stefano; Marchi, Lorenzo; Cavalli, Marco; Comiti, Francesco

    2018-01-01

    The assessment of flow velocity has a central role in quantitative analysis of debris flows, both for the characterization of the phenomenology of these processes and for the assessment of related hazards. Large-scale particle image velocimetry (LSPIV) can contribute to the assessment of surface velocity of debris flows, provided that the specific features of these processes (e.g. fast stage variations and particles up to boulder size on the flow surface) are taken into account. Three debris-flow events, each of them consisting of several surges featuring different sediment concentrations, flow stages, and velocities, have been analysed at the inlet of a sediment trap in a stream in the eastern Italian Alps (Gadria Creek). Free software has been employed for preliminary treatment (orthorectification and format conversion) of video-recorded images as well as for LSPIV application. Results show that LSPIV velocities are consistent with manual measurements of the orthorectified imagery and with front velocity measured from the hydrographs in a channel recorded approximately 70 m upstream of the sediment trap. Horizontal turbulence, computed as the standard deviation of the flow directions at a given cross section for a given surge, proved to be correlated with surface velocity and with visually estimated sediment concentration. The study demonstrates the effectiveness of LSPIV in the assessment of surface velocity of debris flows and permit the most crucial aspects to be identified in order to improve the accuracy of debris-flow velocity measurements.

  15. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

    NASA Astrophysics Data System (ADS)

    Havlík, Jan; Dlouhý, Tomáš

    2018-06-01

    This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.

  16. Space-time correlations of fluctuating velocities in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; He, Guo-Wei

    2009-04-01

    Space-time correlations or Eulerian two-point two-time correlations of fluctuating velocities are analytically and numerically investigated in turbulent shear flows. An elliptic model for the space-time correlations in the inertial range is developed from the similarity assumptions on the isocorrelation contours: they share a uniform preference direction and a constant aspect ratio. The similarity assumptions are justified using the Kolmogorov similarity hypotheses and verified using the direct numerical simulation (DNS) of turbulent channel flows. The model relates the space-time correlations to the space correlations via the convection and sweeping characteristic velocities. The analytical expressions for the convection and sweeping velocities are derived from the Navier-Stokes equations for homogeneous turbulent shear flows, where the convection velocity is represented by the mean velocity and the sweeping velocity is the sum of the random sweeping velocity and the shear-induced velocity. This suggests that unlike Taylor’s model where the convection velocity is dominating and Kraichnan and Tennekes’ model where the random sweeping velocity is dominating, the decorrelation time scales of the space-time correlations in turbulent shear flows are determined by the convection velocity, the random sweeping velocity, and the shear-induced velocity. This model predicts a universal form of the space-time correlations with the two characteristic velocities. The DNS of turbulent channel flows supports the prediction: the correlation functions exhibit a fair good collapse, when plotted against the normalized space and time separations defined by the elliptic model.

  17. Effects of free convection and friction on heat-pulse flowmeter measurement

    NASA Astrophysics Data System (ADS)

    Lee, Tsai-Ping; Chia, Yeeping; Chen, Jiun-Szu; Chen, Hongey; Liu, Chen-Wuing

    2012-03-01

    SummaryHeat-pulse flowmeter can be used to measure low flow velocities in a borehole; however, bias in the results due to measurement error is often encountered. A carefully designed water circulation system was established in the laboratory to evaluate the accuracy and precision of flow velocity measured by heat-pulse flowmeter in various conditions. Test results indicated that the coefficient of variation for repeated measurements, ranging from 0.4% to 5.8%, tends to increase with flow velocity. The measurement error increases from 4.6% to 94.4% as the average flow velocity decreases from 1.37 cm/s to 0.18 cm/s. We found that the error resulted primarily from free convection and frictional loss. Free convection plays an important role in heat transport at low flow velocities. Frictional effect varies with the position of measurement and geometric shape of the inlet and flow-through cell of the flowmeter. Based on the laboratory test data, a calibration equation for the measured flow velocity was derived by the least-squares regression analysis. When the flowmeter is used with a diverter, the range of measured flow velocity can be extended, but the measurement error and the coefficient of variation due to friction increase significantly. At higher velocities under turbulent flow conditions, the measurement error is greater than 100%. Our laboratory experimental results suggested that, to avoid a large error, the heat-pulse flowmeter measurement is better conducted in laminar flow and the effect of free convection should be eliminated at any flow velocities. Field measurement of the vertical flow velocity using the heat-pulse flowmeter was tested in a monitoring well. The calibration of measured velocities not only improved the contrast in hydraulic conductivity between permeable and less permeable layers, but also corrected the inconsistency between the pumping rate and the measured flow rate. We identified two highly permeable sections where the horizontal hydraulic conductivity is 3.7-6.4 times of the equivalent hydraulic conductivity obtained from the pumping test. The field test results indicated that, with a proper calibration, the flowmeter measurement is capable of characterizing the vertical distribution of preferential flow or hydraulic conductivity.

  18. Measurement of viscous flow velocity and flow visualization using two magnetic resonance imagers

    NASA Astrophysics Data System (ADS)

    Boiko, A. V.; Akulov, A. E.; Chupakhin, A. P.; Cherevko, A. A.; Denisenko, N. S.; Savelov, A. A.; Stankevich, Yu. A.; Khe, A. K.; Yanchenko, A. A.; Tulupov, A. A.

    2017-03-01

    The accuracies of measuring the velocity field using clinical and research magnetic resonance imagers are compared. The flow velocity of a fluid simulating blood in a carotid artery model connected to a programmable pump was measured. Using phase-contrast magnetic resonance tomography, the velocity distributions in the carotid artery model were obtained and compared with the analytical solution for viscous liquid flow in a cylindrical tube (Poiseuille flow). It is found that the accuracy of the velocity measurement does not depend on the field induction and spatial resolution of the imagers.

  19. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan

    2018-03-01

    In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.

  20. Numerical simulation of two-dimensional combustion process in a spark ignition engine with a prechamber using k-. epsilon. turbulence model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, H.; Asanuma, T.

    1989-01-01

    Two-dimensional combustion processes in a spark ignition engine with and without an unscavenged horizontal prechamber are calculated numerically using a {kappa}-{epsilon} turbulence model, a flame kernel ignition model and an irreversible reaction model to obtain a better understanding of the spatial and temporal distributions of flow and combustion. The simulation results are compared with the measured results under the same operating conditions of experiments, that is, the minimum spark advance for best torque (MBT), volumetric efficiency of 80 +- 2%, air-fuel ratio of 15 and engine speed of 1000 rpm, with various torch nozzle areas and an open chamber. Consequently,more » the flow and combustion characteristics calculated for the S.I. engine with and without prechamber are discussed to examine the effect of torch jet on the velocity vectors, contour maps of turbulence and gas temperature.« less

  1. Assessment of Portal Venous and Hepatic Artery Haemodynamic Variation in Non-Alcoholic Fatty Liver Disease (NAFLD) Patients.

    PubMed

    Balasubramanian, Padhmini; Boopathy, Vinoth; Govindasamy, Ezhumalai; Venkatesh, Basavaiya Prabhu

    2016-08-01

    Non-Alcoholic Fatty Liver Disease (NAFLD) has various spectrums of liver diseases like isolated fatty liver, steatohepatitis and cirrhosis usually progressing in a linear fashion. In this process they are known to cause certain haemodynamic changes in the portal flow and hepatic artery flow. The aim of the study was to study these haemodynamic changes in patients with NAFLD and to correlate it with the disease severity. Ninety patients diagnosed to have NAFLD based on ultrasound abdomen (30 each in grade1, grade2 and grade3 NAFLD) and 30 controls (Normal liver on ultrasound abdomen) were subjected to portal vein and hepatic artery Doppler study. Peak maximum velocity (Vmax), Peak minimum velocity (Vmin), Mean flow velocity (MFV), and Vein pulsality index (VPI) of the portal vein and hepatic artery resistivity index (HARI) of the hepatic artery were the doppler parameters which were assessed. Liver span was also assessed both for the fatty liver and controls. The mean Vmax, Vmin, MFV and VPI of the portal vein in patients with NAFLD was 12.23±1.74cm/sec, 9.31±1.45cm/sec, 10.76±1.48cm/sec, and 0.24±0.04 as compared to 14.05±2.43cm/sec, 10.01±2.27cm/sec, 12.23±2.47cm/sec, 0.3±0.08 in controls respectively. All these differences were statistically significant except for Vmin. The Mean HARI in patients with fatty liver was 0.65±0.06 when compared to controls of 0.75±0.06 (p=0.001). HARI (r-value of -0.517) had a better negative correlation followed by VPI (r-value of -0.44) and Vmax (r-value of -0.293) with the severity of NAFLD. MFV had a very weak negative correlation (r-value of -0.182) with the severity of NAFLD. The Vmax, MFV, VPI and HARI were significantly less when compared to controls suggesting a reduced portal flow and an increased hepatic arterial flow in patients with NAFLD. Among the parameters, HARI correlated better with the severity of NAFLD followed by VPI.

  2. Fuel control for gas turbine with continuous pilot flame

    DOEpatents

    Swick, Robert M.

    1983-01-01

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  3. Measurement and control systems for an imaging electromagnetic flow metre.

    PubMed

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.

  4. Velocity bias induced by flow patterns around ADCPs and associated deployment platforms

    USGS Publications Warehouse

    Mueller, David S.

    2015-01-01

    Velocity measurements near the Acoustic Doppler Current Profiler (ADCP) are important for mapping surface currents, measuring velocity and discharge in shallow streams, and providing accurate estimates of discharge in the top unmeasured portion of the water column. Improvements to ADCP performance permit measurement of velocities much closer (5 cm) to the transducer than has been possible in the past (25 cm). Velocity profiles collected by the U.S. Geological Survey (USGS) with a 1200 kHz Rio Grande Zedhead ADCP in 2002 showed a negative bias in measured velocities near the transducers. On the basis of these results, the USGS initiated a study combining field, laboratory, and numerical modeling data to assess the effect of flow patterns caused by flow around the ADCP and deployment platforms on velocities measured near the transducers. This ongoing study has shown that the negative bias observed in the field is due to the flow pattern around the ADCP. The flow pattern around an ADCP violates the basic assumption of flow homogeneity required for an accurate three-dimensional velocity solution. Results, to date (2014), have indicated velocity biases within the measurable profile, due to flow disturbance, for the TRDI 1200 kHz Rio Grande Zedhead and the SonTek RiverSurveyor M9 ADCPs. The flow speed past the ADCP, the mount and the deployment platform have also been shown to play an important role in the magnitude and extent of the velocity bias.

  5. Evolution of velocity dispersion along cold collisionless flows

    DOE PAGES

    Banik, Nilanjan; Sikivie, Pierre

    2016-05-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results aremore » used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components.« less

  6. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    PubMed

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  7. Quantitative angle-insensitive flow measurement using relative standard deviation OCT

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-01

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo.

  8. Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.

    PubMed

    Chagnaud, Boris P; Brücker, Christoph; Hofmann, Michael H; Bleckmann, Horst

    2008-04-23

    If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means of particle image velocimetry that, if a flow contains fluctuations, these fluctuations propagate with the flow. A cross-correlation of water motion measured at an upstream point with that at a downstream point can then provide information about flow velocity and flow direction. In this study, we recorded from pairs of primary lateral line afferents while a fish was exposed to either bulk water flow, or to the water motion caused by a moving object. We confirm that lateral line afferents responded to the flow fluctuations and not to the DC component of the flow, and that responses of many fiber pairs were highly correlated, if they were time-shifted to correct for gross flow velocity and gross flow direction. To prove that a cross-correlation mechanism can be used to retrieve the information about gross flow velocity and direction, we measured the flow-induced bending motions of two flexible micropillars separated in a downstream direction. A cross-correlation of the bending motions of these micropillars did indeed produce an accurate estimate of the velocity vector along the direction of the micropillars.

  9. Flow variation and substrate type affect dislodgement of the freshwater polychaete, Manayunkia speciosa

    USGS Publications Warehouse

    Malakauskas, David M.; Wilson, Sarah J.; Wilzbach, Margaret A.; Som, Nicholas A.

    2013-01-01

    We quantified microscale flow forces and their ability to entrain the freshwater polychaete, Manayunkia speciosa, the intermediate host for 2 myxozoan parasites (Ceratomyxa shasta and Parvicapsula minibicornis) that cause substantial mortalities in salmonid fishes in the Pacific Northwest. In a laboratory flume, we measured the shear stress associated with 2 mean flow velocities and 3 substrates and quantified associated dislodgement of polychaetes, evaluated survivorship of dislodged polychaetes, and observed behavioral responses of the polychaetes in response to increased flow. We used a generalized linear mixed model to estimate the probability of polychaete dislodgement for treatment combinations of velocity (mean flow velocity  =  55 cm/s with a shear velocity  =  3 cm/s, mean flow velocity  =  140 cm/s with a shear velocity  =  5 cm/s) and substrate type (depositional sediments and analogs of rock faces and the filamentous alga, Cladophora). Few polychaetes were dislodged at shear velocities <3 cm/s on any substrate. Above this level of shear, probability of dislodgement was strongly affected by both substrate type and velocity. After accounting for substrate, odds of dislodgement were 8× greater at the higher flow. After accounting for velocity, probability of dislodgement was greatest from fine sediments, intermediate from rock faces, and negligible from Cladophora. Survivorship of dislodged polychaetes was high. Polychaetes exhibited a variety of behaviors for avoiding increases in flow, including extrusion of mucus, burrowing into sediments, and movement to lower-flow microhabitats. Our findings suggest that polychaete populations probably exhibit high resilience to flow-mediated disturbances.

  10. Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan

    2014-06-01

    The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.

  11. The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions

    NASA Astrophysics Data System (ADS)

    Thomsen, Soeren; Kanzow, Torsten; Krahmann, Gerd; Greatbatch, Richard J.; Dengler, Marcus; Lavik, Gaute

    2016-01-01

    The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent (PCUC) in January and February 2013 is investigated using a multiplatform four-dimensional observational approach. Research vessel, multiple glider, and mooring-based measurements were conducted in the Peruvian upwelling regime near 12°30'S. The data set consists of >10,000 glider profiles and repeated vessel-based hydrography and velocity transects. It allows a detailed description of the eddy formation and its impact on the near-coastal salinity, oxygen, and nutrient distributions. In early January, a strong PCUC with maximum poleward velocities of ˜0.25 m/s at 100-200 m depth was observed. Starting on 20 January, a subsurface anticyclonic eddy developed in the PCUC downstream of a topographic bend, suggesting flow separation as the eddy formation mechanism. The eddy core waters exhibited oxygen concentration of <1 μmol/kg, an elevated nitrogen deficit of ˜17 μmol/L, and potential vorticity close to zero, which seemed to originate from the bottom boundary layer of the continental slope. The eddy-induced across-shelf velocities resulted in an elevated exchange of water masses between the upper continental slope and the open ocean. Small-scale salinity and oxygen structures were formed by along-isopycnal stirring, and indications of eddy-driven oxygen ventilation of the upper oxygen minimum zone were observed. It is concluded that mesoscale stirring of solutes and the offshore transport of eddy core properties could provide an important coastal open ocean exchange mechanism with potentially large implications for nutrient budgets and biogeochemical cycling in the oxygen minimum zone off Peru.

  12. First absolute wind measurements in the middle atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Lellouch, Emmanuel; Goldstein, Jeffrey J.; Bougher, Stephen W.; Paubert, Gabriel; Rosenqvist, Jan

    1991-12-01

    The first absolute wind measurements in the middle atmosphere of Mars (40-70 km) were obtained from Doppler shifts in the J = 2-1 CO transition at 230.538 GHz. During the 1988 opposition, this line was observed at 100 kHz resolution with the IRAM 30 m telescope. The 12-arcsec FWHM beam of the facility allowed spatial resolution of the Martian disk (23.8 arcsec). The high S/N of the data allowed measurement of winds with a 1-sigma absolute line-of-sight accuracy of 20 m/s. The measurements, performed during southern summer solstice, stress the Southern Hemisphere and clearly indicate a global easterlies flow. If modeled by a broad easterly jet with a maximum centered at 20 S, and extending 80 deg in latitude, the jet core velocity is found to have a chi-sq minimum at 160 m/s, generally consistent with predictions for broad summer easterly jets near 50 km as proposed by theoretical models. If the flow is modeled instead by a planet-wide solid rotator zonal flow which is restricted to the Southern Hemisphere or equatorial regions, the velocity of the easterlies is nearly the same. These wind measurements, together with the temperature measurements of Deming et al. (1986), provide the first experimental rough picture of the middle atmosphere circulation of Mars, in general agreement with the Jaquin axisymmetric middle atmosphere model and the current Mars GCM model of Pollack et al. (1990).

  13. Design and analysis of flow velocity distribution inside a raceway pond using computational fluid dynamics.

    PubMed

    Pandey, Ramakant; Premalatha, M

    2017-03-01

    Open raceway ponds are widely adopted for cultivating microalgae on a large scale. Working depth of the raceway pond is the major component to be analysed for increasing the volume to surface area ratio. The working depth is limited up to 5-15 cm in conventional ponds but in this analysis working depth of raceway pond is considered as 25 cm. In this work, positioning of the paddle wheel is analysed and corresponding Vertical Mixing Index are calculated using CFD. Flow pattern along the length of the raceway pond, at three different paddle wheel speeds are analysed for L/W ratio of 6, 8 and 10, respectively. Effect of clearance (C) between rotor blade tip and bottom surface is also analysed by taking four clearance conditions i.e. C = 2, 5, 10 and 15. Moving reference frame method of Fluent is used for the modeling of six blade paddle wheel and realizable k-ε model is used for capturing turbulence characteristics. Overall objective of this work is to analyse the required geometry for maintaining a minimum flow velocity to avoid settling of algae corresponding to 25 cm working depth. Geometry given in [13] is designed using ANSYS Design modular and CFD results are generated using ANSYS FLUENT for the purpose of validation. Good agreement of results is observed between CFD and experimental Particle image velocimetry results with the deviation of 7.23%.

  14. Flow through a very porous obstacle in a shallow channel

    PubMed Central

    Draper, S.; Nishino, T.; Borthwick, A. G. L.

    2017-01-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence. PMID:28484321

  15. 75 FR 40797 - Upper Peninsula Power Company; Notice of Application for Temporary Amendment of License and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... for drought-based temporary variance of the reservoir elevations and minimum flow releases at the Dead... temporary variance to the reservoir elevation and minimum flow requirements at the Hoist Development. The...: (1) Releasing a minimum flow of 75 cubic feet per second (cfs) from the Hoist Reservoir, instead of...

  16. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    NASA Astrophysics Data System (ADS)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  17. Generation of net sediment transport by velocity skewness in oscillatory sheet flow

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin

    2018-01-01

    This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.

  18. Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor

    NASA Astrophysics Data System (ADS)

    Kagawa, Naoki; Wada, Osami; Koga, Ryuji

    1999-05-01

    This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.

  19. Tip clearance noise of axial flow fans operating at design and off-design condition

    NASA Astrophysics Data System (ADS)

    Fukano, T.; Jang, C.-M.

    2004-08-01

    The noise due to tip clearance (TC) flow in axial flow fans operating at a design and off-design conditions is analyzed by an experimental measurement using two hot-wire probes rotating with the fan blades. The unsteady nature of the spectra of the real-time velocities measured by two hot-wire sensors in a vortical flow region is investigated by using cross-correlation coefficient and retarded time of the two fluctuating velocities. The results show that the noise due to TC flow consists of a discrete frequency noise due to periodic velocity fluctuation and a broadband noise due to velocity fluctuation in the blade passage. The peak frequencies in a vortical flow are mainly observed below at four harmonic blade passing frequency. The discrete frequency component of velocity fluctuation at the off-design operating conditions is generated in vortical flow region as well as in reverse flow region. The peak frequency can be an important noise source when the fans are rotated with a high rotational speed. The authors propose a spiral pattern of velocity fluctuation in the vortical flow to describe the generation mechanism of the peak frequency in the vortical flow. In addition, noise increase due to TC flow at low flow rate condition is analyzed with relation to the distribution of velocity fluctuation due to the interference between the tip leakage vortex and the adjacent pressure surface of the blade.

  20. Gas flow rate dependence of the discharge characteristics of a helium atmospheric pressure plasma jet interacting with a substrate

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Economou, Demetre J.

    2017-10-01

    A 2D (axisymmetric) computational study of the discharge characteristics of an atmospheric pressure plasma jet as a function of gas flow rate was performed. The helium jet emerged from a dielectric tube, with an average gas flow velocity in the range 2.5-20 m s-1 (1 atm, 300 K) in a nitrogen ambient, and impinged on a substrate a short distance dowstream. The effect of the substrate conductivity (conductror versus insulator) was also studied. Whenever possible, simulation predictions were compared with published experimental observations. Discharge ignition and propagation in the dielectric tube were hardly affected by the He gas flow velocity. Most properties of the plasma jet, however, depended sensitively on the He gas flow velocity, which determined the concentration distributions of helium and nitrogen in the mixing layer forming in the gap between the tube exit and the substrate. At low gas flow velocity, the plasma jet evolved from a hollow (donut-shaped) feature to one where the maximum of electron density was on axis. When the gas flow velocity was high, the plasma jet maintained its hollow structure until it struck the substrate. For a conductive substrate, the radial ion fluxes to the surface were relatively uniform over a radius of ~0.4-0.8 mm, and the dominant ion flux was that of He+. For a dielectric substrate, the radial ion fluxes to the surface peaked on the symmetry axis at low He gas flow velocity, but a hollow ion flux distribution was observed at high gas flow velocity. At the same time, the main ion flux switched from N2+ to He2+ as the He gas flow velocity increased from a low to a high value. The diameter of the plasma ‘footprint’ on the substrate first increased with increasing He gas flow velocity, and eventually saturated with further increases in velocity.

  1. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    PubMed

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  2. Design of Friction Stir Welding Tool for Avoiding Root Flaws

    PubMed Central

    Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng

    2013-01-01

    In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool. PMID:28788426

  3. Design of Friction Stir Welding Tool for Avoiding Root Flaws.

    PubMed

    Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng

    2013-12-12

    In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.

  4. Influence of particle velocity on the conductivity of dusty plasma

    NASA Astrophysics Data System (ADS)

    Xu, C. M.; Chen, Y. Y.; Yu, R. J.; Zhang, Y. Y.

    2018-06-01

    Conductivity is a popular branch of dusty plasma research. In this paper, on the basis of considering the influence of charged particles' (electrons and ions) flow velocity, the conductivity of dusty plasma is derived and studied. Firstly, the charging currents are deduced on considering the influence of flow velocity, and the theoretical results manifest that it increases with the increase of flow velocity. Secondly, both the real and imaginary parts of the conductivity are derived, based on which, the dependence of conductivity on the flow velocity is discussed. In further, it is found that both the real and imaginary parts have a turning point. Finally, a ratio defined as charged particles' flow velocity to thermal velocity is proposed to analyze the dependence of the conductivity on the velocities. The involved results reveal that both the real and imaginary parts of the conductivity have a turning point in their dependence on the ratio, but the specific ratio value is different.

  5. Velocity of water flow along saturated loess slopes under erosion effects

    NASA Astrophysics Data System (ADS)

    Huang, Yuhan; Chen, Xiaoyan; Li, Fahu; Zhang, Jing; Lei, Tingwu; Li, Juan; Chen, Ping; Wang, Xuefeng

    2018-06-01

    Rainfall or snow-melted water recharge easily saturates loose top soils with a less permeable underlayer, such as cultivated soil slope and partially thawed top soil layer, and thus, may influence the velocity of water flow. This study suggested a methodology and device system to supply water from the bottom soil layer at the different locations of slopes. Water seeps into and saturates the soil, when the water level is controlled at the same height of the soil surface. The structures and functions of the device, the components, and the operational principles are described in detail. A series of laboratory experiments were conducted under slope gradients of 5°, 10°, 15°, and 20° and flow rates of 2, 4, and 8 L min-1 to measure the water flow velocities over eroding and non-eroded loess soil slopes, under saturated conditions by using electrolyte tracing. Results showed that flow velocities on saturated slopes were 17% to 88% greater than those on non-saturated slopes. Flow velocity increased rapidly under high flow rates and slope gradients. Saturation conditions were suitable in maintaining smooth rill geomorphology and causing fast water flow. The saturated soil slope had a lubricant effect on the soil surface to reduce the frictional force, resulting in high flow velocity. The flow velocities of eroding rills under different slope gradients and flow rates were approximately 14% to 33% lower than those of non-eroded rills on saturated loess slopes. Compared with that on a saturated loess slope, the eroding rill on a non-saturated loess slope can produce headcuts to reduce the flow velocity. This study helps understand the hydrodynamics of soil erosion and sediment transportation of saturated soil slopes.

  6. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface

    NASA Astrophysics Data System (ADS)

    Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Du, Peng; Choi, Chang-Hwan; Rothstein, Jonathan P.

    2018-03-01

    Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature, and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.

  7. Flow velocity measurements with stimulated Rayleigh-Brillouin-gain spectroscopy

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Moosmueller, H.; Lee, S. A.; She, C. Y.

    1983-01-01

    Using stimulated Rayleigh-Brillouin-gain spectroscopy, velocity measurements in an atmospheric-pressure subsonic nitrogen flow with 10 percent uncertainty have been conducted. It is shown that the accuracy of the velocity measurements increases with gas pressure, making this spectroscopic technique ideal for measuring velocity and other parameters of high-pressure (greater than 1-atm) atomic or molecular flows.

  8. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    PubMed

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  9. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    NASA Technical Reports Server (NTRS)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; hide

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  10. Laser Doppler anemometer signal processing for blood flow velocity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borozdova, M A; Fedosov, I V; Tuchin, V V

    A new method for analysing the signal in a laser Doppler anemometer based on the differential scheme is proposed, which provides the flow velocity measurement in strongly scattering liquids, particularly, blood. A laser Doppler anemometer intended for measuring the absolute blood flow velocity in animal and human near-surface arterioles and venules is developed. The laser Doppler anemometer signal structure is experimentally studied for measuring the flow velocity in optically inhomogeneous media, such as blood and suspensions of scattering particles. The results of measuring the whole and diluted blood flow velocity in channels with a rectangular cross section are presented. (lasermore » applications and other topics in quantum electronics)« less

  11. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes.

    PubMed

    Bucs, Szilard S; Linares, Rodrigo Valladares; Marston, Jeremy O; Radu, Andrea I; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2015-12-15

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m·s(-1)) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m·s(-1)) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m·s(-1), thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Laser velocimeter application to oscillatory liquid flows

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1978-01-01

    A laser velocimeter technique was used to measure the mean velocity and the frequency characteristics of an oscillatory flow component generated with a rotating flapper in liquid flow system at Reynolds numbers approximating 93,000. The velocity information was processed in the frequency domain using a tracker whose output was used to determine the flow spectrum. This was accomplished with the use of an autocorrelator/Fourier transform analyzer and a spectrum averaging analyzer where induced flow oscillations up to 40 Hz were detected. Tests were conducted at a mean flow velocity of approximately 2 m/s. The experimental results show that the laser velocimeter can provide quantitative information such as liquid flow velocity and frequency spectrum with a possible application to cryogenic fluid flows.

  13. A method of calibrating wind velocity sensors with a modified gas flow calibrator

    NASA Technical Reports Server (NTRS)

    Stump, H. P.

    1978-01-01

    A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.

  14. Assimilation of ambient seismic noise in hydrological models allows estimation of hydraulic conductivity in unsaturated media

    NASA Astrophysics Data System (ADS)

    Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.

    2016-12-01

    Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.

  15. Aerothermal and Propulsion Ground Testing That Can Be Conducted to Increase Chances for Successful Hypervelocity Flight Experiments

    DTIC Science & Technology

    2005-10-01

    interaction • Turbulence/ flow chemistry plus combustion interaction • Transpiration Cooling and ablation – Ram/Scramjet Technology – Ignition, mixing...turbulence models for separated regions of shock wave/turbulent boundary layer interaction – Modeling turbulence/ flow chemistry /combustion...Minutes FLOW DURATION Flow velocity Reynolds number Mach number Velocity Temperature Vehicle length NoneLengthVelocity Flow Chemistry Total temperature

  16. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.

    PubMed

    Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  17. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.

    PubMed

    Blake, James R; Easson, William J; Hoskins, Peter R

    2009-09-01

    A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.

  18. On shapes and motion of an elongated bubble in downward liquid pipe flow

    NASA Astrophysics Data System (ADS)

    Fershtman, A.; Babin, V.; Barnea, D.; Shemer, L.

    2017-11-01

    In stagnant liquid, or in a steady upward liquid pipe flow, an elongated (Taylor) bubble has a symmetric shape. The translational velocity of the bubble is determined by buoyancy and the liquid velocity profile ahead of it. In downward flow, however, the symmetry of the bubble nose can be lost. Taylor bubble motion in downward flow is important in numerous applications such as chemical plants and cooling systems that often contain countercurrent gas-liquid flow. In the present study, the relation between the Taylor bubble shape and its translational velocity is investigated experimentally in a vertical pipe for various downward liquid flow rates. At higher downward velocities, the bubble may be forced by the background flow to propagate downward against buoyancy. In order to include those cases as well in our experimental analysis, the bubbles were initially injected into stagnant liquid, whereas the downward flow was initiated at a later stage. This experimental procedure allowed us to identify three distinct modes of translational velocities for a given downward background liquid flow; each velocity corresponds to a different bubble shape. Hydrodynamic mechanisms that govern the transition between the modes observed in the present study are discussed.

  19. Coupled three-layer model for turbulent flow over large-scale roughness: On the hydrodynamics of boulder-bed streams

    NASA Astrophysics Data System (ADS)

    Pan, Wen-hao; Liu, Shi-he; Huang, Li

    2018-02-01

    This study developed a three-layer velocity model for turbulent flow over large-scale roughness. Through theoretical analysis, this model coupled both surface and subsurface flow. Flume experiments with flat cobble bed were conducted to examine the theoretical model. Results show that both the turbulent flow field and the total flow characteristics are quite different from that in the low gradient flow over microscale roughness. The velocity profile in a shallow stream converges to the logarithmic law away from the bed, while inflecting over the roughness layer to the non-zero subsurface flow. The velocity fluctuations close to a cobble bed are different from that of a sand bed, and it indicates no sufficiently large peak velocity. The total flow energy loss deviates significantly from the 1/7 power law equation when the relative flow depth is shallow. Both the coupled model and experiments indicate non-negligible subsurface flow that accounts for a considerable proportion of the total flow. By including the subsurface flow, the coupled model is able to predict a wider range of velocity profiles and total flow energy loss coefficients when compared with existing equations.

  20. Influence of type of aortic valve prosthesis on coronary blood flow velocity.

    PubMed

    Jelenc, Matija; Juvan, Katja Ažman; Medvešček, Nadja Tatjana Ružič; Geršak, Borut

    2013-02-01

    Severe aortic valve stenosis is associated with high resting and reduced hyperemic coronary blood flow. Coronary blood flow increases after aortic valve replacement (AVR); however, the increase depends on the type of prosthesis used. The present study investigates the influence of type of aortic valve prosthesis on coronary blood flow velocity. The blood flow velocity in the left anterior descending coronary artery (LAD) and the right coronary artery (RCA) was measured intraoperatively before and after AVR with a stentless bioprosthesis (Sorin Freedom Solo; n = 11) or a bileaflet mechanical prosthesis (St. Jude Medical Regent; n = 11). Measurements were made with an X-Plore epicardial Doppler probe (Medistim, Oslo, Norway) following induction of hyperemia with an adenosine infusion. Preoperative and postoperative echocardiography evaluations were used to assess valvular and ventricular function. Velocity time integrals (VTI) were measured from the Doppler signals and used to calculate the proportion of systolic VTI (SF), diastolic VTI (DF), and normalized systolic coronary blood flow velocities (NSF) and normalized diastolic coronary blood flow velocities (NDF). The systolic proportion of the LAD VTI increased after AVR with the St. Jude Medical Regent prosthesis, which produced higher LAD SF and NSF values than the Sorin Freedom Solo prosthesis (SF, 0.41 ± 0.09 versus 0.29 ± 0.13 [P = .04]; NSF, 0.88 ± 0.24 versus 0.55 ± 0.17 [P = .01]). No significant changes in the LAD velocity profile were noted after valve replacement with the Sorin Freedom Solo, despite a significant reduction in transvalvular gradient and an increase in the effective orifice area. AVR had no effect on the RCA flow velocity profile. The coronary flow velocity profile in the LAD was significantly influenced by the type of aortic valve prosthesis used. The differences in the LAD velocity profile probably reflect differences in valve design and the systolic transvalvular flow pattern.

  1. Hydrodynamic bifurcation in electro-osmotically driven periodic flows

    NASA Astrophysics Data System (ADS)

    Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.

    2018-06-01

    In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.

  2. Flow in cerebral aneurysms: 4D Flow MRI measurements and CFD models

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy; Schnell, Susanne

    2017-11-01

    4D Flow MRI is capable of measuring blood flow in vivo, providing time-resolved velocity fields in 3D. The dynamic range of the 4D Flow MRI is determined by a velocity sensitivity parameter (venc), set above the expected maximum velocity, which can result in noisy data for slow flow regions. A dual-venc 4D flow MRI technique, where both low- and high-venc data are acquired, can improve velocity-to-noise ratio and, therefore, quantification of clinically-relevant hemodynamic metrics. In this study, patient-specific CFD simulations were used to evaluate the advantages of the dual-venc approach for assessment of the flow in cerebral aneurysms. The flow in 2 cerebral aneurysms was measured in vivo with dual-venc 4D Flow MRI and simulated with CFD, using the MRI data to prescribe flow boundary conditions. The flow fields obtained with computations were compared to those measured with a single- and dual-venc 4D Flow MRI. The numerical models resolved small flow structures near the aneurysmal wall, that were not detected with a single-venc acquisition. Comparison of the numerical and imaging results shows that the dual-venc approach can improve the accuracy of the 4D Flow MRI measurements in regions characterized by high-velocity jets and slow recirculating flows.

  3. Seasonal variabilty of surface velocities and ice discharge of Columbia Glacier, Alaska using high-resolution TanDEM-X satellite time series and NASA IceBridge data

    NASA Astrophysics Data System (ADS)

    Vijay, Saurabh; Braun, Matthias

    2014-05-01

    Columbia Glacier is a grounded tidewater glacier located on the south coast of Alaska. It has lost half of its volume during 1957-2007, more rapidly after 1980. It is now split into two branches, known as Main/East and West branch due to the dramatic retreat of ~ 23 km and calving of iceberg from its terminus in past few decades. In Alaska, a majority of the mass loss from glaciers is due to rapid ice flow and calving icebergs into tidewater and lacustrine environments. In addition, submarine melting and change in the frontal position can accelerate the ice flow and calving rate. We use time series of high-resolution TanDEM-X stripmap satellite imagery during 2011-2013. The active image of the bistatic TanDEM-X acquisitions, acquired over 11 or 22 day repeat intervals, are utilized to derive surface velocity fields using SAR intensity offset tracking. Due to the short temporal baselines, the precise orbit control and the high-resolution of the data, the accuracies of the velocity products are high. We observe a pronounce seasonal signal in flow velocities close to the glacier front of East/Main branch of Columbia Glacier. Maximum values at the glacier front reach up to 14 m/day were recorded in May 2012 and 12 m/day in June 2013. Minimum velocities at the glacier front are generally observed in September and October with lowest values below 2 m/day in October 2012. Months in between those dates show corresponding increase or deceleration resulting a kind of sinusoidal annual course of the surface velocity at the glacier front. The seasonal signal is consistently decreasing with the distance from the glacier front. At a distance of 17.5 km from the ice front, velocities are reduced to 2 m/day and almost no seasonal variability can be observed. We attribute these temporal and spatial variability to changes in the basal hydrology and lubrification of the glacier bed. Closure of the basal drainage system in early winter leads to maximum speeds while during a fully developed basal drainage system speeds are at their minimum. We also analyze the variation in conjunction with the prevailing meteorological conditions as well as changes in calving front position in order to exclude other potential influencing factors. In a second step, we also exploit TanDEM-X data to generate various digital elevation models (DEMs) at different time steps. The multi-temporal DEMs are used to estimate the difference in surface elevation and respective ice thickness changes. All TanDEM-X DEMs are well tied with a SPOT reference DEM. Errors are estimated over ice free moraines and rocky areas. The quality of the TanDEM-X DEMs on snow and ice covered areas are further assessed by a comparison to laser scanning data from NASA Icebridge campaigns. The time wise closest TanDEM-X DEMs were compared to the Icebridge tracks from winter and summer surveys in order to judge errors resulting from the radar penetration of the x/band radar signal into snow, ice and firn. The average differences between laser scanning and TanDEM-X in August, 2011 and March, 2012 are observed to be 8.48 m and 14.35 m respectively. Retreat rates of the glacier front are derived manually by digitizing the terminus position. By combining the data sets of ice velocity, ice thickness and the retreat rates at different time steps, we estimate the seasonal variability of the ice discharge of Columbia Glacier.

  4. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  5. Hydroecological factors governing surface water flow on a low-gradient floodplain

    USGS Publications Warehouse

    Harvey, J.W.; Schaffranek, R.W.; Noe, G.B.; Larsen, L.G.; Nowacki, D.J.; O'Connor, B.L.

    2009-01-01

    Interrelationships between hydrology and aquatic ecosystems are better understood in streams and rivers compared to their surrounding floodplains. Our goal was to characterize the hydrology of the Everglades ridge and slough floodplain ecosystem, which is valued for the comparatively high biodiversity and connectivity of its parallel-drainage features but which has been degraded over the past century in response to flow reductions associated with flood control. We measured flow velocity, water depth, and wind velocity continuously for 3 years in an area of the Everglades with well-preserved parallel-drainage features (i.e., 200-m wide sloughs interspersed with slightly higher elevation and more densely vegetated ridges). Mean daily flow velocity averaged 0.32 cm s-1 and ranged between 0.02 and 0.79 cm s-1. Highest sustained velocities were associated with flow pulses caused by water releases from upstream hydraulic control structures that increased flow velocity by a factor of 2-3 on the floodplain for weeks at a time. The highest instantaneous measurements of flow velocity were associated with the passage of Hurricane Wilma in 2005 when the inverse barometric pressure effect increased flow velocity up to 5 cm s-1 for several hours. Time-averaged flow velocities were 29% greater in sloughs compared to ridges because of marginally higher vegetative drag in ridges compared to sloughs, which contributed modestly (relative to greater water depth and flow duration in sloughs compared to ridges) to the predominant fraction (86%) of total discharge through the landscape occurring in sloughs. Univariate scaling relationships developed from theory of flow through vegetation, and our field data indicated that flow velocity increases with the square of water surface slope and the fourth power of stem diameter, decreases in direct proportion with increasing frontal area of vegetation, and is unrelated to water depth except for the influence that water depth has in controlling the submergence height of vegetation that varies vertically in its architectural characteristics. In the Everglades the result of interactions among controlling variables was that flow velocity was dominantly controlled by water surface slope variations responding to flow pulses more than spatial variation in vegetation characteristics or fluctuating water depth. Our findings indicate that floodplain managers could, in addition to managing water depth, manipulate the frequency and duration of inflow pulses to manage water surface slope, which would add further control over flow velocities, water residence times, sediment settling, biogeochemical transformations, and other processes that are important to floodplain function. ?? 2009 by American Geophysical Union.

  6. Minimum flow unit installation at the South Edwards Hydro Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhardt, P.; Bates, D.

    1995-12-31

    Niagara Mohawk Power Corp. owns and operates the 3.3 MW South Edwards Hydro Plant in Northern New York. The FERC license for this plant requires a minimum flow release in the bypass region of the river. NMPC submitted a license amendment to the FERC to permit the addition of a minimum flow unit to take advantage of this flow. The amendment was accepted, permitting the installation of the 236 kw, 60 cfs unit to proceed. The unit was installed and commissioned in 1994.

  7. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  8. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.

  9. The effects of velocity difference changes with memory on the dynamics characteristics and fuel economy of traffic flow

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Zhao, Xiangmo; Xu, Zhigang; Zhang, Licheng

    2016-11-01

    To evaluate the effects of velocity difference changes with memory in the intelligent transportation environment on the dynamics and fuel consumptions of traffic flow, we first investigate the linkage between velocity difference changes with memory and car-following behaviors with the measured data in cities, and then propose an improved cooperative car-following model considering multiple velocity difference changes with memory in the cooperative adaptive cruise control strategy, finally carry out several numerical simulations under the periodic boundary condition and at signalized intersections to explore how velocity difference changes with memory affect car's velocity, velocity fluctuation, acceleration and fuel consumptions in the intelligent transportation environment. The results show that velocity difference changes with memory have obvious effects on car-following behaviors, that the improved cooperative car-following model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, that the stability and fuel economy of traffic flow simulated by the improved car-following model with velocity difference changes with memory is obviously superior to those without velocity difference changes, and that taking velocity difference changes with memory into account in designing the advanced adaptive cruise control strategy can significantly improve the stability and fuel economy of traffic flow.

  10. What is normal nasal airflow? A computational study of 22 healthy adults

    PubMed Central

    Zhao, Kai; Jiang, Jianbo

    2014-01-01

    Objective Nasal airflow is essential for functioning of the human nose. Given individual variation in nasal anatomy, there is yet no consensus what constitutes normal nasal airflow patterns. We attempt to obtain such information that is essential to differentiate disease-related variations. Methods Computational fluid dynamics (CFD) simulated nasal airflow in 22 healthy subjects during resting breathing. Streamline patterns, airflow distributions, velocity profiles, pressure, wall stress, turbulence, and vortical flow characteristics under quasi-steady state were analyzed. Patency ratings, acoustically measured minimum cross-sectional area (MCA), and rhinomanometric nasal resistance (NR) were examined for potential correlations with morphological and airflow-related variables. Results Common features across subjects included: >50% total pressure-drop reached near the inferior turbinate head; wall shear stress, NR, turbulence energy, and vorticity were lower in the turbinate than in the nasal valve region. However, location of the major flow path and coronal velocity distributions varied greatly across individuals. Surprisingly, on average, more flow passed through the middle than the inferior meatus and correlated with better patency ratings (r=-0.65, p<0.01). This middle flow percentage combined with peak post-vestibule nasal heat loss and MCA accounted for >70% of the variance in subjective patency ratings and predicted patency categories with 86% success. Nasal index correlated with forming of the anterior dorsal vortex. Expected for resting breathing, the functional impact for local and total turbulence, vorticity, and helicity was limited. As validation, rhinomanometric NR significantly correlated with CFD simulations (r=0.53, p<0.01). Conclusion Significant variations of nasal airflow found among healthy subjects; Key features may have clinically relevant applications. PMID:24664528

  11. Detailed computational procedure for design of cascade blades with prescribed velocity distributions in compressible potential flows

    NASA Technical Reports Server (NTRS)

    Costello, George R; Cummings, Robert L; Sinnette, John T , Jr

    1952-01-01

    A detailed step-by-step computational outline is presented for the design of two-dimensional cascade blades having a prescribed velocity distribution on the blade in a potential flow of the usual compressible fluid. The outline is based on the assumption that the magnitude of the velocity in the flow of the usual compressible nonviscous fluid is proportional to the magnitude of the velocity in the flow of a compressible nonviscous fluid with linear pressure-volume relation.

  12. In vitro evaluation of forward and reverse volumetric flow across a regurgitant aortic valve using Doppler power-weighted mean velocities.

    PubMed

    Minich, L L; Tani, L Y; Pantalos, G M

    1997-01-01

    To determine the accuracy of using power-weighted mean velocities for quantitating volumetric flow across a cardiac valve, we equipped pulsatile flow-tank systems with a 25 mm porcine or a 27 mm mechanical valve with various sizes of regurgitant orifices. Forward and reverse volumetric flows were measured over a range of hemodynamic conditions using two insonating angles (0 and 45 degrees). Pulsed Doppler power-weighted mean velocity measurements were obtained simultaneously with electromagnetic or ultrasonic transit-time probe measurements. For the porcine valve, Doppler measurements correlated well with electromagnetic flow measurements for all (r = 0.75 to 0.97, p < 0.05) except the smallest (2.7 mm) orifice (r = 0.19). For the mechanical valve, power-weighted mean velocity measurements correlated well with ultrasonic transit-time measurements for each hemodynamic condition defined by pulse rate, mean arterial pressure, and insonating angle (r = 0.93 to 0.99, p < 0.01), but equations varied unpredictably. Thus, although power-weighted mean velocity volumetric flow measurements correlate well with flow probe measurements, equations vary widely as hemodynamic conditions change. Because of this variation, power-weighted mean velocity data are not useful for quantitation of volumetric flow across a cardiac valve at this time. Further investigation may show how different hemodynamic conditions affect power-weighted mean velocity measurements of volumetric flow.

  13. Sequence-dependent rotation axis changes and interaction torque use in overarm throwing.

    PubMed

    Hansen, Clint; Rezzoug, Nasser; Gorce, Philippe; Venture, Gentiane; Isableu, Brice

    2016-01-01

    We examined the role of rotation axes during an overarm throwing task. Participants performed such task and were asked to throw a ball at maximal velocity at a target. The purpose of this study was to examine whether the minimum inertia axis would be exploited during the throwing phases, a time when internal-external rotations of the shoulder are particularly important. A motion capture system was used to evaluate the performance and to compute the potential axes of rotation (minimum inertia axis, shoulder-centre of mass axis and the shoulder-elbow axis). More specifically, we investigated whether a velocity-dependent change in rotational axes can be observed in the different throwing phases and whether the control obeys the principle of minimum inertia resistance. Our results showed that the limbs' rotational axis mainly coincides with the minimum inertia axis during the cocking phase and with the shoulder-elbow axis during the acceleration phase. Besides these rotation axes changes, the use of interaction torque is also sequence-dependent. The sequence-dependent rotation axes changes associated with the use of interaction torque during the acceleration phase could be a key factor in the production of hand velocity at ball release.

  14. Polymer as Permeability Modifier in Porous Media

    NASA Astrophysics Data System (ADS)

    Parsa, S.; Weitz, D.

    2017-12-01

    Polymer flow through porous media is of particular interest in applications such as enhanced oil recovery and ground water remediation. We measure the effects of polymer flow on the permeability and local velocity distribution of a single phase flow in 3D micromodel of porous media using confocal microscopy and bulk permeability measurement. Our measurements show considerable reduction in permeability and increased velocity fluctuations with fluid velocities being diverted in some pores after polymer flow. We also find that the average velocity in the medium at constant imposed flow rate scales with the inverse square root of permeability.

  15. Active ultrasonic cross-correlation flowmeters for mixed-phase pipe flows

    NASA Astrophysics Data System (ADS)

    Sheen, S. H.; Raptis, A. C.

    Two ultrasonic flowmeters which employ the active cross-correlation technique and use a simple clamp-on transducer arrangement are discussed. The flowmeter for solid/liquid flows was tested over a wide range of coal concentration in water and oil. The measured velocity based on the peak position of the cross-correlation function is consistently higher by about 15% than the average velocity measured by flow diversion. The origin of the difference results mainly from the flow velocity profiles and the transit-time probability distribution. The flowmeter that can measure particle velocity in a solid/gas flow requires acoustic decoupling arrangement between two sensing stations. The measured velocity is mainly associated with the particles near the wall. Performance of both flowmeters is presented.

  16. LASER APPLICATIONS IN MEDICINE: Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomograph signal

    NASA Astrophysics Data System (ADS)

    Bykov, A. V.; Kirillin, M. Yu; Priezzhev, A. V.

    2005-11-01

    Model signals from one and two plane flows of a particle suspension are obtained for an optical coherence Doppler tomograph (OCDT) by the Monte-Carlo method. The optical properties of particles mimic the properties of non-aggregating erythrocytes. The flows are considered in a stationary scattering medium with optical properties close to those of the skin. It is shown that, as the flow position depth increases, the flow velocity determined from the OCDT signal becomes smaller than the specified velocity and the reconstructed profile extends in the direction of the distant boundary, which is accompanied by the shift of its maximum. In the case of two flows, an increase in the velocity of the near-surface flow leads to the overestimated values of velocity of the reconstructed profile of the second flow. Numerical simulations were performed by using a multiprocessor parallel-architecture computer.

  17. Quantum Criticality of an Ising-like Spin-1 /2 Antiferromagnetic Chain in a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.

    2018-05-01

    We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.

  18. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.

    PubMed

    Kim, Dohyun; Park, Sung-Ho

    2016-11-01

    Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Methodological Considerations When Quantifying High-Intensity Efforts in Team Sport Using Global Positioning System Technology.

    PubMed

    Varley, Matthew C; Jaspers, Arne; Helsen, Werner F; Malone, James J

    2017-09-01

    Sprints and accelerations are popular performance indicators in applied sport. The methods used to define these efforts using athlete-tracking technology could affect the number of efforts reported. This study aimed to determine the influence of different techniques and settings for detecting high-intensity efforts using global positioning system (GPS) data. Velocity and acceleration data from a professional soccer match were recorded via 10-Hz GPS. Velocity data were filtered using either a median or an exponential filter. Acceleration data were derived from velocity data over a 0.2-s time interval (with and without an exponential filter applied) and a 0.3-second time interval. High-speed-running (≥4.17 m/s 2 ), sprint (≥7.00 m/s 2 ), and acceleration (≥2.78 m/s 2 ) efforts were then identified using minimum-effort durations (0.1-0.9 s) to assess differences in the total number of efforts reported. Different velocity-filtering methods resulted in small to moderate differences (effect size [ES] 0.28-1.09) in the number of high-speed-running and sprint efforts detected when minimum duration was <0.5 s and small to very large differences (ES -5.69 to 0.26) in the number of accelerations when minimum duration was <0.7 s. There was an exponential decline in the number of all efforts as minimum duration increased, regardless of filtering method, with the largest declines in acceleration efforts. Filtering techniques and minimum durations substantially affect the number of high-speed-running, sprint, and acceleration efforts detected with GPS. Changes to how high-intensity efforts are defined affect reported data. Therefore, consistency in data processing is advised.

  20. The dispersion analysis of drift velocity in the study of solar wind flows

    NASA Astrophysics Data System (ADS)

    Olyak, Maryna

    2013-09-01

    In this work I consider a method for the study of the solar wind flows at distances from the Sun more than 1 AU. The method is based on the analysis of drift velocity dispersion that was obtained from the simultaneous scintillation observations in two antennas. I considered dispersion dependences for different models of the solar wind, and I defined its specificity for each model. I have determined that the presence of several solar wind flows significantly affects the shape and the slope of the dispersion curve. The maximum slope angle is during the passage of the fast solar wind flow near the Earth. If a slow flow passes near the Earth, the slope of the dispersion curve decreases. This allows a more precise definition of the velocity and flow width compared to the traditional scintillation method. Using the comparison of experimental and theoretical dispersion curves, I calculated the velocity and width of solar wind flows and revealed the presence of significant velocity fluctuations which accounted for about 60% of the average velocity.

  1. Velocity field of a round jet in a cross flow for various jet injection angles and velocity ratios. [Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Weston, R. P.

    1979-01-01

    A subsonic round jet injected from a flat plate into a subsonic crosswind of the same temperature was investigated. Velocity and pressure measurements in planes perpendicular to the path of the jet were made for nominal jet injection angles of 45 deg, 60 deg, 75 deg, 90 deg, and 105 deg and for jet/cross flow velocity ratios of four and eight. The velocity measurements were obtained to infer the properties of the vortex pair associated with a jet in a cross flow. Jet centerline and vortex trajectories were determined and fit with an empirical equation that includes the effects of jet injection angle, jet core length, and jet/cross flow velocity ratios.

  2. Boundary Layer Theory. Part 2; Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one oberves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.

  3. Velocity of mist droplets and suspending gas imaged separately

    NASA Astrophysics Data System (ADS)

    Kuethe, Dean O.; McBride, Amber; Altobelli, Stephen A.

    2012-03-01

    Nuclear Magnetic Resonance Images (MRIs) of the velocity of water droplets and velocity of the suspending gas, hexafluoroethane, are presented for a vertical and horizontal mist pipe flow. In the vertical flow, the upward velocity of the droplets is clearly slower than the upward velocity of the gas. The average droplet size calculated from the average falling velocity in the upward flow is larger than the average droplet size of mist drawn from the top of the pipe measured with a multi-stage aerosol impactor. Vertical flow concentrates larger particles because they have a longer transit time through the pipe. In the horizontal flow there is a gravity-driven circulation with high-velocity mist in the lower portion of the pipe and low-velocity gas in the upper portion. MRI has the advantages that it can image both phases and that it is unperturbed by optical opacity. A drawback is that the droplet phase of mist is difficult to image because of low average spin density and because the signal from water coalesced on the pipe walls is high. To our knowledge these are the first NMR images of mist.

  4. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  5. Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming.

    PubMed

    Jensen, Jonas; Villagomez Hoyos, Carlos Armando; Stuart, Matthias Bo; Ewertsen, Caroline; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2017-07-01

    Several techniques can estimate the 2-D velocity vector in ultrasound. Directional beamforming (DB) estimates blood flow velocities with a higher precision and accuracy than transverse oscillation (TO), but at the cost of a high beamforming load when estimating the flow angle. In this paper, it is proposed to use TO to estimate an initial flow angle, which is then refined in a DB step. Velocity magnitude is estimated along the flow direction using cross correlation. It is shown that the suggested TO-DB method can improve the performance of velocity estimates compared with TO, and with a beamforming load, which is 4.6 times larger than for TO and seven times smaller than for conventional DB. Steered plane wave transmissions are employed for high frame rate imaging, and parabolic flow with a peak velocity of 0.5 m/s is simulated in straight vessels at beam-to-flow angles from 45° to 90°. The TO-DB method estimates the angle with a bias and standard deviation (SD) less than 2°, and the SD of the velocity magnitude is less than 2%. When using only TO, the SD of the angle ranges from 2° to 17° and for the velocity magnitude up to 7%. Bias of the velocity magnitude is within 2% for TO and slightly larger but within 4% for TO-DB. The same trends are observed in measurements although with a slightly larger bias. Simulations of realistic flow in a carotid bifurcation model provide visualization of complex flow, and the spread of velocity magnitude estimates is 7.1 cm/s for TO-DB, while it is 11.8 cm/s using only TO. However, velocities for TO-DB are underestimated at peak systole as indicated by a regression value of 0.97 for TO and 0.85 for TO-DB. An in vivo scanning of the carotid bifurcation is used for vector velocity estimations using TO and TO-DB. The SD of the velocity profile over a cardiac cycle is 4.2% for TO and 3.2% for TO-DB.

  6. Experimental constraints on the outgassing dynamics of basaltic magmas

    NASA Astrophysics Data System (ADS)

    Pioli, L.; Bonadonna, C.; Azzopardi, B. J.; Phillips, J. C.; Ripepe, M.

    2012-03-01

    The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies. Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter, 6.5 m long bubble column. The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area, 10-2-102 m/s), conduit diameters (100-2 m), and magma viscosities (3-300 Pa s). The model is calibrated with the experimental results to extrapolate key flow parameters such as Co (distribution parameter) and Froude number, which control the maximum vesicularity of the magma in the column, and the gas rise speed of gas slugs. It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter, until a threshold value (45 vol.%), which characterizes churn and annular flow regimes. Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 103-104 m3/s. The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs. This study also shows that until conditions for separated flow are met, increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles, which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid, favoring magma homogeneity and stable conditions.

  7. PIV Measurements of Gas Flow Fields from Burning End

    NASA Astrophysics Data System (ADS)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  8. A statistical investigation of the single-point pdf of velocity and vorticity based on direct numerical simulations

    NASA Technical Reports Server (NTRS)

    Mortazavi, M.; Kollmann, W.; Squires, K.

    1987-01-01

    Vorticity plays a fundamental role in turbulent flows. The dynamics of vorticity in turbulent flows and the effect on single-point closure models were investigated. The approach was to use direct numerical simulations of turbulent flows to investigate the pdf of velocity and vorticity. The preliminary study of homogeneous shear flow has shown that the expectation of the fluctuating pressure gradient, conditioned with a velocity component, is linear in the velocity component, and that the coefficient is independent of velocity and vorticity. In addition, the work shows that the expectation of the pressure gradient, conditioned with a vorticity component, is essentially zero.

  9. [Time lag effect between poplar' s sap flow velocity and microclimate factors in agroforestry system in West Liaoning Province].

    PubMed

    Di, Sun; Guan, De-xin; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing

    2010-11-01

    By using Granier's thermal dissipation probe, the sap flow velocity of the poplars in agroforestry system in west Liaoning was continuously measured, and the microclimate factors were measured synchronously. Dislocation contrast method was applied to analyze the sap flow velocity and corresponding air temperature, air humidity, net radiation, and vapor pressure deficit to discuss the time lag effect between poplar' s sap flow velocity and microclimate factors on sunny days. It was found that the poplar's sap flow velocity advanced of air temperature, air humidity, and vapor pressure deficit, and lagged behind net radiation. The sap flow velocity in June, July, August, and September was advanced of 70, 30, 50, and 90 min to air temperature, of 80, 30, 40, and 90 min to air humidity, and of 90, 50, 70, and 120 min to vapor pressure deficit, but lagged behind 10, 10, 40, and 40 min to net radiation, respectively. The time lag time of net radiation was shorter than that of air temperature, air humidity, and vapor pressure. The regression analysis showed that in the cases the time lag effect was contained and not, the determination coefficients between comprehensive microclimate factor and poplar's sap flow velocity were 0.903 and 0.855, respectively, indicating that when the time lag effect was contained, the determination coefficient was ascended by 2.04%, and thus, the simulation accuracy of poplar's sap flow velocity was improved.

  10. From medium heterogeneity to flow and transport: A time-domain random walk approach

    NASA Astrophysics Data System (ADS)

    Hakoun, V.; Comolli, A.; Dentz, M.

    2017-12-01

    The prediction of flow and transport processes in heterogeneous porous media is based on the qualitative and quantitative understanding of the interplay between 1) spatial variability of hydraulic conductivity, 2) groundwater flow and 3) solute transport. Using a stochastic modeling approach, we study this interplay through direct numerical simulations of Darcy flow and advective transport in heterogeneous media. First, we study flow in correlated hydraulic permeability fields and shed light on the relationship between the statistics of log-hydraulic conductivity, a medium attribute, and the flow statistics. Second, we determine relationships between Eulerian and Lagrangian velocity statistics, this means, between flow and transport attributes. We show how Lagrangian statistics and thus transport behaviors such as late particle arrival times are influenced by the medium heterogeneity on one hand and the initial particle velocities on the other. We find that equidistantly sampled Lagrangian velocities can be described by a Markov process that evolves on the characteristic heterogeneity length scale. We employ a stochastic relaxation model for the equidistantly sampled particle velocities, which is parametrized by the velocity correlation length. This description results in a time-domain random walk model for the particle motion, whose spatial transitions are characterized by the velocity correlation length and temporal transitions by the particle velocities. This approach relates the statistical medium and flow properties to large scale transport, and allows for conditioning on the initial particle velocities and thus to the medium properties in the injection region. The approach is tested against direct numerical simulations.

  11. Effects of drop acceleration and deceleration on particle capture in a cross-flow gravity tower at intermediate drop Reynolds numbers.

    PubMed

    Kumar, Anoop; Gupta, S K; Kale, S R

    2007-04-01

    Cross-flow gravity towers are particle scrubbing devices in which water is sprayed from the top into particle-laden flow moving horizontally. Models for predicting particle capture assume drops traveling at terminal velocity and potential flow (ReD > 1000) around it, however, Reynolds numbers in the intermediate range of 1 to 1000 are common in gravity towers. Drops are usually injected at velocities greater than their terminal velocities (as in nozzles) or from near rest (perforated tray) and they accelerate/decelerate to their terminal velocity in the tower. Also, the effects of intermediate drop Reynolds number on capture efficiency have been simulated for (a) drops at their terminal velocity and (b) drops accelerating/decelerating to their terminal velocity. Tower efficiency based on potential flow about the drop is 40%-50% greater than for 200 mm drops traveling at their terminal velocity. The corresponding values for 500 mm drops are about 10%-20%. The drop injection velocity is important operating parameter. Increase in tower efficiency by about 40% for particles smaller than 5 mm is observed for increase in injection velocity from 0 to 20 m/s for 200 and 500mm drops.

  12. Local Self-Similarity and Finite-Time Singularity in a High-Symmetry Euler Flow

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    1997-11-01

    The dynamical consequence of a positive fourth-order pressure derivative (p_xxxx) at the origin [C. S. Ng and A. Bhattacharjee, Phys. Rev. E 54 1530, 1996] in a high-symmetry Euler flow (the Kida flow) is considered. It is shown that the third order spatial derivative u_xxx of the x component of the velocity u at the origin is always decreasing in this situation. By assuming that u_xxx always attains a minimum possible value consistent with a given spectral profile, it is found that the flow is locally self-similar near the origin and collapses as energy cascades to Fourier modes with higher wavenumbers k. Moreover, it is found that the self-similar p(x) and u(x) profiles (as well as their derivatives) near the origin are very similar in shape to what were found in numerical simulations [O. N. Boratav and R. B. Pelz, Phys. Fluids 6 2757, 1994]. It is shown that a finite-time singularity (FTS) must appear in this case if the spectral index ν of the energy spectrum E(k) ∝ k^-ν of the locally self-similar flow is less than 6. A self-similar solution satisfying the Kelvin's theorem of circulation trivially has ν = 2 with vortex filaments and a FTS.

  13. Basic study on hot-wire flow meter in forced flow of liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Oura, Y.; Shirai, Y.; Shiotsu, M.; Murakami, K.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.; Narita, N.

    2014-01-01

    Liquid hydrogen (LH2) is a key issue in a carbon-free energy infrastructure at the energy storage and transportation stage. The typical features of LH2 are low viscosity, large latent heat and small density, compared with other general liquids. It is necessary to measure a mass flow of liquid hydrogen with a simple and compact method, especially in a two phase separate flow condition. We have proposed applying a hot-wire type flow meter, which is usually used a for gas flow meter, to LH2 flow due to the quite low viscosity and density. A test model of a compact LH2 hot-wire flow meter to measure local flow velocities near and around an inside perimeter of a horizontal tube by resistance thermometry was designed and made. The model flow meter consists of two thin heater wires made of manganin fixed in a 10 mm-diameter and 40 mm-length tube flow path made of GFRP. Each rigid heater wire was set twisted by 90 degrees from the inlet to the outlet along the inner wall. In other words, the wires were aslant with regard to the LH2 stream line. The heated wire was cooled by flowing LH2, and the flow velocity was obtained by means of the difference of the cooling characteristic in response to the flow velocity. In this report, we show results on the basic experiments with the model LH2 hot-wire flow meter. First, the heat transfer characteristics of the two heater wires for several LH2 flow velocities were measured. Second, the heating current was controlled to keep the wire temperature constant for various flow velocities. The relations between the flow velocity and the heating current were measured. The feasibility of the proposed model was confirmed.

  14. Characteristics of patients with a relatively greater minimum VE/VCO2 against peak VO2% and impaired exercise tolerance.

    PubMed

    Nakade, Taisuke; Adachi, Hitoshi; Murata, Makoto; Oshima, Shigeru

    2018-05-14

    Cardiopulmonary exercise testing (CPX) is used to evaluate functional capacity and assess prognosis in cardiac patients. Ventilatory efficiency (VE/VCO 2 ) reflects ventilation-perfusion mismatch; the minimum VE/VCO 2 value (minVE/VCO 2 ) is representative of pulmonary arterial blood flow in individuals without pulmonary disease. Usually, minVE/VCO 2 has a strong relationship with the peak oxygen uptake (VO 2 ), but dissociation can occur. Therefore, we investigated the relationship between minVE/VCO 2 and predicted peak VO 2 (peak VO 2 %) and evaluated the parameters associated with a discrepancy between these two parameters. A total of 289 Japanese patients underwent CPX using a cycle ergometer with ramp protocols between 2013 and 2014. Among these, 174 patients with a peak VO 2 % lower than 70% were enrolled. Patients were divided into groups based on their minVE/VCO 2 [Low group: minVE/VCO 2  < mean - SD (38.8-5.6); High group: minVE/VCO 2  > mean + SD (38.8 + 5.6)]. The characteristics and cardiac function at rest, evaluated using echocardiography, were compared between groups. The High group had a significantly lower ejection fraction, stroke volume, and cardiac output, and higher brain natriuretic peptide, tricuspid regurgitation pressure gradient, right ventricular systolic pressure, and peak early diastolic LV filling velocity/peak atrial filling velocity ratio compared with the Low group (p's < 0.01). In addition, the Low group had a significantly higher prevalence of pleural effusion than did the High group (26 vs 11%, p < 0.01). Patients with a relatively greater minVE/VCO 2 in comparison with peak VO 2 had impaired cardiac output as well as restricted pulmonary blood flow increase during exercise, partly due to accumulated pleural effusion.

  15. In vivo lateral blood flow velocity measurement using speckle size estimation.

    PubMed

    Xu, Tiantian; Hozan, Mohsen; Bashford, Gregory R

    2014-05-01

    In previous studies, we proposed blood measurement using speckle size estimation, which estimates the lateral component of blood flow within a single image frame based on the observation that the speckle pattern corresponding to blood reflectors (typically red blood cells) stretches (i.e., is "smeared") if blood flow is in the same direction as the electronically controlled transducer line selection in a 2-D image. In this observational study, the clinical viability of ultrasound blood flow velocity measurement using speckle size estimation was investigated and compared with that of conventional spectral Doppler of carotid artery blood flow data collected from human patients in vivo. Ten patients (six male, four female) were recruited. Right carotid artery blood flow data were collected in an interleaved fashion (alternating Doppler and B-mode A-lines) with an Antares Ultrasound Imaging System and transferred to a PC via the Axius Ultrasound Research Interface. The scanning velocity was 77 cm/s, and a 4-s interval of flow data were collected from each subject to cover three to five complete cardiac cycles. Conventional spectral Doppler data were collected simultaneously to compare with estimates made by speckle size estimation. The results indicate that the peak systolic velocities measured with the two methods are comparable (within ±10%) if the scan velocity is greater than or equal to the flow velocity. When scan velocity is slower than peak systolic velocity, the speckle stretch method asymptotes to the scan velocity. Thus, the speckle stretch method is able to accurately measure pure lateral flow, which conventional Doppler cannot do. In addition, an initial comparison of the speckle size estimation and color Doppler methods with respect to computational complexity and data acquisition time indicated potential time savings in blood flow velocity estimation using speckle size estimation. Further studies are needed for calculation of the speckle stretch method across a field of view and combination with an appropriate axial flow estimator. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Low-flow characteristics of streams in Ohio through water year 1997

    USGS Publications Warehouse

    Straub, David E.

    2001-01-01

    This report presents selected low-flow and flow-duration characteristics for 386 sites throughout Ohio. These sites include 195 long-term continuous-record stations with streamflow data through water year 1997 (October 1 to September 30) and for 191 low-flow partial-record stations with measurements into water year 1999. The characteristics presented for the long-term continuous-record stations are minimum daily streamflow; average daily streamflow; harmonic mean flow; 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 5-, 10-, 20-, and 50-year recurrence intervals; and 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 20-, and 10-percent daily duration flows. The characteristics presented for the low-flow partial-record stations are minimum observed streamflow; estimated 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 10-, and 20-year recurrence intervals; and estimated 98-, 95-, 90-, 85- and 80-percent daily duration flows. The low-flow frequency and duration analyses were done for three seasonal periods (warm weather, May 1 to November 30; winter, December 1 to February 28/29; and autumn, September 1 to November 30), plus the annual period based on the climatic year (April 1 to March 31).

  17. Ultrasonic flow metering system

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Mauseth, Jason A.; Phelps, Larry D.; Taylor, Steven C.

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  18. Augmenting two-dimensional hydrodynamic simulations with measured velocity data to identify flow paths as a function of depth on Upper St. Clair River in the Great Lakes basin

    USGS Publications Warehouse

    Holtschlag, D.J.; Koschik, J.A.

    2005-01-01

    Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1–3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use of the integrated velocities showed that surface velocities in the upper layers tended to originate nearer the Canadian shoreline than velocities near the channel bottom in the lower layers. Therefore, flow paths to U.S. public water intakes located on the river bottom are more likely to be in the United States than withdrawals near the water surface. Integrated velocities in the upper layers are generally consistent with the surface velocities indicated by drifting-buoy deployments. Information in the 2D hydrodynamic model and the ADCP measurements was insufficient to describe the vertical flow component. This limitation resulted in the inability to account for vertical movements on expected flow paths through Upper St. Clair River. A three dimensional hydrodynamic model would be needed to account for these effects.

  19. Compare ultrasound-mediated heating and cavitation between flowing polymer- and lipid-shelled microbubbles during focused ultrasound exposures.

    PubMed

    Zhang, Siyuan; Zong, Yujin; Wan, Mingxi; Yu, Xiaojun; Fu, Quanyou; Ding, Ting; Zhou, Fanyu; Wang, Supin

    2012-06-01

    This paper compares the efficiency of flowing polymer- and lipid-shelled microbubbles (MBs) in the heating and cavitation during focused ultrasound exposures. Temperature and cavitation activity were simultaneously measured as the two types of shelled MBs and saline flowing through a 3 mm diameter vessel in the phantom with varying flow velocities (0-20 cm/s) at different acoustic power levels (0.6-20 W) with each exposure for 5 s. Temperature and cavitation for the lipid-shelled MBs were higher than those for the polymer-shelled MBs. Temperature rise decreased with increasing flow velocities for the two types of shelled MBs and saline at acoustic power 1.5 W. At acoustic power 11.1 W, temperature rise increased with increasing flow velocities for the lipid-shelled MBs. For the polymer-shelled MBs, the temperature rise increased with increasing flow velocities from 3-15 cm/s and decreased at 20 cm/s. Cavitation increased with increasing flow velocity for the two shelled MBs and there were no significant changes of cavitation with increasing flow velocities for saline. These results suggested that lipid-shelled MBs may have a greater efficiency than polymer-shelled MBs in heating and cavitation during focused ultrasound exposures.

  20. Influence of Spatial Resolution in Three-dimensional Cine Phase Contrast Magnetic Resonance Imaging on the Accuracy of Hemodynamic Analysis

    PubMed Central

    Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi

    2017-01-01

    Introduction: We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. Materials and Methods: The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. Results: When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Conclusions: Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity. PMID:28132996

  1. Computational fluid dynamics (CFD) investigation of impacts of an obstruction on airflow in underground mines.

    PubMed

    Zhou, L; Goodman, G; Martikainen, A

    2013-01-01

    Continuous airflow monitoring can improve the safety of the underground work force by ensuring the uninterrupted and controlled distribution of mine ventilation to all working areas. Air velocity measurements vary significantly and can change rapidly depending on the exact measurement location and, in particular, due to the presence of obstructions in the air stream. Air velocity must be measured at locations away from obstructions to avoid the vortices and eddies that can produce inaccurate readings. Further, an uninterrupted measurement path cannot always be guaranteed when using continuous airflow monitors due to the presence of nearby equipment, personnel, roof falls and rib rolls. Effective use of these devices requires selection of a minimum distance from an obstacle, such that an air velocity measurement can be made but not affected by the presence of that obstacle. This paper investigates the impacts of an obstruction on the behavior of downstream airflow using a numerical CFD model calibrated with experimental test results from underground testing. Factors including entry size, obstruction size and the inlet or incident velocity are examined for their effects on the distributions of airflow around an obstruction. A relationship is developed between the minimum measurement distance and the hydraulic diameters of the entry and the obstruction. A final analysis considers the impacts of continuous monitor location on the accuracy of velocity measurements and on the application of minimum measurement distance guidelines.

  2. Computational fluid dynamics (CFD) investigation of impacts of an obstruction on airflow in underground mines

    PubMed Central

    Zhou, L.; Goodman, G.; Martikainen, A.

    2015-01-01

    Continuous airflow monitoring can improve the safety of the underground work force by ensuring the uninterrupted and controlled distribution of mine ventilation to all working areas. Air velocity measurements vary significantly and can change rapidly depending on the exact measurement location and, in particular, due to the presence of obstructions in the air stream. Air velocity must be measured at locations away from obstructions to avoid the vortices and eddies that can produce inaccurate readings. Further, an uninterrupted measurement path cannot always be guaranteed when using continuous airflow monitors due to the presence of nearby equipment, personnel, roof falls and rib rolls. Effective use of these devices requires selection of a minimum distance from an obstacle, such that an air velocity measurement can be made but not affected by the presence of that obstacle. This paper investigates the impacts of an obstruction on the behavior of downstream airflow using a numerical CFD model calibrated with experimental test results from underground testing. Factors including entry size, obstruction size and the inlet or incident velocity are examined for their effects on the distributions of airflow around an obstruction. A relationship is developed between the minimum measurement distance and the hydraulic diameters of the entry and the obstruction. A final analysis considers the impacts of continuous monitor location on the accuracy of velocity measurements and on the application of minimum measurement distance guidelines. PMID:26388684

  3. The electron drift velocity, ion acoustic speed and irregularity drifts in high-latitude E-region

    NASA Astrophysics Data System (ADS)

    Uspensky, M. V.; Pellinen, R. J.; Janhunen, P.

    2008-10-01

    The purpose of this study is to examine the STARE irregularity drift velocity dependence on the EISCAT line-of-sight (los or l-o-s) electron drift velocity magnitude, VE×Blos, and the flow angle ΘN,F (superscript N and/or F refer to the STARE Norway and Finland radar). In the noon-evening sector the flow angle dependence of Doppler velocities, VirrN,F, inside and outside the Farley-Buneman (FB) instability cone (|VE×Blos|>Cs and |VE×Blos||VE×Blos|. Both features (a and b) as well as the weak flow angle velocity dependence indicate that the l-o-s electron drift velocity cannot be the sole factor which controls the motion of the backscatter ~1-m irregularities at large flow angles. Importantly, the backscatter was collected at aspect angle ~1° and flow angle Θ>60°, where linear fluid and kinetic theories invariably predict negative growth rates. At least qualitatively, all the facts can be reasonably explained by nonlinear wave-wave coupling found and described by Kudeki and Farley (1989), Lu et al. (2008) for the equatorial electrojet and studied in numerical simulation by Otani and Oppenheim (1998, 2006).

  4. Hydraulic properties for interrill erosion on steep slopes using a portable rainfall simulator

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Hwang, Yoonhee; Deog Park, Sang; Yun, Minu; Park, Sangyeon

    2017-04-01

    The hydraulic parameters for sheet flow on steep slopes have been not frequently measured because the shallow flow depth and slow flow velocity are difficult to measure. In this study hydraulic values of sheet flow were analyzed to evaluate interrill erosion on steep slopes. A portable rainfall simulator was used to conduct interrill erosion test. The kinetic energy of rainfall simulator was obtained by disdrometer being capable of measuring the drop size distribution and velocity of falling raindrops. The sheet flow velocity was determined by the taken time for a dye transferring fixed points using video images. Surface runoff discharge and sediment yield increased with increase of rainfall intensity and kinetic energy and slope steepness. Especially sediment yield was strongly correlated with sheet flow velocity. The maximum velocity of sheet flow was 2.3cm/s under rainfall intensity of 126.8mm/h and slope steepness of 53.2%. The sheet flow was laminar and subcritical flow as the flow Reynolds number and Froude number are respectively the ranges of 10 22 and 0.05 0.25. The roughness coefficient (Manning's n) for sheet flow on steep slopes was relatively large compared to them on the gentle slope. Keywords: Sheet flow velocity; Rainfall simulator; Interrill erosion; Steep slope This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1C1A2A01055469).

  5. FORTRAN program for calculating velocities and streamlines on the hub-shroud mid-channel flow surface of an axial- or mixed-flow turbomachine. 1: User's manual

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1973-01-01

    A FORTRAN 4 computer program has been developed that obtains a subsonic or shock-free transonic flow solution on the hub-shroud mid-channel flow surface of a turbomachine. The blade row may be fixed or rotating, and may be twisted and leaned. Flow may be axial or mixed, up to 45 deg from axial. Upstream and downstream flow variables may vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the flow surface; and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference stream-function solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.

  6. FORTRAN program for calculating velocities and streamlines on the hub-shroud mid-channel flow surface of an axial-or mixed-flow turbomachine. 2: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Katsanis, T.; Mcnally, W. D.

    1974-01-01

    A FORTRAN-IV computer program, MERIDL, has been developed that obtains a subsonic or shock-free transonic flow solution on the hub-shroud mid-channel flow surface of a turbomachine. The blade row may be fixed or rotating and may be twisted and leaned. Flow may be axial or mixed, up to 45 deg from axial. Upstream and downstream flow variables can vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the flow surface and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference stream-function solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.

  7. Elastic instability in stratified core annular flow.

    PubMed

    Bonhomme, Oriane; Morozov, Alexander; Leng, Jacques; Colin, Annie

    2011-06-01

    We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic--it is caused by the viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation supplemented with a kinematic criterion captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure the rheological properties of dilute polymer solutions that are difficult to assess otherwise.

  8. Slope-Velocity-Equilibrium and evolution of surface roughness on a stony hillslope

    USDA-ARS?s Scientific Manuscript database

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and bed morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow ...

  9. Study of oscillating electroosmotic flows with high temporal and spatial resolution

    NASA Astrophysics Data System (ADS)

    Wang, Guiren; Liu, Xin; Yang, Fang; Wang, Kaige; Bai, Jintao; Qiao, Rui; Zhao, Wei

    2017-11-01

    In AC electrokinetic (EK) flow where solid-fluid interface exists, oscillating electroosmotic flow (OEOF) is an inevitable flow phenomenon. However, few experimental investigations have been reported on instantaneous velocity of OEOF driven by AC electric field. Here, we studied the near-wall velocity of OEOF by Laser-induced Fluorescence Photobleaching Anemometer (LIFPA). For the first time, an up to 3 kHz velocity response of OEOF had been successfully measured experimentally, even though the oscillating velocity was as low as 600 nm/s. It was found that the oscillating velocity decays with forcing frequency ff, as ff- 0.66 . This had never been predicted by any known theoretical investigations. In the investigated range of electric field intensity (EA) , when ff is below 1 kHz, the linear relation between oscillating velocity and EA was observed. Besides, we also found the bulk flow velocity can significantly affect the oscillating velocity of OEOF. This was also newly observed and implied the bulk flow can affect the formation process of electric double layer. This investigation could be crucial for understanding all OEOF-related phenomena and designing OEOF-based micro/nanofluidics systems. The work was supported by NSF (CAREER CBET-0954977, MRI CBET-1040227, CBET-1336004) and NSFC (11672229).

  10. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    NASA Astrophysics Data System (ADS)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  11. Obseration of flow regime transition in CFB riser using an LDV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Paul C.; Mei, Joseph S.; Shadle, Lawrence J.

    2011-01-01

    The solids flow in a circulating fluidized bed (CFB) riser is often described to have a core-annular structure. For a given superficial gas velocity, at the initial introduction of solids into a riser a flow structure of dilute upflow regime exists. Continuing to increase the solids flow in the riser transitions the flow structure to the core-annular flow regime. However, with further increase of solids flow a condition is reached, depending on the superficial gas velocity, where all the solids across the riser cross section flow upwards, even those at the wall. When the solids flux, solids fraction and gasmore » velocity are relatively high, such a condition is described as the dense phase suspense upflow (DSU) regime. In this paper we report our observations of these flow regime transitions by using a laser Doppler velocimeter (LDV) to monitor the upward and downward particle flow velocities at and near the riser wall of the National Energy Technology Laboratory’s 30.4 centimeters diameter CFB cold flow model. The particles were high density polyethylene (PPE) spheres with a Sauter mean diameter of 861 micron and a density of 800 kg/m3. Three superficial gas velocities of 6.55 m/s, 10.67 m/s and 13.72 m/s were used in this study. For the case of superficial gas velocity 6.55 m/s, the experimental data show that the transition from dilute upflow to core-annular flow occurred when the solids flux was about 7 kg/m{sup 2}-s and the transition from core-annular flow to dense suspension upflow was about 147 kg/m{sup 2}-s. As the superficial gas velocity was increased to 10.67 m/s the corresponding flow regime transitions were at 34 kg/m{sup 2}-s and 205 kg/m{sup 2}-s, respectively. For the case of superficial gas velocity of 13.72 m/s the data showed no distinct transition of flow regimes. The particles were all upflow for the range of solids fluxes from 10 kg/m{sup 2}-s to 286 kg/m{sup 2}-s.« less

  12. A reconstruction method of intra-ventricular blood flow using color flow ultrasound: a simulation study

    NASA Astrophysics Data System (ADS)

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Choi, Jung-il; Lee, Changhoon; Seo, Jin Keun

    2015-03-01

    A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color Doppler echocardiography measurement. From 3D incompressible Navier- Stokes equation, a 2D incompressible Navier-Stokes equation with a mass source term is derived to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. For demonstrating a feasibility of the proposed method, we have performed numerical simulations of the forward problem and numerical analysis of the reconstruction method. First, we construct a 3D moving LV region having a specific stroke volume. To obtain synthetic intra-ventricular flows, we performed a numerical simulation of the forward problem of Navier-Stokes equation inside the 3D moving LV, computed 3D intra-ventricular velocity fields as a solution of the forward problem, projected the 3D velocity fields on the imaging plane and took the inner product of the 2D velocity fields on the imaging plane and scanline directional velocity fields for synthetic scanline directional projected velocity at each position. The proposed method utilized the 2D synthetic projected velocity data for reconstructing LV blood flow. By computing the difference between synthetic flow and reconstructed flow fields, we obtained the averaged point-wise errors of 0.06 m/s and 0.02 m/s for u- and v-components, respectively.

  13. 40 CFR Table 3 to Subpart Ec of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... scrubber followed by fabric filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber... flow rate Hourly 1×hour ✔ ✔ Minimum pressure drop across the wet scrubber or minimum horsepower or amperage to wet scrubber Continuous 1×minute ✔ ✔ Minimum scrubber liquor flow rate Continuous 1×minute...

  14. Flow structure of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.

  15. Contrasting rainfall generated debris flows from adjacent watersheds at Forest Falls, southern California, USA

    USGS Publications Warehouse

    Morton, D.M.; Alvarez, R.M.; Ruppert, K.R.; Goforth, B.

    2008-01-01

    Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5??km/h to about 90??km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel. After the channel is blocked, subsequent debris flows cut a new channel upstream from the blockage that results in the deposition of new debris-flow deposits on the lower part of the fan. Shifting the location of debris flows on the Rattlesnake Creek fan tends to prevent trees from becoming mature. Dense growths of conifer seedlings sprout in the spring on the late summer debris flow deposits. This repeated process results in stands of even-aged trees whose age records the age of the debris flows. ?? 2007.

  16. Accuracy of 4D Flow measurement of cerebrospinal fluid dynamics in the cervical spine: An in vitro verification against numerical simulation

    PubMed Central

    Pahlavian, Soroush Heidari; Bunck, Alexander C.; Thyagaraj, Suraj; Giese, Daniel; Loth, Francis; Hedderich, Dennis M.; Kröger, Jan Robert; Martin, Bryn A.

    2016-01-01

    Abnormal alterations in cerebrospinal fluid (CSF) flow are thought to play an important role in pathophysiology of various craniospinal disorders such as hydrocephalus and Chiari malformation. Three directional phase contrast MRI (4D Flow) has been proposed as one method for quantification of the CSF dynamics in healthy and disease states, but prior to further implementation of this technique, its accuracy in measuring CSF velocity magnitude and distribution must be evaluated. In this study, an MR-compatible experimental platform was developed based on an anatomically detailed 3D printed model of the cervical subarachnoid space and subject specific flow boundary conditions. Accuracy of 4D Flow measurements was assessed by comparison of CSF velocities obtained within the in vitro model with the numerically predicted velocities calculated from a spatially averaged computational fluid dynamics (CFD) model based on the same geometry and flow boundary conditions. Good agreement was observed between CFD and 4D Flow in terms of spatial distribution and peak magnitude of through-plane velocities with an average difference of 7.5% and 10.6% for peak systolic and diastolic velocities, respectively. Regression analysis showed lower accuracy of 4D Flow measurement at the timeframes corresponding to low CSF flow rate and poor correlation between CFD and 4D Flow in-plane velocities. PMID:27043214

  17. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... discretion. (c) If first-aid oxygen equipment is installed, the minimum mass flow of oxygen to each user may... upon an average flow rate of 3 liters per minute per person for whom first-aid oxygen is required. (d...

  18. Rheology of surface granular flows

    NASA Astrophysics Data System (ADS)

    Orpe, Ashish V.; Khakhar, D. V.

    Surface granular flow, comprising granular material flowing on the surface of a heap of the same material, occurs in several industrial and natural systems. The rheology of such a flow was investigated by means of measurements of velocity and number-density profiles in a quasi-two-dimensional rotating cylinder, half-filled with a model granular material monosize spherical stainless-steel particles. The measurements were made at the centre of the cylinder, where the flow is fully developed, using streakline photography and image analysis. The stress profile was computed from the number-density profile using a force balance which takes into account wall friction. Mean-velocity and root-mean-square (r.m.s.)-velocity profiles are reported for different particle sizes and cylinder rotation speeds. The profiles for the mean velocity superimpose when distance is scaled by the particle diameter d and velocity by a characteristic shear rate dot{gamma}_C = [gsin(beta_m-beta_s)/dcosbeta_s](1/2) and the particle diameter, where beta_m is the maximum dynamic angle of repose and beta_s is the static angle of repose. The maximum dynamic angle of repose is found to vary with the local flow rate. The scaling is also found to work for the r.m.s. velocity profiles. The mean velocity is found to decay exponentially with depth in the bed, with decay length lambda=1.1d. The r.m.s. velocity shows similar behaviour but with lambda=1.7d. The r.m.s. velocity profile shows two regimes: near the free surface the r.m.s. velocity is nearly constant and below a transition point it decays linearly with depth. The shear rate, obtained by numerical differentiation of the velocity profile, is not constant anywhere in the layer and has a maximum which occurs at the same depth as the transition in the r.m.s. velocity profile. Above the transition point the velocity distributions are Gaussian and below the transition point the velocity distributions gradually approach a Poisson distribution. The shear stress increases roughly linearly with depth. The variation in the apparent viscosity eta with r.m.s. velocity u shows a relatively sharp transition at the shear-rate maximum, and in the region below this point the apparent viscosity eta˜ u(-1.5) . The measurements indicate that the flow comprises two layers: an upper low-viscosity layer with a nearly constant r.m.s. velocity and a lower layer of increasing viscosity with a decreasing r.m.s. velocity. The thickness of the upper layer depends on the local flow rate and is independent of particle diameter while the reverse is found to hold for the lower-layer thickness. The experimental data is compared with the predictions of three models for granular flow.

  19. Intrinsic Flow Behavior During Improved Confinement in MST Reversed-field Pinch

    NASA Astrophysics Data System (ADS)

    Tan, E.; Craig, D.; Schott, B.; Boguski, J.; Xing, Z. A.; Nornberg, M. D.; Anderson, J. K.

    2017-10-01

    We used active charge exchange recombination spectroscopy to measure impurity ion flow velocity in high-current plasmas during periods of improved confinement. Velocity measurements througout the core reveal that ion flow parallel to the magnetic field is dominant compared to the perpendicular flow. The poloidal flow profile reverses at r/a = 0.6, and the flow near the core is larger on outboard positions compared to the inboard positions. A strong shear in the toroidal flow develops near the axis as PPCD proceeds. In the past, the mode velocity has been used to infer the toroidal flow based on the `no-slip' assumption that the mode and local plasma co-rotate. We tested this assumption with direct measurements near the m = 1, n = 6 resonant surface. Inboard flow measurements are consistent with the no-slip condition and exhibit a time dependence where the flow decreases together with the n = 6 mode velocity. The outboard flow is consistent in magnitude with the no-slip condition but the variations in time and across shots do not correlate well with the n = 6 mode velocity. Possible reasons why the inboard and outboard flow exhibit different behavior are discussed. This work has been supported by the US DOE and the Wheaton College summer research program.

  20. Vortex shedding flow meter performance at high flow velocities

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.

    1986-01-01

    In some of the ducts of the Space Shuttle Main Engine (SSME), the maximum liquid oxygen flow velocities approach 10 times those at which liquid flow measurements are normally made. The hydrogen gas flow velocities in other ducts exceed the maximum for gas flow measurement by more than a factor of 3. The results presented here show from water flow tests that vortex shedding flow meters of the appropriate design can measure water flow to velocities in excess of 55 m/s, which is a Reynolds number of about 2 million. Air flow tests have shown that the same meter can measure flow to a Reynolds number of at least 22 million. Vortex shedding meters were installed in two of the SSME ducts and tested with water flow. Narrow spectrum lines were obtained and the meter output frequencies were proportional to flow to + or - 0.5% or better over the test range with no flow conditioning, even though the ducts had multiple bends preceeding the meter location. Meters with the shedding elements only partially spanning the pipe and some meters with ring shaped shedding elements were also tested.

  1. Is the measurement of inferior thyroid artery blood flow velocity by color-flow Doppler ultrasonography useful for differential diagnosis between gestational transient thyrotoxicosis and Graves' disease? A prospective study.

    PubMed

    Zuhur, Sayid Shafi; Ozel, Alper; Velet, Selvinaz; Buğdacı, Mehmet Sait; Cil, Esra; Altuntas, Yüksel

    2012-01-01

    To determine the role of peak systolic velocity, end-diastolic velocity and resistance indices of both the right and left inferior thyroid arteries measured by color-flow Doppler ultrasonography for a differential diagnosis between gestational transient thyrotoxicosis and Graves' disease during pregnancy. The right and left inferior thyroid artery-peak systolic velocity, end-diastolic velocity and resistance indices of 96 patients with thyrotoxicosis (41 with gestational transient thyrotoxicosis, 31 age-matched pregnant patients with Graves' disease and 24 age- and sex-matched non-pregnant patients with Graves' disease) and 25 age and sex-matched healthy euthyroid subjects were assessed with color-flow Doppler ultrasonography. The right and left inferior thyroid artery-peak systolic and end-diastolic velocities in patients with gestational transient thyrotoxicosis were found to be significantly lower than those of pregnant patients with Graves' disease and higher than those of healthy euthyroid subjects. However, the right and left inferior thyroid artery peak systolic and end-diastolic velocities in pregnant patients with Graves' disease were significantly lower than those of non-pregnant patients with Graves' disease. The right and left inferior thyroid artery peak systolic and end-diastolic velocities were positively correlated with TSH-receptor antibody levels. We found an overlap between the inferior thyroid artery-blood flow velocities in a considerable number of patients with gestational transient thyrotoxicosis and pregnant patients with Graves' disease. This study suggests that the measurement of inferior thyroid artery-blood flow velocities with color-flow Doppler ultrasonography does not have sufficient sensitivity and specificity to be recommended as an initial diagnostic test for a differential diagnosis between gestational transient thyrotoxicosis and Graves' disease during pregnancy.

  2. Is the measurement of inferior thyroid artery blood flow velocity by color-flow Doppler ultrasonography useful for differential diagnosis between gestational transient thyrotoxicosis and Graves' disease? A prospective study

    PubMed Central

    Zuhur, Sayid Shafi; Özel, Alper; Velet, Selvinaz; Buğdacı, Mehmet Sait; Çil, Esra; Altuntas, Yüksel

    2012-01-01

    OBJECTIVE: To determine the role of peak systolic velocity, end-diastolic velocity and resistance indices of both the right and left inferior thyroid arteries measured by color-flow Doppler ultrasonography for a differential diagnosis between gestational transient thyrotoxicosis and Graves' disease during pregnancy. METHODS: The right and left inferior thyroid artery-peak systolic velocity, end-diastolic velocity and resistance indices of 96 patients with thyrotoxicosis (41 with gestational transient thyrotoxicosis, 31 age-matched pregnant patients with Graves' disease and 24 age- and sex-matched non-pregnant patients with Graves' disease) and 25 age- and sex-matched healthy euthyroid subjects were assessed with color-flow Doppler ultrasonography. RESULTS: The right and left inferior thyroid artery-peak systolic and end-diastolic velocities in patients with gestational transient thyrotoxicosis were found to be significantly lower than those of pregnant patients with Graves' disease and higher than those of healthy euthyroid subjects. However, the right and left inferior thyroid artery peak systolic and end-diastolic velocities in pregnant patients with Graves' disease were significantly lower than those of non-pregnant patients with Graves' disease. The right and left inferior thyroid artery peak systolic and end-diastolic velocities were positively correlated with TSH-receptor antibody levels. We found an overlap between the inferior thyroid artery-blood flow velocities in a considerable number of patients with gestational transient thyrotoxicosis and pregnant patients with Graves' disease. CONCLUSIONS: This study suggests that the measurement of inferior thyroid artery-blood flow velocities with color-flow Doppler ultrasonography does not have sufficient sensitivity and specificity to be recommended as an initial diagnostic test for a differential diagnosis between gestational transient thyrotoxicosis and Graves' disease during pregnancy. PMID:22358236

  3. [Lung perfusion studies after percutaneous closure of patent ductus arteriosus using the Amplatzer Duct Occluder in children].

    PubMed

    Parra-Bravo, José Rafael; Apolonio-Martínez, Adriana; Estrada-Loza, María de Jesús; Beirana-Palencia, Luisa Gracia; Ramírez-Portillo, César Iván

    2015-01-01

    The closure of patent ductus arteriosus with multiple devices has been associated with a reduction in lung perfusion. We evaluated the pulmonary perfusion after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder device using perfusion lung scan. Thirty patients underwent successful percutaneous patent ductus arteriosus occlusions using the Amplatzer Duct Occluder device were included in this study. Lung perfusion scans were preformed 6 months after the procedure. Peak flow velocities and protrusion of the device were analyzed by Doppler echocardiography. A left lung perfusion<40% was considered abnormal. The device implantation was successful in all patients. Average perfusion of left lung was 44.7±4.9% (37.8-61.4). Five patients (16.6%) showed decreased perfusion of the left lung. Age, low weight, the length of the ductus arteriosus and the minimum and maximum diameter/length of the ductus arteriosus ratio were statistically significant in patients with abnormalities of lung perfusion. It was observed protrusion the device in 6 patients with a higher maximum flow rate in the left pulmonary artery. The left lung perfusion may be compromised after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder. The increased flow velocity in the origin of the left pulmonary artery can be a poor indicator of reduction in pulmonary perfusion and can occur in the absence of protrusion of the device. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  4. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.

    PubMed

    Fadnes, Solveig; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse

    2014-10-01

    High-frame-rate ultrasound speckle tracking was used for quantification of peak velocity in shunt flows resulting from septal defects in congenital heart disease. In a duplex acquisition scheme implemented on a research scanner, unfocused transmit beams and full parallel receive beamforming were used to achieve a frame rate of 107 frames/s for full field-of-view flow images with high accuracy, while also ensuring high-quality focused B-mode tissue imaging. The setup was evaluated in vivo for neonates with atrial and ventricular septal defects. The shunt position was automatically tracked in B-mode images and further used in blood speckle tracking to obtain calibrated shunt flow velocities throughout the cardiac cycle. Validation toward color flow imaging and pulsed wave Doppler with manual angle correction indicated that blood speckle tracking could provide accurate estimates of shunt flow velocities. The approach was less biased by clutter filtering compared with color flow imaging and was able to provide velocity estimates beyond the Nyquist range. Possible placements of sample volumes (and angle corrections) for conventional Doppler resulted in a peak shunt velocity variations of 0.49-0.56 m/s for the ventricular septal defect of patient 1 and 0.38-0.58 m/s for the atrial septal defect of patient 2. In comparison, the peak velocities found from speckle tracking were 0.77 and 0.33 m/s for patients 1 and 2, respectively. Results indicated that complex intraventricular flow velocity patterns could be quantified using high-frame-rate speckle tracking of both blood and tissue movement. This could potentially help increase diagnostic accuracy and decrease inter-observer variability when measuring peak velocity in shunt flows. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Swimming behaviour and ascent paths of brook trout in a corrugated culvert

    USGS Publications Warehouse

    Goerig, Elsa; Bergeron, Normand E.; Castro-Santos, Theodore R.

    2017-01-01

    Culverts may restrict fish movements under some hydraulic conditions such as shallow flow depths or high velocities. Although swimming capacity imposes limits to passage performance, behaviour also plays an important role in the ability of fish to overcome velocity barriers. Corrugated metal culverts are characterized by unsteady flow and existence of low‐velocity zones, which can improve passage success. Here, we describe swimming behaviour and ascent paths of 148 wild brook trout in a 1.5‐m section of a corrugated metal culvert located in Raquette Stream, Québec, Canada. Five passage trials were conducted in mid‐August, corresponding to specific mean cross‐sectional flow velocities ranging from 0.30 to 0.63 m/s. Fish were individually introduced to the culvert and their movements recorded with a camera located above the water. Lateral and longitudinal positions were recorded at a rate of 3 Hz in order to identify ascent paths. These positions were related to the distribution of flow depths and velocities in the culvert. Brook trout selected flow velocities from 0.2 to 0.5 m/s during their ascents, which corresponded to the available flow velocities in the culvert at the low‐flow conditions. This however resulted in the use of low‐velocity zones at higher flows, mainly located along the walls of the culvert. Some fish also used the corrugations for sheltering, although the behaviour was marginal and did not occur at the highest flow condition. This study improves knowledge on fish behaviour during culvert ascents, which is an important aspect for developing reliable and accurate estimates of fish passage ability.

  6. An extended continuum model considering optimal velocity change with memory and numerical tests

    NASA Astrophysics Data System (ADS)

    Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng

    2018-01-01

    In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.

  7. On the Behavior of Velocity Fluctuations in Rapidly Rotating Flows

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.; Ristorcelli, J. R.

    1997-01-01

    The behavior of velocity fluctuations subjected to rapid rotation is examined. The rapid rotation considered is any arbitrary combination of two basic forms of rotation, reference frame rotation and mean flow rotation. It is recognized that the two types of rotating flows differ in the manner in which the fluctuating fields are advected. The first category is comprised of flows in rotating systems of which synoptic scale geophysical flows are a good example. In this class of flows the fluctuating velocity field advects and rotates with the mean flow. In the rapid rotation limit, the Taylor-Proudman theorem describes the behavior of this class of fluctuations. Velocity fluctuations that are advected without rotation by the mean flow constitute the second category which includes vortical flows of aerodynamic interest. The Taylor-Proudman theorem is not pertinent to I his class flows and a new result appropriate to this second category of fluctuations is derived. The present development demonstrates that the fluctuating velocity fields are rendered two-dimensional and horizontally non-divergent in the limit of any large combination of reference frame rotation and mean-flow rotation. The concommitant 'geostrophic' balance of the momentum equation is, however, dependent upon the form of rapid rotation. It is also demonstrated that the evolution equations of a two-dimensional fluctuating velocity fields are frame-indifferent with any imposed mean-flow rotation. The analyses and results of this paper highlight many fundamental aspects of rotating flows and have important consequences for their turbulence closures in inertial and non-inertial frames.

  8. Analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.

  9. Effect of ventilation velocity on hexavalent chromium and isocyanate exposures in aircraft paint spraying.

    PubMed

    Bennett, James; Marlow, David; Nourian, Fariba; Breay, James; Feng, Amy; Methner, Mark

    2018-03-01

    Exposure control system performance was evaluated during aircraft paint spraying at a military facility. Computational fluid dynamics (CFD) modeling, tracer gas testing, and exposure monitoring examined contaminant exposure vs. crossflow ventilation velocity. CFD modeling using the RNG k-ϵ turbulence model showed exposures to simulated methyl isobutyl ketone of 294 and 83.6 ppm, as a spatial average of five worker locations, for velocities of 0.508 and 0.381 m/s (100 and 75 fpm), respectively. In tracer gas experiments, observed supply/exhaust velocities of 0.706/0.503 m/s (136/99 fpm) were termed full-flow, and reduced velocities were termed 3/4-flow and half-flow. Half-flow showed higher tracer gas concentrations than 3/4-flow, which had the lowest time-averaged concentration, with difference in log means significant at the 95% confidence level. Half-flow compared to full-flow and 3/4-flow compared to full-flow showed no statistically significant difference. CFD modeling using these ventilation conditions agreed closely with the tracer results for the full-flow and 3/4-flow comparison, yet not for the 3/4-flow and half-flow comparison. Full-flow conditions at the painting facility produced a velocity of 0.528 m/s (104 fpm) midway between supply and exhaust locations, with the supply rate of 94.4 m 3 /s (200,000 cfm) exceeding the exhaust rate of 68.7 m 3 /s (146,000 cfm). Ventilation modifications to correct this imbalance created a midhangar velocity of 0.406 m/s (80.0 fpm). Personal exposure monitoring for two worker groups-sprayers and sprayer helpers ("hosemen")-compared process duration means for the two velocities. Hexavalent chromium (Cr[VI]) exposures were 500 vs. 360 µg/m 3 for sprayers and 120 vs. 170 µg/m 3 for hosemen, for 0.528 m/s (104 fpm) and 0.406 m/s (80.0 fpm), respectively. Hexamethylene diisocyanate (HDI) monomer means were 32.2 vs. 13.3 µg/m 3 for sprayers and 3.99 vs. 8.42 µg/m 3 for hosemen. Crossflow velocities affected exposures inconsistently, and local work zone velocities were much lower. Aircraft painting contaminant control is accomplished better with the unidirectional crossflow ventilation presented here than with other observed configurations. Exposure limit exceedances for this ideal condition reinforce continued use of personal protective equipment.

  10. Sound production due to large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.

    1979-01-01

    The acoustic pressure fluctuations due to large-scale finite amplitude disturbances in a free turbulent shear flow are calculated. The flow is decomposed into three component scales; the mean motion, the large-scale wave-like disturbance, and the small-scale random turbulence. The effect of the large-scale structure on the flow is isolated by applying both a spatial and phase average on the governing differential equations and by initially taking the small-scale turbulence to be in energetic equilibrium with the mean flow. The subsequent temporal evolution of the flow is computed from global energetic rate equations for the different component scales. Lighthill's theory is then applied to the region with the flowfield as the source and an observer located outside the flowfield in a region of uniform velocity. Since the time history of all flow variables is known, a minimum of simplifying assumptions for the Lighthill stress tensor is required, including no far-field approximations. A phase average is used to isolate the pressure fluctuations due to the large-scale structure, and also to isolate the dynamic process responsible. Variation of mean square pressure with distance from the source is computed to determine the acoustic far-field location and decay rate, and, in addition, spectra at various acoustic field locations are computed and analyzed. Also included are the effects of varying the growth and decay of the large-scale disturbance on the sound produced.

  11. Doppler spectra of airborne sound backscattered by the free surface of a shallow turbulent water flow.

    PubMed

    Dolcetti, Giulio; Krynkin, Anton; Horoshenkov, Kirill V

    2017-12-01

    Measurements of the Doppler spectra of airborne ultrasound backscattered by the rough dynamic surface of a shallow turbulent flow are presented in this paper. The interpretation of the observed acoustic signal behavior is provided by means of a Monte Carlo simulation based on the Kirchhoff approximation and on a linear random-phase model of the water surface elevation. Results suggest that the main scattering mechanism is from capillary waves with small amplitude. Waves that travel at the same velocity of the flow, as well as dispersive waves that travel at a range of velocities, are detected, studied, and used in the acoustic Doppler analysis. The dispersive surface waves are not observed when the flow velocity is slow compared to their characteristic velocity. Relatively wide peaks in the experimental spectra also suggest the existence of nonlinear modulations of the short capillary waves, or their propagation in a wide range of directions. The variability of the Doppler spectra with the conditions of the flow can affect the accuracy of the flow velocity estimations based on backscattering Doppler. A set of different methods to estimate this velocity accurately and remotely at different ranges of flow conditions is suggested.

  12. Divergence instability of pipes conveying fluid with uncertain flow velocity

    NASA Astrophysics Data System (ADS)

    Rahmati, Mehdi; Mirdamadi, Hamid Reza; Goli, Sareh

    2018-02-01

    This article deals with investigation of probabilistic stability of pipes conveying fluid with stochastic flow velocity in time domain. As a matter of fact, this study has focused on the randomness effects of flow velocity on stability of pipes conveying fluid while most of research efforts have only focused on the influences of deterministic parameters on the system stability. The Euler-Bernoulli beam and plug flow theory are employed to model pipe structure and internal flow, respectively. In addition, flow velocity is considered as a stationary random process with Gaussian distribution. Afterwards, the stochastic averaging method and Routh's stability criterion are used so as to investigate the stability conditions of system. Consequently, the effects of boundary conditions, viscoelastic damping, mass ratio, and elastic foundation on the stability regions are discussed. Results delineate that the critical mean flow velocity decreases by increasing power spectral density (PSD) of the random velocity. Moreover, by increasing PSD from zero, the type effects of boundary condition and presence of elastic foundation are diminished, while the influences of viscoelastic damping and mass ratio could increase. Finally, to have a more applicable study, regression analysis is utilized to develop design equations and facilitate further analyses for design purposes.

  13. Experimental investigation of the draft tube inlet flow of a bulb turbine

    NASA Astrophysics Data System (ADS)

    Vuillemard, J.; Aeschlimann, V.; Fraser, R.; Lemay, S.; Deschênes, C.

    2014-03-01

    In the BulbT project framework, a bulb turbine model was studied with a strongly diverging draft tube. At high discharge, flow separation occurs in the draft tube correlated to significant efficiency and power drops. In this context, a focus was put on the draft tube inlet flow conditions. Actually, a precise inlet flow velocity field is required for comparison and validation purposes with CFD simulation. This paper presents different laser Doppler velocimetry (LDV) measurements at the draft tube inlet and their analysis. The LDV was setup to measure the axial and circumferential velocity on a radius under the runner and a diameter under the hub. A method was developed to perform indirect measurement of the mean radial velocity component. Five operating conditions were studied to correlate the inlet flow to the separation in the draft tube. Mean velocities, fluctuations and frequencies allowed characterizing the flow. Using this experimental database, the flow structure was characterized. Phase averaged velocities based on the runner position allowed detecting the runner blade wakes. The velocity gradients induced by the blade tip vortices were captured. The guide vane wakes was also detected at the draft tube inlet. The recirculation in the hub wake was observed.

  14. Average properties of bidisperse bubbly flows

    NASA Astrophysics Data System (ADS)

    Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.

    2018-03-01

    Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.

  15. Outer region scaling using the freestream velocity for nonuniform open channel flow over gravel

    NASA Astrophysics Data System (ADS)

    Stewart, Robert L.; Fox, James F.

    2017-06-01

    The theoretical basis for outer region scaling using the freestream velocity for nonuniform open channel flows over gravel is derived and tested for the first time. Owing to the gradual expansion of the flow within the nonuniform case presented, it is hypothesized that the flow can be defined as an equilibrium turbulent boundary layer using the asymptotic invariance principle. The hypothesis is supported using similarity analysis to derive a solution, followed by further testing with experimental datasets. For the latter, 38 newly collected experimental velocity profiles across three nonuniform flows over gravel in a hydraulic flume are tested as are 43 velocity profiles previously published in seven peer-reviewed journal papers that focused on fluid mechanics of nonuniform open channel over gravel. The findings support the nonuniform flows as equilibrium defined by the asymptotic invariance principle, which is reflective of the consistency of the turbulent structure's form and function within the expanding flow. However, roughness impacts the flow structure when comparing across the published experimental datasets. As a secondary objective, we show how previously published mixed scales can be used to assist with freestream velocity scaling of the velocity deficit and thus empirically account for the roughness effects that extend into the outer region of the flow. One broader finding of this study is providing the theoretical context to relax the use of the elusive friction velocity when scaling nonuniform flows in gravel bed rivers; and instead to apply the freestream velocity. A second broader finding highlighted by our results is that scaling of nonuniform flow in gravel bed rivers is still not fully resolved theoretically since mixed scaling relies to some degree on empiricism. As researchers resolve the form and function of macroturbulence in the outer region, we hope to see the closing of this research gap.

  16. Ultrasonic velocity profiling rheometry based on a widened circular Couette flow

    NASA Astrophysics Data System (ADS)

    Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi

    2015-08-01

    We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling.

  17. USB flow characteristics related to noise generation

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Reddy, N. N.

    1976-01-01

    The effects of nozzle and flap geometry on upper surface blown flow field characteristics related to noise generation were examined experimentally using static models. Flow attachment and spreading characteristics were observed using flow visualization techniques. Velocity and turbulence profiles in the trailing edge wake were measured using hot-wire anemometry, and the effects of the geometric variables on peak velocity and turbulence intensity were determined. It is shown that peak trailing edge velocity is a function of the ratio of flow length to modified hydraulic diameter.

  18. Three-dimensional flow field measurements in a radial inflow turbine scroll using LDV

    NASA Technical Reports Server (NTRS)

    Malak, M. F.; Hamed, A.; Tabakoff, W.

    1986-01-01

    The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.

  19. Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest

    NASA Technical Reports Server (NTRS)

    Clark, J. M.; Skolnick, B. E.; Gelfand, R.; Farber, R. E.; Stierheim, M.; Stevens, W. C.; Beck, G. Jr; Lambertsen, C. J.

    1996-01-01

    Cerebral blood flow (CBF) was measured by 133Xe clearance simultaneously with the velocity of blood flow through the left middle cerebral artery (MCA) over a wide range of arterial PCO2 in eight normal men. Average arterial PCO2, which was varied by giving 4% and 6% CO2 in O2 and by controlled hyperventilation on O2, ranged from 25.3 to 49.9 mm Hg. Corresponding average values of global CBF15 were 27.2 and 65.0 ml 100 g min-1, respectively, whereas MCA blood-flow velocity ranged from 42.8 to 94.2 cm/s. The relationship of CBF to MCA blood-flow velocity over the imposed range of arterial PCO2 was described analytically by a parabola with the equation: CBF = 22.8 - 0.17 x velocity + 0.006 x velocity2 The observed data indicate that MCA blood-flow velocity is a useful index of CBF response to change in arterial PCO2 during O2 breathing at rest. With respect to baseline values measured while breathing 100% O2 spontaneously, percent changes in velocity were significantly smaller than corresponding percent changes in CBF at increased levels of arterial PCO2 and larger than CBF changes at the lower arterial PCO2. These observed relative changes are consistent with MCA vasodilation at the site of measurement during exposure to progressive hypercapnia and also during extreme hyperventilation hypocapnia.

  20. Simultaneous three-dimensional velocity and mixing measurements by use of laser Doppler velocimetry and fluorescence probes in a water tunnel

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Wing, David J.; Henderson, Uleses C., Jr.

    1994-01-01

    A water tunnel investigation was conducted to demonstrate the capabilities of a laser-based instrument that can measure velocity and fluorescence intensity simultaneously. Fluorescence intensity of an excited fluorescent dye is directly related to concentration level and is used to indicate the extent of mixing in flow. This instrument is a three-dimensional laser Doppler velocimeter (LDV) in combination with a fluorometer for measuring fluorescence intensity variations. This capability allows simultaneous flow measurements of the three orthogonal velocity components and mixing within the same region. Two different flows which were generated by two models were studied: a generic nonaxisymmetric nozzle propulsion simulation model with an auxiliary internal water source that generated a jet flow and an axisymmetric forebody model with a circular sector strake that generated a vortex flow. The off-body flow fields around these models were investigated in the Langley 16- by 24-Inch Water Tunnel. The experimental results were used to calculate 17 quantities that included mean and fluctuating velocities, Reynolds stresses, mean and fluctuating dye fluorescence intensities (proportional to concentration), and fluctuating velocity and dye concentration correlations. An uncertainty analysis was performed to establish confidence levels in the experimental results. In general, uncertainties in mean velocities varied between 1 and 7 percent of free-stream velocity; uncertainties in fluctuating velocities varied between 1 and 5 percent of reference values. The results show characteristics that are unique to each type of flow.

  1. Laboratory investigation and direct numerical simulation of wind effect on steep surface waves

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga

    2015-04-01

    The small scale ocean-atmosphere interaction at the water-air interface is one of the most important factors determining the processes of heat, mass, and energy exchange in the boundary layers of both geospheres. Another important aspect of the air-sea interaction is excitation of surface waves. One of the most debated open questions of wave modeling is concerned with the wind input in the wave field, especially for the case of steep and breaking waves. Two physical mechanisms are suggested to describe the excitation of finite amplitude waves. The first one is based on the treatment of the wind-wave interaction in quasi-linear approximation in the frameworks of semi-empirical models of turbulence of the low atmospheric boundary layer. An alternative mechanism is associated with separation of wind flow at the crests of the surface waves. The "separating" and "non-separating" mechanisms of wave generation lead to different dependences of the wind growth rate on the wave steepness: the latter predicts a decrease in the increment with wave steepness, and the former - an increase. In this paper the mechanism of the wind-wave interaction is investigated basing on physical and numerical experiments. In the physical experiment, turbulent airflow over waves was studied using the video-PIV method, based on the application of high-speed video photography. Alternatively to the classical PIV technique this approach provides the statistical ensembles of realizations of instantaneous velocity fields. Experiments were performed in a round wind-wave channel at Institute of Applied Physics, Russian Academy of Sciences. A fan generated the airflow with the centerline velocity 4 m/s. The surface waves were generated by a programmed wave-maker at the frequency of 2.5 Hz with the amplitudes of 0.65 cm, 1.4 cm, and 2 cm. The working area (27.4 × 10.7 cm2) was at a distance of 3 m from the fan. To perform the measurements of the instantaneous velocity fields, spherical polyamide particles 20 μm in diameter were injected into the airflow. The images of the illuminated particles were photographed with a digital CCD video camera at a rate of 1000 frames per second. For the each given parameters of wind and waves, a statistical ensemble of 30 movies with duration from 200 to 600 ms was obtained. Individual flow realizations manifested the typical features of flow separation, while the average vector velocity fields obtained by the phase averaging of the individual vector fields were smooth and slightly asymmetrical, with the minimum of the horizontal velocity near the water surface shifted to the leeward side of the wave profile, but do not demonstrate the features of flow separation. The wave-induced pressure perturbations, averaged over the turbulent fluctuations, were retrieved from the measured velocity fields, using the Reynolds equations. It ensures sufficient accuracy for study of the dependence of the wave increment on the wave amplitude. The dependences of the wave growth rate on the wave steepness are weakly decreasing, serving as indirect proof of the non-separated character of flow over waves. Also direct numerical simulation of the airflow over finite amplitude periodic surface wave was performed. In the experiments the primitive 3-dimensional fluid mechanics equations were solved in the airflow over curved water boundary for the following parameters: the Reynolds number Re=15000, the wave steepness ka=0-0.2, the parameter c/u*=0-10 (where u* is the friction velocity and c is the wave celerity). Similar to the physical experiment the instant realizations of the velocity field demonstrate flow separation at the crests of the waves, but the ensemble averaged velocity fields had typical structures similar to those excising in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. The wind growth rate determined by the ensemble averaged wave-induced pressure component in phase of the wave slope was retrieved from the DNS results. Similar to the physical experiment the wave growth rate weakly decreased with the wave steepness. The results of physical and numerical experiments were compared with the calculations within the theoretical model of a turbulent boundary layer based on the system of Reynolds equations with the first-order closing hypothesis. Within the model the wind-wave interaction is considered within the quasi-linear approximation and the mean airflow over waves within the model is treated as a non-separated. The calculations within the model represents well profiles of the mean wind velocity, turbulent stress, amplitude and phase of the main harmonics of the wave-induced velocity components and also wave-induced pressure fluctuations and wind wave growth rate obtained both in the physical experiment and DNS. Applicability of the non-separating quasi-linear theory for description of average fields in the airflow over steep and even breaking waves, when the effect of separation is manifested in the instantaneous flow images, can possibly be explained qualitatively by the strongly non-stationary character of the separation process with the typical time being much less than the wave period, and by the small scale of flow heterogeneity in the area of separation. In such a situation small-scale vortices produced within the separation bubble affect the mean flow and wind-induced disturbances as eddy viscosity. Then, the flow turbulence affects the averaged fields as a very viscous fluid, where the effective Reynolds number for the average fields determined by the eddy viscosity was small even for steep waves. It follows from this assumption that strongly nonlinear effects, such as flow separations should not be expected in the flow averaged over turbulent fluctuations, and the main harmonics of the wave-induced disturbances of the averaged flow, which determine the energy flux to surface waves, can be described in the weakly-nonlinear approximation. This paper was supported by a grant from the Government of the Russian Federation under Contract no. 11.G34.31.0048; the European Research Council Advanced Grant, FP7-IDEAS, 227915; RFBF grant 13-05-00865-а, 13-05-12093-ofi-m,15-05-91767.

  2. Velocity-Field Measurements of an Axisymmetric Separated Flow Subjected to Amplitude-Modulated Excitation

    NASA Technical Reports Server (NTRS)

    Trosin, Barry James

    2007-01-01

    Active flow control was applied at the point of separation of an axisymmetric, backward-facing-step flow. The control was implemented by employing a Helmholtz resonator that was externally driven by an amplitude-modulated, acoustic disturbance from a speaker located upstream of the wind tunnel. The velocity field of the separating/reattaching flow region downstream of the step was characterized using hotwire velocity measurements with and without flow control. Conventional statistics of the data reveal that the separating/reattaching flow is affected by the imposed forcing. Triple decomposition along with conditional averaging was used to distinguish periodic disturbances from random turbulence in the fluctuating velocity component. A significant outcome of the present study is that it demonstrates that amplitude-modulated forcing of the separated flow alters the flow in the same manner as the more conventional method of periodic excitation.

  3. The multi-species Farley-Buneman instability in the solar chromosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M.

    2014-03-10

    Empirical models of the solar chromosphere show intense electron heating immediately above its temperature minimum. Mechanisms such as resistive dissipation and shock waves appear insufficient to account for the persistence and uniformity of this heating as inferred from both UV lines and continuum measurements. This paper further develops the theory of the Farley-Buneman instability (FBI) which could contribute substantially to this heating. It expands upon the single-ion theory presented by Fontenla by developing a multiple-ion-species approach that better models the diverse, metal-dominated ion plasma of the solar chromosphere. This analysis generates a linear dispersion relationship that predicts the critical electronmore » drift velocity needed to trigger the instability. Using careful estimates of collision frequencies and a one-dimensional, semi-empirical model of the chromosphere, this new theory predicts that the instability may be triggered by velocities as low as 4 km s{sup -1}, well below the neutral acoustic speed. In the Earth's ionosphere, the FBI occurs frequently in situations where the instability trigger speed significantly exceeds the neutral acoustic speed. From this, we expect neutral flows rising from the photosphere to have enough energy to easily create electric fields and electron Hall drifts with sufficient amplitude to make the FBI common in the chromosphere. If so, this process will provide a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.« less

  4. The Multi-species Farley-Buneman Instability in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M.; Fontenla, Juan M.

    2014-03-01

    Empirical models of the solar chromosphere show intense electron heating immediately above its temperature minimum. Mechanisms such as resistive dissipation and shock waves appear insufficient to account for the persistence and uniformity of this heating as inferred from both UV lines and continuum measurements. This paper further develops the theory of the Farley-Buneman instability (FBI) which could contribute substantially to this heating. It expands upon the single-ion theory presented by Fontenla by developing a multiple-ion-species approach that better models the diverse, metal-dominated ion plasma of the solar chromosphere. This analysis generates a linear dispersion relationship that predicts the critical electron drift velocity needed to trigger the instability. Using careful estimates of collision frequencies and a one-dimensional, semi-empirical model of the chromosphere, this new theory predicts that the instability may be triggered by velocities as low as 4 km s-1, well below the neutral acoustic speed. In the Earth's ionosphere, the FBI occurs frequently in situations where the instability trigger speed significantly exceeds the neutral acoustic speed. From this, we expect neutral flows rising from the photosphere to have enough energy to easily create electric fields and electron Hall drifts with sufficient amplitude to make the FBI common in the chromosphere. If so, this process will provide a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.

  5. The Role of Flow Reversals in Transition and Relaminarization of Pulsating Flows

    NASA Astrophysics Data System (ADS)

    Gomez, Joan; Goushcha, Oleg; Andreopoulos, Yiannis

    2017-11-01

    Pulsating flows, such as the flows in cardiovascular systems, exhibit a cyclic behavior of the axial velocity. They are of particular interest because at different times of the cycle the flow is laminar or turbulent, depending on the local Reynolds number. An experiment was setup to replicate the cyclic motion of the fluid in a clear, rigid tube. The flow was driven by a piston-motor assembly controlled by a computer. The motion of the piston was programmed to induce a forward-only cyclic motion of the mean flow by adjusting the amplitude of the longitudinal velocity pulsation in relation to the mean velocity. Time-Resolved Particle Image Velocimetry (TR-PIV) techniques were used to acquire velocity data on the plane of a CW laser illumination sheet. Flow reversal occurs first near the walls and the corresponding strong shearing induces transition to turbulence where the rest of the flow remains laminar. The behavior of reversed flow was analyzed under various Reynolds and Womersley numbers.

  6. Observations of the Ca II K line in Hel0830A dark points on August 3, 1985

    NASA Technical Reports Server (NTRS)

    Holt, Rush D.; Park, Albert H.; Thompson, Joseph C.; Mullan, D. M.

    1986-01-01

    Spectroheliograms taken in the light of He I 10830 A at the National Solar Observatory Vacuum Telescope on Kitt Peak were used to identify coronal holes and bright points (BPs). Target points were identified, coordinates calculated, and spectra recorded. For each spectrum, the difference in wavelength between the Ca II K minimum and the FeI reference line was calculated. It was noteworthy that the overall effect is a blueshift. It should be noted that if material of chromospheric density moves outward at this velocity, it could supply the mass flux of the solar wind if this chromospheric flow was concentrated in a few dozen sources, each of a diameter of a few arc seconds.

  7. Low-flow analysis and selected flow statistics representative of 1930-2002 for streamflow-gaging stations in or near West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.

    2006-01-01

    Five time periods between 1930 and 2002 are identified as having distinct patterns of annual minimum daily mean flows (minimum flows). Average minimum flows increased around 1970 at many streamflow-gaging stations in West Virginia. Before 1930, however, there might have been a period of minimum flows greater than any period identified between 1930 and 2002. The effects of climate variability are probably the principal causes of the differences among the five time periods. Comparisons of selected streamflow statistics are made between values computed for the five identified time periods and values computed for the 1930-2002 interval for 15 streamflow-gaging stations. The average difference between statistics computed for the five time periods and the 1930-2002 interval decreases with increasing magnitude of the low-flow statistic. The greatest individual-station absolute difference was 582.5 percent greater for the 7-day 10-year low flow computed for 1970-1979 compared to the value computed for 1930-2002. The hydrologically based low flows indicate approximately equal or smaller absolute differences than biologically based low flows. The average 1-day 3-year biologically based low flow (1B3) and 4-day 3-year biologically based low flow (4B3) are less than the average 1-day 10-year hydrologically based low flow (1Q10) and 7-day 10-year hydrologic-based low flow (7Q10) respectively, and range between 28.5 percent less and 13.6 percent greater. Seasonally, the average difference between low-flow statistics computed for the five time periods and 1930-2002 is not consistent between magnitudes of low-flow statistics, and the greatest difference is for the summer (July 1-September 30) and fall (October 1-December 31) for the same time period as the greatest difference determined in the annual analysis. The greatest average difference between 1B3 and 4B3 compared to 1Q10 and 7Q10, respectively, is in the spring (April 1-June 30), ranging between 11.6 and 102.3 percent greater. Statistics computed for the individual station's record period may not represent the statistics computed for the period 1930 to 2002 because (1) station records are available predominantly after about 1970 when minimum flows were greater than the average between 1930 and 2002 and (2) some short-term station records are mostly during dry periods, whereas others are mostly during wet periods. A criterion-based sampling of the individual station's record periods at stations was taken to reduce the effects of statistics computed for the entire record periods not representing the statistics computed for 1930-2002. The criterion used to sample the entire record periods is based on a comparison between the regional minimum flows and the minimum flows at the stations. Criterion-based sampling of the available record periods was superior to record-extension techniques for this study because more stations were selected and areal distribution of stations was more widespread. Principal component and correlation analyses of the minimum flows at 20 stations in or near West Virginia identify three regions of the State encompassing stations with similar patterns of minimum flows: the Lower Appalachian Plateaus, the Upper Appalachian Plateaus, and the Eastern Panhandle. All record periods of 10 years or greater between 1930 and 2002 where the average of the regional minimum flows are nearly equal to the average for 1930-2002 are determined as representative of 1930-2002. Selected statistics are presented for the longest representative record period that matches the record period for 77 stations in West Virginia and 40 stations near West Virginia. These statistics can be used to develop equations for estimating flow in ungaged stream locations.

  8. The ground vortex flow field associated with a jet in a cross flow impinging on a ground plane for uniform and annular turbulent axisymmetric jets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Cavage, William M.; Kuhlman, John M.

    1993-01-01

    An experimental study was conducted of the impingement of a single circular jet on a ground plane in a cross flow. This geometry is a simplified model of the interaction of propulsive jet exhaust from a V/STOL aircraft with the ground in forward flight. Jets were oriented normal to the cross flow and ground plane. Jet size, cross flow-to-jet velocity ratio, ground plane-to-jet board spacing, and jet exit turbulence level and mean velocity profile shape were all varied to determine their effects on the size of the ground vortex interaction region which forms on the ground plane, using smoke injection into the jet. Three component laser Doppler velocimeter measurements were made with a commercial three color system for the case of a uniform jet with exit spacing equal to 5.5 diameters and cross flow-to-jet velocity ratio equal to 0.11. The flow visualization data compared well for equivalent runs of the same nondimensional jet exit spacing and the same velocity ratio for different diameter nozzles, except at very low velocity ratios and for the larger nozzle, where tunnel blockage became significant. Variation of observed ground vortex size with cross flow-to-jet velocity ratio was consistent with previous studies. Observed effects of jet size and ground plane-to-jet board spacing were relatively small. Jet exit turbulence level effects were also small. However, an annular jet with a low velocity central core was found to have a significantly smaller ground vortex than an equivalent uniform jet at the same values of cross flow-to-jet velocity ratio and jet exit-to-ground plane spacing. This may suggest a means of altering ground vortex behavior somewhat, and points out the importance of proper simulation of jet exit velocity conditions. LV data indicated unsteady turbulence levels in the ground vortex in excess of 70 percent.

  9. CFD Study of Full-Scale Aerobic Bioreactors: Evaluation of Dynamic O2 Distribution, Gas-Liquid Mass Transfer and Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan

    If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economiesmore » of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.« less

  10. Qualitative Slow Blood Flow in Lower Extremity Deep Veins on Doppler Sonography: Quantitative Assessment and Preliminary Evaluation of Correlation With Subsequent Deep Venous Thrombosis Development in a Tertiary Care Oncology Center.

    PubMed

    Jensen, Corey T; Chahin, Antoun; Amin, Veral D; Khalaf, Ahmed M; Elsayes, Khaled M; Wagner-Bartak, Nicolaus; Zhao, Bo; Zhou, Shouhao; Bedi, Deepak G

    2017-09-01

    To determine whether the qualitative sonographic appearance of slow deep venous flow in the lower extremities correlates with quantitative slow flow and an increased risk of deep venous thrombosis (DVT) in oncology patients. In this Institutional Review Board-approved retrospective study, we reviewed lower extremity venous Doppler sonographic examinations of 975 consecutive patients: 482 with slow flow and 493 with normal flow. The subjective slow venous flow and absence of initial DVT were confirmed by 2 radiologists. Peak velocities were recorded at 3 levels. Each patient was followed for DVT development. The associations between DVT and the presence of slow venous flow were examined by the Fisher exact test; a 2-sample t test was used for peak velocity and DVT group comparisons. The optimal cutoff peak velocity for correlation with the radiologists' perceived slow flow was determined by the Youden index. Deep venous thrombosis development in the slow-flow group (21 of 482 [4.36%]) was almost doubled compared with patients who had normal flow (11 of 493 [2.23%]; P = .0456). Measured peak venous velocities were lower in the slow-venous flow group (P < .001). Patients with subsequent DVT did not have a significant difference in venous velocities compared with their respective patient groups. The sum of 3 venous level velocities resulted in the best cutoff for dichotomizing groups into normal versus slow venous flow. Qualitative slow venous flow in the lower extremities on Doppler sonography accurately correlates with quantitatively slower flow, and this preliminary evaluation suggests an associated mildly increased rate of subsequent DVT development in oncology patients. © 2017 by the American Institute of Ultrasound in Medicine.

  11. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less

  12. Velocity-intermittency structure for wake flow of the pitched single wind turbine under different inflow conditions

    NASA Astrophysics Data System (ADS)

    Crist, Ryan; Cal, Raul Bayoan; Ali, Naseem; Rockel, Stanislav; Peinke, Joachim; Hoelling, Michael

    2017-11-01

    The velocity-intermittency quadrant method is used to characterize the flow structure of the wake flow in the boundary layer of a wind turbine array. Multifractal framework presents the intermittency as a pointwise Hölder exponent. A 3×3 wind turbine array tested experimentally provided a velocity signal at a 21×9 downstream location, measured via hot-wire anemometry. The results show a negative correlation between the velocity and the intermittency at the hub height and bottom tip, whereas the top tip regions show a positive correlation. Sweep and ejection based on the velocity and intermittency are dominant downstream from the rotor. The pointwise results reflect large-scale organization of the flow and velocity-intermittency events corresponding to a foreshortened recirculation region near the hub height and the bottom tip.

  13. Monitoring and analysis of combined sewer overflows, Riverside and Evanston, Illinois, 1997-99

    USGS Publications Warehouse

    Waite, Andrew M.; Hornewer, Nancy J.; Johnson, Gary P.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected and analyzed flow data in combined sewer systems in Riverside and Evanston, northeastern Illinois, from March 1997 to December 1999. Continuous 2- and 5-minute stage and velocity data were collected during surcharged and nonsurcharged conditions at 12 locations. Mass balances were calculated to determine the volume of water flowing through the tide-gate openings to the Des Plaines River and the North Shore Channel and to determine the volume of water flowing past the sluice gate to the deep tunnel. The sewer systems consist of circular pipes ranging in diameter from 0.83 feet to 10.0 feet, elliptical siphon pipes, ledges, and tide and sluice gates. Pipes were constructed of either brick and mortar or concrete, and ranged from having smooth surfaces to rough, pitted and crumbling surfaces. One pipe was noticeably affected by water infiltration from saturated ground. During data analysis, many assumptions were necessary because of the complexity of the flow data and sewer-system configurations. These assumptions included estimating the volume of water entering an interceptor sewer at the ''Gage Street pipe'' at Riverside, the effect of infiltration on the ''brick pipe'' at Riverside, and the minimum velocity required for the meter to make an accurate velocity determination. Other factors affecting the analysis of flow data included possible non-instrumented sources of inflow, and backwater conditions in some pipes, which could have caused error in the data analysis. Variations of these assumptions potentially could cause appreciable changes to the final massbalance calculations. Mass-balance analysis at Riverside indicated a total inflow volume into chamber 3 of approximately 721,000 cubic feet (ft3) during April 22-26, 1999. Outflow volume to the Des Plaines River at Riverside through the tide gate was approximately 132,000 ft3; outflow volume to the deep tunnel through the sluice gate was approximately 267,000 ft3. The mass-balance analysis at Evanston indicated a total inflow volume into chamber 3 of approximately 5,970,000 ft3 during April 21-26, 1999. The outflow volume to the North Shore Channel through the tide gates at Evanston was approximately 2,920,000 ft3; outflow volume to the deep tunnel through the sluice gates was approximately 3,050,000 ft3.

  14. An experimental study of the fluid mechanics associated with porous walls

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Heaman, J.; Smith, A.

    1992-01-01

    The fluid mechanics associated with the blowing phenomenon from porous walls is measured and characterized. The measurements indicate that the flow exiting a porous wall exhibits a lumpy velocity profile caused by the coalescence effects of smaller jets emerging from the surface. The velocity variations are spatially stable and prevail even at low flow rates. The intensity of this pseudoturbulence is found to be directly proportional to the filter rating of the porous wall and to increase linearly with the mean velocity. Beyond a critical mean velocity, the pseudoturbulence intensity shows a leveling trend with increase in the mean velocity. This critical velocity varies inversely as the filter rating and represents the onset of fully developed jetting action in the flow field. Based on the data, a more appropriate length scale for the flow field is proposed and a correlation is developed that can be used to predict the onset of fully developed jets in the flow emerging from a porous wall.

  15. Flow disturbance due to presence of the vane anemometer

    NASA Astrophysics Data System (ADS)

    Bujalski, M.; Gawor, M.; Sobczyk, J.

    2014-08-01

    This paper presents the results of the preliminary experimental investigations of the disturbance of velocity field resulting from placing a vane anemometer in the analyzed air flow. Experiments were conducted in a wind tunnel with a closed loop. For the measurement process, Particle Image Velocimetry (PIV) method was used to visualize the flow structure and evaluate the instantaneous, two-dimensional velocity vector fields. Regions of inflow on the vane anemometer as well as flow behind it were examined. Ensemble averaged velocity distribution and root-mean-square (RMS) velocity fluctuations were determined. The results below are presented in the form of contour-velocity maps and profile plots. In order to investigate velocity fluctuations in the wake of vane anemometer with high temporal resolution hot-wire anemometry (HWA) technique was used. Frequency analysis by means of Fast Fourier Transform was carried out. The obtained results give evidence to a significant spatially and temporally complex flow disturbance in the vicinity of analyzed instrument.

  16. Inlet Aerodynamics and Ram Drag of Laser-Propelled Lightcraft Vehicles

    NASA Astrophysics Data System (ADS)

    Langener, Tobias; Myrabo, Leik; Rusak, Zvi

    2010-05-01

    Numerical simulations are used to study the aerodynamic inlet properties of three axisymmetric configurations of laser-propelled Lightcraft vehicles operating at subsonic, transonic and supersonic speeds up to Mach 5. The 60 cm vehicles were sized for launching 0.1-1.0 kg nanosatellites with combined-cycle airbreathing/rocket engines, transitioning between propulsion modes at roughly Mach 5-6. Results provide the pressure, temperature, density, and velocity flowfields around and through the three representative vehicle/engine configurations, as well as giving the resulting ram drag and total drag coefficients—all as a function of flight Mach number. Simulations with rotating boundaries were also carried out, since for stability reasons, Lightcraft are normally spun up before lift-off. Given the three alternatives, it is demonstrated that the optimal geometry for minimum drag is the configuration with a parabola nose; hence, these inlet flow conditions are being applied in subsequent "direct connect" 2D laser propulsion experiments in a small transonic flow facility.

  17. Noise suppression due to annulus shaping of conventional coaxial nozzle

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Goodykoontz, J.

    1980-01-01

    A method which shows that increasing the annulus width of a conventional coaxial nozzle with constant bypass velocity will lower the noise level is described. The method entails modifying a concentric coaxial nozzle to provide an eccentric outer stream annulus while maintaining approximately the same through flow as that for the original concentric bypass nozzle. Acoustical tests to determine the noise generating characteristics of the nozzle over a range of flow conditions are described. The tests involved sequentially analyzing the noise signals and digitally recording the 1/3 octave band sound pressure levels. The measurements were made in a plane passing through the minimum and maximum annulus width points, as well as at 90 degrees in this plane, by rotating the outer nozzle about its axis. Representative measured spectral data in the flyover plane for the concentric nozzle obtained at model scale are discussed. Representative spectra for several engine cycles are presented for both the eccentric and concentric nozzles at engine size.

  18. Flame Spread and Extinction Over a Thick Solid Fuel in Low-Velocity Opposed and Concurrent Flows

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Lu, Zhanbin; Wang, Shuangfeng

    2016-05-01

    Flame spread and extinction phenomena over a thick PMMA in purely opposed and concurrent flows are investigated by conducting systematical experiments in a narrow channel apparatus. The present tests focus on low-velocity flow regime and hence complement experimental data previously reported for high and moderate velocity regimes. In the flow velocity range tested, the opposed flame is found to spread much faster than the concurrent flame at a given flow velocity. The measured spread rates for opposed and concurrent flames can be correlated by corresponding theoretical models of flame spread, indicating that existing models capture the main mechanisms controlling the flame spread. In low-velocity gas flows, however, the experimental results are observed to deviate from theoretical predictions. This may be attributed to the neglect of radiative heat loss in the theoretical models, whereas radiation becomes important for low-intensity flame spread. Flammability limits using oxygen concentration and flow velocity as coordinates are presented for both opposed and concurrent flame spread configurations. It is found that concurrent spread has a wider flammable range than opposed case. Beyond the flammability boundary of opposed spread, there is an additional flammable area for concurrent spread, where the spreading flame is sustainable in concurrent mode only. The lowest oxygen concentration allowing concurrent flame spread in forced flow is estimated to be approximately 14 % O2, substantially below that for opposed spread (18.5 % O2).

  19. Do Doppler color flow algorithms for mapping disturbed flow make sense?

    PubMed

    Gardin, J M; Lobodzinski, S M

    1990-01-01

    It has been suggested that a major advantage of Doppler color flow mapping is its ability to visualize areas of disturbed ("turbulent") flow, for example, in valvular stenosis or regurgitation and in shunts. To investigate how various color flow mapping instruments display disturbed flow information, color image processing was used to evaluate the most common velocity-variance color encoding algorithms of seven commercially available ultrasound machines. In six of seven machines, green was reportedly added by the variance display algorithms to map areas of disturbed flow. The amount of green intensity added to each pixel along the red and blue portions of the velocity reference color bar was calculated for each machine. In this study, velocities displayed on the reference color bar ranged from +/- 46 to +/- 64 cm/sec, depending on the Nyquist limit. Of note, changing the Nyquist limits depicted on the color reference bars did not change the distribution of the intensities of red, blue, or green within the contour of the reference map, but merely assigned different velocities to the pixels. Most color flow mapping algorithms in our study added increasing intensities of green to increasing positive (red) or negative (blue) velocities along their color reference bars. Most of these machines also added increasing green to red and blue color intensities horizontally across their reference bars as a marker of increased variance (spectral broadening). However, at any given velocity, marked variations were noted between different color flow mapping instruments in the amount of green added to their color velocity reference bars.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi

    2009-04-01

    Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel.

  1. A classification scheme for turbulence based on the velocity-intermittency structure with an application to near-wall flow and with implications for bed load transport

    NASA Astrophysics Data System (ADS)

    Keylock, C. J.; Nishimura, K.; Peinke, J.

    2012-03-01

    Kolmogorov's classic theory for turbulence assumed an independence between velocity increments and the value for the velocity itself. However, recent work has called this assumption in to question, which has implications for the structure of atmospheric, oceanic and fluvial flows. Here we propose a conceptually simple analytical framework for studying velocity-intermittency coupling that is similar in essence to the popular quadrant analysis method for studying near-wall flows. However, we study the dominant (longitudinal) velocity component along with a measure of the roughness of the signal, given mathematically by its series of Hölder exponents. Thus, we permit a possible dependence between velocity and intermittency. We compare boundary layer data obtained in a wind tunnel to turbulent jets and wake flows. These flow classes all have distinct characteristics, which cause them to be readily distinguished using our technique and the results are robust to changes in flow Reynolds numbers. Classification of environmental flows is then possible based on their similarities to the idealized flow classes and we demonstrate this using laboratory data for flow in a parallel-channel confluence. Our results have clear implications for sediment transport in a range of geophysical applications as they suggest that the recently proposed impulse-based methods for studying bed load transport are particularly relevant in domains such as gravel bed river flows where the boundary layer is disrupted and wake interactions predominate.

  2. Mathematical modeling of power law and Herschel - Buckley non-Newtonian fluid of blood flow through a stenosed artery with permeable wall: Effects of slip velocity

    NASA Astrophysics Data System (ADS)

    Chitra, M.; Karthikeyan, D.

    2018-04-01

    A mathematical model of non-Newtonian blood flow through a stenosed artery is considered. The steadynon-Newtonian model is chosen characterized by the generalized power-law model and Herschel-Bulkley model incorporating the effect of slip velocity due to steanosed artery with permeable wall. The effects of slip velocity for non-Newtonian nature of blood on velocity, flow rate and wall shear stress of the stenosed artery with permeable wall are solved analytically. The effects of various parameters such as slip parameter (λ), power index (m) and different thickness of the stenosis (δ) on velocity, volumetric flow rate and wall shear stress are discussed through graphs.

  3. Scanning protocols dedicated to smart velocity ranging in spectral OCT.

    PubMed

    Grulkowski, Ireneusz; Gorczynska, Iwona; Szkulmowski, Maciej; Szlag, Daniel; Szkulmowska, Anna; Leitgeb, Rainer A; Kowalczyk, Andrzej; Wojtkowski, Maciej

    2009-12-21

    We introduce a new type of scanning protocols, called segmented protocols, which enable extracting multi-range flow velocity information from a single Spectral OCT data set. The protocols are evaluated using a well defined flow in a glass capillary. As an example of in vivo studies, we demonstrate two- and three-dimensional imaging of the retinal vascular system in the eyes of healthy volunteers. The flow velocity detection is performed using a method of Joint Spectral and Time domain OCT. Velocity ranging is demonstrated in imaging of retinal vasculature in the macular region and in the optic disk area characterized by different flow velocity values. Additionally, an enhanced visualization of retinal capillary network is presented in the close proximity to macula.

  4. Idiopathic sudden sensorineural hearing loss and ménière syndrome: The role of cerebral venous drainage.

    PubMed

    Ciccone, M M; Scicchitano, P; Gesualdo, M; Cortese, F; Zito, A; Manca, F; Boninfante, B; Recchia, P; Leogrande, D; Viola, D; Damiani, M; Gambacorta, V; Piccolo, A; De Ceglie, V; Quaranta, N

    2018-02-01

    To evaluate the influence of cerebral venous drainage on the pathogenesis of idiopathic sudden sensorineural hearing loss (ISSHL) and Ménière syndrome (MD). Observational, prospective, cohort study. ENT and Cardiology Departments (University of Bari, Policlinico Hospital, Bari, Italy). We enrolled 59 consecutive patients (32 males, mean age 53.05 + 15.37 years): 40 ISSHL and 19 MD. All patients underwent physical examination, biochemical evaluation (glycemic and lipid profile, viral serology, C reactive protein, etc), audiometric (tonal, vocal, vestibular evoked myogenic potentials and auditory brainstem response test) and impedentiometric examination. The pure tone average (PTA) was calculated for the following frequencies: 250, 500, 1000, 2000, 3000, 4000, 8000. An echo-color Doppler evaluation of the venous cerebral veins, internal jugular (IJV) and vertebral veins (VV) at supine and 90° position was performed. No morphological alterations were found both in patients and controls. There were no signs of stenosis, blocked flow, membranes, etc. We found lower minimum, mean and maximum velocities in distal IJVs (P = .019; P = .013; P = .022; respectively) and left VVs (P = .027; P = .008; P = .001; respectively) in supine (0°) position in both MD and ISSHL patients as compared to controls. The same was for orthostatic position (90°). We found negative correlations between the velocities in extracranial veins and PTA values: therefore, the worst the audiometric performance of the subjects, the lower the velocities in the venous cerebral drainage. Idiopathic sudden sensorineural hearing loss and Ménière syndrome patients showed altered venous flow in IJVs and VVs as compared to controls, independently from posture. This different behavior of venous tone control can influence the ear performance and may have a role in the pathogenesis of both diseases. © 2017 John Wiley & Sons Ltd.

  5. Hydraulic geometry of river cross sections; theory of minimum variance

    USGS Publications Warehouse

    Williams, Garnett P.

    1978-01-01

    This study deals with the rates at which mean velocity, mean depth, and water-surface width increase with water discharge at a cross section on an alluvial stream. Such relations often follow power laws, the exponents in which are called hydraulic exponents. The Langbein (1964) minimum-variance theory is examined in regard to its validity and its ability to predict observed hydraulic exponents. The variables used with the theory were velocity, depth, width, bed shear stress, friction factor, slope (energy gradient), and stream power. Slope is often constant, in which case only velocity, depth, width, shear and friction factor need be considered. The theory was tested against a wide range of field data from various geographic areas of the United States. The original theory was intended to produce only the average hydraulic exponents for a group of cross sections in a similar type of geologic or hydraulic environment. The theory does predict these average exponents with a reasonable degree of accuracy. An attempt to forecast the exponents at any selected cross section was moderately successful. Empirical equations are more accurate than the minimum variance, Gauckler-Manning, or Chezy methods. Predictions of the exponent of width are most reliable, the exponent of depth fair, and the exponent of mean velocity poor. (Woodard-USGS)

  6. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels

    NASA Astrophysics Data System (ADS)

    Su, Wei; Lindsay, Scott; Liu, Haihu; Wu, Lei

    2017-08-01

    Rooted from the gas kinetics, the lattice Boltzmann method (LBM) is a powerful tool in modeling hydrodynamics. In the past decade, it has been extended to simulate rarefied gas flows beyond the Navier-Stokes level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a function of the gas-wall distance. While the former method, with a limited number of discrete velocities (e.g., D2Q36), is accurate up to the early transition flow regime, the latter method (especially the multiple relaxation time (MRT) LBM), with the same discrete velocities as those used in simulating hydrodynamics (i.e., D2Q9), is accurate up to the free-molecular flow regime in the planar Poiseuille flow. This is quite astonishing in the sense that less discrete velocities are more accurate. In this paper, by solving the Bhatnagar-Gross-Krook kinetic equation accurately via the discrete velocity method, we find that the high-order Gauss-Hermite quadrature cannot describe the large variation in the velocity distribution function when the rarefaction effect is strong, but the MRT-LBM can capture the flow velocity well because it is equivalent to solving the Navier-Stokes equations with an effective shear viscosity. Since the MRT-LBM has only been validated in simple channel flows, and for complex geometries it is difficult to find the effective viscosity, it is necessary to assess its performance for the simulation of rarefied gas flows. Our numerical simulations based on the accurate discrete velocity method suggest that the accuracy of the MRT-LBM is reduced significantly in the simulation of rarefied gas flows through the rough surface and porous media. Our simulation results could serve as benchmarking cases for future development of the LBM for modeling and simulation of rarefied gas flows in complex geometries.

  7. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    PubMed

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  8. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels.

    PubMed

    Su, Wei; Lindsay, Scott; Liu, Haihu; Wu, Lei

    2017-08-01

    Rooted from the gas kinetics, the lattice Boltzmann method (LBM) is a powerful tool in modeling hydrodynamics. In the past decade, it has been extended to simulate rarefied gas flows beyond the Navier-Stokes level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a function of the gas-wall distance. While the former method, with a limited number of discrete velocities (e.g., D2Q36), is accurate up to the early transition flow regime, the latter method (especially the multiple relaxation time (MRT) LBM), with the same discrete velocities as those used in simulating hydrodynamics (i.e., D2Q9), is accurate up to the free-molecular flow regime in the planar Poiseuille flow. This is quite astonishing in the sense that less discrete velocities are more accurate. In this paper, by solving the Bhatnagar-Gross-Krook kinetic equation accurately via the discrete velocity method, we find that the high-order Gauss-Hermite quadrature cannot describe the large variation in the velocity distribution function when the rarefaction effect is strong, but the MRT-LBM can capture the flow velocity well because it is equivalent to solving the Navier-Stokes equations with an effective shear viscosity. Since the MRT-LBM has only been validated in simple channel flows, and for complex geometries it is difficult to find the effective viscosity, it is necessary to assess its performance for the simulation of rarefied gas flows. Our numerical simulations based on the accurate discrete velocity method suggest that the accuracy of the MRT-LBM is reduced significantly in the simulation of rarefied gas flows through the rough surface and porous media. Our simulation results could serve as benchmarking cases for future development of the LBM for modeling and simulation of rarefied gas flows in complex geometries.

  9. Sunspots and the physics of magnetic flux tubes. III - Aerodynamic lift

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1979-01-01

    The aerodynamic lift exerted on a magnetic flux tube by the asymmetric flow around the two sides of the tube is calculated as part of an investigation of the physics of solar flux tubes. The general hydrodynamic forces on a rigid circular cylinder in a nonuniform flow of an ideal fluid are derived from the first derivatives of the velocity field. Aerodynamic lift in a radial nonuniform flow is found to act in the direction of the flow, toward the region of increased flow velocity, while in a shear flow, lift is perpendicular to the free stream and directed toward increasing flow velocity. For a general, three dimensional, large-scale stationary incompressible equilibrium flow, an expression is also derived relating the lift per unit length to the dynamical pressure, cylinder radius and the gradient of the free-stream velocity. Evidence from an asymmetric airfoil in a uniform flow indicates that lift is enhanced in a real fluid in the presence of turbulence.

  10. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.

    PubMed

    Börzsönyi, Tamás; Ecke, Robert E

    2006-12-01

    We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x -invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase.

  11. Mantle plumes and associated flow beneath Arabia and East Africa

    NASA Astrophysics Data System (ADS)

    Chang, Sung-Joon; Van der Lee, Suzan

    2011-02-01

    We investigate mantle plumes and associated flow beneath the lithosphere by imaging the three-dimensional S-velocity structure beneath Arabia and East Africa. This image shows elongated vertical and horizontal low-velocity anomalies down to at least mid mantle depths. This three-dimensional S-velocity model is obtained through the joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. In the resolved parts of our S-velocity model we find that the Afar plume is distinctly separate from the Kenya plume, showing the Afar plume's origin in the lower mantle beneath southwestern Arabia. We identify another quasi-vertical low-velocity anomaly beneath Jordan and northern Arabia which extends into the lower mantle and may be related to volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirm horizontal mantle flow radially away from Afar. Low-velocity channels in our model support southwestward flow beneath Ethiopia, eastward flow beneath the Gulf of Aden, but not northwestwards beneath the entire Red Sea. Instead, northward mantle flow from Afar appears to be channeled beneath Arabia.

  12. The development of laser speckle velocimetry for the study of vortical flows

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.

    1991-01-01

    A new experimental technique commonly known as PIDV (particle image displacement velocity) was developed to measure an instantaneous two dimensional velocity fluid in a selected plane of the flow field. This technique was successfully applied to the study of several problems: (1) unsteady flows with large scale vortical structures; (2) the instantaneous two dimensional flow in the transition region of a rectangular air jet; and (3) the instantaneous flow over a circular bump in a transonic flow. In several other experiments PIDV is routinely used as a non-intrusive measurement technique to obtain instantaneous two dimensional velocity fields.

  13. Slug Flow Analysis in Vertical Large Diameter Pipes

    NASA Astrophysics Data System (ADS)

    Roullier, David

    The existence of slug flow in vertical co-current two-phase flow is studied experimentally and theoretically. The existence of slug flow in vertical direction implies the presence of Taylor bubbles separated by hydraulically sealed liquid slugs. Previous experimental studies such as Ombere-Ayari and Azzopardi (2007) showed the evidence of the non-existence of Taylor bubbles for extensive experimental conditions. Models developed to predict experimental behavior [Kocamustafaogullari et al. (1984), Jayanti and Hewitt. (1990) and Kjoolas et al. (2017)] suggest that Taylor bubbles may disappear at large diameters and high velocities. A 73-ft tall and 101.6-mm internal diameter test facility was used to conduct the experiments allowing holdup and pressure drop measurements at large L/D. Superficial liquid and gas velocities varied from 0.05-m/s to 0.2 m/s and 0.07 m/s to 7.5 m/s, respectively. Test section pressure varied from 38 psia to 84 psia. Gas compressibility effect was greatly reduced at 84 psia. The experimental program allowed to observe the flow patterns for flowing conditions near critical conditions predicted by previous models (air-water, 1016 mm ID, low mixture velocities). Flow patterns were observed in detail using wire-mesh sensor measurements. Slug-flow was observed for a narrow range of experimental conditions at low velocities. Churn-slug and churn-annular flows were observed for most of the experimental data-points. Cap-bubble flow was observed instead of bubbly flow at low vSg. Wire-mesh measurements showed that the liquid has a tendency to remain near to the walls. The standard deviation of radial holdup profile correlates to the flow pattern observed. For churn-slug flow, the profile is convex with a single maximum near the pipe center while it exhibits a concave shape with two symmetric maxima close to the wall for churn-annular flow. The translational velocity was measured by two consecutive wire-mesh sensor crosscorrelation. The results show linear trends at low mixture velocities and non-linear behaviors at high mixture velocities. The translational velocity trends seem to be related to the flow-pattern observed, namely to the ability of the gas to flow through the liquid structures. A simplified Taylor bubble stability model is proposed. The model allows to estimate under which conditions Taylor bubbles disappear, properly accounting for the diameter effect and velocity effect observed experimentally. In addition, annular flow distribution coefficient relating true holdup to centerline holdup in vertical flow is proposed. The proposed coefficient defines the tendency of the liquid to remain near the walls. This coefficient increases linearly with the void fraction.

  14. Diastolic coronary artery pressure-flow velocity relationships in conscious man.

    PubMed

    Dole, W P; Richards, K L; Hartley, C J; Alexander, G M; Campbell, A B; Bishop, V S

    1984-09-01

    We characterised the diastolic pressure-flow velocity relationship in the normal left coronary artery of conscious man before and after vasodilatation with angiographic contrast medium. Phasic coronary artery pressure and flow velocity were measured in ten patients during individual diastoles (0.5 to 1.0 s) using a 20 MHz catheter-tipped, pulsed Doppler transducer. All pressure-flow velocity curves were linear over the diastolic pressure range of 110 +/- 15 (SD) mmHg to 71 +/- 7 mmHg (r = 0.97 +/- 0.01). In the basal state, values for slope and extrapolated zero flow pressure intercept averaged 0.35 +/- 0.12 cm X s-1 X mmHg-1 and 51.7 +/- 8.6 mmHg, respectively. Vasodilatation resulted in a 2.5 +/- 0.5 fold increase in mean flow velocity. The diastolic pressure-flow velocity relationship obtained during peak vasodilatation compared to that during basal conditions was characterised by a steeper slope (0.80 +/- 0.48 cm X s-1 X mmHg-1, p less than 0.001) and lower extrapolated zero flow pressure intercept (37.9 +/- 9.8 mmHg, p less than 0.05). Mean right atrial pressure for the group averaged 4.4 +/- 1.7 mmHg, while left ventricular end-diastolic pressure averaged 8.7 +/- 2.8 mmHg. These observations in man are similar to data reported in the canine coronary circulation which are consistent with a vascular waterfall model of diastolic flow regulation. In this model, coronary blood flow may be regulated by changes in diastolic zero flow pressure as well as in coronary resistance.

  15. Spontaneous phase transition from free flow to synchronized flow in traffic on a single-lane highway.

    PubMed

    Jin, Cheng-Jie; Wang, Wei; Jiang, Rui; Zhang, H M; Wang, Hao

    2013-01-01

    Traffic flow complexity comes from the car-following and lane-changing behavior. Based on empirical data for individual vehicle speeds and time headways measured on a single-lane highway section, we have studied the traffic flow properties induced by pure car-following behavior. We have found that a spontaneous sudden drop in velocity could happen in a platoon of vehicles when the velocity of the leading vehicle is quite high (~70 km/h). In contrast, when the velocity of the leading vehicle in a platoon slows down, such a spontaneous sudden drop of velocity has not been observed. Our finding indicates that traffic breakdown on a single-lane road might be a phase transition from free flow to synchronized flow (F→S transition). We have found that the flow rate within the emergent synchronized flow can be either smaller or larger than the flow rate in the free flow within which the synchronized flow propagates. Our empirical findings support Kerner's three-phase theory in which traffic breakdown is associated with an F→S transition.

  16. Oil-Water Flow Investigations using Planar-Laser Induced Fluorescence and Particle Velocimetry

    NASA Astrophysics Data System (ADS)

    Ibarra, Roberto; Matar, Omar K.; Markides, Christos N.

    2017-11-01

    The study of the complex behaviour of immiscible liquid-liquid flow in pipes requires the implementation of advanced measurement techniques in order to extract detailed in situ information. Laser-based diagnostic techniques allow the extraction of high-resolution space- and time resolve phase and velocity information, which aims to improve the fundamental understanding of these flows and to validate closure relations for advanced multiphase flow models. This work shows a novel simultaneous planar-laser induced fluorescence and particle velocimetry in stratified oil-water flows using two laser light sheets at two different wavelengths for fluids with different refractive indices at horizontal and upward pipe inclinations (<5°) in stratified flow conditions (i.e. separated layers). Complex flow structures are extracted from 2-D instantaneous velocity fields, which are strongly dependent on the pipe inclination at low velocities. The analysis of mean wall-normal velocity profiles and velocity fluctuations suggests the presence of single- and counter-rotating vortices in the azimuthal direction, especially in the oil layer, which can be attributed to the influence of the interfacial waves. Funding from BP, and the TMF Consortium is gratefully acknowledged.

  17. Flow measurements in sewers based on image analysis: automatic flow velocity algorithm.

    PubMed

    Jeanbourquin, D; Sage, D; Nguyen, L; Schaeli, B; Kayal, S; Barry, D A; Rossi, L

    2011-01-01

    Discharges of combined sewer overflows (CSOs) and stormwater are recognized as an important source of environmental contamination. However, the harsh sewer environment and particular hydraulic conditions during rain events reduce the reliability of traditional flow measurement probes. An in situ system for sewer water flow monitoring based on video images was evaluated. Algorithms to determine water velocities were developed based on image-processing techniques. The image-based water velocity algorithm identifies surface features and measures their positions with respect to real world coordinates. A web-based user interface and a three-tier system architecture enable remote configuration of the cameras and the image-processing algorithms in order to calculate automatically flow velocity on-line. Results of investigations conducted in a CSO are presented. The system was found to measure reliably water velocities, thereby providing the means to understand particular hydraulic behaviors.

  18. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  19. Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field

    NASA Technical Reports Server (NTRS)

    Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.

    1990-01-01

    Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.

  20. Kinematics and dynamics of Nubia-Somalia divergence along the East African rift

    NASA Astrophysics Data System (ADS)

    Stamps, Dorothy Sarah

    Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition is an estimate of basal shear stress from viscous coupling to horizontal mantle flow. The stress field boundary condition is small (˜1.6 MPa) compared to deviatoric stress from GPE gradients (8-20 MPa) and does not improve the fit to surface deformation indicators more than 8% when combined with deviatoric stress from GPE gradients. Hence we suggest the style of deformation across the EAR can be explained by forces derived from gradients in GPE. We then calculate dynamic velocities using two types of forward models to solve the instantaneous momentum equations. One method is regional and requires vertically averaged effective viscosity to define lithospheric structure with velocity boundary conditions and a free-slip basal boundary condition. The second is a global model that accounts for a brittle upper crust and viscous mantle lithosphere with velocity boundary conditions imposed at the base of the lithosphere from 5 mantle flow models. With both methods we find deformation driven by internal lithospheric buoyancy forces provides the best-fit to GPS observations of surface velocities on the Somalian plate. We find that any additional contribution from horizontal tractions results in overpredicting surface velocities. This work indicates horizontal mantle flow plays a minimal role in Nubia-Somalia divergence and the EAR is driven largely by gradients in GPE.

  1. Cross-correlation focus method with an electrostatic sensor array for local particle velocity measurement in dilute gas-solid two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping

    2015-11-01

    The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.

  2. Unidirectional flow over asymmetric and symmetric ripples

    NASA Astrophysics Data System (ADS)

    Wiberg, Patricia L.; Nelson, Jonathan M.

    1992-08-01

    An LDV-equipped flume has yielded detailed measurements of velocity and turbulence over fixed sets of two-dimensional symmetric and asymmetric ripples. The measured velocities over the ripples are compared with the Nelson and Smith (1989)results for flow over larger-scale dunes; the new results are larger in the outer region of the flow, and the velocity profiles exhibit no sharp inflection at the top of the lowest wake. A model for flow over bedforms which has yielded excellent agreement with dune measurements is presently modified to better represent the observed flow over ripples.

  3. Ionospheric and magnetospheric plasmapauses'

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoffman, J. H.; Maynard, N. C.

    1977-01-01

    During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of about 5.2 R sub e traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2-5.4. The locations of the Explorer 45 plasmapause crossings during this month were compared to the latitudinal decreases of the H(+) density observed on ISIS 2 near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Vertical flows of the H(+) ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 kilometers/sec near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H(+) trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause.

  4. An experimental investigation of a three dimensional wall jet. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.

    1977-01-01

    One and two point statistical properties are measured in the flow fields of a coflowing turbulent jet. Two different confining surfaces (one flat, one with large curvature) are placed adjacent to the lip of the circular nozzle; and the resultant effects on the flow field are determined. The one point quantities measured include mean velocities, turbulent intensities, velocity and concentration autocorrelations and power spectral densities, and intermittencies. From the autocorrelation curves, the Taylor microscale and the integral length scale are calculated. Two point quantities measured include velocity and concentration space-time correlations and pressure velocity correlations. From the velocity space-time correlations, iso-correlation contours are constructed along with the lines of maximum maximorum. These lines allow a picture of the flow pattern to be determined. The pressures monitored in the pressure velocity correlations are measured both in the flow field and at the surface of the confining wall(s).

  5. Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method

    PubMed Central

    Zhang, Wei; Wei, Shilin; Teng, Yanbin; Zhang, Jianku; Wang, Xiufang; Yan, Zheping

    2017-01-01

    In view of a dynamic obstacle environment with motion uncertainty, we present a dynamic collision avoidance method based on the collision risk assessment and improved velocity obstacle method. First, through the fusion optimization of forward-looking sonar data, the redundancy of the data is reduced and the position, size and velocity information of the obstacles are obtained, which can provide an accurate decision-making basis for next-step collision avoidance. Second, according to minimum meeting time and the minimum distance between the obstacle and unmanned underwater vehicle (UUV), this paper establishes the collision risk assessment model, and screens key obstacles to avoid collision. Finally, the optimization objective function is established based on the improved velocity obstacle method, and a UUV motion characteristic is used to calculate the reachable velocity sets. The optimal collision speed of UUV is searched in velocity space. The corresponding heading and speed commands are calculated, and outputted to the motion control module. The above is the complete dynamic obstacle avoidance process. The simulation results show that the proposed method can obtain a better collision avoidance effect in the dynamic environment, and has good adaptability to the unknown dynamic environment. PMID:29186878

  6. Correlations of catalytic combustor performance parameters

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1978-01-01

    Correlations for combustion efficiency percentage drop and the minimum required adiabatic reaction temperature necessary to meet emissions goals of 13.6 g CO/kg fuel and 1.64 g HC/kg fuel are presented. Combustion efficiency was found to be a function of the cell density, cell circumference, reactor length, reference velocity, and adiabatic reaction temperature. The percentage pressure drop at an adiabatic reaction temperature of 1450 K was found to be proportional to the reference velocity to the 1.5 power and to the reactor length. It is inversely proportional to the pressure, cell hydraulic diameter, and fractional open area. The minimum required adiabatic reaction temperature was found to increase with reference velocity and decrease with cell circumference, cell density and reactor length. A catalyst factor was introduced into the correlations to account for differences between catalysts. Combustion efficiency, the percentage pressure drop, and the minimum required adiabatic reaction temperature were found to be a function of the catalyst factor. The data was from a 12 cm-diameter test rig with noble metal reactors using propane fuel at an inlet temperature of 800 K.

  7. Hydrometry's classical and Innovative methods and tools comparison for Stara river flows at Agios Germanos monitoring station in north-west Greece.

    NASA Astrophysics Data System (ADS)

    Filintas, Agathos, , Dr; Hatzigiannakis, Evagellos, , Dr; Arampatzis, George, , Dr; Ilias, Andreas; Panagopoulos, Andreas, , Dr; Hatzispiroglou, Ioannis

    2015-04-01

    The aim of the present study is a thorough comparison of hydrometry's conventional and innovative methods-tools for river flow monitoring. A case study was conducted in Stara river at Agios Germanos monitoring station (northwest Greece), in order to investigate possible deviations between conventional and innovative methods-tools on river flow velocity and discharge. For this study, two flowmeters were used, which manufac-tured in 2013 (OTT Messtechnik Gmbh, 2013), as follows: a) A conventional propeller flow velocity meter (OTT-Model C2) which is a me-chanical current flow meter with a certification of calibration BARGO, operated with a rod and a relocating device, along with a digital measuring device including an elec-tronic flow calculator, data logger and real time control display unit. The flowmeter has a measurement velocity range 0.025-4.000 m/s. b) An innovative electromagnetic flowmeter (OTT-Model MF pro) which it is con-sisted of a compact and light-weight sensor and a robust handheld unit. Both system components are designed to be attached to conventional wading rods. The electromag-netic flowmeter uses Faraday's Law of electromagnetic induction to measure the process flow. When an electrically conductive fluid flows along the meter, an electrode voltage is induced between a pair of electrodes placed at right angles to the direction of mag-netic field. The electrode voltage is directly proportional to the average fluid velocity. The electromagnetic flowmeter was operated with a rod and relocating device, along with a digital measuring device with various logging and graphical capabilities and vari-ous methods of velocity measurement (ISO/USGS standards). The flowmeter has a measurement velocity range 0.000-6.000 m/s. The river flow data were averaged over a pair measurement of 60+60 seconds and the measured river water flow velocity, depths and widths of the segments were used for the estimation of cross-section's mean flow velocity in each measured segment. Then it was used the mid-section method for the overall discharge calculation of all segments flow area. The cross-section characteristics, the river flow velocity of segments and the mean water flow velocity and discharge total profile were measured, calculated and an-notated respectively. A series of concurrent conventional and innovative (electromag-netic) flow measurements were performed during 2014. The results and statistical analysis showed that Froude number during the measurement period in all cases was Fr<1 which means that the water flow of the Stara river is classified as subcritical flow. The 12 months' study showed various advantages for the elec-tromagnetic sensor that is virtually maintenance-free because there are no moving parts, no calibration was required in practice, and it can be used even in the lowest water ve-locities from 0.000 m/s. Moreover, based on the concurrent hydromeasurements of the Stara River, on the velocity and discharge modelling and the statistical analysis, it was found that there was not a significant statistical difference (α=0.05) between mean velocity measured with a) conventional and b) electromagnetic method which seems to be more accurate in low velocities where a significant statistical difference was found. Acknowledgments Data in this study are collected in the framework of the elaboration of the national water resources monitoring network, supervised by the Special Secretariat for Water-Hellenic Ministry for the Environment and Climate Change. This project is elaborated in the framework of the operational program "Environment and Sustainable Development" which is co-funded by the National Strategic Reference Framework (NSRF) and the Public Investment Program (PIP).

  8. Wind tunnel seeding particles for laser velocimeter

    NASA Technical Reports Server (NTRS)

    Ghorieshi, Anthony

    1992-01-01

    The design of an optimal air foil has been a major challenge for aerospace industries. The main objective is to reduce the drag force while increasing the lift force in various environmental air conditions. Experimental verification of theoretical and computational results is a crucial part of the analysis because of errors buried in the solutions, due to the assumptions made in theoretical work. Experimental studies are an integral part of a good design procedure; however, empirical data are not always error free due to environmental obstacles or poor execution, etc. The reduction of errors in empirical data is a major challenge in wind tunnel testing. One of the recent advances of particular interest is the use of a non-intrusive measurement technique known as laser velocimetry (LV) which allows for obtaining quantitative flow data without introducing flow disturbing probes. The laser velocimeter technique is based on measurement of scattered light by the particles present in the flow but not the velocity of the flow. Therefore, for an accurate flow velocity measurement with laser velocimeters, two criterion are investigated: (1) how well the particles track the local flow field, and (2) the requirement of light scattering efficiency to obtain signals with the LV. In order to demonstrate the concept of predicting the flow velocity by velocity measurement of particle seeding, the theoretical velocity of the gas flow is computed and compared with experimentally obtained velocity of particle seeding.

  9. Fluid mechanics in fluids at rest.

    PubMed

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  10. Magnetic particle imaging for in vivo blood flow velocity measurements in mice

    NASA Astrophysics Data System (ADS)

    Kaul, Michael G.; Salamon, Johannes; Knopp, Tobias; Ittrich, Harald; Adam, Gerhard; Weller, Horst; Jung, Caroline

    2018-03-01

    Magnetic particle imaging (MPI) is a new imaging technology. It is a potential candidate to be used for angiographic purposes, to study perfusion and cell migration. The aim of this work was to measure velocities of the flowing blood in the inferior vena cava of mice, using MPI, and to evaluate it in comparison with magnetic resonance imaging (MRI). A phantom mimicking the flow within the inferior vena cava with velocities of up to 21 cm s‑1 was used for the evaluation of the applied analysis techniques. Time–density and distance–density analyses for bolus tracking were performed to calculate flow velocities. These findings were compared with the calibrated velocities set by a flow pump, and it can be concluded that velocities of up to 21 cm s‑1 can be measured by MPI. A time–density analysis using an arrival time estimation algorithm showed the best agreement with the preset velocities. In vivo measurements were performed in healthy FVB mice (n  =  10). MRI experiments were performed using phase contrast (PC) for velocity mapping. For MPI measurements, a standardized injection of a superparamagnetic iron oxide tracer was applied. In vivo MPI data were evaluated by a time–density analysis and compared to PC MRI. A Bland–Altman analysis revealed good agreement between the in vivo velocities acquired by MRI of 4.0  ±  1.5 cm s‑1 and those measured by MPI of 4.8  ±  1.1 cm s‑1. Magnetic particle imaging is a new tool with which to measure and quantify flow velocities. It is fast, radiation-free, and produces 3D images. It therefore offers the potential for vascular imaging.

  11. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in suchmore » scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.« less

  12. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.

    PubMed

    Hashimoto, Junichiro; Ito, Sadayoshi

    2015-07-01

    Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function. © 2015 American Heart Association, Inc.

  13. Experimental modeling of gravity underflow in submarine channels

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Ashraful

    Active and relic meandering channels are common on the seafloor adjacent to continental margins. These channels and their associated submarine fan deposits are products of the density-driven gravity flows known as turbidity currents. Unlike natural rivers, few attempts have been made to explore the process of channel meandering in the submarine environment. This research focuses on resolving the flow field of submarine channels by conducting experiments in a large laboratory basin. Saline and particulate density flows were studied in a straight channel, a single bend sinuous channel with vertical sidewalls and a multiple-bend sinuous channel with sloping sidewalls. Instantaneous velocities in steady developed currents were measured using 3-component acoustic Doppler velocity probes. Excess fractional density was measured at selected locations by collecting water sample using a siphon rake. Turbulent kinetic energy and Reynolds stress components are derived from the instantaneous velocity data of the straight channel experiments. Structure functions for mean velocity, Reynolds stress and turbulent kinetic energy profiles are derived by fitting normalized data. The normalized Reynolds-averaged velocity shows excellent similarity collapse while the Reynolds-stress and the turbulent kinetic energy profiles display reasonable similarity. Vertical profiles of the turbulent kinetic energy display two peaks separated by a zone of low turbulence; the ratio of the maximum to the depth-averaged turbulent kinetic energy is approximately 1.5. Theoretical profile of turbulent kinetic energy is derived. Comparisons of experimentally and theoretically derived turbulent kinetic energy profiles show reasonable agreement except at the position of velocity maximum where the theoretical profile displays a very small value. Velocity profiles derived from the measurements with confined flow in the single bend channel reveal that channel curvature drives two helical flow cells, one stacked upon the other. The lower cell forms near the channel bed surface and has a circulation pattern similar to fluvial channels where a near-bed flow is directed inward. The other circulation cell forms in the upper part of the gravity flow and has a streamwise vorticity opposite to the lower cell. The lower circulation cell can be reasonably approximated by open channel flow theory. The curvature induced mixing is found to shift the position of the maximum streamwise velocity in the upward direction. Experiments conducted in the multiple-bend channel reveals that the channel side slope does not alter the structure of the secondary flow as long as the flow remains confined within the channel. However, if flow spilling occurs at the channel bend, the lateral convection suppresses the upper circulation cell. The lateral slope promotes high superelevation of the dense-light fluid interface at a channel bend and the current almost entirely separates from the inner bank. Compared with the saline flow, the silt-laden flow has larger thickness and thus easily experiences spilling at the bend apex. The overbank flow approximately follows the pre-bend direction of the in-channel flow. Unlike the flow in the channel with vertical sidewalls, the maximum velocity position does not experience an upward shift. This may be attributed to the highly superelevated current interface. The saline flow experiences little reduction in flow velocity while the velocity of the particulate flow drops significantly in the downstream direction primarily due to in-channel sediment deposit.

  14. Development of ultrasonic methods for hemodynamic measurements

    NASA Technical Reports Server (NTRS)

    Histand, M. B.; Miller, C. W.; Wells, M. K.; Mcleod, F. D.; Greene, E. R.; Winter, D.

    1975-01-01

    A transcutanous method to measure instantaneous mean blood flow in peripheral arteries of the human body was defined. Transcutanous and implanted cuff ultrasound velocity measurements were evaluated, and the accuracies of velocity, flow, and diameter measurements were assessed for steady flow. Performance criteria were established for the pulsed Doppler velocity meter (PUDVM), and performance tests were conducted. Several improvements are suggested.

  15. A technique for measuring hypersonic flow velocity profiles

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1973-01-01

    A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.

  16. Assessment of velocity fields through open-channel flows with an empiric law.

    PubMed

    Bardiaux, J B; Vazquez, J; Mosé, R

    2008-01-01

    Most sewer managers are currently confronted with the evaluation of the water discharges, that flow through their networks or go to the discharge system, i.e. rivers in the majority of cases. In this context, the Urban Hydraulic Systems laboratory of the ENGEES is working on the relation between velocity fields and metrology assessment through a partnership with the Fluid and Solid Mechanics Institute of Strasbourg (IMFS). The responsibility is clearly to transform a velocity profile measurement, given by a Doppler sensor developed by the IMFS team, into a water discharge evaluation. The velocity distribution in a cross section of the flow in a channel has attracted the interests of many researchers over the years, due to its practical applications. In the case of free surface flows in narrow open channels the maximum velocity is below the free surface. This phenomenon, usually called "dip-phenomenon", amongst other things, raises the problem of the area explored in the section of measurements. The work presented here tries to create a simple relation making possible to associate the flow with the velocity distribution. This step allows to insert the sensor position into the flow calculation.

  17. Microgravity flame spread over thick solids in low velocity opposed flow

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Zhu, Feng

    2016-07-01

    Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.

  18. Landsat imagery and its treatment in a publicly available data portal to monitor flow velocity variations of Greenland outlet glaciers

    NASA Astrophysics Data System (ADS)

    Scheinert, M.; Rosenau, R.; Ebermann, B.; Horwath, M.

    2016-12-01

    Utilizing the freely available Landsat archive we have set up a monitoring system to process and provide flow-velocity fields for more than 300 outlet glaciers along the margin of the Greenland ice sheet. We will present major processing steps. These include, among others, an improved orthorectification that is based on the Global Digital Elevation Map V2 (GDEM-V2) of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). For those Landsat 7 products which feature the scan line corrector (SLC) failure a destriping correction was applied. An adaptive, recursive filter approach was applied in order to remove outliers. Altogether, the enhanced processing leads to a higher accuracy of the flow-velocity fields. By mid-2016 we succeeded in incorporating more than 37,000 optical multi-sensoral scenes from Landsat 1 to 8. These scenes cover the period from 1972 to 2015. Until now, for almost 300 glaciers we processed more than 100,000 flow-velocity fields for the time span until 2012. For the time until 2015 velocity fields were inferred only for the fastest flowing glaciers. However, new recordings of Landsat 7 and Landsat 8 as well as the availability of further scenes through the Landsat Global Archive Consolidation (LGAC) effort will help to enlarge the database. With a further quality check, we can provide more than 40,000 flow-velocity for public accessibility. More products will be added continuously while the almost automated processing is ongoing. The long time span enables to determine trends of the flow velocity over different (long) periods. A major achievement can be seen in the fact that a high temporal resolution facilitates the analysis of seasonal flow-velocity variations. We will discuss prominent examples of the non-uniform pattern of ice flow velocity changes. For this, a powerful tool is provided by the monitoring system and its web-based data portal. It allows to study the flow-velocity changes in time and space, and to possibly identify distinctive patterns. Rapid changes like surge events can be detected and analyzed in detail. The presentation will demonstrate how the data portal enables to interactively perform the calculation of profiles or time series for locations the user can select on the map. Also, the user can choose from different options to download the examined data.

  19. Colonization dynamics of biofilm-associated ciliate morphotypes at different flow velocities.

    PubMed

    Risse-Buhl, Ute; Küsel, Kirsten

    2009-01-01

    The impact of flow velocity on initial ciliate colonization dynamics on surfaces were studied in the third order Ilm stream (Thuringia, Germany) at a slow flowing site (0.09ms(-1)) and two faster flowing sites (0.31ms(-1)) and in flow channels at 0.05, 0.4, and 0.8ms(-1). At the slow flowing stream site, surfaces were rapidly colonized by ciliates with up to 60 cells cm(-2) after 24h. In flow channels, the majority of suspended ciliates and inorganic matter accumulated at the surface within 4.5h at 0.05ms(-1). At 0.4ms(-1) the increase in ciliate abundance in the biofilm was highest between 72 and 168h at about 3 cells cm(-2)h(-1). Faster flow velocities were tolerated by vagile flattened ciliates that live in close contact to the surface. Vagile flattened and round filter feeders preferred biofilms at slow flow velocities. Addition of inorganic particles (0, 0.6, and 7.3mgcm(-2)) did not affect ciliate abundance in flow channel biofilms, but small ciliate species dominated and number of species was lowest (16 species cm(-2)) in biofilms at high sediment content. Although different morphotypes dominated the communities at contrasting flow velocities, all functional groups contributed to initial biofilm communities implementing all trophic links within the microbial loop.

  20. THE SUN’S PHOTOSPHERIC CONVECTION SPECTRUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathaway, David H.; Teil, Thibaud; Kitiashvili, Irina

    2015-10-01

    Spectra of the cellular photospheric flows are determined from full-disk Doppler velocity observations acquired by the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory spacecraft. Three different analysis methods are used to separately determine spectral coefficients representing the poloidal flows, the toroidal flows, and the radial flows. The amplitudes of these spectral coefficients are constrained by simulated data analyzed with the same procedures as the HMI data. We find that the total velocity spectrum rises smoothly to a peak at a wavenumber of about 120 (wavelength of about 35 Mm), which is typical of supergranules. The spectrummore » levels off out to wavenumbers of about 400, and then rises again to a peak at a wavenumber of about 3500 (wavelength of about 1200 km), which is typical of granules. The velocity spectrum is dominated by the poloidal flow component (horizontal flows with divergence but no curl) at wavenumbers above 30. The toroidal flow component (horizontal flows with curl but no divergence) dominates at wavenumbers less than 30. The radial flow velocity is only about 3% of the total flow velocity at the lowest wavenumbers, but increases in strength to become about 50% at wavenumbers near 4000. The spectrum compares well with the spectrum of giant cell flows at the lowest wavenumbers and with the spectrum of granulation from a 3D radiative-hydrodynamic simulation at the highest wavenumbers.« less

  1. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST.

    PubMed

    Stadlbauer, Andreas; van der Riet, Wilma; Crelier, Gerard; Salomonowitz, Erich

    2010-07-01

    To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Altered bulbar conjunctival microcirculation in response to contact lens wear

    PubMed Central

    Chen, Wan; Xu, Zhe; Jiang, Hong; Zhou, Jin; Wang, Liang; Wang, Jianhua

    2015-01-01

    Purpose This study was conducted to determine blood flow velocities and corresponding vessel diameters to characterize the response of the bulbar conjunctival microvasculature to contact lens wear. Methods A Functional Slit-lamp Biomicroscope (FSLB), an adapted traditional slit-lamp, was used to image the temporal bulbar conjunctiva of 22 healthy subjects before and after 6 hours of contact lens wear. All of the measurable venules on the conjunctiva were processed to yield vessel diameters and blood flow velocities. Results The averaged blood flow velocity increased from 0.51 ± 0.20 mm/s to 0.65 ± 0.22 mm/s (P < 0.001) after 6 hours of lens wear. The blood flow velocity distribution showed a velocity increase that correlated with the vessel diameter increase from the baseline (r = 0.826, P < 0.05). This pattern maintained a similar trend after 6 hours of lens wear (r = 0.925, P < 0.05), and increased velocities were found across all of the vessel diameter ranges (P < 0.001). Conclusions Blood flow velocity increases across all of the vessel diameter ranges in response to contact lens wear. FSLB is capable of characterizing the bulbar microvascular response to contact lens wear. PMID:27078615

  3. The measurements of water flow rates in the straight microchannel based on the scanning micro-PIV technique

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Han, W.; Xu, M.

    2011-12-01

    Measurement of the water flow rate in microchannel has been one of the hottest points in the applications of microfluidics, medical, biological, chemical analyses and so on. In this study, the scanning microscale particle image velocimetry (scanning micro-PIV) technique is used for the measurements of water flow rates in a straight microchannel of 200μm width and 60μm depth under the standard flow rates ranging from 2.481μL/min to 8.269μL/min. The main effort of this measurement technique is to obtain three-dimensional velocity distribution on the cross sections of microchannel by measuring velocities of the different fluid layers along the out-of-plane direction in the microchannel, so the water flow rates can be evaluated from the discrete surface integral of velocities on the cross section. At the same time, the three-dimensional velocity fields in the measured microchannel are simulated numerically using the FLUENT software in order to verify the velocity accuracy of measurement results. The results show that the experimental values of flow rates are well consistent to the standard flow rates input by the syringe pump and the compared results between numerical simulation and experiment are consistent fundamentally. This study indicates that the micro-flow rate evaluated from three-dimensional velocity by the scanning micro-PIV technique is a promising method for the micro-flow rate research.

  4. Transition from steady to periodic liquid-metal magnetohydrodynamic flow in a sliding electrical contact

    NASA Astrophysics Data System (ADS)

    Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1993-09-01

    In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.

  5. Cerebral blood velocity and other cardiovascular responses to 2 days of head-down tilt

    NASA Technical Reports Server (NTRS)

    Frey, Mary A. B.; Mader, Thomas H.; Bagian, James P.; Charles, John B.; Meehan, Richard T.

    1993-01-01

    Spaceflight induces a cephalad redistribution of fluid volume and blood flow within the human body, and space motion sickness, which is a problem during the first few days of space flight, could be related to these changes in fluid status and in blood flow of the cerebrum and vestibular system. To evaluate possible changes in cerebral blood flow during simulated weightlessness, we measured blood velocity in the middle cerebral artery (MCA) along with retinal vascular diameters, intraocular pressure, impedance cardiography, and sphygmomanometry on nine men (26.2 +/- 6.6 yr) morning and evening for 2 days during continuous 10 deg head-down tilt (HDT). When subjects went from seated to head-down bed rest, their heart rate and retinal diameters decreased, and intraocular pressures increased. After 48 h of HDT, blood flow velocity in the MCA was decreased and thoracic impedance was increased, indicating less fluid in the thorax. Percent changes in blood flow velocities in the MCA after 48 h of HDT were inversely correlated with percent changes in retinal vascular diameters. Blood flow velocities in the MCA were inversely correlated (intersubject) with arterial pressures and retinal vascular diameters. Heart rate, stroke volume, cardiac output, systolic arterial pressure, and at times pulse pressure and blood flow velocities in the MCA were greater in the evening. Total peripheral resistance was higher in the morning. Although cerebral blood velocity is reduced after subjects are head down for 2 days, the inverse relationship with retinal vessel diameters, which have control analogous to that of cerebral vessels, indicates cerebral blood flow is not reduced.

  6. Application of ``POLIS'' PIV system for measurement of velocity fields in a supersonic flow of the wind tunnels

    NASA Astrophysics Data System (ADS)

    Akhmetbekov, Y. K.; Bilsky, A. V.; Markovich, D. M.; Maslov, A. A.; Polivanov, P. A.; Tsyryul'Nikov, I. S.; Yaroslavtsev, M. I.

    2009-09-01

    Measurement results on the mean velocity fields and fields of velocity pulsations in the supersonic flows obtained by means of the PIV measurement set “POLIS” are presented. Experiments were carried out in the supersonic blow-down and stationary wind tunnels at the Mach numbers of 4.85 and 6. The method of flow velocity estimate in the test section of the blow-down wind tunnel was grounded by direct measurements of stagnation pressure in the setup settling chamber. The size of tracer particles introduced into the supersonic flow by a mist generator was determined; data on the structure of pulsating velocity in a track of an oblique-cut gas-dynamic whistle were obtained under the conditions of self-oscillations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poloski, Adam P.; Adkins, Harold E.; Abrefah, John

    The WTP pipe plugging issue, as stated by the External Flowsheet Review Team (EFRT) Executive Summary, is as follows: “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” A strategy was employed to perform critical-velocity tests on several physical simulants. Critical velocity is defined as the point where a stationary bed of particles deposits on the bottom of a straight horizontal pipe during slurry transport operations. Results from the critical velocity testing provide an indication ofmore » slurry stability as a function of fluid rheological properties and transport conditions. The experimental results are compared to the WTP design guide on slurry transport velocity in an effort to confirm minimum waste velocity and flushing velocity requirements as established by calculations and critical line velocity correlations in the design guide. The major findings of this testing is discussed below. Experimental results indicate that the use of the Oroskar and Turian (1980) correlation in the design guide is conservative—Slurry viscosity has a greater affect on particles with a large surface area to mass ratio. The increased viscous forces on these particles result in a decrease in predicted critical velocities from this traditional industry derived equations that focus on particles large than 100 μm in size. Since the Hanford slurry particles generally have large surface area to mass ratios, the reliance on such equations in the Hall (2006) design guide is conservative. Additionally, the use of the 95% percentile particle size as an input to this equation is conservative. However, test results indicate that the use of an average particle density as an input to the equation is not conservative. Particle density has a large influence on the overall result returned by the correlation. Lastly, the viscosity correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.« less

  8. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah

    USGS Publications Warehouse

    Magirl, Christopher S.; Gartner, Jeffrey W.; Smart, Graeme M.; Webb, Robert H.

    2009-01-01

    Rapids are an integral part of bedrock‐controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high‐gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline‐based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot‐static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot‐static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest‐flowing section of a rapid was estimated from near‐surface velocity and depth soundings alone.

  9. [Cerebral blood flow assessment of preterm infants during respiratory therapy with the expiratory flow increase technique].

    PubMed

    Bassani, Mariana Almada; Caldas, Jamil Pedro Siqueira; Netto, Abimael Aranha; Marba, Sérgio Tadeu Martins

    2016-06-01

    To assess the impact of respiratory therapy with the expiratory flow increase technique on cerebral hemodynamics of premature newborns. This is an intervention study, which included 40 preterm infants (≤34 weeks) aged 8-15 days of life, clinically stable in ambient air or oxygen catheter use. Children with heart defects, diagnosis of brain lesion and/or those using vasoactive drugs were excluded. Ultrasonographic assessments with transcranial Doppler flowmetry were performed before, during and after the increase in expiratory flow session, which lasted 5minutes. Cerebral blood flow velocity and resistance and pulsatility indices in the pericallosal artery were assessed. Respiratory physical therapy did not significantly alter flow velocity at the systolic peak (p=0.50), the end diastolic flow velocity (p=0.17), the mean flow velocity (p=0.07), the resistance index (p=0.41) and the pulsatility index (p=0.67) over time. The expiratory flow increase technique did not affect cerebral blood flow in clinically-stable preterm infants. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi

    The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.

  11. A study of the river velocity measurement techniques and analysis methods

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating objects in water in high flow, resulting in measurement automation work still needs further study. If the priority for the safety of personnel and instruments, we can use the non-contact velocity measurement method with the theoretical analysis method to achieve real-time monitoring.

  12. Monitoring of surface velocity of hyper-concentrated flow in a laboratory flume by means of fully-digital PIV

    NASA Astrophysics Data System (ADS)

    Termini, Donatella; Di Leonardo, Alice

    2016-04-01

    High flow conditions, which are generally characterized by high sediment concentrations, do not permit the use of traditional measurement equipment. Traditional techniques usually are based on the intrusive measure of the vertical profile of flow velocity and on the linking of water depth with the discharge through the rating curve. The major disadvantage of these measurement techniques is that they are difficult to use and not safe for operators especially in high flow conditions. The point is that, as literature shows (see as an example Moramarco and Termini, 2015), especially in such conditions, the measurement of surface velocity distribution is important to evaluate the mean flow velocity and, thus, the flow discharge. In the last decade, image-based techniques have been increasingly used for surface velocity measurements (among others Joeau et al., 2008). Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials Engineering (DICAM) - University of Palermo (Italy) in order to analyze the propagation phenomenon of hyper-concentrated flow in a defense channel. The experimental apparatus includes a high-precision camera and a system allowing the images recording. This paper investigates the utility and the efficiency of the digital image-technique for remote monitoring of surface velocity in hyper-concentrated flow by the aid of data collected during experiments conducted in the laboratory flume. In particular the present paper attention is focused on the estimation procedure of the velocity vectors and on their sensitivity with parameters (number of images, spatial resolution of interrogation area,) of the images processing procedure. References Jodeau M., A. Hauet, A. Paquier, Le Coz J., Dramais G., Application and evaluation of LS-PIV technique for the monitoring of river surface in high flow conditions, Flow Measurements and Instrumentation, Vol.19, No.2, 2008, pp.117-127. Moramarco T., Termini D., Entropic approach to estimate the mean flow velocity: experimental investigation in laboratory flumes, Environmental Fluid mechanics, Vol. 15, No.1, 2015.

  13. Tables for Supersonic Flow Around Right Circular Cones at Small Angle of Attack

    NASA Technical Reports Server (NTRS)

    Sims, Joseph L.

    1964-01-01

    The solution of supersonic flow fields by the method of characteristics requires that starting conditions be known. Ferri, in reference 1, developed a method-of-characteristics solution for axially symmetric bodies of revolution at small angles of attack. With computing machinery that is now available, this has become a feasible method for computing the aerodynamic characteristics of bodies near zero angle of attack. For sharp-nosed bodies of revolution, the required starting line may be obtained by computing the flow field about a cone at a small angle of attack. This calculation is readily performed using Stone's theory in reference 2. Some solutions of this theory are available in reference 3. However, the manner in which these results are presented, namely in a wind-fixed coordinate system, makes their use somewhat cumbersome. Additionally, as pointed out in reference 4, the flow component perpendicular to the meridian planes was computed incorrectly. The results contained herein have been computed in the same basic manner as those of reference 3 with the correct velocity normal to the meridian planes. Also, all results have been transferred into the body-fixed coordinate system. Therefore, the values tabulated herein may be used, in conjunction with the respective zero-angle-of-attack results of reference 5, as starting conditions for the method-of-characteristics solution of the flow field about axially symmetric bodies of revolution at small angles of attack. As in the zero-angle-of-attack case (ref. 5) the present results have been computed using the ideal gas value of 1.4 for the ratio of the specific heats of air. Solutions are given for cone angles from 2.5 deg to 30 deg in increments of 2.5 deg. For each cone angle, results were computed for a constant series of free-stream Mach numbers from 1.5 to 20. In addition, a solution was computed which yielded the minimum free-stream Mach number for a completely supersonic conical flow field. For cone angles of 27.5 deg and 30 deg, this minimum free-stream Mach number was above 1.5. Consequently, solutions at this Mach number were not computed for these two cone angles.

  14. Evaluation of a Dust Control for a Small Slab-Riding Dowel Drill for Concrete Pavement

    PubMed Central

    Echt, Alan; Mead, Kenneth

    2016-01-01

    Purpose To assess the effectiveness of local exhaust ventilation to control respirable crystalline silica exposures to acceptable levels during concrete dowel drilling. Approach Personal breathing zone samples for respirable dust and crystalline silica were collected while laborers drilled holes 3.5 cm diameter by 36 cm deep in a concrete slab using a single-drill slab-riding dowel drill equipped with local exhaust ventilation. Data were collected on air flow, weather, and productivity. Results All respirable dust samples were below the 90 µg detection limit which, when combined with the largest sample volume, resulted in a minimum detectable concentration of 0.31 mg m−3. This occurred in a 32-min sample collected when 27 holes were drilled. Quartz was only detected in one air sample; 0.09 mg m−3 of quartz was found on an 8-min sample collected during a drill maintenance task. The minimum detectable concentration for quartz in personal air samples collected while drilling was performed was 0.02 mg m−3. The average number of holes drilled during each drilling sample was 23. Over the course of the 2-day study, air flow measured at the dust collector decreased from 2.2 to 1.7 m3 s−1. Conclusions The dust control performed well under the conditions of this test. The initial duct velocity with a clean filter was sufficient to prevent settling, but gradually fell below the recommended value to prevent dust from settling in the duct. The practice of raising the drill between each hole may have prevented the dust from settling in the duct. A slightly higher flow rate and an improved duct design would prevent settling without regard to the position of the drill. PMID:26826033

  15. Evaluation of a Dust Control for a Small Slab-Riding Dowel Drill for Concrete Pavement.

    PubMed

    Echt, Alan; Mead, Kenneth

    2016-05-01

    To assess the effectiveness of local exhaust ventilation to control respirable crystalline silica exposures to acceptable levels during concrete dowel drilling. Personal breathing zone samples for respirable dust and crystalline silica were collected while laborers drilled holes 3.5 cm diameter by 36 cm deep in a concrete slab using a single-drill slab-riding dowel drill equipped with local exhaust ventilation. Data were collected on air flow, weather, and productivity. All respirable dust samples were below the 90 µg detection limit which, when combined with the largest sample volume, resulted in a minimum detectable concentration of 0.31 mg m(-3). This occurred in a 32-min sample collected when 27 holes were drilled. Quartz was only detected in one air sample; 0.09 mg m(-3) of quartz was found on an 8-min sample collected during a drill maintenance task. The minimum detectable concentration for quartz in personal air samples collected while drilling was performed was 0.02 mg m(-3). The average number of holes drilled during each drilling sample was 23. Over the course of the 2-day study, air flow measured at the dust collector decreased from 2.2 to 1.7 m(3) s(-1). The dust control performed well under the conditions of this test. The initial duct velocity with a clean filter was sufficient to prevent settling, but gradually fell below the recommended value to prevent dust from settling in the duct. The practice of raising the drill between each hole may have prevented the dust from settling in the duct. A slightly higher flow rate and an improved duct design would prevent settling without regard to the position of the drill. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2016.

  16. Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons

    NASA Astrophysics Data System (ADS)

    Wang, Tianju; Zhong, Zhong; Wang, Ju

    2018-05-01

    Wave ray theory is employed to study features of propagation pathways (rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind (RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.

  17. New boundary conditions for fluid interaction with hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Pochylý, František; Fialová, Simona; Havlásek, Michal

    2018-06-01

    Solution of both laminar and turbulent flow with consideration of hydrophobic surface is based on the original Navier assumption that the shear stress on the hydrophobic surface is directly proportional to the slipping velocity. In the previous work a laminar flow analysis with different boundary conditions was performed. The shear stress value on the tube walls directly depends on the pressure gradient. In the solution of the turbulent flow by the k-ɛ model, the occurrence of the fluctuation components of velocity on the hydrophobic surface is considered. The fluctuation components of the velocity affect the size of the adhesive forces. We assume that the boundary condition for ɛ depending on the velocity gradients will not need to be changed. When the liquid slips over the surface, non-zero fluctuation velocity components occur in the turbulent flow. These determine the non-zero value of the turbulent kinetic energy K. In addition, the fluctuation velocity components also influence the value of the adhesive forces, so it is necessary to include these in the formulation of new boundary conditions for turbulent flow on the hydrophobic surface.

  18. Velocity filtering applied to optical flow calculations

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1990-01-01

    Optical flow is a method by which a stream of two-dimensional images obtained from a forward-looking passive sensor is used to map the three-dimensional volume in front of a moving vehicle. Passive ranging via optical flow is applied here to the helicopter obstacle-avoidance problem. Velocity filtering is used as a field-based method to determine range to all pixels in the initial image. The theoretical understanding and performance analysis of velocity filtering as applied to optical flow is expanded and experimental results are presented.

  19. The influence of a high pressure gradient on unsteady velocity perturbations in the case of a turbulent supersonic flow

    NASA Technical Reports Server (NTRS)

    Dussauge, J. P.; Debieve, J. F.

    1980-01-01

    The amplification or reduction of unsteady velocity perturbations under the influence of strong flow acceleration or deceleration was studied. Supersonic flows with large velocity, pressure gradients, and the conditions in which the velocity fluctuations depend on the action of the average gradients of pressure and velocity rather than turbulence, are described. Results are analyzed statistically and interpreted as a return to laminar process. It is shown that this return to laminar implies negative values in the turbulence production terms for kinetic energy. A simple geometrical representation of the Reynolds stress production is given.

  20. Spatial and temporal variations of the ion velocity measured in the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Knudsen, W. C.

    1987-01-01

    Temporal and spatial deviations of ion velocity from the dominant flow of the Venusian ionosphere were detected in data collected from a retarding potential analyzer (RPA) aboard the Pioneer-Venus orbiter spectrometer. The ion velocity measurements were analyzed for the first 3.5 Venus years of the Pioneer-Venus mission, approximately through orbit 780. The deviations of ion velocity from the dominant velocity of the Venusian ionosphere, which generally flows nightward and is almost symmetric about the sun-Venus axis, affect both the ionospheric structure and dynamics. Two examples of departure from steady symmetric flow that were measured by the RPA are discussed.

  1. Unsteady Blood Flow with Nanoparticles Through Stenosed Arteries in the Presence of Periodic Body Acceleration

    NASA Astrophysics Data System (ADS)

    Fatin Jamil, Dzuliana; Roslan, Rozaini; Abdulhameed, Mohammed; Che-Him, Norziha; Sufahani, Suliadi; Mohamad, Mahathir; Ghazali Kamardan, Muhamad

    2018-04-01

    The effects of nanoparticles such as Fe 3O4,TiO2, and Cu on blood flow inside a stenosed artery are studied. In this study, blood was modelled as non-Newtonian Bingham plastic fluid subjected to periodic body acceleration and slip velocity. The flow governing equations were solved analytically by using the perturbation method. By using the numerical approaches, the physiological parameters were analyzed, and the blood flow velocity distributions were generated graphically and discussed. From the flow results, the flow speed increases as slip velocity increases and decreases as the values of yield stress increases.

  2. Three-dimensional flow measurements in a vaneless radial turbine scroll

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Wood, B.; Vittal, B. V. R.

    1982-01-01

    The flow behavior in a vaneless radial turbine scroll was examined experimentally. The data was obtained using the slant sensor technique of hot film anemometry. This method used the unsymmetric heat transfer characteristics of a constant temperature hot film sensor to detect the flow direction and magnitude. This was achieved by obtaining a velocity vector measurement at three sensor positions with respect to the flow. The true magnitude and direction of the velocity vector was then found using these values and a Newton-Raphson numerical technique. The through flow and secondary flow velocity components are measured at various points in three scroll sections.

  3. A Potential Approach for Low Flow Selection in Water Resource Supply and Management

    Treesearch

    Ying Ouyang

    2012-01-01

    Low flow selections are essential to water resource management, water supply planning, and watershed ecosystem restoration. In this study, a new approach, namely the frequent-low (FL) approach (or frequent-low index), was developed based on the minimum frequent-low flow or level used in minimum flows and/or levels program in northeast Florida, USA. This FL approach was...

  4. Turbulence generation through intense kinetic energy sources

    NASA Astrophysics Data System (ADS)

    Maqui, Agustin F.; Donzis, Diego A.

    2016-06-01

    Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.

  5. Analytical solutions for solute transport in groundwater and riverine flow using Green's Function Method and pertinent coordinate transformation method

    NASA Astrophysics Data System (ADS)

    Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen

    2017-04-01

    In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.

  6. Flow-sediment-oyster interaction around degraded, restored, and reference oyster reefs in Florida's Indian River Lagoon

    NASA Astrophysics Data System (ADS)

    Kitsikoudis, V.; Kibler, K. M.; Spiering, D. W.

    2017-12-01

    This study analyzes flow patterns and sediment distributions around three oyster reefs in a bar-built estuarine lagoon. We studied a degraded reef, a recently restored reef, and a reference condition reef with a healthy live oyster community. The restored reef had been regraded and restored with oyster shell mats to aid in recruitment of oyster spat, with the goal of reestablishing a healthy oyster community. Despite the fact that flow-biota-sediment interaction constitutes a blossoming research field, actual field data are sparse and current knowledge emanates from flume studies and numerical modeling. Moreover, the hydraulic effect of restored oyster reefs has not been thoroughly investigated and it is not clear if the flow field and sediment erosion/deposition are similar or diverge from natural reefs. Instantaneous three-dimensional flow velocities were collected on reefs using a Nortek Vectrino Profiler and an acoustic Doppler current profiler (Nortek Aquadopp). The former measured a 2 - 3 cm velocity profile above the oyster bed, while the latter quantified incoming velocities across the flow profile approximately 10 m from the edge of the reef. Flow measurements were conducted during rising tides and are coupled with simultaneous wind speed and direction data. In addition, 20 cm deep sediment cores were retrieved on and off the investigated reefs. Sediment grain size distributions were determined after individual cores were processed for loss on ignition. Incoming flow velocities were as high as 10 cm/s, relatively higher than those recorded close to reefs. Mean and turbulent flow velocities close to the reefs, varied among the investigated sites, despite the similar wind flow conditions offshore. For instance, the measurements at the degraded reef showed decreased wave attenuation and augmented flow velocities compared to the other sites. Boat wakes exhibited a very distinct signal in the flow velocity time-series and significantly increased the approaching flow velocity at the reefs. The oyster roughness height at the restored reef (68 mm) was higher than the roughness at the reference reef (45 mm); however, the variance was higher at the latter. Sediments from degraded reef and the recently restored reef were coarser and contained less organic matter compared to the reference condition reef.

  7. Human Autonomic and Cerebrovascular Responses to Inspiratory Impedance

    DTIC Science & Technology

    2006-06-01

    recorded the ECG, finger photoplethysmographic arterial pressure , cerebral blood flow velocity, and muscle sympathetic nerve activity (MSNA). In a... pressures and R-R intervals, or between arterial pres- sures and cerebral blood flow velocities at the LF (p > 0.05). Conclusions: Our results demonstrate...that the ITD increases arterial pressure , heart rate, and cerebral blood flow velocity independent of changes in autonomic car- diovascular control or

  8. Measuring the Power Spectrum with Peculiar Velocities

    NASA Astrophysics Data System (ADS)

    Macaulay, Edward; Feldman, H. A.; Ferreira, P. G.; Jaffe, A. H.; Agarwal, S.; Hudson, M. J.; Watkins, R.

    2012-01-01

    The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large scale excess in the matter power spectrum, and can appear to be in some tension with the LCDM model. We use a composite catalogue of 4,537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results from Macaulay et al. (2011), studying minimum variance moments of the velocity field, as calculated by Watkins, Feldman & Hudson (2009) and Feldman, Watkins & Hudson (2010). We find good agreement with the LCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1, although with a 1 sigma uncertainty which includes the LCDM model. We find that the uncertainty in the excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and nonlinear clustering in simulated peculiar velocity catalogues, and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.

  9. Power spectrum estimation from peculiar velocity catalogues

    NASA Astrophysics Data System (ADS)

    Macaulay, E.; Feldman, H. A.; Ferreira, P. G.; Jaffe, A. H.; Agarwal, S.; Hudson, M. J.; Watkins, R.

    2012-09-01

    The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large-scale excess in the matter power spectrum and can appear to be in some tension with the Λ cold dark matter (ΛCDM) model. We use a composite catalogue of 4537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results by Macaulay et al., studying minimum variance moments of the velocity field, as calculated by Feldman, Watkins & Hudson. We find good agreement with the ΛCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1 with a 1σ uncertainty which includes the ΛCDM model. We find that the uncertainty in excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and non-linear clustering in simulated peculiar velocity catalogues and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.

  10. Evaluation of multiple tracer methods to estimate low groundwater flow velocities.

    PubMed

    Reimus, Paul W; Arnold, Bill W

    2017-04-01

    Four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or "shut-in" periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity data are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a "ground truth" velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. The advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them are discussed. Published by Elsevier B.V.

  11. Wind-Induced Air-Flow Patterns in an Urban Setting: Observations and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Sattar, Ahmed M. A.; Elhakeem, Mohamed; Gerges, Bishoy N.; Gharabaghi, Bahram; Gultepe, Ismail

    2018-04-01

    City planning can have a significant effect on wind flow velocity patterns and thus natural ventilation. Buildings with different heights are roughness elements that can affect the near- and far-field wind flow velocity. This paper aims at investigating the impact of an increase in building height on the nearby velocity fields. A prototype urban setting of buildings with two different heights (25 and 62.5 cm) is built up and placed in a wind tunnel. Wind flow velocity around the buildings is mapped at different heights. Wind tunnel measurements are used to validate a 3D-numerical Reynolds averaged Naviers-Stokes model. The validated model is further used to calculate the wind flow velocity patterns for cases with different building heights. It was found that increasing the height of some buildings in an urban setting can lead to the formation of large horseshoe vortices and eddies around building corners. A separation area is formed at the leeward side of the building, and the recirculation of air behind the building leads to the formation of slow rotation vortices. The opposite effect is observed in the wake (cavity) region of the buildings, where both the cavity length and width are significantly reduced, and this resulted in a pronounced increase in the wind flow velocity. A significant increase in the wind flow velocity in the wake region of tall buildings with a value of up to 30% is observed. The spatially averaged velocities around short buildings also increased by 25% compared to those around buildings with different heights. The increase in the height of some buildings is found to have a positive effect on the wind ventilation at the pedestrian level.

  12. Acoustic tests of a 15.2 centimeter-diameter potential flow convergent nozzle

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.; Dorsch, R. G.; Friedman, R.

    1974-01-01

    An experimental investigation of the jet noise radiated to the far field from a 15.2-cm-diam potential flow convergent nozzle has been conducted. Tests were made with unheated airflow over a range of subsonic nozzle exhaust velocities from 62 to 310m/sec. Mean and turbulent velocity measurements in the flow field of the nozzle exhaust indicated no apparent flow anomalies. Acoustic measurements yielded data uncontaminated by internal and/or background noise to velocities as low as 152m/sec. Finally, no significantly different acoustic characteristics between the potential flow nozzle and simple convergent nozzles were found.

  13. An Experimental Investigation of Flow Conditions in the Vicinity of an NACA D(sub S)-type Cowling

    NASA Technical Reports Server (NTRS)

    Bryant, Rosemary P.; Boswinkle, Robert W.

    1946-01-01

    Data are presented of the flow conditions in the vicinity of an NACA D sub S -type cowling. Tests were made of a 1/2 scale-nacelle model at inlet-velocity ratios ranging from 0.23 to 1.02 and angles of attack from 6 deg to 10 deg. The velocity and direction of flow in the vertical plane of symmetry of the cowling were determined from orifices and tufts installed on a board aligned with the flow. Diagrams showing velocity ratio contours and lines of constant flow angles are given.

  14. Quantification of electrical field-induced flow reversal in a microchannel.

    PubMed

    Pirat, C; Naso, A; van der Wouden, E J; Gardeniers, J G E; Lohse, D; van den Berg, A

    2008-06-01

    We characterize the electroosmotic flow in a microchannel with field effect flow control. High resolution measurements of the flow velocity, performed by micro particle image velocimetry, evidence the flow reversal induced by a local modification of the surface charge due to the presence of the gate. The shape of the microchannel cross-section is accurately extracted from these measurements. Experimental velocity profiles show a quantitative agreement with numerical results accounting for this exact shape. Analytical predictions assuming a rectangular cross-section are found to give a reasonable estimate of the velocity far enough from the walls.

  15. Influence of fast advective flows on pattern formation of Dictyostelium discoideum

    PubMed Central

    Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard

    2018-01-01

    We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179

  16. Flow friction of the turbulent coolant flow in cryogenic porous cables

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Yeroshenko, V. M.; Zaichik, L. I.; Yanovsky, L. S.

    1979-01-01

    Considered are cryogenic power transmission cables with porous cores. Calculations of the turbulent coolant flow with injection or suction through the porous wall are presented within the framework of a two-layer model. Universal velocity profiles were obtained for the viscous sublayer and flow core. Integrating the velocity profile, the law of flow friction in the pipe with injection has been derived for the case when there is a tangential injection velocity component. The effect of tangential velocity on the relative law of flow friction is analyzed. The applicability of the Prandtl model to the problem under study is discussed. It is shown that the error due to the acceptance of the model increases with the injection parameter and at lower Reynolds numbers; under these circumstances, the influence of convective terms in the turbulent energy equation on the mechanism of turbulent transport should be taken into account.

  17. Effect of jet-mainstream velocity ratio on flow characteristics and heat transfer enhancement of jet on flat plate flow

    NASA Astrophysics Data System (ADS)

    Puzu, N.; Prasertsan, S.; Nuntadusit, C.

    2017-09-01

    The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.

  18. Low volume flow meter

    DOEpatents

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  19. Blood flow velocity measurement by endovascular Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Nolte, Felix; Vuong, Barry; Cheng, Kyle H. Y.; Lee, Kenneth K. C.; Standish, Beau A.; Courtney, Brian; Marotta, Tom R.; Yang, Victor X. D.

    2013-03-01

    Blood flow velocity and volumetric flow measurements are important parameters for assessment of the severity of stenosis and the outcome of interventional therapy. However, feasibility of intravascular flow measurement using a rotational catheter based phase resolved Doppler optical coherence tomography (DOCT) is difficult. Motion artefacts induced by the rotating optical imaging catheter, and the radially dependent noise background of measured Doppler signals are the main challenges encountered. In this study, a custom-made data acquisition system and developed algorithms to remove non-uniform rotational distortion (NURD) induced phase shift artefact by tracking the phase shift observed on catheter sheath. The flow velocity is calculated from Doppler shift obtained by Kasai autocorrelation after motion artefact removal. Blood flow velocity profiles in porcine carotid arteries in vivo were obtained at 100 frames/s with 500 A-lines/frame and DOCT images were taken at 20 frames/s with 2500 A-lines/frame. Time-varying velocity profiles were obtained at an artery branch. Furthermore, the identification of a vein adjacent to the catheterized vessel based on the color Doppler signal was also observed. The absolute measurement of intravascular flow using a rotating fiber catheter can provide insights to different stages of interventional treatment of stenosis in carotid artery.

  20. Forced convective heat transfer in curved diffusers

    NASA Technical Reports Server (NTRS)

    Rojas, J.; Whitelaw, J. H.; Yianneskis, M.

    1987-01-01

    Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.

  1. Effects of pulsed, high-velocity water flow on larval robust redhorse and V-lip redhorse

    USGS Publications Warehouse

    Weyers, R.S.; Jennings, C.A.; Freeman, Mary C.

    2003-01-01

    The pulsed, high-velocity water flow characteristic of water-flow patterns downstream from hydropower-generating dams has been implicated in the declining abundance of both aquatic insects and fishes in dam-regulated rivers. This study examined the effects of 0, 4, and 12 h per day of pulsed, high-velocity water flow on the egg mortality, hatch length, final length, and survival of larval robust redhorse Moxostoma robusturn, a presumedly extinct species that was rediscovered in the 1990s, and V-lip redhorse M. collapsum (previously synonomized with the silver redhorse M. anisurum) over a 3-5 week period in three separate experiments. Twelve 38.0-L aquaria (four per treatment) were modified to simulate pulsed, high-velocity water flow (>35 cm/s) and stable, low-velocity water flow (<10 cm/s). Temperature, dissolved oxygen, zooplankton density, and water quality variables were kept the same across treatments. Fertilized eggs were placed in gravel nests in each aquarium. Hatch success was estimated visually at greater than 90%, and the mean larval length at 24 h posthatch was similar in each experiment. After emergence from the gravel nest, larvae exposed to 4 and 12 h of pulsed, high-velocity water flow grew significantly more slowly and had lower survival than those in the 0-h treatment. These results demonstrate that the altered water-flow patterns that typically occur when water is released during hydropower generation can have negative effects on the growth and survival of larval catostomid suckers.

  2. Computational modelling of flow and tip variations of aortic cannulae in cardiopulmonary bypass procedure

    NASA Astrophysics Data System (ADS)

    Thomas, Siti A.; Empaling, Shirly; Darlis, Nofrizalidris; Osman, Kahar; Dillon, Jeswant; Taib, Ishkrizat; Khudzari, Ahmad Zahran Md

    2017-09-01

    Aortic cannulation has been the gold standard for maintaining cardiovascular function during open heart surgery while being connected onto the heart lung machine. These cannulation produces high velocity outflow which may lead to adverse effect on patient condition, especially sandblasting effect on aorta wall and blood cells damage. This paper reports a novel design that was able to decrease high velocity outflow. There were three design factors of that was investigated. The design factors consist of the cannula type, the flow rate, and the cannula tip design which result in 12 variations. The cannulae type used were the spiral flow inducing cannula and the standard cannula. The flow rates are varied from three to five litres per minute (lpm). Parameters for each cannula variation included maximum velocity within the aorta, pressure drop, wall shear stress (WSS) area exceeding 15 Pa, and impinging velocity on the aorta wall were evaluated. Based on the result, spiral flow inducing cannulae is proposed as a better alternatives due to its ability to reduce outflow velocity. Meanwhile, the pressure drop of all variations are less than the limit of 100 mmHg, although standard cannulae yielded better result. All cannulae show low reading of wall shear stress which decrease the possibilities for atherogenesis formation. In conclusion, as far as velocity is concerned, spiral flow is better compared to standard flow across all cannulae variations.

  3. Reduced Arteriovenous Shunting Capacity After Local Heating and Redistribution of Baseline Skin Blood Flow in Type 2 Diabetes Assessed With Velocity-Resolved Quantitative Laser Doppler Flowmetry

    PubMed Central

    Fredriksson, Ingemar; Larsson, Marcus; Nyström, Fredrik H.; Länne, Toste; Östgren, Carl J.; Strömberg, Tomas

    2010-01-01

    OBJECTIVE To compare the microcirculatory velocity distribution in type 2 diabetic patients and nondiabetic control subjects at baseline and after local heating. RESEARCH DESIGN AND METHODS The skin blood flow response to local heating (44°C for 20 min) was assessed in 28 diabetic patients and 29 control subjects using a new velocity-resolved quantitative laser Doppler flowmetry technique (qLDF). The qLDF estimates erythrocyte (RBC) perfusion (velocity × concentration), in a physiologically relevant unit (grams RBC per 100 g tissue × millimeters per second) in a fixed output volume, separated into three velocity regions: v <1 mm/s, v 1–10 mm/s, and v >10 mm/s. RESULTS The increased blood flow occurs in vessels with a velocity >1 mm/s. A significantly lower response in qLDF total perfusion was found in diabetic patients than in control subjects after heat provocation because of less high-velocity blood flow (v >10 mm/s). The RBC concentration in diabetic patients increased sevenfold for v between 1 and 10 mm/s, and 15-fold for v >10 mm/s, whereas no significant increase was found for v <1 mm/s. The mean velocity increased from 0.94 to 7.3 mm/s in diabetic patients and from 0.83 to 9.7 mm/s in control subjects. CONCLUSIONS The perfusion increase occurs in larger shunting vessels and not as an increase in capillary flow. Baseline diabetic patient data indicated a redistribution of flow to higher velocity regions, associated with longer duration of diabetes. A lower perfusion was associated with a higher BMI and a lower toe-to-brachial systolic blood pressure ratio. PMID:20393143

  4. Transthoracic Coronary Flow Data at Rest Predict High-Risk Stress Tests.

    PubMed

    Zagatina, Angela; Zhuravskaya, Nadezhda; Vareldzhyan, Yuliya; Kamenskikh, Maxim; Shmatov, Dmitry; Benacka, Jozef; Kucera, Martin; Kruzliak, Peter

    2018-06-01

    Background Several recent studies have reported the opportunity to diagnose significant narrowing of the coronary arteries without stress testing using local flow acceleration. Purpose To define how often patients with increased coronary flow velocities at rest (≥ 0.70 m/s) have a positive exercise echocardiography test. Material and Methods A total of 150 patients scheduled for exercise echocardiography were studied using transthoracic Doppler echocardiography in order to assess coronary artery flow velocity before exercise. Pulsed wave Doppler registered blood flow velocity placed on the color signal. The maximal diastolic velocity of coronary flow was measured. Results Of participants, 16% had a velocity of more than 0.70 m/s in the left main/proximal left anterior/proximal left circumflex arteries (LM/pLAD). A significant correlation was observed between the value of the maximal velocity in LM/pLAD and the ejection fraction at the peak of exercise ( r ≈ -0.39, P < 0.0001); between the value of the maximal velocity in LM/pLAD and index of wall motion abnormalities (IWMA) at the peak of exercise ( r ≈ 0.44, P < 0.0001); and between the value of the maximal velocity in LM/pLAD and dIWMA ( r ≈ 0.41, P < 0.0001). Afterwards, severe ischemia in stress echocardiography tests was observed in this group. The average IWMA of these tests was found to be 2.3. Sixty-two angiograms were available for comparison with Doppler data. Conclusion There is a significant correlation between the value of the maximal velocity in LM/pLAD/pLCx at rest and the severity of wall motion abnormalities during exercise tests.

  5. The influence of Sildenafil citrate on uterine tissue perfusion and the cardiovascular system during the luteal phase of the ovarian cycle in cows.

    PubMed

    Dzięcioł, Michał; Stańczyk, Ewa; Noszczyk-Nowak, Agnieszka; Michlik, Katarzyna; Kozdrowski, Roland; Niżański, Wojciech; Pasławskab, Urszula; Mrowiec, Jacek; Twardoń, Jan

    2014-03-01

    The aim of the study was to evaluate the influence of the Sildenafil citrate on the blood flow in the uterus of cows during dioestrus. Uterine blood flow was examined in five, healthy, adult cows. Between day 6-8 of the ovarian cycle, each cow received 200mg of sildenafil diluted in 10ml of warm saline into the body of the uterus. Analysis of the blood pressure, ECG and the maximum velocity in m/s (V max) in the aorta was performed and selected parameters of the blood flow (PI, pulsatile index; RI, resistance index; SPV, systolic peak velocity; EDV, end diastolic velocity; FVI, flow velocity integral; SV/DV, systolic peak velocity: end-diastolic velocity ratio) were measured in the uterine artery (Arteria uterine) before and after sildenafil infusion. In addition, Color Doppler examination of the uterine wall perfusion was analyzed. A significant decrease of values of PI and SV/DV ratio as well as an increase of end diastolic velocity and time averaged maximum velocity was noted. With the use of color coded sonography, the increased intensity of the blood flow in the uterine wall was observed. It was concluded that intrauterine administration of sildenafil during dioestrus can increase uterine tissue perfusion. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Shear-induced autorotation of freely rotatable cylinder in a channel flow at moderate Reynolds number

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung

    2018-04-01

    Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re < 10. At a range of Re > 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.

  7. Flow Scales of Influence on the Settling Velocities of Particles with Varying Characteristics

    PubMed Central

    Jacobs, Corrine N.; Merchant, Wilmot; Jendrassak, Marek; Limpasuvan, Varavut; Gurka, Roi; Hackett, Erin E.

    2016-01-01

    The settling velocities of natural, synthetic, and industrial particles were measured in a grid turbulence facility using optical measurement techniques. Particle image velocimetry and 2D particle tracking were used to measure the instantaneous velocities of the flow and the particles’ trajectories simultaneously. We find that for particles examined in this study (Rep = 0.4–123), settling velocity is either enhanced or unchanged relative to stagnant flow for the range of investigated turbulence conditions. The smallest particles’ normalized settling velocities exhibited the most consistent trends when plotted versus the Kolmogorov-based Stokes numbers suggesting that the dissipative scales influence their dynamics. In contrast, the mid-sized particles were better characterized with a Stokes number based on the integral time scale. The largest particles were largely unaffected by the flow conditions. Using proper orthogonal decomposition (POD), the flow pattern scales are compared to particle trajectory curvature to complement results obtained through dimensional analysis using Stokes numbers. The smallest particles are found to have trajectories with curvatures of similar scale as the small flow scales (higher POD modes) whilst mid-sized particle trajectories had curvatures that were similar to the larger flow patterns (lower POD modes). The curvature trajectories of the largest particles did not correspond to any particular flow pattern scale suggesting that their trajectories were more random. These results provide experimental evidence of the “fast tracking” theory of settling velocity enhancement in turbulence and demonstrate that particles align themselves with flow scales in proportion to their size. PMID:27513958

  8. Relationship Between Ureteral Jet Flow, Visual Analogue Scale, and Ureteral Stone Size.

    PubMed

    Ongun, Sakir; Teken, Abdurrazak; Yılmaz, Orkun; Süleyman, Sakir

    2017-06-01

    To contribute to the diagnosis and treatment of ureteral stones by investigating the relationship between the ureteral jet flow measurements of patients with ureteral stones and the size of the stones and the patients' pain scores. The sample consisted of patients who presented acute renal colic between December 2014 and 2015 and from a noncontrast computed tomography were found to have a urinary stone. The ureteral jet flow velocities were determined using Doppler ultrasonography. The patients were all assessed in terms of stone size, localization and area, anteroposterior pelvis (AP) diameter, and visual analogue scale (VAS) scores. A total of 102 patients were included in the study. As the VAS score decreased, the peak jet flow velocity on the stone side increased, whereas the flow velocity on the other side, AP diameter, and stone area were reduced (P < .05). As the stone size increased, the peak jet flow velocity was reduced and the AP diameter increased significantly (P < .05). Ureteral jet flow was not observed in 17 patients on the stone side. A statistically significant difference was found between these patients and the remaining patients in terms of all parameters (P < .05). For patients, in whom the peak flow velocity of ureteral jet is low and with a severe level of pain or the peak flow velocity of ureteral jet cannot be measured, there is a low possibility of spontaneous passage and a high possibility of a large stone, and therefore the treatment should be started immediately. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Analysis of microfluidic flow driven by electrokinetic and pressure forces

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsin

    2011-12-01

    This work presents an analysis of microfluidic flow introduced by mixed electrokinetic force and pressure gradient. Analytical solutions are presented for the case of constant surface heat flux, taking the Joule heating effect into account. The present problem is governed by two scale ratios and the dimensionless source term. The two important ratios are the length scale ratio e (the ratio of Debye length to the tube radius R) and the velocity scale ratio Γ (the ratio of the pressuredriven velocity scale for Poiseuille flow to Helmholtz-Smoluchowski velocity for electroosmotic flow). For mixed electroosmotic and pressure-driven flow, the resulting velocity profile is the superimposed effect of both electroosmotic and Poiseuille flow phenomena. It is found that the velocity profile decreases as e increases and the normalized temperature profiles across the tube increases monotonously form the core to the wall. The maximum dimensionless temperature is observed at the wall and the wall temperature increases with increasing Joule heating. Also, the temperature is increased with increasing the value of ɛ . The fully developed Nusselt number takes the maximum value at the limiting case of ɛ --> 0 , and then decreases with increasing ɛ . Moreover, the Nusselt number decreases with Γ and then goes asymptotically to the limit of Poiseuille flow as Γ --> ∞ , where the flow is dominated by the pressure force.

  10. Evaluation of extracranial blood flow in Parkinson disease.

    PubMed

    Haktanir, Alpay; Yaman, Mehmet; Acar, Murat; Gecici, Omer; Demirel, Reha; Albayrak, Ramazan; Demirkirkan, Kemal

    2006-01-02

    Decreased cerebral flow velocities in Parkinsonian patients were reported previously. Because of the limited data on vascular changes in Parkinson disease (PD), which may have a vascular etiology, we aimed to disclose any possible cerebral hemodynamic alteration in Parkinsonian patients. We prospectively evaluated 28 non-demented, idiopathic parkinsonian patients and 19 age and sex matched controls with Doppler sonography. Flow volumes, peak systolic flow velocities, and cross-sectional areas of vertebral and internal carotid arteries (ICA) were measured and compared between patients and controls. Correlation of patient age and disease duration with Doppler parameters was observed; and each Doppler parameter of patients within each Hoehn-Yahr scale was compared. There was no significant difference of measured parameters between groups. No correlation was found between disease duration and age with flow volume, cross-sectional area or peak systolic velocity. Hoehn-Yahr scale was not found having significant relation with Doppler parameters. Values of vertebral, internal carotid and cerebral blood flow volumes (CBF), peak systolic velocities, and cross-sectional areas were not significantly different between Parkinsonian patients and age and sex matched controls. Although regional blood flow decreases may be seen as reported previously, Parkinson disease is not associated with a flow volume or velocity alteration of extracranial cerebral arteries.

  11. Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media

    DOEpatents

    Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping

    1999-01-01

    Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

  12. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-02-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  13. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-06-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  14. Flow Meter Based on Freely Suspended Smectic Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Green, Adam; Qi, Zhiyuan; Park, Cheol; Glaser, Matthew; Maclennan, Joseph; Clark, Noel

    We present the realization of a idealized 2D hydrodynamic system coupled to air-flow, and show that freely suspended films (FSF) of smectic liquid crystals can be used as a novel flow-meter. Freely-suspended films of liquid crystals are one of the closest physical realizations of an idealized 2D fluid. The velocity of air-flow above a film suspended above a channel can be inferred by studying the velocity profile of the smectic film. This velocity profile can be measured using digital video microscopy to track the inclusions present in the moving film. The velocity profile is then fitted to the coupled 2D solutions of an embedded fluid in air, and the velocity of the air can then be extracted. This flow meter serves as a demonstration of a robust test-bed for further exploration of 2D hydrodynamics. This work was supported by NASA Grant No. NNX-13AQ81G, NSF MRSEC Grant No. DMR-0820579, and DMR-1420736.

  15. Propagation velocity and space-time correlation of perturbations in turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Kim, John; Hussain, Fazle

    1992-01-01

    A database obtained from direct numerical simulation of a turbulent channel flow is analyzed to extract the propagation velocity V of velocity, vorticity, and pressure fluctuations from their space-time correlations. A surprising result is that V is approximately the same as the local mean velocity for most of the channel, except for the near-wall region. For y(+) is less than or equal to 15, V is virtually constant, implying that perturbations of all flow variables propagate like waves near the wall. In this region V is 55 percent of the centerline velocity U(sub c) for velocity and vorticity perturbations and 75 percent of U(sub c) for pressure perturbations. Scale-dependence of V is also examined by analyzing the bandpass filtered flow fields. Comprehensive documentation of the propagation velocities and space-time correlation data, which should prove useful in the evaluation of Taylor's hypothesis is presented. An attempt was made to explain some of the data in terms of our current understanding of organized structures, although not all of the data can be explained this way.

  16. Substorm-related plasma sheet motions as determined from differential timing of plasma changes at the ISEE satellites

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.; Hones, E. W., Jr.; Bame, S. J.; Asbridge, J. R.; Paschmann, G.; Sckopke, N.; Russell, C. T.

    1981-01-01

    From an ISEE survey of substorm dropouts and recoveries during the period February 5 to May 25, 1978, 66 timing events observed by the Los Alamos Scientific Laboratory/Max-Planck-Institut Fast Plasma Experiments were studied in detail. Near substorm onset, both the average timing velocity and the bulk flow velocity at the edge of the plasma sheet are inward, toward the center. Measured normal to the surface of the plasma sheet, the timing velocity is 23 + or - 18 km/s and the proton flow velocity is 20 + or - 8 km/s. During substorm recovery, the plasma sheet reappears moving outward with an average timing velocity of 133 + or - 31 km/s; however, the corresponding proton flow velocity is only 3 + or - 7 km/s in the same direction. It is suggested that the difference between the average timing velocity for the expansion of the plasma sheet and the plasma bulk flow perpendicular to the surface of the sheet during substorm recovery is most likely the result of surface waves moving past the position of the satellites.

  17. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    NASA Astrophysics Data System (ADS)

    Shand, B. A.; Lester, M.; Yeoman, T. K.

    1996-08-01

    A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE). The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s-1, the backscatter intensity (measured in decibels) remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels) and Doppler velocity for velocities between 200 m s-1 and 700 m s-1. At velocities greater than 700 m s-1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  18. Flow tilt angle measurements using lidar anemometry

    NASA Astrophysics Data System (ADS)

    Dellwik, Ebba; Mann, Jakob

    2010-05-01

    A new way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 minute mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175m above ground level, (2) a reference site in flat agricultural terrain and (3) a second reference site in very complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by comparing tilt estimates at various heights. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. However, the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical, the measurement height and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2 degrees. Other possibilities for utilizing lidars for flow tilt angle and mean vertical velocities are discussed.

  19. Optimization of memory use of fragment extension-based protein-ligand docking with an original fast minimum cost flow algorithm.

    PubMed

    Yanagisawa, Keisuke; Komine, Shunta; Kubota, Rikuto; Ohue, Masahito; Akiyama, Yutaka

    2018-06-01

    The need to accelerate large-scale protein-ligand docking in virtual screening against a huge compound database led researchers to propose a strategy that entails memorizing the evaluation result of the partial structure of a compound and reusing it to evaluate other compounds. However, the previous method required frequent disk accesses, resulting in insufficient acceleration. Thus, more efficient memory usage can be expected to lead to further acceleration, and optimal memory usage could be achieved by solving the minimum cost flow problem. In this research, we propose a fast algorithm for the minimum cost flow problem utilizing the characteristics of the graph generated for this problem as constraints. The proposed algorithm, which optimized memory usage, was approximately seven times faster compared to existing minimum cost flow algorithms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supardiyono; Santosa, Bagus Jaya; Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquakemore » locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.« less

Top