Sample records for minimum growth temperature

  1. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species.

    PubMed

    Schenker, Gabriela; Lenz, Armando; Körner, Christian; Hoch, Günter

    2014-03-01

    Temperature is the most important factor driving the cold edge distribution limit of temperate trees. Here, we identified the minimum temperatures for root growth in seven broad-leaved tree species, compared them with the species' natural elevational limits and identified morphological changes in roots produced near their physiological cold limit. Seedlings were exposed to a vertical soil-temperature gradient from 20 to 2 °C along the rooting zone for 18 weeks. In all species, the bulk of roots was produced at temperatures above 5 °C. However, the absolute minimum temperatures for root growth differed among species between 2.3 and 4.2 °C, with those species that reach their natural distribution limits at higher elevations also tending to have lower thermal limits for root tissue formation. In all investigated species, the roots produced at temperatures close to the thermal limit were pale, thick, unbranched and of reduced mechanical strength. Across species, the specific root length (m g(-1) root) was reduced by, on average, 60% at temperatures below 7 °C. A significant correlation of minimum temperatures for root growth with the natural high elevation limits of the investigated species indicates species-specific thermal requirements for basic physiological processes. Although these limits are not necessarily directly causative for the upper distribution limit of a species, they seem to belong to a syndrome of adaptive processes for life at low temperatures. The anatomical changes at the cold limit likely hint at the mechanisms impeding meristematic activity at low temperatures.

  2. Human population growth and temperature increase along with the increase in urbanisation, motor vehicle numbers and green area amount in the sample of Erzurum city, Turkey.

    PubMed

    Yilmaz, Sevgi; Toy, Süleyman; Demircioglu Yildiz, Nalan; Yilmaz, Hasan

    2009-01-01

    In the study, main purpose was to determine the effect of population growth along with the increase in urbanisation, motor vehicle use and green area amount on the temperature values using a 55-year data set in Erzurum, which is hardly industrialised, and one of the coldest cities with highest elevation in Turkey. Although the semi-decadal increases, means of which are 0.1 degrees C for mean, minimum and maximum temperatures, are not clear enough to make a strong comment even in the lights of figures or tables, it was found as the result of the statistical analysis that population growth and increases in the number of vehicles, the number of buildings and the green area amount in the city have no significant effect on mean temperatures. However, the relationships between population growth and maximum temperature; and the number of vehicles and minimum temperature were found to be statistically significant.

  3. The generation time, lag time, and minimum temperature of growth of coliform organisms on meat, and the implications for codes of practice in abattoirs.

    PubMed Central

    Smith, M. G.

    1985-01-01

    The growth of coliform organisms on meat tissue from sheep carcasses processed in a commercial abattoir was investigated. The results indicated that for practical purposes the minimum temperature of growth of these organisms on meat may be taken as 8 degrees C. Equations were derived relating the generation time and the lag time of coliform organisms in raw blended mutton to the temperature at which the meat is held. Estimates of growth obtained with these equations were found to agree closely with the experimental results, especially at temperatures above 10 degrees C, and allowed the generation times and the lag times for all temperatures up to 40 degrees C to be calculated. These times were also found to agree closely with the times determined using a strain of Escherichia coli inoculated into blended mutton tissue. A strain of Salmonella typhimurium inoculated in the same way into blended mutton tissue gave longer generation and lag times at temperatures below 15 degrees C. Therefore, it is believed that the calculated tables of lag and generation times included in this paper can be used to determine the length of time raw chilled meat may be held afterwards at temperatures above the minimum temperature of growth without an increase in the number of any salmonella organisms present, and these times include a safety margin at each temperature. The study indicates that the mandatory codes of practice presently applied in commercial abattoirs are too stringent. Maintaining the temperature of boning rooms at 10 degrees C or less does not appear to be necessary providing the meat is processed within the calculated time limits. A relaxation of the restrictions on boning room temperatures would decrease costs, increase worker comfort and safety and would not compromise the bacteriological safety of the meat produced. PMID:3891847

  4. Evidence for a freezing tolerance-growth rate trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide.

    PubMed

    Koehler, Kari; Center, Alyson; Cavender-Bares, Jeannine

    2012-02-01

    • It has long been hypothesized that species are limited to the north by minimum temperature and to the south by competition, resulting in a trade-off between freezing tolerance and growth rate. We investigated the extent to which the climatic origins of populations from four live oak species (Quercus series Virentes) were associated with freezing tolerance and growth rate, and whether species fitted a model of locally adapted populations, each with narrow climatic tolerances, or of broadly adapted populations with wide climatic tolerances. • Acorns from populations of four species across a tropical-temperate gradient were grown under common tropical and temperate conditions. Growth rate, seed mass, and leaf and stem freezing traits were compared with source minimum temperatures. • Maximum growth rates under tropical conditions were negatively correlated with freezing tolerance under temperate conditions. The minimum source temperature predicted the freezing tolerance of populations under temperate conditions. The tropical species Q. oleoides was differentiated from the three temperate species, and variation among species was greater than among populations. • The trade-off between freezing tolerance and growth rate supports the range limit hypothesis. Limited variation within species indicates that the distributions of species may be driven more strongly by broad climatic factors than by highly local conditions. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  5. Effects of Recent Minimum Temperature and Water Deficit Increases on Pinus pinaster Radial Growth and Wood Density in Southern Portugal.

    PubMed

    Kurz-Besson, Cathy B; Lousada, José L; Gaspar, Maria J; Correia, Isabel E; David, Teresa S; Soares, Pedro M M; Cardoso, Rita M; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M; Gouveia, Célia M

    2016-01-01

    Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster's vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster's production capacity and quality in response to more arid conditions in the near future in the region.

  6. Effects of Recent Minimum Temperature and Water Deficit Increases on Pinus pinaster Radial Growth and Wood Density in Southern Portugal

    PubMed Central

    Kurz-Besson, Cathy B.; Lousada, José L.; Gaspar, Maria J.; Correia, Isabel E.; David, Teresa S.; Soares, Pedro M. M.; Cardoso, Rita M.; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M.; Gouveia, Célia M.

    2016-01-01

    Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the region. PMID:27570527

  7. [Impacts of climate warming on growth period and yield of rice in Northeast China during recent two decades].

    PubMed

    Hou, Wen-jia; Geng, Ting; Chen, Qun; Chen, Chang-qing

    2015-01-01

    By using rice growth period, yield and climate observation data during the recent two decades, the impact of climate warming on rice in Northeast China was investigated by mathematical statistics methods. The results indicated that in the three provinces of Northeast China, the average, maximum and minimum temperatures in rice growing season were on the. rise, and the rainfall presented a downward trend during 1989-2009. Compared to 1990s, the rice whole growth periods of Heilongjiang, Jilin and Liaoning provinces in 2000s were prolonged 14 d, 4.5 d and 5.1 d, respectively. The increase of temperature in May, June and September could extend the rice growth period, while that in July would shorten the growth duration. The rice growth duration of registered varieties and experiment sites had a similar increasing trend in Northeast China except for the Heilongjiang Province, and the extension of registered varieties growth period was the main factor causing the prolonged growth period of rice at experiment sites. The change in daily average, minimum and maximum temperatures all could affect the rice yield in Northeast China. The increasing temperature significantly increased the rice yield in Heilongjiang Province, especially in the west region of Sanjiang Plain. Except for the south of Liaoning Province, rice yields in other regions of Northeast China were promoted by increasing temperature. Proper measures for breeding, cultivation and farming, could be adopted to fully improve the adaptation of rice to climate warming in Northeast China.

  8. Growth of Salmonella on chilled meat.

    PubMed Central

    Mackey, B. M.; Roberts, T. A.; Mansfield, J.; Farkas, G.

    1980-01-01

    Growth rates of a mixture of Salmonella serotypes inoculated on beef from a commercial abattoir were measured at chill temperatures. The minimum recorded mean generation times were 8.1 h at 10 degrees C; 5.2 h at 12.5 degrees C and 2.9 h at 15 degrees C. Growth did not occur at 7-8 degrees C. From these data the maximum extent of growth of Salmonella during storage of meat for different times at chill temperatures was calculated. Criteria for deciding safe handling temperatures for meat are discussed. Maintaining an internal temperature below 10 degrees C during the boning operation would be sufficient to safeguard public health requirements. PMID:7052227

  9. Interfaces in Si/Ge atomic layer superlattices on (001)Si: Effect of growth temperature and wafer misorientation

    NASA Astrophysics Data System (ADS)

    Baribeau, J.-M.; Lockwood, D. J.; Syme, R. W. G.

    1996-08-01

    We have used x-ray diffraction, specular reflectivity, and diffuse scattering, complemented by Raman spectroscopy, to study the interfaces in a series of (0.5 nm Ge/2 nm Si)50 atomic layer superlattices on (001)Si grown by molecular beam epitaxy in the temperature range 150-650 °C. X-ray specular reflectivity revealed that the structures have a well-defined periodicity with interface widths of about 0.2-0.3 nm in the 300-590 °C temperature range. Offset reflectivity scans showed that the diffuse scattering peaks at values of perpendicular wave vector transfer corresponding to the superlattice satellite peaks, indicating that the interfaces are vertically correlated. Transverse rocking scans of satellite peaks showed a diffuse component corresponding to an interface corrugation of typical length scale of ˜0.5 μm. The wavelength of the undulations is a minimum along the miscut direction and is typically 30-40 times larger than the surface average terrace width assuming monolayer steps, independently of the magnitude of the wafer misorientation. The amplitude of the undulation evolves with growth temperature and is minimum for growth at ˜460 °C and peaks at ˜520 °C. Raman scattering showed the chemical abruptness of the interfaces at low growth temperatures and indicated a change in the growth mode near 450 °C.

  10. A six hundred-year annual minimum temperature history for the central Tibetan Plateau derived from tree-ring width series

    NASA Astrophysics Data System (ADS)

    He, Minhui; Yang, Bao; Datsenko, Nina M.

    2014-08-01

    The recent unprecedented warming found in different regions has aroused much attention in the past years. How temperature has really changed on the Tibetan Plateau (TP) remains unknown since very limited high-resolution temperature series can be found over this region, where large areas of snow and ice exist. Herein, we develop two Juniperus tibetica Kom. tree-ring width chronologies from different elevations. We found that the two tree-ring series only share high-frequency variability. Correlation, response function and partial correlation analysis indicate that prior year annual (January-December) minimum temperature is most responsible for the higher belt juniper radial growth, while more or less precipitation signal is contained by the tree-ring width chronology at the lower belt and is thus excluded from further analysis. The tree growth-climate model accounted for 40 % of the total variance in actual temperature during the common period 1957-2010. The detected temperature signal is further robustly verified by other results. Consequently, a six century long annual minimum temperature history was firstly recovered for the Yushu region, central TP. Interestingly, the rapid warming trend during the past five decades is identified as a significant cold phase in the context of the past 600 years. The recovered temperature series reflects low-frequency variability consistent with other temperature reconstructions over the whole TP region. Furthermore, the present recovered temperature series is associated with the Asian monsoon strength on decadal to multidecadal scales over the past 600 years.

  11. Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought.

    PubMed

    Swidrak, Irene; Gruber, Andreas; Kofler, Werner; Oberhuber, Walter

    2011-05-01

    We determined the influence of environmental factors (air and soil temperature, precipitation, photoperiod) on onset of xylem growth in Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria) by repeatedly sampling micro-cores throughout 2007-10 at two sites (xeric and dry-mesic) at the start of the growing season. Temperature sums were calculated in degree-days (DD) ≥5 °C from 1 January and 20 March, i.e., spring equinox, to account for photoperiodic control of release from winter dormancy. Threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regression. Onset of xylem growth, which was not significantly different between the xeric and dry-mesic sites, ranged from mid-April in 2007 to early May in 2008. Among most study years, statistically significant differences (P<0.05) in onset of xylem growth were detected. Mean air temperature sums calculated from 1 January until onset of xylem growth were 230 ± 44 DD (mean ± standard deviation) at the xeric site and 205 ± 36 DD at the dry-mesic site. Temperature sums calculated from spring equinox until onset of xylem growth showed somewhat less variability during the 4-year study period, amounting to 144 ± 10 and 137 ± 12 DD at the xeric and dry-mesic sites, respectively. At both sites, xylem growth was active when daily minimum, mean and maximum air temperatures were 5.3, 10.1 and 16.2 °C, respectively. Soil temperature thresholds and DD until onset of xylem growth differed significantly between sites, indicating minor importance of root-zone temperature for onset of xylem growth. Although spring precipitation is known to limit radial growth in P. sylvestris exposed to a dry inner Alpine climate, the results of this study revealed that (i) a daily minimum air temperature threshold for onset of xylem growth in the range 5-6 °C exists and (ii) air temperature sum rather than precipitation or soil temperature triggers start of xylem growth. Based on these findings, we suggest that drought stress forces P. sylvestris to draw upon water reserves in the stem for enlargement of first tracheids after cambial resumption in spring. © The Author 2011. Published by Oxford University Press. All rights reserved.

  12. Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought

    PubMed Central

    Swidrak, Irene; Gruber, Andreas; Kofler, Werner; Oberhuber, Walter

    2012-01-01

    Summary We determined influence of environmental factors (air and soil temperature, precipitation, photoperiod) on onset of xylem growth in Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria) by repeatedly sampling micro-cores throughout 2007-2010 at two sites (xeric and dry-mesic) at the start of the growing season. Temperature sums were calculated in degree-days (DD) ≥ 5 °C from 1 January and 20 March, i.e. spring equinox, to account for photoperiodic control of release from winter dormancy. Threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regression. Onset of xylem growth, which was not significantly different between the xeric and dry-mesic site, ranged from mid-April in 2007 to early May in 2008. Among most study years statistically significant differences (P < 0.05) in onset of xylem growth were detected. Mean air temperature sums calculated from 1 January until onset of xylem growth were 230 ± 44 DD (mean ± standard deviation) at the xeric and 205 ± 36 DD at the dry-mesic site. Temperature sums calculated from spring equinox until onset of xylem growth showed quite less variability during the four year study period amounting to 144 ± 10 and 137 ± 12 DD at the xeric and dry-mesic site, respectively. At both sites xylem growth was active when daily minimum, mean and maximum air temperatures were 5.3, 10.1 and 16.2 °C, respectively. Soil temperature thresholds and DD until onset of xylem growth differed significantly between sites indicating minor importance of root-zone temperature for onset of xylem growth. Although spring precipitation is known to limit radial growth in P. sylvestris exposed to dry inner Alpine climate, results of this study revealed that (i) a daily minimum air temperature threshold for onset of xylem growth in the range of 5-6 °C exists and (ii) air temperature sum rather than precipitation or soil temperature triggers start of xylem growth. Based on these findings we suggest that drought stress forces P. sylvestris to draw upon water reserves in the stem for enlargement of first tracheids after cambial resumption in spring. PMID:21593011

  13. Implications of Liebig’s law of the minimum for tree-ring reconstructions of climate

    NASA Astrophysics Data System (ADS)

    Stine, A. R.; Huybers, P.

    2017-11-01

    A basic principle of ecology, known as Liebig’s Law of the Minimum, is that plant growth reflects the strongest limiting environmental factor. This principle implies that a limiting environmental factor can be inferred from historical growth and, in dendrochronology, such reconstruction is generally achieved by averaging collections of standardized tree-ring records. Averaging is optimal if growth reflects a single limiting factor and noise but not if growth also reflects locally variable stresses that intermittently limit growth. In this study a collection of Arctic tree ring records is shown to follow scaling relationships that are inconsistent with the signal-plus-noise model of tree growth but consistent with Liebig’s Law acting at the local level. Also consistent with law-of-the-minimum behavior is that reconstructions based on the least-stressed trees in a given year better-follow variations in temperature than typical approaches where all tree-ring records are averaged. Improvements in reconstruction skill occur across all frequencies, with the greatest increase at the lowest frequencies. More comprehensive statistical-ecological models of tree growth may offer further improvement in reconstruction skill.

  14. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    PubMed

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation, and hindered the spikelet degeneration.

  15. Relationship between dislocation and the visible luminescence band observed in ZnO epitaxial layers grown on c-plane p-GaN templates by chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Saroj, Rajendra K.; Dhar, S.

    2016-08-01

    ZnO epitaxial layers are grown on c-plane GaN (p-type)/sapphire substrates using a chemical vapor deposition technique. Structural and luminescence properties of these layers have been studied systematically as a function of various growth parameters. It has been found that high quality ZnO epitaxial layers can indeed be grown on GaN films at certain optimum conditions. It has also been observed that the growth temperature and growth time have distinctly different influences on the screw and edge dislocation densities. While the growth temperature affects the density of edge dislocations more strongly than that of screw dislocations, an increase of growth duration leads to a rapid drop in the density of screw dislocation, whereas the density of edge dislocation hardly changes. Densities of both edge and screw dislocations are found to be minimum at a growth temperature of 500 °C. Interestingly, the defect related visible luminescence intensity also shows a minimum at the same temperature. Our study indeed suggests that the luminescence feature is related to threading edge dislocation. A continuum percolation model, where the defects responsible for visible luminescence are considered to be formed under the influence of the strain field surrounding the threading edge dislocations, is proposed. The theory explains the observed variation of the visible luminescence intensity as a function of the concentration of the dislocations.

  16. [Difference in responses of major tree species growth to climate in the Miyaluo Mountains, western Sichuan, China].

    PubMed

    Guo, Ming-ming; Zhang, Yuan-dong; Wang, Xiao-chun; Liu, Shi-rong

    2015-08-01

    To explore the responses of different tree species growth to climate change in the semi-humid region of the eastern Tibetan Plateau, we investigated climate-growth relationships of Tsuga chinensis, Abies faxoniana, Picea purpurea at an altitude of 3000 m (low altitude) and A. faxoniana and Larix mastersiana at an altitude of 4000 m (high altitude) using tree ring-width chronologies (total of 182 cores) developed from Miyaluo, western Sichuan, China. Five residual chronologies were developed from the cross-dated ring width series using the program ARSTAN, and the relationships between monthly climate variables and tree-ring index were analyzed. Results showed that the chronologies of trees at low altitudes were negatively correlated with air temperature but positively with precipitation in April and May. This indicated that drought stress limited tree growth at low altitude, but different tree species showed significant variations. T. chinensis was most severely affected by drought stress, followed by A. faxoniana and P. purpurea. Trees at high altitude were mainly affected by growing season temperature. Tree-ring index of A. faxoniana was positively correlated with monthly minimum temperature in February and July of the current year and monthly maximum temperature in October of the previous year. Radial growth of L. mastersiana was positively correlated with monthly maximum temperature in May, and negatively with monthly mean temperature in February and monthly minimum temperature in March. In recent decadal years, the climate in northeast Tibetan Plateau had a warming and drying trend. If this trend continues, we could deduce that P. purpurea should grow faster than T. chinensis and A. faxoniana at low altitudes, while A. faxoniana would benefit more from global warming at high altitudes.

  17. Estimated winter wheat yield from crop growth predicted by LANDSAT

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.

    1977-01-01

    An evapotranspiration and growth model for winter wheat is reported. The inputs are daily solar radiation, maximum temperature, minimum temperature, precipitation/irrigation and leaf area index. The meteorological data were obtained from National Weather Service while LAI was obtained from LANDSAT multispectral scanner. The output provides daily estimates of potential evapotranspiration, transpiration, evaporation, soil moisture (50 cm depth), percentage depletion, net photosynthesis and dry matter production. Winter wheat yields are correlated with transpiration and dry matter accumulation.

  18. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Watt, C. E. J.; Rae, I. J.; Fazakerley, A. N.; Kalmoni, N. M. E.; Freeman, M. P.; Boakes, P. D.; Nakamura, R.; Dandouras, I.; Kistler, L. M.; Jackman, C. M.; Coxon, J. C.; Carr, C. M.

    2014-12-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ~1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

  19. Epitaxial growth and chemical vapor transport of ZnTe by closed-tube method

    NASA Astrophysics Data System (ADS)

    Ogawa, H.; Nishio, M.; Arizumi, T.

    1981-04-01

    The epitaxial growth of ZnTe in a ZnTe- I2 system by a closed tube method is investigated by varying the charged iodine concentration ( MI2) or the temperature difference ( ΔT) between the high and low temperature zones. The transport rate is a function of MI2 and ΔT and has a minimum value increasing monotonically at higher and lower iodine concentration, and it increases with increasing ΔT. This experimental result can be explained well by thermodynamical calculations. The growth rate of ZnTe has the same tendency as the transport rate. The surface morphology of epitaxial layer on (110)ZnTe is not sinificantly affected by MI2 but becomes smoother with increasing temperature. The surface morphology and the growth rate of ZnTe layers also depend upon the orientation of substrate. The epitaxial layer can be obtained at temperature as low as 623°C.

  20. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    PubMed Central

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-01-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645

  1. Increases in plasma sheet temperature with solar wind driving during substorm growth phases.

    PubMed

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-12-28

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼10 15  J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

  2. Trees, History, and Isotopes - the Late Maunder Minimum (1675-1715) in the Pannonian Basin, Hungary

    NASA Astrophysics Data System (ADS)

    Kazmer, M.; Demeny, A.; Grynaeus, A.; Racz, L.; Varkonyi, A.

    2002-05-01

    First results of a comprehensive study on climate change in the Pannonian Basin during the Late Maunder Minimum (1675-1715) are presented. The Pannonian Basin has continental climate, distinctly warm and dry in summer, cold in winter, unlike the Atlantic-type climate of Western Europe. Surrounded by the arc of the Carpathians, exposed to Atlantic, Mediterranean, and Siberian influences, the regional climate displays steep gradients. More than one tree-ring chronology for oak is being built, independent of the south German series. Rethly's rich database of historical sources has been assembled, and completed with recently published letters. Ring-width series are measured on oak, and skeleton plots are logged. Study of hydrogen isotope composition of tree rings is in progress. Tree-ring width faithfully reflects historical indices on spring (i.e. earlywood growth season) precipitation. Generally, precipitation - as shown both by indices and tree-ring width - was high and temperature low during the growth season in the first half of the LMM. The second half has seen a retardation in oak growth and an increase in spring temperature. The decades of the Late Maunder Minimum was a politically turbulent era: it saw the decline and fall of the Ottoman domination in Hungary, followed by a rebellion against Austrian rule, associated with disruption of national economy.

  3. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    PubMed

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  4. Morphology, nurse plants, and minimum apical temperatures for young Carnegiea gigantea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobel, P.S.

    1980-06-01

    The northern limit of Carnegiea gigantea (Engelm.) Britton and Rose apparently depends on minimum apical temperatures. Diameters, apical spine coverage, and effects of nurse plants on incoming long-wave (infrared (ir)) radiation, all of which affect apical temperatures, were therefore determined for stems of C. gigantea up to 4 m tall at four sites along a north-south transect in Arizona. A simulation model indicated that the increase in diameter accompanying stem growth raised the minimum apical temperature more than 3 C. Thus, plants with the shortest stems would be expected to be the most vulnerable to freezing damage; indeed, freezing damagemore » on stems <0.5 m tall without nurse plants was fairly common at the colder sites. Nurse plants obstructed a greater portion of the sky for C. gigantea at the colder sites; e.g., the effective environmental temperature for ir radiation at such locations was raised more than 10 C for stems under 1 m tall. If the northern limit of C. gigantea reflects wintertime survival of juveniles, nurse plants could extend the range by offering some protection against freezing.« less

  5. Temperature dependent self-compensation in Al- and Ga-doped Mg0.05 Zn0.95 O thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Mavlonov, Abdurashid; Richter, Steffen; von Wenckstern, Holger; Schmidt-Grund, Rüdiger; Lorenz, Michael; Grundmann, Marius

    2016-11-01

    We studied the doping efficiency of Al and Ga dopants in (Mg,Zn)O alloys as a function of the growth temperature and post growth annealing times. High-temperature growth results in the highest structural quality and highest electron mobility; the doping efficiency is limited by the dopant's solubility. It was investigated in detail that a low growth temperature is needed to achieve free carrier densities above the solubility limit of the dopants. Samples grown at temperatures of 300 °C and below have a free carrier density significantly above the solubility limit yielding the minimum resistivity of ρmin=4.8 ×10-4 Ω cm for Mg0.05 Zn0.95 O:Al thin films grown on glass at 300 °C . Annealing of these samples reduces the free carrier density and the absorption edge to values similar to those of samples grown at high temperatures. The saturation of the free carrier density and the optical bandgap at their high temperature growth/annealing values is explained by the thermal creation of acceptor-like compensating defects in thermodynamic equilibrium.

  6. Thunderstorm intensity as determined from satellite data

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Fenn, D. D.

    1979-01-01

    Digital infrared data from SMS 2 obtained on May 6, 1975 are used to study thunderstorm vertical growth rates and cloud top structure in relation to the occurrence of severe weather (tornadoes, hail, and high wind) on the ground. All thunderstorms from South Dakota to Texas along a N-S oriented cold front were monitored for a 4 h period with 5 min interval data. Thunderstorm growth rate, as determined by the rate of blackbody temperature isotherm expansion and minimum cloud top temperature, are shown to be correlated with reports of severe weather on the ground.

  7. [Effect of climate change on net primary productivity of Korean pine (Pinus koraiensis) at different successional stages of broad-leaved Korean pine forest].

    PubMed

    Qiu, Yang; Gao, Lu-Shuang; Zhang, Xue; Guo, Jing; Ma, Zhi-Yuan

    2014-07-01

    Pinus koraiensis in broad-leaved Korean pine forests of Changbai Mountain at different successional stages (secondary poplar-birch forest, secondary coniferous and broad-leaved forest and the primitive Korean pine forest) were selected in this paper as the research objects. In this research, the annual growth of net primary productivity (NPP) (1921-2006) of P. koraiensis was obtained by combining the tree-ring chronology and relative growth formulae, the correlation between NPP of P. koraiensis and climatic factors was developed, and the annual growth of NPP of P. koraiensis at different successional stages in relation to climatic variation within different climate periods were analyzed. The results showed that, in the research period, the correlations between climatic factors and NPP of P. koraiensis at different successional stages were different. With increasing the temperature, the correlations between NPP of P. koraiensis in the secondary poplar-birch forest and the minimum temperatures of previous and current growing seasons changed from being significantly negative to being significantly positive. The positive correlation between NPP of P. koraiensis in the secondary coniferous and broad-leaved forest and the minimum temperature in current spring changed into significantly positive correlation between NPP of P. koraiensis and the temperatures in previous and current growing seasons. The climatic factors had a stronger hysteresis effect on NPP of P. koraiensis in the secondary coniferous and broad-leaved forest, but NPP of P. koraiensis in the primitive Korean pine forest had weaker correlation with temperature but stronger positive correlation with the precipitation of previous growing season. The increases of minimum and mean temperatures were obvious, but no significant variations of the maximum temperature and precipitation were observed at our site. The climatic variation facilitated the increase of the NPP of P. koraiensis in the secondary poplar-birch forest at the initial successional stage and in secondary coniferous and broad-leaved forest at the intermediate successional stage, and this effect was especially obvious for the secondary coniferous and broad-leaved forest, but very small for the primitive Korean pine forest which was at the climax phase.

  8. Increasing Dengue Incidence in Singapore over the Past 40 Years: Population Growth, Climate and Mobility

    PubMed Central

    Struchiner, Claudio Jose; Rocklöv, Joacim; Wilder-Smith, Annelies; Massad, Eduardo

    2015-01-01

    In Singapore, the frequency and magnitude of dengue epidemics have increased significantly over the past 40 years. It is important to understand the main drivers for the rapid increase in dengue incidence. We studied the relative contributions of putative drivers for the rise of dengue in Singapore: population growth, climate parameters and international air passenger arrivals from dengue endemic countries, for the time period of 1974 until 2011. We used multivariable Poisson regression models with the following predictors: Annual Population Size; Aedes Premises Index; Mean Annual Temperature; Minimum and Maximum Temperature Recorded in each year; Annual Precipitation and Annual Number of Air Passengers arriving from dengue-endemic South-East Asia to Singapore. The relative risk (RR) of the increase in dengue incidence due to population growth over the study period was 42.7, while the climate variables (mean and minimum temperature) together explained an RR of 7.1 (RR defined as risk at the end of the time period relative to the beginning and goodness of fit associated with the model leading to these estimates assessed by pseudo-R2 equal to 0.83). Estimating the extent of the contribution of these individual factors on the increasing dengue incidence, we found that population growth contributed to 86% while the residual 14% was explained by increase in temperature. We found no correlation with incoming air passenger arrivals into Singapore from dengue endemic countries. Our findings have significant implications for predicting future trends of the dengue epidemics given the rapid urbanization with population growth in many dengue endemic countries. It is time for policy-makers and the scientific community alike to pay more attention to the negative impact of urbanization and urban climate on diseases such as dengue. PMID:26322517

  9. Increasing Dengue Incidence in Singapore over the Past 40 Years: Population Growth, Climate and Mobility.

    PubMed

    Struchiner, Claudio Jose; Rocklöv, Joacim; Wilder-Smith, Annelies; Massad, Eduardo

    2015-01-01

    In Singapore, the frequency and magnitude of dengue epidemics have increased significantly over the past 40 years. It is important to understand the main drivers for the rapid increase in dengue incidence. We studied the relative contributions of putative drivers for the rise of dengue in Singapore: population growth, climate parameters and international air passenger arrivals from dengue endemic countries, for the time period of 1974 until 2011. We used multivariable Poisson regression models with the following predictors: Annual Population Size; Aedes Premises Index; Mean Annual Temperature; Minimum and Maximum Temperature Recorded in each year; Annual Precipitation and Annual Number of Air Passengers arriving from dengue-endemic South-East Asia to Singapore. The relative risk (RR) of the increase in dengue incidence due to population growth over the study period was 42.7, while the climate variables (mean and minimum temperature) together explained an RR of 7.1 (RR defined as risk at the end of the time period relative to the beginning and goodness of fit associated with the model leading to these estimates assessed by pseudo-R2 equal to 0.83). Estimating the extent of the contribution of these individual factors on the increasing dengue incidence, we found that population growth contributed to 86% while the residual 14% was explained by increase in temperature. We found no correlation with incoming air passenger arrivals into Singapore from dengue endemic countries. Our findings have significant implications for predicting future trends of the dengue epidemics given the rapid urbanization with population growth in many dengue endemic countries. It is time for policy-makers and the scientific community alike to pay more attention to the negative impact of urbanization and urban climate on diseases such as dengue.

  10. Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures

    NASA Astrophysics Data System (ADS)

    Aktaa, J.; Lerch, M.

    2006-07-01

    The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 °C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 ( R is the load ratio with R = Fmin/ Fmax where Fmin and Fmax are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature.

  11. Growth rate dependence of boron incorporation into BxGa1-xAs layers

    NASA Astrophysics Data System (ADS)

    Detz, H.; MacFarland, D.; Zederbauer, T.; Lancaster, S.; Andrews, A. M.; Schrenk, W.; Strasser, G.

    2017-11-01

    This work provides a comprehensive study of the incorporation behavior of B in growing GaAs under molecular beam epitaxy conditions. Structural characterization of superlattices revealed a strong dependence of the BAs growth rate on the GaAs growth rate used. In general, higher GaAs growth rates lead to a higher apparent BAs growth rate, although lower B cell temperatures showed saturation behavior. Each B cell temperature requires a minimum GaAs growth rate for producing smooth films. The B incorporation into single thick layers was found to be reduced to 75-80% compared to superlattice structures. The p-type carrier densities in 1000 nm thick layers were found to be indirectly proportional to the B content. Furthermore, 500 nm thick BxGa1-xAs layers showed significantly lower carrier concentrations, indicating B segregation on the surface during growth of thicker layers.

  12. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress.

    PubMed

    Coast, Onoriode; Murdoch, Alistair J; Ellis, Richard H; Hay, Fiona R; Jagadish, Krishna S V

    2016-01-01

    Resilience of rice cropping systems to potential global climate change will partly depend on the temperature tolerance of pollen germination (PG) and tube growth (PTG). Pollen germination of high temperature-susceptible Oryza glaberrima Steud. (cv. CG14) and Oryza sativa L. ssp. indica (cv. IR64) and high temperature-tolerant O. sativa ssp. aus (cv. N22), was assessed on a 5.6-45.4 °C temperature gradient system. Mean maximum PG was 85% at 27 °C with 1488 μm PTG at 25 °C. The hypothesis that in each pollen grain, the minimum temperature requirements (Tn ) and maximum temperature limits (Tx ) for germination operate independently was accepted by comparing multiplicative and subtractive probability models. The maximum temperature limit for PG in 50% of grains (Tx(50) ) was the lowest (29.8 °C) in IR64 compared with CG14 (34.3 °C) and N22 (35.6 °C). Standard deviation (sx ) of Tx was also low in IR64 (2.3 °C) suggesting that the mechanism of IR64's susceptibility to high temperatures may relate to PG. Optimum germination temperatures and thermal times for 1 mm PTG were not linked to tolerating high temperatures at anthesis. However, the parameters Tx(50) and sx in the germination model define new pragmatic criteria for successful and resilient PG, preferable to the more traditional cardinal (maximum and minimum) temperatures. © 2014 John Wiley & Sons Ltd.

  13. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the Midwest of Jilin Province, China

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Wang, Yongfang; Alu, Si; Wang, Rui; Li, Danjun; Ha, Si

    2018-05-01

    In the past two decades, the regional climate in China has undergone significant change, resulting in crop yield reduction and complete failure. The goal of this study is to detect the variation of temperature and precipitation for different growth periods of maize and assess their impact on phenology. The daily meteorological data in the Midwest of Jilin Province during 1960-2014 were used in the study. The ensemble empirical mode decomposition method was adopted to analyze the non-linear trend and fluctuation in temperature and precipitation, and the sensitivity of the length of the maize growth period to temperature and precipitation was analyzed by the wavelet cross-transformation method. The results show that the trends of temperature and precipitation change are non-linear for different growth periods of maize, and the average temperature in the sowing-jointing stage was different from that in the other growth stages, showing a slight decrease trend, while the variation amplitude of maximum temperature is smaller than that of the minimum temperature. This indicates that the temperature difference between day and night shows a gradually decreasing trend. Precipitation in the growth period also showed a decreasing non-linear trend, while the inter-annual variability with period of quasi-3-year and quasi-6-year dominated the variation of temperature and precipitation. The whole growth period was shortened by 10.7 days, and the sowing date was advanced by approximately 11 days. We also found that there was a significant resonance period among temperature, precipitation, and phenology. Overall, a negative correlation between phenology and temperature is evident, while a positive correlation with precipitation is exhibited. The results illustrate that the climate suitability for maize has reduced over the past decades.

  14. Plant Distribution Data Show Broader Climatic Limits than Expert-Based Climatic Tolerance Estimates

    PubMed Central

    Curtis, Caroline A.; Bradley, Bethany A.

    2016-01-01

    Background Although increasingly sophisticated environmental measures are being applied to species distributions models, the focus remains on using climatic data to provide estimates of habitat suitability. Climatic tolerance estimates based on expert knowledge are available for a wide range of plants via the USDA PLANTS database. We aim to test how climatic tolerance inferred from plant distribution records relates to tolerance estimated by experts. Further, we use this information to identify circumstances when species distributions are more likely to approximate climatic tolerance. Methods We compiled expert knowledge estimates of minimum and maximum precipitation and minimum temperature tolerance for over 1800 conservation plant species from the ‘plant characteristics’ information in the USDA PLANTS database. We derived climatic tolerance from distribution data downloaded from the Global Biodiversity and Information Facility (GBIF) and corresponding climate from WorldClim. We compared expert-derived climatic tolerance to empirical estimates to find the difference between their inferred climate niches (ΔCN), and tested whether ΔCN was influenced by growth form or range size. Results Climate niches calculated from distribution data were significantly broader than expert-based tolerance estimates (Mann-Whitney p values << 0.001). The average plant could tolerate 24 mm lower minimum precipitation, 14 mm higher maximum precipitation, and 7° C lower minimum temperatures based on distribution data relative to expert-based tolerance estimates. Species with larger ranges had greater ΔCN for minimum precipitation and minimum temperature. For maximum precipitation and minimum temperature, forbs and grasses tended to have larger ΔCN while grasses and trees had larger ΔCN for minimum precipitation. Conclusion Our results show that distribution data are consistently broader than USDA PLANTS experts’ knowledge and likely provide more robust estimates of climatic tolerance, especially for widespread forbs and grasses. These findings suggest that widely available expert-based climatic tolerance estimates underrepresent species’ fundamental niche and likely fail to capture the realized niche. PMID:27870859

  15. Impact of elevated carbon dioxide on soil heat storage and heat flux under unheated low-tunnels conditions.

    PubMed

    Al-Kayssi, A W; Mustafa, S H

    2016-11-01

    Suboptimal regimes of air and soil temperature usually occur under unheated low-tunnels during winter crop cycles. CO2 is one of the most important gases linked to climate change and posing challenge to the current agricultural productivity. Field experiment was conducted in unheated low-tunnels (10.0 m long, 1.5 m wide and 1.0 m high) during winter and spring periods to evaluate the increasing CO2 concentration (352, 709, 1063, 1407, and 1761 ppm) on net radiation budget, soil-air thermal regime and pepper plants growth development and yield. CO2 was injected into each hollow space of the tunnel double-layer transparent polyethylene covers. Recorded integral net longwave radiation increased from 524.81 to 1111.84 Wm(-2) on January when CO2 concentration increased from 352 to 1761 ppm. A similar trend was recorded on February. Moreover, minimum soil surface and air temperatures were markedly increased from -1.3 and -6.8 °C to 3.4 and 0.6 °C, when CO2 concentration increased from 352 to 1761 ppm. Additionally, soil heat flux as well as soil heat storage increased with increasing CO2 concentrations accordingly. Increasing the tunnel minimum air and soil temperatures with the CO2 concentration treatments 1063, 1407 and 1761 ppm reflected in a significant pepper yield (3.19, 5.06 and 6.13 kg m(-2)) due to the modification of the surrounding plants microenvironment and prevented pepper plants from freezing and the accelerated the plant growth. On the contrary, the drop of minimum air and soil temperatures to freezing levels with the CO2 concentration treatments 352 and 709 ppm resulted in the deterioration of pepper plants development during the early growth stages on January. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Thermodynamics constrains allometric scaling of optimal development time in insects.

    PubMed

    Dillon, Michael E; Frazier, Melanie R

    2013-01-01

    Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The remaining unexplained variation in development time likely reflects additional ecological and evolutionary differences among insect species.

  17. Subfreezing activity of microorganisms and the potential habitability of Mars' polar regions.

    PubMed

    Jakosky, Bruce M; Nealson, Kenneth H; Bakermans, Corien; Ley, Ruth E; Mellon, Michael T

    2003-01-01

    The availability of water-ice at the surface in the Mars polar cap and within the top meter of the high-latitude regolith raises the question of whether liquid water can exist there under some circumstances and possibly support the existence of biota. We examine the minimum temperatures at which liquid water can exist at ice grain-dust grain and ice grain-ice grain contacts, the minimum subfreezing temperatures at which terrestrial organisms can grow or multiply, and the maximum temperatures that can occur in martian high-latitude and polar regions, to see if there is overlap. Liquid water can exist at grain contacts above about -20 degrees C. Measurements of growth in organisms isolated from Siberian permafrost indicate growth at -10 degrees C and metabolism at -20 degrees C. Mars polar and high-latitude temperatures rise above -20 degrees C at obliquities greater than ~40 degrees, and under some conditions rise above 0 degrees C. Thus, the environment in the Mars polar regions has overlapped habitable conditions within relatively recent epochs, and Mars appears to be on the edge of being habitable at present. The easy accessibility of the polar surface layer relative to the deep subsurface make these viable locations to search for evidence of life.

  18. Integrated developmental model of life-support capabilities in wheat

    NASA Technical Reports Server (NTRS)

    Darnell, R. L.; Obrien, C. O.

    1994-01-01

    The objective of this project was to develop a model for CO2, O2, H2O, and nitrogen use during the life cycle of wheat. Spreadsheets and accompanying graphs were developed to illustrate plant population reactions to environmental parameters established in the Controlled Ecological Life Support System (CELSS) program at Kennedy Space Center, Fl. The spreadsheets and graphs were produced using validated biomass production chamber (BPC) data from BWT931. Conditions of the BPC during the 83 day plant growth period were as follows: The BPC area is 27.8 m(exp 2), volume is 113 m(exp 3). Temperatures during the 83 day plant growth period ranged from 16.3 to 24.8 C during the light cycle (except for day 69, when the minimum and maximum temperatures were 7.7 C and 7.9 C, respectively) and 14.5 C and 23.6 C during the dark cycle (except for day 49, when the minimum and maximum temperatures were 11.1 C and 11.3 C, respectively). Relative humidity was 85 percent for the first seven days of plant growth, and 70 percent thereafter. The plant leaf canopy area was 10 m(exp 2). Presented is a list and explanation of each spreadsheet and accompanying graph(s), conditions under which the data were collected, and formulas used to obtain each result.

  19. Biofilm formation of Francisella noatunensis subsp. orientalis

    USGS Publications Warehouse

    Soto, Esteban; Halliday-Wimmonds, Iona; Francis , Stewart; Kearney, Michael T.; Hansen, John D.

    2015-01-01

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC)and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon®, bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in theiglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.

  20. Performance of a New Model for Predicting End of Flowering Date (bbch 69) of Grapevine (Vitis Vinifera L.)

    NASA Astrophysics Data System (ADS)

    Gentilucci, Matteo

    2017-04-01

    The end of flowering date (BBCH 69) is an important phenological stage for grapevine (Vitis Vinifera L.), in fact up to this date the growth is focused on the plant and gradually passes on the berries through fruit set. The aim of this study is to perform a model to predict the date of the end of flowering (BBCH69) for some grapevine varieties. This research carried out using three cultivars of grapevine (Maceratino, Montepulciano, Sangiovese) in three different locations (Macerata, Morrovalle and Potenza Picena), places of an equal number of wine farms for the time interval between 2006 and 2013. In order to have reliable temperatures for each location, the data of 6 weather stations near these farms have been interpolated using cokriging methods with elevation as independent variable. The procedure to predict the end of flowering date starts with an investigation of cardinal temperatures typical of each grapevine cultivar. In fact the analysis is characterized by four temperature thresholds (cardinals): minimum activity temperature (TCmin = below this temperature there is no growth for the plant), lower optimal temperature (TLopt = above this temperature there is maximum growth), upper optimal temperature (TUopt = below this temperature there is maximum growth) and maximum activity temperature (TC max = above this temperature there is no growth). Thus this model take into consideration maximum, mean and minimum daily temperatures of each location, relating them with the four above mentioned cultivar temperature thresholds. In this way it has been obtained some possible cases (32) corresponding to as many equations, depending on the position of temperatures compared with the thresholds, in order to calculate the amount of growing degree units (GDU) for each day. Several iterative tests (about 1000 for each cultivar) have been performed, changing the values of temperature thresholds and GDU in order to find the best possible combination which minimizes error between observed and predicted days from budburst to end of flowering. It has been assessed the minimization of error for the predicted dates compared with real ones, calculating some statistical indexes as root mean square error, mean absolute error and coefficient of variation. The procedure led to the identification of four cardinal temperatures and the amount of GDU for each cultivar between BBCH01 (budburst) and BBCH69 (end of flowering). In conclusion, this research has achieved some goals such as the plant response to temperature (same cardinal temperatures for Maceratino and Sangiovese but higher ones for Montepulciano), the interval ranging of growing degree units (from 35 to 38) and the differences between observed and predicted days (ranged from 2 to 3.5), for each grape varieties.

  1. Influence of temperature, water activity and pH on growth of some xerophilic fungi.

    PubMed

    Gock, Melissa A; Hocking, Ailsa D; Pitt, John I; Poulos, Peter G

    2003-02-25

    The combined effects of water activity (aw), pH and temperature on the germination and growth of seven xerophilic fungi important in the spoilage of baked goods and confectionery were examined. Eurotium rubrum, E. repens, Wallemia sebi, Aspergillus penicillioides, Penicillium roqueforti, Chrysosporium xerophilum and Xeromyces bisporus were grown at 25, 30 and 37 degrees C on media with pH values of 4.5, 5.5, 6.5 and 7.5 and a range of water activities (aw) from 0.92 to 0.70. The aw of the media was controlled with a mixture of equal parts of glucose and fructose. Temperature affected the minimum aw for germination for most species. For example, P. roqueforti germinated at 0.82 aw at 25 degrees C, 0.86 aw at 30 degrees C and was unable to germinate at 37 degrees C. E. repens germinated at 0.70 aw at 30 degrees C, but at 25 and 37 degrees C, its minimum aw for germination was 0.74. C. xerophilum and X. bisporus germinated at 0.70 aw at all three temperatures. The optimum growth occurred at 25 degrees C for P. roqueforti and W. sebi, at 30 degrees C for Eurotium species, A. penicillioides and X. bisporus and at 37 degrees C for C. xerophilum. These fungi all grew faster under acidic than neutral pH conditions. The data presented here provide a matrix that will be used in the development of a mathematical model for the prediction of the shelf life of baked goods and confectionery.

  2. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures

    PubMed Central

    Welch, Jarrod R.; Vincent, Jeffrey R.; Auffhammer, Maximilian; Moya, Piedad F.; Dobermann, Achim; Dawe, David

    2010-01-01

    Data from farmer-managed fields have not been used previously to disentangle the impacts of daily minimum and maximum temperatures and solar radiation on rice yields in tropical/subtropical Asia. We used a multiple regression model to analyze data from 227 intensively managed irrigated rice farms in six important rice-producing countries. The farm-level detail, observed over multiple growing seasons, enabled us to construct farm-specific weather variables, control for unobserved factors that either were unique to each farm but did not vary over time or were common to all farms at a given site but varied by season and year, and obtain more precise estimates by including farm- and site-specific economic variables. Temperature and radiation had statistically significant impacts during both the vegetative and ripening phases of the rice plant. Higher minimum temperature reduced yield, whereas higher maximum temperature raised it; radiation impact varied by growth phase. Combined, these effects imply that yield at most sites would have grown more rapidly during the high-yielding season but less rapidly during the low-yielding season if observed temperature and radiation trends at the end of the 20th century had not occurred, with temperature trends being more influential. Looking ahead, they imply a net negative impact on yield from moderate warming in coming decades. Beyond that, the impact would likely become more negative, because prior research indicates that the impact of maximum temperature becomes negative at higher levels. Diurnal temperature variation must be considered when investigating the impacts of climate change on irrigated rice in Asia. PMID:20696908

  3. Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrates

    NASA Astrophysics Data System (ADS)

    Yazdanfar, M.; Ivanov, I. G.; Pedersen, H.; Kordina, O.; Janzén, E.

    2013-06-01

    By carefully controlling the surface chemistry of the chemical vapor deposition process for silicon carbide (SiC), 100 μm thick epitaxial layers with excellent morphology were grown on 4° off-axis SiC substrates at growth rates exceeding 100 μm/h. In order to reduce the formation of step bunching and structural defects, mainly triangular defects, the effect of varying parameters such as growth temperature, C/Si ratio, Cl/Si ratio, Si/H2 ratio, and in situ pre-growth surface etching time are studied. It was found that an in-situ pre growth etch at growth temperature and pressure using 0.6% HCl in hydrogen for 12 min reduced the structural defects by etching preferentially on surface damages of the substrate surface. By then applying a slightly lower growth temperature of 1575 °C, a C/Si ratio of 0.8, and a Cl/Si ratio of 5, 100 μm thick, step-bunch free epitaxial layer with a minimum triangular defect density and excellent morphology could be grown, thus enabling SiC power device structures to be grown on 4° off axis SiC substrates.

  4. Benchmark Data Set for Wheat Growth Models: Field Experiments and AgMIP Multi-Model Simulations.

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Martre, P.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.J.; Rotter, R. P.

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario.

  5. Influence of water activity and temperature on growth and mycotoxin production by Alternaria alternata on irradiated soya beans.

    PubMed

    Oviedo, Maria Silvina; Ramirez, Maria Laura; Barros, Germán Gustavo; Chulze, Sofia Noemi

    2011-09-15

    The aim of this study was to determine the effects of water activity (a(w)) (0.99-0.90), temperature (15, 25 and 30°C) and their interactions on growth and alternariol (AOH) and alternariol monomethyl ether (AME) production by Alternaria alternata on irradiated soya beans. Maximum growth rates were obtained at 0.980 a(w) and 25°C. Minimum a(w) level for growth was dependent on temperature. Both strains were able to grow at the lowest a(w) assayed (0.90). Maximum amount of AOH was produced at 0.98 a(w) but at different temperatures, 15 and 25°C, for the strains RC 21 and RC 39 respectively. Maximum AME production was obtained at 0.98 a(w) and 30°C for both strains. The concentration range of both toxins varied considerably depending on a(w) and temperature interactions. The two metabolites were produced over the temperature range 15 to 30°C and a(w) range 0.99 to 0.96. The limiting a(w) for detectable mycotoxin production is slightly greater than that for growth. Two-dimensional profiles of a(w)× temperature were developed from these data to identify areas where conditions indicate a significant risk from AOH and AME accumulation on soya bean. Knowledge of AOH and AME production under marginal or sub-optimal temperature and a(w) conditions for growth can be important since improper storage conditions accompanied by elevated temperature and moisture content in the grain can favour further mycotoxin production and lead to reduction in grain quality. This could present a hazard if the grain is used for human consumption or animal feedstuff. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Temperature and salinity regulation of growth and gas exchange of Salicornia fruticosa (L.) L.

    PubMed

    Abdulrahman, Farag Saleh; Williams, George J

    1981-03-01

    Salicornia fruticosa was collected from a salt marsh on the Mediterranean sea coast in Libya. Growth and gas exchange of this C 3 species were monitered in plants pretreated at various NaCl concentrations (0, 171, 342, 513 and 855 mM). Maximum growth was at 171 mM NaCl under cool growth conditions (20/10° C) and at 342 mM NaCl under warm growth conditions (30/15° C) with minimum growth at 0 mM NaCl (control). Net photosynthesis (Pn) was greatest in plants grown in 171 mM NaCl with plants grown at 513 and 855 mM having lowest rates. Maximum Pn was at 20-25° C shoot temperatures with statistically significant reductions at 30° C in control plants while salt treated plants showed such reductions at 35° C. Salt treatments increased dark respiration over the control at 171 and 342 mM but reduced it at higher concentrations. Photorespiration was reduced by salt treatment and increased by increasing shoot temperature. Greatest transpiration was in 171 mM NaCl treated plants and increasing shoot temperature increased transpiration in all treatments. Stomatal resistance to CO 2 influx was influenced only moderately by temperature while increasing salinity resulted in increased stomatal resistance. In general both temperature and salinity increased the mesophyll resistance to CO 2 influx. The species seems adapted to the warm saline habitat along the Mediterranean sea coast, at least partially, by its ability to maintain relatively high Pn at moderate NaCl concentrations over a broad range of shoot temperatures.

  7. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  8. Investigations on Substrate Temperature-Induced Growth Modes of Organic Semiconductors at Dielectric/semiconductor Interface and Their Correlation with Threshold Voltage Stability in Organic Field-Effect Transistors.

    PubMed

    Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar

    2016-02-10

    Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.

  9. Vegetation greenness impacts on maximum and minimum temperatures in northeast Colorado

    USGS Publications Warehouse

    Hanamean, J. R.; Pielke, R.A.; Castro, C. L.; Ojima, D.S.; Reed, Bradley C.; Gao, Z.

    2003-01-01

    The impact of vegetation on the microclimate has not been adequately considered in the analysis of temperature forecasting and modelling. To fill part of this gap, the following study was undertaken.A daily 850–700 mb layer mean temperature, computed from the National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis, and satellite-derived greenness values, as defined by NDVI (Normalised Difference Vegetation Index), were correlated with surface maximum and minimum temperatures at six sites in northeast Colorado for the years 1989–98. The NDVI values, representing landscape greenness, act as a proxy for latent heat partitioning via transpiration. These sites encompass a wide array of environments, from irrigated-urban to short-grass prairie. The explained variance (r2 value) of surface maximum and minimum temperature by only the 850–700 mb layer mean temperature was subtracted from the corresponding explained variance by the 850–700 mb layer mean temperature and NDVI values. The subtraction shows that by including NDVI values in the analysis, the r2 values, and thus the degree of explanation of the surface temperatures, increase by a mean of 6% for the maxima and 8% for the minima over the period March–October. At most sites, there is a seasonal dependence in the explained variance of the maximum temperatures because of the seasonal cycle of plant growth and senescence. Between individual sites, the highest increase in explained variance occurred at the site with the least amount of anthropogenic influence. This work suggests the vegetation state needs to be included as a factor in surface temperature forecasting, numerical modeling, and climate change assessments.

  10. Non-linear trends and fluctuations in temperature during different growth stages of summer maize in the North China Plain from 1960 to 2014

    NASA Astrophysics Data System (ADS)

    Wang, Cailin; Wu, Jidong; Wang, Xu; He, Xin; Li, Ning

    2017-12-01

    North China Plain has undergone severe warming trends since the 1950s, but whether this trend is the same during different growth phases for crops remains unknown. Thus, we analyzed the non-linear changes in the minimum temperature (T min ), mean temperature (T mean ) and maximum temperature (T max ) using the Ensemble Empirical Mode Decomposition method during each growth stage of summer maize based on daily temperature data from 1960 to 2014. Our results strongly suggest that the trends and fluctuations in temperature change are non-linear. These changes can be categorized into four types of trend change according to the combinations of decreasing and increasing trends, and 8 fluctuation modes dominated by the fluctuations of expansion and shrinkage. The amplitude of the fluctuation is primarily expansion in the sowing-jointing stage and shrinkage in the jointing-maturity stage. Moreover, the temperature changes are inconsistent within each growth stage and are not consistent with the overall warming trend observed over the last 55 years. A transition period occurred in both the 1980s and the 1990s for temperatures during the sowing-tasseling stage. Furthermore, the cooling trend of the T max was significant in the sowing-emergence stage, while this cooling trend was not obvious for both T mean and T min in the jointing-tasseling stage. These results showed that temperature change was significantly different in different stages of the maize growth season. The results can serve as a scientific basis for a better understanding of the actual changes in the regional surface air temperature and agronomic heat resources.

  11. Formulation design for optimal high-shear wet granulation using on-line torque measurements.

    PubMed

    Cavinato, Mauro; Bresciani, Massimo; Machin, Marianna; Bellazzi, Guido; Canu, Paolo; Santomaso, Andrea C

    2010-03-15

    An alternative procedure for achieving formulation design in a high-shear wet granulation process has been developed. Particularly, a new formulation map has been proposed which describes the onset of a significant granule growth as a function of the formulation variables (diluent, dry and liquid binder). Granule growth has been monitored using on-line impeller torque and evaluated as changes in granule particle size distribution with respect to the dry formulation. It is shown how the onset of granule growth is denoted by an abrupt increase in the torque value requires the amount of binder liquid added to be greater than a certain threshold that is identified here as 'minimum liquid volume'. This minimum liquid volume is determined as a function of dry binder type, amount, hygroscopicity and particle size distribution of diluent. It is also demonstrated how this formulation map can be constructed from independent measurements of binder glass transition temperatures using a static humidity conditioning system. 2009 Elsevier B.V. All rights reserved.

  12. a Weather Monitoring System for Application to Apple and Corn Production

    NASA Astrophysics Data System (ADS)

    Stirm, Walter Leroy

    Many crop management decisions are based on weather -crop development relationships. Daily weather data is currently used in most crop development research and applied models. Present weather and computer technology now makes possible monitoring of crop development on a realtime basis. This research tests a method of computing crop sensitive temperatures for corn and apple using standard hourly meteorological data. The method also makes use of detailed plant physiological stage measurements to determine timing of vital cultural operations tied to the observed weather conditions. The sensitive temperature method incorporates very short term weather variability accounting for changes in the cloud cover, radiation rates, evaporative cooling and other factors involved in the plant's energy balance. The relationship of plant and weather measurements are also used to determine corn emergence, corn grain drydown rate and fruit harvest duration. The monitoring system also incorporates a crop growth unit forecast technique employing short and medium range temperature forecasts of the National Weather Service. The projections of growth units are made for five and ten days into the future. Predicted growth unit accumulations are compared to historical growth unit accumulations to determine the forecast stage. The sensitive temperature crop monitoring system removes some of the error involved in evaluation of growth units by average daily temperature. Carry over maximum and minimums, extended duration of warm or cool periods within the day and disruption of diurnal temperature curve by passage of fronts are eliminated.

  13. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Malik, M. Usman; Masood, W.; Qureshi, M. N. S.; Mirza, Arshad M.

    2018-05-01

    The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q) distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  14. Thermal Optimization of Growth and Quality in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    1996-01-01

    Experimental evidence suggests that larger and higher quality crystals can be attained in the microgravity of space; however, the effect of growth rate on protein crystal quality is not well documented. This research is the first step towards providing strategies to grow crystals under constant rates of growth. Controlling growth rates at a constant value allows for direct one-to-one comparison of results obtained in microgravity and on earth. The overall goal of the project was to control supersaturation at a constant value during protein crystal growth by varying temperature in a predetermined manner. Applying appropriate theory requires knowledge of specific physicochemical properties of the protein solution including the effect of supersaturation on growth rates and the effect of temperature on protein solubility. Such measurements typically require gram quantities of protein and many months of data acquisition. A second goal of the project applied microcalorimetry for the rapid determination of these physicochemical properties using a minimum amount of protein. These two goals were successfully implemented on hen egg-white lysozyme. Results of these studies are described in the attached reprints.

  15. Methodology and results of calculating central California surface temperature trends: Evidence of human-induced climate change?

    USGS Publications Warehouse

    Christy, J.R.; Norris, W.B.; Redmond, K.; Gallo, K.P.

    2006-01-01

    A procedure is described to construct time series of regional surface temperatures and is then applied to interior central California stations to test the hypothesis that century-scale trend differences between irrigated and nonirrigated regions may be identified. The procedure requires documentation of every point in time at which a discontinuity in a station record may have occurred through (a) the examination of metadata forms (e.g., station moves) and (b) simple statistical tests. From this "homogeneous segments" of temperature records for each station are defined. Biases are determined for each segment relative to all others through a method employing mathematical graph theory. The debiased segments are then merged, forming a complete regional time series. Time series of daily maximum and minimum temperatures for stations in the irrigated San Joaquin Valley (Valley) and nearby nonirrigated Sierra Nevada (Sierra) were generated for 1910-2003. Results show that twentieth-century Valley minimum temperatures are warming at a highly significant rate in all seasons, being greatest in summer and fall (> +0.25??C decade-1). The Valley trend of annual mean temperatures is +0.07?? ?? 0.07??C decade-1. Sierra summer and fall minimum temperatures appear to be cooling, but at a less significant rate, while the trend of annual mean Sierra temperatures is an unremarkable -0.02?? ?? 0.10??C decade-1. A working hypothesis is that the relative positive trends in Valley minus Sierra minima (>0.4??C decade-1 for summer and fall) are related to the altered surface environment brought about by the growth of irrigated agriculture, essentially changing a high-albedo desert into a darker, moister, vegetated plain. ?? 2006 American Meteorological Society.

  16. Muskellunge growth potential in northern Wisconsin: implications for trophy management

    USGS Publications Warehouse

    Faust, Matthew D.; Isermann, Daniel A.; Luehring, Mark A.; Hansen, Michael J.

    2015-01-01

    The growth potential of Muskellunge Esox masquinongy was evaluated by back-calculating growth histories from cleithra removed from 305 fish collected during 1995–2011 to determine whether it was consistent with trophy management goals in northern Wisconsin. Female Muskellunge had a larger mean asymptotic length (49.8 in) than did males (43.4 in). Minimum ultimate size of female Muskellunge (45.0 in) equaled the 45.0-in minimum length limit, but was less than the 50.0-in minimum length limit used on Wisconsin's trophy waters, while the minimum ultimate size of male Muskellunge (34.0 in) was less than the statewide minimum length limit. Minimum reproductive sizes for both sexes were less than Wisconsin's trophy minimum length limits. Mean growth potential of female Muskellunge in northern Wisconsin appears to be sufficient for meeting trophy management objectives and angler expectations. Muskellunge in northern Wisconsin had similar growth potential to those in Ontario populations, but lower growth potential than Minnesota's populations, perhaps because of genetic and environmental differences.

  17. Critical Supersaturation for Ice Crystal Growth: Laboratory Measurements and Atmospheric Modeling Implications

    NASA Astrophysics Data System (ADS)

    Magee, N.; Moyle, A.; Lamb, D.

    2003-12-01

    An improved understanding of ice crystal growth, particularly at low temperatures, is much in demand for the advancement of numerical modeling of atmospheric processes. Cirrus models must contend with the complexity of ice crystals growing in cold temperatures, low pressures, low supersaturations, and with multiple nucleation mechanisms. Recent observations have allowed increasingly realistic parameterizations of cirrus ice crystal microphysics, but these observations need to be supplemented by a fundamental understanding of growth processes affecting low-temperature crystals. Several experimental studies have demonstrated that certain ice crystals require a minimum "critical" supersaturation before exhibiting detectable growth. These crystals are presumed to be essentially defect-free, preventing vicinal hillock growth at the site of crystal dislocations. In the case of crystal growth by spiral dislocation, advancement of faces begins as soon as supersaturation is present. The finding of conditional critical supersaturations have analogies in other materials (metals, semiconductors, potassium dihydrogen phosphate) and are thermodynamically predicted given a two-dimensional nucleation growth mechanism. Previous measurements have determined the critical supersaturation for ice as a function of temperature and crystallographic face from 0 to --15° C with extrapolation to --30° C. For both basal and prism faces, critical supersaturation is seen to increase with decreasing temperature, suggesting that low-temperature, low-supersaturation processes are most likely to be affected by this critical contingency. We present laboratory results to verify and extend prior critical supersaturation measurements using a novel approach for supersaturation generation, control, and measurement. The crystals are grown on the tip of a fine glass fiber ( ˜10 microns in diameter) under varying conditions of temperature, pressure, and saturation. Supersaturation is generated when a pre-saturated airflow passes over a coil of ice warmed by electrical resistance upstream from the growing crystal. Supersaturation is determined by a system of differential thermocouples calibrated to sulfuric acid drop size measurements. Measurements follow those made in earlier studies, but also extend to temperatures of --45° C, mimicking conditions found in some high altitude clouds.

  18. Ecology and demographics of Pacific sand lance, Ammodytes hexapterus Pallas, in Lower Cook Inlet, Alaska

    USGS Publications Warehouse

    Robards, Martin D.; Piatt, John F.

    2000-01-01

    Distinct sand lance populations occur within the relatively small geographic area of Lower Cook Inlet, Alaska. Marked meso-scale differences in abundance, growth, and mortality exist as a consequence of differing oceanographic regimes. Growth rate within populations (between years) was positively correlated with temperature. However, this did not extend to inter-population comparisons where differing growth rates were better correlated to marine productivity. Most sand lance reached maturity in their second year. Field observations and indices of maturity, gonad development, and ova-size distribution all indicated that sand lance spawn once each year. Sand lance spawned intertidally in late September and October on fine gravel/sandy beaches. Embryos developed over 67 days through periods of intertidal exposure and sub-freezing air temperatures. Mean dry-weight energy value of sand lance cycles seasonally, peaking in spring and early summer (20.91 kJg-1 for males, 21.08 kJg-1 for females), and subsequently declining by about 25% during late summer and fall (15.91 kJg-1 for males, 15.74 kJg-1 for females). Sand lance enter the winter with close to their minimum whole body energy content. Dry weight energy densities of juveniles increased from a minimum 16.67 kJg-1 to a maximum of 19.68 kJg-1 and are higher than adults in late summer.

  19. The role of carbon solubility in Fe-C nano-clusters on the growth of small single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Curtarolo, Stefano; Awasthy, Neha; Setyawan, Wahyu; Mora, Elena; Tokune, Toshio; Bolton, Kim; Harutyunyan, Avetik

    2008-03-01

    Various diameters of alumina-supported Fe catalysts are used to grow single-walled carbon nanotubes (SWCNTs) with chemical vapor decomposition. We find that the reduction of the catalyst size requires an increase of the minimum temperature necessary for the growth. We address this phenomenon in terms of solubility of C in Fe nanoclusters and, by using first principles calculations, we devise a simple model to predict the behavior of the phases competing for stability in Fe-C nanoclusters at low temperature. We show that, as a function particles size, there are three scenarios compatible with steady state-, limited- and no-growth of SWCNTs, corresponding to unaffected, reduced and no solubility of C in the particles. The result raises previously unknown concerns about the growth feasibility of small and very-long SWCNTs within the current Fe CVD technology, and suggests new strategies in the search of better catalysts. Research supported by Honda R.I. and NSF.

  20. Brief Report: Investigating Uncertainty in the Minimum Mortality Temperature: Methods and Application to 52 Spanish Cities.

    PubMed

    Tobías, Aurelio; Armstrong, Ben; Gasparrini, Antonio

    2017-01-01

    The minimum mortality temperature from J- or U-shaped curves varies across cities with different climates. This variation conveys information on adaptation, but ability to characterize is limited by the absence of a method to describe uncertainty in estimated minimum mortality temperatures. We propose an approximate parametric bootstrap estimator of confidence interval (CI) and standard error (SE) for the minimum mortality temperature from a temperature-mortality shape estimated by splines. The coverage of the estimated CIs was close to nominal value (95%) in the datasets simulated, although SEs were slightly high. Applying the method to 52 Spanish provincial capital cities showed larger minimum mortality temperatures in hotter cities, rising almost exactly at the same rate as annual mean temperature. The method proposed for computing CIs and SEs for minimums from spline curves allows comparing minimum mortality temperatures in different cities and investigating their associations with climate properly, allowing for estimation uncertainty.

  1. [Thermo-sensitive period and critical temperature of fertility transition of thermo-photo-sensitive genic male sterile wheat].

    PubMed

    Zhang, Jiankui; Feng, Li; He, Liren; Yu, Guodong

    2003-01-01

    The thermo-sensitive period and the critical temperature of fertility transition of C49S, a principal thermo-photosensitive genic male sterile line in two-line hybrid wheat, was studied in the growth chambers for controlling temperature and photoperiod. The seeds were sown on different time for some years. The results showed that the thermo-sensitive period in fertility expression of C49S was from PMC formation stage to mature pollen stage, and there were two most sensitive stages to temperature on fertility expression. One was the PMC meiosis stage, and the other was the middle microspore stage. The critical temperatures evoking a complete male sterility were the mean minimum temperature at PMC meiosis stage (Tmin1), the mean temperature at microspore stage (T2) and the mean minimum temperature at microspore stage (Tmin2) lower than 8.5 degrees C, 13.5 degrees C and 10.5 degrees C, respectively. The critical temperatures keeping a nearly normal male fertility Tmin1 and T2 and Tmin2 were higher than 11.5 degrees C, 15.0 degrees C and 12.5 degrees C, respectively. The value as well as the conditions and the risks of thermo-photo-sensitive genic male sterile line of wheat applied to hybrid wheat were evaluated in this paper.

  2. Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds.

    PubMed

    Lahouar, Amani; Marin, Sonia; Crespo-Sempere, Ana; Saïd, Salem; Sanchis, Vicente

    2016-01-01

    Sorghum, which is consumed in Tunisia as human food, suffers from severe colonization by several toxigenic fungi and contamination by mycotoxins. The Tunisian climate is characterized by high temperature and humidity that stimulates mold proliferation and mycotoxin accumulation in foodstuffs. This study investigated the effects of temperature (15, 25 and 37°C), water activity (aw, between 0.85 and 0.99) and incubation time (7, 14, 21 and 28 d) on fungal growth and aflatoxin B1 (AFB1) production by three Aspergillus flavus isolates (8, 10 and 14) inoculated on sorghum grains. The Baranyi model was applied to identify the limits of growth and mycotoxin production. Maximum diameter growth rates were observed at 0.99 a(w) at 37°C for two of the isolates. The minimum aw needed for mycelial growth was 0.91 at 25 and 37°C. At 15°C, only isolate 8 grew at 0.99 a(w). Aflatoxin B1 accumulation could be avoided by storing sorghum at low water activity levels (≤0.91 a(w)). Aflatoxin production was not observed at 15°C. This is the first work on the effects of water activity and temperature on A. flavus growth and AFB1 production by A. flavus isolates on sorghum grains. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Quantitative assessment of the relationship between biomarker content and biomass in marine phytoplankton in responses to temperature and nutrient supply ratio changes

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Chen, X.; Bi, R.; Zhang, L. H.; Li, L.; Zhao, M.

    2016-12-01

    Alkenones and sterols are useful biomarkers to construct past productivity and community structure changes in aquatic environments. Until now, the quantitative relationship between biomarker content and biomass in marine phytoplankton remains understudied, which hinders the quantitative reconstruction of ocean changes. In this study, we carried out laboratory culture experiments to determine the quantitative relationship between biomarker content and biomass under three temperatures (15°, 20° and 25°) and three N:P supply ratios (N:P=10:1, 24:1 and 63:1 mol mol-1) for three common phytoplankton groups, diatoms (Phaeodactylum tricornutum Bohlin, Skeletonema costatum, Chaetoceros muelleri), dinoflagellates (Karenia mikimotoi, Prorocentrum donghaiense, Prorocentrum minimum), and coccolithophores (Emiliania huxleyi). Alkenones were only detected in E. huxleyiand dinosterol was only detected in dinoflagellates, confirming that they are the biomarkers for these two groups of phytoplankton, respectively. Brassicasterol was detected in all three groups of phytoplankton, but its content was higher in diatoms, suggesting that it is still a useful biomarker for diatoms. Cell-normalized alkenone content (pg/cell) increases with increasing growth temperature by up to 30%; while the effect of nutrients on alkenone content is minimum. On the other hand, cell-normalized dinosterol content is not temperature dependent, but it is strongly affected by nutrient ratio changes. The effects of temperature and nutrients on cell-normalized brassicasterol content are phytoplankton dependent. For diatoms, the temperature effect is minimum while the nutrient effect is significant but also varies with temperatures. Our results have strong implications for understanding how different phytoplankton respond to global changes, and for more quantitative reconstruction of past productivity and community structure changes using these biomarkers.

  4. Mediterranean climate effects. II. Conifer growth phenology across a Sierra Nevada ecotone.

    PubMed

    Royce, E B; Barbour, M G

    2001-05-01

    Growth and xylem water potential of the lower elevation conifers Pinus jeffreyi and Abies concolor and the higher elevation Pinus monticola and Abies magnifica were monitored in their montane Mediterranean habitat of the southernmost Sierra Nevada mountains of California. Measurements were made across the ecotone between the midmontane and upper montane forests and through light and heavy snowfall years.Radial stem growth, averaging ∼1.5 mm/yr, started 2 wk after snow melt, providing that maximum air temperatures had reached 21°C, and ended when predawn water potentials fell rapidly at the onset of the summer drought. Leader growth started on or after a fixed date, providing that minimum air temperatures were above -4°C for Pinus species or +2.5°C for Abies species. The cue for leader growth was inferred to be photoperiodic. Leader growth ended when either a determinate internode length of ∼1 mm was reached or predawn water potentials fell rapidly. Abies magnifica grew more rapidly than the low-elevation species, but had a shorter growth period; its annual leader growth, as a consequence, was only 35 mm/yr vs. 50 mm/yr for the low-elevation species. Needle growth was similarly determinate in the absence of early drought. This growth phenology contributes to determining species distribution across the ecotone.

  5. Development and validation of a mathematical model for growth of pathogens in cut melons.

    PubMed

    Li, Di; Friedrich, Loretta M; Danyluk, Michelle D; Harris, Linda J; Schaffner, Donald W

    2013-06-01

    Many outbreaks of foodborne illness associated with the consumption of fresh-cut melons have been reported. The objective of our research was to develop a mathematical model that predicts the growth rate of Salmonella on fresh-cut cantaloupe over a range of storage temperatures and to validate that model by using Salmonella and Escherichia coli O157:H7 on cantaloupe, honeydew, and watermelon, using both new data and data from the published studies. The growth of Salmonella on honeydew and watermelon and E. coli O157:H7 on cantaloupe, honeydew, and watermelon was monitored at temperatures of 4 to 25°C. The Ratkowsky (or square-root model) was used to describe Salmonella growth on cantaloupe as a function of storage temperature. Our results show that the levels of Salmonella on fresh-cut cantaloupe with an initial load of 3 log CFU/g can reach over 7 log CFU/g at 25°C within 24 h. No growth was observed at 4°C. A linear correlation was observed between the square root of Salmonella growth rate and temperature, such that √growth rate = 0.026 × (T - 5.613), R(2) = 0.9779. The model was generally suitable for predicting the growth of both Salmonella and E. coli O157:H7 on cantaloupe, honeydew, and watermelon, for both new data and data from the published literature. When compared with existing models for growth of Salmonella, the new model predicts a theoretic minimum growth temperature similar to the ComBase Predictive Models and Pathogen Modeling Program models but lower than other food-specific models. The ComBase Prediction Models results are very similar to the model developed in this study. Our research confirms that Salmonella can grow quickly and reach high concentrations when cut cantaloupe is stored at ambient temperatures, without visual signs of spoilage. Our model provides a fast and cost-effective method to estimate the effects of storage temperature on fresh-cut melon safety and could also be used in subsequent quantitative microbial risk assessments.

  6. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000

    PubMed Central

    Clark, D. A.; Piper, S. C.; Keeling, C. D.; Clark, D. B.

    2003-01-01

    During 1984–2000, canopy tree growth in old-growth tropical rain forest at La Selva, Costa Rica, varied >2-fold among years. The trees' annual diameter increments in this 16-yr period were negatively correlated with annual means of daily minimum temperatures. The tree growth variations also negatively covaried with the net carbon exchange of the terrestrial tropics as a whole, as inferred from nearly pole-to-pole measurements of atmospheric carbon dioxide (CO2) interpreted by an inverse tracer–transport model. Strong reductions in tree growth and large inferred tropical releases of CO2 to the atmosphere occurred during the record-hot 1997–1998 El Niño. These and other recent findings are consistent with decreased net primary production in tropical forests in the warmer years of the last two decades. As has been projected by recent process model studies, such a sensitivity of tropical forest productivity to on-going climate change would accelerate the rate of atmospheric CO2 accumulation. PMID:12719545

  7. Influence of temperature and conductivity on the life-history characteristics of a pampean strain of Brachionus plicatilis.

    PubMed

    Ferrando, Noelia S; Claps, María C; Benítez, Hernán H; Gabellone, Néstor A

    2018-05-14

    In the present work, we provide the first approach about the life-history of Brachionus plicatilis in South America. We tested with laboratory experiments the response of the pampean strain of B. plicatilis for two of its main stressors (conductivity and temperature). We evaluated the effects of eight conductivity values from 1 to 17 mS.cm-1 and two temperatures (15 and 25 °C) to compare its abundance with those obtained in the pampean lotic and lentic environments, where this rotifer is frequent or dominant. The results demonstrated that the increase in population-growth rate and the peak of abundance occurred at the highest temperature and at medium conductivity. Minimum values were obtained at the lowest temperature and conductivities analyzed, but the final density attained was nevertheless similar to those recorded in the pampean environments at the optimum conductivity and during the spring and summer seasons. Males, mictic females, and resting eggs were observed at the minimum and maximum conductivities, revealing the strategy of this species for maintaining dominance in environments with fluctuating salinity. The experiments also indicated the possible behavior of this relevant member of the zooplankton community within a scenario of increasing temperature and salinity related to the climate changes occurring in the pampean region.

  8. Statistical physics when the minimum temperature is not absolute zero

    NASA Astrophysics Data System (ADS)

    Chung, Won Sang; Hassanabadi, Hassan

    2018-04-01

    In this paper, the nonzero minimum temperature is considered based on the third law of thermodynamics and existence of the minimal momentum. From the assumption of nonzero positive minimum temperature in nature, we deform the definitions of some thermodynamical quantities and investigate nonzero minimum temperature correction to the well-known thermodynamical problems.

  9. Hot filament CVD of boron nitride films

    DOEpatents

    Rye, Robert R.

    1992-01-01

    Using a hot filament (.apprxeq.1400.degree. C.) to activate borazine (B.sub.3 N.sub.3 H.sub.6) molecules for subsequent reaction with a direct line-of-sight substrate, transparent boron ntiride films as thick as 25,000 angstroms are grown for a substrate temperature as low as 100.degree. C. The minimum temperature is determined by radiative heating from the adjacent hot filament. The low temperature BN films show no indication of crystallinity with X-ray diffraction (XRD). X-ray photoelectron spectra (XPS) show the films to have a B:N ratio of 0.97:1 with no other XPS detectable impurities above the 0.5% level. Both Raman and infrared (IR) spectroscopy are characteristic of h-BN with small amounts of hydrogen detected as N-H and B-H bands in the IR spectrum. An important feature of this method is the separation and localization of the thermal activation step at the hot filament from the surface reaction and film growth steps at the substrate surface. This allows both higher temperature thermal activation and lower temperature film growth.

  10. Inflight fuel tank temperature survey data

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    Statistical summaries of the fuel and air temperature data for twelve different routes and for different aircraft models (B747, B707, DC-10 and DC-8), are given. The minimum fuel, total air and static air temperature expected for a 0.3% probability were summarized in table form. Minimum fuel temperature extremes agreed with calculated predictions and the minimum fuel temperature did not necessarily equal the minimum total air temperature even for extreme weather, long range flights.

  11. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  12. Modified DHTT Equipment for Crystallization Studies of Mold Slags

    NASA Astrophysics Data System (ADS)

    Kölbl, Nathalie; Harmuth, Harald; Marschall, Irmtraud

    2018-04-01

    The double hot thermocouple technique (DHTT) enables simulations of the temperature gradient at near-service conditions during continuous casting of steel. With the equipment applied so far, a rectangular slag film of even thickness often cannot be achieved. Further, the minimum temperature frequently lies within the slag film. Modified equipment can avoid these disadvantages via the following design features. The entire furnace chamber is heated to the selected temperature of the cold wire, and the minimum temperature is not located within the slag film. Furthermore, the shape of the heating wire is improved, which enables mounting of a thin, rectangular slag film between four platinum wires. This modification allows for investigations on transparent and translucent slags. So far, the results from DHTT investigations were represented via snapshots of the samples at certain experimental times. Therefore, appropriate methods for the graphical representation of the results were suggested: the maximum crystallinity, the time related to certain crystallinities with a dependence on the position within the slag film, and the crystal growth rate. The CaO-MgO-Al2O3-SiO2 slag investigated with this equipment was mineralogically examined additionally, and based on thermodynamic calculations, the allocation of temperatures to certain positions within the crystallized slag film was possible.

  13. Modeling the survivability of brucella to exposure of Ultraviolet radiation and temperature

    NASA Astrophysics Data System (ADS)

    Howe, R.

    Accumulated summation of daily Ultra Violet-B (UV-B = 290? to 320 ? ) data? from The USDA Ultraviolet Radiation Monitoring Program show good correlation (R^2 = 77%) with daily temperature data during the five month period from February through June, 1998. Exposure of disease organisms, such as brucella to the effects of accumulated UV-B radiation, can be modeled for a 5 month period from February through June, 1998. Estimates of a lethal dosage for brucell of UV-B in the environment is dependent on minimum/maximum temperature and Solar Zenith Angle for the time period. The accumulated increase in temperature over this period also effects the decomposition of an aborted fetus containing brucella. Decomposition begins at some minimum daily temperature at 27 to 30 degrees C and peaks at 39 to 40C. It is useful to view the summation of temperature as a threshold for other bacteria growth, so that accumulated temperature greater than some value causes decomposition through competition with other bacteria and brucella die from the accumulated effects of UV-B, temperature and organism competition. Results of a study (Cook 1998) to determine survivability of brucellosis in the environment through exposure of aborted bovine fetuses show no one cause can be attributed to death of the disease agent. The combination of daily increase in temperature and accumulated UV-B radiation reveal an inverse correlation to survivability data and can be modeled as an indicator of brucella survivability in the environment in arid regions.

  14. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Huang, Bozhu; Hu, Zhangxi; Tang, Yingzhong; Duan, Shunshan; Zhang, Chengwu

    2017-05-01

    Blooms of Phaeocystis globosa have been frequently reported in Chinese coastal waters, causing serious damage to marine ecosystems. To better understand the ecological characteristics of P. globosa in Chinese coastal waters that facilitate its rapid expansion, the effects of temperature, salinity and irradiance on the growth of P. globosa from the South China Sea were examined in the laboratory. The saturating irradiance for the growth of P. globosa ( I s) was 60 μmol/(m2•s), which was lower than those of other harmful algal species (70-114 μmol/(m2•s)). A moderate growth rate of 0.22/d was observed at 2 μmol/(m2•s) (the minimum irradiance in the experiment), and photo-inhibition did not occur at 230 μmol/(m2•s) (the maximum irradiance in the experiment). Exposed to 42 different combinations of temperatures (10-31°C) and salinities (10-40) under saturating irradiance, P. globosa exhibited its maximum specific growth rate of 0.80/d at the combinations of 24°C and 35, and 27°C and 40. The optimum growth rates (>0.80/d) were observed at temperatures ranging from 24 to 27°C and salinities from 35 to 40. While P. globosa was able to grow well at temperatures from 20°C to 31°C and salinities from 20 to 40, it could not grow at temperatures lower than 15°C or salinities lower than 15. Factorial analysis revealed that temperature and salinity has similar influences on the growth of this species. This strain of P. globosa not only prefers higher temperatures and higher salinity, but also possesses a flexible nutrient competing strategy, adapted to lower irradiance. Therefore, the P. globosa population from South China Sea should belong to a new ecotype. There is also a potentially high risk of blooms developing in this area throughout the year.

  15. Nonlinear absorption properties of AlGaAs/GaAs multiple quantum wells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lee, Hsing-Chung; Kost, A.; Kawase, M.; Hariz, A.; Dapkus, P. Daniel

    1988-01-01

    The nonlinear absorption properties of the excitonic resonances associated with multiple quantum wells (MQWs) in AlGaAs/GaAs grown by metalorganic chemical vapor deposition are reported. The dependence of the saturation properties on growth parameters, especially growth temperature, and the well width are described. The minimum measured saturation intensity for these materials is 250 W/sq cm, the lowest reported value to date. The low saturation intensities are the result of excellent minority carrier properties. A systematic study of minority carrier lifetimes in quantum wells are reported. Lifetimes range from 50-350 ns depending on growth temperature and well width. When corrected for lateral diffusion effects and the measured minority carrier lifetime, the saturation data suggest that saturation intensities as low as 2.3 W/sq cm can be achieved in this system. The first measurements of the dependence of the exciton area and the magnitude of the excitonic absorption on well width are prsented. The growth of MQW structures on transparent GaP substrates is demonstrated and the electroabsorption properties of these structures are reviewed.

  16. Stress and efficiency studies in EFG

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The goals of this program were: (1) to define minimum stress configurations for silicon sheet growth at high speeds; (2) to quantify dislocation electrical activity and their limits on minority carrier diffusion length in deformed silicon; and (3) to study reasons for degradation of lifetime with increases in doping level in edge-defined film-fed growth (EFG) materials. A finite element model was developed for calculating residual stress with plastic deformation. A finite element model was verified for EFG control variable relationships to temperature field of the sheet to permit prediction of profiles and stresses encountered in EFG systems. A residual stress measurement technique was developed for finite size EFG material blanks using shadow Moire interferometry. Transient creep response of silicon was investigated in the temperature range between 800 and 1400 C in strain and strain regimes of interest in stress analysis of sheet growth. Quantitative relationships were established between minority carrier diffusion length and dislocation densities using Electron Beam Induced Current (EBIC) measurement in FZ silicon deformed in four point bending tests.

  17. Composite strengthening. [of nonferrous, fiber reinforced alloys

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.

    1976-01-01

    The mechanical behavior of unidirectionally reinforced metals is examined, with particular attention to fabrication techniques for artificial composites and eutectic alloys and to principles of fiber reinforcement. The properties of artificial composites are discussed in terms of strength of fiber composites, strength of ribbon-reinforced composites, crack initiation, crack propagation, and creep behavior. The properties of eutectic composites are examined relative to tensile strength, compressive strength, fracture, high-temperature strength, and fatigue. In the case of artificial composites, parallelism of fibers, good bonding between fibers and matrix, and freedom of fibers from damage are all necessary to ensure superior performance. For many eutectic systems there are stringent boundary conditions relative to melt purity and superheat, atmosphere control, temperature gradient, and growth rate in order to provide near-perfect alignment of the reinforcements with a minimum of growth defects.

  18. Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.

    PubMed

    Shapiro, Joshua N; Lin, Andrew; Ratsch, Christian; Huffaker, D L

    2013-11-29

    Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.

  19. Reversed magnetic shear suppression of electron-scale turbulence on NSTX

    NASA Astrophysics Data System (ADS)

    Yuh, Howard Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Smith, D. R.; Domier, C. W.; Luhmann, N. C.; Park, H. K.

    2009-11-01

    Electron thermal internal transport barriers (e-ITBs) are observed in reversed (negative) magnetic shear NSTX discharges^1. These e-ITBs can be created with either neutral beam heating or High Harmonic Fast Wave (HHFW) RF heating. The e-ITB location occurs at the location of minimum magnetic shear determined by Motional Stark Effect (MSE) constrained equilibria. Statistical studies show a threshold condition in magnetic shear for e-ITB formation. High-k fluctuation measurements at electron turbulence wavenumbers^3 have been made under several different transport regimes, including a bursty regime that limits temperature gradients at intermediate magnetic shear. The growth rate of fluctuations has been calculated immediately following a change in the local magnetic shear, resulting in electron temperature gradient relaxation. Linear gyrokinetic simulation results for NSTX show that while measured electron temperature gradients exceed critical linear thresholds for ETG instability, growth rates can remain low under reversed shear conditions up to high electron temperatures gradients. ^1H. Yuh, et. al., PoP 16, 056120 ^2D.R. Smith, E. Mazzucato et al., RSI 75, 3840 ^3E. Mazzucato, D.R. Smith et al., PRL 101, 075001

  20. Interactions of CO2, temperature and management practices: simulations with a modified version of CERES-Wheat

    NASA Technical Reports Server (NTRS)

    Tubiello, F. N.; Rosenzweig, C.; Volk, T.

    1995-01-01

    A new growth subroutine was developed for CERES-Wheat, a computer model of wheat (Triticum aestivum) growth and development. The new subroutine simulates canopy photosynthetic response to CO2 concentrations and light levels, and includes the effects of temperature on canopy light-use efficiency. Its performance was compared to the original CERES-Wheat V-2 10 in 30 different cases. Biomass and yield predictions of the two models were well correlated (correlation coefficient r > 0.95). As an application, summer growth of spring wheat was simulated at one site. Modeled crop responses to higher mean temperatures, different amounts of minimum and maximum warming, and doubled CO2 concentrations were compared to observations. The importance of irrigation and nitrogen fertilization in modulating the wheat crop climatic responses were also analyzed. Specifically, in agreement with observations, rainfed crops were found to be more sensitive to CO2 increases than irrigated ones. On the other hand, low nitrogen applications depressed the ability of the wheat crop to respond positively to CO2 increases. In general, the positive effects of high CO2 on grain yield were found to be almost completely counterbalanced by the negative effects of high temperatures. Depending on how temperature minima and maxima were increased, yield changes averaged across management practices ranged from -4% to 8%.

  1. The Influence of pH on Prokaryotic Cell Size and Temperature

    NASA Astrophysics Data System (ADS)

    Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.

    2015-12-01

    The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.

  2. Development of minimum state requirements for local growth management policies : phase 1.

    DOT National Transportation Integrated Search

    2015-01-01

    This research entailed the development of minimum requirements for local growth management policies for use in Louisiana. The purpose of developing minimum statewide standards is to try to alleviate some of the stress placed on state and local govern...

  3. Development of minimum state requirements for local growth management policies -- phase 1.

    DOT National Transportation Integrated Search

    2015-11-01

    This research entailed the development of minimum requirements for local growth management policies for use : in Louisiana. The purpose of developing minimum statewide standards is to try to alleviate some of the stress : placed on state and local go...

  4. Growth patterns of an intertidal gastropod as revealed by oxygen isotope analysis

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Hill, T. M.; Guerra, C.

    2007-12-01

    The size and morphology of mollusk shells are affected by environmental conditions. As a result, it is difficult to assess growth rate, population age structure, shell morphologies associated with ontogenetic stages, and to compare life history patterns across various environments. Oxygen isotope analysis is a useful tool for estimating minimum ages and growth rates of calcium carbonate secreting organisms. Calcite shell material from members of two northern California populations of the intertidal muricid gastropod Acanthinucella spirata was sampled for isotopic analysis. Individual shells were sampled from apex to margin, thus providing a sequential record of juvenile and adult growth. A. spirata were collected from a sheltered habitat in Tomales Bay and from an exposed reef in Bolinas. Abiotic factors, such as temperature, wave exposure, and substrate consistency, and biotic composition differ significantly between these sites, possibly resulting in local adaptations and variation in life history and growth patterns. Shell morphology of A. spirata changes with age as internal shell margin thickenings of denticle rows associated with external growth bands are irregularly accreted. It is not known when, either seasonally and/or ontogentically, these thickenings and bands form or whether inter or intra-populational variation exists. Preliminary results demonstrate the seasonal oxygen isotopic variability present at the two coastal sites, indicating 5-6 degC changes from winter to summertime temperatures; these data are consistent with local intertidal temperature records. Analysis of the seasonal patterns indicate that: 1) differences in growth rate and seasonal growth patterns at different ontogenetic stages within populations, and 2) differences in growth patterns and possibly age structure between the two A. spirata populations. These findings indicate that isotopic analyses, in addition to field observations and morphological measurements, are necessary to assess life history strategies and compare population dynamics under varying environmental conditions.

  5. Temperature sensitivity of soil microbial activity modeled by the square root equation as a unifying model to differentiate between direct temperature effects and microbial community adaptation.

    PubMed

    Bååth, Erland

    2018-07-01

    Numerous models have been used to express the temperature sensitivity of microbial growth and activity in soil making it difficult to compare results from different habitats. Q10 still is one of the most common ways to express temperature relationships. However, Q10 is not constant with temperature and will differ depending on the temperature interval used for the calculation. The use of the square root (Ratkowsky) relationship between microbial activity (A) and temperature below optimum temperature, √A = a × (T-T min ), is proposed as a simple and adequate model that allow for one descriptor, T min (a theoretical minimum temperature for growth and activity), to estimate correct Q10-values over the entire in situ temperature interval. The square root model can adequately describe both microbial growth and respiration, allowing for an easy determination of T min . Q10 for any temperature interval can then be calculated by Q10 = [(T + 10 - T min )/(T-T min )] 2 , where T is the lowest temperature in the Q10 comparison. T min also describes the temperature adaptation of the microbial community. An envelope of T min covering most natural soil habitats varying between -15°C (cold habitats like Antarctica/Arctic) to 0°C (tropical habitats like rain forests and deserts) is suggested, with an 0.3°C increase in T min per 1°C increase in mean annual temperature. It is shown that the main difference between common temperature relationships used in global models is differences in the assumed temperature adaptation of the soil microbial community. The use of the square root equation will allow for one descriptor, T min , determining the temperature response of soil microorganisms, and at the same time allow for comparing temperature sensitivity of microbial activity between habitats, including future projections. © 2018 John Wiley & Sons Ltd.

  6. Seasonal and Interannual Variations of Ice Sheet Surface Elevation at the Summit of Greenland: Observed and Modeled

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due to more compaction driven by increasing summer temperatures. The minimum elevation in 1995 is driven mainly by a temporary accumulation decrease and secondarily by warmer temperatures. However, the overall elevation increase over the seven years is dominated by the accumulation increase in the later years.

  7. Statistical downscaling of CMIP5 outputs for projecting future maximum and minimum temperature over the Haihe River Bain, China

    NASA Astrophysics Data System (ADS)

    Yan, Tiezhu; Shen, Zhenyao; Heng, Lee; Dercon, Gerd

    2016-04-01

    Future climate change information is important to formulate adaptation and mitigation strategies for climate change. In this study, a statistical downscaling model (SDSM) was established using both NCEP reanalysis data and ground observations (daily maximum and minimum temperature) during the period 1971-2010, and then calibrated model was applied to generate the future maximum and minimum temperature projections using predictors from the two CMIP5 models (MPI-ESM-LR and CNRM-CM5) under two Representative Concentration Pathway (RCP2.6 and RCP8.5) during the period 2011-2100 for the Haihe River Basin, China. Compared to the baseline period, future change in annual and seasonal maximum and minimum temperature was computed after bias correction. The spatial distribution and trend change of annual maximum and minimum temperature were also analyzed using ensemble projections. The results shows that: (1)The downscaling model had a good applicability on reproducing daily and monthly mean maximum and minimum temperature over the whole basin. (2) Bias was observed when using historical predictors from CMIP5 models and the performance of CNRM-CM5 was a little worse than that of MPI-ESM-LR. (3) The change in annual mean maximum and minimum temperature under the two scenarios in 2020s, 2050s and 2070s will increase and magnitude of maximum temperature will be higher than minimum temperature. (4) The increase in temperature in the mountains and along the coastline is remarkably high than the other parts of the studies basin. (5) For annual maximum and minimum temperature, the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37 and 0.39 ℃ per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be upward in 2020s and then decrease in 2050s and 2070s, and the magnitude will be 0.01 and 0.01℃ per decade, respectively.

  8. 40 CFR 60.37e - Compliance, performance testing, and monitoring guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements: (1) Establish maximum charge rate and minimum secondary chamber temperature as site-specific... above the maximum charge rate or below the minimum secondary chamber temperature measured as 3-hour... below the minimum secondary chamber temperature shall constitute a violation of the established...

  9. Temperature fine-tunes Mediterranean Arabidopsis thaliana life-cycle phenology geographically.

    PubMed

    Marcer, A; Vidigal, D S; James, P M A; Fortin, M-J; Méndez-Vigo, B; Hilhorst, H W M; Bentsink, L; Alonso-Blanco, C; Picó, F X

    2018-01-01

    To understand how adaptive evolution in life-cycle phenology operates in plants, we need to unravel the effects of geographic variation in putative agents of natural selection on life-cycle phenology by considering all key developmental transitions and their co-variation patterns. We address this goal by quantifying the temperature-driven and geographically varying relationship between seed dormancy and flowering time in the annual Arabidopsis thaliana across the Iberian Peninsula. We used data on genetic variation in two major life-cycle traits, seed dormancy (DSDS50) and flowering time (FT), in a collection of 300 A. thaliana accessions from the Iberian Peninsula. The geographically varying relationship between life-cycle traits and minimum temperature, a major driver of variation in DSDS50 and FT, was explored with geographically weighted regressions (GWR). The environmentally varying correlation between DSDS50 and FT was analysed by means of sliding window analysis across a minimum temperature gradient. Maximum local adjustments between minimum temperature and life-cycle traits were obtained in the southwest Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-southwest locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of minimum temperature on FT were more variable, with peaks of strong local adjustments of GWR models in central and northwest Spain. Sliding window analysis identified a minimum temperature turning point in the relationship between DSDS50 and FT around a minimum temperature of 7.2 °C. Above this minimum temperature turning point, the variation in the FT/DSDS50 ratio became rapidly constrained and the negative correlation between FT and DSDS50 did not increase any further with increasing minimum temperatures. The southwest Iberian Peninsula emerges as an area where variation in life-cycle phenology appears to be restricted by the duration and severity of the hot summer drought. The temperature-driven varying relationship between DSDS50 and FT detected environmental boundaries for the co-evolution between FT and DSDS50 in A. thaliana. In the context of global warming, we conclude that A. thaliana phenology from the southwest Iberian Peninsula, determined by early flowering and deep seed dormancy, might become the most common life-cycle phenotype for this annual plant in the region. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Plant Bioassay of Materials from the Blue River Dredging Project.

    DTIC Science & Technology

    1981-09-01

    percent at nighttime temperature minimum. Day length varied from 14 hr in July to 11.5 hr in mid-October. No sup- plemental artificial lighting was used...included lid until seed germ- ination occurred. After germination , the lids were permanently removed. Common bermuda and C. esculentus were allowed to grow...species. 30. Seed germination and initial growth of red fescue, tall fes- cue, and Kentucky bluegrass were extremely slow. This was a result of the

  11. Demographics of an ornate box turtle population experiencing minimal human-induced disturbances

    USGS Publications Warehouse

    Converse, S.J.; Iverson, J.B.; Savidge, J.A.

    2005-01-01

    Human-induced disturbances may threaten the viability of many turtle populations, including populations of North American box turtles. Evaluation of the potential impacts of these disturbances can be aided by long-term studies of populations subject to minimal human activity. In such a population of ornate box turtles (Terrapene ornata ornata) in western Nebraska, we examined survival rates and population growth rates from 1981-2000 based on mark-recapture data. The average annual apparent survival rate of adult males was 0.883 (SE = 0.021) and of adult females was 0.932 (SE = 0.014). Minimum winter temperature was the best of five climate variables as a predictor of adult survival. Survival rates were highest in years with low minimum winter temperatures, suggesting that global warming may result in declining survival. We estimated an average adult population growth rate (????) of 1.006 (SE = 0.065), with an estimated temporal process variance (????2) of 0.029 (95% CI = 0.005-0.176). Stochastic simulations suggest that this mean and temporal process variance would result in a 58% probability of a population decrease over a 20-year period. This research provides evidence that, unless unknown density-dependent mechanisms are operating in the adult age class, significant human disturbances, such as commercial harvest or turtle mortality on roads, represent a potential risk to box turtle populations. ?? 2005 by the Ecological Society of America.

  12. Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995

    USGS Publications Warehouse

    Haggard, Brian; Green, W. Reed

    2002-01-01

    The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.

  13. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  14. The association of minimum wage change on child nutritional status in LMICs: A quasi-experimental multi-country study.

    PubMed

    Ponce, Ninez; Shimkhada, Riti; Raub, Amy; Daoud, Adel; Nandi, Arijit; Richter, Linda; Heymann, Jody

    2017-08-02

    There is recognition that social protection policies such as raising the minimum wage can favourably impact health, but little evidence links minimum wage increases to child health outcomes. We used multi-year data (2003-2012) on national minimum wages linked to individual-level data from the Demographic and Health Surveys (DHS) from 23 low- and middle-income countries (LMICs) that had least two DHS surveys to establish pre- and post-observation periods. Over a pre- and post-interval ranging from 4 to 8 years, we examined minimum wage growth and four nutritional status outcomes among children under 5 years: stunting, wasting, underweight, and anthropometric failure. Using a differences-in-differences framework with country and time-fixed effects, a 10% increase in minimum wage growth over time was associated with a 0.5 percentage point decline in stunting (-0.054, 95% CI (-0.084,-0.025)), and a 0.3 percentage point decline in failure (-0.031, 95% CI (-0.057,-0.005)). We did not observe statistically significant associations between minimum wage growth and underweight or wasting. We found similar results for the poorest households working in non-agricultural and non-professional jobs, where minimum wage growth may have the most leverage. Modest increases in minimum wage over a 4- to 8-year period might be effective in reducing child undernutrition in LMICs.

  15. Real-Time Observation of Atomic Layer Deposition Inhibition: Metal Oxide Growth on Self-Assembled Alkanethiols

    DOE PAGES

    Avila, Jason R.; DeMarco, Erica J.; Emery, Jonathan D.; ...

    2014-07-21

    Through in-situ quartz crystal microbalance (QCM) monitoring we resolve the growth of a self-assembled monolayer (SAM) and subsequent metal oxide deposition with high resolution. Here, we introduce the fitting of mass deposited during each atomic layer deposition (ALD) cycle to an analytical island-growth model that enables quantification of growth inhibition, nucleation density, and the uninhibited ALD growth rate. A long-chain alkanethiol was self-assembled as a monolayer on gold-coated quartz crystals in order to investigate its effectiveness as a barrier to ALD. Compared to solution-loading, vapor-loading is observed to produce a SAM with equal or greater inhibition-ability in minutes vs. days.more » The metal oxide growth temperature and the choice of precursor also significantly affect the nucleation density, which ranges from 0.001 to 1 sites/nm 2. Finally, we observe a minimum 100 cycle inhibition of an oxide ALD process, ZnO, under moderately optimized conditions.« less

  16. Meta-analysis of the effect of initial serum protein concentration and empirical prediction model for growth of neonatal Holstein calves through 8 weeks of age.

    PubMed

    Bateman, H G; Hill, T M; Aldrich, J M; Schlotterbeck, R L; Firkins, J L

    2012-01-01

    A data set was constructed from individual calf means gathered in the Nurture Research Center (Lewisburg, OH) and used in a meta-analysis to parameterize an empirical model predicting growth measures for neonatal calves. The data set contained 993 observations from 20 research trials conducted in all seasons of multiple years. Growth measures gathered included average daily gain (ADG) preweaning, postweaning, and through 8 wk of age. Independent variables gathered included age at weaning; total starter intake (SI); total milk replacer intake (MRI); milk replacer CP (MRCP) and fat (MRfat) contents; number of days with abnormal fecal scores (AFS); average environmental temperature preweaning, postweaning, and through 8 wk of age; minimum and maximum temperature during the entire 8 wk; body weight at d 0; and initial serum protein concentration. Additionally, the interactions of SI, MRI, and MRCP and MRfat were considered for the model. Backward elimination multiple regressions were conducted using a mixed model with a random effect of trial. The final model for total ADG indicated that increasing SI or MRI improves calf growth. Also, increasing MRCP or MRfat increased growth. Increased sickness (as measured by increased AFS) or increased body weight at d 0 decreased ADG. Growth of neonatal dairy calves appears to be more controlled by nutrient intake and their interactions than by surrogates for health status of the calves (AFS and initial serum protein concentration) or environmental temperature. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Urban environment of New York City promotes growth in northern red oak seedlings.

    PubMed

    Searle, Stephanie Y; Turnbull, Matthew H; Boelman, Natalie T; Schuster, William S F; Yakir, Dan; Griffin, Kevin L

    2012-04-01

    Urbanization is accelerating across the globe, elevating the importance of studying urban ecology. Urban environments exhibit several factors affecting plant growth and function, including high temperatures (particularly at night), CO(2) concentrations and atmospheric nitrogen deposition. We investigated the effects of urban environments on growth in Quercus rubra L. seedlings. We grew seedlings from acorns for one season at four sites along an urban-rural transect from Central Park in New York City to the Catskill Mountains in upstate New York (difference in average maximum temperatures of 2.4 °C; difference in minimum temperatures of 4.6 °C). In addition, we grew Q. rubra seedlings in growth cabinets (GCs) mimicking the seasonal differential between the city and rural sites (based on a 5-year average). In the field experiment, we found an eightfold increase in biomass in urban-grown seedlings relative to those grown at rural sites. This difference was primarily related to changes in growth allocation. Urban-grown seedlings and seedlings grown at urban temperatures in the GCs exhibited a lower root: shoot ratio (urban ~0.8, rural/remote ~1.5), reducing below-ground carbon costs associated with construction and maintenance. These urban seedlings instead allocated more growth to leaves than did rural-grown seedlings, resulting in 10-fold greater photosynthetic area but no difference in photosynthetic capacity of foliage per unit area. Seedlings grown at urban temperatures in both the field and GC experiments had higher leaf nitrogen concentrations per unit area than those grown at cooler temperatures (increases of 23% in field, 32% in GC). Lastly, we measured threefold greater (13)C enrichment of respired CO(2) (relative to substrate) in urban-grown leaves than at other sites, which may suggest greater allocation of respiratory function to growth over maintenance. It also shows that lack of differences in total R flux in response to environmental conditions may mask dramatic shifts in respiratory functioning. Overall, our findings indicating greater seedling growth and establishment at a critical regeneration phase of forest development may have important implications for the ecology of urban forests as well as the predicted growth of the terrestrial biosphere in temperate regions in response to climate change.

  18. Estimating missing daily temperature extremes in Jaffna, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Thevakaran, A.; Sonnadara, D. U. J.

    2018-04-01

    The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.

  19. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2016-06-01

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  20. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    DOE PAGES

    Venturini, M.

    2016-06-09

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  1. Agrometeorological models for forecasting the qualitative attributes of "Valência" oranges

    NASA Astrophysics Data System (ADS)

    Moreto, Victor Brunini; Rolim, Glauco de Souza; Zacarin, Bruno Gustavo; Vanin, Ana Paula; de Souza, Leone Maia; Latado, Rodrigo Rocha

    2017-11-01

    Forecasting is the act of predicting unknown future events using available data. Estimating, in contrast, uses data to simulate an actual condition. Brazil is the world's largest producer of oranges, and the state of São Paulo is the largest producer in Brazil. The "Valência" orange is among the most common cultivars in the state. We analyzed the influence of monthly meteorological variables during the growth cycle of Valência oranges grafted onto "Rangpur" lime rootstocks (VACR) for São Paulo, and developed monthly agrometeorological models for forecasting the qualitative attributes of VACR in mature orchard. For fruits per box for all months, the best accuracy was of 0.84 % and the minimum forecast range of 4 months. For the relation between °brix and juice acidity (RATIO) the best accuracy was of 0.69 % and the minimum forecast range of 5 months. Minimum, mean and maximum air temperatures, and relative evapotranspiration were the most important variables in the models.

  2. Biological Characterization of the Biocontrol Agent Bacillus amyloliquefaciens CPA-8: The Effect of Temperature, pH and Water Activity on Growth, Susceptibility to Antibiotics and Detection of Enterotoxic Genes.

    PubMed

    Gotor-Vila, Amparo; Teixidó, Neus; Sisquella, María; Torres, Rosario; Usall, Josep

    2017-09-01

    This work focuses on the biological understanding of the biocontrol agent Bacillus amyloliquefaciens CPA-8 in order to accomplish the characterization required in the registration process for the development of a microorganism-based product. The tolerance of CPA-8 to grow under different pH-temperature and water activity (a w )-temperature conditions was widely demonstrated. Regarding the pH results, optimum growth at the evaluated conditions was observed at 37 °C and pH between 7 and 5. On the contrary, the slowest growth was recorded at 20 °C and pH 4.5. Moreover, the type of solute used to reduce a w had a great influence on the minimum a w at which the bacterium was able to grow. The lowest a w values for CPA-8 growth in media modified with glycerol and glucose were 0.950 and 0.960, respectively. Besides, the lowest a w for CPA-8 growth increased when the temperature decreased to 20 °C, at which CPA-8 was not able to grow at less than 0.990 a w , regardless of the type of solute. Antibiotic susceptibility tests were carried out to determine which antibiotic could affect the behavior of the bacteria and revealed that CPA-8 was clearly resistant to hygromycin. Finally, a PCR amplification assay to detect the presence of enterotoxic genes from Bacillus cereus in CPA-8 was also performed. CPA-8 gave negative results for all the genes tested except for nheA gene, which is not enough for the toxicity expression, suggesting that fruit treated with this antagonist will not be a potential vehicle for foodborne illnesses.

  3. Development and validation of an extensive growth and growth boundary model for psychrotolerant Lactobacillus spp. in seafood and meat products.

    PubMed

    Mejlholm, Ole; Dalgaard, Paw

    2013-10-15

    A new and extensive growth and growth boundary model for psychrotolerant Lactobacillus spp. was developed and validated for processed and unprocessed products of seafood and meat. The new model was developed by refitting and expanding an existing cardinal parameter model for growth and the growth boundary of lactic acid bacteria (LAB) in processed seafood (O. Mejlholm and P. Dalgaard, J. Food Prot. 70. 2485-2497, 2007). Initially, to estimate values for the maximum specific growth rate at the reference temperature of 25 °C (μref) and the theoretical minimum temperature that prevents growth of psychrotolerant LAB (T(min)), the existing LAB model was refitted to data from experiments with seafood and meat products reported not to include nitrite or any of the four organic acids evaluated in the present study. Next, dimensionless terms modelling the antimicrobial effect of nitrite, and acetic, benzoic, citric and sorbic acids on growth of Lactobacillus sakei were added to the refitted model, together with minimum inhibitory concentrations determined for the five environmental parameters. The new model including the effect of 12 environmental parameters, as well as their interactive effects, was successfully validated using 229 growth rates (μ(max) values) for psychrotolerant Lactobacillus spp. in seafood and meat products. Average bias and accuracy factor values of 1.08 and 1.27, respectively, were obtained when observed and predicted μ(max) values of psychrotolerant Lactobacillus spp. were compared. Thus, on average μ(max) values were only overestimated by 8%. The performance of the new model was equally good for seafood and meat products, and the importance of including the effect of acetic, benzoic, citric and sorbic acids and to a lesser extent nitrite in order to accurately predict growth of psychrotolerant Lactobacillus spp. was clearly demonstrated. The new model can be used to predict growth of psychrotolerant Lactobacillus spp. in seafood and meat products e.g. prediction of the time to a critical cell concentration of bacteria is considered useful for establishing the shelf life. In addition, the high number of environmental parameters included in the new model makes it flexible and suitable for product development as the effect of substituting one combination of preservatives with another can be predicted. In general, the performance of the new model was unacceptable for other types of LAB including Carnobacterium spp., Leuconostoc spp. and Weissella spp. © 2013.

  4. Climate Prediction Center - Monitoring and Data - Regional Climate Maps:

    Science.gov Websites

    ; Precipitation & Temperature > Regional Climate Maps: USA Menu Weekly 1-Month 3-Month 12-Month Weekly Total Precipitation Average Temperature Extreme Maximum Temperature Extreme Minimum Temperature Departure of Average Temperature from Normal Extreme Apparent Temperature Minimum Wind Chill Temperature

  5. On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.

  6. 40 CFR 63.1257 - Test methods and compliance procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(2), or 63.1256(h)(2)(i)(C) with a minimum residence time of 0.5 seconds and a minimum temperature of... temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B) For a...

  7. 40 CFR 63.1257 - Test methods and compliance procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(2), or 63.1256(h)(2)(i)(C) with a minimum residence time of 0.5 seconds and a minimum temperature of... temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B) For a...

  8. 40 CFR 63.1257 - Test methods and compliance procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(2), or 63.1256(h)(2)(i)(C) with a minimum residence time of 0.5 seconds and a minimum temperature of... temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B) For a...

  9. Ecophysiological characterization of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger isolated from grapes in Spanish vineyards.

    PubMed

    García-Cela, E; Crespo-Sempere, A; Ramos, A J; Sanchis, V; Marin, S

    2014-03-03

    The aim of this study was to evaluate the diversity of black aspergilli isolated from berries from different agroclimatic regions of Spain. Growth characterization (in terms of temperature and water activity requirements) of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger was carried out on synthetic grape medium. A. tubingensis and A. niger showed higher maximum temperatures for growth (>45 °C versus 40-42 °C), and lower minimum aw requirements (0.83 aw versus 0.87 aw) than A. carbonarius. No differences in growth boundaries due to their geographical origin were found within A. niger aggregate isolates. Conversely, A. carbonarius isolates from the hotter and drier region grew and produced OTA at lower aw than other isolates. However, little genetic diversity in A. carbonarius was observed for the microsatellites tested and the same sequence of β-tubulin gene was observed; therefore intraspecific variability did not correlate with the geographical origin of the isolates or with their ability to produce OTA. Climatic change prediction points to drier and hotter climatic scenarios where A. tubingensis and A. niger could be even more prevalent over A. carbonarius, since they are better adapted to extreme high temperature and drier conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Thermophilic Fungi: Their Physiology and Enzymes†

    PubMed Central

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20°C and a maximum temperature of growth extending up to 60 to 62°C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45°C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62°C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and overexpressed in heterologous fungi, and pure crystalline proteins have been obtained for elucidation of the mechanisms of their intrinsic thermostability and catalysis. By contrast, the thermal stability of the few intracellular enzymes that have been purified is comparable to or, in some cases, lower than that of enzymes from the mesophilic fungi. Although rigorous data are lacking, it appears that eukaryotic thermophily involves several mechanisms of stabilization of enzymes or optimization of their activity, with different mechanisms operating for different enzymes. PMID:10974122

  11. Estimation of minimum ventilation requirement of dairy cattle barns for different outdoor temperature and its affects on indoor temperature: Bursa case.

    PubMed

    Yaslioglu, Erkan; Simsek, Ercan; Kilic, Ilker

    2007-04-15

    In the study, 10 different dairy cattle barns with natural ventilation system were investigated in terms of structural aspects. VENTGRAPH software package was used to estimate minimum ventilation requirements for three different outdoor design temperatures (-3, 0 and 1.7 degrees C). Variation in indoor temperatures was also determined according to the above-mentioned conditions. In the investigated dairy cattle barns, on condition that minimum ventilation requirement to be achieved for -3, 0 and 1.7 degrees C outdoor design temperature and 70, 80% Indoor Relative Humidity (IRH), estimated indoor temperature were ranged from 2.2 to 12.2 degrees C for 70% IRH, 4.3 to 15.0 degrees C for 80% IRH. Barn type, outdoor design temperature and indoor relative humidity significantly (p < 0.01) affect the indoor temperature. The highest ventilation requirement was calculated for straw yard (13879 m3 h(-1)) while the lowest was estimated for tie-stall (6169.20 m3 h(-1)). Estimated minimum ventilation requirements per animal were significantly (p < 0.01) different according to the barn types. Effect of outdoor esign temperatures on minimum ventilation requirements and minimum ventilation requirements per animal was found to be significant (p < 0.05, p < 0.01). Estimated indoor temperatures were in thermoneutral zone (-2 to 20 degrees C). Therefore, one can be said that use of naturally ventilated cold dairy barns in the region will not lead to problems associated with animal comfort in winter.

  12. Suitable Environmental Ranges for Potential Coral Reef Habitats in the Tropical Ocean

    PubMed Central

    Guan, Yi; Hohn, Sönke; Merico, Agostino

    2015-01-01

    Coral reefs are found within a limited range of environmental conditions or tolerance limits. Estimating these limits is a critical prerequisite for understanding the impacts of climate change on the biogeography of coral reefs. Here we used the diagnostic model ReefHab to determine the current environmental tolerance limits for coral reefs and the global distribution of potential coral reef habitats as a function of six factors: temperature, salinity, nitrate, phosphate, aragonite saturation state, and light. To determine these tolerance limits, we extracted maximum and minimum values of all environmental variables in corresponding locations where coral reefs are present. We found that the global, annually averaged tolerance limits for coral reefs are 21.7—29.6 °C for temperature, 28.7—40.4 psu for salinity, 4.51 μmol L-1 for nitrate, 0.63 μmol L-1 for phosphate, and 2.82 for aragonite saturation state. The averaged minimum light intensity in coral reefs is 450 μmol photons m-2 s-1. The global area of potential reef habitats calculated by the model is 330.5 × 103 km2. Compared with previous studies, the tolerance limits for temperature, salinity, and nutrients have not changed much, whereas the minimum value of aragonite saturation in coral reef waters has decreased from 3.28 to 2.82. The potential reef habitat area calculated with ReefHab is about 121×103 km2 larger than the area estimated from the charted reefs, suggesting that the growth potential of coral reefs is higher than currently observed. PMID:26030287

  13. Suitable environmental ranges for potential coral reef habitats in the tropical ocean.

    PubMed

    Guan, Yi; Hohn, Sönke; Merico, Agostino

    2015-01-01

    Coral reefs are found within a limited range of environmental conditions or tolerance limits. Estimating these limits is a critical prerequisite for understanding the impacts of climate change on the biogeography of coral reefs. Here we used the diagnostic model ReefHab to determine the current environmental tolerance limits for coral reefs and the global distribution of potential coral reef habitats as a function of six factors: temperature, salinity, nitrate, phosphate, aragonite saturation state, and light. To determine these tolerance limits, we extracted maximum and minimum values of all environmental variables in corresponding locations where coral reefs are present. We found that the global, annually averaged tolerance limits for coral reefs are 21.7-29.6 °C for temperature, 28.7-40.4 psu for salinity, 4.51 μmol L-1 for nitrate, 0.63 μmol L-1 for phosphate, and 2.82 for aragonite saturation state. The averaged minimum light intensity in coral reefs is 450 μmol photons m-2 s-1. The global area of potential reef habitats calculated by the model is 330.5 × 103 km2. Compared with previous studies, the tolerance limits for temperature, salinity, and nutrients have not changed much, whereas the minimum value of aragonite saturation in coral reef waters has decreased from 3.28 to 2.82. The potential reef habitat area calculated with ReefHab is about 121×103 km2 larger than the area estimated from the charted reefs, suggesting that the growth potential of coral reefs is higher than currently observed.

  14. Frost damage in citric and olive production as the result of climate degradation

    NASA Astrophysics Data System (ADS)

    Saa Requejo, A.; Díaz Alvarez, M. C.; Tarquis, A. M.; Burgaz Moreno, F.; Garcia Moreno, R.

    2009-04-01

    Low temperature is one of the chief limiting factors in plant distribution. Freezing temperature shortens the growing season and may lower the yield and quality of any number of fruit crops. Minimum temperatures records for the Spanish region of Murcia were studied as limiting factor in fruit production. An analysis of temperature series since 1935 showed that the range of the absolute minimum temperatures (Tmin) on frost days in the target year, namely -0.5 °C to -4.0°C, was statistically similar to the range recorded in 1993, while the mean minimum temperatures (tmin) were found to have risen. The historical series also showed the mean minimum temperatures (tmin) to have increased, however. Through 1985, tmin ranged from 4.0 to -2.0 °C, depending on the area, while these limits shifted in more recent years to 7.0 - 0.5 °C. This increase in mean temperature produced that the frost episodes in March 2004 was considered by lemon, mandarin and olive producers as the worst in many years for frost damage since the minimum temperature was reached in a more sensitive phenological stage, despite the statistical evidence that similar freezing temperatures had been reached on similar dates in other years.

  15. Ring-widths of the above tree-line shrub Rhododendron reveal the change of minimum winter temperature over the past 211 years in Southwestern China

    NASA Astrophysics Data System (ADS)

    Bi, Yingfeng; Xu, Jianchu; Yang, Jinchao; Li, Zongshan; Gebrekirstos, Aster; Liang, Eryuan; Zhang, Shibao; Yang, Yang; Yang, Yongping; Yang, Xuefei

    2017-06-01

    Changes in minimum winter temperature (MWT) and their potential effects on plant growth and development have been gaining increased scientific attention. To better understand these changes across long temporal scales, the present study used dendroclimatological techniques to assess variations in MWT in Southwestern China. Using data from Rhododendron species distributed in areas above the tree-line, a regional composite chronology was generated for a 341-year period. Based on the significant negative correlation between MWT values and ring-width, the most reliable parts of this chronological data were then used to reconstruct MWT values for the past 211 years. This reconstructed MWT series showed decadal to multi-decadal fluctuations. Three distinct cold periods prevailed during 1823-1858, 1882-1891 and 1922-1965, while four warm intervals occurred in 1800-1822, 1858-1881, 1892-1921 and 1966-2011. Our reconstructed MWT reveals a warming trend over the most recent eight decades, which is in agreement with instrumental observations. However, the MWT values and rate of warming over the past seven decades did not exceed those found in the reconstructed temperature data for the past 211 years. Spatial correlations reveal that the MWT in Southwest China is strongly associated with regional temperatures in the Eastern and Central Himalaya, Northern China, and the Indian Peninsula. Larger scale climate oscillations of the Western Pacific and Northern Indian Ocean as well as the North Atlantic Oscillation probably influenced the region's temperature in the past.

  16. Optimization study for Pb(II) and COD sequestration by consortium of sulphate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Verma, Anamika; Bishnoi, Narsi R.; Gupta, Asha

    2017-09-01

    In this study, initial minimum inhibitory concentration (MIC) of Pb(II) ions was analysed to check optimum concentration of Pb(II) ions at which the growth of sulphate-reducing consortium (SRC) was found to be maximum. 80 ppm of Pb(II) ions was investigated as minimum inhibitory concentration for SRC. Influence of electron donors such as lactose, sucrose, glucose and sodium lactate was examined to investigate best carbon source for growth and activity of sulphate-reducing bacteria. Sodium lactate was found to be the prime carbon source for SRC. Later optimization of various parameters was executed using Box-Behnken design model of response surface methodology to explore the effectiveness of three independent operating variables, namely, pH (5.0-9.0), temperature (32-42 °C) and time (5.0-9.0 days), on dependent variables, i.e. protein content, precipitation of Pb(II) ions, and removal of COD by SRC biomass. Maximum removal of COD and Pb(II) was observed to be 91 and 98 %, respectively, at pH 7.0 and temperature 37 °C and incubation time 7 days. According to response surface analysis and analysis of variance, the experimental data were perfectly fitted to the quadratic model, and the interactive influence of pH, temperature and time on Pb(II) and COD removal was highly significant. A high regression coefficient between the variables and response ( r 2 = 0.9974) corroborate eminent evaluation of experimental data by second-order polynomial regression model. SEM and Fourier transform infrared analysis was performed to investigate morphology of PbS precipitates, sorption mechanism and involved functional groups in metal-free and metal-loaded biomass of SRC for Pb(II) binding.

  17. Formation of plasmonic silver nanoparticles using rapid thermal annealing at low temperature and study in reflectance reduction of Si surface

    NASA Astrophysics Data System (ADS)

    Barman, Bidyut; Dhasmana, Hrishikesh; Verma, Abhishek; Kumar, Amit; Pratap Chaudhary, Shiv; Jain, V. K.

    2017-09-01

    This work presents studies of plasmonic silver nanoparticles (AgNPs) formation at low temperatures (200 °C-300 °C) onto Si surface by sputtering followed with rapid thermal processing (RTP) for different time durations(5-30 min). The study reveals that 20 min RTP at all temperatures show minimum average size of AgNPs (60.42 nm) with corresponding reduction in reflectance of Si surface from 40.12% to mere 1.15% only in wavelength region 300-800 nm for RTP at 200 °C. A detailed supporting growth mechanism is also discussed. This low temperature technique can be helpful in achieving efficiency improvement in solar cells via reflectance reduction with additional features such as reproducibility, minimal time and very good adhesion without damaging underlying layers device parameters.

  18. A Note on the Spatio Temporal Variations in the Temperature and Relative Humidity over Akure, Ondo State, Nigeria

    NASA Astrophysics Data System (ADS)

    Eludoyin, A. O.; Akinbode, O. M.; Archibong, E. O.

    2007-07-01

    This study was carried out in one of the Administrative State Capitals in the southwestern part of Nigeria. Its aim is to serve as a baseline data for highlighting the effect of spatial distribution of settlements, population, and socioeconomic activities on urban air temperature and relative humidity. The main objective of the study is to assess the impact of urban growth on the microclimate of the administrative city. Temperature and relative humidity data from 1992 to 2001 were obtained from the three existing meteorological stations in Akure, the Administrative Capital of Ondo State, Nigeria, namely the Federal Ministry of Aviation, Akure Airport station (FMA), Federal University of Technology, Akure (FUTA) and the Federal School of Agriculture (SOA). Air temperature and relative humidity measurements along primary roads and in the built up areas were obtained from seventeen stations, using sling psychrometer. The data were subsequently analysed for spatial and temporal variations. The results obtained indicated that while the maximum, average and minimum temperatures showed significant annual variations, the spatial variations among the existing meteorological stations were not significant. The city is characterized by increasing annual mean temperatures whose maximum was significantly higher than that of Ondo town — another important town within the state. The annual mean temperatures ranged between 26.2°C and 30.4°C. Minimum and maximum temperatures varied from 12.3°C to 26°C and 22.5°C to 39.6°C, respectively while the relative humidity ranged between 27.5% and 98.2%. Urban `heat island' intensity was exhibited around central business district of the Oba market. 2007 American Institute of Physics

  19. Mycotoxin production and predictive modelling kinetics on the growth of Aspergillus flavus and Aspergillus parasiticus isolates in whole black peppercorns (Piper nigrum L).

    PubMed

    Yogendrarajah, Pratheeba; Vermeulen, An; Jacxsens, Liesbeth; Mavromichali, Evangelia; De Saeger, Sarah; De Meulenaer, Bruno; Devlieghere, Frank

    2016-07-02

    The growth and mycotoxin production of three Aspergillus flavus isolates and an Aspergillus parasiticus isolate were studied in whole black peppercorns (Piper nigrum L.) using a full factorial design with seven water activity (aw) (0.826-0.984) levels and three temperatures (22, 30 and 37°C). Growth rates and lag phases were estimated using linear regression. Diverse secondary models were assessed for their ability to describe the radial growth rate as a function of individual and combined effect of aw and temperature. Optimum radial growth rate ranged from 0.75±0.04 to 2.65±0.02mm/day for A. flavus and 1.77±0.10 to 2.50±0.10mm/day for A. parasiticus based on the Rosso cardinal estimations. Despite the growth failure of some isolates at marginal conditions, all the studied models showed good performance to predict the growth rates. Validation of the models was performed on independently derived data. The bias factors (0.73-1.03), accuracy factors (0.97-1.36) and root mean square error (0.050-0.278) show that the examined models are conservative predictors of the colony growth rate of both fungal species in black peppers. The Rosso cardinal model can be recommended to describe the individual aw effect while the extended Gibson model was the best model for describing the combined effect of aw and temperature on the growth rate of both fungal species in peppercorns. Temperature optimum ranged from 30 to 33°C, while aw optimum was 0.87-0.92 as estimated by multi-factorial cardinal model for both species. The estimated minimum temperature and aw for A. flavus and A. parasiticus for growth were 11-16°C and 0.73-0.76, respectively, hence, achieving these conditions should be considered during storage to prevent the growth of these mycotoxigenic fungal species in black peppercorns. Following the growth study, production of mycotoxins (aflatoxins B1, B2, G1, G2, sterigmatocystin and O-methyl sterigmatocystin (OMST)) was quantified using LC-MS/MS. Very small quantities of AFB1 (

  20. Texturing by cooling a metallic melt in a magnetic field.

    PubMed

    Tournier, Robert F; Beaugnon, Eric

    2009-02-01

    Processing in a magnetic field leads to the texturing of materials along an easy-magnetization axis when a minimum anisotropy energy exists at the processing temperature; the magnetic field can be applied to a particle assembly embedded into a liquid, or to a solid at a high diffusion temperature close to the melting temperature or between the liquidus and the solidus temperatures in a region of partial melting. It has been shown in many experiments that texturing is easy to achieve in congruent and noncongruent compounds by applying the field above the melting temperature T m or above the liquidus temperature of alloys. Texturing from a melt is successful when the overheating temperature is just a few degrees above T m and fails when the processing time above T m is too long or when the overheating temperature is too high; these observations indicate the presence of unmelted crystals above T m with a size depending on these two variables that act as growth nuclei. A recent model that predicts the existence of unmelted crystals above the melting temperature is used to calculate their radius in a bismuth melt.

  1. Climate change impacts on rainfall and temperature in sugarcane growing Upper Gangetic Plains of India

    NASA Astrophysics Data System (ADS)

    Verma, Ram Ratan; Srivastava, Tapendra Kumar; Singh, Pushpa

    2018-01-01

    Assessment of variability in climate extremes is crucial for managing their aftermath on crops. Sugarcane (Saccharum officinarum L.), a major C4 crop, dominates the Upper Gangetic Plain (UGP) in India and is vulnerable to both direct and indirect effects of changes in temperature and rainfall. The present study was taken up to assess the weekly, monthly, seasonal, and annual trends of rainfall and temperature variability during the period 1956-2015 (60 years) for envisaging the probabilities of different levels of rainfall suitable for sugarcane in UGP in the present climate scenario. The analysis revealed that 87% of total annual rainfall was received during southwest monsoon months (June-September) while post-monsoon (October to February) and pre-monsoon months (March-May) accounted for only 9.4 and 3.6%, respectively. There was a decline in both monthly and annual normal rainfall during the period 1986-2015 as compared to 1956-1985, and an annual rainfall deficiency of 205.3 mm was recorded. Maximum monthly normal rainfall deficiencies of 52.8, 84.2, and 54.0 mm were recorded during the months of July, August, and September, respectively, while a minimum rainfall deficiency of 2.2 mm was observed in November. There was a decline by 196.3 mm in seasonal normal rainfall during June-September (kharif). The initial probability of a week going dry was higher (> 70%) from the 1st to the 25th week; however, standard meteorological weeks (SMW) 26 to 37 had more than 50% probability of going wet. The normal annual maximum temperature (Tmax) decreased by 0.4 °C while normal annual minimum temperatures (Tmin) increased by 0.21 °C. Analysis showed that there was an increase in frequency of drought from 1986 onwards in the zone and a monsoon rainfall deficit by about 21.25% during June-September which coincided with tillering and grand growth stage of sugarcane. The imposed drought during the growth and elongation phase is emerging as a major constraint in realizing high cane productivity in the zone. Strategies for mitigating the negative impacts of rainfall and temperature variability on sugarcane productivity through improvement in existing adaptation strategies are proposed.

  2. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Treesearch

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  3. Variation of maximum tree height and annual shoot growth of Smith fir at various elevations in the Sygera Mountains, southeastern Tibetan Plateau.

    PubMed

    Wang, Yafeng; Čufar, Katarina; Eckstein, Dieter; Liang, Eryuan

    2012-01-01

    Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range.

  4. Simulation of hydrodynamics, temperature, and dissolved oxygen in Table Rock Lake, Missouri, 1996-1997

    USGS Publications Warehouse

    Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.

    2003-01-01

    Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.

  5. Forest management under changing climate conditions: Is timing a tool for Sustainable Forest Management? Relevant questions for research development

    NASA Astrophysics Data System (ADS)

    D'Aprile, Fabrizio; McShane, Paul; Tapper, Nigel

    2013-04-01

    Change of climate conditions influence energy fluxes applicable to forest ecosystems. These affect cycles of nutrients and materials, primary productivity of the ecosystem, biodiversity, ecological functionality and, consequently, carbon equilibria of the forest ecosystem. Temporal factors influence physical, biological, ecological, and climatic processes and functions. For example, seasonality, cycles, periodicity, and trends in climate variables; tree growth, forest growth, and forest metabolic activities (i.e., photosynthesis and respiration) are commonly known to be time-related. In tropical forests, the impacts of changing climate conditions may exceed temperature and/or precipitation thresholds critical to forest tree growth or health. Historically, forest management emphasises growth rates and financial returns as affected by species and site. Until recently, the influence of climate variability on growth dynamics has not been influential in forest planning and management. Under this system, especially in climatic and forest regions where most of species are stenoecious, periodical wood harvesting may occur in any phase of growth (increasing, decreasing, peak, and trough). This scenario presents four main situations: a) harvesting occurs when the rate of growth is decreasing: future productivity is damaged; the minimum biomass capital may be altered, and CO2 storage is negatively affected; b) harvesting occurs during a trough of the rate of growth: the minimum biomass capital necessary to preserve the resilience of the forest is damaged; the damage can be temporary (decades) or permanent; CO2 storage capacity is deficient - which may be read as an indirect emission of CO2 since the balance appears negative; c) harvesting occurs when the rate of growth is increasing: the planned wood mass can be used without compromising the resilience and recovery of the forest; CO2 storage remains increasing; d) harvesting occurs during a peak period of growth: the wood mass harvested can be even higher than planned, and the rate of CO2 storage can be above the average. A real risk for SFM under changing climatic conditions is that negative effects may be amplified; critical thresholds of temperature and/or rainfall for tree growth and stress may be exceeded with impacts on growth response, resilience, and CO2 balance that are not completely known. Furthermore, temporal changes in silvicultural and harvesting operations may lead to increased carbon emissions. Under this scenario and the consequent risks to SFM forestry operations should be planned or scheduled in periods when climate variables influencing tree growth and stress are within the relative thresholds. In this way, silvicultural operations and harvesting are going to be optimised to climate variability and forest growth responses, rather than just forest timber production.

  6. Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains.

    PubMed

    Sun, Changfeng; Liu, Yu

    2016-01-01

    The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii) from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days), dekad (10 days) and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature). Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20-35 (from April 6 to June 24) rather than the well-known April-June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis) from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28-32 (from May 16 to June 9). The maximum temperature of pentads 28-33 (from May 16 to June 14) was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling.

  7. Adverse Climatic Conditions and Impact on Construction Scheduling and Cost

    DTIC Science & Technology

    1988-01-01

    ABBREVIATIONS ABS MAX MAX TEMP ...... Absolute maximum maximum temperature ABS MIN MIN TEMP ...... Absolute minimum minimum temperature BTU...o Degrees Farenheit MEAN MAX TEMP o.................... Mean maximum temperature MEAN MIN TEMP...temperatures available, a determination had to be made as to whether forecasts were based on absolute , mean, or statistically derived temperatures

  8. Seasonal and life-phase related differences in growth in Scarus ferrugineus on a southern Red Sea fringing reef.

    PubMed

    Afeworki, Y; Videler, J J; Berhane, Y H; Bruggemann, J H

    2014-05-01

    Temporal trends in growth of the rusty parrotfish Scarus ferrugineus were studied on a southern Red Sea fringing reef that experiences seasonal changes in environmental conditions and benthic algal resources. Length increment data from tagging and recapture were compared among periods and sexes and modelled using GROTAG, a von Bertalanffy growth model. The growth pattern of S. ferrugineus was highly seasonal with a maximum occurring between April and June and a minimum between December and March. Body condition followed the seasonal variation in growth, increasing from April to June and decreasing from December to March. The season of maximum growth coincided with high irradiation, temperature increases and peak abundance of the primary food source, the epilithic algal community. There was a decline in growth rate during summer (July to October) associated with a combination of extreme temperatures and lowered food availability. There were strong sexual size dimorphism (SSD) and life-history traits. Terminal-phase (TP) males achieved larger asymptotic lengths than initial-phase individuals (IP) (L(∞) 34·55 v. 25·12 cm) with growth coefficients (K) of 0·26 and 0·38. The TPs were growing four times as fast as IPs of similar size. Three individuals changed from IP to TP while at liberty and grew eight times faster than IPs of similar size, suggesting that sex change in S. ferrugineus is accompanied by a surge in growth rate. The SSD in S. ferrugineus thus coincided with fast growth that started during sex change and continued into the TP. Faster growth during sex change suggests that the cost associated with sex change is limited. © 2014 The Fisheries Society of the British Isles.

  9. Evaluation of the Antibacterial Potential of Liquid and Vapor Phase Phenolic Essential Oil Compounds against Oral Microorganisms

    PubMed Central

    Wu, Chi-Hao; Ko, Shun-Yao; Chen, Michael Yuanchien; Shih, Yin-Hua; Shieh, Tzong-Ming; Chuang, Li-Chuan; Wu, Ching-Yi

    2016-01-01

    The aim of the present study was to determine the antibacterial activities of the phenolic essential oil (EO) compounds hinokitiol, carvacrol, thymol, and menthol against oral pathogens. Aggregatibacter actinomycetemcomitans, Streptococcus mutans, Methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia. coli were used in this study. The minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), bacterial growth curves, temperature and pH stabilities, and synergistic effects of the liquid and vapor EO compounds were tested. The MIC/MBC of the EO compounds, ranging from the strongest to weakest, were hinokitiol (40–60 μg/mL/40-100 μg/mL), thymol (100–200 μg/mL/200-400 μg/mL), carvacrol (200–400 μg/mL/200-600 μg/mL), and menthol (500-more than 2500 μg/mL/1000-more than 2500 μg/mL). The antibacterial activities of the four EO phenolic compound based on the agar diffusion test and bacterial growth curves showed that the four EO phenolic compounds were stable under different temperatures for 24 h, but the thymol activity decreased when the temperature was higher than 80°C. The combination of liquid carvacrol with thymol did not show any synergistic effects. The activities of the vaporous carvacrol and thymol were inhibited by the presence of water. Continual violent shaking during culture enhanced the activity of menthol. Both liquid and vaporous hinokitiol were stable at different temperatures and pH conditions. The combination of vaporous hinokitiol with zinc oxide did not show synergistic effects. These results showed that the liquid and vapor phases of hinokitiol have strong anti-oral bacteria abilities. Hinokitiol has the potential to be applied in oral health care products, dental materials, and infection controls to exert antimicrobial activity. PMID:27681039

  10. Supporting Climatic Trends of Corn and Soybean Production in the USA

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cherkauer, K. A.; Verdin, J. P.

    2010-12-01

    The United States of America (USA) is a major source of corn and soybeans, producing about 39 percent of the world’s corn and 50 percent of world’s soybean supply. The north central states, including parts of the Midwestern US and the Great Plains form what is commonly described as the “Corn Belt” and consist of the most productive grain growing region in the United States. Changes in climate, including precipitation and temperature, are being observed throughout the world, and the Corn Belt region of the US is not immune posing a potential threat to global food security. We conducted a retrospective analysis of observed climate variables and crop production statistics to evaluate if observed climatic trends are having a positive or negative effect on corn and soybean production in the US. We selected climate indices based on gridded daily precipitation, maximum and minimum air temperature data from the National Climatic Data Center (NCDC) for the period of 1920-2009 and for 13 states in the Corn Belt region. We used the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for different periods overlapping the important seasons for crop growths, such as the planting (April-May), grain-filling (June-August), and harvesting (September -October) seasons. We estimated the seasonal average of maximum and minimum daily temperatures to identify the historic trends and variability in air temperature during the key crop-growth seasons. Extreme warm temperatures can affect crop growth and yields adversely; therefore, cumulative maximum air temperature above the 90th percentiles (e.g. Cumulative Heat Index) was estimated for each growing period. We evaluated historic trends and variability of areal extents of severe or extreme droughts along with the areal extents facing the high cumulative heat stress. Our results showed that climatic extremes (e.g. droughts and heat stress) that occurred during the period of June - August (JJA), affected the yields of corn and soybeans most severely. High moisture and low heat stress during the JJA period favored crop yields, while low moisture and high heat conditions during the planting season (April-May) increased yields. Results also indicated that this part of the US is trending towards lower heat stress and drought extents, and higher moisture conditions during the JJA period. Therefore, in future, if the present trends persist, we expect the climate will more supportive of increased corn and soybean yields.

  11. Candida parapsilosis as a Potent Biocontrol Agent against Growth and Aflatoxin Production by Aspergillus Species

    PubMed Central

    Niknejad, F; Zaini, F; Faramarzi, MA; Amini, M; Kordbacheh, P; Mahmoudi, M; Safara, M

    2012-01-01

    Background: Aflatoxin contamination of food and feed stuff is a serious health problem and significant economic concerns. In the present study, the inhibitory effect of Candida parapsilosis IP1698 on mycelial growth and aflatoxin production in aflatoxigenic strains of Aspergillus species was investigated. Methods: Mycelial growth inhibitions of nine strains of aflatoxigenic and non-aflatoxigenic Aspergillus species in the presence of C. parapsilosis investigated by pour plate technique at different pH, temperature and time of incubation. Reduction of aflatoxin was evaluated in co-cultured fungi in yeast extract sucrose broth after seven days of incubation using HPLC method. The data were analyzed by SPSS 11.5. Results: The presence of the C. parapsilosis at different pH did not affect significantly the growth rate of Aspergillus isolates. On the other hand, temperature and time of incubation showed to be significantly effective when compared to controls without C. parapsilosis (P≤0.05). In aflatoxigenic strains, minimum percentage of reductions in total aflatoxin and B1, B2, G1, G2 fractions were 92.98, 92.54, 77.48, 54.54 and 72.22 and maximum percentage of reductions were 99.59, not detectable, 94.42, and not detectable in both G1 and G2, respectively. Conclusion: C. parapsilosis might employ as a good biocontrol agent against growth and aflatoxin production by aflatoxigenic Aspergillus species PMID:23308351

  12. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  13. Analysis of temperature trends in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Tosic, Ivana; Gavrilov, Milivoj; Unkašević, Miroslava; Marković, Slobodan; Petrović, Predrag

    2017-04-01

    An analysis of air temperature trends in Northern Serbia for the annual and seasonal time series is performed for two periods: 1949-2013 and 1979-2013. Three data sets of surface air temperatures: monthly mean temperatures, monthly maximum temperatures, and monthly minimum temperatures are analyzed at 9 stations that have altitudes varying between 75 m and 102 m. Monthly mean temperatures are obtained as the average of the daily mean temperatures, while monthly maximum (minimum) temperatures are the maximum (minimum) values of daily temperatures in corresponding month. Positive trends were found in 29 out of 30 time series, and the negative trend was found only in winter during the period 1979-2013. Applying the Mann-Kendall test, significant positive trends were found in 15 series; 7 in the period 1949-2013 and 8 in the period 1979-2013; and no significant trend was found in 15 series. Significant positive trends are dominated during the year, spring, and summer, where it was found in 14 out of 18 cases. Significant positive trends were found 7, 5, and 3 times in mean, maximum and minimum temperatures, respectively. It was found that the positive temperature trends are dominant in Northern Serbia.

  14. Impact of climate change on maize potential productivity and the potential productivity gap in southwest China

    NASA Astrophysics Data System (ADS)

    He, Di; Wang, Jing; Dai, Tong; Feng, Liping; Zhang, Jianping; Pan, Xuebiao; Pan, Zhihua

    2014-12-01

    The impact of climate change on maize potential productivity and the potential productivity gap in Southwest China (SWC) are investigated in this paper. We analyze the impact of climate change on the photosynthetic, light-temperature, and climatic potential productivity of maize and their gaps in SWC, by using a crop growth dynamics statistical method. During the maize growing season from 1961 to 2010, minimum temperature increased by 0.20°C per decade ( p < 0.01) across SWC. The largest increases in average and minimum temperatures were observed mostly in areas of Yunnan Province. Growing season average sunshine hours decreased by 0.2 h day-1 per decade ( p < 0.01) and total precipitation showed an insignificant decreasing trend across SWC. Photosynthetic potential productivity decreased by 298 kg ha-1 per decade ( p < 0.05). Both light-temperature and climatic potential productivity decreased ( p < 0.05) in the northeast of SWC, whereas they increased ( p < 0.05) in the southwest of SWC. The gap between light-temperature and climatic potential productivity varied from 12 to 2729 kg ha-1, with the high value areas centered in northern and southwestern SWC. Climatic productivity of these areas reached only 10%-24% of the light-temperature potential productivity, suggesting that there is great potential to increase the maize potential yield by improving water management in these areas. In particular, the gap has become larger in the most recent 10 years. Sensitivity analysis shows that the climatic potential productivity of maize is most sensitive to changes in temperature in SWC. The findings of this study are helpful for quantification of irrigation water requirements so as to achieve maximum yield potentials in SWC.

  15. Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain

    Treesearch

    Zachary A. Holden; John T. Abatzoglou; Charles H. Luce; L. Scott Baggett

    2011-01-01

    Available air temperature models do not adequately account for the influence of terrain on nocturnal air temperatures. An empirical model for night time air temperatures was developed using a network of one hundred and forty inexpensive temperature sensors deployed across the Bitterroot National Forest, Montana. A principle component analysis (PCA) on minimum...

  16. [Leaf water potential of spring wheat and field pea under different tillage patterns and its relationships with environmental factors].

    PubMed

    Zhang, Ming; Zhang, Ren-Zhi; Cai, Li-Qun

    2008-07-01

    Based on a long-term experiment, the leaf water potential of spring wheat and field pea, its relationships with environmental factors, and the diurnal variations of leaf relative water content and water saturation deficient under different tillage patterns were studied. The results showed that during whole growth period, field pea had an obviously higher leaf water potential than spring wheat, but the two crops had similar diurnal variation trend of their leaf water potential, i.e., the highest in early morning, followed by a descent, and a gradual ascent after the descent. For spring wheat, the maximum leaf water potential appeared at its jointing and heading stages, followed by at booting and flowering stages, and the minimum appeared at filling stage. For field pea, the maximum leaf water potential achieved at squaring stage, followed by at branching and flowering stages, and the minimum was at podding stage. The leaf relative water content of spring wheat was the highest at heading stage, followed by at jointing and flowering stages, and achieved the minimum at filling stage; while the water saturation deficient was just in adverse. With the growth of field pea, its leaf relative water content decreased, but leaf water saturation deficient increased. The leaf water potential of both spring wheat and field pea had significant correlations with environmental factors, including soil water content, air temperature, solar radiation, relative air humidity, and air water potential. Path analysis showed that the meteorological factor which had the strongest effect on the diurnal variation of spring wheat' s and field pea' s leaf water potential was air water potential and air temperature, respectively. Compared with conventional tillage, the protective tillage patterns no-till, no-till plus straw mulching, and conventional tillage plus straw returning increased the leaf water potential and relative water content of test crops, and the effect of no-till plus straw mulching was most significant.

  17. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    PubMed

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Projections of Future Summer Weather in Seoul and Their Impacts on Urban Agriculture

    NASA Astrophysics Data System (ADS)

    Kim, S. O.; Kim, J. H.; Yun, J. I.

    2015-12-01

    Climate departure from the past variability was projected to start in 2042 for Seoul. In order to understand the implication of climate departure in Seoul for urban agriculture, we evaluated the daily temperature for the June-September period from 2041 to 2070, which were projected by the RCP8.5 climate scenario. These data were analyzed with respect to climate extremes and their effects on growth of hot pepper (Capsicum annuum), one of the major crops in urban farming. The mean daily maximum and minimum temperatures in 2041-2070 approached to the 90th percentile in the past 30 years (1951- 1980). However, the frequency of extreme events such as heat waves and tropical nights appeared to exceed the past variability. While the departure of mean temperature might begin in or after 2040, the climate departure in the sense of extreme weather events seems already in progress. When the climate scenario data were applied to the growth and development of hot pepper, the departures of both planting date and harvest date are expected to follow those of temperature. However, the maximum duration for hot pepper cultivation, which is the number of days between the first planting and the last harvest, seems to have already deviated from the past variability.

  19. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    2009-07-01

    Analyses of supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle performance have largely settled on the recompression supercritical cycle (or Feher cycle) incorporating a flow split between the main compressor downstream of heat rejection, a recompressing compressor providing direct compression without heat rejection, and high and low temperature recuperators to raise the effectiveness of recuperation and the cycle efficiency. Alternative cycle layouts have been previously examined by Angelino (Politecnico, Milan), by MIT (Dostal, Hejzlar, and Driscoll), and possibly others but not for sodium-cooled fast reactors (SFRs) operating at relatively low core outlet temperature. Thus, the present authors could not be suremore » that the recompression cycle is an optimal arrangement for application to the SFR. To ensure that an advantageous alternative layout has not been overlooked, several alternative cycle layouts have been investigated for a S-CO{sub 2} Brayton cycle coupled to the Advanced Burner Test Reactor (ABTR) SFR preconceptual design having a 510 C core outlet temperature and a 470 C turbine inlet temperature to determine if they provide any benefit in cycle performance (e.g., enhanced cycle efficiency). No such benefits were identified, consistent with the previous examinations, such that attention was devoted to optimizing the recompression supercritical cycle. The effects of optimizing the cycle minimum temperature and pressure are investigated including minimum temperatures and/or pressures below the critical values. It is found that improvements in the cycle efficiency of 1% or greater relative to previous analyses which arbitrarily fixed the minimum temperature and pressure can be realized through an optimal choice of the combination of the minimum cycle temperature and pressure (e.g., for a fixed minimum temperature there is an optimal minimum pressure). However, this leads to a requirement for a larger cooler for heat rejection which may impact the tradeoff between efficiency and capital cost. In addition, for minimum temperatures below the critical temperature, a lower heat sink temperature is required the availability of which is dependent upon the climate at the specific plant site.« less

  20. Annual minimum temperature variations in early 21st century in Punjab, Pakistan

    NASA Astrophysics Data System (ADS)

    Jahangir, Misbah; Maria Ali, Syeda; Khalid, Bushra

    2016-01-01

    Climate change is a key emerging threat to the global environment. It imposes long lasting impacts both at regional and national level. In the recent era, global warming and extreme temperatures have drawn great interest to the scientific community. As in a past century considerable increase in global surface temperatures have been observed and predictions revealed that it will continue in the future. In this regard, current study mainly focused on analysis of regional climatic change (annual minimum temperature trends and its correlation with land surface temperatures in the early 21st century in Punjab) for a period of 1979-2013. The projected model data European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) has been used for eight Tehsils of Punjab i.e., annual minimum temperatures and annual seasonal temperatures. Trend analysis of annual minimum and annual seasonal temperature in (Khushab, Noorpur, Sargodha, Bhalwal, Sahiwal, Shahpur, Sillanwali and Chinoit) tehsils of Punjab was carried out by Regression analysis and Mann-Kendall test. Landsat 5 Thematic Mapper (TM) data was used in comparison with Model data for the month of May from the years 2000, 2009 and 2010. Results showed that no significant trends were observed in annual minimum temperature. A significant change was observed in Noorpur, Bhalwal, Shahpur, Sillanwali, Sahiwal, Chinoit and Sargodha tehsils during spring season, which indicated that this particular season was a transient period of time.

  1. Possible future changes in South East Australian frost frequency: an inter-comparison of statistical downscaling approaches

    NASA Astrophysics Data System (ADS)

    Crimp, Steven; Jin, Huidong; Kokic, Philip; Bakar, Shuvo; Nicholls, Neville

    2018-04-01

    Anthropogenic climate change has already been shown to effect the frequency, intensity, spatial extent, duration and seasonality of extreme climate events. Understanding these changes is an important step in determining exposure, vulnerability and focus for adaptation. In an attempt to support adaptation decision-making we have examined statistical modelling techniques to improve the representation of global climate model (GCM) derived projections of minimum temperature extremes (frosts) in Australia. We examine the spatial changes in minimum temperature extreme metrics (e.g. monthly and seasonal frost frequency etc.), for a region exhibiting the strongest station trends in Australia, and compare these changes with minimum temperature extreme metrics derived from 10 GCMs, from the Coupled Model Inter-comparison Project Phase 5 (CMIP 5) datasets, and via statistical downscaling. We compare the observed trends with those derived from the "raw" GCM minimum temperature data as well as examine whether quantile matching (QM) or spatio-temporal (spTimerQM) modelling with Quantile Matching can be used to improve the correlation between observed and simulated extreme minimum temperatures. We demonstrate, that the spTimerQM modelling approach provides correlations with observed daily minimum temperatures for the period August to November of 0.22. This represents an almost fourfold improvement over either the "raw" GCM or QM results. The spTimerQM modelling approach also improves correlations with observed monthly frost frequency statistics to 0.84 as opposed to 0.37 and 0.81 for the "raw" GCM and QM results respectively. We apply the spatio-temporal model to examine future extreme minimum temperature projections for the period 2016 to 2048. The spTimerQM modelling results suggest the persistence of current levels of frost risk out to 2030, with the evidence of continuing decadal variation.

  2. Purification and Thermal Dependence of Glutathione Reductase from Two Forage Legume Species 1

    PubMed Central

    Kidambi, Saranga P.; Mahan, James R.; Matches, Arthur G.

    1990-01-01

    Alfalfa (Medicago sativa L.) and sainfoin (Onobrychis viciifolia Scop.) are forage legumes that differ in their responses to high and low temperature stresses. Thermal limitations on the function of glutathione reductase (EC 1.6.4.2) could adversely affect the ability of the plant to cope with adverse temperatures. Our objectives were to (a) purify glutathione reductase from `Cimarron' alfalfa and `PI 212241' sainfoin and (b) investigate the intraspecies variation in the thermal dependency of glutathione reductase from each of three cultivars of alfalfa and two cultivars and an introduction of sainfoin. Glutathione reductase was purified 1222-and 1948-fold to a specific activity of 281 and 273 units per milligram of protein, from one species each of alfalfa and sainfoin, respectively. The relative molecular mass of the protein was approximately 140 kilodaltons with subunits of 57 and 37 kilodaltons under denaturing conditions. The activation energies were approximately 50 kilojoules per mole for both species. Over a 5 to 45°C temperature gradient, large variation among species and genotypes within species was found for: (a) the minimum apparent Michaelis constant (0.6-2.1 micromoles of NADPH), (b) the temperature at which the minimum apparent Michaelis constant was observed (10-25°C), and (c) the thermal kinetic windows (6-19°C width). Future studies will focus on relating the thermal dependence of the Michaelis constant of the glutathione reductases and plant growth rates and forage quality of these species throughout the growing season. PMID:16667283

  3. On the impacts of computing daily temperatures as the average of the daily minimum and maximum temperatures

    NASA Astrophysics Data System (ADS)

    Villarini, Gabriele; Khouakhi, Abdou; Cunningham, Evan

    2017-12-01

    Daily temperature values are generally computed as the average of the daily minimum and maximum observations, which can lead to biases in the estimation of daily averaged values. This study examines the impacts of these biases on the calculation of climatology and trends in temperature extremes at 409 sites in North America with at least 25 years of complete hourly records. Our results show that the calculation of daily temperature based on the average of minimum and maximum daily readings leads to an overestimation of the daily values of 10+ % when focusing on extremes and values above (below) high (low) thresholds. Moreover, the effects of the data processing method on trend estimation are generally small, even though the use of the daily minimum and maximum readings reduces the power of trend detection ( 5-10% fewer trends detected in comparison with the reference data).

  4. Detection of severe Midwest thunderstorms using geosynchronous satellite data

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Markus, M. J.; Fenn, D. D.

    1985-01-01

    In the present exploration of the effectiveness of severe thunderstorm detection in the Midwestern region of the U.S. by means of approximately 5-min interval geosynchronous satellite data, thunderstorms are defined in IR data as points of relative minimum in brightness temperature T(B) having good time continuity and exhibiting a period of rapid growth. The four parameters of rate of T(B) decrease in the upper troposphere and stratosphere, isotherm expansion, and storm lifetime minimum T(B), are shown to be statistically related to the occurrence of severe weather on four case study days and are combined into a Thunderstorm Index which varies among values from 1 to 9. Storms rating higher than 6 have a much higher probability of severe weather reports, yielding a warning time lead of 15 min for hail and 30 min for the first tornado report.

  5. Effect of temperature on the anodizing process of aluminum alloy AA 5052

    NASA Astrophysics Data System (ADS)

    Theohari, S.; Kontogeorgou, Ch.

    2013-11-01

    The effect of temperature (10-40 °C) during the anodizing process of AA 5052 for 40 min in 175 g/L sulfuric acid solution at constant voltage (15 V) was studied in comparison with pure aluminum. The incorporated magnesium species in the barrier layer result in the further increase of the minimum current density passed during anodizing, as the temperature increases, by about 42% up to 30 °C and then by 12% up to 40 °C. Then during the anodizing process for 40 min a blocking effect on oxide film growth was gradually observed as the temperature increased until 30 °C. The results of EDAX analysis on thick films reveal that the mean amount of the magnesium species inside the film is about 50-70% less than that in the bulk alloy, while it is higher at certain locations adjacent to the film surface at 30 °C. The increase of anodizing temperature does not influence the porosity of thin films (formed for short times) on pure aluminum, while it reduces it on the alloy. At 40 °C the above mentioned blocking effects disappear. It means that the presence of magnesium species causes an impediment to the effect of temperature on iss, on the film thickness and on the porosity of thin films, only under conditions where film growth takes place without significant loss of the anodizing charge to side reactions.

  6. The natural emergence of asymmetric tree-shaped pathways for cooling of a non-uniformly heated domain

    NASA Astrophysics Data System (ADS)

    Cetkin, Erdal; Oliani, Alessandro

    2015-07-01

    Here, we show that the peak temperature on a non-uniformly heated domain can be decreased by embedding a high-conductivity insert in it. The trunk of the high-conductivity insert is in contact with a heat sink. The heat is generated non-uniformly throughout the domain or concentrated in a square spot of length scale 0.1 L0, where L0 is the length scale of the non-uniformly heated domain. Peak and average temperatures are affected by the volume fraction of the high-conductivity material and by the shape of the high-conductivity pathways. This paper uncovers how varying the shape of the symmetric and asymmetric high-conductivity trees affects the overall thermal conductance of the heat generating domain. The tree-shaped high-conductivity inserts tend to grow toward where the heat generation is concentrated in order to minimize the peak temperature, i.e., in order to minimize the resistances to the heat flow. This behaviour of high-conductivity trees is alike with the root growth of the plants and trees. They also tend to grow towards sunlight, and their roots tend to grow towards water and nutrients. This paper uncovers the similarity between biological trees and high-conductivity trees, which is that trees should grow asymmetrically when the boundary conditions are non-uniform. We show here even though all the trees have the same objectives (minimum flow resistance), their shape should not be the same because of the variation in boundary conditions. To sum up, this paper shows that there is a high-conductivity tree design corresponding to minimum peak temperature with fixed constraints and conditions. This result is in accord with the constructal law which states that there should be an optimal design for a given set of conditions and constraints, and this design should be morphed in order to ensure minimum flow resistances as conditions and constraints change.

  7. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    PubMed

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables measured suggests that tree carbon allocation to coarse roots is independent of annual climate variability. The greater number of missing rings in branches highlights the fact that canopy development is a low priority for carbon allocation during poor growing conditions.

  8. Recent Invasion of the Symbiont-Bearing Foraminifera Pararotalia into the Eastern Mediterranean Facilitated by the Ongoing Warming Trend.

    PubMed

    Schmidt, Christiane; Morard, Raphael; Almogi-Labin, Ahuva; Weinmann, Anna E; Titelboim, Danna; Abramovich, Sigal; Kucera, Michal

    2015-01-01

    The eastern Mediterranean is a hotspot of biological invasions. Numerous species of Indo-pacific origin have colonized the Mediterranean in recent times, including tropical symbiont-bearing foraminifera. Among these is the species Pararotalia calcariformata. Unlike other invasive foraminifera, this species was discovered only two decades ago and is restricted to the eastern Mediterranean coast. Combining ecological, genetic and physiological observations, we attempt to explain the recent invasion of this species in the Mediterranean Sea. Using morphological and genetic data, we confirm the species attribution to P. calcariformata McCulloch 1977 and identify its symbionts as a consortium of diatom species dominated by Minutocellus polymorphus. We document photosynthetic activity of its endosymbionts using Pulse Amplitude Modulated Fluorometry and test the effects of elevated temperatures on growth rates of asexual offspring. The culturing of asexual offspring for 120 days shows a 30-day period of rapid growth followed by a period of slower growth. A subsequent 48-day temperature sensitivity experiment indicates a similar developmental pathway and high growth rate at 28°C, whereas an almost complete inhibition of growth was observed at 20°C and 35°C. This indicates that the offspring of this species may have lower tolerance to cold temperatures than what would be expected for species native to the Mediterranean. We expand this hypothesis by applying a Species Distribution Model (SDM) based on modern occurrences in the Mediterranean using three environmental variables: irradiance, turbidity and yearly minimum temperature. The model reproduces the observed restricted distribution and indicates that the range of the species will drastically expand westwards under future global change scenarios. We conclude that P. calcariformata established a population in the Levant because of the recent warming in the region. In line with observations from other groups of organisms, our results indicate that continued warming of the eastern Mediterranean will facilitate the invasion of more tropical marine taxa into the Mediterranean, disturbing local biodiversity and ecosystem structure.

  9. Influence of Amphibian Antimicrobial Peptides and Short Lipopeptides on Bacterial Biofilms Formed on Contact Lenses

    PubMed Central

    Maciejewska, Magdalena; Bauer, Marta; Neubauer, Damian; Kamysz, Wojciech; Dawgul, Malgorzata

    2016-01-01

    The widespread use of contact lenses is associated with several complications, including ocular biofilm-related infections. They are very difficult to manage with standard antimicrobial therapies, because bacterial growth in a biofilm is associated with an increased antibiotic resistance. The principal aim of this study was to evaluate the efficacy of antimicrobial peptides (AMPs) in eradication of bacterial biofilms formed on commercially available contact lenses. AMPs were synthesized according to Fmoc/tBu chemistry using the solid-phase method. Minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of the compounds were determined. Anti-biofilm activity of the antimicrobial peptides determined at different temperatures (25 °C and 37 °C) were compared with the effectiveness of commercially available contact lens solutions. All of the tested compounds exhibited stronger anti-biofilm properties as compared to those of the tested lens solutions. The strongest activity of AMPs was noticed against Gram-positive strains at a temperature of 25 °C. Conclusions: The results of our experiments encourage us toward further studies on AMPs and their potential application in the prophylaxis of contact lens-related eye infections. PMID:28773992

  10. Aerosol reactor production of uniform submicron powders

    NASA Technical Reports Server (NTRS)

    Flagan, Richard C. (Inventor); Wu, Jin J. (Inventor)

    1991-01-01

    A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

  11. Aerosol reactor production of uniform submicron powders

    DOEpatents

    Flagan, Richard C.; Wu, Jin J.

    1991-02-19

    A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

  12. Morphology, surface temperatures, and northern limits of columnar cacti in the Sonoran Desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobel, P.S.

    1980-02-01

    Interspecific morphological differences and intraspecific morphological changes with latitude were evaluated to help examine the distributional ranges of Carnegiea gigantea, Lemaireocereus thurberi, Lophocereus schottii, Pachycereus pecten-aboriginum, and P. pringlei in the Sonoran Desert (US and Mexico). A computer model, which predicted the average surface temperature of the stem within 1/sup 0/C of that measured hourly throughout a 24-h period, was particularly useful in studying the thermal relations of the stem apex, where the lowest surface temperature occurred. Simulated increases in stem diameter raised the minimum apical temperature for C. gigantea and may help account for the extension of its rangemore » to higher latitudes than the other species studied. However, diameter increases led to a slight decrease in minimum apical temperatures for Lophocereus schottii. The immature stems of L. schottii are morphologically distinct from the mature stems, which caused minimum apical temperatures to be 1.6/sup 0/C lower for the immature stems under given environmental conditions; thus, freezing damage to the immature stems could limit the northward extension of the range of this species. As the apical pubescence in the simulations was increased up to the normal amount (10 mm), the minimum apical temperature for the stem of C. gigantea increased 2.4/sup 0/C. Simulated increases in spine shading of the apexalso raised the minimum apical temperatures, again indicating the influence of morphological features on the temperature of the meristematic region.« less

  13. Responding to bioterror concerns by increasing milk pasteurization temperature would increase estimated annual deaths from listeriosis.

    PubMed

    Stasiewicz, Matthew J; Martin, Nicole; Laue, Shelley; Gröhn, Yrjo T; Boor, Kathryn J; Wiedmann, Martin

    2014-05-01

    In a 2005 analysis of a potential bioterror attack on the food supply involving a botulinum toxin release into the milk supply, the authors recommended adopting a toxin inactivation step during milk processing. In response, some dairy processors increased the times and temperatures of pasteurization well above the legal minimum for high temperature, short time pasteurization (72 °C for 15 s), with unknown implications for public health. The present study was conducted to determine whether an increase in high temperature, short time pasteurization temperature would affect the growth of Listeria monocytogenes, a potentially lethal foodborne pathogen normally eliminated with proper pasteurization but of concern when milk is contaminated postpasteurization. L. monocytogenes growth during refrigerated storage was higher in milk pasteurized at 82 °C than in milk pasteurized at 72 °C. Specifically, the time lag before exponential growth was decreased and the maximum population density was increased. The public health impact of this change in pasteurization was evaluated using a quantitative microbial risk assessment of deaths from listeriosis attributable to consumption of pasteurized fluid milk that was contaminated postprocessing. Conservative estimates of the effect of pasteurizing all fluid milk at 82 °C rather than 72 °C are that annual listeriosis deaths from consumption of this milk would increase from 18 to 670, a 38-fold increase (8.7- to 96-fold increase, 5th and 95th percentiles). These results exemplify a situation in which response to a rare bioterror threat may have the unintended consequence of putting the public at increased risk of a known, yet severe harm and illustrate the need for a paradigm shift toward multioutcome risk benefit analyses when proposing changes to established food safety practices.

  14. 40 CFR 63.1365 - Test methods and initial compliance procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... design minimum and average temperature in the combustion zone and the combustion zone residence time. (B... establish the design minimum and average flame zone temperatures and combustion zone residence time, and... carbon bed temperature after regeneration, design carbon bed regeneration time, and design service life...

  15. Rising above the Minimum Wage.

    ERIC Educational Resources Information Center

    Even, William; Macpherson, David

    An in-depth analysis was made of how quickly most people move up the wage scale from minimum wage, what factors influence their progress, and how minimum wage increases affect wage growth above the minimum. Very few workers remain at the minimum wage over the long run, according to this study of data drawn from the 1977-78 May Current Population…

  16. Effects of Ambient Temperature on Growth Performance, Blood Metabolites, and Immune Cell Populations in Korean Cattle Steers.

    PubMed

    Kang, H J; Lee, I K; Piao, M Y; Gu, M J; Yun, C H; Kim, H J; Kim, K H; Baik, M

    2016-03-01

    Exposure to cold may affect growth performance in accordance with the metabolic and immunological activities of animals. We evaluated whether ambient temperature affects growth performance, blood metabolites, and immune cell populations in Korean cattle. Eighteen Korean cattle steers with a mean age of 10 months and a mean weight of 277 kg were used. All steers were fed a growing stage-concentrate diet at a rate of 1.5% of body weight and Timothy hay ad libitum for 8 weeks. Experimental period 1 (P1) was for four weeks from March 7 to April 3 and period 2 (P2) was four weeks from April 4 to May 1. Mean (8.7°C) and minimum (1.0°C) indoor ambient temperatures during P1 were lower (p<0.001) than those (13.0°C and 6.2°C, respectively) during P2. Daily dry matter feed intake in both the concentrate diet and forage groups was higher (p<0.001) during P2 than P1. Average daily weight gain was higher (p<0.001) during P2 (1.38 kg/d) than P1 (1.13 kg/d). Feed efficiency during P2 was higher (p = 0.015) than P1. Blood was collected three times; on March 7, April 4, and May 2. Nonesterified fatty acids (NEFA) were higher on March 7 than April 4 and May 2. Blood cortisol, glucose, and triglyceride concentrations did not differ among months. Blood CD4+, CD8+, and CD4+CD25+ T cell percentages were higher, while CD8+CD25+ T cell percentage was lower, during the colder month of March than during May, suggesting that ambient temperature affects blood T cell populations. In conclusion, colder ambient temperature decreased growth and feed efficiency in Korean cattle steers. The higher circulating NEFA concentrations observed in March compared to April suggest that lipolysis may occur at colder ambient temperatures to generate heat and maintain body temperature, resulting in lower feed efficiency in March.

  17. Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization.

    PubMed Central

    Knabel, S J; Walker, H W; Hartman, P A; Mendonca, A F

    1990-01-01

    Listeria monocytogenes F5069 was suspended in either Trypticase soy broth-0.6% yeast extract (TSBYE) or sterile, whole milk and heated at 62.8 degrees C in sealed thermal death time tubes. Severely heat-injured cells were recovered in TSBYE within sealed thermal death time tubes because of the formation of reduced conditions in the depths of the TSBYE. Also, the use of strictly anaerobic Hungate techniques significantly increased recovery in TSBYE containing 1.5% agar compared with aerobically incubated controls. The exogenous addition of catalase, but not superoxide dismutase, slightly increased the recovery of heat-injured cells in TSBYE containing 1.5% agar incubated aerobically. Growth of cells at 43 degrees C caused a greater increase in heat resistance as compared with cells heat shocked at 43 degrees C or cells grown at lower temperatures. Growth of L. monocytogenes at 43 degrees C and enumeration by the use of strictly anaerobic Hungate techniques resulted in D62.8 degrees C values that were at least sixfold greater than those previously obtained by using cells grown at 37 degrees C and aerobic plating. Results indicate that, under the conditions of the present study, high levels of L. monocytogenes would survive the minimum low-temperature, long-time treatment required by the U.S. Food and Drug Administration for pasteurizing milk. The possible survival of low levels of L. monocytogenes during high-temperature, short-time pasteurization and enumeration of injured cells by recovery on selective media under strictly anaerobic conditions are discussed. PMID:2106284

  18. The use of NOAA AVHRR data for assessment of the urban heat sland effect

    USGS Publications Warehouse

    Gallo, K.P.; McNab, A. L.; Karl, Thomas R.; Brown, Jesslyn F.; Hood, J. J.; Tarpley, J.D.

    1993-01-01

    A vegetation index and a radiative surface temperature were derived from satellite data acquired at approximately 1330 LST for each of 37 cities and for their respective nearby rural regions from 28 June through 8 August 1991. Urban–rural differences for the vegetation index and the surface temperatures were computed and then compared to observed urban–rural differences in minimum air temperatures. The purpose of these comparisons was to evaluate the use of satellite data to assess the influence of the urban environment on observed minimum air temperatures (the urban heat island effect). The temporal consistency of the data, from daily data to weekly, biweekly, and monthly intervals, was also evaluated. The satellite-derived normalized difference (ND) vegetation-index data, sampled over urban and rural regions composed of a variety of land surface environments, were linearly related to the difference in observed urban and rural minimum temperatures. The relationship between the ND index and observed differences in minimum temperature was improved when analyses were restricted by elevation differences between the sample locations and when biweekly or monthly intervals were utilized. The difference in the ND index between urban and rural regions appears to be an indicator of the difference in surface properties (evaporation and heat storage capacity) between the two environments that are responsible for differences in urban and rural minimum temperatures. The urban and rural differences in the ND index explain a greater amount of the variation observed in minimum temperature differences than past analyses that utilized urban population data. The use of satellite data may contribute to a globally consistent method for analysis of urban heat island bias.

  19. Growth characteristics of a new methylomonad.

    PubMed Central

    Chen, B J; Hirt, W; Lim, H C; Tsao, G T

    1977-01-01

    A methylomonad culture was isolated from pond water and examined as a potential source of single-cell protein. A medium containing magnesium sulfate, ammonium hydroxide, sodium phosphate, tap water, and methanol supported the growth of the isolate. Optimal growth conditions in batch cultures for the organism were: temperature, 30 to 33 degrees C; pH 7.1; and phosphate concentration, 0.015 M. The minimum doubling time obtained was 1.6 h. The specific growth rate in batch culture was dependent on the methanol concentration, reaching a maximum around 0.2% (wt/vol). Growth inhibition was apparent above 0.3% (wt/vol), and growth was completely inhibited above 4.6% (wt/vol) methanol. Although the inhibitory effect of formaldehyde on the specific growth rate was much greater than that of formate, the organism utilized formaldehyde, but not formate, as a sole carbon and energy source in batch cultures. The isolate was identified primarily by its inability to utilize any carbon source other than methanol and formaldehyde for growth. Although it is capable of rapid growth on methanol, the organism showed a very weak catalase activity. The amino acid content of the cells compared favorably with the reference levels for the essential amino acids specific by the Food and Agricultural Organization of the United Nations. PMID:15510

  20. Metabolic activity of permafrost bacteria below the freezing point

    NASA Technical Reports Server (NTRS)

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and -20 degrees C on the basis of incorporation of (14)C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5 degrees C) to 20 days (-10 degrees C) to ca. 160 days (-20 degrees C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.

  1. Phenomenological analysis of densification mechanism during spark plasma sintering of MgAl2O4

    NASA Astrophysics Data System (ADS)

    Bernard-Granger, Guillaume; Benameur, Nassira; Addad, Ahmed; Nygren, Mats; Guizard, Christian; Deville, Sylvain

    2009-05-01

    Spark plasma sintering (SPS) of MgAl2O4 powder was investigated at temperatures between 1200 and 1300{\\deg}C. A significant grain growth was observed during densification. The densification rate always exhibits at least one strong minimum, and resumes after an incubation period. Transmission electron microscopy investigations performed on sintered samples never revealed extensive dislocation activity in the elemental grains. The densification mechanism involved during SPS was determined by anisothermal (investigation of the heating stage of a SPS run) and isothermal methods (investigation at given soak temperatures). Grain-boundary sliding, accommodated by an in-series {interface-reaction/lattice diffusion of the O$^2$-anions} mechanism controlled by the interface-reaction step, governs densification. The zero-densification-rate period, detected for all soak temperatures, arise from the difficulty of annealing vacancies, necessary for the densification to proceed. The detection of atomic ledges at grain boundaries and the modification of the stoichiometry of spinel during SPS could be related to the difficulty to anneal vacancies at temperature soaks.

  2. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  3. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  4. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  5. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  6. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  7. OSO 8 observations of wave propagation in the solar chromosphere and transition region

    NASA Technical Reports Server (NTRS)

    Chipman, E. G.

    1978-01-01

    The University of Colorado instrument on OSO 8 has been used to observe relative phases of the 300-s intensity variation between the temperature-minimum region and several emission lines formed in the solar chromosphere and chromosphere-corona transition region. The lines used are due to Fe II, Si II, C II, Si IV, and C IV. The scattered light in the spectrograph, which originates almost entirely in the spectral region between 1700 and 1900 A, was used as a probe of the temperature-minimum region. The lines of Fe II, Si II, and C II show almost identical delays of approximately 30 s relative to the temperature minimum, while the intensity oscillations of the lines of Si IV and C IV appear to lead the temperature-minimum intensity oscillations by about 10 s.

  8. An Examination of Sunspot Number Rates of Growth and Decay in Relation to the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2006-01-01

    On the basis of annual sunspot number averages, sunspot number rates of growth and decay are examined relative to both minimum and maximum amplitudes and the time of their occurrences using cycles 12 through present, the most reliably determined sunspot cycles. Indeed, strong correlations are found for predicting the minimum and maximum amplitudes and the time of their occurrences years in advance. As applied to predicting sunspot minimum for cycle 24, the next cycle, its minimum appears likely to occur in 2006, especially if it is a robust cycle similar in nature to cycles 17-23.

  9. [Temporal change in annual air temperature and heat island effect in a coastal city and an inland city at mid-latitude in China during 1956-1998].

    PubMed

    Chao, Lu-men; Sun, Jian-xin

    2009-12-01

    Temporal changes in air temperature and urban heat island (UHI) effects during 1956-1998 were compared between a coastal city, Ji' nan, and an inland city, Xi' an, which were similar in latitude, size and development. During 1956-1978, except that the annual mean minimum temperature in Ji' nan increased by 0.37 degrees C x 10 a(-1), the temperature variables in the two cities did not display any apparent trend. During 1979-1998, all temperature variables of the two cities showed an increasing trend. Comparing with that in Ji' nan, the increasing rate of annual mean maximum temperature and annual mean temperature in Xi' an was greater, but that of annual mean minimum temperature was smaller. In the two cities, heat island effect occurred during 1956-1978 but without any apparent trend, whereas during 1979-1998, this effect increased with time, especially in Xi' an where the annual mean minimum temperature and annual mean temperature increased by 0.22 degrees C x 10 a(-1) and 0.32 degrees C x 10 a(-1), respectively. Both the level and the inter-annual variation of the heat island effect were much greater in Ji' nan than in Xi' an, but the increasing rate of this effect was greater in Xi' an than in Ji' nan. Obvious differences were observed in the increasing rate of annual mean maximum air temperature, annual mean air temperature, and annual mean minimum temperature as well as the heat island effect in Ji' nan, whereas negligible differences were found in Xi' an. Among the three temperature variables, annual mean minimum temperature displayed the most obvious increasing trend and was most affected by heat island effect, while annual mean maximum temperature was most variable inter-annually. Geographical location not only affected the magnitude of urban warming, but also affected the mode of urban warming and the strength of heat island effect.

  10. Suppression of Growth by Multiplicative White Noise in a Parametric Resonant System

    NASA Astrophysics Data System (ADS)

    Ishihara, Masamichi

    2015-02-01

    The growth of the amplitude in a Mathieu-like equation with multiplicative white noise is studied. To obtain an approximate analytical expression for the exponent at the extremum on parametric resonance regions, a time-interval width is introduced. To determine the exponents numerically, the stochastic differential equations are solved by a symplectic numerical method. The Mathieu-like equation contains a parameter α determined by the intensity of noise and the strength of the coupling between the variable and noise; without loss of generality, only non-negative α can be considered. The exponent is shown to decrease with α, reach a minimum and increase after that. The minimum exponent is obtained analytically and numerically. As a function of α, the minimum at α≠0, occurs on the parametric resonance regions of α=0. This minimum indicates suppression of growth by multiplicative white noise.

  11. Temperature affects the morphology and calcification of Emiliania huxleyi strains

    NASA Astrophysics Data System (ADS)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2016-05-01

    The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20-25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC-temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations.

  12. Mini-incubators improve the adventitious rooting performance of Corymbia and Eucalyptus microcuttings according to the environment in which they are conditioned.

    PubMed

    Brondani, Gilvano E; Oliveira, Leandro S DE; Konzen, Enéas R; Silva, André L L DA; Costa, Jefferson L

    2017-10-16

    We addressed a major challenge in the in vitro clonal propagation of Corymbia citriodora, Eucalyptus urophylla and E. benthamii by using an ex vitro adventitious rooting strategy in a mini-incubator. Mini-incubators were placed in four environments for rooting. A shade house with no fogging system and a greenhouse with no ventilation but with a fogging environment had the best performance in terms of rooting, root growth and survival of microcuttings. Daily recording of the temperature within each mini-incubator in each environment allowed the verification of negative correlations between the maximum average temperature and the survival, adventitious rooting and root growth. The ideal maximum air temperature for the efficient production of clonal plants was 28.4°C (± 5.5°C), and the minimum was 20.3°C (± 6.2°C). E. benthamii was more sensitive to higher temperatures than C. citriodora and E. urophylla. Nevertheless, placing mini-incubators in the shade house with no fogging system resulted in a stable and uniform performance among the three species, with 100.0% survival and 81.4% rooting. Histological sections of the adventitious roots revealed connection with the stem vascular cambium. Therefore, our experimental system demonstrated the potential of mini-incubators coupled with the proper environment to optimize the adventitious rooting performance of microcuttings.

  13. An electrostatic Si e-gun and a high temperature elemental B source for Si heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Scarinci, F.; Casella, A.; Lagomarsino, S.; Fiordelisi, M.; Strappaveccia, P.; Gambacorti, N.; Grimaldi, M. G.; Xue, LiYing

    1996-08-01

    In this paper we present two kind of sources used in Si MBE growth: a Si source where an electron beam is electrostatically deflected onto a Si rod and a high temperature B source to be used for p-doping. Both sources have been designed and constructed at IESS. The Si source is constituted of a Si rod mounted on a 3/4″ flange with high-voltage connector. A W filament held at high voltage (up to 2000 V) is heated by direct current. Electrons from the filament are electrostatically focused onto the Si rod which is grounded. This mounting allows a minimum heating dispersion and no contamination, because the only hot objects are the Si rod and the W filament which is mounted in such a way that it cannot see the substrate. Growth rates of 10 Å/min on a substrate at 20 cm from the source have been measured. Auger and LEED have shown no contamination. The B source is constituted of a graphite block heated by direct current. A pyrolitic graphite crucible put in the graphite heater contains the elemental B. The cell is water cooled and contains Ta screens to avoid heat dispersion. It has been tested up to a temperature of 1700°C. P-doped Si 1- xGe x layers have been grown and B concentration has been measured by SIMS. A good control and reproducibility has been attained.

  14. Reconnaissance 14C Dating and the Evaluation of Mg/Li as a Temperature Proxy in Bamboo Corals from the California Margin

    NASA Astrophysics Data System (ADS)

    Freiberger, M. M.; LaVigne, M.; Miller, H.; Hill, T. M.; McNichol, A. P.; Lardie Gaylord, M.

    2015-12-01

    In the face of anthropogenically induced climate changes, it is becoming increasingly important to develop high-resolution paleoceanographic records that may elucidate how ocean conditions may shift in coming decades. Recently, bamboo corals (gorgonian octocorals) have been proposed as archives of intermediate ocean conditions. This study used 'reconnaissance' radiocarbon analysis to identify the nuclear bomb 14C spike in the proteinaceous nodes of bamboo corals and to quantify radial growth rates and ages of corals spanning the eastern Pacific oxygen minimum zone (OMZ) (790-2055 m). Preliminary data suggest that these corals exhibit a wide range of growth rates (9.4-350 μm/yr) that are non-linear over time and decrease with coral age and depth. Records of Mg/Li were investigated in these corals, given that previous studies have demonstrated positive correlations between Mg/Li and temperature in benthic foraminifera and surface and deep-sea aragonitic corals, with a reduced influence of vital effects over Mg/Ca. Intracoral reproducibility observed for replicate Mg/Li timeseries within each sample (p=0.6±0.2, n=6) and strong correlations between Mg/Ca and Li/Ca (0.9±0.1, n=6) indicate similar environmental or biological drivers of Mg and Li incorporation in bamboo corals. Given the strong positive correlations between Mg/Li and water temperature across a depth transect (r2=0.87, n=6), increasing Mg/Li observed over the growth history of each of the corals more likely reflects declining growth rates resulting in decreased Li incorporation over time rather than cooling of California Margin intermediate waters. Reductions in growth rate over the lifespan of each coral (~100+ years) may be a function of natural coral growth patterns or changes in carbonate chemistry, oxygen, or food supply in a sensitive OMZ coral ecosystem.

  15. Phenology of temperate trees in tropical climates

    NASA Astrophysics Data System (ADS)

    Borchert, Rolf; Robertson, Kevin; Schwartz, Mark D.; Williams-Linera, Guadalupe

    2005-09-01

    Several North American broad-leaved tree species range from the northern United States at ˜47°N to moist tropical montane forests in Mexico and Central America at 15-20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from -10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.

  16. Determining Cloud Parameters with the Curve-Of-Growth: Application Eta Car

    NASA Technical Reports Server (NTRS)

    Vieira, G. L.; Gull, T. R.; Bruhweiler, F.; Nielsen, K. E.; Verner, E. M.

    2004-01-01

    We have investigated the NUV part of the Eta Car spectrum, using data with high spatial and high spectral resolving power obtained with the HST/STIS under the Treasury Program. The NUV spectrum of Eta Car Shows a great contribution of absorption features from neutral and singly ionized elements along the line-of-sight. A large number of velocity systems have been observed. The two most prominent, with Doppler shifts corresponding to -146 and -513 km/s respectively, are shown to be useful for investigations of the gaseous environments responsible for the absorption. The -146 and the -513 km/s velocity systems display different characteristics regarding the ionization state and spectral line width, which suggest that they originate at different distances from the central object. We have investigated the absorption structures before the spectroscopic minimum, occurring during the summer of 2003, with a standard curve-of-growth. We have independently derived the column density and the b-value for the Fe II (-146 km/s) and Ti II (-513 km/s) velocity systems. The excitation temperature has been determined for the -146 km/s velocity system using the photo-ionization code \\textsc(cloudy). The -146 km/s velocity structure shows noticeable variation over the spectroscopic minimum. The sudden appearance and disappearance of Ti II and V II are astonishing. We have made an attempt to analyze these variations with the curve-of-growth method and will present preliminary results.

  17. Preparation and Characterization of RF Sputtered BARIUM(2) SILICON(2) Titanium OXYGEN(8) Thin Films

    NASA Astrophysics Data System (ADS)

    Li, Yi.

    Thin films of barium titanium silicate ( Ba_2Si_2TiO_8) are grown on crystalline (100) Si at substrate temperatures raging from 750 to 955^circC by the radio-frequency triode sputtering technique. The chemical composition, microstructure, physical properties, and growth conditions of the deposited films are investigated by dc and high-frequency dielectric measurements, wavelength dispersive and energy dispersive x-ray spectrometries, x-ray diffraction spectrometry, and optical and scanning electron microscopies. The results of the x-ray diffraction analysis show that the Ba_2Si_2TiO _8 films deposited at the optimum condition of substrate temperature of 845^circ C, 4 cm source-substance distance, 50 W rf power, and 1.2 times 10^ {-3} torr pressure of Ar, are highly c -axis oriented. The as-deposited films are smooth, glossy, polycrystalline films, exhibiting a bulk resistivity range of 10^6 Omegacdotcm, and an isotropic surface resistivity of 1.5 times 10^3 Omegacdot cm. The relative dielectric constant is 0.05, and the dielectric loss is lower than 1.0, in the frequency band 9 ~ 1000 MHz. The high-frequency impedance of BST films, which is typical for piezoelectric materials, gives a minimum impedance frequency of 9.0 MHz and a series resonant frequency of 9.5 MHz. Optical and SEM observations show that the film texture is dependent on the substrate conditions. The non-liquid-like grain coalescence of the Ba_2Si_2TiO _8 grains is characteristic of a strong film -substrate interaction. The grain growth kinetics obtained from "short-time" sputtering gives an initial lateral grain growth rate of 770 nm/min at 845^circ C, which decreases with the grain size. The initial film growth rate in the direction of thickness, measured from SEM micrographs, is 1.95 nm/min, and decreases with sputtering time. The activation free energy for grain growth is 359 +/- 30 KJ/mol for the initial stage, decreasing to 148 +/- 20 KJ/mol for the final stage. The variation of the grain growth rate and the activation energy with grain size is the result of a combined nucleation and growth mechanism in the initial stage of the film growth, and a coalescence -dominated growth mechanism at longer sputtering time and at higher temperature. Film orientation is sensitive to the supersaturation adjacent to the film surface, which depends on the source-substrate distance and substrate temperature. The effect of the substrate temperature on the orientation of the film is investigated over a wide temperature range using (100) and (111) Si substrates. Several orientations for the BST films, including an amorphous state, are obtained with increasing substrate temperature. This is discussed in relation to the atomic plane density and the energetics for the deposition process.

  18. Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes

    USGS Publications Warehouse

    Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.

    2013-01-01

    Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.

  19. Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Griffiths, G. M.; Chambers, L. E.; Haylock, M. R.; Manton, M. J.; Nicholls, N.; Baek, H.-J.; Choi, Y.; della-Marta, P. M.; Gosai, A.; Iga, N.; Lata, R.; Laurent, V.; Maitrepierre, L.; Nakamigawa, H.; Ouprasitwong, N.; Solofa, D.; Tahani, L.; Thuy, D. T.; Tibig, L.; Trewin, B.; Vediapan, K.; Zhai, P.

    2005-08-01

    Trends (1961-2003) in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.

  20. Predictions of thermal buckling strengths of hypersonic aircraft sandwich panels using minimum potential energy and finite element methods

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1995-01-01

    Thermal buckling characteristics of hypersonic aircraft sandwich panels of various aspect ratios were investigated. The panel is fastened at its four edges to the substructures under four different edge conditions and is subjected to uniform temperature loading. Minimum potential energy theory and finite element methods were used to calculate the panel buckling temperatures. The two methods gave fairly close buckling temperatures. However, the finite element method gave slightly lower buckling temperatures than those given by the minimum potential energy theory. The reasons for this slight discrepancy in eigensolutions are discussed in detail. In addition, the effect of eigenshifting on the eigenvalue convergence rate is discussed.

  1. Relationship between Microstructure and Corrosion Behavior of Martensitic High Nitrogen Stainless Steel 30Cr15Mo1N at Different Austenitizing Temperatures.

    PubMed

    Jiang, Zhouhua; Feng, Hao; Li, Huabing; Zhu, Hongchun; Zhang, Shucai; Zhang, Binbin; Han, Yu; Zhang, Tao; Xu, Dake

    2017-07-27

    The relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures was investigated by microscopy observation, electrochemical measurement, X-ray photoelectron spectroscopy analysis and immersion testing. The results indicated that finer Cr-rich M₂N dispersed more homogeneously than coarse M 23 C₆, and the fractions of M 23 C₆ and M₂N both decreased with increasing austenitizing temperature. The Cr-depleted zone around M 23 C₆ was wider and its minimum Cr concentration was lower than M₂N. The metastable pits initiated preferentially around coarse M 23 C₆ which induced severer Cr-depletion, and the pit growth followed the power law. The increasing of austenitizing temperature induced fewer metastable pit initiation sites, more uniform element distribution and higher contents of Cr, Mo and N in the matrix. In addition, the passive film thickened and Cr₂O₃, Cr 3+ and CrN enriched with increasing austenitizing temperature, which enhanced the stability of the passive film and repassivation ability of pits. Therefore, as austenitizing temperature increased, the metastable and stable pitting potentials increased and pit growth rate decreased, revealing less susceptible metastable pit initiation, larger repassivation tendency and higher corrosion resistance. The determining factor of pitting potentials could be divided into three stages: dissolution of M 23 C₆ (below 1000 °C), dissolution of M₂N (from 1000 to 1050 °C) and existence of a few undissolved precipitates and non-metallic inclusions (above 1050 °C).

  2. Growth of Lattice-Matched ZnTeSe Alloys on (100) and (211)B GaSb

    NASA Astrophysics Data System (ADS)

    Chai, J.; Lee, K.-K.; Doyle, K.; Dinan, J. H.; Myers, T. H.

    2012-10-01

    A key issue with the current HgCdTe/Si system is the high dislocation density due to the large mismatch between HgCdTe and Si. An alternative system that has superior lattice matching is HgCdSe/GaSb. A buffer layer to mitigate issues with direct nucleation of HgCdSe on GaSb is ZnTe1- x Se x . We have performed preliminary studies into the growth of lattice-matched ZnTe1- x Se x on both (100) and (211)B GaSb. The effects of substrate orientation, substrate temperature, and growth conditions on the morphology and crystallography of ZnTe0.99Se0.01 alloys were investigated. The lattice-matching condition yielded minimum root-mean-square (rms) roughness of 1.1 nm, x-ray rocking curve full-width at half-maximum (FWHM) value of ~29 arcsec, and density of nonradiative defects of mid-105 cm-2 as measured by imaging photoluminescence.

  3. Cellular and dendritic growth in a binary melt - A marginal stability approach

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1986-01-01

    A simple model for the constrained growth of an array of cells or dendrites in a binary alloy in the presence of an imposed positive temperature gradient in the liquid is proposed, with the dendritic or cell tip radius calculated using the marginal stability criterion of Langer and Muller-Krumbhaar (1977). This approach, an approach adopting the ad hoc assumption of minimum undercooling at the cell or dendrite tip, and an approach based on the stability criterion of Trivedi (1980) all predict tip radii to within 30 percent of each other, and yield a simple relationship between the tip radius and the growth conditions. Good agreement is found between predictions and data obtained in a succinonitrile-acetone system, and under the present experimental conditions, the dendritic tip stability parameter value is found to be twice that obtained previously, possibly due to a transition in morphology from a cellular structure with just a few side branches, to a more fully developed dendritic structure.

  4. Equatorial temperature anomaly during solar minimum

    NASA Astrophysics Data System (ADS)

    Suhasini, R.; Raghavarao, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.

    2001-11-01

    We show evidence for the occurrence of the equatorial temperature anomaly (ETA) during solar minimum by analyzing the temperature and total ion density data from the Neutral Atmosphere Temperature Experiment (NATE) and the Cylindrical Electrostatic Probe (CEP), respectively, on board the Atmospheric Explorer-E satellite. The chosen data refer to a height of ~254 km in the African and Asian longitude sector (340.1°E-200°E) during a summer season in the Southern Hemisphere. As during the solar maximum period, the spatial characteristics of the ETA are similar to those of the equatorial ionization anomaly (EIA). A minimum in the gas temperature is collocated with the minimum in the ion density at the dip equator, and a temperature maximum on the south side of the equator is collocated with the density maximum of the EIA. The daytime behavior of ETA formation is about the same as that of EIA as both of them are clearly present at around 1300 and 1400 local solar time (LST) only. At 1400 LST the difference between the temperatures at the crest and the trough (ETA strength) reaches a maximum value of about 100°K which is ~14% of the temperature at the trough. Like the EIA, the ETA also suddenly disappears after 1400 LST. Thus the EIA appears to be a prerequisite for the ETA formation. During the premidnight time (2200 LST), however, while the EIA is nonexistent, the temperature distribution forms a pattern opposite to that at 1400 LST in the daytime. It shows a maximum around the dip equator and a broad minimum at the daytime crest region where the postsunset cooling also is faster and occurs earlier than at the dip equator. This nighttime maximum appears to be related to the signature of the midnight temperature maximum (MTM). Mass Spectrometer Incoherent Scatter (MSIS) model temperatures, in general, are higher than the observed average temperatures for the summer season and in particular for the region around the dip equator around noon hours.

  5. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures

    NASA Technical Reports Server (NTRS)

    Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.

    2003-01-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  6. Canadian crop calendars in support of the early warning project

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H.; Hodges, T. (Principal Investigator)

    1980-01-01

    The Canadian crop calendars for LACIE are presented. Long term monthly averages of daily maximum and daily minimum temperatures for subregions of provinces were used to simulate normal daily maximum and minimum temperatures. The Robertson (1968) spring wheat and Williams (1974) spring barley phenology models were run using the simulated daily temperatures and daylengths for appropriate latitudes. Simulated daily temperatures and phenology model outputs for spring wheat and spring barley are given.

  7. Comparing exposure metrics for classifying ‘dangerous heat’ in heat wave and health warning systems

    PubMed Central

    Zhang, Kai; Rood, Richard B.; Michailidis, George; Oswald, Evan M.; Schwartz, Joel D.; Zanobetti, Antonella; Ebi, Kristie L.; O’Neill, Marie S.

    2012-01-01

    Heat waves have been linked to excess mortality and morbidity, and are projected to increase in frequency and intensity with a warming climate. This study compares exposure metrics to trigger heat wave and health warning systems (HHWS), and introduces a novel multi-level hybrid clustering method to identify potential dangerously hot days. Two-level and three-level hybrid clustering analysis as well as common indices used to trigger HHWS, including spatial synoptic classification (SSC); and 90th, 95th, and 99th percentiles of minimum and relative minimum temperature (using a 10 day reference period), were calculated using a summertime weather dataset in Detroit from 1976 to 2006. The days classified as ‘hot’ with hybrid clustering analysis, SSC, minimum and relative minimum temperature methods differed by method type. SSC tended to include the days with, on average, 2.6 °C lower daily minimum temperature and 5.3 °C lower dew point than days identified by other methods. These metrics were evaluated by comparing their performance in predicting excess daily mortality. The 99th percentile of minimum temperature was generally the most predictive, followed by the three-level hybrid clustering method, the 95th percentile of minimum temperature, SSC and others. Our proposed clustering framework has more flexibility and requires less substantial meteorological prior information than the synoptic classification methods. Comparison of these metrics in predicting excess daily mortality suggests that metrics thought to better characterize physiological heat stress by considering several weather conditions simultaneously may not be the same metrics that are better at predicting heat-related mortality, which has significant implications in HHWSs. PMID:22673187

  8. Growth phenology of coast Douglas-fir seed sources planted in diverse environments.

    PubMed

    Gould, Peter J; Harrington, Constance A; St Clair, J Bradley

    2012-12-01

    The timing of periodic life cycle events in plants (phenology) is an important factor determining how species and populations will react to climate change. We evaluated annual patterns of basal-area and height growth of coast Douglas-fir (Pseudotusga menziesii var. menziesii (Mirb.) Franco) seedlings from four seed sources that were planted in four diverse environments as part of the Douglas-fir Seed-Source Movement Trial. Stem diameters and heights were measured periodically during the 2010 growing season on 16 open-pollinated families at each study installation. Stem diameters were measured on a subset of trees with electronic dendrometers during the 2010 and 2011 growing seasons. Trees from the four seed sources differed in phenology metrics that described the timing of basal-area and height-growth initiation, growth cessation and growth rates. Differences in the height-growth metrics were generally larger than differences in the basal-area growth metrics and differences among installations were larger than differences among seed sources, highlighting the importance of environmental signals on growth phenology. Variations in the height- and basal-area growth metrics were correlated with different aspects of the seed-source environments: precipitation in the case of height growth and minimum temperature in the case of basal-area growth. The detailed dendrometer measurements revealed differences in growth patterns between seed sources during distinct periods in the growing season. Our results indicate that multiple aspects of growth phenology should be considered along with other traits when evaluating adaptation of populations to future climates.

  9. Nano- and Macroscale Responses of the Deep Pink Sea Urchin, Strongylocentrotus fragilis, to Multiple Stressors Associated with the Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Sato, K.; Jung, J. Y.; Levin, L. A.

    2016-02-01

    The rapid pace of deoxygenation and ocean acidification associated with anthropogenic climate change on upwelling margins will have differing effects on marine species from the population level down to the nanoscale. Driven by the understudied effects of climate change in the deep sea, we address the question, how will dominant echinoid urchins respond to future changes in multiple stressors (i.e. ocean acidification, deoxygenation, and shoaling of hypoxic water and calcium carbonate saturation horizons) on the southern California continental slope? Samples of the sea urchin, Strongylocentrotus fragilis, were collected along gradients of multiple hydrographic variables and analyzed for phenotypic variation with respect to multiple climate change stressors (oxygen, pH, and temperature). We compare fitness traits of S. fragilis collected along the continental slope and through the Oxygen Minimum Zone (OMZ), which include growth rate, morphology, and reproductive output, in addition to nanoscale structural and biomechanical test properties. Our results indicate that growth rate of S. fragilis is directly correlated with dissolved oxygen and pH, but not depth or temperature. Reproductive output, as measured by a standard gonad index, was found to be sensitive at the OMZ core (pH 7.40; O2 0.25 mL/L), which suggests a nonlinear response to chemical stressors. Preliminary analysis of mineral density in test pieces imaged using micro- and nano- computed tomography indicates exposure to conditions in the OMZ reduces calcification. This improved understanding of how continental margin urchins differ along natural physicochemical gradients will provide modern-day insight into the threshold tolerances of species to multiple stressors and will help guide future manipulation experiments as well as fisheries and spatial management.

  10. Freezing tolerance of conifer seeds and germinants.

    PubMed

    Hawkins, B J; Guest, H J; Kolotelo, D

    2003-12-01

    Survival after freezing was measured for seeds and germinants of four seedlots each of interior spruce (Picea glauca x engelmannii complex), lodgepole pine (Pinus contorta Dougl. ex Loud.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata Donn ex D. Donn). Effects of eight seed treatments on post-freezing survival of seeds and germinants were tested: dry, imbibed and stratified seed, and seed placed in a growth chamber for 2, 5, 10, 15, 20 or 30 days in a 16-h photoperiod and a 22/17 degrees C thermoperiod. Survival was related to the water content of seeds and germinants, germination rate and seedlot origin. After freezing for 3 h at -196 degrees C, dry seed of most seedlots of interior spruce, Douglas-fir and western red cedar had 84-96% germination, whereas lodgepole pine seedlots had 53-82% germination. Freezing tolerance declined significantly after imbibition in lodgepole pine, Douglas-fir and interior spruce seed (western red cedar was not tested), and mean LT50 of imbibed seed of these species was -30, -24.5 and -20 degrees C, respectively. Freezing tolerance continued to decline to a minimum LT50 of -4 to -7 degrees C after 10 days in a growth chamber for interior spruce, Douglas-fir and lodgepole pine, or after 15 days for western red cedar. Minimum freezing tolerance was reached at the stage of rapid hypocotyl elongation. In all species, a slight increase in freezing tolerance of germinants was observed once cotyledons emerged from the seed coat. The decrease in freezing tolerance during the transition from dry to germinating seed correlated with increases in seed water content. Changes in freezing tolerance between 10 and 30 days in the growth chamber were not correlated with seedling water content. Within a species, seedlots differed significantly in freezing tolerance after 2 or 5 days in the growth chamber. Because all seedlots of interior spruce and lodgepole pine germinated quickly, there was no correlation between seedlot hardiness and rate of germination. Germination rate and freezing tolerance of Douglas-fir and western red cedar seedlots was negatively correlated. There was a significant correlation between LT50 after 10 days in the growth chamber and minimum spring temperature at the location of seedlot origin for interior spruce and three seedlots of western red cedar, but no relationship was apparent for lodgepole pine and Douglas-fir.

  11. Applying Fibre-Optic Distributed Temperature Sensing to Near-surface Temperature Dynamics of Broadacre Cereals During Radiant Frost Events.

    NASA Astrophysics Data System (ADS)

    Stutsel, B.; Callow, J. N.

    2017-12-01

    Radiant frost events, particularly those during the reproductive stage of winter cereal growth, cost growers millions of dollars in lost yield. Whilst synoptic drivers of frost and factors influencing temperature variation at the landscape scale are relatively well understood, there is a lack of knowledge surrounding small-scale temperature dynamics within paddocks and plot trials. Other work has also suggested a potential significant temperature gradient (several degrees) vertically from ground to canopy, but this is poorly constrained experimentally. Subtle changes in temperature are important as frost damage generally occurs in a very narrow temperature range (-2 to -5°C). Once a variety's damage threshold is reached, a 1°C difference in minimum temperature can increase damage from 10 to 90%. This study applies Distributed Temperature Sensing (DTS) using fibre optics to understand how minimum temperature evolves during a radiant frost. DTS assesses the difference in attenuation of Raman scattering of a light pulse travelling along a fibre optic cable to measure temperature. A bend insensitive multimode fibre was deployed in a double ended duplex configuration as a "fence" run through four times of sowing at a trial site in the Western Australian Wheatbelt. The fibre optic fence was 160m long and 800mm tall with the fibre optic cable spaced 100mm apart vertically, and calibrated in ambient water ( 10 to 15oC) and a chilled glycol ( -8 to-10 oC) baths. The temperature measurements had a spatial resolution of 0.65m and temporal resolution of 60s, providing 2,215 measurements every minute. The results of this study inform our understanding of the subtle temperature changes from the soil to canopy, providing new insight into how to place traditional temperature loggers to monitor frost damage. It also addresses questions of within-trial temperature variability, and provides an example of how novel techniques such as DTS can be used to improve the way temperature (frost) is incorporated in crop damage models. This data set provided by DTS allows a level of detail that is not possible to record with traditional temperature loggers and shows how this emerging technology can be applied to agricultural applications. This research was supported by the Grains Research and Development Corporation National Frost Initiative.

  12. Elevated temperature ductility of types 304 and 316 stainless steel. [640/sup 0/ to 750/sup 0/C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikka, V. K.

    1978-01-01

    Austenitic stainless steel types 304 and 316 are known for their high ductility and toughness. However, the present study shows that certain combinations of strain rate and test temperature can result in a significant loss in elevated-temperature ductility. Such a phenomenon is referred to as ductility minimum. The strain rate, below which ductility loss is initiated, decreases with decrease in test temperature. Besides strain rate and temperature, the ductility minimum was also affected by nitrogen content and thermal aging conditions. Thermal aging at 649/sup 0/C was observed to eliminate the ductility minimum at 649/sup 0/C in both types 304 andmore » 316 stainless steel. Such an aging treatment resulted in a higher ductility than the unaged value. Aging at 593/sup 0/C still resulted in some loss in ductility. Current results suggest that ductility-minimum conditions for stainless steel should be considered in design, thermal aging data analysis, and while studying the effects of chemical composition.« less

  13. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    NASA Astrophysics Data System (ADS)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  14. [Effects of PASP-KT-NAA on the grain-filling of maize in different accumulated temperature zones of Hilongjiang Province, Norheast China].

    PubMed

    Xu, Tian-Jun; Dong, Zhi-Qiang; Gao, Jiao; Chen, Chuan-Xiao; Jiao, Liu; Xie, Zhen-Xing

    2013-02-01

    Taking the two maize varieties Zhengdan 958 and Fengdan 3 grown on the three accumulated temperature zones (I, II and III) in Heilongjiang Provice as test materials, a field investigation was made in 2010 and 2011 to study the effects of PASP-KT-NAA (PKN), a compound of exogenous plant growth regulators, on the grain filling and yield of the varieties under different environmental temperatures. From zone I to III, the air temperature at the grain filling stage had a decreasing trend, with the average minimum temperature being 12.16, 11.40, and 9.56, respectively. The effective accumulated temperature at the mid-ate amt sae stage of grain filling was too low to be sufficient for grain filling, which severely affected the grain filling process. Applying N, P and K promoted the dry matter accumulation of maize grain and the grain filling rate in the three zones, delayed the peak time (Tmax) of the grain filling rate of Fengdan 3 but advanced that of Zhengdan 958, promoted the growth capacity at peak time of grain filling rate and the maximum grain filling rate of the two varieties, and shortened their active grain filling period. Applying N, P, and K increased the grain yield of the two varieties in the three zones obviously, and, as compared with those in zones I and II , the grain yields of Zhengdan 958 and Fengdan 3 in zone III were increased by 8.2% and 5.1% , and 3.4% and 0.8% , respectively. Therefore, applying N, P and K could help maize utilizing the limited accumulation temperature, improve the grain filling rate, decrease the grain water content, and ultimately, increase the maize yield.

  15. Aroma types of flue-cured tobacco in China: spatial distribution and association with climatic factors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wu, Wei; Wu, Shu-Cheng; Liu, Hong-Bin; Peng, Qing

    2014-02-01

    Aroma types of flue-cured tobacco (FCT) are classified into light, medium, and heavy in China. However, the spatial distribution of FCT aroma types and the relationships among aroma types, chemical parameters, and climatic variables were still unknown at national scale. In the current study, multi-year averaged chemical parameters (total sugars, reducing sugars, nicotine, total nitrogen, chloride, and K2O) of FCT samples with grade of C3F and climatic variables (mean, minimum and maximum temperatures, rainfall, relative humidity, and sunshine hours) during the growth periods were collected from main planting areas across China. Significant relationships were found between chemical parameters and climatic variables ( p < 0.05). A spatial distribution map of FCT aroma types were produced using support vector machine algorithms and chemical parameters. Significant differences in chemical parameters and climatic variables were observed among the three aroma types based on one-way analysis of variance ( p < 0.05). Areas with light aroma type had significantly lower values of mean, maximum, and minimum temperatures than regions with medium and heavy aroma types ( p < 0.05). Areas with heavy aroma type had significantly lower values of rainfall and relative humidity and higher values of sunshine hours than regions with light and medium aroma types ( p < 0.05). The output produced by classification and regression trees showed that sunshine hours, rainfall, and maximum temperature were the most important factors affecting FCT aroma types at national scale.

  16. Daily mean temperature estimate at the US SUFRAD stations as an average of the maximum and minimum temperatures

    DOE PAGES

    Chylek, Petr; Augustine, John A.; Klett, James D.; ...

    2017-09-30

    At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less

  17. Daily mean temperature estimate at the US SUFRAD stations as an average of the maximum and minimum temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chylek, Petr; Augustine, John A.; Klett, James D.

    At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less

  18. Modeling dislocation generation in high pressure Czochralski growth of indium phosphide single crystals

    NASA Astrophysics Data System (ADS)

    Pendurti, Srinivas

    InP is an important material for opto-electronic and high speed electronics applications. Its main use today is as the substrate material for epitaxy to produce GaInAsP lasers. The present technology for growing bulk InP is the high pressure Czochralski process. Bulk InP grown through this technique suffers from presence of a high density of line defects or dislocations, which are produced by thermal stresses the material goes through during its growth in the high temperature furnace. Modeling of these thermal stresses and the resulting plastic deformation, giving rise to dislocation densities, entails simulation of the entire thermal history of the crystal during its growth in the furnace, and studying the deformation of the crystal through suitable visco-plastic constitutive equations. Accordingly, a suitable visco-plastic model for deformation of InP was constructed, integrated with the ABAQUS finite element code, and verified through experimental data for uniaxial constant strain rate deformation tests available in literature. This was then coupled with a computation fluid dynamics model, predicting the entire temperature history in the furnace during crystal growth, to study the plastic deformation and dislocation density evolution in the crystal during growth. Growth in a variety of conditions was simulated and those conditions that generate minimum dislocation density identified. Macroscopic controllable parameters that affect the dislocation densities the most, have also been delineated. It was found that the strength of gas convection in the Czochralski furnace has the strongest effect on the dislocation densities in the fully grown crystal. Comparison of the simulated dislocation densities on wafers, with experimentally recorded etch pit profiles on as-grown crystals was reasonable. Finally some limitations in the work are discussed and avenues for future work identified.

  19. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... test protocol and the means by which sampling variability and analytical variability were accounted for... also establish the design minimum and average temperature in the combustion zone and the combustion... the design minimum and average temperatures across the catalyst bed inlet and outlet. (C) For a boiler...

  20. Assessing the Dynamic Effects of Climate on Individual Tree Growth Across Time and Space

    NASA Astrophysics Data System (ADS)

    Itter, M.; Finley, A. O.; D'Amato, A. W.; Foster, J. R.; Bradford, J. B.

    2015-12-01

    The relationship between climate variability and an ecosystem process, such as forest growth, is frequently not fixed over time, but changes due to complex interactions between unobserved ecological factors and the process of interest. Climate data and forecasts are frequently spatially and temporally misaligned with ecological observations making inference regarding the effects of climate on ecosystem processes particularly challenging. Here we develop a Bayesian dynamic hierarchical model for annual tree growth increment that allows the effects of climate to evolve over time, applies climate data at a spatial-temporal scale consistent with observations, and controls for individual-level variability commonly encountered in ecological datasets. The model is applied to individual tree data from northern Minnesota using a modified Thornthwaite-type water balance model to transform PRISM temperature and precipitation estimates to physiologically relevant values of actual and potential evapotranspiration (AET, PET), and climatic water deficit. Model results indicate that mean tree growth is most sensitive to AET during the growing season and PET and minimum temperature in the spring prior to growth. The effects of these variables on tree growth, however, are not stationary with significant effects observed in only a subset of years during the 111-year study period. Importantly, significant effects of climate do not result from anomalous climate observations, but follow from large growth deviations unexplained by tree age and size, and time since forest disturbance. Results differ markedly from alternative models that assume the effects of climate are stationary over time or apply climate estimates at the individual scale. Forecasts of future tree growth as a function of climate follow directly from the dynamic hierarchical model allowing for assessment of forest change. Current work is focused on extending the model framework to include regional climate and ecosystem effects for application to a larger tree growth dataset spanning a latitudinal gradient within the US from Maine to Florida.

  1. The Effects of Data Gaps on the Calculated Monthly Mean Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study.

    NASA Astrophysics Data System (ADS)

    Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.

    1999-05-01

    Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.

  2. Influence of long-time stress relief treatments on the dynamic fracture toughness properties of ASME SA508 C1 2a and ASME SA533 GR B C12 pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logsdon, W.A.

    1982-03-01

    Dynamic fracture toughness tests were performed on materials which had been subjected to one of three long-time post weld type stress relief heat treatments: 48 hours at 1000/degree/F (538/degree/C), 24 hours at 1125/degree/F (607/degree/C), and 48 hours at 1125/degree/F (607/degree/C). Linear elastic K/sub Id/ results were obtained at low temperatures while J-integral techniques were utilized to evaluate dynamic fracture toughness over the transition and upper shelf temperature ranges. Tensile, Charpy impact, and drop weight nil-ductility transition tests as well as room temperature, air environment fatigue crack growth rate tests (SA508 Cl 2a only) were also performed. The fracture toughness ofmore » both materials exceeded the ASME specified minimum reference toughness K/sub IR/ curve. 17 refs.« less

  3. Elevated temperature strengthening of a melt spun austenitic steel by TiB2

    NASA Technical Reports Server (NTRS)

    Michal, G. M.; Glasgow, T. K.; Moore, T. J.

    1986-01-01

    Mechanical properties of an iron-based alloy containing (by wt pct) 33Ni, 2Al, 6Ti, and 2B (resulting in an alloy containing 10 vol pct TiB2) were evaluated by hardness and tensile testing. The alloy was cast as a ribbon using a dual 'free-jet' variation of Jech et al. (1984) method of chill-block melt-spinning against a copper wheel; to simulate thermal cycles the alloy ribbon would experience during compaction into shapes, various segments of the ribbon were annealed under a vacuum at temperatures ranging from 500 to 1150 C. The results show that maximum strengths at 650 and 760 C were developed in ribbons annealed at 1100 C; in these ribbons an optimal combination of grain coarsening with minimum TiB2 particle growth was observed. However, the elevated-temperature strength of the TiB2-strengthened alloy under optimal annealing conditions was poorer than that of conventional iron-based superalloys strengthened by gamma-prime precipitates.

  4. Application of genetic algorithms in nonlinear heat conduction problems.

    PubMed

    Kadri, Muhammad Bilal; Khan, Waqar A

    2014-01-01

    Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry.

  5. Operational forecasting of daily temperatures in the Valencia Region. Part II: minimum temperatures in winter.

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).

  6. Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975-2003

    NASA Astrophysics Data System (ADS)

    Miron, Isidro J.; Criado-Alvarez, Juan José; Diaz, Julio; Linares, Cristina; Mayoral, Sheila; Montero, Juan Carlos

    2008-03-01

    The relationship between air temperature and human mortality is described as non-linear, with mortality tending to rise in response to increasingly hot or cold ambient temperatures from a given minimum mortality or optimal comfort temperature, which varies from some areas to others according to their climatic and socio-demographic characteristics. Changes in these characteristics within any specific region could modify this relationship. This study sought to examine the time trend in the maximum temperature of minimum organic-cause mortality in Castile-La Mancha, from 1975 to 2003. The analysis was performed by using daily series of maximum temperatures and organic-cause mortality rates grouped into three decades (1975-1984, 1985-1994, 1995-2003) to compare confidence intervals ( p < 0.05) obtained by estimating the 10-yearly mortality rates corresponding to the maximum temperatures of minimum mortality calculated for each decade. Temporal variations in the effects of cold and heat on mortality were ascertained by means of ARIMA models (Box-Jenkins) and cross-correlation functions (CCF) at seven lags. We observed a significant decrease in comfort temperature (from 34.2°C to 27.8°C) between the first two decades in the Province of Toledo, along with a growing number of significant lags in the summer CFF (1, 3 and 5, respectively). The fall in comfort temperature is attributable to the increase in the effects of heat on mortality, due, in all likelihood, to the percentage increase in the elderly population.

  7. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres.

    PubMed

    Wu, Dejian; Norman, Frederik; Verplaetsen, Filip; Van den Bulck, Eric

    2016-04-15

    BAM furnace apparatus tests were conducted to investigate the minimum ignition temperature of coal dusts (MITC) in O2/CO2 atmospheres with an O2 mole fraction from 20 to 50%. Three coal dusts: Indonesian Sebuku coal, Pittsburgh No.8 coal and South African coal were tested. Experimental results showed that the dust explosion risk increases significantly with increasing O2 mole fraction by reducing the minimum ignition temperature for the three tested coal dust clouds dramatically (even by 100°C). Compared with conventional combustion, the inhibiting effect of CO2 was found to be comparatively large in dust clouds, particularly for the coal dusts with high volatile content. The retardation effect of the moisture content on the ignition of dust clouds was also found to be pronounced. In addition, a modified steady-state mathematical model based on heterogeneous reaction was proposed to interpret the observed experimental phenomena and to estimate the ignition mechanism of coal dust clouds under minimum ignition temperature conditions. The analysis revealed that heterogeneous ignition dominates the ignition mechanism for sub-/bituminous coal dusts under minimum ignition temperature conditions, but the decrease of coal maturity facilitates homogeneous ignition. These results improve our understanding of the ignition behaviour and the explosion risk of coal dust clouds in oxy-fuel combustion atmospheres. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Observed changes of temperature extremes during 1960-2005 in China: natural or human-induced variations?

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Jianfeng; David Chen, Yongqin; Chen, Xiaohong

    2011-12-01

    The purpose of this study was to statistically examine changes of surface air temperature in time and space and to analyze two factors potentially influencing air temperature changes in China, i.e., urbanization and net solar radiation. Trends within the temperature series were detected by using Mann-Kendall trend test technique. The scientific problem this study expected to address was that what could be the role of human activities in the changes of temperature extremes. Other influencing factors such as net solar radiation were also discussed. The results of this study indicated that: (1) increasing temperature was observed mainly in the northeast and northwest China; (2) different behaviors were identified in the changes of maximum and minimum temperature respectively. Maximum temperature seemed to be more influenced by urbanization, which could be due to increasing urban albedo, aerosol, and air pollutions in the urbanized areas. Minimum temperature was subject to influences of variations of net solar radiation; (3) not significant increasing and even decreasing temperature extremes in the Yangtze River basin and the regions south to the Yangtze River basin could be the consequences of higher relative humidity as a result of increasing precipitation; (4) the entire China was dominated by increasing minimum temperature. Thus, we can say that the warming process of China was reflected mainly by increasing minimum temperature. In addition, consistently increasing temperature was found in the upper reaches of the Yellow River basin, the Yangtze River basin, which have the potential to enhance the melting of permafrost in these areas. This may trigger new ecological problems and raise new challenges for the river basin scale water resource management.

  9. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    PubMed

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.

  10. Growth of non-toxigenic Clostridium botulinum mutant LNT01 in cooked beef: One-step kinetic analysis and comparison with C. sporogenes and C. perfringens.

    PubMed

    Huang, Lihan

    2018-05-01

    The objective of this study was to investigate the growth kinetics of Clostridium botulinum LNT01, a non-toxigenic mutant of C. botulinum 62A, in cooked ground beef. The spores of C. botulinum LNT01 were inoculated to ground beef and incubated anaerobically under different temperature conditions to observe growth and develop growth curves. A one-step kinetic analysis method was used to analyze the growth curves simultaneously to minimize the global residual error. The data analysis was performed using the USDA IPMP-Global Fit, with the Huang model as the primary model and the cardinal parameters model as the secondary model. The results of data analysis showed that the minimum, optimum, and maximum growth temperatures of this mutant are 11.5, 36.4, and 44.3 °C, and the estimated optimum specific growth rate is 0.633 ln CFU/g per h, or 0.275 log CFU/g per h. The maximum cell density is 7.84 log CFU/g. The models and kinetic parameters were validated using additional isothermal and dynamic growth curves. The resulting residual errors of validation followed a Laplace distribution, with about 60% of the residual errors within ±0.5 log CFU/g of experimental observations, suggesting that the models could predict the growth of C. botulinum LNT01 in ground beef with reasonable accuracy. Comparing with C. perfringens, C. botulinum LNT01 grows at much slower rates and with much longer lag times. Its growth kinetics is also very similar to C. sporogenes in ground beef. The results of computer simulation using kinetic models showed that, while prolific growth of C. perfringens may occur in ground beef during cooling, no growth of C. botulinum LNT01 or C. sporogenes would occur under the same cooling conditions. The models developed in this study may be used for prediction of the growth and risk assessments of proteolytic C. botulinum in cooked meats. Published by Elsevier Ltd.

  11. Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Xinge; Ohara, Satoshi; Maric, Radenka; Mukai, Kazuo; Fukui, Takehisa; Yoshida, Hiroyuki; Nishimura, Masayoshi; Inagaki, Toru; Miura, Kazuhiro

    The polarization properties and microstructure of Ni-SDC (samaria-doped ceria) cermet anodes prepared from spray pyrolysis (SP) composite powder, and element interface diffusion between the anode and a La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ (LSGM) electrolyte are investigated as a function of anode sintering temperature. The anode sintered at 1250°C displays minimum anode polarization (with anode ohmic loss), while the anode prepared at 1300°C has the best electrochemical overpotential, viz., 27 mV at 300 mA cm -2 operating at 800°C. The anode ohmic loss gradually increases with increase in the sintering temperature at levels below 1300°C, and sharply increases at 1350°C. Electron micrographs show a clear grain growth at sintering temperatures higher than 1300°C. The anode microstructure appears to be optimized at 1300°C, in which nickel particles form a network with well-connected SDC particles finely distributed over the surfaces of the nickel particles. The anode sintered at 1350°C has severe grain growth and an apparent interface diffusion of nickel from the anode to the electrolyte. The nickel interface diffusion is assumed to be the main reason for the increment in ohmic loss, and the resulting loss in anode performance. The findings suggest that sintering Ni-SDC composite powder near 1250°C is the best method to prepare the anode on a LSGM electrolyte.

  12. CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Singh, Iqbal; Kaur, Gursharan; Bedi, R. K.

    2011-09-01

    An aqueous solution of cupric nitrate trihydrate (Cu(NO 3) 2·3H 2O) modified with cetyltrimetylammonium bromide (CTAB) is used to deposit CuO films on glass substrate by chemical spray pyrolysis technique. The thermal analysis shows that the dried CTAB doped precursor decomposes by an exothermic reaction and suggests that minimum substrate temperature for film deposition should be greater than 270 °C. X-ray diffraction (XRD) studies indicate the formation of monoclinic CuO with preferential orientation along (0 0 2) plane for all film samples. The CTAB used as cationic surfactant in precursor results in the suppression of grain growth in films along the (1 1 0), (0 2 0) and (2 2 0) crystal planes of CuO. Surfactant modified films showed an increase in crystallite size of 14 nm at substrate temperature of 300 °C. The scanning electron micrographs (FESEM) confirm the uniform distribution of facets like grains on the entire area of substrate. CTAB modified films show a significant reduction in the particle agglomeration. Electrical studies of the CuO films deposited at substrate temperature of 300 °C with and without surfactant reveal that the CTAB doping increase the activation energy of conduction by 0.217 eV and room temperature response to ammonia by 9%. The kinetics of the ammonia gas adsorption on the film surface follows the Elovich and Diffusion models.

  13. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data*

    PubMed Central

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-01-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T a based on MODIS land surface temperature (LST) data. The verification results of maximum T a, minimum T a, GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001–2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale. PMID:23365013

  14. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data.

    PubMed

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-02-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.

  15. Relation between inflammables and ignition sources in aircraft environments

    NASA Technical Reports Server (NTRS)

    Scull, Wilfred E

    1951-01-01

    A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and discussed. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings through which flame will not propagate are presented and discussed. Ignition temperatures and limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressures and minimum size of opening for flame propagation in gasoline-air mixtures are included; inerting of gasoline-air mixtures is discussed.

  16. Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2017-04-01

    Ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon (C), resulting in a positive feedback to increasing temperatures. The current generation of models assume that the temperature sensitivities of microbial processes do not respond to warming. However, recent studies have suggested that the ability of microbial communities to adapt to warming can lead both strengthened and weakened feedbacks. A further complication is that the balance between microbial C used for growth to that used for respiration - the microbial carbon-use efficiency (CUE) - also has been shown through both modelling and empirical study to respond to warming. In our study, we set out to assess how chronic warming (+5°C over ambient during 9 years) of a temperate hardwood forest floor (Harvard Forest LTER, USA) affected temperature sensitivities of microbial processes in soil. To do this, we first determined the temperature relationships for bacterial growth, fungal growth, and respiration in plots exposed to warmed or ambient conditions. Secondly, we parametrised the established temperature functions microbial growth and respiration with plot-specific measured soil temperature data at a hourly time-resolution over the course of 3 years to estimate the real-time variation of in situ microbial C production and respiration. To estimate the microbial CUE, we also divided the microbial C production with the sum of microbial C production and respiration as a proxy for substrate use. We found that warm-adapted bacterial and fungal communities both shifted their temperature relationships to grow at higher rates in warm conditions which coincided with reduced rates at cool conditions. As such, their optimal temperature (Topt), minimum temperature (Tmin) and temperature sensitivity (Q10) were all increased. The temperature relationship for temperature, in contrast, was only marginally shifted in the same direction, but at a much smaller effect size, with negligible changes in Topt, Tmin and Q10 for respiration. When these physiological changes were scaled with soil temperature data to estimate real-time variation in situ during three years, the warm-adaptation resulted in elevated microbial CUEs during summer temperatures in warm-adapted communities and reduced microbial CUEs during winter temperatures. By comparing simulated microbial CUEs in cold-adapted communities exposed to warmed conditions to microbial CUEs in the warm-adapted communities exposed to those temperatures, we could demonstrate that the shifts towards warm-adapted microbial communities had selected for elevated microbial CUEs for the full range of in situ soil temperatures during three years. Our results suggest that microbial adaptation to warming will enhance microbial CUEs, shifting their balance of C use from respiration to biomass production. If our estimates scale to ecosystem level, this would imply that warm-adapted microbial communities will ultimately have the potential to store more C in soil than their cold-adapted counter parts could when exposed to warmer temperatures.

  17. Spiraling Out of Control: Three-dimensional Hydrodynamical Modeling of the Colliding Winds in η Carinae

    NASA Astrophysics Data System (ADS)

    Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.

    2011-01-01

    Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star η Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.

  18. Establishment and characterization of a new fish cell line from head kidney of half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Zheng, Yuan; Wang, Na; Xie, Ming-Shu; Sha, Zhen-Xia; Chen, Song-Lin

    2012-12-01

    A new cell line (TSHKC) derived from half-smooth tongue sole (Cynoglossus semilaevis) head kidney was developed. The cell line was subcultured for 40 passages over a period of 360 days. The cell line was optimally maintained in minimum essential medium supplemented with HEPES, antibiotics, fetal bovine serum, 2-Mercaptoethanol (2-Me), sodium pyruvate and basic fibroblast growth factor. The suitable growth temperature for TSHKC cells was 24 °C, and microscopically, TSHKC cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TSHKC cell line had a normal diploid karyotype with 2n = 42, contained the heterogametic W chromosome. The TSHKC cell line was found to be susceptible to lymphocystis disease virus. The fluorescent signals were observed in TSHKC when the cells were transfected with green fluorescent protein and red fluorescent protein reporter plasmids.

  19. Interannual-to-multidecadal hydroclimate variability and its sectoral impacts in northeastern Argentina

    NASA Astrophysics Data System (ADS)

    Lovino, Miguel A.; Müller, Omar V.; Müller, Gabriela V.; Sgroi, Leandro C.; Baethgen, Walter E.

    2018-06-01

    This study examines the joint variability of precipitation, river streamflow and temperature over northeastern Argentina; advances the understanding of their links with global SST forcing; and discusses their impacts on water resources, agriculture and human settlements. The leading patterns of variability, and their nonlinear trends and cycles are identified by means of a principal component analysis (PCA) complemented with a singular spectrum analysis (SSA). Interannual hydroclimatic variability centers on two broad frequency bands: one of 2.5-6.5 years corresponding to El Niño Southern Oscillation (ENSO) periodicities and the second of about 9 years. The higher frequencies of the precipitation variability (2.5-4 years) favored extreme events after 2000, even during moderate extreme phases of the ENSO. Minimum temperature is correlated with ENSO with a main frequency close to 3 years. Maximum temperature time series correlate well with SST variability over the South Atlantic, Indian and Pacific oceans with a 9-year frequency. Interdecadal variability is characterized by low-frequency trends and multidecadal oscillations that have induced a transition from dryer and cooler climate to wetter and warmer decades starting in the mid-twentieth century. The Paraná River streamflow is influenced by North and South Atlantic SSTs with bidecadal periodicities. The hydroclimate variability at all timescales had significant sectoral impacts. Frequent wet events between 1970 and 2005 favored floods that affected agricultural and livestock productivity and forced population displacements. On the other hand, agricultural droughts resulted in soil moisture deficits that affected crops at critical growth stages. Hydrological droughts affected surface water resources, causing water and food scarcity and stressing the capacity for hydropower generation. Lastly, increases in minimum temperature reduced wheat and barley yields.

  20. The Effects of Temperature and Precipitation on the Yield of Zea Mays L. I the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Stooksbury, David Emory

    Three families of straightforward maize (Zea mays L.) yield/climate models using monthly temperature and precipitation terms are produced. One family of models uses USDA's Crop Reporting Districts (CRD) as its scale of aggregation. The other two families of models use three different district aggregates based on climate or yield patterns. The climate and yield districts are determined by using a two-stage cluster analysis. The CRD-based family of models perform as well as the climate and yield based models. All models explain between 80% and 90% of the variance in maize yield. The most important climate term affecting maize yield in the South is the daily maximum temperature at pollination time. The higher the maximum temperature, the lower the yield. Above normal minimum temperature during pollination increases yield in the Middle South. Weather that favors early planting and rapid vegetative growth increases yield. Ideal maize yield weather includes a dry period during planting followed by a warm period during vegetative growth. Moisture variables are important only during the planting and harvest periods when above normal precipitation delays field work and thereby reduces yield. The model results indicate that the dire predictions about the fate of Southern agriculture in a trace gas warmed world may not be true. This is due to the overwhelming influence of the daily maximum temperature on yield. An optimum aggregate for climate impact studies was not found. I postulate that this is due to the dynamic nature of the American maize production system. For most climate impact studies on a dynamic agricultural system, there does not need to be a concern about the model aggregation.

  1. Relationship between Microstructure and Corrosion Behavior of Martensitic High Nitrogen Stainless Steel 30Cr15Mo1N at Different Austenitizing Temperatures

    PubMed Central

    Jiang, Zhouhua; Feng, Hao; Zhu, Hongchun; Zhang, Shucai; Zhang, Binbin; Han, Yu; Zhang, Tao; Xu, Dake

    2017-01-01

    The relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures was investigated by microscopy observation, electrochemical measurement, X-ray photoelectron spectroscopy analysis and immersion testing. The results indicated that finer Cr-rich M2N dispersed more homogeneously than coarse M23C6, and the fractions of M23C6 and M2N both decreased with increasing austenitizing temperature. The Cr-depleted zone around M23C6 was wider and its minimum Cr concentration was lower than M2N. The metastable pits initiated preferentially around coarse M23C6 which induced severer Cr-depletion, and the pit growth followed the power law. The increasing of austenitizing temperature induced fewer metastable pit initiation sites, more uniform element distribution and higher contents of Cr, Mo and N in the matrix. In addition, the passive film thickened and Cr2O3, Cr3+ and CrN enriched with increasing austenitizing temperature, which enhanced the stability of the passive film and repassivation ability of pits. Therefore, as austenitizing temperature increased, the metastable and stable pitting potentials increased and pit growth rate decreased, revealing less susceptible metastable pit initiation, larger repassivation tendency and higher corrosion resistance. The determining factor of pitting potentials could be divided into three stages: dissolution of M23C6 (below 1000 °C), dissolution of M2N (from 1000 to 1050 °C) and existence of a few undissolved precipitates and non-metallic inclusions (above 1050 °C). PMID:28773221

  2. Some like it hot: understanding the limits of life using hyperthermophilic microbes

    NASA Astrophysics Data System (ADS)

    Holden, James

    Hyperthermophiles are those microorganisms that grow optimally above 80° C and have the highest known growth temperatures of any life (up to 121° C in pure culture). The study of hyperthermophiles has helped to constrain our understanding of the limits in two ways. First and most obvious, it provides upper temperature boundaries for where life may exist. In general, upper temperature limits vary with life forms: eukaryotes (55° C), photosynthetic bacteria (72° C), non-photosynthetic bacteria (100° C), methanogens (110° C), sulfur reduction (113° C), and iron reduction (121° C). The incubation of natural microbial assemblages suggests that life may exist at temperatures of at least 125° C, and studies of extracellular hydrolases show that the impact of life processes extend up to 130-140° C. Several factors have been implicated that permit hyperthermophilic life. Proteins are stabilized at high temperatures through increased rigidity brought on by several separate factors (e.g., increased hydrogen bonding, oligomerization, shortened loop structures). DNA is stabilized by a hyperthermophile-specific topoisomerase that introduces positive supercoils into the double helix and by DNA binding proteins that help to prevent strand melting. Hyperthermophiles also possess a remarkably efficient DNA repair mechanism. Lipids are stabilized by using ether linkages of isoprenoid alcohol hydrocarbons to the glycerol head and a high degree of covalent cross-linking between opposing lipids in the membrane bilayer. However, in order for life to exist above 140° C, organisms would require mechanisms to prevent denaturation within individual amino acids, nucleic acids, and other low molecular weight cofactors within the cytoplasm. The second way that the study of hyperthermophiles has helped to constrain the limits of life is by understanding how life exists in geothermal environments and deep within the Earth's crust without oxygen or sunlight. Hyperthermophiles can serve as the primary producers in these environments using volcanically-derived H2 and CO2 as energy and carbon sources and CO2 assimilation pathways other than the Calvin cycle. Insoluble iron, CO2 , and various sulfur compounds can serve as terminal electron acceptors. Unlike commonly-studied mesophilic bacteria, iron respiration in some hyperthermophiles does not require polyheme c-type cytochromes in the membrane, and direct contact with iron is not necessary for electron transfer. Environmental factors such as pH and reduction potential have a significant impact on the kinds of metabolisms that occur, and thermodynamic modeling suggests that minimum H2 activity increases with temperature in order to meet the minimum energy requirement for growth. These factors lead to a non-stochastic distribution of hyperthermophile metabolic types in any given environment. Taken together, these parameters will greatly aid in modeling growth in a variety of environments that will serve the exploration for life beyond our planet.

  3. Forecast of Frost Days Based on Monthly Temperatures

    NASA Astrophysics Data System (ADS)

    Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.

    2009-04-01

    Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.

  4. Growth of Lactobacillus paracasei A13 in Argentinian probiotic cheese and its impact on the characteristics of the product.

    PubMed

    Vinderola, G; Prosello, W; Molinari, F; Ghiberto, D; Reinheimer, J

    2009-10-31

    The growth capacity of probiotic Lactobacillus paracasei A13, Bifidobacterium bifidum A1 and L. acidophilus A3 in a probiotic fresh cheese commercialized in Argentina since 1999 was studied during its manufacture and refrigerated storage at 5 degrees C and 12 degrees C for 60 days. Additionally, viable cell counts for probiotic bacteria in the commercial product are reported for batch productions over the last 9 years. L. paracasei A13 grew a half log order at 43 degrees C during the manufacturing process of probiotic cheese and another half log order during the first 15 days of storage at 5 degrees C, without negative effects on sensorial properties of the product. However, a negative impact on sensorial characteristics was observed when cheeses were stored at 12 degrees C for 60 days. Colony counts in the commercial product showed variations from batch to batch over the last 9 years. However, colony counts for each probiotic bacterium were always above the minimum suggested. Growth capacity of L. paracasei A13 in cheese during manufacturing and storage, mainly at temperatures commonly found in retail display cabinets in supermarkets (12 degrees C or more), would make it necessary to re-evaluate its role as possible probiotic starter and the consequences on food sensorial characteristics if storage temperature during commercial shelf life is not tightly controlled.

  5. Electrical, structural and morphological properties of chemically sprayed F-doped ZnO films: effect of the ageing-time of the starting solution, solvent and substrate temperature

    NASA Astrophysics Data System (ADS)

    Guillén-Santiago, A.; Olvera, M. De La L.; Maldonado, A.; Asomoza, R.; Acosta, D. R.

    2004-04-01

    Conductive and highly transparent fluorine-doped zinc oxide (ZnO:F) thin films were deposited onto glass substrates by the chemical spray technique, using zinc acetate and hydrofluoric acid as precursors. Electrical, structural, morphological and optical characteristics were analyzed as a function of the ageing-time of the starting solution, alcoholic solvent type (methanol or ethanol) and the substrate temperature. The results show that these variables play a crucial role on the physical properties measured. The growth rates obtained were of 3 nm/s, showing that the chemical species involved are adequate for the film growth. The effect of the solution ageing-time on the electrical properties was monitored along three weeks. A gradual resistivity decrease with the ageing-time was observed, until a minimum value is reached, at 7 or 9 days depending on the alcohol employed. Films deposited after this time have resistivity values slightly higher. All the films were polycrystalline, with a hexagonal wurtzite structure whose preferential growth is strongly dependent on the deposition variables. Under optimal deposition conditions, ZnO:F films with a high transmittance in the visible spectrum (>85%), resistivity as low as 7 × 10-3 cm and maximum electronic mobility around of 4 cm2/(V-s) were obtained.

  6. Incidence of Vector-borne Disease and Climate Change: A Study in Semi-arid Algeria

    NASA Astrophysics Data System (ADS)

    Blakey, T.; Bounoua, L.

    2012-12-01

    Leishmaniases are among the most important emerging and resurging vector-borne diseases, second only to malaria in terms of the number of affected people. Leishmaniases are endemic in 88 countries worldwide and threaten about 350 million people (WHO, 2007). Since the first reported case of zoonotic cutaneous leishmaniasis (ZCL) in Saida, Algeria in 1991, 1,275 cases have been recorded (Makhlouf & Houti, 2010) with the vast majority of study-area cases (99%) reported between the years of 2000 and 2009. An investigation of potential climatic indicators for the apparent shift in disease prevalence was conducted by comparing anomalies in the climate data specific to the local pathogen cycle. It was determined that long term climate trends have resulted in conditions that promote the prevalence of ZCL. Increased precipitation have resulted in greater vegetation and promoted host and vector population growth through a trophic cascade. Increased minimum temperatures have lengthened the annual duration of sandfly activity. Short term variations in maximum temperatures, however show a correlation with disease suppression in the subsequent years. These findings indicate a potential to forecast the risk of ZCL infection through models of the trophic cascade and sandfly population growth.

  7. The influence of climate variables on dengue in Singapore.

    PubMed

    Pinto, Edna; Coelho, Micheline; Oliver, Leuda; Massad, Eduardo

    2011-12-01

    In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC₁ (Principal component 1) is represented by temperature and rainfall and PC₂ (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10°C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.

  8. Radiation-induced polymerization of glass-forming systems. IV. Effect of the homogeneity of polymerization phase and polymer concentration on temperature dependence of initial polymerization rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-06-01

    The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less

  9. Spatial and temporal variability in minimum temperature trends in the western U.S. sagebrush steppe

    USDA-ARS?s Scientific Manuscript database

    Climate is a major driver of ecosystem dynamics. In recent years there has been considerable interest in future climate change and potential impacts on ecosystems and management options. In this paper, we analyzed minimum monthly temperature (T min) for ten rural locations in the western sagebrush...

  10. Creep Response and Deformation Processes in Nanocluster Strengthened Ferritic Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Taisuke; Sarosi, P. M.; Schneibel, Joachim H

    2008-01-01

    There is increasing demand for oxide-dispersion-strengthened ferritic alloys that possess both high-temperature strength and irradiation resistance. Improvement of the high-temperature properties requires an understanding of the operative deformation mechanisms. In this study, the microstructures and creep properties of the oxide-dispersion-strengthened alloy 14YWT have been evaluated as a function of annealing at 1000 C for 1 hour up to 32 days. The ultra-fine initial grain size (approx. 100nm) is stable after the shortest annealing time, and even after subsequent creep at 800 C. Longer annealing periods lead to anomalous grain growth that is further enhanced following creep. Remarkably, the minimum creepmore » rate is relatively insensitive to this dramatic grain-coarsening. The creep strength is attributed to highly stable, Ti-rich nanoclusters that appear to pin the initial primary grains, and present strong obstacles to dislocation motion in the large, anomalously grown grains.« less

  11. Measurement of agricultural parameters using wireless sensor network (WSN)

    NASA Astrophysics Data System (ADS)

    Guaña-Moya, Javier; Sánchez-Almeida, Tarquino; Salgado-Reyes, Nelson

    2018-04-01

    The technological advances have allowed to create new applications in telecommunications, applying low power and reduced costs in their equipment, thus achieving the evolution of new wireless networks or also denominated Wireless Sensor Network. These technologies allow the generation of measurements and analysis of environmental parameter data and soil. Precision agriculture requires parameters for the improvement of production, obtained through WSN technologies. This research analyzes the climatic requirements and soil parameters in a rose plantation in a greenhouse at an altitude of 3,100 meters above sea level. In the present investigation, maximum parameters were obtained in the production of roses, which are in the optimum range of production, whereas the minimum parameters of temperature, humidity and luminosity, evidenced that these parameters can damage the plants, since temperatures less than 10 °C slow down the growth of the plant and allow the proliferation of diseases and fungi.

  12. Thermal biology of the sub-polar–temperate estuarine crab Hemigrapsus crenulatus (Crustacea: Decapoda: Varunidae)

    PubMed Central

    Cumillaf, Juan P.; Blanc, Johnny; Paschke, Kurt; Gebauer, Paulina; Díaz, Fernando; Re, Denisse; Chimal, María E.; Vásquez, Jorge; Rosas, Carlos

    2016-01-01

    ABSTRACT Optimum temperatures can be measured through aerobic scope, preferred temperatures or growth. A complete thermal window, including optimum, transition (Pejus) and critical temperatures (CT), can be described if preferred temperatures and CT are defined. The crustacean Hemigrapsus crenulatus was used as a model species to evaluate the effect of acclimation temperature on: (i) thermal preference and width of thermal window, (ii) respiratory metabolism, and (iii) haemolymph proteins. Dependant on acclimation temperature, preferred temperature was between 11.8°C and 25.2°C while CT was found between a minimum of 2.7°C (CTmin) and a maximum of 35.9°C (CTmax). These data and data from tropical and temperate crustaceans were compared to examine the association between environmental temperature and thermal tolerance. Temperate species have a CTmax limit around 35°C that corresponded with the low CTmax limit of tropical species (34–36°C). Tropical species showed a CTmin limit around 9°C similar to the maximum CTmin of temperate species (5–6°C). The maximum CTmin of deep sea species that occur in cold environments (2.5°C) matched the low CTmin values (3.2°C) of temperate species. Results also indicate that the energy required to activate the enzyme complex (Ei) involved in respiratory metabolism of ectotherms changes along the latitudinal gradient of temperature. PMID:26879464

  13. Relation Between Inflammables and Ignition Sources in Aircraft Environments

    NASA Technical Reports Server (NTRS)

    Scull, Wilfred E

    1950-01-01

    A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.

  14. Point defect reduction in MOCVD (Al)GaN by chemical potential control and a comprehensive model of C incorporation in GaN

    NASA Astrophysics Data System (ADS)

    Reddy, Pramod; Washiyama, Shun; Kaess, Felix; Kirste, Ronny; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko

    2017-12-01

    A theoretical framework that provides a quantitative relationship between point defect formation energies and growth process parameters is presented. It enables systematic point defect reduction by chemical potential control in metalorganic chemical vapor deposition (MOCVD) of III-nitrides. Experimental corroboration is provided by a case study of C incorporation in GaN. The theoretical model is shown to be successful in providing quantitative predictions of CN defect incorporation in GaN as a function of growth parameters and provides valuable insights into boundary phases and other impurity chemical reactions. The metal supersaturation is found to be the primary factor in determining the chemical potential of III/N and consequently incorporation or formation of point defects which involves exchange of III or N atoms with the reservoir. The framework is general and may be extended to other defect systems in (Al)GaN. The utility of equilibrium formalism typically employed in density functional theory in predicting defect incorporation in non-equilibrium and high temperature MOCVD growth is confirmed. Furthermore, the proposed theoretical framework may be used to determine optimal growth conditions to achieve minimum compensation within any given constraints such as growth rate, crystal quality, and other practical system limitations.

  15. THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De la Luz, Victor; Raulin, Jean-Pierre; Lara, Alejandro

    2013-01-10

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimetermore » wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.« less

  16. Changes in minimum and maximum temperatures at the Pic du Midi in relation with humidity and cloudiness, 1882-1984

    NASA Astrophysics Data System (ADS)

    Dessens, J.; Bücher, A.

    In an attempt to contribute to the investigation on a global climate change, a historical series of minimum and maximum temperature data at the Pic du Midi, a mountain observatory at 2862 m a.s.l. in the French Pyrenees, is updated after correction of a systematic deviation due to a relocation of the station in 1971. These data, which now cover the 1882-1984 period, are examined in parallel with humidity and cloud cover data for the same period. From the beginning to the end of this period, observations show that the mean night-time temperature has increased by 2.39° C/100 yr while the mean daytime temperature has decreased by 0.50° C/100 yr. In consequence, the mean annual diurnal temperature range has dropped by 36%/100 yr. The maximum seasonal decrease is 46%/100 yr in spring. Season-to-season and year-to-year inter-relationships between minimum temperature, maximum temperature, relative humidity and cloud cover suggest that the decrease in maximum temperature is related to a concomitant increase of 15%/100 yr in both relative humidity and cloud cover.

  17. The Effects of Global Warming on Temperature and Precipitation Trends in Northeast America

    NASA Astrophysics Data System (ADS)

    Francis, F.

    2013-12-01

    The objective of this paper is to discuss the analysis of results in temperature and precipitation (rainfall) data and how they are affected by the theory of global warming in Northeast America. The topic was chosen because it will show the trends in temperature and precipitation and their relations to global warming. Data was collected from The Global Historical Climatology Network (GHCN). The data range from years of 1973 to 2012. We were able to calculate the yearly and monthly regress to estimate the relationship of variables found in the individual sources. With the use of specially designed software, analysis and manual calculations we are able to give a visualization of these trends in precipitation and temperature and to question if these trends are due to the theory of global warming. With the Calculation of the trends in slope we were able to interpret the changes in minimum and maximum temperature and precipitation. Precipitation had a 9.5 % increase over the past forty years, while maximum temperature increased 1.9 %, a greater increase is seen in minimum temperature of 3.3 % was calculated over the years. The trends in precipitation, maximum and minimum temperature is statistically significant at a 95% level.

  18. Influence of solidification on the impact of supercooled water drops onto cold surfaces

    NASA Astrophysics Data System (ADS)

    Li, Hai; Roisman, Ilia V.; Tropea, Cameron

    2015-06-01

    This study presents an experimental investigation of the impact of a supercooled drop onto hydrophilic and superhydrophobic substrates. The aim is to better understand the process of airframe icing caused by supercooled large droplets, which has been recently identified as a severe hazard in aviation. The Weber number and Reynolds number of the impinging drop ranged from 200 to 300 and from 2600 to 5800, respectively. Drop impact, spreading, and rebound were observed using a high-speed video system. The maximum spreading diameter of an impacting drop on hydrophilic surfaces was measured. The temperature effect on this parameter was only minor for a wide range of the drop and substrate temperatures. However, ice/water mixtures emerged when both the drop and substrate temperatures were below 0 °C. Similarly, drop rebound on superhydrophobic substrates was significantly hindered by solidification when supercooled drop impacted onto substrates below the freezing point. The minimum receding diameter and the speed of ice accretion on the substrate were measured for various wall temperatures. Both parameters increased almost linearly with decreasing wall temperature, but eventually leveled off beyond a certain substrate temperature. The rate of ice formation on the substrate was significantly higher than the growth rate of free ice dendrites, implying that multiple nucleation sites were present.

  19. Stoichiometry as key to ferroelectricity in compressively strained SrTiO{sub 3} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haislmaier, R. C.; Engel-Herbert, R.; Gopalan, V.

    2016-07-18

    While strain is a powerful tuning parameter for inducing ferroelectricity in thin film oxides, the role of stoichiometry control is critical, but far less explored. A series of compressively strained SrTiO{sub 3} films on (001) (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.35} substrates were grown by hybrid molecular beam epitaxy where the Ti cation was supplied using a metal-organic titanium tetraisopropoxide molecule that helps systematically and precisely control Sr:Ti stoichiometry in the resulting films. A stoichiometric growth window is located through X-ray diffraction and in-situ reflection high-energy electron diffraction measurements, which show a minimum out-of-plane lattice parameter as well as constantmore » growth rate within the stoichiometric growth window range. Using temperature dependent optical second harmonic generation (SHG) characterization, a ferroelectric-to-paraelectric transition at T ∼ 180 K is observed for a stoichiometric SrTiO{sub 3} film, as well as a higher temperature structural transition at T ∼ 385 K. Using SHG polarimetry modeling, the polar point group symmetry is determined to be tetragonal 4mm with the polarization pointing out-of-plane of the film. The SHG coefficients, d{sub 31}/d{sub 15}=3 and d{sub 33}/d{sub 15}=21, were determined at 298 K. The ferroelectric transition disappears in films grown outside the growth window, thus proving the critical role of stoichiometry control in realizing strain-induced ferroelectricity.« less

  20. Challenges associated with projecting urbanization-induced heat-related mortality.

    PubMed

    Hondula, David M; Georgescu, Matei; Balling, Robert C

    2014-08-15

    Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables. Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983-2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (-95%) to an increase of 339 deaths per year (+359%). Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Hydrologic and climatic changes in three small watersheds after timber harvest.

    Treesearch

    W.B. Fowler; J.D. Helvey; E.N. Felix

    1987-01-01

    No significant increases in annual water yield were shown for three small watersheds in northeastern Oregon after shelterwood cutting (30-percent canopy removal, 50-percent basal area removal) and clearcutting. Average maximum air temperature increased after harvest and average minimum air temperature decreased by up to 2.6 °C. Both maximum and minimum water...

  2. Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in Central-Western Greece

    NASA Astrophysics Data System (ADS)

    Panagoulia, Dionysia; Vlahogianni, Eleni I.

    2018-06-01

    A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to effective proactive management of extreme phenomena. The impacts of the findings on the predictability of the extreme daily mean areal temperature patterns are also commented.

  3. Universal inverse power-law distribution for temperature and rainfall in the UK region

    NASA Astrophysics Data System (ADS)

    Selvam, A. M.

    2014-06-01

    Meteorological parameters, such as temperature, rainfall, pressure, etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. A general systems theory model predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations. The model predicted distribution was compared with observed distribution of fractal fluctuations of all size scales (small, large and extreme values) in the historic month-wise temperature (maximum and minimum) and total rainfall for the four stations Oxford, Armagh, Durham and Stornoway in the UK region, for data periods ranging from 92 years to 160 years. For each parameter, the two cumulative probability distributions, namely cmax and cmin starting from respectively maximum and minimum data value were used. The results of the study show that (i) temperature distributions (maximum and minimum) follow model predicted distribution except for Stornowy, minimum temperature cmin. (ii) Rainfall distribution for cmin follow model predicted distribution for all the four stations. (iii) Rainfall distribution for cmax follows model predicted distribution for the two stations Armagh and Stornoway. The present study suggests that fractal fluctuations result from the superimposition of eddy continuum fluctuations.

  4. Analysis and modeling of extreme temperatures in several cities in northwestern Mexico under climate change conditions

    NASA Astrophysics Data System (ADS)

    García-Cueto, O. Rafael; Cavazos, M. Tereza; de Grau, Pamela; Santillán-Soto, Néstor

    2014-04-01

    The generalized extreme value distribution is applied in this article to model the statistical behavior of the maximum and minimum temperature distribution tails in four cities of Baja California in northwestern Mexico, using data from 1950-2010. The approach used of the maximum of annual time blocks. Temporal trends were included as covariates in the location parameter (μ), which resulted in significant improvements to the proposed models, particularly for the extreme maximum temperature values in the cities of Mexicali, Tijuana, and Tecate, and the extreme minimum temperature values in Mexicali and Ensenada. These models were used to estimate future probabilities over the next 100 years (2015-2110) for different time periods, and they were compared with changes in the extreme (P90th and P10th) percentiles of maximum and minimum temperature scenarios for a set of six general circulation models under low (RCP4.5) and high (RCP8.5) radiative forcings. By the end of the twenty-first century, the scenarios of the changes in extreme maximum summer temperature are of the same order in both the statistical model and the high radiative scenario (increases of 4-5 °C). The low radiative scenario is more conservative (increases of 2-3 °C). The winter scenario shows that minimum temperatures could be less severe; the temperature increases suggested by the probabilistic model are greater than those projected for the end of the century by the set of global models under RCP4.5 and RCP8.5 scenarios. The likely impacts on the region are discussed.

  5. Correlations of catalytic combustor performance parameters

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1978-01-01

    Correlations for combustion efficiency percentage drop and the minimum required adiabatic reaction temperature necessary to meet emissions goals of 13.6 g CO/kg fuel and 1.64 g HC/kg fuel are presented. Combustion efficiency was found to be a function of the cell density, cell circumference, reactor length, reference velocity, and adiabatic reaction temperature. The percentage pressure drop at an adiabatic reaction temperature of 1450 K was found to be proportional to the reference velocity to the 1.5 power and to the reactor length. It is inversely proportional to the pressure, cell hydraulic diameter, and fractional open area. The minimum required adiabatic reaction temperature was found to increase with reference velocity and decrease with cell circumference, cell density and reactor length. A catalyst factor was introduced into the correlations to account for differences between catalysts. Combustion efficiency, the percentage pressure drop, and the minimum required adiabatic reaction temperature were found to be a function of the catalyst factor. The data was from a 12 cm-diameter test rig with noble metal reactors using propane fuel at an inlet temperature of 800 K.

  6. Pinctada margaritifera responses to temperature and pH: Acclimation capabilities and physiological limits

    NASA Astrophysics Data System (ADS)

    Le Moullac, Gilles; Soyez, Claude; Latchere, Oihana; Vidal-Dupiol, Jeremie; Fremery, Juliette; Saulnier, Denis; Lo Yat, Alain; Belliard, Corinne; Mazouni-Gaertner, Nabila; Gueguen, Yannick

    2016-12-01

    The pearl culture is one of the most lucrative aquacultures worldwide. In many South Pacific areas, it depends on the exploitation of the pearl oyster Pinctada margaritifera and relies entirely on the environmental conditions encountered in the lagoon. In this context, assessing the impact of climatic stressors, such as global warming and ocean acidification, on the functionality of the resource in terms of renewal and exploitation is fundamental. In this study, we experimentally addressed the impact of temperature (22, 26, 30 and 34 °C) and partial pressure of carbon dioxide pCO2 (294, 763 and 2485 μatm) on the biomineralization and metabolic capabilities of pearl oysters. While the energy metabolism was strongly dependent on temperature, results showed its independence from pCO2 levels; no interaction between temperature and pCO2 was revealed. The energy metabolism, ingestion, oxygen consumption and, hence, the scope for growth (SFG) were maximised at 30 °C and dramatically fell at 34 °C. Biomineralization was examined through the expression measurement of nine mantle's genes coding for shell matrix proteins involved in the formation of calcitic prisms and/or nacreous shell structures; significant changes were recorded for four of the nine (Pmarg-Nacrein A1, Pmarg-MRNP34, Pmarg-Prismalin 14 and Pmarg-Aspein). These changes showed that the maximum and minimum expression of these genes was at 26 and 34 °C, respectively. Surprisingly, the modelled thermal optimum for biomineralization (ranging between 21.5 and 26.5 °C) and somatic growth and reproduction (28.7 °C) appeared to be significantly different. Finally, the responses to high temperatures were contextualised with the Intergovernmental Panel on Climate Change (IPCC) projections, which highlighted that pearl oyster stocks and cultures would be severely threatened in the next decade.

  7. Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage

    PubMed Central

    Mannaa, Mohamed

    2017-01-01

    Cereal grains are the most important food source for humans. As the global population continues to grow exponentially, the need for the enhanced yield and minimal loss of agricultural crops, mainly cereal grains, is increasing. In general, harvested grains are stored for specific time periods to guarantee their continuous supply throughout the year. During storage, economic losses due to reduction in quality and quantity of grains can become very significant. Grain loss is usually the result of its deterioration due to fungal contamination that can occur from preharvest to postharvest stages. The deleterious fungi can be classified based on predominance at different stages of crop growth and harvest that are affected by environmental factors such as water activity (aw) and eco-physiological requirements. These fungi include species such as those belonging to the genera Aspergillus and Penicillium that can produce mycotoxins harmful to animals and humans. The grain type and condition, environment, and biological factors can also influence the occurrence and predominance of mycotoxigenic fungi in stored grains. The main environmental factors influencing grain fungi and mycotoxins are temperature and aw. This review discusses the effects of temperature and aw on fungal growth and mycotoxin production in stored grains. The focus is on the occurrence and optimum and minimum growth requirements for grain fungi and mycotoxin production. The environmental influence on aflatoxin production and hypothesized mechanisms of its molecular suppression in response to environmental changes are also discussed. In addition, the use of controlled or modified atmosphere as an environmentally safe alternative to harmful agricultural chemicals is discussed and recommended future research issues are highlighted. PMID:29371792

  8. Climate change, agroclimatic resources and agroclimatic zoning of agriculture in Bulgaria

    NASA Astrophysics Data System (ADS)

    Kazandjiev, V.; Moteva, M.; Georgieva, V.

    2009-09-01

    The important factors for the agrarian output in Bulgaria are only thermal and water probability. From the two factors the component related to soil moisture is more limited. As well water and temperatures probabilities in the agrarian output are estimated trough sums of temperatures and rainfalls or by derivatives indicators (most frequently named as coefficients or indices). The heat conditions and the heat resources are specified by the continuousness of the vegetative period. Duration of vegetative season is limited for each type of plant, between the spring and autumn steady pass of air temperature across the biological minimum. For the agricultural crops in Bulgaria the three biological minimums: in 5°C are taken for wheat and barley, oat, pea, lentil and sunflower; 10°C for corn, haricot, and soybean and in 15°C for the cotton, vegetables and other spring cultures). The cold and warm period duration are mutually related characteristics. The first period define number of days with the snow fall and days with the snow cover, that are in the basis in the formation of soil moisture reserves after the spring snow melt. Definition of the regions with temperature stress conditions during vegetative season is one of the most important parameters of agroclimatic conditions. The values indicating for the limitations are one or more periods from at least 10 consecutive days with maximal air temperature over 35 °С. More from the agricultures, character for the moderate continental climatic zone are developed normally under temperatures 25-28°С. Temperatures over 28°C are ballast slowing the growth and destroying plants due to the heat tension. The component, limiting in greatest degree growth, development and formation of yields from the agricultural crops are the conditions of moisturizing, present trough atmospheric and soil moisture. The most apparent indicator is the year sum of the rains or their sum by the periods with the average daily temperatures of over 5 and 10°C. Cross correlation matrix between the meteorological elements from which evapotranspiration depends - temperature, relative air humidity, wind speed and the vapor pressure deficit is present. One of the ways for assessment of water necessity is by the difference between the sum of rainfalls and potential water uses i.e. evapotranspiration. The difference between two magnitudes presents the balance of atmospheric moisturizing (BAO). The data about the limitations, emergent from the soil moisture lack, to the base of the existing agrometeorological data are present. Values of the relation between real and potential evapotranspiration Ео / Ер were calculated for potential vegetative period which is divided up of the two sub periods, Mart-June, when is the period of formation outputs from wintering cultures and July- August, when is the period for outputs from the spring cultures are formation, as well.

  9. High Tensile Strength Amalgams for In-Space Fabrication and Repair

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    Amalgams are well known for their use in dental practice as a tooth filling material. They have a number of useful attributes that include room temperature fabrication, corrosion resistance, dimensional stability, and very good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits other potential applications. Improved material properties (strength and temperature) of amalgams may have application to the freeform fabrication of repairs or parts that might be necessary during an extended space mission. Advantages would include, but are not limited to: the ability to produce complex parts, a minimum number of processing steps, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption. The work presented here shows how the properties of amalgams can be improved by changing particle geometries in conjunction with novel engineering metals.

  10. Physiological and biochemical responses of Prorocentrum minimum to high light stress

    NASA Astrophysics Data System (ADS)

    Park, So Yun; Choi, Eun Seok; Hwang, Jinik; Kim, Donggiun; Ryu, Tae Kwon; Lee, Taek-Kyun

    2009-12-01

    Prorocentrum minimum is a common bloomforming photosynthetic dinoflagellate found along the southern coast of Korea. To investigate the adaptive responses of P. minimum to high light stress, we measured growth rate, and generation of reactive oxidative species (ROS), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in cultures exposed to normal (NL) and high light levels (HL). The results showed that HL (800 μmol m-2 s-1) inhibited growth of P. minimum, with maximal inhibition after 7-9 days. HL also increased the amount of ROS and MDA, suggesting that HL stress leads to oxidative damage and lipid peroxidation in this species. Under HL, we first detected superoxide on day 4 and H2O2 on day 5. We also detected SOD activity on day 5 and CAT activity on day 6. The level of lipid peroxidation, an indicator of cell death, was high on day 8. Addition of diphenyleneiodonium (DPI), an NAD(P)H inhibitor, decreased the levels of superoxide generation and lipid peroxidation. Our results indicate that the production of ROS which results from HL stress in P. minimum also induces antioxidative enzymes that counteract oxidative damage and allow P. minimum to survive.

  11. Ecological covariates based predictive model of malaria risk in the state of Chhattisgarh, India.

    PubMed

    Kumar, Rajesh; Dash, Chinmaya; Rani, Khushbu

    2017-09-01

    Malaria being an endemic disease in the state of Chhattisgarh and ecologically dependent mosquito-borne disease, the study is intended to identify the ecological covariates of malaria risk in districts of the state and to build a suitable predictive model based on those predictors which could assist developing a weather based early warning system. This secondary data based analysis used one month lagged district level malaria positive cases as response variable and ecological covariates as independent variables which were tested with fixed effect panelled negative binomial regression models. Interactions among the covariates were explored using two way factorial interaction in the model. Although malaria risk in the state possesses perennial characteristics, higher parasitic incidence was observed during the rainy and winter seasons. The univariate analysis indicated that the malaria incidence risk was statistically significant associated with rainfall, maximum humidity, minimum temperature, wind speed, and forest cover ( p  < 0.05). The efficient predictive model include the forest cover [IRR-1.033 (1.024-1.042)], maximum humidity [IRR-1.016 (1.013-1.018)], and two-way factorial interactions between district specific averaged monthly minimum temperature and monthly minimum temperature, monthly minimum temperature was statistically significant [IRR-1.44 (1.231-1.695)] whereas the interaction term has a protective effect [IRR-0.982 (0.974-0.990)] against malaria infections. Forest cover, maximum humidity, minimum temperature and wind speed emerged as potential covariates to be used in predictive models for modelling the malaria risk in the state which could be efficiently used for early warning systems in the state.

  12. A three-stage hybrid model for regionalization, trends and sensitivity analyses of temperature anomalies in China from 1966 to 2015

    NASA Astrophysics Data System (ADS)

    Wu, Feifei; Yang, XiaoHua; Shen, Zhenyao

    2018-06-01

    Temperature anomalies have received increasing attention due to their potentially severe impacts on ecosystems, economy and human health. To facilitate objective regionalization and examine regional temperature anomalies, a three-stage hybrid model with stages of regionalization, trends and sensitivity analyses was developed. Annual mean and extreme temperatures were analyzed using the daily data collected from 537 stations in China from 1966 to 2015, including the annual mean, minimum and maximum temperatures (Tm, TNm and TXm) as well as the extreme minimum and maximum temperatures (TNe and TXe). The results showed the following: (1) subregions with coherent temperature changes were identified using the rotated empirical orthogonal function analysis and K-means clustering algorithm. The numbers of subregions were 6, 7, 8, 9 and 8 for Tm, TNm, TXm, TNe and TXe, respectively. (2) Significant increases in temperature were observed in most regions of China from 1966 to 2015, although warming slowed down over the last decade. This warming primarily featured a remarkable increase in its minimum temperature. For Tm and TNm, 95% of the stations showed a significant upward trend at the 99% confidence level. TNe increased the fastest, at a rate of 0.56 °C/decade, whereas 21% of the stations in TXe showed a downward trend. (3) The mean temperatures (Tm, TNm and TXm) in the high-latitude regions increased more quickly than those in the low-latitude regions. The maximum temperature increased significantly at high elevations, whereas the minimum temperature increased greatly at middle-low elevations. The most pronounced warming occurred in eastern China in TNe and northwestern China in TXe, with mean elevations of 51 m and 2098 m, respectively. A cooling trend in TXe was observed at the northwestern end of China. The warming rate in TNe varied the most among the subregions (0.63 °C/decade).

  13. Solar Forcing of Regional Climate Change During the Maunder Minimum

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Schmidt, Gavin A.; Mann, Michael E.; Rind, David; Waple, Anne; Hansen, James E. (Technical Monitor)

    2002-01-01

    We examine the climate response to solar irradiance changes between the late 17th century Maunder Minimum and the late 18th century. Global average temperature changes are small (about 0.3 to 0.4 C) in both a climate model and empirical reconstructions. However, regional temperature changes are quite large. In the model, these occur primarily through a forced shift toward the low index state of the Arctic Oscillation/North Atlantic Oscillation. This leads to colder temperatures over the Northern Hemisphere continents, especially in winter (1 to 2 C), in agreement with historical records and proxy data for surface temperatures.

  14. Analysis of Biaxial Stress Fields in Plates Cracking at Elevated Temperatures

    DTIC Science & Technology

    1989-10-19

    used . Based on the enhanced theory, it is predicted that the minimum resolvable stress amplitude using thermographic stress analysis will be...because of limitations in the commercial thermographic equipment used . Based on the enhanced theory, it is predicted that the minimum resolvable stress...amplitude using thermographic stress analysis will be approximately independent of temperature, provided relevant thermal and mechanical material

  15. Safe Minimum Internal Temperature Chart

    MedlinePlus

    ... Administrative Forms Standard Forms Skip Navigation Z7_0Q0619C0JGR010IFST1G5B10H1 Web Content Viewer (JSR 286) Actions ${title} Loading... / Topics / ... Chart / Safe Minimum Internal Temperature Chart Z7_0Q0619C0JGR010IFST1G5B10H3 Web Content Viewer (JSR 286) Actions ${title} Loading... Z7_ ...

  16. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  17. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration.

    PubMed

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo

    2003-09-01

    Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.

  18. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging may play a role. Fractography showed that microvoid coalescence was the microscopic mode of fracture in FVS0812 under all testing conditions. However, the nature of the microvoids varied with test temperature and loading rate, and is complex for the fine grain and dipersoid sizes of FVS0812.

  19. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions.

    PubMed

    Huang, Jian; Ji, Feng

    2015-07-01

    Understanding the effects of climatic change on phenological phases of cotton (Gossypium hirsutum L.) in oasis of arid regions may help optimize management schemes to increase productivity. This study assessed the impacts of climatic changes on the phenological phases and productivity of spring cotton. The results showed that climatic warming led the dates of sowing seed, seeding emergence, three-leaf, five-leaf, budding, anthesis, full bloom, cleft boll, boll-opening, boll-opening filling, and stop-growing become earlier by 24.42, 26.19, 24.75, 23.28, 22.62, 15.75, 14.58, 5.37, 2.85, 8.04, and 2.16 days during the period of 1981-2010, respectively. The growth period lengths from sowing seed to seeding emergence and from boll-opening to boll-opening filling were shortened by 1.76 and 5.19 days, respectively. The other growth period lengths were prolonged by 2-9.71 days. The whole growth period length was prolonged by 22.26 days. The stop-growing date was delayed by 2.49-3.46 days for every 1 °C rise in minimum, maximum, and mean temperatures; however, other development dates emerged earlier by 2.17-4.76 days. Rising temperatures during the stage from seeding emergence to three-leaf reduced seed cotton yields. However, rising temperatures increased seed cotton yields in the two stages from anthesis to cleft boll and from boll-opening filling to the stop-growing. Increasing accumulated temperatures (AT) had different impacts on different development stages. During the vegetative phase, rising AT led to reduced seed cotton yields, but rising AT during reproductive stage increased seed cotton yields. In conclusion, climatic warming helpfully obtained more seed cotton yields in oasis of arid regions in northwest China. Changing the sowing date is another way to enhance yields for climate change in the future.

  20. AgRISTARS: Supporting research. Spring small grains planting date distribution model

    NASA Technical Reports Server (NTRS)

    Hodges, T.; Artley, J. A. (Principal Investigator)

    1981-01-01

    A model was developed using 996 planting dates at 51 LANDSAT segments for spring wheat and spring barley in Minnesota, Montana, North Dakota, and South Dakota in 1979. Daily maximum and minimum temperatures and precipitation were obtained from the cooperative weather stations nearest to each segment. The model uses a growing degree day summation modified for daily temperature range to estimate the beginning of planting and uses a soil surface wetness variable to estimate how a fixed number of planting days are distributed after planting begins. For 1979, the model predicts first, median, and last planting dates with root mean square errors of 7.91, 6.61, and 7.09 days, respectively. The model also provides three or four dates to represent periods of planting activity within the planting season. Although the full model was not tested on an independent data set, it may be suitable in areas other than the U.S. Great Plains where spring small grains are planted as soon as soil and air temperatures become warm enough in the spring for plant growth.

  1. Wide gap, permanent magnet biased magnetic bearing system

    NASA Technical Reports Server (NTRS)

    Boden, Karl

    1992-01-01

    The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.

  2. Fingerprinting snakes: paleontological and paleoecological implications of zygantral growth rings in Serpentes

    PubMed Central

    Gauthier, Jacques A.

    2018-01-01

    We introduce a new non-destructive source of skeletochronological data with applications to species identification, associating disarticulated remains, assessing minimum number of individuals (MNI), and collection management of fossil snakes, but with potential implications for all bony vertebrates, extinct or extant. Study of a diverse sample of Recent henophidian snakes confirms that annual growth cycles (AGCs) visible on the surface of the vertebral zygantrum correspond to lines of arrested growth in osteohistological thin sections and accordingly reflect chronological age. None of the specimens considered here showed signs of remodelling of the zygantrum, suggesting that a complete, unaltered age record is preserved. We tested potential influences on AGCs with a single experimental organism, a male Bogertophis subocularis, that was raised at a controlled temperature and with constant access to mice and water. The conditions in which this individual was maintained, including that it had yet to live through a full reproductive cycle, enabled us to determine that its AGCs reflect only the annual solar cycle, and neither temperature, nor resource availability, nor energy diversion to gametogenesis could explain that it still exhibited lines of arrested growth. Moreover, growth lines in this specimen are deposited toward the end of the growth season in the fall, and not in the winter, during which this individual continued to feed and grow, even though this mid-latitude species would normally be hibernating and not growing. This suggests that growth lines are not caused by hibernation, but reflect the onset of a physiological cycle preparing Bogertophis subocularis for winter rest. That being said, hibernation and reproductive cycle could still influence the amount of time represented by an individual growth line. Growth-line number and AGC spacing-pattern, plus centrum length, are used to estimate MNI of the Early Eocene fossil snake Boavus occidentalis collected from the Willwood Formation over two field seasons during the late 19th century. We identified eight or nine individuals among specimens previously parcelled among two specimen lots collected during those expeditions. PMID:29844972

  3. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases.

    PubMed

    Calvo, H; Marco, P; Blanco, D; Oria, R; Venturini, M E

    2017-05-01

    The biocontrol potential of the Bacillus amyloliquefaciens strain BUZ-14 was tested against the main postharvest diseases of orange, apple, grape and stone fruit. After characterizing the temperature and pH growth curves of strain BUZ-14, its in vitro antifungal activity was determined against Botrytis cinerea, Monilinia fructicola, M. laxa, Penicillium digitatum, P. expansum and P. italicum. Subsequently, in vivo activity was tested against these pathogens by treating fruit with cells, endospores and cell-free supernatants. The in vitro results showed that BUZ-14 inhibited the growth of all the pathogens tested corresponding to the least susceptible species, P. italicum, and the most susceptible, M. laxa. In vivo tests corroborated these results as most of the treatments decreased the incidence of brown rot in stone fruit from 100% to 0%, establishing 10 7  CFU mL -1 as the minimum inhibitory concentration. For the Penicillium species a preventive treatment inhibited P. digitatum and P. italicum growth in oranges and reduced P. expansum incidence in apples from 100% to 20%. Finally, it has been demonstrated that BUZ-14 was able to survive and to control brown rot in peaches stored at cool temperatures, making it a very suitable biocontrol agent for application during the post-harvest storage and marketing of horticultural products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Impact of Land Surface Initialization Approach on Subseasonal Forecast Skill: a Regional Analysis in the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Hirsch, Annette L.; Kala, Jatin; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Haverd, Vanessa; Mocko, David

    2014-01-01

    The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.

  5. Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China.

    PubMed

    Wu, Xiaocheng; Lang, Lingling; Ma, Wenjun; Song, Tie; Kang, Min; He, Jianfeng; Zhang, Yonghui; Lu, Liang; Lin, Hualiang; Ling, Li

    2018-07-01

    Dengue fever is an important infectious disease in Guangzhou, China; previous studies on the effects of weather factors on the incidence of dengue fever did not consider the linearity of the associations. This study evaluated the effects of daily mean temperature, relative humidity and rainfall on the incidence of dengue fever. A generalized additive model with splines smoothing function was performed to examine the effects of daily mean, minimum and maximum temperatures, relative humidity and rainfall on incidence of dengue fever during 2006-2014. Our analysis detected a non-linear effect of mean, minimum and maximum temperatures and relative humidity on dengue fever with the thresholds at 28°C, 23°C and 32°C for daily mean, minimum and maximum temperatures, 76% for relative humidity, respectively. Below the thresholds, there was a significant positive effect, the excess risk in dengue fever for each 1°C in the mean temperature at lag7-14days was 10.21%, (95% CI: 6.62% to 13.92%), 7.10% (95% CI: 4.99%, 9.26%) for 1°C increase in daily minimum temperature in lag 11days, and 2.27% (95% CI: 0.84%, 3.72%) for 1°C increase in daily maximum temperature in lag 10days; and each 1% increase in relative humidity of lag7-14days was associated with 1.95% (95% CI: 1.21% to 2.69%) in risk of dengue fever. Future prevention and control measures and epidemiology studies on dengue fever should consider these weather factors based on their exposure-response relationship. Copyright © 2018. Published by Elsevier B.V.

  6. Changes in heat waves indices in Romania over the period 1961-2015

    NASA Astrophysics Data System (ADS)

    Croitoru, Adina-Eliza; Piticar, Adrian; Ciupertea, Antoniu-Flavius; Roşca, Cristina Florina

    2016-11-01

    In the last two decades many climate change studies have focused on extreme temperatures as they have a significant impact on environment and society. Among the weather events generated by extreme temperatures, heat waves are some of the most harmful. The main objective of this study was to detect and analyze changes in heat waves in Romania based on daily observation data (maximum and minimum temperature) over the extended summer period (May-Sept) using a set of 10 indices and to explore the spatial patterns of changes. Heat wave data series were derived from daily maximum and minimum temperature data sets recorded in 29 weather stations across Romania over a 55-year period (1961-2015). In this study, the threshold chosen was the 90th percentile calculated based on a 15-day window centered on each calendar day, and for three baseline periods (1961-1990, 1971-2000, and 1981-2010). Two heat wave definitions were considered: at least three consecutive days when maximum temperature exceeds 90th percentile, and at least three consecutive days when minimum temperature exceeds 90th percentile. For each of them, five variables were calculated: amplitude, magnitude, number of events, duration, and frequency. Finally, 10 indices resulted for further analysis. The main results are: most of the indices have statistically significant increasing trends; only one index for one weather station indicated statistically significant decreasing trend; the changes are more intense in case of heat waves detected based on maximum temperature compared to those obtained for heat waves identified based on minimum temperature; western and central regions of Romania are the most exposed to increasing heat waves.

  7. Risk of hospitalization for fire-related burns during extreme cold weather.

    PubMed

    Ayoub, Aimina; Kosatsky, Tom; Smargiassi, Audrey; Bilodeau-Bertrand, Marianne; Auger, Nathalie

    2017-10-01

    Environmental factors are important predictors of fires, but no study has examined the association between outdoor temperature and fire-related burn injuries. We sought to investigate the relationship between extremely cold outdoor temperatures and the risk of hospitalization for fire-related burns. We carried out a time-stratified case-crossover study of 2470 patients hospitalized for fire-related burn injuries during cold months between 1989 and 2014 in Quebec, Canada. The main exposure was the minimum outdoor temperature on the day of and the day before the burn. We computed odds ratios (OR) and 95% confidence intervals (CI) to evaluate the relationship between minimum temperature and fire-related burns, and assessed how associations varied across sex and age. Exposure to extreme cold temperature was associated with a significantly higher risk of hospitalization for fire-related burns. Compared with 0°C, exposure to a minimum temperature of -30°C was associated with an OR of 1.51 (95% CI 1.22-1.87) for hospitalization for fire-related burns. The associations were somewhat stronger for women, youth, and the elderly. Compared with 0°C, a minimum temperature of -30°C was associated with an OR for fire-related burn hospitalization of 1.65 for women (95% CI 1.13-2.40), 1.60 for age < 25 years (95% CI 1.02-2.52), and 1.73 for age ≥ 65 years (95% CI 1.08-2.77). Extremely cold outdoor temperature is a risk factor for fire-related burns. Measures to prevent fires should be implemented prior to the winter season, and enhanced during extreme cold. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The microbial temperature sensitivity to warming is controlled by thermal adaptation and is independent of C-quality across a pan-continental survey

    NASA Astrophysics Data System (ADS)

    Berglund, Eva; Rousk, Johannes

    2017-04-01

    Climate models predict that warming will result in an increased loss of soil organic matter (SOM). However, field experiments suggest that although warming results in an immediate increase in SOM turnover, the effect diminishes over time. Although the use and subsequent turnover of SOM is dominated by the soil microbial community, the underlying physiology underpinning warming responses are not considered in current climate models. It has been suggested that a reduction in the perceived quality of SOM to the microbial community, and changes in the microbial thermal adaptation, could be important feed-backs to soil warming. Thus, studies distinguishing between temperature relationships and how substrate quality influences microbial decomposition are a priority. We examined microbial communities and temperature sensitivities along a natural climate gradient including 56 independent samples from across Europe. The gradient included mean annual temperatures (MAT) from ca -4 to 18 ˚ C, along with wide spans of environmental factors known to influence microbial communities, such as pH (4.0 to 8.8), nutrients (C/N from 7 to 50), SOM (from 4 to 94%), and plant communities, etc. The extensive ranges of environmental conditions resulted in wide ranges of substrate quality, indexed as microbial respiration per unit SOM, from 5-150 μg CO2g-1 SOM g-1 h-1. We hypothesised microbial communities to (1) be adapted to the temperature of their climate, leading to warm adapted bacterial communities that were more temperature sensitive (higher Q10s) at higher MAT; (2) have temperature sensitivities affected by the quality of SOM, with higher Q10s for lower quality SOM. To determine the microbial use of SOM and its dependence on temperature, we characterized microbial temperature dependences of bacterial growth (leu inc), fungal growth (ac-in-erg) and soil respiration in all 56 sites. Temperature dependences were determined using brief (ca. 1-2 h at 25˚ C) laboratory incubation experiments including temperatures from 0 to 35˚ C. Temperature relationships were modelled using the Ratkowsky model, and cardinal points including minimum temperature (Tmin) for growth and respiration along with temperature sensitivity (Q10) values were used as indices to compare sites. Microbial communities were cold-adapted in cold sites and warm-adapted in warm sites, as shown by Tmin values ranging from ca. -20 ˚ C to 0 ˚ C. For every 1˚ C rise in MAT, Tmin increased by 0.22˚ C and 0.28˚ C for bacteria and fungi, respectively. Soil respiration was less dependent on MAT, increasing 0.16 ˚ C per 1˚ C. Temperature dependence analyses grew stronger when regressed against summer temperatures, and weaker when regressed against winter temperatures. Hence, microbial communities adjusted their temperature dependence for growth more than for respiration, and higher temperatures had more impact than low temperatures did. The correlation between Tmin and MAT resulted in Q10s increasing with MAT, showing that microorganisms from cold regions were less temperature sensitive than those from warmer regions. For every 1˚ C increase in MAT, Q10 increased with 0.04 and 0.03 units for bacterial and fungal growth respectively, and 0.08 units for soil respiration. In contrast to previous studies, we found no relationship between temperature sensitivity and substrate quality. We demonstrate that the strongest driver of variation in microbial temperatures sensitivities (Q10s) is the microbial adaptation to its thermal environment. Surprisingly, the quality of SOM had no influence on the temperature sensitivity. This calls for a revision of the understanding for how microbial decomposers feed-back to climate warming. Specifically, the thermal adaptation of microbial communities need to be incorporated into climate models to capture responses to warming, while the quality of SOM can be ignored.

  9. Application of Low cost Spirulina growth medium using Deep sea water

    NASA Astrophysics Data System (ADS)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  10. Simulation of radial solute segregation in vertical Bridgman growth of pyridine-doped benzene, a surrogate for binary organic nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Lee, Hanjie; Pearlstein, Arne J.

    2000-09-01

    We present steady axisymmetric computations of solute distributions and radial segregation for vertical Bridgman growth of pyridine-doped benzene, a binary aromatic system with anisotropic solid-phase thermal conductivity, that serves as a model of solute transport in crystal growth of organic nonlinear optical materials. The radial variation of solid-phase mass fraction ( Cs) of pyridine, which is rejected at the growing interface, depends strongly on growth conditions. High growth velocities tend to increase Cs near the centerline, the ampoule wall, or both, and low growth velocities give more nearly uniform radial distributions. The maximum ampoule-wall temperature gradient also affects radial segregation, with convex-to-the-liquid interfaces at small temperature gradients being associated with radially monotonic Cs distributions, and ridged interfaces at higher gradients being associated with nonmonotonic distributions having maxima at the centerline and ampoule wall. Nonuniformity is strongly determined by both interface shape and the nature of the flow near the interface. Solute is transported down to the interface by a large toroidal vortex, and swept radially inward to the centerline by a second, flattened toroidal cell. When the interface is depressed at its junction with the ampoule wall, rejected solute accumulates in the overlying liquid, where convection is relatively weak, resulting in local solute enrichment of the solid. Computations at normal and zero gravity show that for two very similar interface shapes, a maximum in the radial solid-phase solute distribution at the ampoule wall is associated with the interface shape, while the maximum on the centerline is associated with sweeping of solute to the centerline by a vortical flow on the interface. We also show that radial solute segregation depends significantly on whether account is taken of the anisotropy of the solid-phase thermal conductivity. Finally, the computations provide guidance as to the minimum ampoule length required to produce an axially uniform solute distribution over at least part of the length of a boule.

  11. Growth energetics of germanium quantum dots by atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wagner, Richard Joseph

    Strained epitaxial growth of Ge on Si(001) produces self-assembled, nanometer scale islands, or quantum dots. We study this growth by atomistic simulation, computing the energy of island structures to determine when and how islanding occurs. We also describe experimental methods of island growth and characterization in order to understand the relevant physical processes and to interpret experimental observations for comparison with simulation. We show that pyramidal Ge islands with rebonded step {105} facets are energetically favorable compared to growth of planar Ge (2 x 8) on Si(001). We determine how the chemical potential of these islands varies with size, lateral spacing, and wetting layer thickness. We also illustrate the atomic-level structure of these islands with favorable formation energy. Intermixing can occur between the growing Ge film and the Si substrate. We show that although Ge prefers to wet the surface, entropy drives some fraction into the underlying layers. We present a simple model of intermixing by equilibration of the top crystal layers. The equilibration is performed with a flexible lattice Monte Carlo simulation. Ultimately, intermixing produces a temperature-dependent graded Ge concentration. The resulting chemical potential leads to the onset of islanding after 3-4 monolayers of deposition, consistent with experimental observations. The distribution of island sizes on a surface is determined by the relation of island energy to size. We find that there exists a minimum-energy island size due to the interaction of surface energy and bulk relaxation. Applying the calculated chemical potential to the Boltzmann-Gibbs distribution, we predict size distributions as functions of coverage and temperature. The distributions, with peak populations around 86 000 atoms, compare favorably with experiment. This work explores the driving force in growth of Ge on Si(001). The knowledge derived here explains why islanding occurs and provides guidance for the control of island self-assembly to construct useful microelectronic devices from quantum dots.

  12. Statistical modeling of daily and subdaily stream temperatures: Application to the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Gangopadhyay, S.; Bountry, J.; Lai, Y.; Elsner, M. M.

    2013-07-01

    Management of water temperatures in the Columbia River Basin (Washington) is critical because water projects have substantially altered the habitat of Endangered Species Act listed species, such as salmon, throughout the basin. This is most important in tributaries to the Columbia, such as the Methow River, where the spawning and rearing life stages of these cold water fishes occurs. Climate change projections generally predict increasing air temperatures across the western United States, with less confidence regarding shifts in precipitation. As air temperatures rise, we anticipate a corresponding increase in water temperatures, which may alter the timing and availability of habitat for fish reproduction and growth. To assess the impact of future climate change in the Methow River, we couple historical climate and future climate projections with a statistical modeling framework to predict daily mean stream temperatures. A K-nearest neighbor algorithm is also employed to: (i) adjust the climate projections for biases compared to the observed record and (ii) provide a reference for performing spatiotemporal disaggregation in future hydraulic modeling of stream habitat. The statistical models indicate the primary drivers of stream temperature are maximum and minimum air temperature and stream flow and show reasonable skill in predictability. When compared to the historical reference time period of 1916-2006, we conclude that increases in stream temperature are expected to occur at each subsequent time horizon representative of the year 2020, 2040, and 2080, with an increase of 0.8 ± 1.9°C by the year 2080.

  13. Thermal biology of the sub-polar-temperate estuarine crab Hemigrapsus crenulatus (Crustacea: Decapoda: Varunidae).

    PubMed

    Cumillaf, Juan P; Blanc, Johnny; Paschke, Kurt; Gebauer, Paulina; Díaz, Fernando; Re, Denisse; Chimal, María E; Vásquez, Jorge; Rosas, Carlos

    2016-02-15

    Optimum temperatures can be measured through aerobic scope, preferred temperatures or growth. A complete thermal window, including optimum, transition (Pejus) and critical temperatures (CT), can be described if preferred temperatures and CT are defined. The crustacean Hemigrapsus crenulatus was used as a model species to evaluate the effect of acclimation temperature on: (i) thermal preference and width of thermal window, (ii) respiratory metabolism, and (iii) haemolymph proteins. Dependant on acclimation temperature, preferred temperature was between 11.8°C and 25.2°C while CT was found between a minimum of 2.7°C (CTmin) and a maximum of 35.9°C (CTmax). These data and data from tropical and temperate crustaceans were compared to examine the association between environmental temperature and thermal tolerance. Temperate species have a CTmax limit around 35°C that corresponded with the low CTmax limit of tropical species (34-36°C). Tropical species showed a CTmin limit around 9°C similar to the maximum CTmin of temperate species (5-6°C). The maximum CTmin of deep sea species that occur in cold environments (2.5°C) matched the low CTmin values (3.2°C) of temperate species. Results also indicate that the energy required to activate the enzyme complex (Ei) involved in respiratory metabolism of ectotherms changes along the latitudinal gradient of temperature. © 2016. Published by The Company of Biologists Ltd.

  14. Exposure- and flux-based assessment of ozone risk to sugarcane plants

    NASA Astrophysics Data System (ADS)

    Moura, Bárbara Baêsso; Hoshika, Yasutomo; Ribeiro, Rafael Vasconcelos; Paoletti, Elena

    2018-03-01

    Ozone (O3) is a toxic oxidative air pollutant, with significant detrimental effects on crops. Sugarcane (Saccharum spp.) is an important crop with no O3 risk assessment performed so far. This study aimed to assess O3 risk to sugarcane plants by using exposure-based indices (AOT40 and W126) based on O3 concentrations in the air, and the flux-based index (PODy, where y is a threshold of uptake) that considers leaf O3 uptake and the influence of environmental conditions on stomatal conductance (gsto). Two sugarcane genotypes (IACSP94-2094 and IACSP95-5000) were subjected to a 90-day Free-Air Controlled Experiment (FACE) exposure at three levels of O3 concentrations: ambient (Amb); Amb x1.2; and Amb x1.4. Total above-ground biomass (AGB), stalk biomass (SB) and leaf biomass (LB) were evaluated and the potential biomass production in a clean air was estimated by assuming a theoretical clean atmosphere at 10 ppb as 24 h O3 average. The Jarvis-type multiplicative algorithm was used to parametrize gsto including environmental factors i.e. air temperature, light intensity, air vapor pressure deficit, and minimum night-time temperature. Ozone exposure caused a negative impact on AGB, SB and LB. The O3 sensitivity of sugarcane may be related to its high gsto (∼535 mmol H2O m-2 s-1). As sugarcane is adapted to hot climate conditions, gsto was restricted when the current minimum air temperature (Tmin) was below ∼14 °C and the minimum night-time air temperature of the previous day (Tnmin) was below ∼7.5 °C. The flux-based index (PODy) performed better than the exposure-based indices in estimating O3 effect on biomass losses. We recommend a y threshold of 2 nmol m-2 s-1 to incorporate O3 effects on both AGB and SB and 1 nmol m-2 s-1 on LB. In order not to exceed 4% reduction in the growth of these two sugarcane genotypes, we recommend the following critical levels: 1.09 and 1.04 mmol m-2 POD2 for AGB, 0.91 and 0.96 mmol m-2 POD2 for SB, and 3.00 and 2.36 mmol m-2 POD1 for LB of IACSP95-5000 and IACSP94-2094, respectively.

  15. [Study on sensitivity of climatic factors on influenza A (H1N1) based on classification and regression tree and wavelet analysis].

    PubMed

    Xiao, Hong; Lin, Xiao-ling; Dai, Xiang-yu; Gao, Li-dong; Chen, Bi-yun; Zhang, Xi-xing; Zhu, Pei-juan; Tian, Huai-yu

    2012-05-01

    To analyze the periodicity of pandemic influenza A (H1N1) in Changsha in year 2009 and its correlation with sensitive climatic factors. The information of 5439 cases of influenza A (H1N1) and synchronous meteorological data during the period between May 22th and December 31st in year 2009 (223 days in total) in Changsha city were collected. The classification and regression tree (CART) was employed to screen the sensitive climatic factors on influenza A (H1N1); meanwhile, cross wavelet transform and wavelet coherence analysis were applied to assess and compare the periodicity of the pandemic disease and its association with the time-lag phase features of the sensitive climatic factors. The results of CART indicated that the daily minimum temperature and daily absolute humidity were the sensitive climatic factors for the popularity of influenza A (H1N1) in Changsha. The peak of the incidence of influenza A (H1N1) was in the period between October and December (Median (M) = 44.00 cases per day), simultaneously the daily minimum temperature (M = 13°C) and daily absolute humidity (M = 6.69 g/m(3)) were relatively low. The results of wavelet analysis demonstrated that a period of 16 days was found in the epidemic threshold in Changsha, while the daily minimum temperature and daily absolute humidity were the relatively sensitive climatic factors. The number of daily reported patients was statistically relevant to the daily minimum temperature and daily absolute humidity. The frequency domain was mostly in the period of (16 ± 2) days. In the initial stage of the disease (from August 9th and September 8th), a 6-day lag was found between the incidence and the daily minimum temperature. In the peak period of the disease, the daily minimum temperature and daily absolute humidity were negatively relevant to the incidence of the disease. In the pandemic period, the incidence of influenza A (H1N1) showed periodic features; and the sensitive climatic factors did have a "driving effect" on the incidence of influenza A (H1N1).

  16. American Sign Language/English bilingual model: a longitudinal study of academic growth.

    PubMed

    Lange, Cheryl M; Lane-Outlaw, Susan; Lange, William E; Sherwood, Dyan L

    2013-10-01

    This study examines reading and mathematics academic growth of deaf and hard-of-hearing students instructed through an American Sign Language (ASL)/English bilingual model. The study participants were exposed to the model for a minimum of 4 years. The study participants' academic growth rates were measured using the Northwest Evaluation Association's Measure of Academic Progress assessment and compared with a national-normed group of grade-level peers that consisted primarily of hearing students. The study also compared academic growth for participants by various characteristics such as gender, parents' hearing status, and secondary disability status and examined the academic outcomes for students after a minimum of 4 years of instruction in an ASL/English bilingual model. The findings support the efficacy of the ASL/English bilingual model.

  17. Enhanced inhibition of Aspergillus niger on sedge (Lepironia articulata) treated with heat-cured lime oil.

    PubMed

    Matan, N; Matan, N; Ketsa, S

    2013-08-01

    This study aimed to examine heat curing effect (30-100°C) on antifungal activities of lime oil and its components (limonene, p-cymene, β-pinene and α-pinene) at concentrations ranging from 100 to 300 μl ml(-1) against Aspergillus niger in microbiological medium and to optimize heat curing of lime oil for efficient mould control on sedge (Lepironia articulata). Broth dilution method was employed to determine lime oil minimum inhibitory concentration, which was at 90 μl ml(-1) with heat curing at 70°C. Limonene, a main component of lime oil, was an agent responsible for temperature dependencies of lime oil activities observed. Response surface methodology was used to construct the mathematical model describing a time period of zero mould growth on sedge as functions of heat curing temperature and lime oil concentration. Heat curing of 90 μl ml(-1) lime oil at 70°C extended a period of zero mould growth on sedge to 18 weeks under moist conditions. Heat curing at 70°C best enhanced antifungal activity of lime oil against A. niger both in medium and on sedge. Heat curing of lime oil has potential to be used to enhance the antifungal safety of sedge products. © 2013 The Society for Applied Microbiology.

  18. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows.

    PubMed

    West, J W; Mullinix, B G; Bernard, J K

    2003-01-01

    Lactating cows were exposed to moderate and hot, humid weather to determine the effect of increasing ambient temperature, relative humidity, or temperature-humidity index (THI) on intake, milk yield, and milk temperature. Minimum and maximum temperatures averaged 17.9 and 29.5 degrees C (cool period) and 22.5 and 34.4 degrees C (hot period), and minimum and maximum THI averaged 63.8 and 76.6 (cool period) and 72.1 and 83.6 (hot period). Environmental conditions had minor effects on intake and milk yield during the cool period. During the hot period, the THI 2 d earlier and mean air temperature 2 d earlier had the greatest impact on milk yield and DMI, respectively. Both breeds maintained milk temperature within normal ranges during the cool period, but Holstein and Jersey p.m. milk temperatures averaged 39.6 and 39.2 degrees C during the hot period. Current day mean air temperature during the hot period had the greatest impact on cow p.m. milk temperature, and minimum air temperature had the greatest influence on a.m. milk temperature. Dry matter intake and milk yield declined linearly with respective increases in air temperature or THI during the hot period and milk temperature increased linearly with increasing air temperature. Dry matter intake and milk yield both exhibited a curvilinear relationship with milk temperature. Environmental modifications should target the effects of high temperatures on cow body temperature and should modify the environment at critical times during the day when cows are stressed, including morning hours when ambient temperatures are typically cooler and cows are not assumed to be stressed.

  19. Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien

    2008-10-01

    SummaryEffects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil ( ϕgas_min) at which oxygen stress occurs. First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, ϕgas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale). We analyzed the validity of constant critical values to represent oxygen stress in terms of ϕgas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake). The simulations showed that ϕgas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, ϕgas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress. We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for ϕgas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.

  20. Influence of Culturing Conditions on Bioprospecting and the Antimicrobial Potential of Endophytic Fungi from Schinus terebinthifolius.

    PubMed

    Tonial, Fabiana; Maia, Beatriz H L N S; Gomes-Figueiredo, Josiane A; Sobottka, Andrea M; Bertol, Charise D; Nepel, Angelita; Savi, Daiani C; Vicente, Vânia A; Gomes, Renata R; Glienke, Chirlei

    2016-02-01

    In this study, we analyzed the antimicrobial activity of extracts harvested from 17 endophytic fungi isolated from the medicinal plant Schinus terebinthifolius. Morphological and molecular analyses indicated that these fungal species belonged to the genera Alternaria, Bjerkandera, Colletotrichum, Diaporthe, Penicillium, and Xylaria. Of the endophytes analyzed, 64.7 % produced antimicrobial compounds under at least one of the fermentation conditions tested. Nine isolates produced compounds that inhibited growth of Staphylococcus aureus, four produced compounds that inhibited Candida albicans, and two that inhibited Pseudomonas aeruginosa. The fermentation conditions of the following endophytes were optimized: Alternaria sp. Sect. Alternata-LGMF626, Xylaria sp.-LGMF673, and Bjerkandera sp.-LGMF713. Specifically, the carbon and nitrogen sources, initial pH, temperature, and length of incubation were varied. In general, production of antimicrobial compounds was greatest when galactose was used as a carbon source, and acidification of the growth medium enhanced the production of compounds that inhibited C. albicans. Upon large-scale fermentation, Alternaria sp. Sect. Alternata-LGMF626 produced an extract containing two fractions that were active against methicillin-resistant S. aureus. One of the extracts exhibited high activity (minimum inhibitory concentration of 18.52 µg/mL), and the other exhibited moderate activity (minimum inhibitory concentration of 55.55 µg/mL). The compounds E-2-hexyl-cinnamaldehyde and two compounds of the pyrrolopyrazine alkaloids class were identified in the active fractions by gas chromatography-mass spectrometry.

  1. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  2. Temperature effects on metabolic rate of juvenile Pacific bluefin tuna Thunnus orientalis.

    PubMed

    Blank, Jason M; Morrissette, Jeffery M; Farwell, Charles J; Price, Matthew; Schallert, Robert J; Block, Barbara A

    2007-12-01

    Pacific bluefin tuna inhabit a wide range of thermal environments across the Pacific ocean. To examine how metabolism varies across this thermal range, we studied the effect of ambient water temperature on metabolic rate of juvenile Pacific bluefin tuna, Thunnus thynnus, swimming in a swim tunnel. Rate of oxygen consumption (MO2) was measured at ambient temperatures of 8-25 degrees C and swimming speeds of 0.75-1.75 body lengths (BL) s(-1). Pacific bluefin swimming at 1 BL s(-1) per second exhibited a U-shaped curve of metabolic rate vs ambient temperature, with a thermal minimum zone between 15 degrees C to 20 degrees C. Minimum MO2 of 175+/-29 mg kg(-1) h(-1) was recorded at 15 degrees C, while both cold and warm temperatures resulted in increased metabolic rates of 331+/-62 mg kg(-1) h(-1) at 8 degrees C and 256+/-19 mg kg(-1) h(-1) at 25 degrees C. Tailbeat frequencies were negatively correlated with ambient temperature. Additional experiments indicated that the increase in MO2 at low temperature occurred only at low swimming speeds. Ambient water temperature data from electronic tags implanted in wild fish indicate that Pacific bluefin of similar size to the experimental fish used in the swim tunnel spend most of their time in ambient temperatures in the metabolic thermal minimum zone.

  3. Secular Trend of Surface Temperature at an Elevated Observatory in the Pyrenees.

    NASA Astrophysics Data System (ADS)

    Bücher, A.; Dessens, J.

    1991-08-01

    Surface temperature was measured at the Pic du Midi de Bigorre, 2862 m MSL, from the foundation of the Observatory in 1878 until the closing of the meteorological station in 1984. After testing the homogeneity of the series with the annual mean temperatures in western Europe and in southwestern France, the period 1882-1970 was retained for trend analysis.The mean annual temperature increased 0.83°C during the 89-yr period. This increase is the sum of a very significant increase in the daily minimum temperature (+ 2.11°C) and a decrease in the maximum temperature ( 0.45°C). In consequence, the most dramatic change in the temperature regime was the difference between maximum and minimum; this decreased from 8.05°C in 1882 to 5.49°C in 1970. A mean increase is observed in all seasons, but, as for western Europe, it is stronger in spring and fall than in winter and summer.Analysis of cloudiness data for the same period shows a 15% increase in annual mean cloudiness and also significant year-to-year correlations between cloudiness and the maximum and minimum temperature. In consequence, the change in the temperature regime observed at the Pic du Midi since the end of last century is most probably the result of a climatic change involving an increase in cloud cover and, maybe, an increasing greenhouse effect.

  4. Thermodynamical transcription of density functional theory with minimum Fisher information

    NASA Astrophysics Data System (ADS)

    Nagy, Á.

    2018-03-01

    Ghosh, Berkowitz and Parr designed a thermodynamical transcription of the ground-state density functional theory and introduced a local temperature that varies from point to point. The theory, however, is not unique because the kinetic energy density is not uniquely defined. Here we derive the expression of the phase-space Fisher information in the GBP theory taking the inverse temperature as the Fisher parameter. It is proved that this Fisher information takes its minimum for the case of constant temperature. This result is consistent with the recently proven theorem that the phase-space Shannon information entropy attains its maximum at constant temperature.

  5. Synthetic control of the size, shape, and polydispersity of anisotropic silica colloids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.

    The particle size and shape determine the microstructure and rheological properties of colloidal suspensions. This work aims to further control the size, shape, and polydispersity of anisotropic silica colloids, to reduce particle size, and to provide additional mechanistic insights on a prevalent, water-in-oil emulsion synthesis method. Key findings show that the dimensions of anisotropic silica particles can be systematically varied by approximately fivefold, with a limiting minimum particle size (D ≈ 60 nm, L ≈ 300 nm) obtained from emulsions with excess polyvinylpyrrolidone (PVP) and sodium citrate. The synthesis conditions are identified and discussed for which the emulsion composition, temperature,more » sonication, polymer entanglements, mixing, and other perturbations may induce or mitigate emulsion instabilities, citrate precipitation, a competing mechanism of templated growth, termination of anisotropic growth, irregular silica structures, and fiber formation. An improved mechanistic understanding will expand the roadmap for rational design and synthetic control of anisotropic colloids using sol-gel silica chemistry confined within water-in-oil emulsions.« less

  6. Synthetic control of the size, shape, and polydispersity of anisotropic silica colloids

    DOE PAGES

    Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.

    2017-09-01

    The particle size and shape determine the microstructure and rheological properties of colloidal suspensions. This work aims to further control the size, shape, and polydispersity of anisotropic silica colloids, to reduce particle size, and to provide additional mechanistic insights on a prevalent, water-in-oil emulsion synthesis method. Key findings show that the dimensions of anisotropic silica particles can be systematically varied by approximately fivefold, with a limiting minimum particle size (D ≈ 60 nm, L ≈ 300 nm) obtained from emulsions with excess polyvinylpyrrolidone (PVP) and sodium citrate. The synthesis conditions are identified and discussed for which the emulsion composition, temperature,more » sonication, polymer entanglements, mixing, and other perturbations may induce or mitigate emulsion instabilities, citrate precipitation, a competing mechanism of templated growth, termination of anisotropic growth, irregular silica structures, and fiber formation. An improved mechanistic understanding will expand the roadmap for rational design and synthetic control of anisotropic colloids using sol-gel silica chemistry confined within water-in-oil emulsions.« less

  7. Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers.

    PubMed

    Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T

    2018-08-01

    Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.

  8. Isolation, Purification and Characterization of Antimicrobial Agent Antagonistic to Escherichia coli ATCC 10536 Produced by Bacillus pumilus SAFR-032 Isolated from the Soil of Unaizah, Al Qassim Province of Saudi Arabia.

    PubMed

    S Alanazi, Abdurrahman; Qureshi, Kamal Ahmad; Elhassan, Gamal Osman; I El-Agamy, Elsayed

    Escherichia coli is one of the most common pathogenic bacteria, which cause urinary tract infections in infants as well as in adult human beings. Due to the emergence of antibiotic resistance in E. coli, there is a great demand of new antimicrobial agent for the treatment of infections caused by such E. coli. This study aims to isolate, identify and characterize the native soil-bacterial strains predominate in the soil of Unaizah city, which produce antimicrobial agent antagonistic to E. coli ATCC 10536, followed by isolation, purification and characterization of antimicrobial agent. Pour plate, spread plate and 16S rRNA sequence analysis methods were followed for the isolation and identification of soil bacteria. Ammonium sulphate and dialysis (MWCO-8 KD) methods were followed for the isolation and partial purification of antimicrobial agent from the cell free broths. The characterization of antimicrobial agent was carried out by determining the minimum inhibitory concentration and effects of temperature and pH on the antimicrobial stability. Out of the twenty five soil samples, only one soil-bacterial strain was found to produce antimicrobial agent antagonistic to E. coli ATCC 10536. The isolated soil bacterium was identified as Bacillus pumilus SAFR-032. The soil isolate was characterized and results suggest that 30°C temperature and pH 7.0 were the optimum growth parameters and soybean casein digest broth was the best fermentation medium, whereas the highest production of antimicrobial agent was at 35°C temperature, pH 7.0, shaking at 150-220 rpm and at 60th h of incubation. The maximum yield of antimicrobial agent was obtained at 60% of (NH 4) 2SO 4. The results of characterization of antimicrobial agent suggest that the maximum and minimum antimicrobial activities were at pH 3.0 and 8.0, respectively, whereas antimicrobial activity was unaffected by temperature. The antimicrobial agent was highly stable at varying range of temperature 50-120°C. Minimum inhibitory concentration of antimicrobial agent was found to be 64 μg mL -1. In conclusion, this study might be a great endeavor for the healthcare industry in order to treatment of different infections caused by E. coli and that warrants further investigations to fully standardized and establish the antimicrobial profile of effect(s) of this isolate.

  9. Multiple neutral density measurements in the lower thermosphere with cold-cathode ionization gauges

    NASA Astrophysics Data System (ADS)

    Lehmacher, G. A.; Gaulden, T. M.; Larsen, M. F.; Craven, J. D.

    2013-01-01

    Cold-cathode ionization gauges were used for rocket-borne measurements of total neutral density and temperature in the aurorally forced lower thermosphere between 90 and 200 km. A commercial gauge was adapted as a low-cost instrument with a spherical antechamber for measurements in molecular flow conditions. Three roll-stabilized payloads on different trajectories each carried two instruments for measurements near the ram flow direction along the respective upleg and downleg segments of a flight path, and six density profiles were obtained within a period of 22 min covering spatial separations up to 200 km. The density profiles were integrated below 125 km to yield temperatures. The mean temperature structure was similar for all six profiles with two mesopause minima near 110 and 101 km, however, for the downleg profiles, the upper minimum was warmer and the lower minimum was colder by 20-30 K indicating significant variability over horizontal scales of 100-200 km. The upper temperature minimum coincided with maximum horizontal winds speeds, exceeding 170 m/s.

  10. Kinetic and microstructural study of titanium nitride deposited by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Egland, Keith Maynard

    Titanium nitride (TiN) films were deposited onto Ti-6Al-4V substrates by laser chemical vapor deposition using a cw COsb2 laser and TiClsb4,\\ Nsb2, and Hsb2 reactant gases. In-situ laser induced fluorescence (LIF) and multi-wavelength pyrometry determined relative titanium gas phase atomic number density and deposition temperature, respectively. Deposited films were yellow to gold in color. Transmission electron microscopy on one sample revealed a face-centered cubic structure with a lattice parameter (0.4237 nm) expected for TiN. Auger electron spectroscopy found substoichiometric compositions with a N/Ti ratio between 0.7 and 0.9. Variables decreasing grain size (lower temperature, higher TiClsb4 input) decreased the N/Ti ratio. Higher Nsb2 input increased stoichiometry, while larger Hsb2 input decreased stoichiometry. The deposit substoichiometry is believed to be caused by diffusion of nitrogen through TiN grain boundaries to the titanium alloy substrate. The morphology starts as a dense polycrystalline structure evolving into a columnar structure having facets or nodules at the surface with crystallite sizes ranging from 10-1000 nm. TiClsb4 input had a inverse correlation with crystallite size, while Nsb2:Hsb2 ratio had minimal effect; the crystallite size (G) varied exponentially with temperature (T) for a given irradiation time, i.e., G = C exp (-28000/T), with constant C reflecting substrate roughness and gas composition. Microhardness tests revealed substrate contributions; nevertheless, films appeared to have a minimum hardness of 2000 Hsbv. The deposition apparent activation energy was calculated as 122 ± 9 kJ/mole using growth rates measured by film height and 117 ± 23 kJ/mole using growth rates measured by LIF signals. This puts the process in the surface kinetic growth regime over the temperature range 1370-1610 K. Above Nsb2 and Hsb2 levels of 1.25% and below TiClsb4 input of 4.5%, the growth rate has a half-order dependence on nitrogen and a linear dependence on hydrogen and is approximated by$r = {{kPsb{TiClsb4}Psb{Hsb2}Psbsp{Nsb2}{1/2}exp≤ft({{-}Esb{a}/ {RT}right)}/{1 + Psb{Ar}}}}.Since nitrogen positively affects growth rate (when added to a TiClsb4+Hsb2 mixture), stepwise reduction of TiClsb4 to Ti by hydrogen does not occur. NHsb{x} complexes are clearly involved in the growth mechanism; a likely combination of rate determining steps is the formation of NH and the initial reduction of TiClsb4$ by hydrogen.

  11. Substantiation of Epitaxial Growth of Diamond Crystals on the Surface of Carbide Fe3AlC0.66 Phase Nanoparticles.

    PubMed

    Dzevin, Ievgenij M; Mekhed, Alexander A

    2017-12-01

    Samples of Fe-Al-C alloys of varying composition were synthesized under high pressures and temperatures. From X-ray analysis data, only K-phase with usual for it average parameter of elemental lattice cell, a = 0.376 nm, carbide Fe 3 C and cubic diamond reflexes were present before and after cooling to the temperature of liquid nitrogen.Calculations were made of the parameters of unit cells, the enthalpy of formation of the Fe 3 AlC, Fe 3.125 Al 0.825 C 0.5 , Fe 3.5 Al 0.5 C 0.5 , Fe 3.5 Al 0.5 C, Fe 3 Al 0.66 C 0.66 , and Fe 3 AlC 0.66 unit cells and crystallographic planes were identified on which epitaxial growth of the diamond phase was possible, using density functional theory as implemented in the WIEN2k package.The possibility of epitaxial growth of diamond crystals on Fe 3 AlC 0.66 (K-phase) nanoparticles was, therefore, demonstrated. The [200] plane was established to be the most suitable plane for diamond growth, having four carbon atoms arranged in a square and a central vacancy which can be occupied by carbon during thermal-and-pressure treatment. Distances between carbon atoms in the [200] plane differ by only 5% from distances between the carbon atoms of a diamond. The electronic structure and energetic parameters of the substrate were also investigated. It was shown that the substrate with at least four intermediate layers of K-phase exhibits signs of stability such as negative enthalpy of formation and the Fermi level falling to minimum densities of states.

  12. Mainstem Clearwater River Study: Assessment for Salmonid Spawning, Incubation, and Rearing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, William P.

    1989-01-01

    Chinook salmon reproduced naturally in the Clearwater River until damming of the lower mainstem in 1927 impeded upstream spawning migrations and decimated the populations. Removal of the Washington Water Power Dam in 1973 reopened upriver passage. This study was initiated to determine the feasibility of re-introducing chinook salmon into the lower mainstem Clearwater River based on the temperature and flow regimes, water quality, substrate, and invertebrate production since the completion of Dworshak Dam in 1972. Temperature data obtained from the United States Geological Survey gaging stations at Peck and Spalding, Idaho, were used to calculate average minimum and maximum watermore » temperature on a daily, monthly and yearly basis. The coldest and warmest (absolute minimum and maximum) temperatures that have occurred in the past 15 years were also identified. Our analysis indicates that average lower mainstem Clearwater River water temperatures are suitable for all life stages of chinook salmon, and also for steelhead trout rearing. In some years absolute maximum water temperatures in late summer may postpone adult staging and spawning. Absolute minimum temperatures have been recorded that could decrease overwinter survival of summer chinook juveniles and fall chinook eggs depending on the quality of winter hiding cover and the prevalence of intra-gravel freezing in the lower mainstem Clearwater River.« less

  13. Minimum fan turbine inlet temperature mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in turbine temperature which resulted from the application of the F-15 performance seeking control (PSC) minimum fan turbine inlet temperature (FTIT) mode during the dual-engine test phase is presented as a function of net propulsive force and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and partial afterburning power settings. The FTIT reductions for the supersonic tests are less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Subsonically at military power, FTIT reductions were above 70 R for either the left or right engines, and repeatable for the right engine. At partial afterburner and supersonic conditions, the level of FTIT reductions were at least 25 R and as much as 55 R. Considering that the turbine operates at or very near its temperature limit at these high power settings, these seemingly small temperature reductions may significantly lengthen the life of the turbine. In general, the minimum FTIT mode has performed well, demonstrating significant temperature reductions at military and partial afterburner power. Decreases of over 100 R at cruise flight conditions were identified. Temperature reductions of this magnitude could significantly extend turbine life and reduce replacement costs.

  14. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R.; Idso, S.; Vedder, J.; Jackson, R.; Blanchard, M.; Goettelman, R.

    1975-01-01

    A procedure is presented for calculating 24-hour totals of evaporation from wet and drying soils. Its application requires a knowledge of the daily solar radiation, the maximum and minimum, air temperatures, moist surface albedo, and maximum and minimum surface temperatures. Tests of the technique on a bare field of Avondale loam at Phoenix, Arizona showed it to be independent of season.

  15. High Power Orbit Transfer Vehicle

    DTIC Science & Technology

    2003-07-01

    multijunction device is a stack of individual single-junction cells in descending order of band gap. The top cell captures the high-energy photons and passes...the rest of the photons on to be absorbed by lower-band-gap cells. Multijunction devices achieve a higher total conversion efficiency because they...minimum temperatures on the thruster modules and main bus. In the MATLAB code for these calculations, maximum and minimum temperatures are plotted

  16. Finite temperature grand canonical ensemble study of the minimum electrophilicity principle.

    PubMed

    Miranda-Quintana, Ramón Alain; Chattaraj, Pratim K; Ayers, Paul W

    2017-09-28

    We analyze the minimum electrophilicity principle of conceptual density functional theory using the framework of the finite temperature grand canonical ensemble. We provide support for this principle, both for the cases of systems evolving from a non-equilibrium to an equilibrium state and for the change from one equilibrium state to another. In doing so, we clearly delineate the cases where this principle can, or cannot, be used.

  17. Wang-Landau density of states based study of the folding-unfolding transition in the mini-protein Trp-cage (TC5b)

    NASA Astrophysics Data System (ADS)

    Singh, Priya; Sarkar, Subir K.; Bandyopadhyay, Pradipta

    2014-07-01

    We present the results of a high-statistics equilibrium study of the folding/unfolding transition for the 20-residue mini-protein Trp-cage (TC5b) in water. The ECEPP/3 force field is used and the interaction with water is treated by a solvent-accessible surface area method. A Wang-Landau type simulation is used to calculate the density of states and the conditional probabilities for the various values of the radius of gyration and the number of native contacts at fixed values of energy—along with a systematic check on their convergence. All thermodynamic quantities of interest are calculated from this information. The folding-unfolding transition corresponds to a peak in the temperature dependence of the computed specific heat. This is corroborated further by the structural signatures of folding in the distributions for radius of gyration and the number of native contacts as a function of temperature. The potentials of mean force are also calculated for these variables, both separately and jointly. A local free energy minimum, in addition to the global minimum, is found in a temperature range substantially below the folding temperature. The free energy at this second minimum is approximately 5 kBT higher than the value at the global minimum.

  18. Elevated temperature fracture of RS/PM alloy 8009; Part 1: Fracture mechanics behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porr, W.C. Jr.; Gangloff, R.P.

    1994-02-01

    Increasing temperature and decreasing loading rate degrade the planes strain initiation (K[sub ICi] from the J integral) and growth (tearing modulus, T[sub R]) fracture toughnesses of RS/PM 8009 (Al-8.5Fe-1.3V-1.7Si, wt pct). K[sub ICi] decreases with increasing temperature from 25[degree]C to 175[degree]C (33 to 15 MPa[radical]m at 316[degree]C) without a minimum. T[sub R] is greater than zero at all temperatures and is minimized at 200[degree]C. A four order-of-magnitude decrease in loading rate, at 175[degree]C, results in a 2.5-fold decrease in K[sub ICi] and a 5-fold reduction in T[sub R]. K[sub ICi] and T[sub R] are anisotropic for extruded 8009 but aremore » isotropic for cross-rolled plate. Cross rolling does not improve the magnitude or adverse temperature dependence of toughness. Delamination occurs along oxide-decorated particle boundaries for extruded but not cross-rolled 8009. Delamination toughening plays no role in the temperature dependence of K[sub ICi], however, T[sub R] is increased by this mechanism. Macroscopic work softening and flow localization do not occur for notch-root deformation; such uniaxial tensile phenomena may not be directly relevant to crack-tip fracture. Micromechanical modeling, employing temperature-dependent flow strength, modulus, and constrained fracture strain, reasonably predicts the temperature dependencies of K[sub ICi] and T[sub R] for 8009.« less

  19. A Tree-Ring Temperature Reconstruction from the Wrangell Mountains, Alaska (1593-1992): Evidence for Pronounced Regional Cooling During the Maunder Minimum

    NASA Astrophysics Data System (ADS)

    DArrigo, R.; Davi, N.; Jacoby, G.; Wiles, G.

    2002-05-01

    The Maunder Minimum interval (from the mid-1600s-early 1700s) is believed to have been one of the coldest periods of the past thousand years in the Northern Hemisphere. A maximum latewood density temperature reconstruction for the Wrangell Mountains, southern Alaska (1593-1992) provides information on regional temperature change during the Maunder Minimum and other periods of severe cold over the past four centuries. The Wrangell density record, which reflects warm season (July-September) temperatures, shows an overall cooling over the Maunder Minimum period with annual values reaching as low as -1.8oC below the long-term mean. Ring widths, which can integrate annual as well as summer conditions, also show pronounced cooling at the Wrangell site during this time, as do Arctic and hemispheric-scale temperature reconstructions based on tree rings and other proxy data. Maximum ages of glacial advance based on kill dates from overrun logs (which reflect cooler temperatures) coincide temporally with the cooling seen in the density and ring width records. In contrast, a recent modeling study indicates that during this period there was cold season (November-April) warming over much of Alaska, but cooling over other northern continental regions, as a result of decreased solar irradiance initiating low Arctic Oscillation index conditions. The influence of other forcings on Alaskan climate, the absence of ocean dynamical feedbacks in the model, and the different seasonality represented by the model and the trees may be some of the possible explanations for the different model and proxy results.

  20. An analysis of data related to the minimum temperatures for valid testing in cryogenic wind tunnels using nitrogen as the test gas

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1976-01-01

    The minimum operating temperature which avoids adverse low temperature effects, such as condensation, has been determined at a free stream Mach number of 0.85 for flow over a 0.137 meter airfoil mounted at zero incidence in the Langley 1/3 meter transonic cryogenic tunnel. The onset of low temperature effects is established by comparing the pressure coefficient measured at a given orifice for a particular temperature with those measured at temperatures sufficiently above where low temperature effects might be expected to occur. The pressure distributions over the airfoil are presented in tabular form. In addition, the comparisons of the pressure coefficient as a function of total temperature are presented graphically for chord locations of 0, 25, 50, and 75 percent. Over the 1.2 to 4.5 atmosphere total pressure range investigated, low temperature effects are not detected until total temperatures are 2 K, or more, below free stream saturation temperatures.

  1. Modeling the rheological behavior of thermosonic extracted guava, pomelo, and soursop juice concentrates at different concentration and temperature using a new combination model

    PubMed Central

    Abdullah, Norazlin; Yusof, Yus A.; Talib, Rosnita A.

    2017-01-01

    Abstract This study has modeled the rheological behavior of thermosonic extracted pink‐fleshed guava, pink‐fleshed pomelo, and soursop juice concentrates at different concentrations and temperatures. The effects of concentration on consistency coefficient (K) and flow behavior index (n) of the fruit juice concentrates was modeled using a master curve which utilized the concentration‐temperature shifting to allow a general prediction of rheological behaviors covering a wide concentration. For modeling the effects of temperature on K and n, the integration of two functions from the Arrhenius and logistic sigmoidal growth equations has provided a new model which gave better description of the properties. It also alleviated the problems of negative region when using the Arrhenius model alone. The fitted regression using this new model has improved coefficient of determination, R 2 values above 0.9792 as compared to using the Arrhenius and logistic sigmoidal models alone, which presented minimum R 2 of 0.6243 and 0.9440, respectively. Practical applications In general, juice concentrate is a better form of food for transportation, preservation, and ingredient. Models are necessary to predict the effects of processing factors such as concentration and temperature on the rheological behavior of juice concentrates. The modeling approach allows prediction of behaviors and determination of processing parameters. The master curve model introduced in this study simplifies and generalized rheological behavior of juice concentrates over a wide range of concentration when temperature factor is insignificant. The proposed new mathematical model from the combination of the Arrhenius and logistic sigmoidal growth models has improved and extended description of rheological properties of fruit juice concentrates. It also solved problems of negative values of consistency coefficient and flow behavior index prediction using existing model, the Arrhenius equation. These rheological data modeling provide good information for the juice processing and equipment manufacturing needs. PMID:29479123

  2. Toward understanding life under subzero conditions: the significance of exploring psychrophilic "cold-shock" proteins.

    PubMed

    Kuhn, Emanuele

    2012-11-01

    Understanding the behavior of proteins under freezing conditions is vital for detecting and locating extraterrestrial life in cold environments, such as those found on Mars and the icy moons of Jupiter and Saturn. This review highlights the importance of studying psychrophilic "cold-shock" proteins, a topic that has yet to be explored. A strategy for analyzing the psychrophilic RNA helicase protein CsdA (Psyc_1082) from Psychrobacter arcticus 273-4 as a key protein for life under freezing temperatures is proposed. The experimental model presented here was developed based on previous data from investigations of Escherichia coli, P. arcticus 273-4, and RNA helicases. P. arcticus 273-4 is considered a model for life in freezing environments. It is capable of growing in temperatures as cold as -10°C by using physiological strategies to survive not only in freezing temperatures but also under low-water-activity and limited-nutrient-availability conditions. The analyses of its genome, transcriptome, and proteome revealed specific adaptations that allow it to inhabit freezing environments by adopting a slow metabolic strategy rather than a cellular dormancy state. During growth at subzero temperatures, P. arcticus 273-4 genes related to energy metabolism and carbon substrate incorporation are downregulated, and genes for maintenance of membranes, cell walls, and nucleic acid motion are upregulated. At -6°C, P. arcticus 273-4 does not upregulate the expression of either RNA or protein chaperones; however, it upregulates the expression of its cold-shock induced DEAD-box RNA helicase protein A (CsdA - Psyc_1082). CsdA - Psyc_1082 was investigated as a key helper protein for sustaining life in subzero conditions. Proving CsdA - Psyc_1082 to be functional as a key protein for life under freezing temperatures may extend the known minimum growth temperature of a mesophilic cell and provide key information about the mechanisms that underlie cold-induced biological systems in icy worlds.

  3. Filament cooling and condensation in a sheared magnetic field

    NASA Technical Reports Server (NTRS)

    Van Hoven, Gerard

    1990-01-01

    Thermal instability driven by optically thin radiation in the corona is believed to initiate the formation of solar filaments. The fact that filaments are observed generally to separate regions of opposite, line-of-sight, magnetic polarity in the differentially rotating photosphere suggests that filament formation requires the presence of a highly sheared magnetic field. The coupled energetics and dynamics of the most important condensation modes, those due to perpendicular thermal conduction at short wavelengths are discussed. Linear structure in the sheared field and their growth rates is described, and 2D, nonlinear, MHD simulations of the evolution of these modes in a force-free field are conducted. The simulations achieve the fine thermal structures, minimum temperatures and maximum densities characteristic of observed solar filaments.

  4. Effects of Post-Deposition Annealing on ZrO2/n-GaN MOS Capacitors with H2O and O3 as the Oxidizers

    NASA Astrophysics Data System (ADS)

    Zheng, Meijuan; Zhang, Guozhen; Wang, Xiao; Wan, Jiaxian; Wu, Hao; Liu, Chang

    2017-04-01

    GaN-based metal-oxide-semiconductor capacitors with ZrO2 as the dielectric layer have been prepared by atomic layer deposition. The accumulation and depletion regions can be clearly distinguished when the voltage was swept from -4 to 4 V. Post-annealing results suggested that the capacitance in accumulation region went up gradually as the annealing temperature increased from 300 to 500 °C. A minimum leakage current density of 3 × 10-9 A/cm2 at 1 V was obtained when O3 was used for the growth of ZrO2. Leakage analysis revealed that Schottky emission and Fowler-Nordheim tunneling were the main leakage mechanisms.

  5. Influence of weather on the synchrony of gypsy moth (Lepidoptera: Lymantriidae) outbreaks in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D.W.; Liebhold, A.M.

    1995-10-01

    Outbreaks of the gypsy moth, Lymantria dispar (L.), were partially synchronous across New England states (Massachusetts, Maine, New Hampshire, and Vermont) from 1938 to 1992. To explain this synchrony, we investigated the Moran effect, a hypothesis that local population oscillations, which result form similar density-dependent mechanisms operating at time lags, may be synchronized over wide areas by exposure to common weather patterns. We also investigated the theory of climatic release, which ostulates that outbreaks are triggered by climatic factors favorable for population growth. Time series analysis revealed defoliation series in 2 states as 1st-order autoregressive processes and the other 2more » as periodic 2nd-order autoregressive processes. Defoliation residuals series computed using the autoregressive models for each state were cross correlated with series of weather variables recorded in the respective states. The weather variables significantly correlated with defoliation residuals in all 4 states were minimum temperature and precipitation in mid-December in the same gypsy moth generation and minimum temperature in mid- to late July of the previous generation. These weather variables also were correlated strongly among the 4 states. The analyses supported the predictions of the Moran effect and suggest the common weather may synchronize local populations so as to produce pest outbreaks over wide areas. We did not find convincing evidence to support the theory of climatic release. 41 refs., 7 figs., 4 tabs.« less

  6. California's minimum-nurse-staffing legislation and nurses' wages.

    PubMed

    Mark, Barbara; Harless, David W; Spetz, Joanne

    2009-01-01

    In 2004, California became the first state to implement minimum-nurse-staffing ratios in acute care hospitals. We examined the wages of registered nurses (RNs) before and after the legislation was enacted. Using four data sets-the National Sample Survey of Registered Nurses, the Current Population Survey, the National Compensation Survey, and the Occupational Employment Statistics Survey-we found that from 2000 through 2006, RNs in California metropolitan areas experienced real wage growth as much as twelve percentage points higher than the growth in the wages of nurses employed in metropolitan areas outside of California.

  7. Trends in Middle East climate extreme indices from 1950 to 2003

    NASA Astrophysics Data System (ADS)

    Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor

    2005-11-01

    A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.

  8. Long-term trends in daily temperature extremes in Iraq

    NASA Astrophysics Data System (ADS)

    Salman, Saleem A.; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Al-Abadi, Alaa M.

    2017-12-01

    The existence of long-term persistence (LTP) in hydro-climatic time series can lead to considerable change in significance of trends. Therefore, past findings of climatic trend studies that did not consider LTP became a disputable issue. A study has been conducted to assess the trends in temperature and temperature extremes in Iraq in recent years (1965-2015) using both ordinary Mann-Kendal (MK) test; and the modified Mann-Kendall (m-MK) test, which can differentiate the multi-decadal oscillatory variations from secular trends. Trends in annual and seasonal minimum and maximum temperatures, diurnal temperature range (DTR), and 14 temperature-related extremes were assessed. MK test detected the significant increases in minimum and maximum temperature at all stations, where m-MK test detected at 86% and 80% of all stations, respectively. The temperature in Iraq is increasing 2 to 7 times faster than global temperature rise. The minimum temperature is increasing more (0.48-1.17 °C/decade) than maximum temperature (0.25-1.01 °C/decade). Temperature rise is higher in northern Iraq and in summer. The hot extremes particularly warm nights are increasing all over Iraq at a rate of 2.92-10.69 days/decade, respectively. On the other hand, numbers of cold days are decreasing at some stations at a rate of - 2.65 to - 8.40 days/decade. The use of m-MK test along with MK test confirms the significant increase in temperature and some of the temperature extremes in Iraq. This study suggests that trends in many temperature extremes in the region estimated in previous studies using MK test may be due to natural variability of climate, which empathizes the need for validation of the trends by considering LTP in time series.

  9. Temperature Measurements Taken by Phoenix Spacecraft

    NASA Image and Video Library

    2008-09-30

    This chart plots the minimum daily atmospheric temperature measured by NASA Phoenix Mars Lander spacecraft since landing on Mars. As the temperature increased through the summer season, the atmospheric humidity also increased.

  10. The growth of filaments by the condensation of coronal arches

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Krieger, A. S.

    1982-01-01

    A model of filament formation based on the condensation of coronal arches is described. The condensation results from initiating the radiative instability within an arch by superimposing a transient energy supply upon the steady state heating mechanism. The transient energy supply increases the density within the arch so that when it is removed the radiative losses are sufficient to lead to cooling below the minimum in the power loss curve. Times from the initial formation of the condensation to its temperature stabilization as a cool filament have been calculated for various initial conditions. They lie in the range 10,000-100,000 s with the majority of the time spent above a temperature of 1 x 10 to the 6th K. Under the assumption that the condensation of a single arch forms an element of the filament, a complete filament requires the condensation of an arcade of loops. Using experimentally derived parameters, filament densities of 10 to the 11th to 10 to the 12th per cu cm can be obtained.

  11. Influence of Ceramic Powder Size on Process of Cermet Coating Formation by Cold Spray

    NASA Astrophysics Data System (ADS)

    Sova, A.; Papyrin, A.; Smurov, I.

    2009-12-01

    Influence of the ceramic particle size on the process of formation of cermet coatings by cold spray is experimentally studied. A specially developed nozzle with separate injection of ceramic and metal powders into the gas stream is used in the experiments. The results obtained demonstrate that fine ceramic powders (Al2O3, SiC) produce a strong activation effect on the process of spraying soft metal (Al, Cu) and increase deposition efficiency of the metal component of the mixture compared to the pure metal spraying. At the same time, coarse ceramic powder produces a strong erosion effect that considerably reduces coating mass growth and deposition efficiency of the metal component. It is experimentally shown that the addition of fine hard powder to soft metals as Al and Cu allows to significantly reduce the “critical” temperature (the minimum gas stagnation temperature at which a nonzero particle deposition is observed) for spraying these metals.

  12. Visible-light vertical-cavity surface-emitting lasers grown by solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Saarinen, Mika J.; Xiang, Ning; Dumitrescu, Mihail M.; Vilokkinen, Ville; Melanen, Petri; Orsila, Seppo; Uusimaa, Petteri; Savolainen, Pekka; Pessa, Markus

    2001-05-01

    Visible vertical-cavity surface-emitting lasers (VCSELs) are potential light sources for polymer optical fibre (POF) data transmission systems. Minimum attenuation of light in standard PMMA-POFs occurs at about 650 nm. For POFs of a few tens of meters in length VCSELs at slightly longer wavelengths (670 - 690 nm) are also acceptable. So far, the visible VCSELs have been grown by metal organic chemical vapour deposition (MOCVD). They may also be grown by a novel variant of molecular beam epitaxy (MBE), a so-called all-solid-source MBE or SSMBE. In this paper, we describe growth of the first visible-light VCSELs by SSMBE and present the main results obtained. In particular, we have achieved lasing action at a sub-milliamp cw drive current for a VCSEL having the emission window of 8um in diameter, while a 10um device exhibited an external quantum efficiency of 6.65% in CW operation at room temperature. The lasing action up to temperature of 45°C has been demonstrated.

  13. Branch architecture in Ginkgo biloba: wood anatomy and long shoot-short shoot interactions.

    PubMed

    Little, Stefan A; Jacobs, Brooke; McKechnie, Steven J; Cooper, Ranessa L; Christianson, Michael L; Jernstedt, Judith A

    2013-10-01

    Ginkgo, centrally placed in seed plant phylogeny, is considered important in many phylogenetic and evolutionary studies. Shoot dimorphism of Ginkgo has been long noted, but no work has yet been done to evaluate the relationships between overall branch architecture and wood ring characters, shoot growth, and environmental conditions. • Branches, sampled from similar canopy heights, were mapped with the age of each long shoot segment determined by counting annual leaf-scar series on its short shoots. Transverse sections were made for each long shoot segment and an adjacent short shoot; wood ring thickness, number of rings, and number of tracheids/ring were determined. Using branch maps, we identified wood rings for each long shoot segment to year and developmental context of each year (distal short shoot growth only vs. at least one distal long shoot). Climate data were also analyzed in conjunction with developmental context. • Significantly thicker wood rings occur in years with distal long shoot development. The likelihood that a branch produced long shoots in a given year was lower with higher maximum annual temperature. Annual maximum temperature was negatively correlated with ring thickness in microsporangiate trees only. Annual minimum temperatures were correlated differently with ring thickness of megasporangiate and microsporangiate trees, depending on the developmental context. There were no significant effects associated with precipitation. • Overall, developmental context alone predicts wood ring thickness about as well as models that include temperature. This suggests that although climatic factors may be strongly correlated with wood ring data among many gymnosperm taxa, at least for Ginkgo, correlations with climate data are primarily due to changes in proportions of shoot developmental types (LS vs. SS) across branches.

  14. Controllable preparation of copper phthalocyanine single crystal nano column and its chlorine gas sensing properties

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhong; Qiao, Zhenfang; Zhang, Yumin; Zou, Taoyu; Yu, Leiming; Luo, Li; Wang, Xiaoyan; Yang, Yiji; Wang, Hai; Tang, Libin

    2016-09-01

    The unsubstituted copper phthalocyanine (CuPc) single crystal nano columns were fabricated for the first time as chlorine (Cl2) gas sensors in this paper. The nano columns of CuPc have been prepared on different substrates via template-free physical vapor deposition (PVD) approach. The growth mechanism of CuPc nano column on quartz was explored and the same condition used on other substrates including glass, sapphire (C-plane<0001>, M-plane<10 1 ¯ 0 >, R-plane<1 1 ¯ 02 >), Si and SiO2/Si came to a same conclusion, which confirmed that the aligned growth of CuPc nano column is not substrate-dependent. And then the CuPc nano column with special morphology was integrated as in-situ sensor device which exhibits high sensitivity and selectivity towards Cl2 at room temperature with a minimum detection limit as low as 0.08 ppm. The response of sensor was found to increase linearly (26 ˜659 % ) with the increase for Cl2 within concentration range (0.08 ˜4.0 ppm ) . These results clearly demonstrate the great potential of the nano column growth and device integration approach for sensor device.

  15. Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy.

    PubMed

    Amend, Jan P; Meyer-Dombard, D'Arcy R; Sheth, Seema N; Zolotova, Natalya; Amend, Andrea C

    2003-06-01

    A novel, hyperthermophilic archaeon was isolated from a shallow geothermal well that taps marine waters on the Island of Vulcano in the southern Tyrrhenian Sea, Italy. The cells were irregular cocci, 0.6-1.5 microm in diameter, with multiple polar flagella. Growth was observed at temperatures from 45 to 85 degrees C (optimum at approximately 80 degrees C), pH 5-8 (optimum at 6.5), and 0.5-6.0% NaCl (optimum at approximately 2.8%). The minimum doubling time was 50 min. The isolate was obligately chemoheterotrophic, utilizing complex organic compounds including yeast or beef extract, peptone, tryptone, or casein for best growth. The presence of elemental sulfur enhanced growth. The isolate grew anaerobically as well as microaerobically. The G+C content of the genomic DNA was 42.5 mol%. The 16S rRNA sequence indicated that the new isolate was a member of the Thermococcales within the euryarchaeota, representing the second species in the genus Palaeococcus. Its physiology and phylogeny differed in several key characteristics from those of Palaeococcus ferrophilus, justifying the establishment of a new species; the name Palaeococcus helgesonii sp. nov. is proposed, type strain PI1 (DSM 15127).

  16. Structural and electrical characteristics of CoGe(2) alloy films deposited heteroepitaxially on GaAs(100) using partially ionized beam deposition

    NASA Astrophysics Data System (ADS)

    Mello, Kevin Edward

    The partially ionized beam deposition system was utilized to deposit CoGesb2 thin films heteroepitaxially on GaAs(100) substrates in a conventional vacuum. The CoGesb2 films were structurally characterized using conventional 2theta diffraction, reflection X-ray pole figure analysis, and alpha particle channeling techniques. Three distinct crystallographic relationships of the CoGesb2 films to the GaAs(100) substrates were observed, dependent upon the substrate temperature and Gesp+ ion energy used during deposition. The CoGesb2(001) (100)sp°GaAs(100) (001) orientation, which has the smallest lattice mismatch to GaAs(100), was found to occur for depositions performed at a substrate temperature during deposition near 280sp°C with approximately 1160 eV Gesp+ ions. Lowering the substrate temperature or reducing the Gesp+ ion energy results in CoGesb2(100) orientation domination with CoGe2(100) (010)sp°GaAs(100) (001) and CoGesb2(100) (001)sp°GaAs(100) (001). Substrate temperature alone was seen to produce only the CoGesb2(100) orientation. For CoGesb2(001) films, additional energy was required from Gesp+ ions in the evaporant stream. Angular yield profiles for axial Hesp{++} ion channeling yielded values for the minimum yield, Ysb{min}, of 25% for the CoGesb2(001) orientation and 34% for the CoGesb2(100) orientation. The critical angle for channeling, Psisb{c}, was measured to be 1.0sp° for both orientations. Channeling theory was used to predict the minimum yield and critical angle for each orientation. The theoretical values agreed qualitatively with the experimentally measured values, and the theory correctly predicted the lower minimum yield for the CoGesb2(001) orientation. Annealing the films to allow for epitaxial grain growth resulted in orientation selection of CoGesb2(001) at the expense of CoGesb2(100), exposing CoGesb2(100) as a metastable orientation. The CoGesb2(001) films were stable up to 500sp°C, 30 minute anneals, showing no orientation changes and enhanced thermal stability over the CoGesb2(100) films. Current-voltage measurements of CoGesb2 contacts deposited on n-type GaAs(100) were used to determine the electrical nature of the different CoGesb2 orientations. The CoGesb2 (001) (100)sp°GaAs (100) (001) heterostructure deposited at a substrate temperature of 280sp°C with 1160 eV Gesp+ ions was found to exhibit Ohmic behavior, while contacts deposited at lower or higher substrate temperatures displayed non-Ohmic behavior.

  17. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus.

    PubMed Central

    Lindgren, E; Tälleklint, L; Polfeldt, T

    2000-01-01

    We examined whether a reported northward expansion of the geographic distribution limit of the disease-transmitting tick Ixodes ricinus and an increased tick density between the early 1980s and mid-1990s in Sweden was related to climatic changes. The annual number of days with minimum temperatures above vital bioclimatic thresholds for the tick's life-cycle dynamics were related to tick density in both the early 1980s and the mid-1990s in 20 districts in central and northern Sweden. The winters were markedly milder in all of the study areas in the 1990s as compared to the 1980s. Our results indicate that the reported northern shift in the distribution limit of ticks is related to fewer days during the winter seasons with low minimum temperatures, i.e., below -12 degrees C. At high latitudes, low winter temperatures had the clearest impact on tick distribution. Further south, a combination of mild winters (fewer days with minimum temperatures below -7 degrees C) and extended spring and autumn seasons (more days with minimum temperatures from 5 to 8 degrees C) was related to increases in tick density. We conclude that the relatively mild climate of the 1990s in Sweden is probably one of the primary reasons for the observed increase of density and geographic range of I. ricinus ticks. Images Figure 1 Figure 2 Figure 3 PMID:10656851

  18. Chemistry of Aviation Fuels

    NASA Technical Reports Server (NTRS)

    Knepper, Bryan; Hwang, Soon Muk; DeWitt, Kenneth J.

    2004-01-01

    Minimum ignition energies of various methanol/air mixtures were measured in a temperature controlled constant volume combustion vessel using a spark ignition method with a spark gap distance of 2 mm. The minimum ignition energies decrease rapidly as the mixture composition (equivalence ratio, Phi) changes from lean to stoichiometric, reach a minimum value, and then increase rather slowly with Phi. The minimum of the minimum ignition energy (MIE) and the corresponding mixture composition were determined to be 0.137 mJ and Phi = 1.16, a slightly rich mixture. The variation of minimum ignition energy with respect to the mixture composition is explained in terms of changes in reaction chemistry.

  19. Solar activity as driver for the Dark Age Grand Solar Minimum

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Ralph; Neuhäuser, Dagmar

    2017-04-01

    We will discuss the role of solar activity for the temperature variability from AD 550 to 840, roughly the last three centuries of the Dark Ages. This time range includes the so-called Dark Age Grand Solar Minimum, whose deep part is dated to about AD 650 to 700, which is seen in increased radiocarbon, but decreased aurora observations (and a lack of naked-eye sunspot sightings). We present historical reports on aurorae from all human cultures with written reports including East Asia, Near East (Arabia), and Europe. To classify such reports correctly, clear criteria are needed, which are also discussed. We compare our catalog of historical aurorae (and sunspots) as well as C-14 data, i.e. solar activity proxies, with temperature reconstructions (PAGES). After increased solar activity until around AD 600, we see a dearth of aurorae and increased radiocarbon production in particular in the second half of the 7th century, i.e. a typical Grand Solar Minimum. Then, after about AD 690 (the maximum in radiocarbon, the end of the Dark Age Grand Minimum), we see increased auroral activity, decreasing radiocarbon, and increasing temperature until about AD 775. At around AD 775, we see the well-known strong C-14 variability (solar activity drop), then immediately another dearth of aurorae plus high C-14, indicating another solar activity minimum. This is consistent with a temperature depression from about AD 775 on into the beginning of the 9th century. Very high solar activity is then seen in the first four decades with four aurora clusters and three simultaneous sunspot clusters, and low C-14, again also increasing temperature. The period of increasing solar activity marks the end of the so-called Dark Ages: While auroral activity increases since about AD 793, temperature starts to increase quite exactly at AD 800. We can reconstruct the Schwabe cycles with aurorae and C-14 data. In summary, we can see a clear correspondence of the variability of solar activity proxies and surface temperature reconstructions. This indicates that solar activity is an important climate driver.

  20. Development of an accelerated reliability test schedule for terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Prince, J. L.

    1981-01-01

    An accelerated test schedule using a minimum amount of tests and a minimum number of cells has been developed on the basis of stress test results obtained from more than 1500 cells of seven different cell types. The proposed tests, which include bias-temperature, bias-temperature-humidity, power cycle, thermal cycle, and thermal shock tests, use as little as 10 and up to 25 cells, depending on the test type.

  1. FAST TRACK COMMUNICATION: Metal vapour causes a central minimum in arc temperature in gas-metal arc welding through increased radiative emission

    NASA Astrophysics Data System (ADS)

    Schnick, M.; Füssel, U.; Hertel, M.; Spille-Kohoff, A.; Murphy, A. B.

    2010-01-01

    A computational model of the argon arc plasma in gas-metal arc welding (GMAW) that includes the influence of metal vapour from the electrode is presented. The occurrence of a central minimum in the radial distributions of temperature and current density is demonstrated. This is in agreement with some recent measurements of arc temperatures in GMAW, but contradicts other measurements and also the predictions of previous models, which do not take metal vapour into account. It is shown that the central minimum is a consequence of the strong radiative emission from the metal vapour. Other effects of the metal vapour, such as the flux of relatively cold vapour from the electrode and the increased electrical conductivity, are found to be less significant. The different effects of metal vapour in gas-tungsten arc welding and GMAW are explained.

  2. Pyrophoric sulfides influence over the minimum ignition temperature of dust cloud

    NASA Astrophysics Data System (ADS)

    Prodan, Maria; Lupu, Leonard Andrei; Ghicioi, Emilian; Nalboc, Irina; Szollosi-Mota, Andrei

    2017-12-01

    The dust cloud is the main form of existence of combustible dust in the production area and together with the existence of effective ignition sources are the main causes of dust explosions in production processes. The minimum ignition temperature has an important role in the process of selecting the explosion-protected electrical equipment when performing the explosion risk assessment of combustible dusts. The heated surfaces are able to ignite the dust clouds that can form in process industry. The oil products usually contain hydrogen sulfide and thus on the pipe walls iron sulfides can form, which can be very dangerous from health and safety point of view. In order to study the influence of the pyrophoric sulfide over the minimum ignition temperature of combustible dusts for this work were performed several experiments on a residue collected from the oil pipes contaminated with commercially iron sulfide.

  3. Analysis of the relationship between the monthly temperatures and weather types in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Peña Angulo, Dhais; Trigo, Ricardo; Nicola, Cortesi; José Carlos, González-Hidalgo

    2016-04-01

    In this study, the relationship between the atmospheric circulation and weather types and the monthly average maximum and minimum temperatures in the Iberian Peninsula is modeled (period 1950-2010). The temperature data used were obtained from a high spatial resolution (10km x 10km) dataset (MOTEDAS dataset, Gonzalez-Hidalgo et al., 2015a). In addition, a dataset of Portuguese temperatures was used (obtained from the Portuguese Institute of Sea and Atmosphere). The weather type classification used was the one developed by Jenkinson and Collison, which was adapted for the Iberian Peninsula by Trigo and DaCamara (2000), using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The analysis of the behaviour of monthly temperatures based on the weather types was carried out using a stepwise regression procedure of type forward to estimate temperatures in each cell of the considered grid, for each month, and for both maximum and minimum monthly average temperatures. The model selects the weather types that best estimate the temperatures. From the validation model it was obtained the error distribution in the time (months) and space (Iberian Peninsula). The results show that best estimations are obtained for minimum temperatures, during the winter months and in coastal areas. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298

  4. ECOSYSTEM GROWTH AND DEVELOPMENT

    EPA Science Inventory

    Thermodynamically, ecosystem growth and development is the process by which energy throughflow and stored biomass increase. Several proposed hypotheses describe the natural tendencies that occur as an ecosystem matures, and here, we consider five: minimum entropy production, maxi...

  5. Long-Term Prediction of Emergency Department Revenue and Visitor Volume Using Autoregressive Integrated Moving Average Model

    PubMed Central

    Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi

    2011-01-01

    This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume. PMID:22203886

  6. Long-term prediction of emergency department revenue and visitor volume using autoregressive integrated moving average model.

    PubMed

    Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi

    2011-01-01

    This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.

  7. High-Temperature Creep Behaviour and Positive Effect on Straightening Deformation of Q345c Continuous Casting Slab

    NASA Astrophysics Data System (ADS)

    Guo, Long; Zhang, Xingzhong

    2018-03-01

    Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.

  8. Quantum Criticality of an Ising-like Spin-1 /2 Antiferromagnetic Chain in a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.

    2018-05-01

    We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.

  9. Spatial distribution of temperature trends and extremes over Maharashtra and Karnataka States of India

    NASA Astrophysics Data System (ADS)

    Dhorde, Amit G.; Korade, Mahendra S.; Dhorde, Anargha A.

    2017-10-01

    Earth surface temperatures are changing worldwide together with the changes in the extreme temperatures. The present study investigates trends and variations of monthly maximum and minimum temperatures and their effects on seasonal fluctuations at different climatological stations of Maharashtra and Karnataka states of India. Trend analysis was performed on annual and seasonal mean maximum temperature (TMAX) and mean minimum temperature (TMIN) for the period 1969 to 2006. During the last 38 years, an increase in annual TMAX and TMIN has occurred. At most of the locations, the increase in TMAX was faster than the TMIN, resulting in an increase in diurnal temperature range. At the same time, annual mean temperature (TM) showed a significant increase over the study area. Percentiles were used to identify extreme temperature indices. An increase in occurrence of warm extremes was observed at southern locations, and cold extremes increased over the central and northeastern part of the study area. Occurrences of cold wave conditions have decreased rapidly compared to heat wave conditions.

  10. Minimum airflow reset of single-duct VAV terminal boxes

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and applied to actual systems for performance validation. The results of the theoretical analysis, numeric simulations, and experiments show that the optimal control algorithms can automatically identify the minimum rate of heating airflow under actual working conditions. Improved control helps to stabilize room air temperatures. The vertical difference in the room air temperature was lower than the comfort value. Measurements of room CO2 levels indicate that when the minimum airflow set point was reduced it did not adversely affect the indoor air quality. According to the measured energy results, optimal control algorithms give a lower rate of reheating energy consumption than conventional controls.

  11. Temperature-responsive and biodegradable PVA:PVP k30:poloxamer 407 hydrogel for controlled delivery of human growth hormone (hGH).

    PubMed

    Taheri, Azade; Atyabi, Fatemeh; Dinarvnd, Rassoul

    2011-01-01

    Recombinant human growth hormone (rhGH) is used for replacement therapy of pediatric hypopituitary dwarfism. Growth rate in children was observed to be better on the daily injection schedule compared with the currently used therapeutic regimen of thrice a week injection. Thus, a controlled release formulation would overcome the drawback of traditional rhGH therapy such as the need for multiple injections. Poloxamers are a family of triblock copolymers consisting of two hydrophilic blocks of polyoxyethylene separated by a hydrophobic block of polyoxypropylene, which form micelles at low concentrations and form clear thermally reversible gels at high concentrations. We used poloxamer gels to develop a controlled release formulation of hGH. The objective of this study was to develop an in situ gel forming drug delivery system for hGH using the minimum possible ratio of poloxamer 407 (P407). Decreasing the concentration of poloxamer could reduce the risk of hypertriglyceridemia induction. Different additives were added to the poloxamer formulations. It was observed that among different additives polyvinylpyrrolidone k30 (PVP k30) and polyvinyl alcohol (PVA) decrease poloxamer concentration required to form in situ gelation from 18% to 10%. The dynamic viscoelastic properties of the samples were determined. Both the storage modulus and the loss modulus of the samples increased abruptly as the temperature passed a certain point. It can be concluded that combining P407 and PVP and PVA could be a promising strategy for preparation of thermally reversible in situ gel forming delivery systems of hGH with low poloxamer concentration.

  12. Bird population trends are linearly affected by climate change along species thermal ranges.

    PubMed

    Jiguet, Frédéric; Devictor, Vincent; Ottvall, Richard; Van Turnhout, Chris; Van der Jeugd, Henk; Lindström, Ake

    2010-12-07

    Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.

  13. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  14. FORWINE - Statistical Downscaling of Seasonal forecasts for wine

    NASA Astrophysics Data System (ADS)

    Cardoso, Rita M.; Soares, Pedro M. M.; Miranda, Pedro M. A.

    2016-04-01

    The most renowned viticulture regions in the Iberian Peninsula have a long standing tradition in winemaking and are considered world-class grapevine (Vitis Vinifera L.) producing regions. Portugal is the 11th wine producer in the world, with internationally acclaimed wines, such as Port wine, and vineyards across the whole territory. Climate is widely acknowledged of one of the most important factors for grapevine development and growth (Fraga et al. 2014a and b; Jackson et al. 1993; Keller 2010). During the growing season (April-October in the Northern Hemisphere) of this perennial and deciduous crop, the climatic conditions are responsible for numerous morphologically and physiological changes. Anomalously low February-March mean temperature, anomalously high May mean temperature and anomalously high March precipitation tend to be favourable to wine production in the Douro Valley. Seasonal forecast of precipitation and temperature tailored to fit critical thresholds, for crucial seasons, can be used to inform management practices (viz. phytosanitary measures, land operations, marketing campaigns) and develop a wine production forecast. Statistical downscaling of precipitation, maximum, minimum temperatures is used to model wine production following Santos et al. (2013) and to calculate bioclimatic indices. The skill of the ensemble forecast is evaluated through anomaly correlation, ROC area, spread-error ratio and CRPS

  15. A technique to detect microclimatic inhomogeneities in historical temperature records

    NASA Astrophysics Data System (ADS)

    Runnalls, K. E.; Oke, T. R.

    2003-04-01

    A technique to identify inhomogeneities in historical temperature records caused by microclimatic changes to the surroundings of a climate station (e.g. minor instrument relocations, vegetation growth/removal, construction of houses, roads, runways) is presented. The technique uses daily maximum and minimum temperatures to estimate the magnitude of nocturnal cooling. The test station is compared to a nearby reference station by constructing time series of monthly "cooling ratios". It is argued that the cooling ratio is a particularly sensitive measure of microclimatic differences between neighbouring climate stations. Firstly, because microclimatic character is best expressed at night in stable conditions. Secondly, because larger-scale climatic influences common to both stations are removed by the use of a ratio and, because the ratio can be shown to be invariant in the mean with weather variables such as wind and cloud. Inflections (change points) in time series of cooling ratios therefore signal microclimatic change in one of the station records. Hurst rescaling is applied to the time series to aid in the identification of change points, which can then be compared to documented station history events, if sufficient metatdata is available. Results for a variety of air temperature records, ranging from rural to urban stations, are presented to illustrate the applicability of the technique.

  16. Mapping Topoclimate and Microclimate in the Monarch Butterfly Biosphere Reserve, Mexico

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2006-12-01

    Overwintering monarch butterflies in Mexico select areas of the high elevation Oyamel fir -pine forest providing a canopy that protects them from extremes of cold, heat, sun, and wind. These exacting microclimatic conditions are found in relatively small areas of forest with appropriate topography and canopy cover. The major goal of this investigation is to map topoclimatic and microclimatic conditions within the Monarch Butterfly Biosphere Reserve by combining temperature monitoring (iButton Thermochrons), hemispherical canopy photography, multiple regression, and GIS modeling. Temperature measurements included base weather stations and arrays of Thermochrons (on the north-side of trees at 2m height) across local topographic and canopy cover gradients. Topoclimatic models of minimum temperatures included topographic position, slope, and elevation, and predicted that thermal belts on slopes and cold air drainage into canyons create local minimum temperature gradients of 2°C. Topoclimatic models of maximum temperatures models included elevation, topographic position, and relative solar exposure, with local gradients of 3°C. These models, which are independent of forest canopy structure, were then projected across the entire region. Forest canopy structure, including direct and diffuse solar radiation, was assessed with hemispherical photography at each Thermochron site. Canopy cover affected minimum temperatures primarily on the calmest, coldest nights. Maximum temperatures were predicted by direct radiation below the canopy. Fine- scale grids (25 m spacing) at three overwintering sites characterized effects of canopy gaps and edges on temperature and wind exposure. The effects of temperature variation were considered for lipid loss rates, ability to take flight, and freezing mortality. Lipid loss rates were estimated by measured hourly temperatures. Many of the closed canopy sites allowed for substantial lipid reserves at the end of the season (March 15), but increases in average temperature could effectively deplete lipids by that time. The large influence of canopy cover on daytime maximum temperatures demonstrates that forest thinning directly reduces habitat suitability. Monarchs' flight behavior under warmer conditions suggests that daytime temperatures drive the dynamics of monarch distribution within colonies. Thinning also decreases nighttime minimum temperatures, and increases wind exposure. These results create a basis for quantitative understanding of the combinations of topography and forest structure that provide high quality overwintering habitat.

  17. Geographical and Geomorphological Effects on Air Temperatures in the Columbia Basin's Signature Vineyards

    NASA Astrophysics Data System (ADS)

    Olson, L.; Pogue, K. R.; Bader, N.

    2012-12-01

    The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation controlled by elevation. In some AVAs, such as Walla Walla Valley and Red Mountain, average air temperatures increased with elevation because of the effect of cold air pooling on valley floors. In other AVAs, such as Horse Heaven Hills, Lake Chelan and Columbia Gorge, average temperatures decreased with elevation due to the moderating influences of the Columbia River and Lake Chelan. Other temperature statistics, including average diurnal range and maximum and minimum temperature, were influenced by relative topography, including local topography and slope. Vineyards with flat slopes that had low elevations relative to their surroundings had larger diurnal variations and lower maximum and minimum temperatures than vineyards with steeper slopes that were high relative to their surroundings.

  18. 40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...

  19. 40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...

  20. 40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...

  1. The effect of ultradian and orbital cycles on plant growth

    NASA Technical Reports Server (NTRS)

    Berry, W.; Hoshizaki, T.; Ulrich, A.

    1986-01-01

    In a series of experiments using sugar beets, researchers investigated the effects of varying cycles lengths on growth (0.37 hr to 48 hr). Each cycle was equally divided into a light and dark period so that each treatment regardless of cycle length received the same amount of light over the 17 weeks of the experiment. Two growth parameters were used to evaluate the effects of cycle length, total fresh weight and sucrose content of the storage root. Both parameters showed very similar responses in that under long cycles (12 hr or greater) growth was normal, whereas plants growing under shorter cycle periods were progressively inhibited. Minimum growth occurred at a cycle period of 0.75 hr. The yield at the 0.75 hr cycle, where was at a minimum, for total fresh weight was only 51 percent compared to the 24 hr cycle. The yield of sucrose was even more reduced at 41 percent of the 24 hr cycle.

  2. Minimum weight passive insulation requirements for hypersonic cruise vehicles.

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1972-01-01

    Analytical solutions are derived for two representative cases of the transient heat conduction equation to determine the minimum weight requirements for passive insulation systems of hypersonic cruise vehicles. The cases discussed are the wet wall case with the interior wall temperature held to that of the boiling point of the fuel throughout the flight, and the dry wall case where the heat transferred through the insulation is absorbed by the interior structure whose temperature is allowed to rise.

  3. Reassessment of urbanization effect on surface air temperature trends at an urban station of North China

    NASA Astrophysics Data System (ADS)

    Bian, Tao; Ren, Guoyu

    2017-11-01

    Based on a homogenized data set of monthly mean temperature, minimum temperature, and maximum temperature at Shijiazhuang City Meteorological Station (Shijiazhuang station) and four rural meteorological stations selected applying a more sophisticated methodology, we reanalyzed the urbanization effects on annual, seasonal, and monthly mean surface air temperature (SAT) trends for updated time period 1960-2012 at the typical urban station in North China. The results showed that (1) urbanization effects on the long-term trends of annual mean SAT, minimum SAT, and diurnal temperature range (DTR) in the last 53 years reached 0.25, 0.47, and - 0.50 °C/decade, respectively, all statistically significant at the 0.001 confidence level, with the contributions from urbanization effects to the overall long-term trends reaching 67.8, 78.6, and 100%, respectively; (2) the urbanization effects on the trends of seasonal mean SAT, minimum SAT, and DTR were also large and statistically highly significant. Except for November and December, the urbanization effects on monthly mean SAT, minimum SAT, and DTR were also all statistically significant at the 0.05 confidence level; and (3) the annual, seasonal, and monthly mean maximum SAT series at the urban station registered a generally weaker and non-significant urbanization effect. The updated analysis evidenced that our previous work for this same urban station had underestimated the urbanization effect and its contribution to the overall changes in the SAT series. Many similar urban stations were being included in the current national and regional SAT data sets, and the results of this paper further indicated the importance and urgency for paying more attention to the urbanization bias in the monitoring and detection of global and regional SAT change based on the data sets.

  4. Temperature Trends in the White Mountains of New Hampshire

    NASA Astrophysics Data System (ADS)

    Murray, G.; Kelsey, E. P.; Raudzens Bailey, A.

    2014-12-01

    Located at the summit of Mount Washington (1917 m asl; ~800 hPa), the highest peak in the northeastern United States, the Mount Washington Observatory has meticulously recorded hourly temperature, humidity, cloud-cover, and other atmospheric variables for over 80 years using the same standard procedures to ensure high-quality, homogeneous data. Nearby Hubbard Brook Experimental Forest (253 m asl; ~980 hPa), a Long-Term Ecological Research site, has recorded atmospheric and environmental data since 1956. Together, these two sites provide a unique opportunity to evaluate elevation-dependent climate changes. Using Sen's slope and the Mann Kendall non-parameteric test we examine annual and seasonal trends in minimum, maximum, and mean temperatures. Both Mount Washington and Hubbard Brook exhibit 56-yr warming trends for most seasons, however, the magnitudes and statistical significances are variable, suggesting the processes controlling these trends likely differ with elevation. Since 1957, for instance, spring maximum temperatures at Hubbard Brook have warmed 0.32 °C dec-1 and winter minimums have increased 0.54 °C dec-1, both well within the range reported for six neighboring low elevation stations from 1970-2012 (Wake et al, 2014a,b). In comparison, Mount Washington summit seasonal minimum temperature trends are typically weaker, with changes in winter minimums (the largest of the seasons) reaching only 0.33 °C dec-1. In this presentation, we highlight differences between these two long-term records and discuss possible role of moist processes and boundary layer/free troposphere exposure in causing their divergence. Authors are planning to study the effects of humidity and cloud-cover on summit temperatures and to investigate how changes in the frequency with which the summit is exposed to boundary layer and free tropospheric air masses influences these relationships.

  5. Temperature dependence of needle and shoot elongation before bud break in Scots pine.

    PubMed

    Schiestl-Aalto, Pauliina; Mäkelä, Annikki

    2017-03-01

    Knowledge about the early part of needle growth is deficient compared with what is known about shoot growth. It is however important to understand growth of different organs to be able to estimate the changes in whole tree growth in a changing environment. The onset of growth in spring has been observed to occur over some certain threshold value of momentary temperature or temperature accumulation. We measured the length growth of Scots pine (Pinus sylvestris L.) needles and shoots from March until bud break over 3 years. We first compared needle growth with concurrent shoot growth. Then, we quantified threshold temperature of growth (i) with a logistic regression based on momentary temperatures and (ii) with the temperature sum accumulation method. Temperature sum was calculated with combinations of various time steps, starting dates and threshold temperature values. Needle elongation began almost concurrently with shoot elongation and proceeded linearly in relation to shoot growth until bud break. When studying the threshold temperature for growth, the method with momentary temperature effect on growth onset yielded ambiguous results in our conditions. The best fit of an exponential regression between needle growth or length and temperature sum was obtained with threshold temperatures -1 to +2 °C, with several combinations of starting date and time step. We conclude that although growth onset is a momentary event the process leading to it is a long-term continuum where past time temperatures have to be accounted for, rather than a sudden switch from quiescence to active growth. Further, our results indicate that lower temperatures than the commonly used +5 °C are sufficient for actuating the growth process. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  7. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  8. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  9. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  10. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  11. Geo-spatial analysis of temporal trends of temperature and its extremes over India using daily gridded (1°×1°) temperature data of 1969-2005

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Seshasai, M. V. R.; Rao, S. V. C. Kameswara; Dadhwal, V. K.

    2017-10-01

    Daily gridded (1°×1°) temperature data (1969-2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season ( kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann-Kendall statistics ( α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test ( α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02-0.04 °C year-1) were found to be higher than that of maximum temperature (0.01-0.02 °C year-1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.

  12. Stream-temperature patterns of the Muddy Creek basin, Anne Arundel County, Maryland

    USGS Publications Warehouse

    Pluhowski, E.J.

    1981-01-01

    Using a water-balance equation based on a 4.25-year gaging-station record on North Fork Muddy Creek, the following mean annual values were obtained for the Muddy Creek basin: precipitation, 49.0 inches; evapotranspiration, 28.0 inches; runoff, 18.5 inches; and underflow, 2.5 inches. Average freshwater outflow from the Muddy Creek basin to the Rhode River estuary was 12.2 cfs during the period October 1, 1971, to December 31, 1975. Harmonic equations were used to describe seasonal maximum and minimum stream-temperature patterns at 12 sites in the basin. These equations were fitted to continuous water-temperature data obtained periodically at each site between November 1970 and June 1978. The harmonic equations explain at least 78 percent of the variance in maximum stream temperatures and 81 percent of the variance in minimum temperatures. Standard errors of estimate averaged 2.3C (Celsius) for daily maximum water temperatures and 2.1C for daily minimum temperatures. Mean annual water temperatures developed for a 5.4-year base period ranged from 11.9C at Muddy Creek to 13.1C at Many Fork Branch. The largest variations in stream temperatures were detected at thermograph sites below ponded reaches and where forest coverage was sparse or missing. At most sites the largest variations in daily water temperatures were recorded in April whereas the smallest were in September and October. The low thermal inertia of streams in the Muddy Creek basin tends to amplify the impact of surface energy-exchange processes on short-period stream-temperature patterns. Thus, in response to meteorologic events, wide ranging stream-temperature perturbations of as much as 6C have been documented in the basin. (USGS)

  13. Impacts of updated green vegetation fraction data on WRF simulations of the 2006 European heat wave

    NASA Astrophysics Data System (ADS)

    Refslund, J.; Dellwik, E.; Hahmann, A. N.; Barlage, M. J.; Boegh, E.

    2012-12-01

    Climate change studies suggest an increase in heat wave occurrences over Europe in the coming decades. Extreme events with excessive heat and associated drought will impact vegetation growth and health and lead to alterations in the partitioning of the surface energy. In this study, the atmospheric conditions during the heat wave year 2006 over Europe were simulated using the Weather Research and Forecasting (WRF) model. To account for the drought effects on the vegetation, new high-resolution green vegetation fraction (GVF) data were developed for the domain using NDVI data from MODIS satellite observations. Many empirical relationships exist to convert NDVI to GVF and both a linear and a quadratic formulation were evaluated. The new GVF product has a spatial resolution of 1 km2 and a temporal resolution of 8 days. To minimize impacts from low-quality satellite retrievals in the NDVI series, as well as for comparison with the default GVF climatology in WRF, a new background climatology using 10 recent years of observations was also developed. The annual time series of the new GVF climatology was compared to the default WRF GVF climatology at 18 km2 grid resolution for the most common land use classes in the European domain. The new climatology generally has higher GVF levels throughout the year, in particular an extended autumnal growth season. Comparison of 2006 GVF with the climatology clearly indicates vegetation stresses related to heat and drought. The GVF product based on a quadratic NDVI relationship shows the best agreement with the magnitude and annual range of the default input data, in addition to including updated seasonality for various land use classes. The new GVF products were tested in WRF and found to work well for the spring of 2006 where the difference between the default and new GVF products was small. The WRF 2006 heat wave simulations were verified by comparison with daily gridded observations of mean, minimum and maximum temperature and daily precipitation. The simulation using the new GVF product with a quadratic relationship to NDVI resulted in a consistent improvement of modeled temperatures during the heat wave period, where the mean temperature cold bias of the model was reduced by 10% for the whole domain and by 30-50% in areas severely affected by the heat wave. More improvement was found in the simulation of minimum temperature and less in maximum temperature and the impact on precipitation was not significant. The results show that model simulations during heat waves and droughts, when vegetation condition deviates from climatology, require updated land surface properties in order to obtain reliably accurate results.

  14. Modelling and Optimization of Polycaprolactone Ultrafine-Fibres Electrospinning Process Using Response Surface Methodology

    PubMed Central

    Ruys, Andrew J.

    2018-01-01

    Electrospun fibres have gained broad interest in biomedical applications, including tissue engineering scaffolds, due to their potential in mimicking extracellular matrix and producing structures favourable for cell and tissue growth. The development of scaffolds often involves multivariate production parameters and multiple output characteristics to define product quality. In this study on electrospinning of polycaprolactone (PCL), response surface methodology (RSM) was applied to investigate the determining parameters and find optimal settings to achieve the desired properties of fibrous scaffold for acetabular labrum implant. The results showed that solution concentration influenced fibre diameter, while elastic modulus was determined by solution concentration, flow rate, temperature, collector rotation speed, and interaction between concentration and temperature. Relationships between these variables and outputs were modelled, followed by an optimization procedure. Using the optimized setting (solution concentration of 10% w/v, flow rate of 4.5 mL/h, temperature of 45 °C, and collector rotation speed of 1500 RPM), a target elastic modulus of 25 MPa could be achieved at a minimum possible fibre diameter (1.39 ± 0.20 µm). This work demonstrated that multivariate factors of production parameters and multiple responses can be investigated, modelled, and optimized using RSM. PMID:29562614

  15. Developing and demonstrating low-energy climate control and production techniques for greenhouse-grown citrus and ornamental crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodnaruk, W.H. Jr.

    1983-04-01

    The aim of this study was to develop and demonstrate low energy climate control and production techniques for greenhouse grown citrus and ornamental crops. Emphasis was placed on design, fuel efficiency and plant response to warm water soil heating systems using solar energy and LP gas. An energy requirement of 28Btus output per hour per square foot of bed space will provide soil temperature of 70/sup 0/F minimum when air temperatures are maintained at 60/sup 0/F. Soil heating to 70/sup 0/ increased rooting and growth of 8 foliage plant varieties by 25 to 45% compared to plants grown under 60/supmore » 0/F air temperature conditions. Providing soil heating, however, increased fuel consumption in the central Florida test facilities by 30% in the winters of 1980-81 and 1981-82. Solar tie-in to soil heating systems has the potential of reducing fuel usage. Solar heated water provided 4 hours of soil heating following a good collection day. Decreased in-bed pipe spacing and increased storage capacity should increase the solar percentage to 6 hours.« less

  16. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: development and validation of new methods for Mexico. Part III: reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Lobit, P.; Gómez Tagle, A.; Bautista, F.; Lhomme, J. P.

    2017-07-01

    We evaluated two methods to estimate evapotranspiration (ETo) from minimal weather records (daily maximum and minimum temperatures) in Mexico: a modified reduced set FAO-Penman-Monteith method (Allen et al. 1998, Rome, Italy) and the Hargreaves and Samani (Appl Eng Agric 1(2): 96-99, 1985) method. In the reduced set method, the FAO-Penman-Monteith equation was applied with vapor pressure and radiation estimated from temperature data using two new models (see first and second articles in this series): mean temperature as the average of maximum and minimum temperature corrected for a constant bias and constant wind speed. The Hargreaves-Samani method combines two empirical relationships: one between diurnal temperature range ΔT and shortwave radiation Rs, and another one between average temperature and the ratio ETo/Rs: both relationships were evaluated and calibrated for Mexico. After performing a sensitivity analysis to evaluate the impact of different approximations on the estimation of Rs and ETo, several model combinations were tested to predict ETo from daily maximum and minimum temperature alone. The quality of fit of these models was evaluated on 786 weather stations covering most of the territory of Mexico. The best method was found to be a combination of the FAO-Penman-Monteith reduced set equation with the new radiation estimation and vapor pressure model. As an alternative, a recalibration of the Hargreaves-Samani equation is proposed.

  17. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems.

    PubMed

    Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo

    2017-04-01

    Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.

  18. Numerical Investigation of Temperature Distribution in an Eroded Bend Pipe and Prediction of Erosion Reduced Thickness

    PubMed Central

    Zhu, Hongjun; Feng, Guang; Wang, Qijun

    2014-01-01

    Accurate prediction of erosion thickness is essential for pipe engineering. The objective of the present paper is to study the temperature distribution in an eroded bend pipe and find a new method to predict the erosion reduced thickness. Computational fluid dynamic (CFD) simulations with FLUENT software are carried out to investigate the temperature field. And effects of oil inlet rate, oil inlet temperature, and erosion reduced thickness are examined. The presence of erosion pit brings about the obvious fluctuation of temperature drop along the extrados of bend. And the minimum temperature drop presents at the most severe erosion point. Small inlet temperature or large inlet velocity can lead to small temperature drop, while shallow erosion pit causes great temperature drop. The dimensionless minimum temperature drop is analyzed and the fitting formula is obtained. Using the formula we can calculate the erosion reduced thickness, which is only needed to monitor the outer surface temperature of bend pipe. This new method can provide useful guidance for pipeline monitoring and replacement. PMID:24719576

  19. Meteorological variables and bacillary dysentery cases in Changsha City, China.

    PubMed

    Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa

    2014-04-01

    This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature.

  20. Meteorological Variables and Bacillary Dysentery Cases in Changsha City, China

    PubMed Central

    Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa

    2014-01-01

    This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature. PMID:24591435

  1. Climate and climate change and infectious disease risk in Thailand: A spatial study of dengue hemorrhagic fever using GIS and remotely-sensed imagery

    NASA Astrophysics Data System (ADS)

    Kuzera, Kristopher

    The scientific community has widely accepted that climate plays a key role in the sustainability and transmission of many infectious diseases. Global climate change can potentially trigger the spread of disease into new regions and increase the intensity of disease in regions where it is endemic. This study explores the association between monthly conditions of climate change to changes in disease risk, emphasizing the potential spread of dengue fever due to climate change in Thailand. This study also develops techniques new to GIS and remote sensing that generate surfaces of daily minimum temperature toward identifying areas at greater transmission risk. Dengue fever expansion due to global warming is a serious concern for Thailand where warming temperatures may increase the size of the habitat of the disease-spreading vector, Aedes aegypti, particularly during cooler months when transmission is limited by environmental conditions. In this study, first, the association between past dengue hemorrhagic fever (DHF) and climate in Thailand is determined. Second, evidence of recent climate change is related to changes in DHF rates. Third, daily minimum temperature is derived from remote sensing toward identifying the spatial and temporal limitations of potential transmission risk. The results indicate that minimum temperature has recently experienced a rapid increase, particularly in the winter months when transmission is low. This is associated with a recent rise in winter DHF cases. As increasing minimum temperatures in these regions are anticipated to continue, we can expect dengue transmission rates to also increase throughout the year.

  2. Uncertainties in observations and climate projections for the North East India

    NASA Astrophysics Data System (ADS)

    Soraisam, Bidyabati; Karumuri, Ashok; D. S., Pai

    2018-01-01

    The Northeast-India has undergone many changes in climatic-vegetation related issues in the last few decades due to increased human activities. However, lack of observations makes it difficult to ascertain the climate change. The study involves the mean, seasonal cycle, trend and extreme-month analysis for summer-monsoon and winter seasons of observed climate data from Indian Meteorological Department (1° × 1°) and Aphrodite & CRU-reanalysis (both 0.5° × 0.5°), and five regional-climate-model simulations (LMDZ, MPI, GFDL, CNRM and ACCESS) data from AR5/CORDEX-South-Asia (0.5° × 0.5°). Long-term (1970-2005) observed, minimum and maximum monthly temperature and precipitation, and the corresponding CORDEX-South-Asia data for historical (1970-2005) and future-projections of RCP4.5 (2011-2060) have been analyzed for long-term trends. A large spread is found across the models in spatial distributions of various mean maximum/minimum climate statistics, though models capture a similar trend in the corresponding area-averaged seasonal cycles qualitatively. Our observational analysis broadly suggests that there is no significant trend in rainfall. Significant trends are observed in the area-averaged minimum temperature during winter. All the CORDEX-South-Asia simulations for the future project either a decreasing insignificant trend in seasonal precipitation, but increasing trend for both seasonal maximum and minimum temperature over the northeast India. The frequency of extreme monthly maximum and minimum temperature are projected to increase. It is not clear from future projections how the extreme rainfall months during JJAS may change. The results show the uncertainty exists in the CORDEX-South-Asia model projections over the region in spite of the relatively high resolution.

  3. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia

    PubMed Central

    Gebreyohannes, Gebreselema; Moges, Feleke; Sahile, Samuel; Raja, Nagappan

    2013-01-01

    Objective To isolate, evaluate and characterize potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Methods A total of 31 strains of actinomycetes were isolated and tested against Gram positive and Gram negative bacterial strains by primary screening. In the primary screening, 11 promising isolates were identified and subjected to solid state and submerged state fermentation methods to produce crude extracts. The fermented biomass was extracted by organic solvent extraction method and tested against bacterial strains by disc and agar well diffusion methods. The isolates were characterized by using morphological, physiological and biochemical methods. Results The result obtained from agar well diffusion method was better than disc diffusion method. The crude extract showed higher inhibition zone against Gram positive bacteria than Gram negative bacteria. One-way analysis of variance confirmed most of the crude extracts were statistically significant at 95% confidence interval. The minimum inhibitory concentration and minimum bactericidal concentration of crude extracts were 1.65 mg/mL and 3.30 mg/mL against Staphylococcus aureus, and 1.84 mg/mL and 3.80 mg/mL against Escherichia coli respectively. The growth of aerial and substrate mycelium varied in different culture media used. Most of the isolates were able to hydrolysis starch and urea; able to survive at 5% concentration of sodium chloride; optimum temperature for their growth was 30 °C. Conclusions The results of the present study revealed that freshwater actinomycetes of Lake Tana appear to have immense potential as a source of antibacterial compounds. PMID:23730554

  4. Minimum Input Techniques for Valley Oak Restocking

    Treesearch

    Elizabeth A. Bernhardt; Tedmund J. Swiecki

    1991-01-01

    We set up experiments at four locations in northern California to demonstrate minimum input techniques for restocking valley oak, Quercus lobata. Overall emergence of acorns planted in 1989 ranged from 47 to 61 percent. Use of supplemental irrigation had a significant positive effect on seedling growth at two of three sites. Mulch, of organic...

  5. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions.

    PubMed

    Li, Weili; Liu, Linshu; Jin, Tony Z

    2012-12-01

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid and chitosan were incorporated with AIT and used to coat one side of the film. The films were subjected to different storage conditions (storage time, storage temperature, and packed or unpacked) and handling conditions (washing, abrasion, and air blowing), and the antimicrobial activity of the films against Salmonella Stanley in tryptic soy broth was determined. The films (8.16 μl of AIT per cm(2) of surface area) significantly (P < 0.05) inhibited the growth of Salmonella during 24 h of incubation at 22°C, while the populations of Salmonella in controls increased from ca. 4 to over 8 log CFU/ml, indicating a minimum inactivation of 4 log CFU/ml on films in comparison to the growth on controls. Statistical analyses indicated that storage time, storage temperature, and surface abrasion affected the antimicrobial activity of the films significantly (P < 0.05). However, the differences in microbial reduction between those conditions were less than 0.5 log cycle. The results suggest that the films' antimicrobial properties are stable under practical storage and handling conditions and that these antimicrobial films have potential applications in food packaging.

  6. Marine Invasion in the Mediterranean Sea: The Role of Abiotic Factors When There Is No Biological Resistance

    PubMed Central

    2012-01-01

    The tropical red alga Womersleyella setacea (Rhodomelaceae, Rhodophyta) is causing increasing concern in the Mediterranean Sea because of its invasive behavior. After its introduction it has colonized most Mediterranean areas, but the mechanism underlying its acclimatization and invasion process remains unknown. To understand this process, we decided i) to assess in situ the seasonal biomass and phenological patterns of populations inhabiting the Mediterranean Sea in relation to the main environmental factors, and ii) to experimentally determine if the tolerance of W. setacea to different light and temperature conditions can explain its colonization success, as well as its bathymetric distribution range. The bathymetric distribution, biomass, and phenology of W. setacea were studied at two localities, and related to irradiance and temperature values recorded in situ. Laboratory experiments were set up to study survival, growth and reproduction under contrasting light and temperature conditions in the short, mid, and long term.Results showed that, in the studied area, the bathymetric distribution of W. setacea is restricted to a depth belt between 25 and 40 m deep, reaching maximum biomass values (126 g dw m−2) at 30 m depth. In concordance, although in the short term W. setacea survived and grew in a large range of environmental conditions, its life requirements for the mid and long term were dim light levels and low temperatures. Biomass of Womersleyella setacea did not show any clear seasonal pattern, though minimum values were reported in spring. Reproductive structures were always absent. Bearing in mind that no herbivores feed on Womersleyella setacea and that its thermal preferences are more characteristic of temperate than of tropical seaweeds, low light (50 µmol photon m−2 s−1) and low temperature (12°C) levels are critical for W. setacea survival and growth, thus probably determining its spread and bathymetric distribution across the Mediterranean Sea. PMID:22363565

  7. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures.

    PubMed

    Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun

    2011-01-30

    The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Torrejon AB, Madrid, Spain. revised uniform summary of surface weather observations (RUSSWO). parts a-f. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-03

    This report is a six-part statistical summary of surface weather observations for Torrejon AB, Madrid Spain. It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily amounts and extreme values); (C) Surface winds; (D) Ceiling Versus Visibility; Sky Cover; (E) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric summary of wet-bulb temperature depression versus dry-bulb temperature, means and standard deviations of dry-bulb, wet-bulb and dew-point temperatures and relative humidity); and (F) Pressure Summary (means, standard, deviations, and observation counts of station pressure and sea-level pressure). Data in thismore » report are presented in tabular form, in most cases in percentage frequency of occurrence or cumulative percentage frequency of occurrence tables.« less

  9. A root-mean-square approach for predicting fatigue crack growth under random loading

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.

    1981-01-01

    A method for predicting fatigue crack growth under random loading which employs the concept of Barsom (1976) is presented. In accordance with this method, the loading history for each specimen is analyzed to determine the root-mean-square maximum and minimum stresses, and the predictions are made by assuming the tests have been conducted under constant-amplitude loading at the root-mean-square maximum and minimum levels. The procedure requires a simple computer program and a desk-top computer. For the eleven predictions made, the ratios of the predicted lives to the test lives ranged from 2.13 to 0.82, which is a good result, considering that the normal scatter in the fatigue-crack-growth rates may range from a factor of two to four under identical loading conditions.

  10. 40 CFR 63.11563 - What are my monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and the following requirements: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum... procedures in the manufacturer's documentation; or (ii) By comparing the sensor output to redundant sensor...

  11. 40 CFR 63.11563 - What are my monitoring requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and the following requirements: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum... procedures in the manufacturer's documentation; or (ii) By comparing the sensor output to redundant sensor...

  12. 40 CFR 63.11563 - What are my monitoring requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and the following requirements: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum... procedures in the manufacturer's documentation; or (ii) By comparing the sensor output to redundant sensor...

  13. 40 CFR 63.11563 - What are my monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and the following requirements: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum... procedures in the manufacturer's documentation; or (ii) By comparing the sensor output to redundant sensor...

  14. 40 CFR 63.11563 - What are my monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and the following requirements: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum... procedures in the manufacturer's documentation; or (ii) By comparing the sensor output to redundant sensor...

  15. 46 CFR 148.51 - Temperature readings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Temperature readings. 148.51 Section 148.51 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.51 Temperature readings. When Subpart D of this part sets a temperature limit for loading or transporting a material, apply the...

  16. 46 CFR 148.51 - Temperature readings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Temperature readings. 148.51 Section 148.51 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.51 Temperature readings. When Subpart D of this part sets a temperature limit for loading or transporting a material, apply the...

  17. 46 CFR 148.51 - Temperature readings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Temperature readings. 148.51 Section 148.51 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.51 Temperature readings. When Subpart D of this part sets a temperature limit for loading or transporting a material, apply the...

  18. 46 CFR 148.51 - Temperature readings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Temperature readings. 148.51 Section 148.51 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.51 Temperature readings. When Subpart D of this part sets a temperature limit for loading or transporting a material, apply the...

  19. Water limitations to carbon exchange in old-growth and young ponderosa pine stands.

    PubMed

    Irvine, J; Law, B E; Anthoni, P M; Meinzer, F C

    2002-02-01

    We investigated the impact of seasonal soil water deficit on the processes driving net ecosystem exchange of carbon (NEE) in old-growth and recently regenerating ponderosa pine (Pinus ponderosa Doug. ex Laws.) stands in Oregon. We measured seasonal patterns of transpiration, canopy conductance and NEE, as well as soil water, soil temperature and soil respiration. The old-growth stand (O) included two primary age classes (50 and 250 years), had a leaf area index (LAI) of 2.1 and had never been logged. The recently regenerating stand (Y) consisted predominantly of 14-year-old ponderosa pine with an LAI of 1.0. Both stands experienced similar meteorological conditions with moderately cold wet winters and hot dry summers. By August, soil volumetric water content within the upper 30 cm had declined to a seasonal minimum of 0.07 at both sites. Between April and June, both stands showed similar rates of transpiration peaking at 0.96 mm day(-1); thereafter, trees at the Y site showed increasing drought stress with canopy stomatal resistance increasing 6-fold by mid-August relative to values for trees at the O site. Over the same period, predawn water potential (psi(pd)) of trees at the Y site declined from -0.54 to -1.24 MPa, whereas psi(pd) of trees at the O site remained greater than -0.8 MPa throughout the season. Soil respiration at the O site showed a strong seasonal correlation with soil temperature with no discernible constraints imposed by declining soil water. In contrast, soil respiration at the Y site peaked before seasonal maximal soil temperatures and declined thereafter with declining soil water. No pronounced seasonal pattern in daytime NEE was observed at either site between April and September. At the Y site this behavior was driven by concurrent soil water limitations on soil respiration and assimilation, whereas there was no evidence of seasonal soil water limitations on either process at the O site.

  20. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  1. 40 CFR 63.2269 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Locate the temperature sensor in a position that provides a representative temperature. (2) Use a temperature sensor with a minimum accuracy of 4 °F or 0.75 percent of the temperature value, whichever is... manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor...

  2. 40 CFR 63.2269 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Locate the temperature sensor in a position that provides a representative temperature. (2) Use a temperature sensor with a minimum accuracy of 4 °F or 0.75 percent of the temperature value, whichever is... manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor...

  3. 40 CFR 63.2269 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Locate the temperature sensor in a position that provides a representative temperature. (2) Use a temperature sensor with a minimum accuracy of 4 °F or 0.75 percent of the temperature value, whichever is... manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor...

  4. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions.

    PubMed

    Stachowicz, John J; Terwin, Jeffrey R; Whitlatch, Robert B; Osman, Richard W

    2002-11-26

    The spread of exotic species and climate change are among the most serious global environmental threats. Each independently causes considerable ecological damage, yet few data are available to assess whether changing climate might facilitate invasions by favoring introduced over native species. Here, we compare our long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature to assess the likely effect of climate change on the success and spread of introduced species. For the three most abundant introduced species of ascidian (sea squirt), the timing of the initiation of recruitment was strongly negatively correlated with winter water temperature, indicating that invaders arrived earlier in the season in years with warmer winters. Total recruitment of introduced species during the following summer also was positively correlated with winter water temperature. In contrast, the magnitude of native ascidian recruitment was negatively correlated with winter temperature (more recruitment in colder years) and the timing of native recruitment was unaffected. In manipulative laboratory experiments, two introduced compound ascidians grew faster than a native species, but only at temperatures near the maximum observed in summer. These data suggest that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means. By giving introduced species an earlier start, and increasing the magnitude of their growth and recruitment relative to natives, global warming may facilitate a shift to dominance by nonnative species, accelerating the homogenization of the global biota.

  5. Growth Inhibition and Morphological Alteration of Fusarium sporotrichioides by Mentha piperita Essential Oil

    PubMed Central

    Rachitha, P.; Krupashree, K.; Jayashree, G. V.; Gopalan, Natarajan; Khanum, Farhath

    2017-01-01

    Objective: The aim of this study is to determine the phytochemical composition, antifungal activity of Mentha piperita essential oil (MPE) against Fusarium sporotrichioides. Methods: The phytochemical composition was conducted by gas chromatography mass spectrometry (GC MS) analysis and mycelia growth inhibition was determined by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), the morphological characterization was observed by scanning electron microscopy. Finally, the membrane permeability was determined by the release of extracellular constituents, pH, and total lipid content. Result: In GC MS analysis, 22 metabolites were identified such as menthol, l menthone, pulegone, piperitone, caryophyllene, menthol acetate, etc. The antifungal activity against targeted pathogen, with MIC and MFC 500 μg/mL and 1000 μg/mL, respectively. The MPE altered the morphology of F. sporotrichoides hyphae with the loss of cytoplasm content and contorted the mycelia. The increasing concentration of MPE showed increase in membrane permeability of F. sporotrichoides as evidenced by the release of extracellular constituents and pH with the disruption of cell membrane indicating decrease in lipid content of F. sporotrichoides. Conclusion: The observed results showed that MPE exhibited promising new antifungal agent against Fusarium sporotrichioides. SUMMARY F. sporotrichioides, filamentous fungi contaminate to corn and corn--based productsF. sporotrichioides mainly responsible for the production of T-2 toxinPhytochemical composition was conducted by gas chromatography--mass spectrometry analysisMentha piperita essential oil (MPE) is commonly known as peppermintThe F. sporotrichioides growth was inhibited by MPE (minimum inhibitory concentration, minimum fungicidal concentration)Morphological observation by scanning electron microscope. Abbreviations Used: Cfu: Colony forming unit; DMSO: Dimethyl sulfoxide, °C: Degree celsius; F. Sporotrichoides: Fusarium sporotrichioides; EOs: Essential oils; M: Molar, g: Gram/gravity, mg: Milligram; μg: Microgram, ml: Milliliter; mm: Millimeter, min: Minutes; M. piperita: Mentha piperita, MIC: Minimum inhibitory concentration; MFC: Minimum fungicidal concentration; MAE: Mentha arvensis essential oil; Na2SO4: Sodium sulfate; pH: Potential Hydrogen; PDB: Potato Dextrose Broth; SEM: Scanning electron microscope PMID:28250658

  6. Effects of Post-Deposition Annealing on ZrO2/n-GaN MOS Capacitors with H2O and O3 as the Oxidizers.

    PubMed

    Zheng, Meijuan; Zhang, Guozhen; Wang, Xiao; Wan, Jiaxian; Wu, Hao; Liu, Chang

    2017-12-01

    GaN-based metal-oxide-semiconductor capacitors with ZrO 2 as the dielectric layer have been prepared by atomic layer deposition. The accumulation and depletion regions can be clearly distinguished when the voltage was swept from -4 to 4 V. Post-annealing results suggested that the capacitance in accumulation region went up gradually as the annealing temperature increased from 300 to 500 °C. A minimum leakage current density of 3 × 10 -9  A/cm 2 at 1 V was obtained when O 3 was used for the growth of ZrO 2 . Leakage analysis revealed that Schottky emission and Fowler-Nordheim tunneling were the main leakage mechanisms.

  7. Habitat use in irrigation channels by the golden venus chub (Hemigrammocypris rasborella) at different growth stages.

    PubMed

    Onikura, Norio; Nakajima, Jun; Kouno, Hiromi; Sugimoto, Yoshiko; Kaneto, Jun

    2009-06-01

    Ecological information on the golden venus chub (Hemigrammocypris rasborella Fowler, 1910) was collected during field surveys and used to analyze habitat use by this species at each growth stage. Surveys were conducted every month for approximately 2 years In an irrigation ditch near the Ushizu River, Kyushu Island, Japan. Based on the characteristic nuptial coloration of males, it was estimated that H. rasborella spawns between spring and summer. Size measurements of 2697 individuals indicated two size classes. The population of age class 1 decreased rapidly after the spawning period. On the basis of growth patterns, the life cycle of H. rasborella was classified into three stages: the growth stage (GS) of age class 0 fish from August to November, the no-growth stage (NGS) of age class 0 fish from December to March, and the growing and spawning stage (GSS) of age class 0 and 1 fish from April to August. Habitat use by GS, NGS, and GSS fish was analyzed with a stepwise multiple linear regression. The average number of fish was negatively correlated with the presence of a concrete revetment in the GS; positively and negatively correlated with minimum water depth and submerged plants, respectively, in the NGS; and positively correlated with maximum water temperature in the GSS. These results suggest that maintenance of the water level in the fallow season and not using concrete revetments are essential for the conservation of this species under the present conditions in Japanese rice fields.

  8. Reactive Power Compensation Method Considering Minimum Effective Reactive Power Reserve

    NASA Astrophysics Data System (ADS)

    Gong, Yiyu; Zhang, Kai; Pu, Zhang; Li, Xuenan; Zuo, Xianghong; Zhen, Jiao; Sudan, Teng

    2017-05-01

    According to the calculation model of minimum generator reactive power reserve of power system voltage stability under the premise of the guarantee, the reactive power management system with reactive power compensation combined generator, the formation of a multi-objective optimization problem, propose a reactive power reserve is considered the minimum generator reactive power compensation optimization method. This method through the improvement of the objective function and constraint conditions, when the system load growth, relying solely on reactive power generation system can not meet the requirement of safe operation, increase the reactive power reserve to solve the problem of minimum generator reactive power compensation in the case of load node.

  9. Elevated temperature creep and fracture properties of the 62Cu-35Au-3Ni braze alloy

    NASA Astrophysics Data System (ADS)

    Stephens, J. J.; Greulich, F. A.

    1995-06-01

    The Cu-Au-Ni braze alloys are used for metal/ceramic brazes in electronic assemblies because of their good wetting characteristics and low vapor pressure. We have studied the tensile creep properties of annealed 62Cu-35Au-3Ni alloy over the temperature range 250 °C to 750 °C. Two power-law equations have been developed for the minimum creep rate as a function of true stress and temperature. At the highest temperatures studied (650 °C and 750 °C), the minimum creep rate is well described with a stress exponent of 3.0, which can be rationalized in the context of Class I solid solution strengthening. The inverted shape of the creep curves observed at these temperatures is also consistent with Class I alloy behavior. At lower temperatures, power-law creep is well described with a stress exponent of 7.5, and normal three-stage creep curves are observed. Intergranular creep damage, along with minimum values of strain to fracture, is most apparent at 450 °C and 550 °C. The lower stress exponent in the Class I alloy regime helps to increase the strain to fracture at higher temperatures (650 °C and 750 °C). The minimum creep rate behavior of the 62Cu-35Au-3Ni alloy is also compared with those of the 74.2Cu-25. 8Au alloy and pure Cu. This comparison indicates that the 62Cu-35Au-3Ni has considerably higher creep strength than pure Cu. This fact suggests that the 62Cu-35Au-3Ni braze alloy can be used in low mismatch metal-to-ceramic braze joints such as Mo to metallized alumina ceramic with few problems. However, careful joint design may be essential for the use of this alloy in high thermal mismatch metal-to-ceramic braze joints.

  10. The Wait Calculation: The Broader Consequences of the Minimum Time from Now to Interstellar Destinations and its Significance to the Space Economy

    NASA Astrophysics Data System (ADS)

    Kennedy, A.

    This paper summarises the wait calculation [1] of interstellar voyagers which finds the minimum time to destination given exponential growth in the rate of travel available to a civilisation. The minimum time obliges stellar system colonisers to consider departure times a significant risk factor in their voyages since a departure then to a destination will beat a departure made at any other time before or after. Generalised conclusions will be drawn about the significant impact that departures to interstellar destinations before, at, or after the minimum time will have on the economic potential of missions and on the inevitability of competition between them. There will be no international law operating in interstellar space and an ability to escape predatory actions en route, or at the destination, can only be done by precise calculations of departure times. Social and economic forces affecting the factors in the growth equation are discussed with reference to the probability of accelerating growth reaching the technological Singularity and strengthening the growth incentive trap. Islamic banking practices are discussed as a credible alternative to compounding interest bearing paper for funding the space economy in the long term and for supporting stakeholder investment in such long term mission development. The paper considers the essential free productivity of the Earth's biosphere and the capital accumulations made possible by land productivity are essential components to a viable long term space economy and that research into re-creating the costless productivity of the biosphere at a destination will determine both the mission's ultimate success and provide means of returns for stakeholders during the long build up. Conclusions of these arguments suggest that the Icarus project should ignore a robotic interstellar mission concept and develop a manned colonising mission from now.

  11. Adaptive temperature-accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques G.

    2011-02-01

    We present three adaptive methods for optimizing the high temperature Thigh on-the-fly in temperature-accelerated dynamics (TAD) simulations. In all three methods, the high temperature is adjusted periodically in order to maximize the performance. While in the first two methods the adjustment depends on the number of observed events, the third method depends on the minimum activation barrier observed so far and requires an a priori knowledge of the optimal high temperature T^{opt}_{high}(E_a) as a function of the activation barrier Ea for each accepted event. In order to determine the functional form of T^{opt}_{high}(E_a), we have carried out extensive simulations of submonolayer annealing on the (100) surface for a variety of metals (Ag, Cu, Ni, Pd, and Au). While the results for all five metals are different, when they are scaled with the melting temperature Tm, we find that they all lie on a single scaling curve. Similar results have also been obtained for (111) surfaces although in this case the scaling function is slightly different. In order to test the performance of all three methods, we have also carried out adaptive TAD simulations of Ag/Ag(100) annealing and growth at T = 80 K and compared with fixed high-temperature TAD simulations for different values of Thigh. We find that the performance of all three adaptive methods is typically as good as or better than that obtained in fixed high-temperature TAD simulations carried out using the effective optimal fixed high temperature. In addition, we find that the final high temperatures obtained in our adaptive TAD simulations are very close to our results for T^{opt}_{high}(E_a). The applicability of the adaptive methods to a variety of TAD simulations is also briefly discussed.

  12. Seasonal temperature variation around the mesopause inferred from a VHF meteor radar at King Sejong Station (62S, 59W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Yongha; Kim, Jeong-Han; Lee, Changsup; Jee, Gun-Hwa

    A VHF meteor radar, installed at King Sejong Station in March, 2007, has been detecting echoes from more than 20,000 meteors per day. Meteor echoes are decayed typically within seconds as meteors spread away by atmospheric diffusion. The diffusion coefficients can thus be obtained from decay times of meteor echo signals, providing with information on the atmospheric temperatures and pressures at meteor altitudes from 70 to 100 km. In this study, we present altitude profiles of 15-min averaged diffusion coefficients in each month, which clearly show a minimum at 80 - 85 km. The minimum appears at higher altitude during austral summer than winter, and seems to be near the lower level of two temperature minimum structure around the mesopause seen by TIMED/SABER data at high latitudes. The higher mesopause level (95-100 km) of the SABER data does not appear in our diffusion profiles probably because it is too close the limit of meaningful diffusion coefficients that can be derived from meteor decay detection. In order to understand temperature variation around the mesopause more directly, we will discuss various methods to extract temperature profiles from the diffusion profiles. We will also present monthly averaged OH and O2 airglow temperatures observed at the same site, and compare them with those derived from the meteor radar observation.

  13. Microwave ovens and food safety: preparation of Not-Ready-to-Eat products in standard and smart ovens.

    PubMed

    Schiffmann, Robert F

    2013-01-01

    The introduction of several Not-Ready-to-Eat (NRTE) products, beginning in 2007, has resulted in several recalls and has caused serious concerns about their safe-cooking in microwave ovens. These products are not fully-thermally processed prior to sale but depend upon the consumer to finish cooking them to the safe minimum temperatures, defined by the USDA, in order to destroy any sources of foodborne illnesses. While microwave ovens are a primary means of this finish-cooking step, they are known to cook foods unevenly in terms of temperature distribution, especially from a frozen state, and this may cause parts of the food to be below the required safe-temperature. Hence there are concerns regarding how reliably microwave ovens can provide the minimum required safe temperatures in order to avoid the possibility of foodborne illnesses. To determine this, temperature profiling tests were preformed upon three frozen NRTE entrées, heating them in eight new brand-name 1100-watt and 1200-watt microwave ovens in order to evaluate how well the minimum temperatures were reached throughout the products. By comparison, these same tests were repeated using three "smart" microwave ovens in which internal computer-control makes them user-independent. In addition, a comparison was also made of the microwave output power claimed by the manufacturers of these ovens to that determined using the IEC procedures.

  14. Optimization of HTST process parameters for production of ready-to-eat potato-soy snack.

    PubMed

    Nath, A; Chattopadhyay, P K; Majumdar, G C

    2012-08-01

    Ready-to-eat (RTE) potato-soy snacks were developed using high temperature short time (HTST) air puffing process and the process was found to be very useful for production of highly porous and light texture snack. The process parameters considered viz. puffing temperature (185-255 °C) and puffing time (20-60 s) with constant initial moisture content of 36.74% and air velocity of 3.99 m.s(-1) for potato-soy blend with varying soy flour content from 5% to 25% were investigated using response surface methodology following central composite rotatable design (CCRD). The optimum product in terms of minimum moisture content (11.03% db), maximum expansion ratio (3.71), minimum hardness (2,749.4 g), minimum ascorbic acid loss (9.24% db) and maximum overall acceptability (7.35) were obtained with 10.0% soy flour blend in potato flour at the process conditions of puffing temperature (231.0 °C) and puffing time (25.0 s).

  15. Stellar model chromospheres. III - Arcturus /K2 III/

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Linsky, J. L.

    1975-01-01

    Models are constructed for the upper photosphere and chromosphere of Arcturus based on the H, K, and IR triplet lines of Ca II and the h and k lines of Mg II. The chromosphere model is derived from complete redistribution solutions for a five-level Ca II ion and a two-level Mg II ion. A photospheric model is derived from the Ca II wings using first the 'traditional' complete-redistribution limit and then the more realistic partial-redistribution approximation. The temperature and mass column densities for the temperature-minimum region and the chromosphere-transition region boundary are computed, and the pressure in the transition region and corona are estimated. It is found that the ratio of minimum temperature to effective temperature is approximately 0.77 for Arcturus, Procyon, and the sun, and that mass tends to increase at the temperature minimum with decreasing gravity. The pressure is found to be about 1 percent of the solar value, and the surface brightness of the Arcturus transition region and coronal spectrum is estimated to be much less than for the sun. The partial-redistribution calculation for the Ca II K line indicates that the emission width is at least partially determined by damping rather than Doppler broadening, suggesting a reexamination of previous explanations for the Wilson-Bappu effect.

  16. Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.

    PubMed

    Fuentes-Azcatl, Raúl; Alejandre, José

    2014-02-06

    The static dielectric constant at room temperature and the temperature of maximum density are used as target properties to develop, by molecular dynamics simulations, the TIP4P/ε force field of water. The TIP4P parameters are used as a starting point. The key step, to determine simultaneously both properties, is to perform simulations at 240 K where a molecular dipole moment of minimum density is found. The minimum is shifted to larger values of μ as the distance between the oxygen atom and site M, lOM, decreases. First, the parameters that define the dipole moment are adjusted to reproduce the experimental dielectric constant and then the Lennard-Jones parameters are varied to match the temperature of maximum density. The minimum on density at 240 K allows understanding why reported TIP4P models fail to reproduce the temperature of maximum density, the dielectric constant, or both properties. The new model reproduces some of the thermodynamic and transport anomalies of water. Additionally, the dielectric constant, thermodynamics, and dynamical and structural properties at different temperatures and pressures are in excellent agreement with experimental data. The computational cost of the new model is the same as that of the TIP4P.

  17. Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis).

    PubMed

    Brown, Kelly J; Downs, Colleen T

    2006-01-01

    Rock hyrax (Procavia capensis) are faced with large daily fluctuations in ambient temperature during summer and winter. In this study, peritoneal body temperature of free-living rock hyrax was investigated. During winter, when low ambient temperatures and food supply prevail, rock hyrax maintained a lower core body temperature relative to summer. In winter body temperatures during the day were more variable than at night. This daytime variability is likely a result of body temperatures being raised from basking in the sun. Body temperatures recorded during winter never fell to low levels recorded in previous laboratory studies. During summer ambient temperatures exceeded the thermoneutral zone of the rock hyrax throughout most of the day, while crevice temperatures remained within the thermoneutral zone of rock hyrax. However, in summer variation in core body temperature was small. Minimum and maximum body temperatures did not coincide with minimum and maximum ambient temperatures. Constant body temperatures were also recorded when ambient temperatures reached lethal limits. During summer it is likely that rock hyrax select cooler refugia to escape lethal temperatures and to prevent excessive water loss. Body temperature of rock hyrax recorded in this study reflects the adaptability of this animal to the wide range of ambient temperatures experienced in its natural environment.

  18. Summer weather characteristics and periodicity observed over the period 1888-2013 in the region of Belgrade, Serbia

    NASA Astrophysics Data System (ADS)

    Vujović, Dragana; Todorović, Nedeljko; Paskota, Mira

    2018-04-01

    With the goal of finding summer climate patterns in the region of Belgrade (Serbia) over the period 1888-2013, different techniques of multivariate statistical analysis were used in order to analyze the simultaneous changes of a number of climatologic parameters. An increasing trend of the mean daily minimum temperature was detected. In the recent decades (1960-2013), this increase was much more pronounced. The number of days with the daily minimum temperature greater or equal to 20 °C also increased significantly. Precipitation had no statistically significant trend. Spectral analysis showed a repetitive nature of the climatologic parameters which had periods that roughly can be classified into three groups, with the durations of the following: (1) 6 to 7 years, (2) 10 to 18 years, and (3) 21, 31, and 41 years. The temperature variables mainly had one period of repetitiveness of 5 to 7 years. Among other variables, the correlations of regional fluctuations of the temperature and precipitation and atmospheric circulation indices were analyzed. The North Atlantic oscillation index had the same periodicity as that of the precipitation, and it was not correlated to the temperature variables. Atlantic multidecadal oscillation index correlated well to the summer mean daily minimum and summer mean temperatures. The underlying structure of the data was analyzed by principal component analysis, which detected the following four easily interpreted dimensions: More sunshine-Higher temperature, Precipitation, Extreme heats, and Changeable summer.

  19. Solar wind velocity and temperature in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1994-01-01

    At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.

  20. Carbon isotopes from fossil packrat pellets and elevational movements of Utah agave plants reveal the Younger Dryas cold period in Grand Canyon, Arizona

    USGS Publications Warehouse

    Cole, K.L.; Arundel, S.T.

    2005-01-01

    Carbon isotopes in rodent fecal pellets were measured on packrat (Neotoma spp.) middens from the Grand Canyon, Arizona. The pellet samples reflect the abundance of cold-intolerant C4 and Crassulacean acid metabolism (CAM) plant species relative to the predominant C3 vegetation in the packrat diet. The temporal sequence of isotopic results suggests a temperature decline followed by a sharp increase corresponding to the B??lling/Aller??d-Younger Dryas - early Holocene sequence. This pattern was then tested using the past distribution of Utah agave (Agave utahensis). Spatial analyses of the range of this temperature-sensitive CAM species demonstrate that its upper elevational limit is controlled by winter minimum temperature. Applying this paleotemperature proxy to the past elevational limits of Utah agave suggests that minimum winter temperatures were ???8??C below modern values during the Last Glacial Maximum, 4.5-6.5 ??C below modern during the B??lling/Aller??d, and 7.5-8.7 ??C below modern during the early Younger Dryas. As the Younger Dryas terminated, temperatures warmed ???4 ??C between ca. 11.8 ka and 11.5 ka. These extreme fluctuations in winter minimum temperature have not been generally accepted for terrestrial paleoecological records from the arid southwestern United States, likely because of large statistical uncertainties of older radiocarbon results and reliance on proxies for summer temperatures, which were less affected. ?? 2005 Geological Society of America.

  1. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data

    PubMed Central

    Yang, Bao; He, Minhui; Shishov, Vladimir; Tychkov, Ivan; Vaganov, Eugene; Rossi, Sergio; Ljungqvist, Fredrik Charpentier; Bräuning, Achim; Grießinger, Jussi

    2017-01-01

    Phenological responses of vegetation to climate, in particular to the ongoing warming trend, have received much attention. However, divergent results from the analyses of remote sensing data have been obtained for the Tibetan Plateau (TP), the world’s largest high-elevation region. This study provides a perspective on vegetation phenology shifts during 1960–2014, gained using an innovative approach based on a well-validated, process-based, tree-ring growth model that is independent of temporal changes in technical properties and image quality of remote sensing products. Twenty composite site chronologies were analyzed, comprising about 3,000 trees from forested areas across the TP. We found that the start of the growing season (SOS) has advanced, on average, by 0.28 d/y over the period 1960–2014. The end of the growing season (EOS) has been delayed, by an estimated 0.33 d/y during 1982–2014. No significant changes in SOS or EOS were observed during 1960–1981. April–June and August–September minimum temperatures are the main climatic drivers for SOS and EOS, respectively. An increase of 1 °C in April–June minimum temperature shifted the dates of xylem phenology by 6 to 7 d, lengthening the period of tree-ring formation. This study extends the chronology of TP phenology farther back in time and reconciles the disparate views on SOS derived from remote sensing data. Scaling up this analysis may improve understanding of climate change effects and related phenological and plant productivity on a global scale. PMID:28630302

  2. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data

    NASA Astrophysics Data System (ADS)

    Yang, Bao; He, Minhui; Shishov, Vladimir; Tychkov, Ivan; Vaganov, Eugene; Rossi, Sergio; Charpentier Ljungqvist, Fredrik; Bräuning, Achim; Grießinger, Jussi

    2017-07-01

    Phenological responses of vegetation to climate, in particular to the ongoing warming trend, have received much attention. However, divergent results from the analyses of remote sensing data have been obtained for the Tibetan Plateau (TP), the world’s largest high-elevation region. This study provides a perspective on vegetation phenology shifts during 1960-2014, gained using an innovative approach based on a well-validated, process-based, tree-ring growth model that is independent of temporal changes in technical properties and image quality of remote sensing products. Twenty composite site chronologies were analyzed, comprising about 3,000 trees from forested areas across the TP. We found that the start of the growing season (SOS) has advanced, on average, by 0.28 d/y over the period 1960-2014. The end of the growing season (EOS) has been delayed, by an estimated 0.33 d/y during 1982-2014. No significant changes in SOS or EOS were observed during 1960-1981. April-June and August-September minimum temperatures are the main climatic drivers for SOS and EOS, respectively. An increase of 1 °C in April-June minimum temperature shifted the dates of xylem phenology by 6 to 7 d, lengthening the period of tree-ring formation. This study extends the chronology of TP phenology farther back in time and reconciles the disparate views on SOS derived from remote sensing data. Scaling up this analysis may improve understanding of climate change effects and related phenological and plant productivity on a global scale.

  3. Cupriavidus metallidurans biomineralization ability and its application as a bioconsolidation enhancer for ornamental marble stone.

    PubMed

    Daskalakis, Markos I; Magoulas, Antonis; Kotoulas, Georgios; Katsikis, Ioannis; Bakolas, Asterios; Karageorgis, Aristomenis P; Mavridou, Athena; Doulia, Danae; Rigas, Fotis

    2014-08-01

    Bacterially induced calcium carbonate precipitation of a Cupriavidus metallidurans isolate was investigated to develop an environmentally friendly method for restoration and preservation of ornamental stones. Biomineralization performance was carried out in a growth medium via a Design of Experiments (DoE) approach using, as design factors, the temperature, growth medium concentration, and inoculum concentration. The optimum conditions were determined with the aid of consecutive experiments based on response surface methodology (RSM) and were successfully validated thereafter. Statistical analysis can be utilized as a tool for screening bacterial bioprecipitation as it considerably reduced the experimental time and effort needed for bacterial evaluation. Analytical methods provided an insight to the biomineral characteristics, and sonication tests proved that our isolate could create a solid new layer of vaterite on marble substrate withstanding sonication forces. C. metallidurans ACA-DC 4073 provided a compact vaterite layer on the marble substrate with morphological characteristics that assisted in its differentiation. The latter proved valuable during spraying minimum amount of inoculated media on marble substrate under conditions close to an in situ application. A sufficient and clearly distinguishable layer was identified.

  4. Physical Mechanisms of Glaze Ice Scallop Formations on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Reshotko, Eli

    1998-01-01

    An experiment was conducted to understand the physical mechanisms that lead to the formation of scallops on swept wings. Icing runs were performed on a NACA 0012 swept wing tip at 45 deg, 30 deg, and 15 deg sweep angles. A baseline case was chosen and direct measurements of scallop height and spacing, castings, video data and close-up photographic data were obtained. The results showed the scallops are made of glaze ice feathers that grow from roughness elements that have reached a minimum height and are located beyond a given distance from the attachment line. This distance depends on tunnel conditions and sweep angle, and is the critical parameter in the formation of scallops. It determines if complete scallops, incomplete scallops or no scallops are going to be formed. The mechanisms of growth for complete and incomplete scallops were identified. The effect of velocity, temperature and LWC on scallop formation was studied. The possibility that cross flow instability may be the physical mechanism that triggers the growth of roughness elements into glaze ice feathers is examined.

  5. Comparative production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    USDA-ARS?s Scientific Manuscript database

    The effect of daily minimum dissolved oxygen concentration on growth and yield (kg/ha) of the channel catfish (Ictalurus punctatus) and the channel x blue hybrid catfish (I. punctatus female x I. furcatus male), which shared the Jubilee strain of channel catfish as the maternal parent, was evaluated...

  6. Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.

    NASA Astrophysics Data System (ADS)

    Yang, H. W.; Ouarda, T.

    2015-12-01

    This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.

  7. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai−Tibetan Plateau

    PubMed Central

    Wang, Bin; Jin, Haiyan; Li, Qi; Chen, Dongdong; Zhao, Liang; Tang, Yanhong; Kato, Tomomichi; Gu, Song

    2017-01-01

    Carbon dioxide (CO2) exchange between the atmosphere and grassland ecosystems is very important for the global carbon balance. To assess the CO2 flux and its relationship to environmental factors, the eddy covariance method was used to evaluate the diurnal cycle and seasonal pattern of the net ecosystem CO2 exchange (NEE) of a cultivated pasture in the Three-River Source Region (TRSR) on the Qinghai−Tibetan Plateau from January 1 to December 31, 2008. The diurnal variations in the NEE and ecosystem respiration (Re) during the growing season exhibited single-peak patterns, the maximum and minimum CO2 uptake observed during the noon hours and night; and the maximum and minimum Re took place in the afternoon and early morning, respectively. The minimum hourly NEE rate and the maximum hourly Re rate were −7.89 and 5.03 μmol CO2 m−2 s−1, respectively. The NEE and Re showed clear seasonal variations, with lower values in winter and higher values in the peak growth period. The highest daily values for C uptake and Re were observed on August 12 (−2.91 g C m−2 d−1) and July 28 (5.04 g C m−2 day−1), respectively. The annual total NEE and Re were −140.01 and 403.57 g C m−2 year−1, respectively. The apparent quantum yield (α) was −0.0275 μmol μmol−1 for the entire growing period, and the α values for the pasture’s light response curve varied with the leaf area index (LAI), air temperature (Ta), soil water content (SWC) and vapor pressure deficit (VPD). Piecewise regression results indicated that the optimum Ta and VPD for the daytime NEE were 14.1°C and 0.65 kPa, respectively. The daytime NEE decreased with increasing SWC, and the temperature sensitivity of respiration (Q10) was 3.0 during the growing season, which was controlled by the SWC conditions. Path analysis suggested that the soil temperature at a depth of 5 cm (Tsoil) was the most important environmental factor affecting daily variations in NEE during the growing season, and the photosynthetic photon flux density (PPFD) was the major limiting factor for this cultivated pasture. PMID:28129406

  8. 40 CFR 1060.240 - How do I demonstrate that my emission family complies with evaporative emission standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vibration or changing temperature. The canister must have a minimum working capacity as follows: (i) You may... whole carbon bed. The carbon must have a minimum carbon working capacity of 90 grams per liter. (f) We...

  9. 40 CFR 1060.240 - How do I demonstrate that my emission family complies with evaporative emission standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vibration or changing temperature. The canister must have a minimum working capacity as follows: (i) You may... whole carbon bed. The carbon must have a minimum carbon working capacity of 90 grams per liter. (f) We...

  10. 40 CFR 1060.240 - How do I demonstrate that my emission family complies with evaporative emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vibration or changing temperature. The canister must have a minimum working capacity as follows: (i) You may... whole carbon bed. The carbon must have a minimum carbon working capacity of 90 grams per liter. (f) We...

  11. 40 CFR 1060.240 - How do I demonstrate that my emission family complies with evaporative emission standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vibration or changing temperature. The canister must have a minimum working capacity as follows: (i) You may... whole carbon bed. The carbon must have a minimum carbon working capacity of 90 grams per liter. (f) We...

  12. High Tensile Strength Amalgams for In-Space Repair and Fabrication

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2005-01-01

    Amalgams are defined as an alloy of mercury with one or more other metals. These, along with those based on gallium (also liquid at near room temperature), are widely used in dental practice as a tooth filling material. Amalgams have a number of useful attributes that indude room temperature compounding. corrosion resistance, dimensional stability, and good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits their applications. The work presented here demonstrates how, by modifying particle geometry, the tensile strength of amalgams can be increased and thus extending the range of potential applications. This is relevant to, for example, the freeform fabrication of replacement parts that might be necessary during an extended space mission. Advantages, i.e. Figures-of-Merit. include the ability to produce complex parts, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption.

  13. The association of remotely-sensed outdoor temperature with blood pressure levels in REGARDS: a cross-sectional study of a large, national cohort of African-American and white participants

    PubMed Central

    2011-01-01

    Background Evidence is mounting regarding the clinically significant effect of temperature on blood pressure. Methods In this cross-sectional study the authors obtained minimum and maximum temperatures and their respective previous week variances at the geographic locations of the self-reported residences of 26,018 participants from a national cohort of blacks and whites, aged 45+. Linear regression of data from 20,623 participants was used in final multivariable models to determine if these temperature measures were associated with levels of systolic or diastolic blood pressure, and whether these relations were modified by stroke-risk region, race, education, income, sex hypertensive medication status, or age. Results After adjustment for confounders, same-day maximum temperatures 20°F lower had significant associations with 1.4 mmHg (95% CI: 1.0, 1.9) higher systolic and 0.5 mmHg (95% CI: 0.3, 0.8) higher diastolic blood pressures. Same-day minimum temperatures 20°F lower had a significant association with 0.7 mmHg (95% CI: 0.3, 1.0) higher systolic blood pressures but no significant association with diastolic blood pressure differences. Maximum and minimum previous-week temperature variabilities showed significant but weak relationships with blood pressures. Parameter estimates showed effect modification of negligible magnitude. Conclusions This study found significant associations between outdoor temperature and blood pressure levels, which remained after adjustment for various confounders including season. This relationship showed negligible effect modification. PMID:21247466

  14. Development of minimum state requirements for local growth management policies - phase 1 : [tech summary].

    DOT National Transportation Integrated Search

    2015-12-01

    Growth in and around many urban areas in Louisiana is not consistently managed or planned. This can negatively impact state : and local governments ability to meet current and future demand for transportation infrastructure, particularly with resp...

  15. Development of Minimum State Requirements for Local Growth Policies : Research Project Capsule

    DOT National Transportation Integrated Search

    2012-10-01

    In Louisiana, growth in and : around many urban areas is : neither planned nor : managed. State and local : government agencies : simply react to what has occurred and attempt to catch up with the necessary : infrastructure. In other words, governmen...

  16. A comparison of fisheries biological reference points estimated from temperature-specific multi-species and single-species climate-enhanced stock assessment models

    NASA Astrophysics Data System (ADS)

    Holsman, Kirstin K.; Ianelli, James; Aydin, Kerim; Punt, André E.; Moffitt, Elizabeth A.

    2016-12-01

    Multi-species statistical catch at age models (MSCAA) can quantify interacting effects of climate and fisheries harvest on species populations, and evaluate management trade-offs for fisheries that target several species in a food web. We modified an existing MSCAA model to include temperature-specific growth and predation rates and applied the modified model to three fish species, walleye pollock (Gadus chalcogrammus), Pacific cod (Gadus macrocephalus) and arrowtooth flounder (Atheresthes stomias), from the eastern Bering Sea (USA). We fit the model to data from 1979 through 2012, with and without trophic interactions and temperature effects, and use projections to derive single- and multi-species biological reference points (BRP and MBRP, respectively) for fisheries management. The multi-species model achieved a higher over-all goodness of fit to the data (i.e. lower negative log-likelihood) for pollock and Pacific cod. Variability from water temperature typically resulted in 5-15% changes in spawning, survey, and total biomasses, but did not strongly impact recruitment estimates or mortality. Despite this, inclusion of temperature in projections did have a strong effect on BRPs, including recommended yield, which were higher in single-species models for Pacific cod and arrowtooth flounder that included temperature compared to the same models without temperature effects. While the temperature-driven multi-species model resulted in higher yield MBPRs for arrowtooth flounder than the same model without temperature, we did not observe the same patterns in multi-species models for pollock and Pacific cod, where variability between harvest scenarios and predation greatly exceeded temperature-driven variability in yield MBRPs. Annual predation on juvenile pollock (primarily cannibalism) in the multi-species model was 2-5 times the annual harvest of adult fish in the system, thus predation represents a strong control on population dynamics that exceeds temperature-driven changes to growth and is attenuated through harvest-driven reductions in predator populations. Additionally, although we observed differences in spawning biomasses at the accepted biological catch (ABC) proxy between harvest scenarios and single- and multi-species models, discrepancies in spawning stock biomass estimates did not translate to large differences in yield. We found that multi-species models produced higher estimates of combined yield for aggregate maximum sustainable yield (MSY) targets than single species models, but were more conservative than single-species models when individual MSY targets were used, with the exception of scenarios where minimum biomass thresholds were imposed. Collectively our results suggest that climate and trophic drivers can interact to affect MBRPs, but for prey species with high predation rates, trophic- and management-driven changes may exceed direct effects of temperature on growth and predation. Additionally, MBRPs are not inherently more conservative than single-species BRPs. This framework provides a basis for the application of MSCAA models for tactical ecosystem-based fisheries management decisions under changing climate conditions.

  17. 46 CFR 54.05-6 - Toughness test temperatures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except that...

  18. 46 CFR 54.05-6 - Toughness test temperatures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except that...

  19. 46 CFR 54.05-6 - Toughness test temperatures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except that...

  20. 46 CFR 54.05-6 - Toughness test temperatures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except that...

  1. Population demographics and genetic diversity in remnant and translocated populations of sea otters

    USGS Publications Warehouse

    Bodkin, James L.; Ballachey, Brenda E.; Cronin, M.A.; Scribner, K.T.

    1999-01-01

    The effects of small population size on genetic diversity and subsequent population recovery are theoretically predicted, but few empirical data are available to describe those relations. We use data from four remnant and three translocated sea otter (Enhydra lutris) populations to examine relations among magnitude and duration of minimum population size, population growth rates, and genetic variation. Metochondrial (mt)DNA haplotype diversity was correlated with the number of years at minimum population size (r = -0.741, p = 0.038) and minimum population size (r = 0.709, p = 0.054). We found no relation between population growth and haplotype diversity, altough growth was significantly greater in translocated than in remnant populations. Haplotype diversity in populations established from two sources was higher than in a population established from a single source and was higher than in the respective source populations. Haplotype frequencies in translocated populations of founding sizes of 4 and 28 differed from expected, indicating genetic drift and differential reproduction between source populations, whereas haplotype frequencies in a translocated population with a founding size of 150 did not. Relations between population demographics and genetic characteristics suggest that genetic sampling of source and translocated populations can provide valuable inferences about translocations.

  2. MOCVD Growth and Characterization of n-type Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Ben-Yaacov, Tammy

    In the past decade, there has been widespread effort in the development of zinc oxide as a II-V1 semiconductor material. ZnO has potential advantages in optoelectronip device applications due to its unique electrical and optical properties. What stands out among these properties is its wide direct bandgap of 3.37 eV and its high electrical conductivity and transparency in the visible and near-UV regions of the spectrum. ZnO can be grown heteroepitaxially on GaN under near lattice-matched conditions and homoepitaxially as well, as high-quality bulk ZnO substrates are commercially available. This dissertation focuses on the development of the growth of high-quality, single crystal n-type ZnO films, control of n-type conductivity, as well as its application as a transparent contact material in GaN-based devices. The first part of this dissertation is an extensive heteroepitaxial and homoepitaxial growth study presenting the properties of ZnO(0001) layers grown on GaN(0001) templates and ZnO(0001) substrates. We show that deposition on GaN requires a two-step growth technique involving the growth of a low temperature nucleation layer before growing a high temperature epitaxial layer in order to obtain smooth ZnO films with excellent crystal quality and step-flow surface morphology. We obtained homoepitaxial ZnO(0001) films of structural quality and surface morphology that is comparable to the as-received substrates, and showed that a high growth temperature (≥1000°C) is needed in order to achieve step-flow growth mode. We performed n-type doping experiments, and established the conditions for which Indium effectively controls the n-type conductivity of ZnO films grown on GaN(0001) templates. A peak carrier concentration of 3.22x 10 19cm-3 and minimum sheet resistance of 97 O/square was achieved, while simultaneously maintaining good morphology and crystal quality. Finally, we present In-doped ZnO films implemented as p-contacts for GaN-based solar cells and LEDs, and we investigate the n-ZnO/p-GaN interface. We show that ZnO has potential as an effective p-contact for these devices, and determine properties that still need improvement in order for ZnO to compete with other contact materials. We also compare the device performance to metal-contacted devices. In summary, this thesis describes the growth of ZnO(0001) films by MOCVD, the progress in developing ZnO material with excellent surface morphology, high crystal quality, and controllable n-type doping, as well as its application to GaN-based optoelectronic devices as a p-contact material.

  3. Modeling Seasonal Influenza Transmission and Its Association with Climate Factors in Thailand Using Time-Series and ARIMAX Analyses.

    PubMed

    Chadsuthi, Sudarat; Iamsirithaworn, Sopon; Triampo, Wannapong; Modchang, Charin

    2015-01-01

    Influenza is a worldwide respiratory infectious disease that easily spreads from one person to another. Previous research has found that the influenza transmission process is often associated with climate variables. In this study, we used autocorrelation and partial autocorrelation plots to determine the appropriate autoregressive integrated moving average (ARIMA) model for influenza transmission in the central and southern regions of Thailand. The relationships between reported influenza cases and the climate data, such as the amount of rainfall, average temperature, average maximum relative humidity, average minimum relative humidity, and average relative humidity, were evaluated using cross-correlation function. Based on the available data of suspected influenza cases and climate variables, the most appropriate ARIMA(X) model for each region was obtained. We found that the average temperature correlated with influenza cases in both central and southern regions, but average minimum relative humidity played an important role only in the southern region. The ARIMAX model that includes the average temperature with a 4-month lag and the minimum relative humidity with a 2-month lag is the appropriate model for the central region, whereas including the minimum relative humidity with a 4-month lag results in the best model for the southern region.

  4. Performance seeking control: Program overview and future directions

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1993-01-01

    A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.

  5. Polar Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.

    2010-01-01

    Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approximately 250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.

  6. Land use/land cover change effects on temperature trends at U.S. Climate Normals stations

    USGS Publications Warehouse

    Hale, R.C.; Gallo, K.P.; Owen, T.W.; Loveland, Thomas R.

    2006-01-01

    Alterations in land use/land cover (LULC) in areas near meteorological observation stations can influence the measurement of climatological variables such as temperature. Urbanization near climate stations has been the focus of considerable research attention, however conversions between non-urban LULC classes may also have an impact. In this study, trends of minimum, maximum, and average temperature at 366 U.S. Climate Normals stations are analyzed based on changes in LULC defined by the U.S. Land Cover Trends Project. Results indicate relatively few significant temperature trends before periods of greatest LULC change, and these are generally evenly divided between warming and cooling trends. In contrast, after the period of greatest LULC change was observed, 95% of the stations that exhibited significant trends (minimum, maximum, or mean temperature) displayed warming trends. Copyriht 2006 by the American Geophysical Union.

  7. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  8. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: development and validation of new methods for Mexico. Part I: humidity

    NASA Astrophysics Data System (ADS)

    Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.

    2017-07-01

    This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.

  9. Prediction of the thermal imaging minimum resolvable (circle) temperature difference with neural network application.

    PubMed

    Fang, Yi-Chin; Wu, Bo-Wen

    2008-12-01

    Thermal imaging is an important technology in both national defense and the private sector. An advantage of thermal imaging is its ability to be deployed while fully engaged in duties, not limited by weather or the brightness of indoor or outdoor conditions. However, in an outdoor environment, many factors, including atmospheric decay, target shape, great distance, fog, temperature out of range and diffraction limits can lead to bad image formation, which directly affects the accuracy of object recognition. The visual characteristics of the human eye mean that it has a much better capacity for picture recognition under normal conditions than artificial intelligence does. However, conditions of interference significantly reduce this capacity for picture recognition for instance, fatigue impairs human eyesight. Hence, psychological and physiological factors can affect the result when the human eye is adopted to measure MRTD (minimum resolvable temperature difference) and MRCTD (minimum resolvable circle temperature difference). This study explores thermal imaging recognition, and presents a method for effectively choosing the characteristic values and processing the images fully. Neural network technology is successfully applied to recognize thermal imaging and predict MRTD and MRCTD (Appendix A), exceeding thermal imaging recognition under fatigue and the limits of the human eye.

  10. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria.

    PubMed

    Taylor, Anne E; Giguere, Andrew T; Zoebelein, Conor M; Myrold, David D; Bottomley, Peter J

    2017-04-01

    Soil nitrification potential (NP) activities of ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) were evaluated across a temperature gradient (4-42 °C) imposed upon eight soils from four different sites in Oregon and modeled with both the macromolecular rate theory and the square root growth models to quantify the thermodynamic responses. There were significant differences in response by the dominant AOA and AOB contributing to the NPs. The optimal temperatures (T opt ) for AOA- and AOB-supported NPs were significantly different (P<0.001), with AOA having T opt >12 °C greater than AOB. The change in heat capacity associated with the temperature dependence of nitrification (ΔC P ‡ ) was correlated with T opt across the eight soils, and the ΔC P ‡ of AOB activity was significantly more negative than that of AOA activity (P<0.01). Model results predicted, and confirmatory experiments showed, a significantly lower minimum temperature (T min ) and different, albeit very similar, maximum temperature (T max ) values for AOB than for AOA activity. The results also suggested that there may be different forms of AOA AMO that are active over different temperature ranges with different T min , but no evidence of multiple T min values within the AOB. Fundamental differences in temperature-influenced properties of nitrification driven by AOA and AOB provides support for the idea that the biochemical processes associated with NH 3 oxidation in AOA and AOB differ thermodynamically from each other, and that also might account for the difficulties encountered in attempting to model the response of nitrification to temperature change in soil environments.

  11. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria

    PubMed Central

    Taylor, Anne E; Giguere, Andrew T; Zoebelein, Conor M; Myrold, David D; Bottomley, Peter J

    2017-01-01

    Soil nitrification potential (NP) activities of ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) were evaluated across a temperature gradient (4–42 °C) imposed upon eight soils from four different sites in Oregon and modeled with both the macromolecular rate theory and the square root growth models to quantify the thermodynamic responses. There were significant differences in response by the dominant AOA and AOB contributing to the NPs. The optimal temperatures (Topt) for AOA- and AOB-supported NPs were significantly different (P<0.001), with AOA having Topt>12 °C greater than AOB. The change in heat capacity associated with the temperature dependence of nitrification (ΔCP‡) was correlated with Topt across the eight soils, and the ΔCP‡ of AOB activity was significantly more negative than that of AOA activity (P<0.01). Model results predicted, and confirmatory experiments showed, a significantly lower minimum temperature (Tmin) and different, albeit very similar, maximum temperature (Tmax) values for AOB than for AOA activity. The results also suggested that there may be different forms of AOA AMO that are active over different temperature ranges with different Tmin, but no evidence of multiple Tmin values within the AOB. Fundamental differences in temperature-influenced properties of nitrification driven by AOA and AOB provides support for the idea that the biochemical processes associated with NH3 oxidation in AOA and AOB differ thermodynamically from each other, and that also might account for the difficulties encountered in attempting to model the response of nitrification to temperature change in soil environments. PMID:27996979

  12. Amphibole and Phlogopite Formation on the R Chondrite Parent Body: An Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Lunning, N. G.; Waters, L. E.; McCoy, T. J.

    2017-07-01

    High-temperature hydrated minerals can form at the pressures and the temperatures expected for the interiors of planetesimals. Under water-saturated conditions, minimum silicate melting can initiate at temperatures as low as 870°C at 40 MPa.

  13. Variations in growth, survival and carbon isotope composition (delta(13)C) among Pinus pinaster populations of different geographic origins.

    PubMed

    Correia, Isabel; Almeida, Maria Helena; Aguiar, Alexandre; Alía, Ricardo; David, Teresa Soares; Pereira, João Santos

    2008-10-01

    To evaluate differences in growth and adaptability of maritime pine (Pinus pinaster Ait.), we studied growth, polycyclism, needle tissue carbon isotope composition (delta(13)C) as an estimate of water-use efficiency (WUE) and survival of seven populations at 10 years of age growing in a performance trial at a provenance test site in Escaroupim, Portugal. Six populations were from relatively high rainfall sites in Portugal and southwestern France (Atlantic group), and one population was from a more arid Mediterranean site in Spain. There were significant differences between some populations in total height, diameter at breast height, delta(13)C of bulk needle tissue, polycyclism and survival. A population from central Portugal (Leiria, on the Atlantic coast) was the tallest and had the lowest delta(13)C. Overall, the variation in delta(13)C was better explained by the mean minimum temperatures of the coldest month than by annual precipitation at the place of origin. Analyses of the relationships between delta(13)C and growth or survival revealed a distinct pattern for the Mediterranean population, with low delta(13)C (and WUE) associated with the lowest growth potential and reduced survival. There were significant negative correlations between delta(13)C and height or survival in the Atlantic group. Variation in polycyclism was correlated with annual precipitation at the place of origin. Some Atlantic populations maintained a high growth potential while experiencing moderate water stress. A detailed knowledge of the relationships between growth, survival and delta(13)C in contrasting environments will enhance our ability to select populations for forestry or conservation.

  14. The Relationship between Early Growth and Survival of Hatchling Saltwater Crocodiles (Crocodylus porosus) in Captivity

    PubMed Central

    Brien, Matthew L.; Webb, Grahame J.; McGuinness, Keith; Christian, Keith A.

    2014-01-01

    Hatchling fitness in crocodilians is affected by “runtism” or failure to thrive syndrome (FTT) in captivity. In this study, 300 hatchling C. porosus, artificially incubated at 32°C for most of their embryonic development, were raised in semi-controlled conditions, with growth criteria derived for the early detection of FTT (within 24 days). Body mass, four days after hatching (BM4d), was correlated with egg size and was highly clutch specific, while snout-vent length (SVL4d) was much more variable within and between clutches. For the majority of hatchlings growth trajectories within the first 24 days continued to 90 days and could be used to predict FTT affliction up to 300 days, highlighting the importance of early growth. Growth and survival of hatchling C. porosus in captivity was not influenced by initial size (BM4d), with a slight tendency for smaller hatchlings to grow faster in the immediate post-hatching period. Strong clutch effects (12 clutches) on affliction with FTT were apparent, but could not be explained by measured clutch variables or other factors. Among individuals not afflicted by FTT (N = 245), mean growth was highly clutch specific, and the variation could be explained by an interaction between clutch and season. FTT affliction was 2.5 times higher among clutches (N = 7) that hatched later in the year when mean minimum air temperatures were lower, compared with those clutches (N = 5) that hatched early in the year. The results of this study highlight the importance of early growth in hatchling C. porosus, which has implications for the captive management of this species. PMID:24960026

  15. Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111)

    NASA Astrophysics Data System (ADS)

    Gallheber, B.-C.; Fischer, M.; Mayr, M.; Straub, J.; Schreck, M.

    2018-06-01

    Basic understanding of the fundamental processes in crystal growth as well as the structural quality of diamond synthesized by chemical vapour deposition on iridium surfaces has reached a high level for samples with (001) orientation. Diamond deposition on the alternative (111) surface is generally more challenging but of appreciable technological interest, too. In the present work, heteroepitaxy of diamond on Ir/YSZ/Si(111) with different off-axis angles and directions has been studied. During the growth of the first microns, strong and complex intrinsic stress states were rapidly formed. They restricted the range of suitable temperatures in this study to values between 830 °C and 970 °C. At low-stress conditions, the maximum growth rates were about 1 μm/h. They facilitated long-time processes which yielded pronounced structural improvements with minimum values of 0.08° for the azimuthal mosaic spread, 4 × 107 cm-2 for the dislocation density and 1.8 cm-1 for the Raman line width. This refinement is even faster than on (001) growth surfaces. It indicates substantial differences between the two crystal directions in terms of merging of mosaic blocks and annihilation of dislocations. Crystals with a thickness of up to 330 μm have been grown. The correlation of photoluminescence and μ-Raman tomograms with topography data also revealed fundamental differences in the off-axis growth between (001) and (111) orientation. Finally, the analysis of the microscopic structures at the growth surface provided the base for a model that can conclusively explain the intriguing reversal of stress tensor anisotropy caused by a simple inversion in sign of the off-axis angle.

  16. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  17. Salinity effect on the maximal growth temperature of some bacteria isolated from marine enviroments.

    PubMed

    Stanley, S O; Morita, R Y

    1968-01-01

    Salinity of the growth medium was found to have a marked effect on the maximal growth temperature of four bacteria isolated from marine sources. Vibrio marinus MP-1 had a maximal growth temperature of 21.2 C at a salinity of 35% and a maximal growth temperature of 10.5 C at a salinity of 7%, the lowest salinity at which it would grow. This effect was shown to be due to the presence of various cations in the medium. The order of effectiveness of cations in restoring the normal maximal growth temperature, when added to dilute seawater, was Na(+) > Li(+) > Mg(++) > K(+) > Rb(+) > NH(4) (+). The anions tested, with the exception of SO(4)=, had no marked effect on the maximal growth temperature response. In a completely defined medium, the highest maximal growth temperature was 20.0 C at 0.40 m NaCl. A decrease in the maximal growth temperature was observed at both low and high concentrations of NaCl.

  18. Variability of AVHRR-Derived Clear-Sky Surface Temperature over the Greenland Ice Sheet.

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Steffen, Konrad

    1998-01-01

    The Advanced Very High Resolution Radiometer is used to derive surface temperatures for one satellite pass under clear skies over the Greenland ice sheet from 1989 through 1993. The results of these temperatures are presented as monthly means, and their spatial and temporal variability are discussed. Accuracy of the dry snow surface temperatures is estimated to be better than 1 K during summer. This error is expected to increase during polar night due to problems in cloud identification. Results indicate the surface temperature of the Greenland ice sheet is strongly dominated by topography, with minimum surface temperatures associated with the high elevation regions. In the summer, maximum surface temperatures occur during July along the western coast and southern tip of the ice sheet. Minimum temperatures are found at the summit during summer and move farther north during polar night. Large interannual variability in surface temperatures occurs during winter associated with katabatic storm events. Summer temperatures show little variation, although 1992 stands out as being colder than the other years. The reason for the lower temperatures during 1992 is believed to be a result of the 1991 eruption of Mount Pinatubo.

  19. Spatiotemporal Evaluation of Reanalysis and In-situ Surface Air Temperature over Ethiopia

    NASA Astrophysics Data System (ADS)

    Tesfaye, T.

    2017-12-01

    Tewodros Woldemariam Tesfaye*1, C.T. Dhanya 2,and A.K. Gosain3 1Research Scholar, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 2Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 3 Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India, *e-mail: tewodros2002@gmail.com Abstract: Water resources management and modelling studies are often constrained by the scarcity of observed data, especially of the two major variables i.e., precipitation and temperature. Modellers, hence, rely on reanalysis datasets as a substitute; though its performance heavily vary depending on the data availability and regional characteristics. The present study aims at examining the ability of frequently used reanalysis datasets in capturing the spatiotemporal characteristics of maximum and minimum surface temperatures over Ethiopia and to highlight the biases, if any, in these over Ethiopian region. We considered ERA-Interim, NCEP 2, MERRA and CFSR reanalysis datasets and compared these with temperature observations from 15 synoptic stations spread over Ethiopia. In addition to the long term averages and annual cycle, a critical comparison of various extreme indices such as diurnal temperature range, warm days, warm nights, cool days, cool nights, summer days and tropical nights are also undertaken. Our results indicate that, the performance of CFSR followed by NCEP 2 is better in capturing majority of the aspects. ERA-Interim suffers a huge additive bias in the simulation of various aspects of minimum temperature in all the stations considered; while its performance is better for maximum temperature. The inferior performance of ERA-Interim is noted to be only because of the difficulty in simulating minimum temperature. Key words: ERA Interim; NCEP Reanalysis; MERRA; CFSR; Diurnal temperature range; reanalysis performance.

  20. 14 CFR 29.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...

  1. 14 CFR 29.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...

  2. 14 CFR 29.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...

  3. CVD growth of graphene at low temperature

    NASA Astrophysics Data System (ADS)

    Zeng, Changgan

    2012-02-01

    Graphene has attracted a lot of research interest owing to its exotic properties and a wide spectrum of potential applications. Chemical vapor deposition (CVD) from gaseous hydrocarbon sources has shown great promises for large-scale graphene growth. However, high growth temperature, typically 1000^oC, is required for such growth. In this talk, I will show a revised CVD route to grow graphene on Cu foils at low temperature, adopting solid and liquid hydrocarbon feedstocks. For solid PMMA and polystyrene precursors, centimeter-scale monolayer graphene films are synthesized at a growth temperature down to 400^oC. When benzene is used as the hydrocarbon source, monolayer graphene flakes with excellent quality are achieved at a growth temperature as low as 300^oC. I will also talk about our recent progress on low-temperature graphene growth using paraterphenyl as precursor. The successful low-temperature growth can be qualitatively understood from the first principles calculations. Our work might pave a way to economical and convenient growth route of graphene, as well as better control of the growth pattern of graphene at low temperature.

  4. [Effect of the development phase and growth rate of a Shigella sonnei population on the reproduction of homologous bacteriophage].

    PubMed

    Voroshilova, N N; Kazakova, T B

    1983-04-01

    This study showed that the minimum latent period (20 minutes) of the intracellular multiplication of dysentery bacteriophage S-9 in the population of S. sonnei substrate strain under the conditions of static heterogeneous surface batch cultivation was observed at the end of the lag phase and at the growth acceleration phase, in the first and second thirds of the exponential curve, while the maximum latent period (35-40 minutes) was observed at the stationary phase. The maximum yield of phage S-9 from one infected bacterial cell (628.3 +/- 116.8) was registered during the first third of the phase of the exponential growth of the bacterial population and the minimum yield (18.66 +/- 6.6), at the beginning of the lag phase. The significant direct correlation between the specific growth rate of the bacterial population and the yield of the phage from one infected bacterial cell at the end of the lag phase, at the growth acceleration and deceleration phases, as well as the significant inverse correlation between the yield of the phage and the time of the generation of the bacterial population at the growth acceleration phase were established.

  5. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China.

    PubMed

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-08-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m(3) increase in the present-day PM10, PM2.5, SO2, NO2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0-21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0-3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of temperature and salinity on light scattering by water

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  7. Steps towards understanding deep atmospheric heating in flares

    NASA Technical Reports Server (NTRS)

    Mauas, Pablo J. D.; Machado, Marcos E.

    1986-01-01

    Different aspects of the heating of the deep solar atmosphere during flares, including temperature minimum enhancements and white light emission, are discussed. The proper treatment of H(-) radiative losses is discussed, and compared with previous studies, as well as a quantitative analysis of the ionizing effect of nonthermal particles and ultraviolet radiation. It is concluded that temperature minimum heating may be a natural consequence of the global radiation transport in flares. The implications of these results are discussed within the context of homogeneous and inhomogeneous models of the solar atmosphere.

  8. Beale AFB, Marysville, California Revised Uniform Summary of Surface Weather Observations (RUSSWO) Parts A-F.

    DTIC Science & Technology

    1981-08-19

    versus Visibility; Sky Cover; ( E ) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric...frequency of occurance or cumulative percentage frequency of occuring tables. UNCLASSIFIED SCUPU)?y CLASaIFICATION OF THIS PAGE(Waht Dat E moli A - I...i,. -t’ r .corvi or QL.;V.A I-)tic ai t r’& iolL; recUl’d Et. Lxki-dGiuI ii.Trly ii~tervais. DAILY OBSERVATIONS S- t tr’ o. re .;,:cLt e , !’ru: at

  9. Exponential bound in the quest for absolute zero

    NASA Astrophysics Data System (ADS)

    Stefanatos, Dionisis

    2017-10-01

    In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.

  10. Exponential bound in the quest for absolute zero.

    PubMed

    Stefanatos, Dionisis

    2017-10-01

    In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.

  11. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.

    PubMed

    Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory

    2017-08-21

    Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.

  12. A Large Ornithurine Bird (Tingmiatornis arctica) from the Turonian High Arctic: Climatic and Evolutionary Implications

    NASA Astrophysics Data System (ADS)

    Bono, Richard K.; Clarke, Julia; Tarduno, John A.; Brinkman, Donald

    2016-12-01

    Bird fossils from Turonian (ca. 90 Ma) sediments of Axel Heiberg Island (High Canadian Arctic) are among the earliest North American records. The morphology of a large well-preserved humerus supports identification of a new volant, possibly diving, ornithurine species (Tingmiatornis arctica). The new bird fossils are part of a freshwater vertebrate fossil assemblage that documents a period of extreme climatic warmth without seasonal ice, with minimum mean annual temperatures of 14 °C. The extreme warmth allowed species expansion and establishment of an ecosystem more easily able to support large birds, especially in fresh water bodies such as those present in the Turonian High Arctic. Review of the high latitude distribution of Northern Hemisphere Mesozoic birds shows only ornithurine birds are known to have occupied these regions. We propose physiological differences in ornithurines such as growth rate may explain their latitudinal distribution especially as temperatures decline later in the Cretaceous. Distribution and physiology merit consideration as factors in their preferential survival of parts of one ornithurine lineage, Aves, through the K/Pg boundary.

  13. Wheat production in controlled environments

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.; Bugbee, Bruce; Bubenheim, David

    1987-01-01

    Conditions are optimized for maximum yield and quality of wheat to be used in a controlled environment life support system (CELSS) in a Lunar or Martian base or a spacecraft. With yields of 23 to 57 g/sq m/d of edible biomass, a minimum size for a CELSS would be between 12 and 30 sq m per person, utilizing about 600 W/sq m of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon dioxide levels, humidity, and wind velocity are controlled in growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants sq m. Densities up to 2000 plants/sq m appear to increase seed yield. Biomass production increases almost linearily with increasing irradiance from 400 to 1700 micromol/sq m/s of photosynthetic photon flux, but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization.

  14. Fabrication process development of SiC/superalloy composite sheet for exhaust system components

    NASA Technical Reports Server (NTRS)

    Cornie, J. A.; Cook, C. S.; Anderson, C. A.

    1976-01-01

    A chemical compatibility study was conducted between SiC filament and the following P/M matrix alloys: Waspaloy, Hastelloy-X, NiCrAlY, Ha-188, S-57, FeCrAlY, and Incoloy 800. None of the couples demonstrated sufficient chemical compatibility to withstand the minimum HIP consolidation temperatures (996 C) or intended application temperature of the composite (982 C). However, Waspaloy, Haynes 188, and Hastelloy-X were the least reactive with SiC of the candidate alloys. Chemical vapor deposited tungsten was shown to be an effective diffusion barrier between the superalloy matrix and SiC filament providing a defect-free coating of sufficient thickness. However, the coating breaks down when the tungsten is converted into intermetallic compounds by interdiffusion with matrix constituents. Waspaloy was demonstrated to be the most effective matrix alloy candidate in contact with the CVD tungsten barrier because of its relatively low growth rate constant of the intermediate compound and the lack of formation of Kirkendall voids at the matrix-barrier interface. Fabrication methods were developed for producing panels of uniaxial and angle ply composites utilizing CVD tungsten coated filament.

  15. Seasonal Habitat Distribution Of Swamp Rabbits, White-Tailed Deer, and Small Mammals in Old Growth and Managed Bottomland Hardwood Forests

    Treesearch

    Winston P. Smith; Patrick A. Zollner

    2001-01-01

    We studied swamp rabbits, white-tailed deer, and small mammals in an old-growth and adjacent second-growth and young-growth bottomland hardwood forest stands in southern Arkansas, August 1991 – February 1993. Based on average home range size and degree of overlap, minimum and maximum density estimates of swamp rabbits were 31 per km2 (no overlap)...

  16. Extreme pointer years in tree-ring records of Central Spain as evidence of climatic events and the eruption of the Huaynaputina Volcano (Peru, 1600 AD)

    NASA Astrophysics Data System (ADS)

    Génova, M.

    2012-04-01

    The study of pointer years of numerous tree-ring chronologies of the central Iberian Peninsula (Sierra de Guadarrama) could provide complementary information about climate variability over the last 405 yr. In total, 64 pointer years have been identified: 30 negative (representing minimum growths) and 34 positive (representing maximum growths), the most significant of these being 1601, 1963 and 1996 for the negative ones, and 1734 and 1737 for the positive ones. Given that summer precipitation was found to be the most limiting factor for the growth of Pinus in the Sierra de Guadarrama in the second half of the 20th century, it is also an explanatory factor in almost 50% of the extreme growths. Furthermore, these pointer years and intervals are not evenly distributed throughout time. Both in the first half of the 17th and in the second half of 20th, they were more frequent and more extreme and these periods are the most notable for the frequency of negative pointer years in Central Spain. The interval 1600-1602 is of special significance, being one of the most unfavourable for tree growth in the centre of Spain, with 1601 representing the minimum index in the regional chronology. We infer that this special minimum annual increase was the effect of the eruption of Huaynaputina, which occurred in Peru at the beginning of 1600 AD. This is the first time that the effects of this eruption in the tree-ring records of Southern Europe have been demonstrated.

  17. Projections for Achieving the Lancet Commission Recommended Surgical Rate of 5000 Operations per 100,000 Population by Region-Specific Surgical Rate Estimates.

    PubMed

    Uribe-Leitz, Tarsicio; Esquivel, Micaela M; Molina, George; Lipsitz, Stuart R; Verguet, Stéphane; Rose, John; Bickler, Stephen W; Gawande, Atul A; Haynes, Alex B; Weiser, Thomas G

    2015-09-01

    We previously identified a range of 4344-5028 annual operations per 100,000 people to be related to desirable health outcomes. From this and other evidence, the Lancet Commission on Global Surgery recommends a minimum rate of 5000 operations per 100,000 people. We evaluate rates of growth and estimate the time it will take to reach this minimum surgical rate threshold. We aggregated country-level surgical rate estimates from 2004 to 2012 into the twenty-one Global Burden of Disease (GBD) regions. We calculated mean rates of surgery proportional to population size for each year and assessed the rate of growth over time. We then extrapolated the time it will take each region to reach a surgical rate of 5000 operations per 100,000 population based on linear rates of change. All but two regions experienced growth in their surgical rates during the past 8 years. Fourteen regions did not meet the recommended threshold in 2012. If surgical capacity continues to grow at current rates, seven regions will not meet the threshold by 2035. Eastern Sub-Saharan Africa will not reach the recommended threshold until 2124. The rates of growth in surgical service delivery are exceedingly variable. At current rates of surgical and population growth, 6.2 billion people (73% of the world's population) will be living in countries below the minimum recommended rate of surgical care in 2035. A strategy for strengthening surgical capacity is essential if these targets are to be met in a timely fashion as part of the integrated health system development.

  18. Transient climate simulation from the Maunder Minimum to present day using prescribed changes in GHG, total/spectral solar irradiance and ozone

    NASA Astrophysics Data System (ADS)

    Spangehl, Thomas; Cubasch, Ulrich; Schimanke, Semjon

    A fully coupled AO-GCM including representation of the middle atmosphere is used for tran-sient simulation of climate from 1630 to 2000 AD. For better representation of changes in the UV/visible part of the solar spectrum an improved short-wave radiation scheme is implemented. The model is driven by changes in GHG concentrations, solar activity and volcanic eruptions. Solar variability is introduced via changes in total/spectral solar irradiance (TSI/SSI) and pre-scribed changes in stratospheric ozone. The secular trend in TSI is in the range of 0.1 percent increase from Maunder Minimum to present-day. Volcanic eruptions are represented via abrupt reduction in TSI. With the applied forcings the model does not simulate a clear reduction of the annual Northern Hemisphere (NH) mean near surface temperature during Maunder Minimum. By contrast the Dalton Minimum is characterized by distinct cooling and there is a significant raise of NH mean near surface temperature until the end of the 20th century. Focusing on the North Atlantic/European region the winter mean near surface temperature change pat-tern from Late Maunder Minimum (1675-1715) to present-day (1960-1990) reveals maximum warming over north-eastern Europe and cooling over the western North Atlantic with maxi-mum cooling west of Greenland. These changes can partly be explained by a shift of the NAO towards a more positive phase. The simulated changes in tropospheric circulation are discussed with special emphasize on the role of the solar forcing. Besides the stratospheric solar forcing which may affect NAO variability via downward propagation of the solar signal from the strato-sphere to the troposphere the magnitude of the secular trend in TSI might play a role. For the period from Maunder Minimum to present-day the simulation shows less near surface temper-ature increase especially over arctic regions when compared to simulations performed with the same model including the standard radiation scheme but applying larger TSI variations. The associated changes in lower tropospheric baroclinicity are more favourable for synoptic scale wave activity over the North Atlantic and might thereby contribute to strengthening of the NAO.

  19. Technical Adequacy of the easyCBM[R] Mathematics Measures: Grades 3-8, 2009-2010 Version. Technical Report #1007

    ERIC Educational Resources Information Center

    Nese, Joseph F. T.; Lai, Cheng-Fei; Anderson, Daniel; Jamgochian, Elisa M.; Kamata, Akihito; Saez, Leilani; Park, Bitnara J.; Alonzo, Julie; Tindal, Gerald

    2010-01-01

    In this technical report, data are presented on the practical utility, reliability, and validity of the easyCBM[R] mathematics (2009-2010 version) measures for students in grades 3-8 within four districts in two states. Analyses include: minimum acceptable within-year growth; minimum acceptable year-end benchmark performance; internal and…

  20. Trends in Education Excellence Gaps: A 12-Year International Perspective via the Multilevel Model for Change

    ERIC Educational Resources Information Center

    Rutkowski, David; Rutkowski, Leslie; Plucker, Jonathan A.

    2012-01-01

    A recent study in the USA documented the existence and growth of "excellence gaps" among students. These gaps are similar to the minimum competency achievement gaps that proliferate in policy discussions in many Western countries, but excellence gaps focus on the highest level of achievement rather than minimum competency. We extend this…

  1. How changes of climate extremes affect summer and winter crop yields and water productivity in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, D.; Cammarano, D.

    2017-12-01

    Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature extremes. We found the effects of precipitation changes on both yields are relatively uncertain.

  2. Temperature effect on the growth of Au-free InAs and InAs/GaSb heterostructure nanowires on Si substrate by MOCVD

    NASA Astrophysics Data System (ADS)

    Kakkerla, Ramesh Kumar; Anandan, Deepak; Hsiao, Chih-Jen; Yu, Hung Wei; Singh, Sankalp Kumar; Chang, Edward Yi

    2018-05-01

    We demonstrate the growth of vertically aligned Au-free InAs and InAs/GaSb heterostructure nanowires on Si (1 1 1) substrate by Metal Organic Chemical Vapor Deposition (MOCVD). The effect of growth temperature on the morphology and growth rate of the InAs and InAs/GaSb heterostructure nanowires (NWs) is investigated. Control over diameter and length of the InAs NWs and the GaSb shell thickness was achieved by using growth temperature. As the GaSb growth temperature increase, GaSb radial growth rate increases due to the increase in alkyl decomposition at the substrate surface. Diffusivity of the adatoms increases as the GaSb growth temperature increase which results in tapered GaSb shell growth. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) measurements revealed that the morphology and shell thickness can be tuned by the growth temperature. Electron microscopy also shows the formation of GaSb both in radial and axial directions outside the InAs NW core can be controlled by the growth temperature. This study demonstrates the control over InAs NWs growth and the GaSb shell thickness can be achieved through proper growth temperature control, such technique is essential for the growth of nanowire for future nano electronic devices, such as Tunnel FET.

  3. Modeling fish community dynamics in Florida Everglades: Role of temperature variation

    USGS Publications Warehouse

    Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling

    2002-01-01

    The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.

  4. [Effects of different organic matter mulching on water content, temperature, and available nutrients of apple orchard soil in a cold region].

    PubMed

    Zhou, Jiang-Tao; Lü, De-Guo; Qin, Si-Jun

    2014-09-01

    The effects of different organic matter covers on soil physical-chemical properties were investigated in a 'Hanfu' apple orchard located in a cold region. Four treatments were applied (weed mulching, rice straw mulching, corn straw mulching, and crushed branches mulching), and physical-chemical properties, including orchard soil moisture and nutrient contents, were compared among treatment groups and between organic matter-treated and untreated plots. The results showed that soil water content increased in the plots treated with organic matter mulching, especially in the arid season. Cover with organic matter mulch slowed the rate of soil temperature increase in spring, which was harmful to the early growth of fruit trees. Organic matter mulching treatments decreased the peak temperature of orchard soil in the summer and increased the minimum soil temperature in the fall. pH was increased in soils treated with organic matter mulching, especially in the corn straw mulching treatment, which occurred as a response to alleviating soil acidification to achieve near-neutral soil conditions. The soil organic matter increased to varying extents among treatment groups, with the highest increase observed in the weed mulching treatment. Overall, mulching increased alkali-hydrolyzable nitrogen, available phosphorus, and available potassium in the soil, but the alkali-hydrolyzable nitrogen content in the rice straw mulching treatment was lower than that of the control.

  5. Gradient-driven flux-tube simulations of ion temperature gradient turbulence close to the non-linear threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, A. G.; Rath, F.; Buchholz, R.

    2016-08-15

    It is shown that Ion Temperature Gradient turbulence close to the threshold exhibits a long time behaviour, with smaller heat fluxes at later times. This reduction is connected with the slow growth of long wave length zonal flows, and consequently, the numerical dissipation on these flows must be sufficiently small. Close to the nonlinear threshold for turbulence generation, a relatively small dissipation can maintain a turbulent state with a sizeable heat flux, through the damping of the zonal flow. Lowering the dissipation causes the turbulence, for temperature gradients close to the threshold, to be subdued. The heat flux then doesmore » not go smoothly to zero when the threshold is approached from above. Rather, a finite minimum heat flux is obtained below which no fully developed turbulent state exists. The threshold value of the temperature gradient length at which this finite heat flux is obtained is up to 30% larger compared with the threshold value obtained by extrapolating the heat flux to zero, and the cyclone base case is found to be nonlinearly stable. Transport is subdued when a fully developed staircase structure in the E × B shearing rate forms. Just above the threshold, an incomplete staircase develops, and transport is mediated by avalanche structures which propagate through the marginally stable regions.« less

  6. Contribution of urban expansion and a changing climate to decline of a butterfly fauna.

    PubMed

    Casner, Kayce L; Forister, Matthew L; O'Brien, Joshua M; Thorne, James; Waetjen, David; Shapiro, Arthur M

    2014-06-01

    Butterfly populations are naturally patchy and undergo extinctions and recolonizations. Analyses based on more than 2 decades of data on California's Central Valley butterfly fauna show a net loss in species richness through time. We analyzed 22 years of phenological and faunistic data for butterflies to investigate patterns of species richness over time. We then used 18-22 years of data on changes in regional land use and 37 years of seasonal climate data to develop an explanatory model. The model related the effects of changes in land-use patterns, from working landscapes (farm and ranchland) to urban and suburban landscapes, and of a changing climate on butterfly species richness. Additionally, we investigated local trends in land use and climate. A decline in the area of farmland and ranchland, an increase in minimum temperatures during the summer and maximum temperatures in the fall negatively affected net species richness, whereas increased minimum temperatures in the spring and greater precipitation in the previous summer positively affected species richness. According to the model, there was a threshold between 30% and 40% working-landscape area below which further loss of working-landscape area had a proportionally greater effect on butterfly richness. Some of the isolated effects of a warming climate acted in opposition to affect butterfly richness. Three of the 4 climate variables that most affected richness showed systematic trends (spring and summer mean minimum and fall mean maximum temperatures). Higher spring minimum temperatures were associated with greater species richness, whereas higher summer temperatures in the previous year and lower rainfall were linked to lower richness. Patterns of land use contributed to declines in species richness (although the pattern was not linear), but the net effect of a changing climate on butterfly richness was more difficult to discern. © 2014 Society for Conservation Biology.

  7. Autumn-winter minimum temperature changes in the southern Sikhote-Alin mountain range of northeastern Asia since 1529 AD

    NASA Astrophysics Data System (ADS)

    Ukhvatkina, Olga N.; Omelko, Alexander M.; Zhmerenetsky, Alexander A.; Petrenko, Tatyana Y.

    2018-01-01

    The aim of our research was to reconstruct climatic parameters (for the first time for the Sikhote-Alin mountain range) and to compare them with global climate fluctuations. As a result, we have found that one of the most important limiting factors for the study area is the minimum temperatures of the previous autumn-winter season (August-December), and this finding perfectly conforms to that in other territories. We reconstructed the previous August-December minimum temperature for 485 years, from 1529 to 2014. We found 12 cold periods (1535-1540, 1550-1555, 1643-1649, 1659-1667, 1675-1689, 1722-1735, 1791-1803, 1807-1818, 1822-1827, 1836-1852, 1868-1887, 1911-1925) and seven warm periods (1560-1585, 1600-1610, 1614-1618, 1738-1743, 1756-1759, 1776-1781, 1944-2014). These periods correlate well with reconstructed data for the Northern Hemisphere and the neighboring territories of China and Japan. Our reconstruction has 3-, 9-, 20-, and 200-year periods, which may be in line with high-frequency fluctuations in El Niño-Southern Oscillation (ENSO), the short-term solar cycle, Pacific Decadal Oscillation (PDO) fluctuations, and the 200-year solar activity cycle, respectively. We suppose that the temperature of the North Pacific, expressed by the PDO may make a major contribution to regional climate variations. We also assume that the regional climatic response to solar activity becomes apparent in the temperature changes in the northern part of Pacific Ocean and corresponds to cold periods during the solar minimum. These comparisons show that our climatic reconstruction based on tree ring chronology for this area may potentially provide a proxy record for long-term, large-scale past temperature patterns for northeastern Asia. The reconstruction reflects the global traits and local variations in the climatic processes of the southern territory of the Russian Far East for more than the past 450 years.

  8. 40 CFR 600.010-08 - Vehicle test requirements and minimum data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., US06, SC03 and Cold temperature FTP data from each subconfiguration included within the model type. (2... data requirements. 600.010-08 Section 600.010-08 Protection of Environment ENVIRONMENTAL PROTECTION... Provisions § 600.010-08 Vehicle test requirements and minimum data requirements. (a) Unless otherwise...

  9. No minimum threshold for ozone-induced changes in soybean canopy fluxes

    USDA-ARS?s Scientific Manuscript database

    Tropospheric ozone concentrations [O3] are increasing at rates that exceed any other pollutant. This highly reactive gas drives reductions in plant productivity and canopy water use while also increasing canopy temperature and sensible heat flux. It is not clear whether a minimum threshold of ozone ...

  10. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  11. Optimisation of critical medium components and culture conditions for enhanced biomass and lipid production in the oleaginous diatom Navicula phyllepta: a statistical approach.

    PubMed

    Sabu, Sanyo; Singh, Isaac Sarojini Bright; Joseph, Valsamma

    2017-12-01

    Diatoms hold great promise as potential sources of biofuel production. In the present study, the biomass and lipid production in the marine diatom Navicula phyllepta, isolated from Cochin estuary, India and identified as a potential biodiesel feedstock, were optimized using Plackett-Burman (PB) statistical experimental design followed by central composite design (CCD) and response surface methodology (RSM). The growth analyses of the isolate in different nitrogen sources, salinities and five different enriched sea water media showed the best growth in the cheapest medium with minimum components using urea as nitrogen source at salinity between 25 and 40 g kg -1 . Plackett-Burman experimental analyses for screening urea, sodium metasilicate, sodium dihydrogen phosphate, ferric chloride, salinity, temperature, pH and agitation influencing lipid and biomass production showed that silicate and temperature had a positive coefficient on biomass production, and temperature had a significant positive coefficient, while urea and phosphate showed a negative coefficient on lipid content. A 2 4 factorial central composite design (FCCD) was used to optimize the concentration of the factors selected. The optimized media resulted in 1.62-fold increase (64%) in biomass (1.2 ± 0.08 g L -1 ) and 1.2-fold increase (22%) in estimated total lipid production (0.11 ± 0.003 g L -1 ) compared to original media within 12 days of culturing. A significantly higher biomass and lipid production in the optimized medium demands further development of a two-stage strategy of biomass production followed by induction of high lipid production under nutrient limitation or varying culture conditions for large-scale production of biodiesel from the marine diatom.

  12. Heat-transfer thermal switch

    NASA Technical Reports Server (NTRS)

    Friedell, M. V.; Anderson, A. J.

    1974-01-01

    Thermal switch maintains temperature of planetary lander, within definite range, by transferring heat. Switch produces relatively large stroke and force, uses minimum electrical power, is lightweight, is vapor pressure actuated, and withstands sterilization temperatures without damage.

  13. Nonlinear distortion analysis for single heterojunction GaAs HEMT with frequency and temperature

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Ali, Mayahsa M.; Rezazadeh, Ali A.

    2018-07-01

    Nonlinearity analysis using two-tone intermodulation distortion (IMD) technique for 0.5 μm gate-length AlGaAs/GaAs based high electron mobility transistor have been investigated based on biasing conditions, input power, frequency and temperature. The outcomes indicate a significant modification on the output IMD power and as well as the minimum distortion level. The input IMD power effects the output current and subsequently the threshold voltage reduces, resulting to an increment in the output IMD power. Both frequency and temperature reduces the magnitude of the output IMDs. In addition, the threshold voltage response with temperature alters the notch point of the nonlinear output IMD’s accordingly. The aforementioned investigation will help the circuit designers to evaluate the best biasing option in terms of minimum distortion, maximum gain for future design optimizations.

  14. Performance of a catalytic reactor at simulated gas turbine combustor operating conditions

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.; Mroz, T. S.

    1975-01-01

    The performance of a catalytic reactor 12 cm in diameter and 17 cm long was evaluated at simulated gas turbine combustor operating conditions using premixed propane and air. Inlet temperatures of 600 and 800 K, pressures of 3 and 6 atm, and reference velocities of 9 to 30 m/s were tested. Data were taken for equivalence ratios as high as 0.43. The operating range was limited on the low-temperature side by very poor efficiency; the minimum exit temperature for good performance ranged from 1400 to 1600 K depending on inlet conditions. As exit temperatures were raised above this minimum, emissions of unburned hydrocarbons decreased, carbon monoxide emissions became generally less than 1 g CO/kg fuel, and nitrogen oxides were less than about 0.1 g NO2/kg fuel.

  15. Temperature and rainfall are related to fertility rate after spring artificial insemination in small ruminants

    NASA Astrophysics Data System (ADS)

    Abecia, J. A.; Arrébola, F.; Macías, A.; Laviña, A.; González-Casquet, O.; Benítez, F.; Palacios, C.

    2016-10-01

    A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly ( P < 0.0001) higher proportion of does that became pregnant than did the ewes in the lowest decile (56, 54, 58, and 49 %, respectively). In sheep, the fertility rates of the highest decile of mean (62 %), maximum (62 %), and minimum (52 %) temperature, RH (52 %), THI (53 %), and rainfall (45 %) were significantly higher ( P < 0.0001) than were the fertility rates among ewes in the lowest decile (46, 45, 45, 45, 46, and 43 %, respectively). In conclusion, weather was related to fertility in small ruminants after AI in spring. It remains to be determined whether scheduling the dates of insemination based on forecasted temperatures can improve the success of AI in goats and sheep.

  16. Herbarium specimens, photographs, and field observations show Philadelphia area plants are responding to climate change.

    PubMed

    Panchen, Zoe A; Primack, Richard B; Anisko, Tomasz; Lyons, Robert E

    2012-04-01

    The global climate is changing rapidly and is expected to continue changing in coming decades. Studying changes in plant flowering times during a historical period of warming temperatures gives us a way to examine the impacts of climate change and allows us to predict further changes in coming decades. The Greater Philadelphia region has a long and rich history of botanical study and documentation, with abundant herbarium specimens, field observations, and botanical photographs from the mid-1800s onward. These extensive records also provide an opportunity to validate methodologies employed by other climate change researchers at a different biogeographical area and with a different group of species. Data for 2539 flowering records from 1840 to 2010 were assessed to examine changes in flowering response over time and in relation to monthly minimum temperatures of 28 Piedmont species native to the Greater Philadelphia region. Regression analysis of the date of flowering with year or with temperature showed that, on average, the Greater Philadelphia species studied are flowering 16 d earlier over the 170-yr period and 2.7 d earlier per 1°C rise in monthly minimum temperature. Of the species studied, woody plants with short flowering duration are the best indicators of a warming climate. For monthly minimum temperatures, temperatures 1 or 2 mo prior to flowering are most significantly correlated with flowering time. Studies combining herbarium specimens, photographs, and field observations are an effective method for detecting the effects of climate change on flowering times.

  17. Thermal tolerance of the invasive Belonesox belizanus, pike killifish, throughout ontogeny.

    PubMed

    Kerfoot, James Roy

    2012-06-01

    The goal of this study was to characterize the variability of thermal tolerances between life-history stages of the invasive Belonesox belizanus and attempt to describe the most likely stage of dispersal across south Florida. In the laboratory, individuals were acclimated to three temperatures (20, 25, or 30°C). Upper and lower lethal thermal limits and temperatures at which feeding ceased were measured for neonates, juveniles, and adults. Thermal tolerance polygons were developed to represent the thermal tolerance range of each life-history stage. Results indicated that across acclimation temperatures upper lethal thermal limits were similar for all three stages (38°C). However, minimum lethal thermal limits were significantly different at the 30°C acclimation temperature, where juveniles (9°C) had an approximately 2.0°C and 4.0°C lower minimum lethal thermal limit compared with adults and neonates, respectively. According to thermal tolerance polygons, juveniles had an average tolerance polygonal area almost 20°C(2) larger than adults, indicating the greatest thermal tolerance of the three life-history stages. Variation in cessation of feeding temperatures indicated no significant difference between juveniles and adults. Overall, results of this study imply that juvenile B. belizanus may be equipped with the physiological flexibility to exercise habitat choice and reduce potential intraspecific competition with adults for limited food resources. Given its continued dispersal, the minimum thermal limit of juveniles may aid in continued dispersal of this species, especially during average winter temperatures throughout Florida where juveniles could act to preserve remnant populations until seasonal temperatures increase. © 2012 WILEY PERIODICALS, INC.

  18. The Peculiar Solar Minimum 23/24 Revealed by the Microwave Butterfly Diagram

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Yashiro, Seiji; Makela, Pertti; Shibasaki, Kiyoto; Hathaway, David

    2010-01-01

    The diminished polar magnetic field strength during the minimum between cycles 23 and 24 is also reflected in the thermal radio emission originating from the polar chromosphere. During solar minima, the polar corona has extended coronal holes containing intense unipolar flux. In microwave images, the coronal holes appear bright, with a brightness enhancement of 500 to 2000 K with respect to the quiet Sun. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is approx.10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes..

  19. Kinetics of thermal decomposition of hydrated minerals associated with hematite ore in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Beuria, P. C.; Biswal, S. K.; Mishra, B. K.; Roy, G. G.

    2017-03-01

    The kinetics of removal of loss on ignition (LOI) by thermal decomposition of hydrated minerals present in natural iron ores (i.e., kaolinite, gibbsite, and goethite) was investigated in a laboratory-scale vertical fluidized bed reactor (FBR) using isothermal methods of kinetic analysis. Experiments in the FBR in batch processes were carried out at different temperatures (300 to 1200°C) and residence time (1 to 30 min) for four different iron ore samples with various LOIs (2.34wt% to 9.83wt%). The operating velocity was maintained in the range from 1.2 to 1.4 times the minimum fluidization velocity ( U mf). We observed that, below a certain critical temperature, the FBR did not effectively reduce the LOI to a desired level even with increased residence time. The results of this study indicate that the LOI level could be reduced by 90% within 1 min of residence time at 1100°C. The kinetics for low-LOI samples (<6wt%) indicates two different reaction mechanisms in two temperature regimes. At lower temperatures (300 to 700°C), the kinetics is characterized by a lower activation energy (diffusion-controlled physical moisture removal), followed by a higher activation energy (chemically controlled removal of LOI). In the case of high-LOI samples, three different kinetics mechanisms prevail at different temperature regimes. At temperature up to 450°C, diffusion kinetics prevails (removal of physical moisture); at temperature from 450 to 650°C, chemical kinetics dominates during removal of matrix moisture. At temperatures greater than 650°C, nucleation and growth begins to influence the rate of removal of LOI.

  20. 9 CFR 381.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... establishment at the time the processing cycle begins to assure that the temperature of the contents of every... processing operation times. Temperature/time recording devices shall correspond within 15 minutes to the time... (or operating process schedules) for daily production, including minimum initial temperatures and...

  1. 9 CFR 381.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... establishment at the time the processing cycle begins to assure that the temperature of the contents of every... processing operation times. Temperature/time recording devices shall correspond within 15 minutes to the time... (or operating process schedules) for daily production, including minimum initial temperatures and...

  2. 9 CFR 381.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... establishment at the time the processing cycle begins to assure that the temperature of the contents of every... processing operation times. Temperature/time recording devices shall correspond within 15 minutes to the time... (or operating process schedules) for daily production, including minimum initial temperatures and...

  3. 9 CFR 381.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... establishment at the time the processing cycle begins to assure that the temperature of the contents of every... processing operation times. Temperature/time recording devices shall correspond within 15 minutes to the time... (or operating process schedules) for daily production, including minimum initial temperatures and...

  4. An Axial-Torsional, Thermomechanical Fatigue Testing Technique

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    1995-01-01

    A technique for conducting strain-controlled, thermomechanical, axial-torsional fatigue tests on thin-walled tubular specimens was developed. Three waveforms of loading, namely, the axial strain waveform, the engineering shear strain waveform, and the temperature waveform were required in these tests. The phasing relationships between the mechanical strain waveforms and the temperature and axial strain waveforms were used to define a set of four axial-torsional, thermomechanical fatigue (AT-TMF) tests. Real-time test control (3 channels) and data acquisition (a minimum of 7 channels) were performed with a software program written in C language and executed on a personal computer. The AT-TMF testing technique was used to investigate the axial-torsional thermomechanical fatigue behavior of a cobalt-base superalloy, Haynes 188. The maximum and minimum temperatures selected for the AT-TMF tests were 760 and 316 C, respectively. Details of the testing system, calibration of the dynamic temperature profile of the thin-walled tubular specimen, thermal strain compensation technique, and test control and data acquisition schemes, are reported. The isothermal, axial, torsional, and in- and out-of-phase axial-torsional fatigue behaviors of Haynes 188 at 316 and 760 C were characterized in previous investigations. The cyclic deformation and fatigue behaviors of Haynes 188 in AT-TMF tests are compared to the previously reported isothermal axial-torsional behavior of this superalloy at the maximum and minimum temperatures.

  5. A polyphasic study on the taxonomic position of industrial sour dough yeasts.

    PubMed

    Mäntynen, V H; Korhola, M; Gudmundsson, H; Turakainen, H; Alfredsson, G A; Salovaara, H; Lindström, K

    1999-02-01

    The sour dough bread making process is extensively used to produce wholesome palatable rye bread. The process is traditionally done using a back-slopping procedure. Traditional sour doughs in Finland comprise of lactic acid bacteria and yeasts. The yeasts present in these doughs have been enriched in the doughs due to their metabolic activities, e.g. acid tolerance. We characterized the yeasts in five major sour bread bakeries in Finland. We found that most of the commercial sour doughs contained yeasts which were similar to Candida milleri on the basis of 18S rDNA and EF-3 PCR-RFLP patterns and metabolic activities. Some of the bakery yeasts exhibited extensive karyotype polymorphism. The minimum growth temperature was 8 degrees C for C. milleri and also for most of sour dough yeasts.

  6. High-frequency daily temperature variability in China and its relationship to large-scale circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fu-Ting; Fu, Congbin; Qian, Yun

    Two measures of intra-seasonal variability, indicated respectively by standard deviations (SD) and day-to-day (DTD) fluctuations denoted by absolute differences between adjacent 2-day periods, as well as their relationships with large-scale circulation patterns were investigated in China during 1962–2008 on the basis of homogenized daily temperature records from 549 local stations and reanalysis data. Our results show that both the SD and DTD of daily minimum temperatures (Tmin) in summer as well as the minimum and maximum temperatures in winter have been decreasing, while the daily maximum temperature (Tmax) variability in summer is fluctuating more, especially over southern China. In summer,more » an attribution analysis indicates that the intensity of the Western Pacific Subtropical High (WPSH) and high-level East Asian Subtropical Jet stream (EASJ) are positively correlated with both SD and DTD, but the correlation coefficients are generally greater with the SD than with the DTD of the daily maximum temperature, Tmax. In contrast, the location of the EASJ shows the opposite correlation pattern, with intensity regarding the correlation with both SD and DTD. In winter, the Arctic Oscillation (AO) is negatively correlated with both the SD and DTD of the daily minimum temperature, but its intra-seasonal variability exhibits good agreement with the SD of the Tmin. The Siberian High acts differently with respect to the SD and DTD of the Tmin, demonstrating a regionally consistent positive correlation with the SD. Overall, the large-scale circulation can well explain the intra-seasonal SD, but DTD fluctuations may be more local and impacted by local conditions, such as changes in the temperature itself, the land surface, and so on.« less

  7. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    NASA Astrophysics Data System (ADS)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  8. Effects of whole body cryotherapy and cold water immersion on knee skin temperature.

    PubMed

    Costello, J T; Donnelly, A E; Karki, A; Selfe, J

    2014-01-01

    This study sought to (a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of -110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and (b) establish whether either protocol was capable of achieving a skin temperature (<13 °C) believed to be required for analgesic purposes. After ethics committee approval and written informed consent was obtained, 10 healthy males (26.5±4.9 yr, 183.5±6.0 cm, 90.7±19.9 kg, 26.8±5.0 kg/m2, 23.0±9.3% body fat; mean±SD) participated in this randomised controlled crossover study. Skin temperature around the patellar region was assessed in both knees via non-contact, infrared thermal imaging and recorded pre-, immediately post-treatment and every 10 min thereafter for 60 min. Compared to baseline, average, minimum and maximum skin temperatures were significantly reduced (p<0.001) immediately post-treatment and at 10, 20, 30, 40, 50 and 60 min after both cooling modalities. Average and minimum skin temperatures were lower (p<0.05) immediately after whole body cryotherapy (19.0±0.9 °C) compared to cold water immersion (20.5±0.6 °C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p<0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect. © Georg Thieme Verlag KG Stuttgart · New York.

  9. α Centauri A in the far infrared. First measurement of the temperature minimum of a star other than the Sun

    NASA Astrophysics Data System (ADS)

    Liseau, R.; Montesinos, B.; Olofsson, G.; Bryden, G.; Marshall, J. P.; Ardila, D.; Bayo Aran, A.; Danchi, W. C.; del Burgo, C.; Eiroa, C.; Ertel, S.; Fridlund, M. C. W.; Krivov, A. V.; Pilbratt, G. L.; Roberge, A.; Thébault, P.; Wiegert, J.; White, G. J.

    2013-01-01

    Context. Chromospheres and coronae are common phenomena on solar-type stars. Understanding the energy transfer to these heated atmospheric layers requires direct access to the relevant empirical data. Study of these structures has, by and large, been limited to the Sun thus far. Aims: The region of the temperature reversal can be directly observed only in the far infrared and submillimetre spectral regime. We aim at determining the characteristics of the atmosphere in the region of the temperature minimum of the solar sister star α Cen A. As a bonus this will also provide a detailed mapping of the spectral energy distribution, i.e. knowledge that is crucial when searching for faint, Kuiper belt-like dust emission around other stars. Methods: For the nearby binary system α Cen, stellar parameters are known with high accuracy from measurements. For the basic model parameters Teff, log g and [Fe/H], we interpolate stellar model atmospheres in the grid of Gaia/PHOENIX and compute the corresponding model for the G2 V star α Cen A. Comparison with photometric measurements shows excellent agreement between observed photospheric data in the optical and infrared. For longer wavelengths, the modelled spectral energy distribution is compared to Spitzer-MIPS, Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry. A specifically tailored Uppsala model based on the MARCS code and extending further in wavelength is used to gauge the emission characteristics of α Cen A in the far infared. Results: Similar to the Sun, the far infrared (FIR) emission of α Cen A originates in the minimum temperature region above the stellar photosphere in the visible. However, in comparison with the solar case, the FIR photosphere of α Cen A appears marginally cooler, Tmin ~ T160 μm = 3920 ± 375 K. Beyond the minimum near 160 μm, the brightness temperatures increase, and this radiation very likely originates in warmer regions of the chromosphere of α Cen A. Conclusions: To the best of our knowledge, this is the first time a temperature minimum has been directly measured on a main-sequence star other than the Sun. Based on observations with Herschel, which is an ESA space observatory with science instruments provided by the European-led Principal Investigator consortia and with important participation from NASA.

  10. Phonon wave interference in graphene and boron nitride superlattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xue-Kun; Zhou, Wu-Xing; Tang, Li-Ming

    2016-07-11

    The thermal transport properties of the graphene and boron nitride superlattice (CBNSL) are investigated via nonequilibrium molecular dynamics simulations. The simulation results show that a minimum lattice thermal conductivity can be achieved by changing the period length of the superlattice. Additionally, it is found that the period length at the minimum shifts to lower values at higher temperatures, and that the depth of the minimum increases with decreasing temperature. In particular, at 200 K, the thermal conductivities of CBNSLs with certain specific period lengths are nearly equal to the corresponding values at 300 K. A detailed analysis of the phonon spectra showsmore » that this anomalous thermal conductivity behavior is a result of strong phonon wave interference. These observations indicate a promising strategy for manipulation of thermal transport in superlattices.« less

  11. Thermal Preference of Juvenile Dover Sole (Solea solea) in Relation to Thermal Acclimation and Optimal Growth Temperature

    PubMed Central

    Schram, Edward; Bierman, Stijn; Teal, Lorna R.; Haenen, Olga; van de Vis, Hans; Rijnsdorp, Adriaan D.

    2013-01-01

    Dover sole (Solea solea) is an obligate ectotherm with a natural thermal habitat ranging from approximately 5 to 27°C. Thermal optima for growth lie in the range of 20 to 25°C. More precise information on thermal optima for growth is needed for cost-effective Dover sole aquaculture. The main objective of this study was to determine the optimal growth temperature of juvenile Dover sole (Solea solea) and in addition to test the hypothesis that the final preferendum equals the optimal growth temperature. Temperature preference was measured in a circular preference chamber for Dover sole acclimated to 18, 22 and 28°C. Optimal growth temperature was measured by rearing Dover sole at 19, 22, 25 and 28°C. The optimal growth temperature resulting from this growth experiment was 22.7°C for Dover sole with a size between 30 to 50 g. The temperature preferred by juvenile Dover sole increases with acclimation temperature and exceeds the optimal temperature for growth. A final preferendum could not be detected. Although a confounding effect of behavioural fever on temperature preference could not be entirely excluded, thermal preference and thermal optima for physiological processes seem to be unrelated in Dover sole. PMID:23613837

  12. Thermal preference of juvenile Dover sole (Solea solea) in relation to thermal acclimation and optimal growth temperature.

    PubMed

    Schram, Edward; Bierman, Stijn; Teal, Lorna R; Haenen, Olga; van de Vis, Hans; Rijnsdorp, Adriaan D

    2013-01-01

    Dover sole (Solea solea) is an obligate ectotherm with a natural thermal habitat ranging from approximately 5 to 27°C. Thermal optima for growth lie in the range of 20 to 25°C. More precise information on thermal optima for growth is needed for cost-effective Dover sole aquaculture. The main objective of this study was to determine the optimal growth temperature of juvenile Dover sole (Solea solea) and in addition to test the hypothesis that the final preferendum equals the optimal growth temperature. Temperature preference was measured in a circular preference chamber for Dover sole acclimated to 18, 22 and 28°C. Optimal growth temperature was measured by rearing Dover sole at 19, 22, 25 and 28°C. The optimal growth temperature resulting from this growth experiment was 22.7°C for Dover sole with a size between 30 to 50 g. The temperature preferred by juvenile Dover sole increases with acclimation temperature and exceeds the optimal temperature for growth. A final preferendum could not be detected. Although a confounding effect of behavioural fever on temperature preference could not be entirely excluded, thermal preference and thermal optima for physiological processes seem to be unrelated in Dover sole.

  13. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhu, Zhongyunshen; Song, Yuxin; Zhang, Zhenpu; Sun, Hao; Han, Yi; Li, Yaoyao; Zhang, Liyao; Xue, Zhongying; Di, Zengfeng; Wang, Shumin

    2017-09-01

    We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy at the substrate temperature of ˜180 °C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity, and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Six ⟨110⟩ growth orientations were observed on Ge (110) by the VSS growth at ˜180 °C, differing from only one vertical growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained by analyzing the mechanism of the two growth modes.

  14. 46 CFR 38.05-2 - Design and construction of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a pressure equal to the setting of the relief valve. (b) The service temperature is the minimum...=Service temperature. t w=Boiling temperature of gas at normal working pressure of tank but not higher than +32 °F. t b=Boiling temperature of gas at atmospheric pressure. (c) Heat transmission studies, where...

  15. 46 CFR 38.05-2 - Design and construction of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a pressure equal to the setting of the relief valve. (b) The service temperature is the minimum...=Service temperature. t w=Boiling temperature of gas at normal working pressure of tank but not higher than +32 °F. t b=Boiling temperature of gas at atmospheric pressure. (c) Heat transmission studies, where...

  16. Temperature thresholds related to flight of Dendroctonus frontalis Zimm. (Col.: Scolytidae)

    Treesearch

    John C. Moser; William A. Thompson

    1986-01-01

    We have plotted the complete range of flight temperatures for the southern pine beele, the first such figures for any bark beetle.The optimum flight temperature was about 27oC.Observed minimum and maximum flight temperatures for southern pine beetle were 6.7oC and 36.7oC, respectively. Projected...

  17. Spotted owl home range and habitat use in the southern Oregon Coast Range.

    Treesearch

    A.B. Carey; J.A. Reid; S.P. Horton

    1991-01-01

    We radiotracked 9 adult spotted owls (Strix occidentalis) in the southern Oregon Coast Ranges for 6-12 months. Owls selected home ranges that emphasized old growth within the landscape. Minimum convex polygon home ranges of 4 pairs were 1,153-3,945 ha and contained 726-1,062 ha of old growth. The percentages of. the home ranges in old growth were...

  18. A diameter growth model for the SRS FIA

    Treesearch

    David Gartner

    2015-01-01

    Changes in the national Forest Inventory and Analysis (FIA) processing system required the Southern Research Station’s FIA unit to create a diameter growth model to estimate the growth of trees that could not be measured at both ends of a measurement interval. Examples of such trees are trees that have died or been harvested, and trees that grow over the minimum...

  19. Shape transition with temperature of the pear-shaped nuclei in covariant density functional theory

    DOE PAGES

    Zhang, Wei; Niu, Yi-Fei

    2017-11-10

    The shape evolutions of the pear-shaped nucleimore » $$^{224}$$Ra and even-even $$^{144-154}$$Ba with temperature are investigated by the finite-temperature relativistic mean field theory with the treatment of pairing correlations by the BCS approach. We study the free energy surfaces as well as the bulk properties including deformations, pairing gaps, excitation energy, and specific heat for the global minimum. For $$^{224}$$Ra, three discontinuities found in the specific heat curve indicate the pairing transition at temperature 0.4 MeV, and two shape transitions at temperatures 0.9 and 1.0 MeV, namely one from quadrupole-octupole deformed to quadrupole deformed, and the other from quadrupole deformed to spherical. Furthermore, the gaps at $N$=136 and $Z$=88 are responsible for stabilizing the octupole-deformed global minimum at low temperatures. Similar pairing transition at $$T\\sim$$0.5 MeV and shape transitions at $T$=0.5-2.2 MeV are found for even-even $$^{144-154}$$Ba. Finally, the transition temperatures are roughly proportional to the corresponding deformations at the ground states.« less

  20. Performance Charts for a Turbojet System

    NASA Technical Reports Server (NTRS)

    Karp, Irving M.

    1947-01-01

    Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.

Top