Sample records for minimum ice extent

  1. Sea Ice

    NASA Technical Reports Server (NTRS)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  2. Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys Ocean Profiles

    DTIC Science & Technology

    2017-01-01

    repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain...contributing to the rapid decline in summer ice extent that has occurred in recent years. The SIZ is the region between maximum winter sea ice extent and...minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water

  3. Statistical prediction of September Arctic Sea Ice minimum based on stable teleconnections with global climate and oceanic patterns

    NASA Astrophysics Data System (ADS)

    Ionita, M.; Grosfeld, K.; Scholz, P.; Lohmann, G.

    2016-12-01

    Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad information interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability depends on various climate parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal, we developed a robust statistical model based on ocean heat content, sea surface temperature and atmospheric variables to calculate an estimate of the September minimum sea ice extent for every year. Although previous statistical attempts at monthly/seasonal forecasts of September sea ice minimum show a relatively reduced skill, here it is shown that more than 97% (r = 0.98) of the September sea ice extent can predicted three months in advance by using previous months conditions via a multiple linear regression model based on global sea surface temperature (SST), mean sea level pressure (SLP), air temperature at 850hPa (TT850), surface winds and sea ice extent persistence. The statistical model is based on the identification of regions with stable teleconnections between the predictors (climatological parameters) and the predictand (here sea ice extent). The results based on our statistical model contribute to the sea ice prediction network for the sea ice outlook report (https://www.arcus.org/sipn) and could provide a tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.

  4. Probabilistic Forecasting of Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Slater, A. G.

    2013-12-01

    Sea ice in the Arctic is changing rapidly. Most noticeable has been the series of record, or near-record, annual minimums in sea ice extent in the past six years. The changing regime of sea ice has prompted much interest in seasonal prediction of sea ice extent, particularly as opportunities for Arctic shipping and resource exploration or extraction increase. This study presents a daily sea ice extent probabilistic forecast method with a 50-day lead time. A base projection is made from historical data and near-real-time sea ice concentration is assimilated on the issue date of the forecast. When considering the September mean ice extent for the period 1995-2012, the performance of the 50-day lead time forecast is very good: correlation=0.94, Bias = 0.14 ×106 km^2 and RMSE = 0.36 ×106 km^2. Forecasts for the daily minimum contains equal skill levels. The system is highly competitive with any of the SEARCH Sea Ice Outlook estimates. The primary finding of this study is that large amounts of forecast skill can be gained from knowledge of the initial conditions of concentration (perhaps more than previously thought). Given the simplicity of the forecast model, improved skill should be available from system refinement and with suitable proxies for large scale atmosphere and ocean circulation.

  5. Sea Ice Prediction Has Easy and Difficult Years

    NASA Technical Reports Server (NTRS)

    Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward; Cutler, Matthew; Kay, Jennifer; Meier, Walter N.; Stroeve, Julienne; Wiggins, Helen

    2014-01-01

    Arctic sea ice follows an annual cycle, reaching its low point in September each year. The extent of sea ice remaining at this low point has been trending downwards for decades as the Arctic warms. Around the long-term downward trend, however, there is significant variation in the minimum extent from one year to the next. Accurate forecasts of yearly conditions would have great value to Arctic residents, shipping companies, and other stakeholders and are the subject of much current research. Since 2008 the Sea Ice Outlook (SIO) (http://www.arcus.org/search-program/seaiceoutlook) organized by the Study of Environmental Arctic Change (SEARCH) (http://www.arcus.org/search-program) has invited predictions of the September Arctic sea ice minimum extent, which are contributed from the Arctic research community. Individual predictions, based on a variety of approaches, are solicited in three cycles each year in early June, July, and August. (SEARCH 2013).

  6. Trends in annual minimum exposed snow and ice cover in High Mountain Asia from MODIS

    NASA Astrophysics Data System (ADS)

    Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Racoviteanu, Adina; Armstrong, Richard; Dozier, Jeff

    2016-04-01

    Though a relatively short record on climatological scales, data from the Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000-2014 can be used to evaluate changes in the cryosphere and provide a robust baseline for future observations from space. We use the MODIS Snow Covered Area and Grain size (MODSCAG) algorithm, based on spectral mixture analysis, to estimate daily fractional snow and ice cover and the MODICE Persistent Ice (MODICE) algorithm to estimate the annual minimum snow and ice fraction (fSCA) for each year from 2000 to 2014 in High Mountain Asia. We have found that MODSCAG performs better than other algorithms, such as the Normalized Difference Index (NDSI), at detecting snow. We use MODICE because it minimizes false positives (compared to maximum extents), for example, when bright soils or clouds are incorrectly classified as snow, a common problem with optical satellite snow mapping. We analyze changes in area using the annual MODICE maps of minimum snow and ice cover for over 15,000 individual glaciers as defined by the Randolph Glacier Inventory (RGI) Version 5, focusing on the Amu Darya, Syr Darya, Upper Indus, Ganges, and Brahmaputra River basins. For each glacier with an area of at least 1 km2 as defined by RGI, we sum the total minimum snow and ice covered area for each year from 2000 to 2014 and estimate the trends in area loss or gain. We find the largest loss in annual minimum snow and ice extent for 2000-2014 in the Brahmaputra and Ganges with 57% and 40%, respectively, of analyzed glaciers with significant losses (p-value<0.05). In the Upper Indus River basin, we see both gains and losses in minimum snow and ice extent, but more glaciers with losses than gains. Our analysis shows that a smaller proportion of glaciers in the Amu Darya and Syr Darya are experiencing significant changes in minimum snow and ice extent (3.5% and 12.2%), possibly because more of the glaciers in this region are smaller than 1 km2 than in the Indus, Ganges, and Brahmaputra making analysis from MODIS (pixel area ~0.25 km2) difficult. Overall, we see 23% of the glaciers in the 5 river basins with significant trends (in either direction). We relate these changes in area to topography and climate to understand the driving processes related to these changes. In addition to annual minimum snow and ice cover, the MODICE algorithm also provides the date of minimum fSCA for each pixel. To determine whether the surface was snow or ice we use the date of minimum fSCA from MODICE to index daily maps of snow on ice (SOI), or exposed glacier ice (EGI) and systematically derive an equilibrium line altitude (ELA) for each year from 2000-2014. We test this new algorithm in the Upper Indus basin and produce annual estimates of ELA. For the Upper Indus basin we are deriving annual ELAs that range from 5350 m to 5450 m which is slightly higher than published values of 5200 m for this region.

  7. Modulation of the Seasonal Cycle of Antarctic Sea Ice Extent Related to the Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Doddridge, Edward W.; Marshall, John

    2017-10-01

    Through analysis of remotely sensed sea surface temperature (SST) and sea ice concentration data, we investigate the impact of winds related to the Southern Annular Mode (SAM) on sea ice extent around Antarctica. We show that positive SAM anomalies in the austral summer are associated with anomalously cold SSTs that persist and lead to anomalous ice growth in the following autumn, while negative SAM anomalies precede warm SSTs and a reduction in sea ice extent during autumn. The largest effect occurs in April, when a unit change in the detrended summertime SAM is followed by a 1.8±0.6 ×105 km2 change in detrended sea ice extent. We find no evidence that sea ice extent anomalies related to the summertime SAM affect the wintertime sea ice extent maximum. Our analysis shows that the wind anomalies related to the negative SAM during the 2016/2017 austral summer contributed to the record minimum Antarctic sea ice extent observed in March 2017.

  8. Sea Ice Sensitivities in the 0.72 deg and 0.08 deg Arctic Cap Coupled HYCOM/CICE Models

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sea Ice Sensitivities in the 0.72°and 0.08° Arctic Cap...Arctic ice extent, which corresponds to the sea ice that remains during the summer minimum, has decreased over the years 1979–2007 by more than 10% per...Goosse et al. 2009) with the lowest observed sea ice extent in the satellite record (1979-present) occurring in September 2012 (Perovich et al. 2012

  9. Polar Climate: Arctic sea ice

    USGS Publications Warehouse

    Stone, R.S.; Douglas, David C.; Belchansky, G.I.; Drobot, S.D.

    2005-01-01

    Recent decreases in snow and sea ice cover in the high northern latitudes are among the most notable indicators of climate change. Northern Hemisphere sea ice extent for the year as a whole was the third lowest on record dating back to 1973, behind 1995 (lowest) and 1990 (second lowest; Hadley Center–NCEP). September sea ice extent, which is at the end of the summer melt season and is typically the month with the lowest sea ice extent of the year, has decreased by about 19% since the late 1970s (Fig. 5.2), with a record minimum observed in 2002 (Serreze et al. 2003). A record low extent also occurred in spring (Chapman 2005, personal communication), and 2004 marked the third consecutive year of anomalously extreme sea ice retreat in the Arctic (Stroeve et al. 2005). Some model simulations indicate that ice-free summers will occur in the Arctic by the year 2070 (ACIA 2004).

  10. Spatial and Temporal Means and Variability of Arctic Sea Ice Climate Indicators from Satellite Data

    NASA Astrophysics Data System (ADS)

    Peng, G.; Meier, W.; Bliss, A. C.; Steele, M.; Dickinson, S.

    2017-12-01

    Arctic sea ice has been undergoing rapid and accelerated loss since satellite-based measurements became available in late 1970s, especially the summer ice coverage. For the Arctic as a whole, the long-term trend for the annual sea ice extent (SIE) minimum is about -13.5±2.93 % per decade change relative to the 1979-2015 climate average, while the trends of the annual SIE minimum for the local regions can range from 0 to up to -42 % per decade. This presentation aims to examine and baseline spatial and temporal means and variability of Arctic sea ice climate indicators, such as the annual SIE minimum and maximum, snow/ice melt onset, etc., from a consistent, inter-calibrated, long-term time series of remote sensing sea ice data for understanding regional vulnerability and monitoring ice state for climate adaptation and risk mitigation.

  11. Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent.

    NASA Astrophysics Data System (ADS)

    Park, H. S.; Stewart, A.

    2017-12-01

    Arctic summer sea ice extent exhibits substantial interannual variability, as is highlighted by the remarkable recovery in sea ice extent in 2013 following the record minimum in the summer of 2012. Here, we explore the mechanism via which Arctic Oscillation (AO)-induced ice thickness changes impact summer sea ice, using observations and reanalysis data. A positive AO weakens the basin-scale anticyclonic sea ice drift and decreases the winter ice thickness by 15cm and 10cm in the Eurasian and the Pacific sectors of the Arctic respectively. Three reanalysis datasets show that the (upward) surface heat fluxes are reduced over wide areas of the Arctic, suppressing the ice growth during the positive AO winters. The winter dynamic and thermodynamic thinning preconditions the ice for enhanced radiative forcing via the ice-albedo feedback in late spring-summer, leading to an additional 8-10 cm of thinning over the Pacific sector of the Arctic. Because of these winter AO-induced dynamic and thermodynamics effects, the winter AO explains about 22% (r = -0.48) of the interannual variance of September sea ice extent from year 1980 to 2015.

  12. Revisiting the Potential of Melt Pond Fraction as a Predictor for the Seasonal Arctic Sea Ice Extent Minimum

    NASA Technical Reports Server (NTRS)

    Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun

    2015-01-01

    The rapid change in Arctic sea ice in recent decades has led to a rising demand for seasonal sea ice prediction. A recent modeling study that employed a prognostic melt pond model in a stand-alone sea ice model found that September Arctic sea ice extent can be accurately predicted from the melt pond fraction in May. Here we show that satellite observations show no evidence of predictive skill in May. However, we find that a significantly strong relationship (high predictability) first emerges as the melt pond fraction is integrated from early May to late June, with a persistent strong relationship only occurring after late July. Our results highlight that late spring to mid summer melt pond information is required to improve the prediction skill of the seasonal sea ice minimum. Furthermore, satellite observations indicate a much higher percentage of melt pond formation in May than does the aforementioned model simulation, which points to the need to reconcile model simulations and observations, in order to better understand key mechanisms of melt pond formation and evolution and their influence on sea ice state.

  13. Does Change in the Arctic Sea Ice Indicate Climate Change? A Lesson Using Geospatial Technology

    ERIC Educational Resources Information Center

    Bock, Judith K.

    2011-01-01

    The Arctic sea ice has not since melted to the 2007 extent, but annual summer melt extents do continue to be less than the decadal average. Climate fluctuations are well documented by geologic records. Averages are usually based on a minimum of 10 years of averaged data. It is typical for fluctuations to occur from year to year and season to…

  14. Collaborative, International Efforts at Estimating Arctic Sea Ice Processes During IPY (Invited)

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Eicken, H.; Wiggins, H. V.

    2009-12-01

    Planning for the fourth IPY was conducted during a time of moderate decadal change in the Arctic. However, after this initial planning was completed, further rapid changes were seen, including a 39 % reduction in summer sea ice extent in 2007 and 2008 relative to the 1980s-1990s, loss of multi-year sea ice, and increased sea ice mobility. The SEARCH and DAMOCLES Programs endeavored to increase communication within the research community to promote observations and understanding of rapidly changing Arctic sea ice conditions during IPY. In May 2008 a web-based Sea Ice Outlook was initiated, an international collaborative effort that synthesizes, on a monthly basis throughout the summer, the community’s projections for September arctic sea ice extent. Each month, participating investigators provided a projection for the mean September sea ice extent based on spring and early summer data, along with a rationale for their estimates. The Outlook continued in summer of 2009. The Outlook is a method of rapidly synthesizing a broad range of remote sensing and field observations collected at the peak of the IPY, with analysis methods ranging from heuristic to statistical to ice-ocean model ensemble runs. The 2008 Outlook was a success with 20 groups participating and providing a median sea ice extent projection from June 2008 data of 4.4 million square kilometers (MSQK)—near the observed extent in September 2008 of 4.7 MSQK, and well below the 1979-2007 climatological extent of 6.7 MSQK. More importantly, the contrast of sea ice conditions and atmospheric forcing in 2008 compared to 2007 provided clues to the future fate of arctic sea ice. The question was whether the previous loss of multi-year ice and delay in autumn freeze-up in 2007 would allow sufficient winter thickening of sea ice to last through the summer 2008, promoting recovery from the 2007 minimum, or whether most first-year sea ice would melt out as in 2005 and 2007, resulting in a new record minimum extent. Ultimately, neither extreme was observed. For September 2009 the median projection based on June 2009 data was 4.6 MSQK. June and July conditions were favorable for another record ice loss, but atmospheric circulation and cloudiness in August slowed ice retreat, suggesting that the 2009 Outlook estimates will be too low. A conclusion of this IPY effort is that although it will be difficult for summer sea ice to return to 1990 conditions, it will also require near-perfect synchrony in physical forcing as in 2007 to produce the next major loss event. The Outlook plans to continue.

  15. Toward Sub-seasonal to Seasonal Arctic Sea Ice Forecasting Using the Regional Arctic System Model (RASM)

    NASA Astrophysics Data System (ADS)

    Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.

    2017-12-01

    The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).

  16. Global Sea Ice Coverage from Satellite Data: Annual Cycle and 35-Year Trends

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2014-01-01

    Well-established satellite-derived Arctic and Antarctic sea ice extents are combined to create the global picture of sea ice extents and their changes over the 35-yr period 1979-2013. Results yield a global annual sea ice cycle more in line with the high-amplitude Antarctic annual cycle than the lower-amplitude Arctic annual cycle but trends more in line with the high-magnitude negative Arctic trends than the lower-magnitude positive Antarctic trends. Globally, monthly sea ice extent reaches a minimum in February and a maximum generally in October or November. All 12 months show negative trends over the 35-yr period, with the largest magnitude monthly trend being the September trend, at -68,200 +/- 10,500 sq km/yr (-2.62% 6 +/- 0.40%/decade), and the yearly average trend being -35,000 +/- 5900 sq km/yr (-1.47% +/- 0.25%/decade).

  17. Global Sea Ice Coverage from Satellite Data: Annual Cycle and 35-Yr Trends

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2014-01-01

    Well-established satellite-derived Arctic and Antarctic sea ice extents are combined to create the global picture of sea ice extents and their changes over the 35-yr period 1979-2013. Results yield a global annual sea ice cycle more in line with the high-amplitude Antarctic annual cycle than the lower-amplitude Arctic annual cycle but trends more in line with the high-magnitude negative Arctic trends than the lower-magnitude positive Antarctic trends. Globally, monthly sea ice extent reaches a minimum in February and a maximum generally in October or November. All 12 months show negative trends over the 35-yr period, with the largest magnitude monthly trend being the September trend, at -68200 +/- 10500 km sq yr(exp -1) (-2.62% +/- 0.40%decade(exp -1)), and the yearly average trend being -35000 +/-5900 km sq yr(exp -1) (-1.47% +/- 0.25%decade(exp -1)).

  18. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows

    NASA Astrophysics Data System (ADS)

    Petty, Alek A.; Stroeve, Julienne C.; Holland, Paul R.; Boisvert, Linette N.; Bliss, Angela C.; Kimura, Noriaki; Meier, Walter N.

    2018-02-01

    The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative "compactness" of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, "New Arctic", sea ice regime.

  19. NASA Science Flights Target Melting Arctic Sea Ice

    NASA Image and Video Library

    2017-12-08

    This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge

  20. Summer 2007 and 2008 Arctic Sea Ice Loss in Context: OUTLOOK 2008

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Eicken, H.; Wiggins, H. V.

    2008-12-01

    The Arctic is changing faster than the publication cycle for new information. In response, the SEARCH and DAMOCLES Programs initiated an OUTLOOK 2008 to provide broad-based communication and assessment within the arctic science community on the causes of rapid summer sea ice loss, synthesizing information from Arctic observing networks and model simulations. The question for summer 2008 was whether the previous loss of multi-year sea ice and delay in sea ice formation in autumn 2007 would still allow sufficient winter growth of sea ice thickness to last through the summer 2008, potentially allowing for recovery from the 2007 minimum. The answer is no; summer 2008 was a second sequential year of extremely low minimum sea ice extent. To organize OUTLOOK 2008, respondents were asked in May, June and July to provide a rationale and semi-quantitative assessment of arctic sea ice extent anticipated for September 2008. OUTLOOK 2008 supplemented information maintained by ice centers, universities and other data providers. Using a range of methods, all of the approximately 20 groups responded that summer sea ice would not return to climatological mean conditions, with a median response near the 2007 extent. The range of responses depended on the relative weight given to "initial conditions," e.g., age and thickness of sea ice at the end of spring, versus whether summer winds in 2008 would be as supportive for ice loss as in 2007. Initial conditions turned out to be a primary factor for summer 2008, with implications for continued sea ice loss in future years. OUTLOOK 2008 highlighted aspects of the observation and modeling efforts that require further attention such as interpretation of summer microwave signatures, in situ buoy measurements, and data assimilation in models. We appreciate the contributions from respondents and reviewers who made OUTLOOK 2008 a success.

  1. The Navy's First Seasonal Ice Forecasts using the Navy's Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Preller, Ruth

    2013-04-01

    As conditions in the Arctic continue to change, the Naval Research Laboratory (NRL) has developed an interest in longer-term seasonal ice extent forecasts. The Arctic Cap Nowcast/Forecast System (ACNFS), developed by the Oceanography Division of NRL, was run in forward model mode, without assimilation, to estimate the minimum sea ice extent for September 2012. The model was initialized with varying assimilative ACNFS analysis fields (June 1, July 1, August 1 and September 1, 2012) and run forward for nine simulations using the archived Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric forcing fields from 2003-2011. The mean ice extent in September, averaged across all ensemble members was the projected summer ice extent. These results were submitted to the Study of Environmental Arctic Change (SEARCH) Sea Ice Outlook project (http://www.arcus.org/search/seaiceoutlook). The ACNFS is a ~3.5 km coupled ice-ocean model that produces 5 day forecasts of the Arctic sea ice state in all ice covered areas in the northern hemisphere (poleward of 40° N). The ocean component is the HYbrid Coordinate Ocean Model (HYCOM) and is coupled to the Los Alamos National Laboratory Community Ice CodE (CICE) via the Earth System Modeling Framework (ESMF). The ocean and ice models are run in an assimilative cycle with the Navy's Coupled Ocean Data Assimilation (NCODA) system. Currently the ACNFS is being transitioned to operations at the Naval Oceanographic Office.

  2. Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone

    NASA Astrophysics Data System (ADS)

    Morison, J.

    2016-02-01

    The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.

  3. Ship accessibility predictions for the Arctic Ocean based on IPCC CO2 emission scenarios

    NASA Astrophysics Data System (ADS)

    Oh, Jai-Ho; Woo, Sumin; Yang, Sin-Il

    2017-02-01

    Changes in the extent of Arctic sea ice, which have resulted from climate change, offer new opportunities to use the Northern Sea Route (NSR) and Northwest Passage (NWP) for shipping. However, choosing to navigate the Arctic Ocean remains challenging due to the limited accessibility of ships and the balance between economic gain and potential risk. As a result, more precise and detailed information on both weather and sea ice change in the Arctic are required. In this study, a high-resolution global AGCM was used to provide detailed information on the extent and thickness of Arctic sea ice. For this simulation, we have simulated the AMIP-type simulation for the present-day climate during 31 years from 1979 to 2009 with observed SST and Sea Ice concentration. For the future climate projection, we have performed the historical climate during 1979-2005 and subsequently the future climate projection during 2010-2099 with mean of four CMIP5 models due to the two Representative Concentration Pathway scenarios (RCP 8.5 and RCP 4.5). First, the AMIP-type simulation was evaluated by comparison with observations from the Hadley Centre sea-ice and Sea Surface Temperature (HadlSST) dataset. The model reflects the maximum (in March) and minimum (in September) sea ice extent and annual cycle. Based on this validation, the future sea ice extents show the decreasing trend for both the maximum and minimum seasons and RCP 8.5 shows more sharply decreasing patterns of sea ice than RCP 4.5. Under both scenarios, ships classified as Polar Class (PC) 3 and Open-Water (OW) were predicted to have the largest and smallest number of ship-accessible days (in any given year) for the NSR and NWP, respectively. Based on the RCP 8.5 scenario, the projections suggest that after 2070, PC3 and PC6 vessels will have year-round access across to the Arctic Ocean. In contrast, OW vessels will continue to have a seasonal handicap, inhibiting their ability to pass through the NSR and NWP.

  4. Arctic ice cover, ice thickness and tipping points.

    PubMed

    Wadhams, Peter

    2012-02-01

    We summarize the latest results on the rapid changes that are occurring to Arctic sea ice thickness and extent, the reasons for them, and the methods being used to monitor the changing ice thickness. Arctic sea ice extent had been shrinking at a relatively modest rate of 3-4% per decade (annually averaged) but after 1996 this speeded up to 10% per decade and in summer 2007 there was a massive collapse of ice extent to a new record minimum of only 4.1 million km(2). Thickness has been falling at a more rapid rate (43% in the 25 years from the early 1970s to late 1990s) with a specially rapid loss of mass from pressure ridges. The summer 2007 event may have arisen from an interaction between the long-term retreat and more rapid thinning rates. We review thickness monitoring techniques that show the greatest promise on different spatial and temporal scales, and for different purposes. We show results from some recent work from submarines, and speculate that the trends towards retreat and thinning will inevitably lead to an eventual loss of all ice in summer, which can be described as a 'tipping point' in that the former situation, of an Arctic covered with mainly multi-year ice, cannot be retrieved.

  5. Emerging Trends in the Sea State of the Beaufort and Chukchi Seas

    DTIC Science & Technology

    2016-07-06

    Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in...the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing...In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally

  6. Seasonal regional forecast of the minimum sea ice extent in the LapteV Sea

    NASA Astrophysics Data System (ADS)

    Tremblay, B.; Brunette, C.; Newton, R.

    2017-12-01

    Late winter anomaly of sea ice export from the peripheral seas of the Atctic Ocean was found to be a useful predictor for the minimum sea ice extent (SIE) in the Arctic Ocean (Williams et al., 2017). In the following, we present a proof of concept for a regional seasonal forecast of the min SIE for the Laptev Sea based on late winter coastal divergence quantified using a Lagrangian Ice Tracking System (LITS) forced with satellite derived sea-ice drifts from the Polar Pathfinder. Following Nikolaeva and Sesterikov (1970), we track an imaginary line just offshore of coastal polynyas in the Laptev Sea from December of the previous year to May 1 of the following year using LITS. Results show that coastal divergence in the Laptev Sea between February 1st and May 1st is best correlated (r = -0.61) with the following September minimum SIE in accord with previous results from Krumpen et al. (2013, for the Laptev Sea) and Williams et a. (2017, for the pan-Arctic). This gives a maximum seasonal predictability of Laptev Sea min SIE anomalies from observations of approximately 40%. Coastal ice divergence leads to formation of thinner ice that melts earlier in early summer, hence creating areas of open water that have a lower albedo and trigger an ice-albedo feedback. In the Laptev Sea, we find that anomalies of coastal divergence in late winter are amplified threefold to result in the September SIE. We also find a correlation coefficient r = 0.49 between February-March-April (FMA) anomalies of coastal divergence with the FMA averaged AO index. Interestingly, the correlation is stronger, r = 0.61, when comparing the FMA coastal divergence anomalies to the DJFMA averaged AO index. It is hypothesized that the AO index at the beginning of the winter (and the associated anomalous sea ice export) also contains information that impact the magnitude of coastal divergence opening later in the winter. Our approach differs from previous approaches (e.g. Krumpen et al and Williams et al) in that the coastal divergence is quantified directly by following the edge of the mobile pack ice in a Lagrangian manner.

  7. Towards development of an operational snow on sea ice product

    NASA Astrophysics Data System (ADS)

    Stroeve, J.; Liston, G. E.; Barrett, A. P.; Tschudi, M. A.; Stewart, S.

    2017-12-01

    Sea ice has been visibly changing over the past couple of decades; most notably the annual minimum extent which has shown a distinct downward, and recently accelerating, trend. September mean sea ice extent was over 7×106 km2 in the 1980's, but has averaged less than 5×106 km2 in the last decade. Should this loss continue, there will be wide-ranging impacts on marine ecosystems, coastal communities, prospects for resource extraction and marine activity, and weather conditions in the Arctic and beyond. While changes in the spatial extent of sea ice have been routinely monitored since the 1970s, less is known about how the thickness of the ice cover has changed. While estimates of ice thickness across the Arctic Ocean have become available over the past 20 years based on data from ERS-1/2, Envisat, ICESat, CryoSat-2 satellites and Operation IceBridge aircraft campaigns, the variety of these different measurement approaches, sensor technologies and spatial coverage present formidable challenges. Key among these is that measurement techniques do not measure ice thickness directly - retrievals also require snow depth and density. Towards that end, a sophisticated snow accumulation model is tested in a Lagrangian framework to map daily snow depths across the Arctic sea ice cover using atmospheric reanalysis data as input. Accuracy of the snow accumulation is assessed through comparison with Operation IceBridge data and ice mass balance buoys (IMBs). Impacts on ice thickness retrievals are further discussed.

  8. Trends in Arctic Sea Ice Volume 2010-2013 from CryoSat-2

    NASA Astrophysics Data System (ADS)

    Tilling, R.; Ridout, A.; Wingham, D.; Shepherd, A.; Haas, C.; Farrell, S. L.; Schweiger, A. J.; Zhang, J.; Giles, K.; Laxon, S.

    2013-12-01

    Satellite records show a decline in Arctic sea ice extent over the past three decades with a record minimum in September 2012, and results from the Pan-Arctic Ice-Ocean Modelling and Assimilation System (PIOMAS) suggest that this has been accompanied by a reduction in volume. We use three years of measurements recorded by the European Space Agency CryoSat-2 (CS-2) mission, validated with in situ data, to generate estimates of seasonal variations and inter-annual trends in Arctic sea ice volume between 2010 and 2013. The CS-2 estimates of sea ice thickness agree with in situ estimates derived from upward looking sonar measurements of ice draught and airborne measurements of ice thickness and freeboard to within 0.1 metres. Prior to the record minimum in summer 2012, autumn and winter Arctic sea ice volume had fallen by ~1300 km3 relative to the previous year. Using the full 3-year period of CS-2 observations, we estimate that winter Arctic sea ice volume has decreased by ~700 km3/yr since 2010, approximately twice the average rate since 1980 as predicted by the PIOMAS.

  9. Towards an Ice-Free Arctic Ocean in Summertime

    NASA Astrophysics Data System (ADS)

    Gascard, Jean Claude

    2014-05-01

    Dividing the Arctic Ocean in two parts, the so-called Atlantic versus the Pacific sector, two distinct modes of variability appear for characterizing the Arctic sea-ice extent from 70°N up to 80°N in both sectors. The Atlantic sector seasonal sea-ice extent is characterized by a longer time scale than the Pacific sector with a break up melting season starting in May and reaching a peak in June-July, one month earlier than the Pacific sector of the Arctic Ocean revealing a faster time evolution and a larger spatial amplitude than the Atlantic sector. During recent years like 2007, sea-ice extent with sea-ice concentration above 15% retreated from 4 millions km2 to about 1 million km2 in the Arctic Pacific sector between 70° and 80°N except for 2012 when most of sea-ice melted away in this region. That explained most of the differences between the two extreme years 2007 and 2012. In the Atlantic sector, Arctic sea-ice retreated from 2 millions km2 to nearly 0 during recent years including 2007 and 2012. The Atlantic inflow North of Svalbard and Franz Josef Land is more likely responsible for a northward retreat of the ice edge in that region. The important factor is not only that the Arctic summer sea-ice minimum extent decreased by 3 or 4 millions km2 over the past 10 years but also that the melting period was steadily increasing by one to two days every year during that period. An important factor concerns the strength of the freezing that can be quantified in terms of Freezing Degree Days FDD accumulated during the winter-spring season and the strength of the melting (MDD) that can be accumulated during the summer season. FDD and MDD have been calculated for the past 30 years all over the Arctic Ocean using ERA Interim Reanalysis surface temperature at 2m height in the atmosphere. It is clear that FDD decreased significantly by more than 2000 FDD between 1980 and 2012 which is equivalent to the sensible heat flux corresponding to more than a meter of sea-ice thickness. During the same period MDD increased steadily mainly due to an increase of the melting period rather than an increase in summer temperatures. Due to uncertainties in sea-ice thickness distribution, an estimated 66% up to 75% of sea-ice mass or volume melted away during recent summers compare to previous 20 or 30 years. How long would it take to melt away the 1/4 or 1/3 of Arctic sea-ice left in summer? A root mean square extrapolation based on the last 10 years summer sea-ice minimum extent would lead to an ice-free Arctic Ocean by 2035.

  10. Year-Round Pack Ice in the Weddell Sea, Antarctica: Response and Sensitivity to Atmospheric and Oceanic Forcing

    NASA Technical Reports Server (NTRS)

    Geiger, Cathleen A.; Ackley, Stephen F.; Hibler, William D., III

    1997-01-01

    Using a dynamic-thermodynamic numerical sea-ice model, external oceanic and atmospheric forcings on sea ice in the Weddell Sea are examined to identify physical processes associated with the seasonal cycle of pack ice, and to identify further the parameters that coupled models need to consider in predicting the response of the pack ice to climate and ocean-circulation changes. In agreement with earlier studies, the primary influence on the winter ice-edge maximum extent is air temperature. Ocean heat flux has more impact on the minimum-ice-edge extent and in reducing pack-ice thickness, especially in the eastern-Weddell Sea. Low relative humidity enhances ice growth in thin ice and open-water regions, producing a more realistic ice edge along the coastal areas of the western-Weddell Sea where dry continental air has an impact. The modeled extent of the Weddell summer pack is equally sensitive to ocean heat flux and atmospheric relative humidity variations with the more dynamic responses being from the atmosphere. Since the atmospheric regime in the eastern Weddell is dominated by marine intrusions from lower latitudes, with high humidity already, it is unlikely that either the moisture trans- port could be further raised or that it could be significantly lowered because of its distance from the continent (the lower humidity source). Ocean heat-transport variability is shown to lead to overall ice thinning in the model response and is a known feature of the actual system, as evidenced by the occurrence of the Weddell Polynya in the mid 1970s.

  11. Sea Ice Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin

    2015-01-01

    The recent decline in perennial sea ice cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea ice extent would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the ice cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea ice extent for the month of September (the month of the annual extent minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea Ice Outlook (SIO) but recently came under the auspices of the Sea Ice Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea ice extent from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic ice extent of 5.030.41 million km2.

  12. Visualizing Glaciers and Sea Ice via Google Earth

    NASA Astrophysics Data System (ADS)

    Ballagh, L. M.; Fetterer, F.; Haran, T. M.; Pharris, K.

    2006-12-01

    The NOAA team at NSIDC manages over 60 distinct cryospheric and related data products. With an emphasis on data rescue and in situ data, these products hold value for both the scientific and non-scientific user communities. The overarching goal of this presentation is to promote products from two components of the cryosphere (glaciers and sea ice). Our Online Glacier Photograph Database contains approximately 3,000 photographs taken over many decades, exemplifying change in the glacier terminus over time. The sea ice product shows sea ice extent and concentration along with anomalies and trends. This Sea Ice Index product, which starts in 1979 and is updated monthly, provides visuals of the current state of sea ice in both hemispheres with trends and anomalies. The long time period covered by the data set means that many of the trends in ice extent and concentration shown in this product are statistically significant despite the large natural variability in sea ice. The minimum arctic sea ice extent has been a record low in September 2002 and 2005, contributing to an accelerated trend in sea ice reduction. With increasing world-wide interest in indicators of global climate change, and the upcoming International Polar Year, these data products are of interest to a broad audience. To further extend the impact of these data, we have made them viewable through Google Earth via the Keyhole Markup Language (KML). This presents an opportunity to branch out to a more diverse audience by using a new and innovative tool that allows spatial representation of data of significant scientific and educational interest.

  13. A Chronology of Late-Glacial and Holocene Advances of Quelccaya Ice Cap, Peru, Based on 10Be and Radiocarbon Dating

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.

    2007-12-01

    The Quelccaya Ice Cap region in the southeastern Peruvian Andes (~13-14°S latitude) is a key location for the development of late-glacial and Holocene terrestrial paleoclimate records in the tropics. We present a chronology of past extents of Quelccaya Ice Cap based on ~thirty internally consistent 10Be dates of boulders on moraines and bedrock as well as twenty radiocarbon dates of organic material associated with moraines. Based on results from both dating methods, we suggest that significant advances of Quelccaya Ice Cap occurred during late-glacial time, at ~12,700-11,400 yr BP, and during Late Holocene time ~400-300 yr BP. Radiocarbon dating of organic material associated with moraines provides maximum and minimum ages for ice advances and recessions, respectively, thus providing an independent check on 10Be dates of boulders on moraines. The opportunity to use both 10Be and radiocarbon dating makes the Quelccaya Ice Cap region a potentially important low-latitude calibration site for production rates of cosmogenic nuclides. Our radiocarbon chronology provides a tighter constraint on maximum ages of late-glacial and Late Holocene ice advances. Upcoming field research will obtain organic material for radiocarbon dating to improve minimum age constrains for late-glacial and Late Holocene ice recessions.

  14. Sea Ice off the Princess Astrid Coast

    NASA Image and Video Library

    2015-04-08

    On April 5, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of sea ice off the coast of East Antarctica’s Princess Astrid Coast. White areas close to the continent are sea ice, while white areas in the northeast corner of the image are clouds. One way to better distinguish ice from clouds is with false-color imagery. In the false-color view of the scene here, ice is blue and clouds are white. The image was acquired after Antarctic sea ice had passed its annual minimum extent (reached on February 20, 2015), and had resumed expansion toward its maximum extent (usually reached in September). Credit: NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response. Caption by Kathryn Hansen via NASA's Earth Observatory Read more: www.nasa.gov/content/sea-ice-off-east-antarcticas-princes... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. A quantitative assessment of Arctic shipping in 2010–2014

    PubMed Central

    Eguíluz, Victor M.; Fernández-Gracia, Juan; Irigoien, Xabier; Duarte, Carlos M.

    2016-01-01

    Rapid loss of sea ice is opening up the Arctic Ocean to shipping, a practice that is forecasted to increase rapidly by 2050 when many models predict that the Arctic Ocean will largely be free of ice toward the end of summer. These forecasts carry considerable uncertainty because Arctic shipping was previously considered too sparse to allow for adequate validation. Here, we provide quantitative evidence that the extent of Arctic shipping in the period 2011–2014 is already significant and that it is concentrated (i) in the Norwegian and Barents Seas, and (ii) predominantly accessed via the Northeast and Northwest Passages. Thick ice along the forecasted direct trans-Arctic route was still present in 2014, preventing transit. Although Arctic shipping remains constrained by the extent of ice coverage, during every September, this coverage is at a minimum, allowing the highest levels of shipping activity. Access to Arctic resources, particularly fisheries, is the most important driver of Arctic shipping thus far. PMID:27477878

  16. Approaching the 2015 Arctic Sea Ice Minimum

    NASA Image and Video Library

    2017-12-08

    As the sun sets over the Arctic, the end of this year’s melt season is quickly approaching and the sea ice cover has already shrunk to the fourth lowest in the satellite record. With possibly some days of melting left, the sea ice extent could still drop to the second or third lowest on record. Arctic sea ice, which regulates the planet’s temperature by bouncing solar energy back to space, has been on a steep decline for the last two decades. This animation shows the evolution of Arctic sea ice in 2015, from its annual maximum wintertime extent, reached on February 25, to September 6. Credit: NASA Scientific Visualization Studio DOWNLOAD THIS VIDEO HERE: svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11999 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Data-adaptive Harmonic Decomposition and Real-time Prediction of Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Kondrashov, Dmitri; Chekroun, Mickael; Ghil, Michael

    2017-04-01

    Decline in the Arctic sea ice extent (SIE) has profound socio-economic implications and is a focus of active scientific research. Of particular interest is prediction of SIE on subseasonal time scales, i.e. from early summer into fall, when sea ice coverage in Arctic reaches its minimum. However, subseasonal forecasting of SIE is very challenging due to the high variability of ocean and atmosphere over Arctic in summer, as well as shortness of observational data and inadequacies of the physics-based models to simulate sea-ice dynamics. The Sea Ice Outlook (SIO) by Sea Ice Prediction Network (SIPN, http://www.arcus.org/sipn) is a collaborative effort to facilitate and improve subseasonal prediction of September SIE by physics-based and data-driven statistical models. Data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) techniques [Chekroun and Kondrashov, 2017], have been successfully applied to the nonlinear stochastic modeling, as well as retrospective and real-time forecasting of Multisensor Analyzed Sea Ice Extent (MASIE) dataset in key four Arctic regions. In particular, DAH-MSLM predictions outperformed most statistical models and physics-based models in real-time 2016 SIO submissions. The key success factors are associated with DAH ability to disentangle complex regional dynamics of MASIE by data-adaptive harmonic spatio-temporal patterns that reduce the data-driven modeling effort to elemental MSLMs stacked per frequency with fixed and small number of model coefficients to estimate.

  18. September Arctic Sea Ice minimum prediction - a new skillful statistical approach

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Scholz, Patrick; Treffeisen, Renate; Lohmann, Gerrit

    2017-04-01

    Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability is complex and it depends on various climate and oceanic parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal of sea ice evolution, we developed a robust statistical model based on ocean heat content, sea surface temperature and different atmospheric variables to calculate an estimate of the September Sea ice extent (SSIE) on monthly time scale. Although previous statistical attempts at monthly/seasonal forecasts of SSIE show a relatively reduced skill, we show here that more than 92% (r = 0.96) of the September sea ice extent can be predicted at the end of May by using previous months' climate and oceanic conditions. The skill of the model increases with a decrease in the time lag used for the forecast. At the end of August, our predictions are even able to explain 99% of the SSIE. Our statistical model captures both the general trend as well as the interannual variability of the SSIE. Moreover, it is able to properly forecast the years with extreme high/low SSIE (e.g. 1996/ 2007, 2012, 2013). Besides its forecast skill for SSIE, the model could provide a valuable tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.

  19. Dark ice dynamics of the south-west Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from ablating ice, these particulates alone do not drive dark ice dynamics. Instead, they may enable the growth of pigmented ice algal assemblages which cause visible surface darkening, but only when the climatological prerequisites of liquid meltwater presence and sufficient photosynthetically active radiation fluxes are met. Further field studies are required to fully constrain the processes by which ice algae growth proceeds and the apparent dependency of algae growth on melt-out particulates.

  20. Physical processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D. G.; Galley, R. J.; Barber, D. G.; Rysgaard, S.

    2016-01-01

    During the record September 2012 sea ice minimum, the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July, and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling, and riverine inputs, but was ultimately made possible through years of preconditioning toward a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency toward earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 yr-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 yr-1. Overall through preconditioning toward a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  1. Physical Processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D.; Galley, R.; Barber, D. G.; Rysgaard, S.

    2016-12-01

    During the record September 2012 sea ice minimum the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling and riverine inputs, but was ultimately made possible through years of preconditioning towards a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency towards earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 year-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 year-1. Overall through preconditioning towards a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  2. Linkages Between the Great Arctic Cyclone of August 2012 and Tropopause Polar Vortices

    NASA Astrophysics Data System (ADS)

    Biernat, K.; Keyser, D.; Bosart, L. F.

    2017-12-01

    Coherent vortices in the vicinity of the tropopause, referred to as tropopause polar vortices (TPVs), are common features in the Arctic. TPVs may interact with and strengthen jet streams, as well as act as precursor disturbances for the development of Arctic cyclones. Arctic cyclones may be associated with strong surface winds and poleward advection of warm, moist air, contributing to reductions in Arctic sea-ice extent. Also, heavy precipitation, strong surface winds, and large waves accompanying Arctic cyclones may pose hazards to ships moving through open passageways in the Arctic Ocean. The Great Arctic Cyclone of August 2012 (hereafter AC12) is an example of an intense Arctic cyclone. AC12 formed on 2 August 2012 over central Siberia and attained a minimum sea level pressure (SLP) of 964 hPa on 6 August 2012 over the Arctic. Strong surface winds associated with AC12 led to reductions in Arctic sea-ice extent during a time in which sea ice was thin. Two TPVs are hypothesized to play a role in the life cycle of AC12. The purpose of this study is to investigate the linkages between AC12 and the two TPVs. The ERA-Interim dataset was utilized to examine the linkages between AC12 and the two TPVs. The two TPVs, TPV 1 and TPV 2, were tracked objectively using a TPV tracking algorithm. AC12 was tracked manually by following the locations of minimum SLP. During early August 2012, as TPV 1 approached and interacted with AC12 in a region of strong baroclinicity, it likely played an important role in the subsequent intensification of AC12. In addition, TPV-jet interactions involving both TPV 1 and TPV 2 likely contributed to the formation of a dual-jet configuration and jet coupling over AC12. The presence of warm, moist air and relatively strong lower-tropospheric ascent in the region of jet coupling and the subsequent interaction between both TPVs likely facilitated the intensification of AC12. After attaining its minimum SLP, AC12 moved slowly over the Arctic, where its expansive surface wind field contributed to reductions of Arctic sea-ice extent over a prolonged period. This study illustrates that TPVs, along with associated TPV-jet and TPV-TPV interactions, may play important roles in the life cycles of Arctic cyclones, which may lead to reductions in Arctic sea-ice extent.

  3. Record low lake ice thickness and bedfast ice extent on Alaska's Arctic Coastal Plain in 2017 exemplify the value of monitoring freshwater ice to understand sea-ice forcing and predict permafrost dynamics

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Alexeev, V. A.; Bondurant, A. C.; Creighton, A.; Engram, M. J.; Jones, B. M.; Parsekian, A.

    2017-12-01

    The winter of 2016/2017 was exceptionally warm and snowy along the coast of Arctic Alaska partly due to low fall sea ice extent. Based on several decades of field measurements, we documented a new record low maximum ice thickness (MIT) for lakes on the Barrow Peninsula, averaging 1.2 m. This is in comparison to a long-term average MIT of 1.7 m stretching back to 1962 with a maximum of 2.1 m in 1970 and previous minimum of 1.3 m in 2014. The relevance of thinner lake ice in arctic coastal lowlands, where thermokarst lakes cover greater than 20% of the land area, is that permafrost below lakes with bedfast ice is typically preserved. Lakes deeper than the MIT warm and thaw sub-lake permafrost forming taliks. Remote sensing analysis using synthetic aperture radar (SAR) is a valuable tool for scaling the field observations of MIT to the entire freshwater landscape to map bedfast ice. A new, long-term time-series of late winter multi-platform SAR from 1992 to 2016 shows a large dynamic range of bedfast ice extent, 29% of lake area or 6% of the total land area over this period, and adding 2017 to this record is expected to extend this range further. Empirical models of lake mean annual bed temperature suggest that permafrost begins to thaw at depths less than 60% of MIT. Based on this information and knowledge of average lake ice growth trajectories, we suggest that future SAR analysis of lake ice should focus on mid-winter (January) to evaluate the extent of bedfast ice and corresponding zones of sub-lake permafrost thaw. Tracking changes in these areas from year to year in mid-winter may provide the best landscape-scale evaluation of changing permafrost conditions in lake-rich arctic lowlands. Because observed changes in MIT coupled with mid-winter bedfast ice extent provide much information on permafrost stability, we suggest that these measurements can serve as Essential Climate Variables (EVCs) to indicate past and future changes in lake-rich arctic regions. The strong linkage between declining sea ice and terrestrial freshwater ice thickness, lake ice regimes, and sub-lake permafrost stability suggest more rapid degradation of landscape-wide permafrost than some observations and models might suggest, warranting a targeted program to indicate such arctic land-sea linkages.

  4. The Satellite Passive-Microwave Record of Sea Ice in the Ross Sea Since Late 1978

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2009-01-01

    Satellites have provided us with a remarkable ability to monitor many aspects of the globe day-in and day-out and sea ice is one of numerous variables that by now have quite substantial satellite records. Passive-microwave data have been particularly valuable in sea ice monitoring, with a record that extends back to August 1987 on daily basis (for most of the period), to November 1970 on a less complete basis (again for most of the period), and to December 1972 on a less complete basis. For the period since November 1970, Ross Sea sea ice imagery is available at spatial resolution of approximately 25 km. This allows good depictions of the seasonal advance and retreat of the ice cover each year, along with its marked interannual variability. The Ross Sea ice extent typically reaches a minimum of approximately 0.7 x 10(exp 6) square kilometers in February, rising to a maximum of approximately 4.0 x 10(exp 6) square kilometers in September, with much variability among years for both those numbers. The Ross Sea images show clearly the day-by-day activity greatly from year to year. Animations of the data help to highlight the dynamic nature of the Ross Sea ice cover. The satellite data also allow calculation of trends in the ice cover over the period of the satellite record. Using linear least-squares fits, the Ross Sea ice extent increased at an average rate of 12,600 plus or minus 1,800 square kilometers per year between November 1978 and December 2007, with every month exhibiting increased ice extent and the rates of increase ranging from a low of 7,500 plus or minus 5,000 square kilometers per year for the February ice extents to a high of 20,300 plus or minus 6,100 kilometers per year for the October ice extents. On a yearly average basis, for 1979-2007 the Ross Sea ice extent increased at a rate of 4.8 plus or minus 1.6 % per decade. Placing the Ross Sea in the context of the Southern Ocean as a whole, over the November 1978-December 2007 period the Ross Sea had the highest rate of increase in sea ice coverage of any of five standard divisions of the Southern Ocean, although the Weddell Sea, Indian Ocean, and Western Pacific Ocean all also had sea ice increases, while only the Bellingshausen/Smundsen Seas experienced overall sea ice decreases. Overall, the Southern Ocean sea ice cover increased at an average rate of 10,800 plus or minus 2,500 square kilometers per year between November 1978 and December 2007, with every month showing positive values although with some of these values not being statistically significant. The sea ice increase since November 1978 was preceded by a sharp decrease in Southern Ocean ice coverage in the 1970's and is in marked contrast to the decrease in Arctic sea ice coverage that has occurred both in the period since November 1978 and since earlier in the 1970's. On a yearly average bases, for 1979-2007 the Southern Ocean sea ice extent increased at a rate of 1.0 plus or minus 0.4% per decade, whereas the Arctic ice extent decreased at the much greater rate of 4.0 plus or minus 0.4 percent per decade (closer to the % per decade rate of increase in the Ross Sea). Considerable research is ongoing to explain the differences.

  5. Seafloor Control on Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  6. Spatial and temporal variations of the length of the ice-free season in the Arctic in the 1979-2008 period

    NASA Astrophysics Data System (ADS)

    Rodrigues, J.

    2009-04-01

    We use the length of the ice-free season (LIFS) and a quantity designated by inverse sea ice index (ISII) to quantify the rapid decline of the Arctic sea ice that has been observed in the past decades. The LIFS and ISII in each point for each year between 1979 and 2008 are derived from the daily sea ice concentrations C(y,d;i) for cell i on day (y,d) = (year,day) which, in turn, are obtained from satellite passive microwave imagery. We define the LIFS L(y;i) at a certain point i in year y as the number of days between the clearance of the ice and the formation (more exactly, the appearance) of the ice in that point in that year. If the number of clearances and formations is larger than one the LIFS is defined as the sum of the lengths of all periods between an ice clearance and the following ice formation. The criteria to identify dates of ice clearance and ice formation are as follows. We assume that there is clearance on day d if the ice concentration is 0.15 or higher on days d - 4,d - 3,d - 2 and d - 1 and below 0.15 on days d,d + 1,d + 2,d + 3 and d + 4. We consider that there is formation on day d if the ice concentration is below 0.15 on days d - 4,d - 3,d - 2 and d - 1 and 0.15 or higher on days d,d + 1,d + 2,d + 3 and d + 4. The ISII S(y;i) for point i in year y is given by S(y;i) = 1 - ‘ d=1NC(y,d;i) N , where N is the number of days in the year. This quantity, which varies between zero (when there is a perennial ice cover) and one (when there is open water all year round), measures the absence of sea ice throughout the year, hence the name inverse sea ice index. We argue that these variables are at least as suitable for the purpose of describing the depletion of sea ice in the Arctic as those that are more often found in the literature, namely the sea ice area and extent at the times of annual minimum. Firstly, the sea ice extent and area are global variables while the length of the ice-free season is a local one, and thus more appropriated to study locally the variation of the ice cover in small regions such as narrow straits (which occupy one or only a few pixels in the usual 12.5 or 25km grids). Secondly, while the ice extent or area must be calculated, say, for each month of the year (for instance by averaging the daily ice extents or areas over one month), the LIFS and ISII have one single value for each year for each point, thus being more representative of the ice situation in a certain year than the usually quoted summer minimum or winter maximum. Finally, minimum and maximum values can be strongly affected by specific circumstances occurring in a comparatively short time interval. It was noticed, for instance, that in the summer of 2007 there were unusually clear skies over the Arctic Ocean which would have favoured a rapid melting, and a particular wind pattern which would have led to a strong advection of the ice out of the Arctic Ocean through Fram Strait (special conditions that may partly explain the extraordinary depletion of sea ice in the Arctic Ocean in the summer of 2007). We construct a time-series of the LIFS for the 1979-2008 period for each point of the Arctic where sea ice was found at least one day in this period. We describe in detail the melting seasons of 2007 (the longest on record) and 2008, and analyse the changes that took place in the last 30 years in 85 disjoint regions of the Arctic Ocean and peripheral seas. We found that between 1979 and 2006 the spatially averaged ice-free season in the Arctic increased at an approximately steady rate of 1.1 days/year and that the growth was considerably faster (5.5 days/year), and monotonic, in the 2001-2007 period. In 2007 the average LIFS in the Arctic was 168 days, dropping to 158 days in 2008, which makes it the fourth longer since systematic satellite monitoring of the Arctic began.

  7. Correlation Between Geometric Similarity of Ice Shapes and the Resulting Aerodynamic Performance Degradation: A Preliminary Investigation Using WIND

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Chung, James

    1999-01-01

    Aerodynamic performance calculations were performed using WIND on ten experimental ice shapes and the corresponding ten ice shapes predicted by LEWICE 2.0. The resulting data for lift coefficient and drag coefficient are presented. The difference in aerodynamic results between the experimental ice shapes and the LEWICE ice shapes were compared to the quantitative difference in ice shape geometry presented in an earlier report. Correlations were generated to determine the geometric features which have the most effect on performance degradation. Results show that maximum lift and stall angle can be correlated to the upper horn angle and the leading edge minimum thickness. Drag coefficient can be correlated to the upper horn angle and the frequency-weighted average of the Fourier coefficients. Pitching moment correlated with the upper horn angle and to a much lesser extent to the upper and lower horn thicknesses.

  8. Minimum distribution of subsea ice-bearing permafrost on the US Beaufort Sea continental shelf

    USGS Publications Warehouse

    Brothers, Laura L.; Hart, Patrick E.; Ruppel, Carolyn D.

    2012-01-01

    Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along <5% of the tracklines at depths of ~5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.

  9. Loitering of the retreating sea ice edge in the Arctic Seas.

    PubMed

    Steele, Michael; Ermold, Wendy

    2015-12-01

    Each year, the arctic sea ice edge retreats from its winter maximum extent through the Seasonal Ice Zone (SIZ) to its summer minimum extent. On some days, this retreat happens at a rapid pace, while on other days, parts of the pan-arctic ice edge hardly move for periods of days up to 1.5 weeks. We term this stationary behavior "ice edge loitering," and identify areas that are more prone to loitering than others. Generally, about 20-25% of the SIZ area experiences loitering, most often only one time at any one location during the retreat season, but sometimes two or more times. The main mechanism controlling loitering is an interaction between surface winds and warm sea surface temperatures in areas from which the ice has already retreated. When retreat happens early enough to allow atmospheric warming of this open water, winds that force ice floes into this water cause melting. Thus, while individual ice floes are moving, the ice edge as a whole appears to loiter. The time scale of loitering is then naturally tied to the synoptic time scale of wind forcing. Perhaps surprisingly, the area of loitering in the arctic seas has not changed over the past 25 years, even as the SIZ area has grown. This is because rapid ice retreat happens most commonly late in the summer, when atmospheric warming of open water is weak. We speculate that loitering may have profound effects on both physical and biological conditions at the ice edge during the retreat season.

  10. Sea ice convergence along the Arctic coasts of Greenland and the Canadian Arctic Archipelago: Variability and extremes (1992-2014)

    NASA Astrophysics Data System (ADS)

    Kwok, Ron

    2015-09-01

    After the summer of 2013, a convergence-induced tail in the thickness distribution of the ice cover is found along the Arctic coasts of Greenland and Canadian Arctic Archipelago. Prompted by this, a normalized ice convergence index (ICI) is introduced to examine the variability and extremes in convergence in a 23 year record (1992-2014) of monthly ice drift. Large-scale composites of circulation patterns, characteristic of regional convergence and divergence, are examined. Indeed, the ICI shows the June 2013 convergence event to be an extreme (i.e., ICI > 2). Furthermore, there is a cluster of 9 months over a 17 month period with positive ICIs (i.e., >1) following the record summer minimum ice extent (SMIE) in 2012; the imprint of ice dynamics from this cluster of positive ICIs likely contributed to higher SMIEs in 2013 and 2014. The impact of convergence on SMIE is discussed, and the increase in Arctic ice volume in 2013 is underscored.

  11. Variability of Arctic Sea Ice as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1998-01-01

    Over the past 20 years, satellite passive-microwave radiometry has provided a marvelous means for obtaining information about the variability of the Arctic sea ice cover and particularly about sea ice concentrations (% areal coverages) and from them ice extents and the lengths of the sea ice season. This ability derives from the sharp contrast between the microwave emissions of sea ice versus liquid water and allows routine monitoring of the vast Arctic sea ice cover, which typically varies in extent from a minimum of about 8,000,000 sq km in September to a maximum of about 15,000,000 sq km in March, the latter value being over 1.5 times the area of either the United States or Canada. The vast Arctic ice cover has many impacts, including hindering heat, mass, and y momentum exchanges between the oceans and the atmosphere, reducing the amount of solar radiation absorbed at the Earth's surface, affecting freshwater transports and ocean circulation, and serving as a vital surface for many species of polar animals. These direct impacts also lead to indirect impacts, including effects on local and perhaps global atmospheric temperatures, effects that are being examined in general circulation modeling studies, where preliminary results indicate that changes on the order of a few percent sea ice concentration can lead to temperature changes of 1 K or greater even in local areas outside of the sea ice region. Satellite passive-microwave data for November 1978 through December 1996 reveal marked regional and interannual variabilities in both the ice extents and the lengths of the sea ice season, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 km(2), while individual regions showed much greater percentage variations, e.g., with the Greenland Sea experiencing a range of 740,000 - 1,1110,000 km(2) in its yearly maximum ice coverage. Although variations from year to year and region to region are large, overall the Arctic ice extents did show a statistically significant, 2.8%/ decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, and mapping their trends allows detailed geographic information on exactly where the ice season lengthened and where it shortened. Over the 18 years, ice season lengthening occurred predominantly in the western hemisphere and was strongest in the western Labrador Sea, while ice season shortening occurred predominantly in the eastern hemisphere and was strongest in the eastern Barents Sea. Much information about other important Arctic sea ice variables has also been obtained from satellite data, including information about melt ponding, temperature, snow cover, and ice velocities. For instance, maps of ice velocities have now been made from satellite scatterometry data, including information about melt ponding, temperature, snow cover, and ice velocities.

  12. Marine record of late quaternary glacial-interglacial fluctuations in the Ross Sea and evidence for rapid, episodic sea level change due to marine ice sheet collapse

    NASA Technical Reports Server (NTRS)

    Anderson, John B.

    1991-01-01

    Some of the questions to be addressed by SeaRISE include: (1) what was the configuration of the West Antarctic ice sheet during the last glacial maximum; (2) What is its configuration during a glacial minimum; and (3) has it, or any marine ice sheet, undergone episodic rapid mass wasting. These questions are addressed in terms of what is known about the history of the marine ice sheet, specifically in Ross Sea, and what further studies are required to resolve these problems. A second question concerns the extent to which disintegration of marine ice sheets may result in rises in sea level that are episodic in nature and extremely rapid, as suggested by several glaciologists. Evidence that rapid, episodic sea level changes have occurred during the Holocene is also reviewed.

  13. The last glaciation of Bear Peninsula, central Amundsen Sea Embayment of Antarctica: Constraints on timing and duration revealed by in situ cosmogenic 14C and 10Be dating

    NASA Astrophysics Data System (ADS)

    Johnson, Joanne S.; Smith, James A.; Schaefer, Joerg M.; Young, Nicolás E.; Goehring, Brent M.; Hillenbrand, Claus-Dieter; Lamp, Jennifer L.; Finkel, Robert C.; Gohl, Karsten

    2017-12-01

    Ice streams in the Pine Island-Thwaites region of West Antarctica currently dominate contributions to sea level rise from the Antarctic ice sheet. Predictions of future ice-mass loss from this area rely on physical models that are validated with geological constraints on past extent, thickness and timing of ice cover. However, terrestrial records of ice sheet history from the region remain sparse, resulting in significant model uncertainties. We report glacial-geological evidence for the duration and timing of the last glaciation of Hunt Bluff, in the central Amundsen Sea Embayment. A multi-nuclide approach was used, measuring cosmogenic 10Be and in situ14C in bedrock surfaces and a perched erratic cobble. Bedrock 10Be ages (118-144 ka) reflect multiple periods of exposure and ice-cover, not continuous exposure since the last interglacial as had previously been hypothesized. In situ14C dating suggests that the last glaciation of Hunt Bluff did not start until 21.1 ± 5.8 ka - probably during the Last Glacial Maximum - and finished by 9.6 ± 0.9 ka, at the same time as ice sheet retreat from the continental shelf was complete. Thickening of ice at Hunt Bluff most likely post-dated the maximum extent of grounded ice on the outer continental shelf. Flow re-organisation provides a possible explanation for this, with the date for onset of ice-cover at Hunt Bluff providing a minimum age for the timing of convergence of the Dotson and Getz tributaries to form a single palaeo-ice stream. This is the first time that timing of onset of ice cover has been constrained in the Amundsen Sea Embayment.

  14. New aeromagnetic data of eastern Dronning Maud Land: implications for the spatial extent of a major Early Neoproterozoic juvenile crustal province

    NASA Astrophysics Data System (ADS)

    Ruppel, A. S.; Jacobs, J.; Eagles, G.; Läufer, A.; Jokat, W.

    2017-12-01

    A long-standing collaboration between Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) and the Federal Institute for Geosciences and Natural Resources (BGR) aims to investigate the sub-ice crustal architecture and tectonic evolution of East Antarctica. Its main emphasis is on Dronning Maud Land (DML). During the austral summers 2014 and 2015, ca. 40.000 line kilometre of new magnetic, gravity and ice-penetrating radar data were collected with 10 km line spacing. Here, we report on magnetic anomaly data to the east and south of Sør Rondane (eastern DML), analysed with several filtering techniques. These data are integrated with exposure information from Sør Rondane, the Belgica Mts., and the Yamato Mts.. The study area covers the eastern part of a major, recently revealed Early Neoproterozoic juvenile crustal block, the Tonian Oceanic Arc Super Terrane (TOAST). The western extent of the TOAST is well defined by the Forster Magnetic Anomaly and characterized by a province of subdued SE-striking parallel positive magnetic anomalies in the mostly ice-covered region of south-eastern DML (the SE DML province). Geological investigations showed that this area can be correlated with exposures in Sør Rondane and scattered nunataks west of it. U-Pb ages of ca. 1000-900 Ma, are documented from zircons of gabbro-trondhjemite-tonalite-granodiorite (GTTG) suites in both areas. Further, geochemical analyses prove a juvenile character of the GTTGs, which are interpreted as oceanic arc complexes. Glacial drift from southern Sør Rondane points to an inland continuation of the TOAST, so far of unknown dimensions. The new magnetic data constrain the southern and eastern minimum extent of the TOAST, which we think has a minimum area of 450.000 km2. The spatial extent of this major juvenile crustal province has major significance for the tectonic reconstruction of East Antarctica and its involvement in Rodinia since it is suggested having evolved outboard of it.

  15. Automated parameter tuning applied to sea ice in a global climate model

    NASA Astrophysics Data System (ADS)

    Roach, Lettie A.; Tett, Simon F. B.; Mineter, Michael J.; Yamazaki, Kuniko; Rae, Cameron D.

    2018-01-01

    This study investigates the hypothesis that a significant portion of spread in climate model projections of sea ice is due to poorly-constrained model parameters. New automated methods for optimization are applied to historical sea ice in a global coupled climate model (HadCM3) in order to calculate the combination of parameters required to reduce the difference between simulation and observations to within the range of model noise. The optimized parameters result in a simulated sea-ice time series which is more consistent with Arctic observations throughout the satellite record (1980-present), particularly in the September minimum, than the standard configuration of HadCM3. Divergence from observed Antarctic trends and mean regional sea ice distribution reflects broader structural uncertainty in the climate model. We also find that the optimized parameters do not cause adverse effects on the model climatology. This simple approach provides evidence for the contribution of parameter uncertainty to spread in sea ice extent trends and could be customized to investigate uncertainties in other climate variables.

  16. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    USGS Publications Warehouse

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  17. Determining the ice seasons severity during 1982-2015 using the ice extents sum as a new characteristic

    NASA Astrophysics Data System (ADS)

    Rjazin, Jevgeni; Pärn, Ove

    2016-04-01

    Sea ice is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining ice conditions severity and describing ice cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the ice seasons severity degree basing on the ice seasons 1982 to 2015. A new integrative characteristic is introduced to describe the ice season severity. It is the sum of ice extents of the ice season id est the daily ice extents of the season are summed. The commonly used procedure to determine the ice season severity degree by the maximal ice extent is in this research compared to the new characteristic values. The remote sensing data on the ice concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The ice extents are calculated on these ice concentration data. Both the maximal ice extent of the season and a newly introduced characteristic - the ice extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the ice seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive ice cover in these three seasons. In several winters, for example 2010/11 ice cover extended enough for some time, but did not endure. At few other ice seasons as 2002/03 the Baltic Sea was ice-covered in moderate extent, but the ice cover stayed long time. At 11 winters the ice extents sum differed considerably (> 10%) from the maximal ice extent. These winters yield one third of the studied ice seasons. The maximal ice extent of the season is simple to use and enables to reconstruct the ice cover history and to predict maximal ice extent values. A shortage of this characteristic is its failure to account with the ice cover durability. The ice extents sum enables to describe the ice cover behaviour more adequately. However using this characteristic we lack the option to compare its values with those in the past as the ice cover extent was not daily measured then. We can use ice extents sum only for those ice seasons on which we have enough data. Using the ice extents sum of the season adds the temporal dimension to the ice season severity study.

  18. Field and Satellite Observations of the Formation and Distribution of Arctic Atmospheric Bromine Above a Rejuvenated Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Rigor, Ignatius G.; Richter, Andreas; Burrows, John P.; Shepson, Paul B.; Bottenheim, Jan; Barber, David G.; Steffen, Alexandra; Latonas, Jeff; Wang, Feiyue; hide

    2012-01-01

    Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion.

  19. New details about the LGM extent and subsequent retreat of the West Antarctic Ice Sheet from the easternmost Amundsen Sea Embayment shelf

    NASA Astrophysics Data System (ADS)

    Klages, J. P.; Hillenbrand, C. D.; Kuhn, G.; Smith, J. A.; Graham, A. G. C.; Nitsche, F. O.; Frederichs, T.; Arndt, J. E.; Gebhardt, C.; Robin, Z.; Uenzelmann-Neben, G.; Gohl, K.; Jernas, P.; Wacker, L.

    2017-12-01

    In recent years several previously undiscovered grounding-zone wedges (GZWs) have been described within the Abbot-Cosgrove palaeo-ice stream trough on the easternmost Amundsen Sea Embayment shelf. These GZWs document both the Last Glacial Maximum (LGM; 26.5-19 cal. ka BP) grounding-line extent and the subsequent episodic retreat within this trough that neighbors the larger Pine Island-Thwaites trough to the west. Here we combine bathymetric, seismic, and geologic data showing that 1) the grounding line in Abbot Trough did not reach the continental shelf break at any time during the last glacial period, and 2) a prominent stacked GZW constructed from six individual wedges lying upon another was deposited 100 km upstream from the LGM grounding-line position. The available data allow for calculating volumes for most of these individual GZWs and for the entire stack. Sediment cores were recovered seawards from the outermost GZW in the trough, and from the individual wedges of the stacked GZW in order to define the LGM grounding-line extent, and provide minimum grounding-line retreat ages for the respective positions on the stacked GZW. We present implications of a grounded-ice free outer shelf throughout the last glacial period. Furthermore, we assess the significance of the grounding-line stillstand period recorded by the stacked GZW in Abbot Trough for the timing of post-LGM retreat of the West Antarctic Ice Sheet from the Amundsen Sea Embayment shelf.

  20. Surface Exposure Dating of the Huancané III Moraines in Peru: A Record of Quelccaya Ice Cap's Maximum Extent during the Last Glacial Period

    NASA Astrophysics Data System (ADS)

    Baranes, H. E.; Kelly, M. A.; Stroup, J. S.; Howley, J. A.; Lowell, T. V.

    2012-12-01

    The climatic conditions that influenced the tropics during the height of the last glacial period are not well defined and controversial. There are disparities in estimates of temperature anomalies (e.g., MARGO, 2009; Rind and Peteet, 1985; CLIMAP, 1976), and critical terrestrial paleotemperature proxy records in tropical regions are poorly dated (e.g., Porter, 2001). Defining these conditions is important for understanding the mechanisms that cause major shifts in climate, as the tropics are a primary driver of atmospheric and oceanic circulation. This study aims to constrain the timing of maximum glacier extents in the Cordillera Oriental in southern Peru during the last glacial period by applying surface exposure (beryllium-10) dating to the Huancané III (Hu-III) moraines. The Hu-III moraines mark the maximum extent of Quelccaya Ice Cap (QIC) (13.93°S, 70.83°W), the largest tropical ice cap, during the last ice age. The eight beryllium-10 ages presented here yield 17,056 ± 520 yrs ago as a minimum age for the onset of recession from the ice cap advance marked by the Hu-III moraines. Comparing this age to other paleoclimate records indicates that the ice cap advance marked by the Hu-III moraines is more likely associated with a North Atlantic climate event known as Heinrich I (H1; 16,800 yrs ago, Bond et al., 1992, 1993) than with global cooling at the Last Glacial Maximum (LGM; ~21,000 yrs ago, Denton and Hughes, 1981). This result suggests that climate processes in the North Atlantic region are linked to climatic conditions in the tropical Andes. A mesoscale climate model and an ice-flow model are currently being developed for QIC. The moraine data presented in this study will be used with these two models to test response of QIC to North Atlantic and global climate events.

  1. Perennial water ice identified in the south polar cap of Mars

    NASA Astrophysics Data System (ADS)

    Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; OMEGA Team; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V.; Ignatiev, N.; Titov, D.; Zasova, L.; Pinet, P.; Sotin, C.; Hauber, E.; Hoffman, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Duxbury, T.; Forget, F.

    2004-04-01

    The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.

  2. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last interglacial ESL.

  3. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, S.; Reerink, T.; Vandewal, R.; Helsen, M.

    2015-12-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. There is few observational estimates of long-term (yrs) sub marine basal melting rates (mbm) for the GIS. Therefore we investigate a range of relationships to constrain the spatial and temporal parameterisation of mbm within IMAU-ice related to changes in paleo water depth, driven by changes in relative sea level and ocean temperature. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Initial results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but the total contribution to LIG ESL is reduced by up to 0.6 m.

  4. U.S. NIC

    Science.gov Websites

    Graphs) IMS Ice Extent Data. IMS Ice Extent for sea ice only. Total Ice Sea Ice Only View chart (2200 x Hemisphere Automated Snow and Ice Mapping NOHRSC Satellite Products NCEP MMAB Sea Ice CPC Northern Hemisphere National Snow and Ice Data Center (NSIDC) ** Multisensor Analyzed Sea Ice Extent (NSIDC) ** The NRCS NWCC

  5. Emerging trends in the sea state of the Beaufort and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Thomson, Jim; Fan, Yalin; Stammerjohn, Sharon; Stopa, Justin; Rogers, W. Erick; Girard-Ardhuin, Fanny; Ardhuin, Fabrice; Shen, Hayley; Perrie, Will; Shen, Hui; Ackley, Steve; Babanin, Alex; Liu, Qingxiang; Guest, Peter; Maksym, Ted; Wadhams, Peter; Fairall, Chris; Persson, Ola; Doble, Martin; Graber, Hans; Lund, Bjoern; Squire, Vernon; Gemmrich, Johannes; Lehner, Susanne; Holt, Benjamin; Meylan, Mike; Brozena, John; Bidlot, Jean-Raymond

    2016-09-01

    The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.

  6. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  7. Would limiting global warming to 1.5 or 2°C prevent an ice-free Arctic?

    NASA Astrophysics Data System (ADS)

    Screen, James; Williamson, Daniel

    2017-04-01

    The Paris Agreement to combat climate change includes an aspirational goal to limit global warming to 1.5°C above pre-industrial levels, substantially more ambitious than the previous target of 2°C. One of the most visible and iconic aspects of recent climate change is the dramatic loss of Arctic sea-ice, which is having profound implications on the environment, ecosystems and human inhabitants of this region and beyond. The concept of an 'ice-free Arctic' has captured scientific attention and public imagination. Scientists commonly define this as when the Arctic first becomes ice-free at the end of summer. Without efforts to slow manmade global warming, an ice-free Arctic would likely occur in summer by the middle of this century. But would limiting warming to 1.5°C, or even 2°C, prevent the Arctic ever going ice-free? Different climate models give vastly different projections of the lowest sea-ice extent given global warming of up to 1.5°C or up to 2°C. Models that over-estimate (or under-estimate) sea-ice extent in the last ten years are also those that project more ice (or less ice) remaining into the future. Here we use this relationship to observationally constrain climate model projections of future Arctic sea-ice cover. We obtain an observationally-constrained central prediction of 2.9 million square kilometres for the minimum sea-ice extent if global warming is limited to 1.5°C, or 1.2 million square kilometres if global warming remains below 2°C. Using Bayesian statistics allows us to compare estimates of the probability of an ice-free Arctic for the 1.5°C or 2°C target. We estimate there is less than a 1-in-100000 (exceptionally unlikely in IPCC parlance) chance of an ice-free Arctic if global warming is stays below 1.5°C, and around a 1-in-3 chance (39%; about as likely as not) if global warming is limited to 2.0°C. We suppose then that a summer ice-free Arctic is virtually certain to be avoided if the 1.5°C target of the Paris Agreement is met. However, the 2°C target may be insufficient to prevent an ice-free Arctic. Furthermore, our analysis suggests that the Intended Nationally Determined Contributions submitted by countries to support the Paris Agreement (which imply warming of 2.6 to 3.1°C) would likely (66 to 74%) lead to the Arctic going ice-free.

  8. Sea Ice and Hydrographic Variability in the Northwest North Atlantic

    NASA Astrophysics Data System (ADS)

    Fenty, I. G.; Heimbach, P.; Wunsch, C. I.

    2010-12-01

    Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the marginal ice zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for ice to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing ice pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from ice meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime ice extent; positive ice extent anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic ice associated with future warming may be predicted to lead positive ice extent anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.

  9. The importance of sea ice for exchange of habitat-specific protist communities in the Central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hardge, Kristin; Peeken, Ilka; Neuhaus, Stefan; Lange, Benjamin A.; Stock, Alexandra; Stoeck, Thorsten; Weinisch, Lea; Metfies, Katja

    2017-01-01

    Sea ice is one of the main features influencing the Arctic marine protist community composition and diversity in sea ice and sea water. We analyzed protist communities within sea ice, melt pond water, under-ice water and deep-chlorophyll maximum water at eight sea ice stations sampled during summer of the 2012 record sea ice minimum year. Using Illumina sequencing, we identified characteristic communities associated with specific habitats and investigated protist exchange between these habitats. The highest abundance and diversity of unique taxa were found in sea ice, particularly in multi-year ice (MYI), highlighting the importance of sea ice as a unique habitat for sea ice protists. Melting of sea ice was associated with increased exchange of communities between sea ice and the underlying water column. In contrast, sea ice formation was associated with increased exchange between all four habitats, suggesting that brine rejection from the ice is an important factor for species redistribution in the Central Arctic. Ubiquitous taxa (e.g. Gymnodinium) that occurred in all habitats still had habitat-preferences. This demonstrates a limited ability to survive in adjacent but different environments. Our results suggest that the continued reduction of sea ice extent, and particularly of MYI, will likely lead to diminished protist exchange and subsequently, could reduce species diversity in all habitats of the Central Arctic Ocean. An important component of the unique sea ice protist community could be endangered because specialized taxa restricted to this habitat may not be able to adapt to rapid environmental changes.

  10. Correlating Ice Cores from Quelccaya Ice Cap with Chronology from Little Ice Age Glacial Extents

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.

    2010-12-01

    Proxy records indicate Southern Hemisphere climatic changes during the Little Ice Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya Ice Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD ice margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at <1050-1350-AD (Mercer and Palacios, 1977) and interpreted to have been deposited during the Little Ice Age. We present a new suite of surface exposure and radiocarbon dates collected in 2008 and 2009 that constrain the ages of these moraines. Preliminary 10Be ages of boulder surfaces atop the moraines range from ~350-1370 AD. Maximum and minimum-limiting radiocarbon ages bracketing the moraines are ~0-1800 AD. The chronology of past ice cap extents are correlated with ice core records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.

  11. Assessing the Impact of Laurentide Ice-sheet Topography on Glacial Climate

    NASA Technical Reports Server (NTRS)

    Ullman, D. J.; LeGrande, A. N.; Carlson, A. E.; Anslow, F. S.; Licciardi, J. M.

    2014-01-01

    Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotopeenabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition.We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates, with implications for estimating climate sensitivity to greenhouse gas forcing utilizing past climate states.

  12. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  13. A Model Assessment of Satellite Observed Trends in Polar Sea Ice Extents

    NASA Technical Reports Server (NTRS)

    Vinnikov, Konstantin Y.; Cavalieri, Donald J.; Parkinson, Claire L.

    2005-01-01

    For more than three decades now, satellite passive microwave observations have been used to monitor polar sea ice. Here we utilize sea ice extent trends determined from primarily satellite data for both the Northern and Southern Hemispheres for the period 1972(73)-2004 and compare them with results from simulations by eleven climate models. In the Northern Hemisphere, observations show a statistically significant decrease of sea ice extent and an acceleration of sea ice retreat during the past three decades. However, from the modeled natural variability of sea ice extents in control simulations, we conclude that the acceleration is not statistically significant and should not be extrapolated into the future. Observations and model simulations show that the time scale of climate variability in sea ice extent in the Southern Hemisphere is much larger than in the Northern Hemisphere and that the Southern Hemisphere sea ice extent trends are not statistically significant.

  14. Current Status and Future Plan of Arctic Sea Ice monitoring in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, J.; Park, J.

    2016-12-01

    Arctic sea ice is one of the most important parameters in climate. For monitoring of sea ice changes, the National Meteorological Satellite Center (NMSC) of Korea Metrological Administration has developed the "Arctic sea ice monitoring system" to retrieve the sea ice extent and surface roughness using microwave sensor data, and statistical prediction model for Arctic sea ice extent. This system has been implemented to the web site for real-time public service. The sea ice information can be retrieved using the spaceborne microwave sensor-Special Sensor Microwave Imager/Sounder (SSMI/S). The sea ice information like sea ice extent, sea ice surface roughness, and predictive sea ice extent are produced weekly base since 2007. We also publish the "Analysis report of the Arctic sea ice" twice a year. We are trying to add more sea ice information into this system. Details of current status and future plan of Arctic sea ice monitoring and the methodology of the sea ice information retrievals will be presented in the meeting.

  15. Investigating cold based summit glaciers through direct access to the glacier base: a case study constraining the maximum age of Chli Titlis glacier, Switzerland

    NASA Astrophysics Data System (ADS)

    Bohleber, Pascal; Hoffmann, Helene; Kerch, Johanna; Sold, Leo; Fischer, Andrea

    2018-01-01

    Cold glaciers at the highest locations of the European Alps have been investigated by drilling ice cores to retrieve their stratigraphic climate records. Findings like the Oetztal ice man have demonstrated that small ice bodies at summit locations of comparatively lower altitudes may also contain old ice if locally frozen to the underlying bedrock. In this case, constraining the maximum age of their lowermost ice part may help to identify past periods with minimum ice extent in the Alps. However, with recent warming and consequent glacier mass loss, these sites may not preserve their unique climate information for much longer. Here we utilized an existing ice cave at Chli Titlis (3030 m), central Switzerland, to perform a case study for investigating the maximum age of cold-based summit glaciers in the Alps. The cave offers direct access to the glacier stratigraphy without the logistical effort required in ice core drilling. In addition, a pioneering exploration had already demonstrated stagnant cold ice conditions at Chli Titlis, albeit more than 25 years ago. Our englacial temperature measurements and the analysis of the isotopic and physical properties of ice blocks sampled at three locations within the ice cave show that cold ice still exists fairly unchanged today. State-of-the-art micro-radiocarbon analysis constrains the maximum age of the ice at Chli Titlis to about 5000 years before present. By this means, the approach presented here will contribute to a future systematic investigation of cold-based summit glaciers, also in the Eastern Alps.

  16. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    NASA Astrophysics Data System (ADS)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  17. Trend analysis of Arctic sea ice extent

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição

    2009-04-01

    The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.

  18. 76 FR 35101 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... Mobridge, SD, Mobridge Muni, Takeoff Minimums and Obstacle DP, Amdt 1 Spearfish, SD, Black Hills-Clyde Ice Field, GPS RWY 12, Orig-D, CANCELLED Spearfish, SD, Black Hills-Clyde Ice Field, NDB-A, Amdt 1 Spearfish, SD, Black Hills-Clyde Ice Field, RNAV (GPS) RWY 13, Orig Spearfish, SD, Black Hills-Clyde Ice Field...

  19. Object-based Image Classification of Arctic Sea Ice and Melt Ponds through Aerial Photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.; Li, Z.; Lei, R.

    2013-12-01

    The last six years have marked the lowest Arctic summer sea ice extents in the modern era, with a new record summer minimum (3.4 million km2) set on 13 September 2012. It has been predicted that the Arctic could be free of summer ice within the next 25-30. The loss of Arctic summer ice could have serious consequences, such as higher water temperature due to the positive feedback of albedo, more powerful and frequent storms, rising sea levels, diminished habitats for polar animals, and more pollution due to fossil fuel exploitation and/ or increased traffic through the Northwest/ Northeast Passage. In these processes, melt ponds play an important role in Earth's radiation balance since they strongly absorb solar radiation rather than reflecting it as snow and ice do. Therefore, it is necessary to develop the ability of predicting the sea ice/ melt pond extents and space-time evolution, which is pivotal to prepare for the variation and uncertainty of the future environment, political, economic, and military needs. A lot of efforts have been put into Arctic sea ice modeling to simulate sea ice processes. However, these sea ice models were initiated and developed based on limited field surveys, aircraft or satellite image data. Therefore, it is necessary to collect high resolution sea ice aerial photo in a systematic way to tune up, validate, and improve models. Currently there are many sea ice aerial photos available, such as Chinese Arctic Exploration (CHINARE 2008, 2010, 2012), SHEBA 1998 and HOTRAX 2005. However, manually delineating of sea ice and melt pond from these images is time-consuming and labor-intensive. In this study, we use the object-based remote sensing classification scheme to extract sea ice and melt ponds efficiently from 1,727 aerial photos taken during the CHINARE 2010. The algorithm includes three major steps as follows. (1) Image segmentation groups the neighboring pixels into objects according to the similarity of spectral and texture information; (2) random forest ensemble classifier can distinguish the following objects: water, submerged ice, shadow, and ice/snow; and (3) polygon neighbor analysis can further separate melt ponds from submerged ice according to the spatial neighboring relationship. Our results illustrate the spatial distribution and morphological characters of melt ponds in different latitudes of the Arctic Pacific sector. This method can be applied to massive photos and images taken in past years and future years, in deriving the detailed sea ice and melt pond distribution and changes through years.

  20. Subdivision of Glacial Deposits in Southeastern Peru Based on Pedogenic Development and Radiometric Ages

    NASA Astrophysics Data System (ADS)

    Goodman, Adam Y.; Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.

    2001-07-01

    The Cordillera Vilcanota and Quelccaya Ice Cap region of southern Peru (13°30‧-14°00‧S; 70°40‧-71°25‧W) contains a detailed record of late Quaternary glaciation in the tropical Andes. Quantification of soil development on 19 moraine crests and radiocarbon ages are used to reconstruct the glacial history. Secondary iron and clay increase linearly in Quelccaya soils and clay accumulates at a linear rate in Vilcanota soils, which may reflect the semicontinuous addition of eolian dust enriched in secondary iron to all soils. In contrast, logarithmic rates of iron buildup in soils in the Cordillera Vilcanota reflect chemical weathering; high concentrations of secondary iron in Vilcanota tills may mask the role of eolian input to these soils. Soil-age estimates from extrapolation of field and laboratory data suggest that the most extensive late Quaternary glaciation occurred >70,000 yr B.P. This provides one of the first semiquantitative age estimates for maximum ice extent in southern Peru and is supported by a minimum-limiting age of ∼41,520 14C yr B.P. A late glacial readvance culminated ∼16,650 cal yr B.P. in the Cordillera Vilcanota. Following rapid deglaciation of unknown extent, an advance of the Quelccaya Ice Cap occurred between ∼13,090 and 12,800 cal yr B.P., which coincides approximately with the onset of the Younger Dryas cooling in the North Atlantic region. Moraines deposited <394 cal yr B.P. in the Cordillera Vilcanota and <300 cal yr B.P. on the west side of the Quelccaya Ice Cap correlate with Little Ice Age moraines of other regions.

  1. There goes the sea ice: following Arctic sea ice parcels and their properties.

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  2. Arctic Sea Ice Parameters from AMSR-E Data using Two Techniques, and Comparisons with Sea Ice from SSM

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Parkinson, Claire L.

    2007-01-01

    We use two algorithms to process AMSR-E data in order to determine algorithm dependence, if any, on the estimates of sea ice concentration, ice extent and area, and trends and to evaluate how AMSR-E data compare with historical SSM/I data. The monthly ice concentrations derived from the two algorithms from AMSR-E data (the AMSR-E Bootstrap Algorithm, or ABA, and the enhanced NASA Team algorithm, or NT2) differ on average by about 1 to 3%, with data from the consolidated ice region being generally comparable for ABA and NT2 retrievals while data in the marginal ice zones and thin ice regions show higher values when the NT2 algorithm is used. The ice extents and areas derived separately from AMSR-E using these two algorithms are, however, in good agreement, with the differences (ABA-NT2) being about 6.6 x 10(exp 4) square kilometers on average for ice extents and -6.6 x 10(exp 4) square kilometers for ice area which are small compared to mean seasonal values of 10.5 x 10(exp 6) and 9.8 x 10(exp 6) for ice extent and area: respectively. Likewise, extents and areas derived from the same algorithm but from AMSR-E and SSM/I data are consistent but differ by about -24.4 x 10(exp 4) square kilometers and -13.9 x 10(exp 4) square kilometers, respectively. The discrepancies are larger with the estimates of extents than area mainly because of differences in channel selection and sensor resolutions. Trends in extent during the AMSR-E era were also estimated and results from all three data sets are shown to be in good agreement (within errors).

  3. Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Cheng, X.; Liu, J.

    2017-12-01

    Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic

  4. A New Normal for the Sea Ice Index

    NASA Technical Reports Server (NTRS)

    Fetterer, Florence; Windnagel, Ann; Meier, Walter N.

    2014-01-01

    The NSIDC Sea Ice Index is a popular data product that shows users how ice extent and concentration have changed since the beginning of the passive microwave satellite record in 1978. It shows time series of monthly ice extent anomalies rather than actual extent values, in order to emphasize the information the data are carrying. Along with the time series, an image of average extent for the previous month is shown as a white field, with a pink line showing the median extent for that month. These are updated monthly; corresponding daily products are updated daily.

  5. Predictability of the Arctic sea ice edge

    NASA Astrophysics Data System (ADS)

    Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.

    2016-02-01

    Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

  6. Response of Arctic Snow and Sea Ice Extents to Melt Season Atmospheric Forcing Across the Land-Ocean Boundary

    NASA Astrophysics Data System (ADS)

    Bliss, A. C.; Anderson, M. R.

    2011-12-01

    Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, however, the analysis of these data averaged spatially over three study regions located in North America and Eastern and Western Russia, reveals a distinct difference in the response of anomalous snow and sea ice conditions to the atmospheric forcing. This study compares the monthly continental snow cover and sea ice extent loss in the Arctic, during the melt season months (May-August) for the period 1979-2007, with regional atmospheric conditions known to influence summer melt including: mean sea level pressures, 925 hPa air temperatures, and mean 2 m U and V wind vectors from NCEP/DOE Reanalysis 2. The monthly hemispheric snow cover extent data used are from the Rutgers University Global Snow Lab and sea ice extents for this study are derived from the monthly passive microwave satellite Bootstrap algorithm sea ice concentrations available from the National Snow and Ice Data Center. Three case study years (1985, 1996, and 2007) are used to compare the direct response of monthly anomalous sea ice and snow cover areal extents to monthly mean atmospheric forcing averaged spatially over the extent of each study region. This comparison is then expanded for all summer months over the 29 year study period where the monthly persistence of sea ice and snow cover extent anomalies and changes in the sea ice and snow conditions under differing atmospheric conditions are explored further. The monthly anomalous atmospheric conditions are classified into four categories including: warmer temperatures with higher pressures, warmer temperatures with lower pressures, cooler temperatures with higher pressures, and cooler temperatures with lower pressures. Analysis of the atmospheric conditions surrounding anomalous loss of snow and ice cover over the independent study regions indicates that conditions of warmer temperatures advected via southerly winds are effective at forcing melt, while conditions of anomalously cool temperatures with persistent, strong northeasterly winds in the later melt season months are also effective at removing anomalous extents of sea ice cover, likely through ice divergence. Normalized sea ice extent anomalies, regardless of the snow cover, tend to persist in the same positive or negative directions (or remain near normal) from month to month over the summer season in 73.6% of cases from June to July, in 69% of cases from July to August, and in 54% of cases for the entire season (June-August) for the 29 year study period. However, when shifts in the sea ice extent anomaly directions from the conditions present in the early melt season occur, it is generally associated with a shift in the atmospheric conditions forcing the change in sea ice extent loss for the region.

  7. The Impact of Geothermal Heat on the Scandinavian Ice Sheet's LGM Extent

    NASA Astrophysics Data System (ADS)

    Szuman, Izabela; Ewertowski, Marek W.; Kalita, Jakub Z.

    2016-04-01

    The last Scandinavian ice sheet attained its most southern extent over Poland and Germany, protruding c. 200 km south of the main ice sheet mass. There are number of factors that may control ice sheet dynamics and extent. One of the less recognised is geothermal heat, which is heat that is supplied to the base of the ice sheet. A heat at the ice/bed interface plays a crucial role in controlling ice sheet stability, as well as impacting basal temperatures, melting, and ice flow velocities. However, the influence of geothermal heat is still virtually neglected in reconstructions and modelling of paleo-ice sheets behaviour. Only in a few papers is geothermal heat recalled though often in the context of past climatic conditions. Thus, the major question is if and how spatial differences in geothermal heat had influenced paleo-ice sheet dynamics and in consequence their extent. Here, we assumed that the configuration of the ice sheet along its southern margin was moderately to strongly correlated with geothermal heat for Poland and non or negatively correlated for Germany.

  8. Recalculated Areas for Maximum Ice Extents of the Baltic Sea During Winters 1971-2008

    NASA Astrophysics Data System (ADS)

    Niskanen, T.; Vainio, J.; Eriksson, P.; Heiler, I.

    2009-04-01

    Publication of operational ice charts in Finland was started from the Baltic Sea in a year 1915. Until year 1993 all ice charts were hand drawn paper copies but in the year 1993 ice charting software IceMap was introduced. Since then all ice charts were produced digitally. Since the year 1996 IceMap has had an option that user can calculate areas of single ice area polygons in the chart. Using this option the area of the maximum ice extent can be easily solved fully automatically. Before this option was introduced (and in full operation) all maximum extent areas were calculated manually by a planimeter. During recent years it has become clear that some areas calculated before 1996 don't give the same result as IceMap. Differences can come from for example inaccuracy of old coastlines, map projections, the calibration of the planimeter or interpretation of old ice area symbols. Old ice charts since winter 1970-71 have now been scanned, rectified and re-drawn. New maximum ice extent areas for Baltic Sea have now been re-calculated. By these new technological tools it can be concluded that in some cases clear differences can be found.

  9. Late Pleistocene glaciation of the Mt Giluwe volcano, Papua New Guinea

    USGS Publications Warehouse

    Barrows, T.T.; Hope, G.S.; Prentice, M.L.; Fifield, L.K.; Tims, S.G.

    2011-01-01

    The Mt Giluwe shield volcano was the largest area glaciated in Papua New Guinea during the Pleistocene. Despite minimal cooling of the sea surface during the last glacial maximum, glaciers reached elevations as low as 3200 m. To investigate changes in the extent of ice through time we have re-mapped evidence for glaciation on the southwest flank of Mt Giluwe. We find that an ice cap has formed on the flanks of the mountain on at least three, and probably four, separate occasions. To constrain the ages of these glaciations we present 39 new cosmogenic 36Cl exposure ages complemented by new radiocarbon dates. Direct dating of the moraines identifies that the maximum extent of glaciation on the mountain was not during the last glacial maximum as previously thought. In conjunction with existing potassium/argon and radiocarbon dating, we recognise four distinct glacial periods between 293-306 ka (Gogon Glaciation), 136-158 ka (Mengane Glaciation), centred at 62 ka (Komia Glaciation) and from >20.3-11.5 ka (Tongo Glaciation). The temperature difference relative to the present during the Tongo Glaciation is likely to be of the order of at least 5 ??C which is a minimum difference for the previous glaciations. During the Tongo Glaciation, ice was briefly at its maximum for less than 1000 years, but stayed near maximum levels for nearly 4000 years, until about 15.4 ka. Over the next 4000 years there was more rapid retreat with ice free conditions by the early Holocene. ?? 2011 Elsevier Ltd.

  10. Acquiring Marine Data in the Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hutchinson, Deborah R.; Jackson, H. Ruth; Shimeld, John W.; Chapman, C. Borden; Childs, Jonathan R.; Funck, Thomas; Rowland, Robert W.

    2009-06-01

    Despite the record minimum ice extent in the Arctic Ocean for the past 2 years, collecting geophysical data with towed sensors in ice-covered regions continues to pose enormous challenges. Significant parts of the Canada Basin in the western Arctic Ocean have remained largely unmapped because thick multiyear ice has limited access even by research vessels strengthened against ice [Jackson et al., 1990]. Because of the resulting paucity of data, the western Arctic Ocean is one of the few areas of ocean in the world where major controversies still exist with respect to its origin and tectonic evolution [Grantz et al., 1990; Lawver and Scotese, 1990; Lane, 1997; Miller et al., 2006]. This article describes the logistical challenges and initial data sets from geophysical seismic reflection, seismic refraction, and hydrographic surveys in the Canada Basin conducted by scientists with U.S. and Canadian government agencies (Figure 1a) to fulfill the requirements of the United Nations Convention on the Law of the Sea to determine sediment thickness, geological origin, and basin evolution in this unexplored part of the world. Some of these data were collected using a single ship, but the heaviest ice conditions necessitated using two icebreakers, similar to other recent Arctic surveys [e.g., Jokat, 2003].

  11. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011

    NASA Astrophysics Data System (ADS)

    Ogi, M.; Wallace, J. M.

    2012-12-01

    Masayo Ogi 1 and John M. Wallace 2 masayo.ogi@jamstec.go.jp wallace@atmos.washington.edu 1Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan 2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington The seasonal evolutions of Arctic sea ice extent (SIE) during the summers of 2010 and 2011 are contrasted with that in 2007. The June SIE in 2010 was lower than that in 2007 and was the lowest for that calendar month in the 32-year (1979-2010) record. The September SIE in 2010 would have set a new record low had it not been for the fact that the ice retreated more slowly during the summer months in that year than it did in 2007. Hence from early July onward, the SIE in 2010 remained at levels above those observed in 2007. The SIE minimum in September 2010 proved to be the third lowest on record, eclipsed by values in both 2007 and 2008. In spring and summer of 2011, the Arctic SIE was as low as it was in 2007, but the SIE in September 2011 did not reach record low levels. The SIE minimum in 2011 proved to be the second lowest on record for the period of 1979-2011. Summertime atmospheric conditions play an important role in controlling the variations in Arctic SIE. In a previous study based on statistical analysis of data collected prior to 2007, we showed that anticyclonic summertime circulation anomalies over the Arctic Ocean during the summer months favor low September SIE. We also found that the record-low ice summer year 2007 was characterized by a strong anticyclonic circulation anomaly, accompanied by an Ekman drift of ice out of the marginal seas toward the central Arctic and eventually toward the Fram Strait, as evidenced by the tracks of drifting buoys. Here we assess the extent to which year-to-year differences in summer winds over the Arctic might have contributed to the differing rates of retreat of ice during the summers of 2007, 2010, and 2011. Our results show that the May-June (MJ) pattern in 2010 is characterized by strong anticyclonic wind anomalies over the Arctic Ocean. The corresponding pattern for July-August-September (JAS) is dominated by a cyclonic gyre centered over the Kara Sea. The corresponding patterns for 2007 are weak in MJ and strongly anticyclonic in JAS. The JJA pattern in 2011 is characterized by anticyclonic wind anomalies over the Arctic directed toward the Fram Strait, whereas the September pattern exhibits wind anomalies directed away from the Fram Strait across the central Arctic Ocean toward the Chukchi Sea. The corresponding patterns for 2007 are strongly anticyclonic and directed toward the Fram Strait in both JJA and September. In the absence of the late season push by the winds, the ice did not retreat quite as far in 2011 as it did in 2007. We have shown evidence that low level winds over the Arctic play an important role in mediating the rate of retreat of sea ice during summer. Anomalous anticyclonic flow over the interior of the Arctic directed toward the Fram Strait favors rapid retreat and vice versa. We have argued that the relative rankings of the September SIE for the years 2007, 2010 and 2011 are largely attributable to the differing rates of decrease of SIE during these summers, which are a consequence of year-to-year differences in the seasonal evolution of summertime winds over the Arctic.

  12. Impacts of Declining Arctic Sea Ice: An International Challenge

    NASA Astrophysics Data System (ADS)

    Serreze, M.

    2008-12-01

    As reported by the National Snow and Ice Data Center in late August of 2008, Arctic sea ice extent had already fallen to its second lowest level since regular monitoring began by satellite. As of this writing, we were closing in on the record minimum set in September of 2007. Summers may be free of sea ice by the year 2030. Recognition is growing that ice loss will have environmental impacts that may extend well beyond the Arctic. The Arctic Ocean will in turn become more accessible, not just to tourism and commercial shipping, but to exploitation of oil wealth at the bottom of the ocean. In recognition of growing accessibility and oil operations, the United States Coast Guard set up temporary bases this summer at Barrow and Prudhoe Bay, AK, from which they conducted operations to test their readiness and capabilities, such as for search and rescue. The Canadians have been busy showing a strong Arctic presence. In August, a German crew traversed the Northwest Passage from east to west in one of their icebreakers, the Polarstern. What are the major national and international research efforts focusing on the multifaceted problem of declining sea ice? What are the areas of intersection, and what is the state of collaboration? How could national and international collaboration be improved? This talk will review some of these issues.

  13. Cosmogenic nuclide age estimate for Laurentide Ice Sheet recession from the terminal moraine, New Jersey, USA, and constraints on latest Pleistocene ice sheet history

    USGS Publications Warehouse

    Corbett, Lee B.; Bierman, Paul R.; Stone, Byron D.; Caffee, Marc W.; Larsen, Patrick L.

    2017-01-01

    The time at which the Laurentide Ice Sheet reached its maximum extent and subsequently retreated from its terminal moraine in New Jersey has been constrained by bracketing radiocarbon ages on preglacial and postglacial sediments. Here, we present measurements of in situ produced 10Be and 26Al in 16 quartz-bearing samples collected from bedrock outcrops and glacial erratics just north of the terminal moraine in north-central New Jersey; as such, our ages represent a minimum limit on the timing of ice recession from the moraine. The data set includes field and laboratory replicates, as well as replication of the entire data set five years after initial measurement. We find that recession of the Laurentide Ice Sheet from the terminal moraine in New Jersey began before 25.2±2.1 ka (10Be, n=16, average, 1 standard deviation). This cosmogenic nuclide exposure age is consistent with existing limiting radiocarbon ages in the study area and cosmogenic nuclide exposure ages from the terminal moraine on Martha’s Vineyard ~300 km to the northeast. The age we propose for Laurentide Ice Sheet retreat from the New Jersey terminal position is broadly consistent with regional and global climate records of the last glacial maximum termination and records of fluvial incision.

  14. Sea ice in the Greenland Sea

    NASA Image and Video Library

    2017-12-08

    As the northern hemisphere experiences the heat of summer, ice moves and melts in the Arctic waters and the far northern lands surrounding it. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Greenland on July 16, 2015. Large chunks of melting sea ice can be seen in the sea ice off the coast, and to the south spirals of ice have been shaped by the winds and currents that move across the Greenland Sea. Along the Greenland coast, cold, fresh melt water from the glaciers flows out to the sea, as do newly calved icebergs. Frigid air from interior Greenland pushes the ice away from the shoreline, and the mixing of cold water and air allows some sea ice to be sustained even at the height of summer. According to observations from satellites, 2015 is on track to be another low year for arctic summer sea ice cover. The past ten years have included nine of the lowest ice extents on record. The annual minimum typically occurs in late August or early September. The amount of Arctic sea ice cover has been dropping as global temperatures rise. The Arctic is two to three times more sensitive to temperature changes as the Earth as a whole. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Sea Ice in the Bellingshausen Sea

    NASA Image and Video Library

    2017-12-08

    Antarctica—the continent at the southernmost reach of the planet—is fringed by cold, often frozen waters of the Southern Ocean. The extent of sea ice around the continent typically reaches a peak in September and a minimum in February. The photograph above shows Antarctic sea ice on November 5, 2014, during the annual cycle of melt. The image was acquired by the Digital Mapping System (DMS), a digital camera installed in the belly of research aircraft to capture images of terrain below. In this case, the system flew on the DC-8 during a flight as part of NASA’s Operation IceBridge. Most of the view shows first-year sea ice in the Bellingshausen Sea, as it appeared from an altitude of 328 meters (1,076 feet). The block of ice on the right side of the image is older, thicker, and was once attached to the Antarctic Ice Sheet. By the time this image was acquired, however, the ice had broken away to form an iceberg. Given its close proximity to the ice sheet, this could have been a relatively new berg. Read more: earthobservatory.nasa.gov/IOTD/view.php?id=86721 Credit: NASA/Goddard/IceBridge DMS L0 Raw Imagery courtesy of the Digital Mapping System (DMS) team and the NASA DAAC at the National Snow and Ice Data Center Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Collaborations for Arctic Sea Ice Information and Tools

    NASA Astrophysics Data System (ADS)

    Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Rich, R. H.

    2017-12-01

    The dramatic and rapid changes in Arctic sea ice require collaboration across boundaries, including between disciplines, sectors, institutions, and between scientists and decision-makers. This poster will highlight several projects that provide knowledge to advance the development and use of sea ice knowledge. Sea Ice for Walrus Outlook (SIWO: https://www.arcus.org/search-program/siwo) - SIWO is a resource for Alaskan Native subsistence hunters and other interested stakeholders. SIWO provides weekly reports, during April-June, of sea ice conditions relevant to walrus in the northern Bering and southern Chukchi seas. Collaboration among scientists, Alaskan Native sea-ice experts, and the Eskimo Walrus Commission is fundamental to this project's success. Sea Ice Prediction Network (SIPN: https://www.arcus.org/sipn) - A collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions. The goals of SIPN include: coordinate and evaluate Arctic sea ice predictions; integrate, assess, and guide observations; synthesize predictions and observations; and disseminate predictions and engage key stakeholders. The Sea Ice Outlook—a key activity of SIPN—is an open process to share and synthesize predictions of the September minimum Arctic sea ice extent and other variables. Other SIPN activities include workshops, webinars, and communications across the network. Directory of Sea Ice Experts (https://www.arcus.org/researchers) - ARCUS has undertaken a pilot project to develop a web-based directory of sea ice experts across institutions, countries, and sectors. The goal of the project is to catalyze networking between individual investigators, institutions, funding agencies, and other stakeholders interested in Arctic sea ice. Study of Environmental Arctic Change (SEARCH: https://www.arcus.org/search-program) - SEARCH is a collaborative program that advances research, synthesizes research findings, and broadly communicates the results to support informed decision-making. One of SEARCH's primary science topics is focused on Arctic sea ice; the SEARCH Sea Ice Action Team is leading efforts to advance understanding and awareness of the impacts of Arctic sea-ice loss.

  17. Variability of Antarctic Sea Ice 1979-1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the counterintuitive prediction of a global atmospheric-ocean model of increasing sea ice around Antarctica with climate warming due to the stabilizing effects of increased snowfall on the Southern Ocean.

  18. Seasonal and interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 2013

    NASA Astrophysics Data System (ADS)

    Selyuzhenok, V.; Krumpen, T.; Mahoney, A.; Janout, M.; Gerdes, R.

    2015-12-01

    Along with changes in sea ice extent, thickness, and drift speed, Arctic sea ice regime is characterized by a decrease of fast ice season and reduction of fast ice extent. The most extensive fast ice cover in the Arctic develops in the southeastern Laptev Sea. Using weekly operational sea ice charts produced by Arctic and Antarctic Research Institute (AARI, Russia) from 1999 to 2013, we identified five main key events that characterize the annual evolution of fast ice in the southeastern Laptev Sea. Linking the occurrence of the key events with the atmospheric forcing, bathymetry, freezeup, and melt onset, we examined the processes driving annual fast ice cycle. The analysis revealed that fast ice in the region is sensitive to thermodynamic processes throughout a season, while the wind has a strong influence only on the first stages of fast ice development. The maximal fast ice extent is closely linked to the bathymetry and local topography and is primarily defined by the location of shoals, where fast ice is likely grounded. The annual fast ice cycle shows significant changes over the period of investigation, with tendencies toward later fast ice formation and earlier breakup. These tendencies result in an overall decrease of the fast ice season by 2.8 d/yr, which is significantly higher than previously reported trends.

  19. Antarctic Sea Ice Variability and Trends, 1979-2010

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Cavalieri, D. J.

    2012-01-01

    In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978 - December 2010 reveal an overall positive trend in ice extents of 17,100 +/- 2,300 square km/yr. Much of the increase, at 13,700 +/- 1,500 square km/yr, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of -8,200 +/- 1,200 square km/yr. When examined through the annual cycle over the 32-year period 1979-2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9,100 +/- 6,300 square km/yr in February to a high of 24,700 +/- 10,000 square km/yr in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.

  20. Arctic Sea Ice Simulation in the PlioMIP Ensemble

    NASA Technical Reports Server (NTRS)

    Howell, Fergus W.; Haywood, Alan M.; Otto-Bliesner, Bette L.; Bragg, Fran; Chan, Wing-Le; Chandler, Mark A.; Contoux, Camille; Kamae, Youichi; Abe-Ouchi, Ayako; Rosenbloom, Nan A.; hide

    2016-01-01

    Eight general circulation models have simulated the mid-Pliocene warm period (mid-Pliocene, 3.264 to 3.025 Ma) as part of the Pliocene Modelling Intercomparison Project (PlioMIP). Here, we analyse and compare their simulation of Arctic sea ice for both the pre-industrial period and the mid-Pliocene. Mid-Pliocene sea ice thickness and extent is reduced, and the model spread of extent is more than twice the pre-industrial spread in some summer months. Half of the PlioMIP models simulate ice-free conditions in the mid-Pliocene. This spread amongst the ensemble is in line with the uncertainties amongst proxy reconstructions for mid-Pliocene sea ice extent. Correlations between mid-Pliocene Arctic temperatures and sea ice extents are almost twice as strong as the equivalent correlations for the pre-industrial simulations. The need for more comprehensive sea ice proxy data is highlighted, in order to better compare model performances.

  1. Pace of glacial retreat and limits on paleoclimate conditions for the Pine Creek Glacier, Montana, during the Pinedale Glaciation

    NASA Astrophysics Data System (ADS)

    Huss, E.; Laabs, B. J.; Leonard, E. M.; Licciardi, J. M.; Plummer, M. A.; Caffee, M. W.

    2012-12-01

    The timing of glaciation and the changes in climate that occurred both during and after the Last Glacial Maximum (LGM) in the Rocky Mountains are not well defined. Given the sensitivity of mountain glaciers to factors such as temperature, precipitation, and solar radiation, reconstructions of the history and extent of paleo-glaciers can be used to infer paleoclimate. Pine Creek Valley, located in the Absaroka Mountains in southwestern Montana, is an ideal setting for this type of research because it was occupied by a discrete valley glacier, the extent of which is precisely known during the LGM. To determine the pace and timing of ice retreat in this valley, glacially polished bedrock surfaces along the path of deglaciation were sampled at several points for cosmogenic 10Be surface exposure dating. The ages obtained range from 17.9 ± 0.8 to 13.2 ± 0.5 ka. When combined with the reconstructed ice extent during the LGM and subsequent deglaciation, these ages yield maximum and minimum retreat rates of 3.1 m/yr and 1.1 m/yr, respectively. These values constrain how long it took the glacier to retreat into a well-defined cirque from the terminal moraines. Paleoclimate conditions for the LGM were estimated using a two-dimensional, numerical, combined energy and mass balance and ice flow model. Previous qualitative inferences of paleoclimate in southern Montana indicate climate during the local LGM was colder and drier than modern values. If precipitation values were held constant or reduced for the Pine Creek glacier, the model suggests a temperature depression of at least 8°C.

  2. Precipitation Impacts of a Shrinking Arctic Sea Ice Cover

    NASA Astrophysics Data System (ADS)

    Stroeve, J. C.; Frei, A.; Gong, G.; Ghatak, D.; Robinson, D. A.; Kindig, D.

    2009-12-01

    Since the beginning of the modern satellite record in October 1978, the extent of Arctic sea ice has declined in all months, with the strongest downward trend at the end of the melt season in September. Recently the September trends have accelerated. Through 2001, the extent of September sea ice was decreasing at a rate of -7 per cent per decade. By 2006, the rate of decrease had risen to -8.9 per cent per decade. In September 2007, Arctic sea ice extent fell to its lowest level recorded, 23 per cent below the previous record set in 2005, boosting the downward trend to -10.7 per cent per decade. Ice extent in September 2008 was the second lowest in the satellite record. Including 2008, the trend in September sea ice extent stands at -11.8 percent per decade. Compared to the 1970s, September ice extent has retreated by 40 per cent. Summer 2009 looks to repeat the anomalously low ice conditions that characterized the last couple of years. Scientists have long expected that a shrinking Arctic sea ice cover will lead to strong warming of the overlying atmosphere, and as a result, affect atmospheric circulation and precipitation patterns. Recent results show clear evidence of Arctic warming linked to declining ice extent, yet observational evidence for responses of atmospheric circulation and precipitation patterns is just beginning to emerge. Rising air temperatures should lead to an increase in the moisture holding capacity of the atmosphere, with the potential to impact autumn precipitation. Although climate models predict a hemispheric wide decrease in snow cover as atmospheric concentrations of GHGs increase, increased precipitation, particular in autumn and winter may result as the Arctic transitions towards a seasonally ice free state. In this study we use atmospheric reanalysis data and a cyclone tracking algorithm to investigate the influence of recent extreme ice loss years on precipitation patterns in the Arctic and the Northern Hemisphere. Results show enhanced cyclone associated precipitation in autumn over Siberia for anomalously low ice years compared with anomalously high ice years along with a strengthening of the North Atlantic Storm track.

  3. Sea salt sodium record from Talos Dome (East Antarctica) as a potential proxy of the Antarctic past sea ice extent.

    PubMed

    Severi, M; Becagli, S; Caiazzo, L; Ciardini, V; Colizza, E; Giardi, F; Mezgec, K; Scarchilli, C; Stenni, B; Thomas, E R; Traversi, R; Udisti, R

    2017-06-01

    Antarctic sea ice has shown an increasing trend in recent decades, but with strong regional differences from one sector to another of the Southern Ocean. The Ross Sea and the Indian sectors have seen an increase in sea ice during the satellite era (1979 onwards). Here we present a record of ssNa + flux in the Talos Dome region during a 25-year period spanning from 1979 to 2003, showing that this marker could be used as a potential proxy for reconstructing the sea ice extent in the Ross Sea and Western Pacific Ocean at least for recent decades. After finding a positive relationship between the maxima in sea ice extent for a 25-year period, we used this relationship in the TALDICE record in order to reconstruct the sea ice conditions over the 20th century. Our tentative reconstruction highlighted a decline in the sea ice extent (SIE) starting in the 1950s and pointed out a higher variability of SIE starting from the 1960s and that the largest sea ice extents of the last century occurred during the 1990s. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Antarctic Ice Sheet during the last Interglaciation: Insights from my Thesis

    NASA Astrophysics Data System (ADS)

    Whipple, Matthew; Lunt, Dan; Singarayer, Joy; Bradley, Sarah; Milne, Glenn; Wolff, Eric; Siddall, Mark

    2015-04-01

    The last interglaciation represents a period of warmer climates and higher sea levels, and a useful analogue to future climate. While many studies have focussed on the response of the Greenland Ice sheet, far less is known about the response of the Antarctic ice sheet. Here, I present the summarised results of my PhD thesis "Constraints on the minimum extent of the Antarctic ice sheet during the last interglaciation". Firstly, I cover the timings of interglaciation in Antarctica, and their differences with respect to the Northern Hemisphere timings, based on paleo sea level indicators, and oceanic temperature records. I move on to cover climate forcings, and how they influence the ice sheet, relative to present, and early Holocene. Secondly, I present thesis results, from looking at ice core stable water isotopes. These are compared with Isostatic and Climatic modelling results, for various different Ice sheet scenarios, as to the resulting Climate, from changes in Elevation, Temperature, Precipitation, and Sublimation, all contributing to the recorded stable water isotope record. Thirdly, I move on to looking at the mid-field relative sea level records, from Australia and Argentina. Using isostatic modelling, these are used to assess the relative contribution of the Eastern and Western Antarctic Ice sheets. Although data uncertainties result in us being to identify the contribution from West Antarctica. Overall, using model-data comparison, we find a lack of evidence for a substantial retreat of the Wilkes Subglacial basin. No data location is close enough to determine the existence of the marine based West Antarctic Ice sheet. Model uncertainty is unable to constrain evidence of variations in ice thickness in East Antarctica.

  5. Effects of ice formation on hydrology and water quality in the lower Bradley River, Alaska; implications for salmon incubation habitat

    USGS Publications Warehouse

    Rickman, Ronald L.

    1998-01-01

    A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate habitat for salmon incubation. The study that determined this minimum flow did not account for the effects of ice formation on habitat. The limiting factor for determining the minimal acceptable flow limit appears to be stream-water velocity. The minimum short-term flow needed to ensure adequate salmon incubation habitat when ice is present is about 30 cubic feet per second. For long-term flows, 40 cubic feet per second is adequate when ice is present. Long-term minimum discharge needed to ensure adequate incubation habitat--which is based on mean velocity alone--is as follows: 40 cubic feet per second when ice is forming; 35 cubic feet per second for stable and eroding ice conditions; and 30 cubic feet per second for ice-free conditions. The effects of long-term streamflow less than 40 cubic feet per second on fine-sediment deposition and dissolved-oxygen interchange could not be extrapolated from the data. Hydrologic properties and water-quality data were measured in winter only from March 1993 to April 1998 at six transects in the lower Bradley River under three phases of icing: forming, stable, and eroding. Discharge in the lower Bradley River ranged from 33.3 to 73.0 cubic feet per second during all phases of ice formation and ice conditions, which ranged from ice free to 100 percent ice cover. Hydrostatic head was adequate for habitat protection for all ice phases and discharges. Mean stream velocity was adequate for all but one ice-forming episode. Velocity distribution within each transect varied significantly from one sampling period to the next. No relation was found between ice phase, discharge, and wetted perimeter. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface- and intragravel-water dissolved-oxygen levels were adequate for all ice phases and discharges. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Fine-sediment deposition was greatest at the downstream end of the study reach because of low shear velocities and tide-induced deposition. Dissolved-oxygen interchange was adequate for all discharges and ice conditions. Stranding potential of salmon fry was found to be low throughout the study reach. Minimum flows from the fish-water bypass needed to maintain 40 cubic feet per second in the lower Bradley River are estimated.

  6. Dynamic climate emulators for solar geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacMartin, Douglas G.; Kravitz, Ben

    2016-12-22

    Climate emulators trained on existing simulations can be used to project project the climate effects that result from different possible future pathways of anthropogenic forcing, without further relying on general circulation model (GCM) simulations. We extend this idea to include different amounts of solar geoengineering in addition to different pathways of greenhouse gas concentrations, by training emulators from a multi-model ensemble of simulations from the Geoengineering Model Intercomparison Project (GeoMIP). The emulator is trained on the abrupt 4 × CO 2 and a compensating solar reduction simulation (G1), and evaluated by comparing predictions against a simulated 1 % per yearmore » CO 2 increase and a similarly smaller solar reduction (G2). We find reasonable agreement in most models for predicting changes in temperature and precipitation (including regional effects), and annual-mean Northern Hemisphere sea ice extent, with the difference between simulation and prediction typically being smaller than natural variability. This verifies that the linearity assumption used in constructing the emulator is sufficient for these variables over the range of forcing considered. Annual-minimum Northern Hemisphere sea ice extent is less well predicted, indicating a limit to the linearity assumption.« less

  7. Towards Improving Sea Ice Predictabiity: Evaluating Climate Models Against Satellite Sea Ice Observations

    NASA Astrophysics Data System (ADS)

    Stroeve, J. C.

    2014-12-01

    The last four decades have seen a remarkable decline in the spatial extent of the Arctic sea ice cover, presenting both challenges and opportunities to Arctic residents, government agencies and industry. After the record low extent in September 2007 effort has increased to improve seasonal, decadal-scale and longer-term predictions of the sea ice cover. Coupled global climate models (GCMs) consistently project that if greenhouse gas concentrations continue to rise, the eventual outcome will be a complete loss of the multiyear ice cover. However, confidence in these projections depends o HoHoweon the models ability to reproduce features of the present-day climate. Comparison between models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) and observations of sea ice extent and thickness show that (1) historical trends from 85% of the model ensemble members remain smaller than observed, and (2) spatial patterns of sea ice thickness are poorly represented in most models. Part of the explanation lies with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and to project the timing of when a seasonally ice-free Arctic may be realized. On shorter time-scales, seasonal sea ice prediction has been challenged to predict the sea ice extent from Arctic conditions a few months to a year in advance. Efforts such as the Sea Ice Outlook (SIO) project, originally organized through the Study of Environmental Change (SEARCH) and now managed by the Sea Ice Prediction Network project (SIPN) synthesize predictions of the September sea ice extent based on a variety of approaches, including heuristic, statistical and dynamical modeling. Analysis of SIO contributions reveals that when the September sea ice extent is near the long-term trend, contributions tend to be accurate. Years when the observed extent departs from the trend have proven harder to predict. Predictability skill does not appear to be more accurate for dynamical models over statistical ones, nor is there a measurable improvement in skill as the summer progresses.

  8. 30-Year Satellite Record Reveals Contrasting Arctic and Antarctic Decadal Sea Ice Variability

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Parkinson, C. L.; Vinnikov, K. Y.

    2003-01-01

    A 30-year satellite record of sea ice extents derived mostly from satellite microwave radiometer observations reveals that the Arctic sea ice extent decreased by 0.30+0.03 x 10(exp 6) square kilometers per 10 yr from 1972 through 2002, but by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per 10yr from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased. Over the full 30-year period, the Antarctic ice extent decreased by 0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10 yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent in the early 1970's, an anomaly that apparently began in the late 1960's, as observed in early visible and infrared satellite images.

  9. New Visualizations Highlight New Information on the Contrasting Arctic and Antarctic Sea-Ice Trends Since the Late 1970s

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; DiGirolamo, Nicolo E.

    2016-01-01

    Month-by-month ranking of 37 years (1979-2015) of satellite-derived sea-ice extents in the Arctic and Antarctic reveals interesting new details in the overall trends toward decreasing sea-ice coverage in the Arctic and increasing sea-ice coverage in the Antarctic. The Arctic decreases are so definitive that there has not been a monthly record high in Arctic sea-ice extents in any month since 1986, a time period during which there have been 75 monthly record lows. The Antarctic, with the opposite but weaker trend toward increased ice extents, experienced monthly record lows in 5 months of 1986, then 6 later monthly record lows scattered through the dataset, with the last two occurring in 2006, versus 45 record highs since 1986. However, in the last three years of the 1979-2015 dataset, the downward trends in Arctic sea-ice extents eased up, with no new record lows in any month of 2013 or 2014 and only one record low in 2015,while the upward trends in Antarctic ice extents notably strengthened, with new record high ice extents in 4 months (August-November) of 2013, in 6 months (April- September) of 2014, and in 3 months (January, April, and May) of 2015. Globally, there have been only 3 monthly record highs since 1986 (only one since 1988), whereas there have been 43 record lows, although the last record lows (in the 1979-2015 dataset) occurred in 2012.

  10. Air-Sea Interactions in the Marginal Ice Zone

    DTIC Science & Technology

    2016-03-31

    Arctic Ocean has increased with the significant retreat of the seasonal sea-ice extent. Here, we use wind, wave, turbulence, and ice measurements to...which has experienced a significant retreat of the seasonal ice extent (Comiso and Nishio, 2008; Comiso et al., 2008). Thomson and Rogers (2014) showed

  11. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    USGS Publications Warehouse

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p < 0.001) to this lake regime shift. To understand how and to what extent sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  12. Global Warming and Northern Hemisphere Sea Ice Extent.

    PubMed

    Vinnikov; Robock; Stouffer; Walsh; Parkinson; Cavalieri; Mitchell; Garrett; Zakharov

    1999-12-03

    Surface and satellite-based observations show a decrease in Northern Hemisphere sea ice extent during the past 46 years. A comparison of these trends to control and transient integrations (forced by observed greenhouse gases and tropospheric sulfate aerosols) from the Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models reveals that the observed decrease in Northern Hemisphere sea ice extent agrees with the transient simulations, and both trends are much larger than would be expected from natural climate variations. From long-term control runs of climate models, it was found that the probability of the observed trends resulting from natural climate variability, assuming that the models' natural variability is similar to that found in nature, is less than 2 percent for the 1978-98 sea ice trends and less than 0.1 percent for the 1953-98 sea ice trends. Both models used here project continued decreases in sea ice thickness and extent throughout the next century.

  13. Greenland's Biggest Losers

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Hubbard, A.; Howat, I. M.; Csatho, B. M.; Decker, D. T.; Bates, R.; Tulaczyk, S. M.

    2010-12-01

    On 4 August, 2010, 275 square km of the front of the floating Petermann Glacier, far northwest Greenland, broke away. The glacier effectively retreated 15 km. Petermann has retreated 21 km since year 2000. Consulting available imagery, publications, and maps spanning the past century, we conclude that this is a retreat to a minimum extent in the observational record. This glacier is not the only ice are loser in Greenland. GRACE observations verify the concern of increased mass budget deficit. Retreat is ongoing at the 110 km wide Humboldt glacier and at the 23 km wide Zachariae ice stream. Humboldt, Zachariae, and Petermann (16 km wide) are among a handful of large marine-terminating outlets that have bedrock trenches that lead inland below sea level to the thick, interior reservoir of the ice sheet. Sleeping giants are awakening. Our area change survey of the 35 widest Greenland outlets indicates an annual marine-terminating glacier area loss rate in excess of 130 sq km per year. Here, we evaluate in this context the mechanisms for marine-terminating glacier retreat, dynamical responses to calving, and the apparent climate forcings. The work thus consults a suite of data sets, including: long-term meteorological station records; satellite-derived sea and land surface temperatures; satellite-derived sea ice extent; regional climate model output; oceanographic casts; time lapse cameras, surface elevation change, and tidal records. Cumulative area change at Greenland’s glacier top 5 “losers”. 2010 areas are measured ~1 month prior to the end of summer melt when the survey usually is made . We do not expect 2010 area changes to be much different using the future data. If anything, we expect the losses to be larger. Click here for a full resolution graphic.

  14. Whole-stream metabolism of a perennial spring-fed aufeis field in Alaska, with coincident surface and subsurface flow

    NASA Astrophysics Data System (ADS)

    Hendrickson, P. J.; Gooseff, M. N.; Huryn, A. D.

    2017-12-01

    Aufeis (icings or naleds) are seasonal arctic and sub-arctic features that accumulate through repeated overflow and freeze events of river or spring discharge. Aufeis fields, defined as the substrate on which aufeis form and the overlaying ice, have been studied to mitigate impacts on engineering structures; however, ecological characteristics and functions of aufeis fields are poorly understood. The perennial springs that supply warm water to aufeis fields create unique fluvial habitats, and are thought to act as winter and summer oases for biota. To investigate ecosystem function, we measured whole-stream metabolism at the Kuparuk River Aufeis (North Slope, AK), a large ( 5 km2) field composed of cobble substrate and predominately subsurface flow dynamics. The single-station open channel diel oxygen method was utilized at several dissolved oxygen (DO) stations located within and downstream of the aufeis field. DO loggers were installed in August 2016, and data downloaded summer 2017. Daily ecosystem respiration (ER), gross primary production (GPP) and reaeration rates were modeled using BASE, a package freely available in the open-source software R. Preliminary results support net heterotrophy during a two-week period of DO measurements in the fall season when minimum ice extent is observed. GPP, ER, and net metabolism are greater at the upstream reach near the spring source (P/R = 0.53), and decrease as flow moves downstream. As flow exits the aufeis field, surface and subsurface flow are incorporated into the metabolism model, and indicate the stream system becomes dependent on autochthonous production (P/R = 0.91). Current work is directed towards spring and summer discharge and metabolic parameter estimation, which is associated with maximum ice extent and rapid melting of the aufeis feature.

  15. The Role of Arctic Sea Ice in Last Millennium Climate Variability: Model-Proxy Comparisons Using Ensemble Members and Novel Model Experiments.

    NASA Astrophysics Data System (ADS)

    Gertler, C. G.; Monier, E.; Prinn, R. G.

    2016-12-01

    Variability in sea ice extent is a prominent feature of forced simulations of the last millennium and reconstructions of paleoclimate using proxy records. The rapid 20th century decline in sea ice extent is most likely due to greenhouse gas forcing, but the accuracy of future projections depend on the characterization of natural variability. Declining sea ice extent affects regional climate and society, but also plays a large role in Arctic amplification, with implications for mid-latitude circulation and even large-scale climate oscillations. To characterize the effects of natural and anthropogenic climate forcing on sea ice and the related changes in large-scale atmospheric circulation, a combination of instrumental record, paleoclimate reconstructions, and general circulation models can be employed to recreate sea ice extents and the corresponding atmosphere-ocean states. Model output from the last millennium ensemble (LME) is compared to a proxy-based sea ice reconstruction and a global proxy network using a variety of statistical and data assimilation techniques. Further model runs using the Community Earth Systems Model (CESM) are performed with the same inputs as LME but forced with experimental sea ice extents, and results are contextualized within the larger ensemble by a variety of metrics.

  16. A 21-Year Record of Arctic Sea Ice Extents and Their Regional, Seasonal, and Monthly Variability and Trends

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave data have been used to calculate sea ice extents over the period 1979-1999 for the north polar sea ice cover as a whole and for each of nine regions. Over this 21-year time period, the trend in yearly average ice extents for the ice cover as a whole is -32,900 +/- 6,100 sq km/yr (-2.7 +/- 0.5 %/decade), indicating a reduction in sea ice coverage that has decelerated from the earlier reported value of -34,000 +/- 8,300 sq km/yr (-2.8 +/- 0.7 %/decade) for the period 1979-1996. Regionally, the reductions are greatest in the Arctic Ocean, the Kara and Barents Seas, and the Seas of Okhotsk and Japan, whereas seasonally, the reductions are greatest in summer, for which season the 1979-1999 trend in ice extents is -41,600 +/- 12,900 sq km/ yr (-4.9 +/- 1.5 %/decade). On a monthly basis, the reductions are greatest in July and September for the north polar ice cover as a whole, in September for the Arctic Ocean, in June and July for the Kara and Barents Seas, and in April for the Seas of Okhotsk and Japan. Only two of the nine regions show overall ice extent increases, those being the Bering Sea and the Gulf of St. Lawrence.For neither of these two regions is the increase statistically significant, whereas the 1079 - 1999 ice extent decreases are statistically significant at the 99% confidence level for the north polar region as a whole, the Arctic Ocean, the Seas of Okhotsk and Japan, and Hudson Bay.

  17. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    PubMed

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  18. Change in the Extent of Baffin Island's Penny Ice Cap in Response to Regional Warming, 1969 - 2014

    NASA Astrophysics Data System (ADS)

    Cox, M. C.; Cormier, H. M.; Gardner, A. S.

    2014-12-01

    Glaciers are retreating globally in response to warmer atmospheric temperatures, adding large volumes of melt water to the world's oceans. The largest glacierized region and present-day contributor to sea level rise outside of the massive ice sheets is the Canadian Arctic. Recent work has shown that the glaciers of the southern Canadian Arctic (Baffin and Bylot Island) have experienced accelerated rates of ice loss in recent decades, but little is known regarding the spatial and temporal variations in rates of loss. For this study we examine in detail changes in the extent of the Penny Ice Cap (a proxy for ice loss) between 1969 and 2014 to better understand the climatic drivers of the recently observed accelerated rates of ice loss on Baffin Island. To do this, we reconstruct the extent of the ice cap for the year 1969 from historical maps and for the years 1985, 1995, 2010, and 2014 from Landsat 5 TM and Landsat 8 OLI imagery. We use 2009 SPOT HRS imagery and a novel extent comparison algorithm to assess the accuracy of glacier extents derived from Landsat imagery. Regional temperature and precipitation records were used to explain the spatial pattern of change. Due to large variation in elevations, hypsometry was also investigated as a contributor to differences in rates of change across the ice cap. Preliminary results show overall retreat throughout the ice cap but with regional differences in area and length change on either side of the Ice Cap divide.

  19. Critical Mechanisms for the Formation of Extreme Arctic Sea-Ice Extent in the Summers of 2007 and 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiquan; Zib, Benjamin J.; Xi, Baike

    A warming Arctic climate is undergoing significant e 21 nvironmental change, most evidenced by the reduction of Arctic sea-ice extent during the summer. In this study, we examine two extreme anomalies of September sea-ice extent in 2007 and 1996, and investigate the impacts of cloud fraction (CF), atmospheric precipitable water vapor (PWV), downwelling longwave flux (DLF), surface air temperature (SAT), pressure and winds on the sea-ice variation in 2007 and 1996 using both satellite-derived sea-ice products and MERRA reanalysis. The area of the Laptev, East Siberian and West Chukchi seas (70-90oN, 90-180oE) has experienced the largest variation in sea-ice extentmore » from year-to-year and defined here as the Area Of Focus (AOF). The record low September sea-ice extent in 2007 was associated with positive anomalies 30 of CF, PWV, DLF, and SAT over the AOF. Persistent anti-cyclone positioned over the Beaufort Sea coupled with low pressure over Eurasia induced easterly zonal and southerly meridional winds. In contrast, negative CF, PWV, DLF and SAT anomalies, as well as opposite wind patterns to those in 2007, characterized the 1996 high September sea-ice extent. Through this study, we hypothesize the following positive feedbacks of clouds, water vapor, radiation and atmospheric variables on the sea-ice retreat during the summer 2007. The record low sea-ice extent during the summer 2007 is initially triggered by the atmospheric circulation anomaly. The southerly winds across the Chukchi and East Siberian seas transport warm, moist air from the north Pacific, which is not only enhancing sea-ice melt across the AOF, but also increasing clouds. The positive cloud feedback results in higher SAT and more sea-ice melt. Therefore, 40 more water vapor could be evaporated from open seas and higher SAT to form more clouds, which will enhance positive cloud feedback. This enhanced positive cloud feedback will then further increase SAT and accelerate the sea-ice retreat during the summer 2007.« less

  20. Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

    NASA Astrophysics Data System (ADS)

    Passalacqua, Olivier; Ritz, Catherine; Parrenin, Frédéric; Urbini, Stefano; Frezzotti, Massimo

    2017-09-01

    Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF), which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice-bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km × 130 km area, with a N-S gradient and with values ranging from 48 to 60 mW m-2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.

  1. Intersensor Calibration Between F13 SSMI and F17 SSMIS for Global Sea Ice Data Records

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Parkinson, Claire L.; DiGirolamo, Nicolo; Ivanoff, Alvaro

    2011-01-01

    An intercalibration between F13 Special Sensor Microwave Imager (SSMI) and F17 Special Sensor Microwave Imager Sounder (SSMIS) sea ice extents and areas for a full year of overlap was undertaken preparatory to extending the 1979-2007 NASA Goddard Space Flight Center (GSFC) NASA Team algorithm time series of global sea ice extents and areas. The 1979- 2007 time series was created from Scanning Multichannel Microwave Radiometer (SMMR) and SSMI data. After intercalibration, the yearly mean F17 and F13 difference in Northern Hemisphere sea ice extents is -0.0156%, with a standard deviation of the differences of 0.6204%, and the yearly mean difference in Northern Hemisphere sea ice areas is 0.5433%, with a standard deviation of 0.3519%. For the Southern Hemisphere, the yearly mean difference in sea ice extents is 0.0304% +/- 0.4880%, and the mean difference in sea ice areas is 0.1550% +/- 0.3753%. This F13/F17 intercalibration enables the extension of the 28-year 1979-2007 SMMR/SSMI sea ice time series for as long as there are stable F17 SSMIS brightness temperatures available.

  2. Intersensor Calibration Between F13 SSMI and F17 SSMIS for Global Sea Ice Data Records

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Parkinson, Claire L.; DiGirolamo, Nicolo; Ivanoff, Alvaro

    2012-01-01

    An intercalibration between F13 Special Sensor Microwave Imager (SSMI) and F17 Special Sensor Microwave Imager Sounder (SSMIS) sea ice extents and areas for a full year of overlap was undertaken preparatory to extending the 1979-2007 NASA Goddard Space Flight Center (GSFC) NASA Team algorithm time series of global sea ice extents and areas. The 1979- 2007 time series was created from Scanning Multichannel Microwave Radiometer (SMMR) and SSMI data. After intercalibration, the yearly mean F17 and F13 difference in Northern Hemisphere sea ice extents is -0.0156%, with a standard deviation of the differences of 0.6204%, and the yearly mean difference in Northern Hemisphere sea ice areas is 0.5433%, with a standard deviation of 0.3519%. For the Southern Hemisphere, the yearly mean difference in sea ice extents is 0.0304% 0.4880%, and the mean difference in sea ice areas is 0.1550% 0.3753%. This F13/F17 intercalibration enables the extension of the 28-year 1979-2007 SMMR/SSMI sea ice time series for as long as there are stable F17 SSMIS brightness temperatures available.

  3. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss

    PubMed Central

    Notz, Dirk

    2009-01-01

    We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet. PMID:19884496

  4. Large-scale variations in observed Antarctic Sea ice extent and associated atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Parkinson, C. L.

    1981-01-01

    The 1974 Antarctic large scale sea ice extent is studied from data from Nimbus 2 and 5 and temperature and sea level pressure fields from the Australian Meteorological Data Set. Electrically Scanning Microwave Radiometer data were three-day averaged and compared with 1000 mbar atmospheric pressure and sea level pressure data, also in three-day averages. Each three-day period was subjected to a Fourier analysis and included the mean latitude of the ice extent and the phases and percent variances in terms of the first six Fourier harmonics. Centers of low pressure were found to be generally east of regions which displayed rapid ice growth, and winds acted to extend the ice equatorward. An atmospheric response was also noted as caused by the changing ice cover.

  5. Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008-2013

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward

    2014-04-01

    Since 2008, the Study of Environmental Arctic Change Sea Ice Outlook has solicited predictions of September sea-ice extent from the Arctic research community. Individuals and teams employ a variety of modeling, statistical, and heuristic approaches to make these predictions. Viewed as monthly ensembles each with one or two dozen individual predictions, they display a bimodal pattern of success. In years when observed ice extent is near its trend, the median predictions tend to be accurate. In years when the observed extent is anomalous, the median and most individual predictions are less accurate. Statistical analysis suggests that year-to-year variability, rather than methods, dominate the variation in ensemble prediction success. Furthermore, ensemble predictions do not improve as the season evolves. We consider the role of initial ice, atmosphere and ocean conditions, and summer storms and weather in contributing to the challenge of sea-ice prediction.

  6. ESPC Coupled Global Prediction System - Develop and Test Coupled Physical Parameterizations: NAVGEM/CICE/HYCOM

    DTIC Science & Technology

    2013-09-30

    the Study of the Environmental Arctic Change (SEARCH) Sea Ice Outlook (SIO) effort. The SIO is an international effort to provide a community-wide...summary of the expected September arctic sea ice minimum. Monthly reports released throughout the summer synthesize community estimates of the current...state and expected minimum of sea ice . Along with the backbone components of this system (NAVGEM/HYCOM/CICE), other data models have been used to

  7. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season

    NASA Astrophysics Data System (ADS)

    Stuecker, Malte F.; Bitz, Cecilia M.; Armour, Kyle C.

    2017-09-01

    The 2016 austral spring was characterized by the lowest Southern Hemisphere (SH) sea ice extent seen in the satellite record (1979 to present) and coincided with anomalously warm surface waters surrounding most of Antarctica. We show that two distinct processes contributed to this event: First, the extreme El Niño event peaking in December-February 2015/2016 contributed to pronounced extratropical SH sea surface temperature and sea ice extent anomalies in the eastern Ross, Amundsen, and Bellingshausen Seas that persisted in part until the following 2016 austral spring. Second, internal unforced atmospheric variability of the Southern Annular Mode promoted the exceptional low sea ice extent in November-December 2016. These results suggest that a combination of tropically forced and internal SH atmospheric variability contributed to the unprecedented sea ice decline during the 2016 austral spring, on top of a background of slow changes expected from greenhouse gas and ozone forcing.

  8. Arctic climate response to geoengineering with stratospheric sulfate aerosols

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2010-12-01

    Recent warming and record summer sea-ice area minimums have spurred expressions of concern for arctic ecosystems, permafrost, and polar bear populations, among other things. Geoengineering by stratospheric sulfate aerosol injections to deliberately cancel the anthropogenic temperature rise has been put forth as a possible solution to restoring Arctic (and global) climate to modern conditions. However, climate is particularly sensitive in the northern high latitudes, responding easily to radiative forcing changes. To that end, we explore the extent to which tropical injections of stratospheric sulfate aerosol can accomplish regional cancellation in the Arctic. We use the Community Climate System Model version 3 global climate model to execute simulations with combinations of doubled CO2 and imposed stratospheric sulfate burdens to investigate the effects on high latitude climate. We further explore the sensitivity of the polar climate to ocean dynamics by running a suite of simulations with and without ocean dynamics, transiently and to equilibrium respectively. We find that, although annual, global mean temperature cancellation is accomplished, there is over-cooling on land in Arctic summer, but residual warming in Arctic winter, which is largely due to atmospheric circulation changes. Furthermore, the spatial extent of these features and their concurrent impacts on sea-ice properties are modified by the inclusion of ocean dynamical feedbacks.

  9. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 1. Minimum seaward extent defined from multichannel seismic reflection data

    USGS Publications Warehouse

    Brothers, Laura; Herman, Bruce M.; Hart, Patrick E.; Ruppel, Carolyn D.

    2016-01-01

    Subsea ice-bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last transgression at the end of the Pleistocene. The consequent degradation of IBPF is potentially associated with significant degassing of dissociating gas hydrate deposits. Previous studies interpreted the distribution of subsea permafrost on the U.S. Beaufort continental shelf based on geographically sparse data sets and modeling of expected thermal history. The most cited work projects subsea permafrost to the shelf edge (∼100 m isobath). This study uses a compilation of stacking velocity analyses from ∼100,000 line-km of industry-collected multichannel seismic reflection data acquired over 57,000 km2 of the U.S. Beaufort shelf to delineate continuous subsea IBPF. Gridded average velocities of the uppermost 750 ms two-way travel time range from 1475 to 3110 m s−1. The monotonic, cross-shore pattern in velocity distribution suggests that the seaward extent of continuous IBPF is within 37 km of the modern shoreline at water depths < 25 m. These interpretations corroborate recent Beaufort seismic refraction studies and provide the best, margin-scale evidence that continuous subsea IBPF does not currently extend to the northern limits of the continental shelf.

  10. Reconstruction of sea-ice cover and primary production on the East Greenland Shelf (73°N) during the last 5200 years

    NASA Astrophysics Data System (ADS)

    Kolling, Henriette Marie; Stein, Rüdiger; Fahl, Kirsten; Perner, Kerstin; Moros, Matthias

    2016-04-01

    Over the last decades the extent and thickness of Arctic sea ice has changed dramatically and much more rapidly than predicted by climate models. Thus, high-resolution sea-ice reconstructions from pre-anthropogenic times are useful and needed in order to better understand the processes controlling the natural sea-ice variability. Here, we present the first high-resolution biomarker (IP25, sterols) approach over the last 5.2 ka from the East Greenland Shelf (for background about the biomarker approach see Belt et al., 2007; Müller et al., 2009, 2011). This area is highly sensitive to sea-ice changes, as it underlies the pathway of the East Greenland Current, the main exporter of Arctic freshwater and sea ice that affects the environmental conditions on the East Greenland Shelf and deep-water formation/ convection in the Northern North Atlantic. After rather stable sea-ice conditions in the mid-Holocene we found a strong increase in sea ice, cumulating around 1.5 ka and associated with the Neoglacial cooling. The general trend especially during the last 1ka is interrupted by several short-lived events such as the prominent Medieval Warm Period and Little Ice Age, characterized by minimum and maximum sea-ice extent, respectively. Using a spectral analysis, we could identify several cyclicites, e.g. a 45-year cyclicity for cold events. A comparison to similar records from the eastern Fram Strait revealed a slight time lag in the onset of the Neoglacial, but also suggesting the direct link of the East Greenland Shelf area to the Arctic sea-ice/freahwater outflow. A comparison of the biomarker data with a new foraminiferal record obtained from the same site (Perner et al., 2015) suggests that IP25 and foraminifera assemblages are probably controlled by rather different processes within the oceanographic systems, such as the sea-ice conditions and, for the foraminifera, water-mass changes and nutrient supply. References: Belt. S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38 (2007) 16-27 Müller, J., Massé, G., Stein, R., Belt, S.T., 2009. Variability of sea-ice conditons in the Fram Strait over the past 30,000 years. Nature Geoscience Vol 2 (2009), 772-776 Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., Lohmann, G., 2011. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combines biomarker and numerical modelling approach. East and Planetrary Science Letters 306 (2011) 137-148 Perner, K., Moros, M., Lloyd, J.M., Jansen, E., Stein, R., 2015. Mid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water. Quaternary Science Reviews 129 (2015) 296-307

  11. Development of global sea ice 6.0 CICE configuration for the Met Office global coupled model

    DOE PAGES

    Rae, J. . G. L; Hewitt, H. T.; Keen, A. B.; ...

    2015-03-05

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally-based datasets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST dataset. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is requiredmore » to rectify this in future configurations.« less

  12. Variability and trends in the Arctic Sea ice cover: Results from different techniques

    NASA Astrophysics Data System (ADS)

    Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert

    2017-08-01

    Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at -3.88%/decade and -4.37%/decade, respectively, compared to an average of -4.36%/decade and -4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.Plain Language SummaryThe declining Arctic sea ice cover, especially in the summer, has been the center of attention in recent years. Reports on the sea ice cover have been provided by different institutions using basically the same set of satellite data but different techniques for estimating key parameters such as ice concentration, ice extent, and ice area. In this study, a comparison of results from four different techniques that are frequently used shows significant disagreements in the characterization of the distribution of the sea ice cover primarily in areas that have a large fraction of new ice cover or significant amount of surface melt. However, the actual changes in the ice cover are consistently depicted and the trends in sea ice extent and ice area from the different data sets are practically the same providing strong confidence that satellite data are interpreted consistently by different scientists independently and confirming that the ice extent of the Arctic perennial ice is indeed declining at the rate of about 11% per decade. The results provide useful information for modelers, policy makers, and the general scientific public.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1190R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1190R"><span>Atmospheric Influences on the Anomalous 2016 Antarctic Sea Ice Decay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raphael, M. N.; Schlosser, E.; Haumann, A.</p> <p>2017-12-01</p> <p>Over the past three decades, a small but significant increase in sea ice extent (SIE) has been observed in the Antarctic. However, in 2016 there was a surprisingly early onset of the melt season. The maximum Antarctic SIE was reached in August rather than end of September, and was followed by a rapid decrease. The decline of the sea ice area (SIA) started even earlier, in July. The retreat of the ice was particularly large in November where Antarctic SIE exhibited a negative anomaly (compared to the 1981-2010 average) of almost 2 Mio. km2, which, combined with reduced Arctic SIE, led to a distinct minimum in global SIE. And, satellite observations show that from November 2016 to February 2017, the daily Antarctic SIE has been at record low levels. We use sea level pressure and geopotential height data from the ECMWF- Interim reanalysis, in conjunction with sea ice data obtained from the National Snow and Ice Data Centre (NSIDC), to investigate possible atmospheric influences on the observed phenomena. Indications are that both the onset of the melt in July and the rapid decrease in SIA and SIE in November were triggered by atmospheric flow patterns related to a positive Zonal Wave 3 index, i.e. synoptic situations leading to strong meridional flow. Additionally the Southern Annular Mode (SAM) index reached its second lowest November value since the beginning of the satellite observations. It is likely that the SIE decrease was preconditioned by SIA decrease. Positive feedback effects led to accelerated melt and consequently to the extraordinary low November SIE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4778018','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4778018"><span>Holocene ice marginal fluctuations of the Qassimiut lobe in South Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Larsen, Nicolaj K.; Find, Jesper; Kristensen, Anders; Bjørk, Anders A.; Kjeldsen, Kristian K.; Odgaard, Bent V.; Olsen, Jesper; Kjær, Kurt H.</p> <p>2016-01-01</p> <p>Knowledge about the Holocene evolution of the Greenland ice sheet (GrIS) is important to put the recent observations of ice loss into a longer-term perspective. In this study, we use six new threshold lake records supplemented with two existing lake records to reconstruct the Holocene ice marginal fluctuations of the Qassimiut lobe (QL) – one of the most dynamic parts of the GrIS in South Greenland. Times when the ice margin was close to present extent are characterized by clastic input from the glacier meltwater, whereas periods when the ice margin was behind its present day extent comprise organic-rich sediments. We find that the overall pattern suggests that the central part of the ice lobe in low-lying areas experienced the most prolonged ice retreat from ~9–0.4 cal. ka BP, whereas the more distal parts of the ice lobe at higher elevation re-advanced and remained close to the present extent during the Neoglacial between ~4.4 and 1.8 cal. ka BP. These results demonstrate that the QL was primarily driven by Holocene climate changes, but also emphasises the role of local topography on the ice marginal fluctuations. PMID:26940998</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001454&hterms=ice+antarctica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dice%2Bantarctica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001454&hterms=ice+antarctica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dice%2Bantarctica"><span>Breakup of the Larsen Ice Shelf, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>Recent Moderate-resolution Imaging Spectroradiometer (MODIS) satellite imagery analyzed at the University of Colorado's National Snow and Ice Data Center revealed that the northern section of the Larsen B ice shelf, a large floating ice mass on the eastern side of the Antarctic Peninsula, has shattered and separated from the continent. This particular image was taken on March 5, 2002. The shattered ice formed a plume of thousands of icebergs adrift in the Weddell Sea. A total of about 3,250 square kilometers of shelf area disintegrated in a 35-day period beginning on January 31, 2002. Over the last five years, the shelf has lost a total of 5,700 square kilometers and is now about 40 percent the size of its previous minimum stable extent. Ice shelves are thick plates of ice, fed by glaciers, that float on the ocean around much of Antarctica. The Larsen B shelf was about 220 meters thick. Based on studies of ice flow and sediment thickness beneath the ice shelf, scientists believe that it existed for at least 400 years prior to this event and likely existed since the end of the last major glaciation 12,000 years ago. For reference, the area lost in this most recent event dwarfs Rhode Island (2,717 square kilometers) in size. In terms of volume, the amount of ice released in this short time is 720 billion tons--enough ice for about 12 trillion 10-kilogram bags. This is the largest single event in a series of retreats by ice shelves along the peninsula over the last 30 years. The retreats are attributed to a strong climate warming in the region. The rate of warming is approximately 0.5 degrees Celsius per decade, and the trend has been present since at least the late 1940s. Overall in the peninsula, the extent of seven ice shelves has declined by a total of about 13,500 square kilometers since 1974. This value excludes areas that would be expected to calve under stable conditions. Ted Scambos, a researcher with the National Snow and Ice Data Center (NSIDC) at University of Colorado, and a team of collaborating investigators developed a theory of how the ice disintegrates. The theory is based on the presence of ponded melt water on the surface in late summer as the climate has warmed in the area. Meltwater acts to enhance fracturing of the shelf by filling smaller cracks. The weight of the meltwater forces the cracks through the thickness of the ice. The idea was suggested in model form by other researchers in the past (Weertman, 1973; Hughes, 1983); satellite images have provided substantial observational proof that it is in fact the main process responsible for the peninsula shelf disintegration. Christina Hulbe of Portland State University and Mark Fahnestock of University of Maryland collaborated with Scambos on the research. For more information see: Antarctic Ice Shelf Collapses Image courtesy Ted Scambos, National Snow and Ice Data Center, University of Colorado, Boulder, based on data from MODIS</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA595127','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA595127"><span>Determination of the Minimum Use Level of Fuel System Icing Inhibitor (FSII) in JP-8 That Will Provide Adquate Icing Inhibition and Biostatic Protection for Air Force Aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-12-01</p> <p>experimental studies and analyses performed and the resulting recommendations. Results from the present effort indicated that a minimum use limit of... experimental studies performed and the resulting recommendations regarding the minimum on-board use limit of FSII while maintaining safe operability...sumping. A detailed summary of the experimental efforts and results are provided in a separate report (Balster et al., 2010). For the ATCC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29507286','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29507286"><span>Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Detlef, H; Belt, S T; Sosdian, S M; Smik, L; Lear, C H; Hall, I R; Cabedo-Sanz, P; Husum, K; Kender, S</p> <p>2018-03-05</p> <p>Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP 25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040729','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040729"><span>The impact of lower sea-ice extent on Arctic greenhouse-gas exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.</p> <p>2013-01-01</p> <p>In September 2012, Arctic sea-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in sea-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced sea-ice cover in the Arctic Ocean for marine–atmosphere CO2 exchange. Sea-ice decline has been connected to increasing air temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing sea-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower sea-ice cover on Arctic greenhouse-gas exchange.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030056665&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030056665&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DParkinsons"><span>30-Year Satellite Record Reveals Accelerated Arctic Sea Ice Loss, Antarctic Sea Ice Trend Reversal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, Donald J.; Parkinson, C. L.; Vinnikov, K. Y.</p> <p>2003-01-01</p> <p>Arctic sea ice extent decreased by 0.30 plus or minus 0.03 x 10(exp 6) square kilometers per decade from 1972 through 2002, but decreased by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per decade from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast to the Arctic, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased, with an overall 30-year trend of -0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent observed in the early 1970's.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C31B0752L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C31B0752L"><span>Changes in Ocean Circulation with an Ice-Free Arctic: Reconstructing Early Holocene Arctic Ocean Circulation Using Geochemical Signals from Individual Neogloboquadrina pachyderma (sinistral) Shells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Livsey, C.; Spero, H. J.; Kozdon, R.</p> <p>2016-12-01</p> <p>The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target <5 μm - sized domains for δ18O using secondary ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11, 679-699.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.osti.gov/sciencecinema/biblio/987230','SCIGOVIMAGE-SCICINEMA'); return false;" href="http://www.osti.gov/sciencecinema/biblio/987230"><span>The Role of Snow and Ice in the Climate System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/sciencecinema/">ScienceCinema</a></p> <p>Barry, Roger G.</p> <p>2017-12-09</p> <p>Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019240','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019240"><span>Satellite remote sensing over ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, R. H.</p> <p>1984-01-01</p> <p>Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860043882&hterms=Antarctic+icebergs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DAntarctic%2Bicebergs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860043882&hterms=Antarctic+icebergs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DAntarctic%2Bicebergs"><span>Satellite remote sensing over ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, R. H.</p> <p>1986-01-01</p> <p>Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990064613&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990064613&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DParkinsons"><span>Variability of Arctic Sea Ice as Determined from Satellite Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.</p> <p>1999-01-01</p> <p>The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110008453&hterms=Influence+clouds+climate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DInfluence%2Bclouds%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110008453&hterms=Influence+clouds+climate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DInfluence%2Bclouds%2Bclimate"><span>Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten</p> <p>2010-01-01</p> <p>Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......190H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......190H"><span>The influence of sea ice on Antarctic ice core sulfur chemistry and on the future evolution of Arctic snow depth: Investigations using global models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hezel, Paul J.</p> <p></p> <p>Observational studies have examined the relationship between methanesulfonic acid (MSA) measured in Antarctic ice cores and sea ice extent measured by satellites with the aim of producing a proxy for past sea ice extent. MSA is an oxidation product of dimethylsulfide (DMS) and is potentially linked to sea ice based on observations of very high surface seawater DMS in the sea ice zone. Using a global chemical transport model, we present the first modeling study that specifically examines this relationship on interannual and on glacial-interglacial time scales. On interannual time scales, the model shows no robust relationship between MSA deposited in Antarctica and sea ice extent. We show that lifetimes of MSA and DMS are longer in the high latitudes than in the global mean, interannual variability of sea ice is small (<25%) as a fraction of sea ice area, and sea ice determines only a fraction of the variability (<30%) of DMS emissions from the ocean surface. A potentially larger fraction of the variability in DMS emissions is determined by surface wind speed (up to 46%) via the parameterization for ocean-to-atmosphere gas exchange. Furthermore, we find that a significant fraction (up to 74%) of MSA deposited in Antarctica originates from north of 60°S, north of the seasonal sea ice zone. We then examine the deposition of MSA and non-sea-salt sulfate (nss SO2-4 ) on glacial-interglacial time scales. Ice core observations on the East Antarctic Plateau suggest that MSA increases much more than nss SO2-4 during the last glacial maximum (LGM) compared to the modern period. It has been suggested that high MSA during the LGM is indicative of higher primary productivity and DMS emissions in the LGM compared to the modern day. Studies have also shown that MSA is subject to post-depositional volatilization, especially during the modern period. Using the same chemical transport model driven by meteorology from a global climate model, we examine the sensitivity of MSA and nss SO2-4 deposition to differences between the modern and LGM climates, including sea ice extent, sea surface temperatures, oxidant concentrations, and meteorological conditions. We are unable to find a mechanism whereby MSA deposition fluxes are higher than nss SO2-4 deposition fluxes on the East Antarctic Plateau in the LGM compared the modern period. We conclude that the observed differences between MSA and nss SO2-4 on glacial-interglacial time scales are due to post-depositional processes that affect the ice core MSA concentrations. We can not rule out the possibility of increased DMS emissions in the LGM compared to the modern day. If oceanic DMS production and ocean-to-air fluxes in the sea ice zone are significantly enhanced by the presence of sea ice as indicated by observations, we suggest that the potentially larger amplitude of the seasonal cycle in sea ice extent in the LGM implies a more important role for sea ice in modulating the sulfur cycle during the LGM compared to the modern period. We then shift our focus to study the evolution of snow depth on sea ice in global climate model simulations of the 20th and 21st centuries from the Coupled Model Intercomparison Project 5 (CMIP5). Two competing processes, decreasing sea ice extent and increasing precipitation, will affect snow accumulation on sea ice in the future, and it is not known a priori which will dominate. The decline in Arctic sea ice extent is a well-studied problem in future scenarios of climate change. Moisture convergence into the Arctic is also expected to increase in a warmer world, which may result in increasing snowfall rates. We show that the accumulated snow depth on sea ice in the spring declines as a result of decreased ice extent in the early autumn, in spite of increased winter snowfall rates. The ringed seal (Phoca hispida ) depends on accumulated snow in the spring to build subnivean birth lairs, and provides one of the motivations for this study. Using an empirical threshold of 20 cm of snow depth on level sea ice for ringed seal lair success, we estimate a decline of potential ringed seal habitat of nearly 70%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1342069','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1342069"><span>Moving beyond the total sea ice extent in gauging model biases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.</p> <p></p> <p>Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1342069-moving-beyond-total-sea-ice-extent-gauging-model-biases','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1342069-moving-beyond-total-sea-ice-extent-gauging-model-biases"><span>Moving beyond the total sea ice extent in gauging model biases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.; ...</p> <p>2016-11-29</p> <p>Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P31A2077L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P31A2077L"><span>Insights Into Ice-Ocean Interactions on Earth and Europa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lawrence, J.; Schmidt, B. E.; Winslow, L.; Doran, P. T.; Kim, S.; Walker, C. C.; Buffo, J.; Skidmore, M. L.; Soderlund, K. M.; Blankenship, D. D.; Bramall, N. E.; Johnson, A.; Rack, F. R.; Stone, W.; Kimball, P.; Clark, E.</p> <p>2016-12-01</p> <p>Europa and Earth appear to be drastically different worlds, yet below their icy crusts the two likely share similar oceanic conditions including temperatures, pressures (relatively), and salinity. Earth's ice shelves provide an important analog for the physiochemical, and potentially microbial, characteristics of icy worlds. NASA's ASTEP program funded Sub-Ice Marine and PLanetary-analog Ecosystems (SIMPLE) to help address the fundamental processes occurring at ice ocean interfaces, the extent and limitations of life in sub-ice environments, and how environmental properties and biological communities interact. The relationships between currents, temperature, and salinity with physical processes such as melt, freeze, and marine ice accretion at the basal surfaces of ice shelves influence habitability yet are poorly understood even on Earth. Resultant processes such as the inclusion of ocean-derived material in ice shelves and the transport of biotics from the interface towards the surface via ablation, convection, and diapirism also have important astrobiological implications for Europa.Here, we present results from CTD and imaging data gathered at multiple locations beneath the McMurdo Ice Shelf (MIS) to highlight how the ice and ocean interact in a Europan analog environment. Over the course of three years, the SIMPLE team observed heterogeneity in the water column and basal ice beneath the MIS. During the recent 2015 field season we deployed ARTEMIS, an AUV capable of characterizing the interface over multiple kilometer missions, and conducted daily CTD casts to 480 m (bottom depth 529 m) in November adjacent to the terminus of the MIS to capture temporal variation in the water column. These casts show the presence of transient water masses related to the tidal period, each containing a single or double temperature minimum (down to -1.97 °C from -1.93 °C) between 60 to 150 m depth. Further comparisons between years and sampling locations demonstrate the homogeneity of the subshelf environment even on the scale of tens of kilometers. The technologies supported by SIMPLE are also supporting the ice penetrating radar on the upcoming Europa Flagship mission, and will hopefully inform future ocean world exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EaFut...2..315O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EaFut...2..315O"><span>Global warming releases microplastic legacy frozen in Arctic Sea ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Obbard, Rachel W.; Sadri, Saeed; Wong, Ying Qi; Khitun, Alexandra A.; Baker, Ian; Thompson, Richard C.</p> <p>2014-06-01</p> <p>When sea ice forms it scavenges and concentrates particulates from the water column, which then become trapped until the ice melts. In recent years, melting has led to record lows in Arctic Sea ice extent, the most recent in September 2012. Global climate models, such as that of Gregory et al. (2002), suggest that the decline in Arctic Sea ice volume (3.4% per decade) will actually exceed the decline in sea ice extent, something that Laxon et al. (2013) have shown supported by satellite data. The extent to which melting ice could release anthropogenic particulates back to the open ocean has not yet been examined. Here we show that Arctic Sea ice from remote locations contains concentrations of microplastics at least two orders of magnitude greater than those that have been previously reported in highly contaminated surface waters, such as those of the Pacific Gyre. Our findings indicate that microplastics have accumulated far from population centers and that polar sea ice represents a major historic global sink of man-made particulates. The potential for substantial quantities of legacy microplastic contamination to be released to the ocean as the ice melts therefore needs to be evaluated, as do the physical and toxicological effects of plastics on marine life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11346792','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11346792"><span>Emperor penguins and climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barbraud, C; Weimerskirch, H</p> <p>2001-05-10</p> <p>Variations in ocean-atmosphere coupling over time in the Southern Ocean have dominant effects on sea-ice extent and ecosystem structure, but the ultimate consequences of such environmental changes for large marine predators cannot be accurately predicted because of the absence of long-term data series on key demographic parameters. Here, we use the longest time series available on demographic parameters of an Antarctic large predator breeding on fast ice and relying on food resources from the Southern Ocean. We show that over the past 50 years, the population of emperor penguins (Aptenodytes forsteri) in Terre Adélie has declined by 50% because of a decrease in adult survival during the late 1970s. At this time there was a prolonged abnormally warm period with reduced sea-ice extent. Mortality rates increased when warm sea-surface temperatures occurred in the foraging area and when annual sea-ice extent was reduced, and were higher for males than for females. In contrast with survival, emperor penguins hatched fewer eggs when winter sea-ice was extended. These results indicate strong and contrasting effects of large-scale oceanographic processes and sea-ice extent on the demography of emperor penguins, and their potential high susceptibility to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017193','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017193"><span>Anomalous Variability in Antarctic Sea Ice Extents During the 1960s With the Use of Nimbus Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gallaher, David W.; Campbell, G. Garrett; Meier, Walter N.</p> <p>2014-01-01</p> <p>The Nimbus I, II, and III satellites provide a new opportunity for climate studies in the 1960s. The rescue of the visible and infrared imager data resulted in the utilization of the early Nimbus data to determine sea ice extent. A qualitative analysis of the early NASA Nimbus missions has revealed Antarctic sea ice extents that are signicant larger and smaller than the historic 1979-2012 passive microwave record. The September 1964 ice mean area is 19.7x10 km +/- 0.3x10 km. This is more the 250,000 km greater than the 19.44x10 km seen in the new 2012 historic maximum. However, in August 1966 the maximum sea ice extent fell to 15.9x10 km +/- 0.3x10 km. This is more than 1.5x10 km below the passive microwave record of 17.5x10 km set in September of 1986. This variation between 1964 and 1966 represents a change of maximum sea ice of over 3x10 km in just two years. These inter-annual variations while large, are small when compared to the Antarctic seasonal cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9972E..13B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9972E..13B"><span>Integrated approach using multi-platform sensors for enhanced high-resolution daily ice cover product</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean</p> <p>2016-09-01</p> <p>The ultimate objective of this work is to improve characterization of the ice cover distribution in the polar areas, to improve sea ice mapping and to develop a new automated real-time high spatial resolution multi-sensor ice extent and ice edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea ice extent datasets, analysts at the National Ice Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to clouds and darkness, passive microwave products have poor spatial resolution, automated ice identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the ice cover and rough ice-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea ice cover from imaging instruments VIIRS and MODIS, including regions covered by thin, semitransparent clouds, then supplements the output by the microwave measurements and finally aggregates the results into a cloud gap free daily product. This ability to identify ice cover underneath thin clouds, which is usually masked out by traditional cloud detection algorithms, allows for expansion of the effective coverage of the sea ice maps and thus more accurate and detailed delineation of the ice edge. We have also developed a web-based monitoring system that allows comparison of our daily ice extent product with the several other independent operational daily products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA13A0223V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA13A0223V"><span>New Tools for Sea Ice Data Analysis and Visualization: NSIDC's Arctic Sea Ice News and Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vizcarra, N.; Stroeve, J.; Beam, K.; Beitler, J.; Brandt, M.; Kovarik, J.; Savoie, M. H.; Skaug, M.; Stafford, T.</p> <p>2017-12-01</p> <p>Arctic sea ice has long been recognized as a sensitive climate indicator and has undergone a dramatic decline over the past thirty years. Antarctic sea ice continues to be an intriguing and active field of research. The National Snow and Ice Data Center's Arctic Sea Ice News & Analysis (ASINA) offers researchers and the public a transparent view of sea ice data and analysis. We have released a new set of tools for sea ice analysis and visualization. In addition to Charctic, our interactive sea ice extent graph, the new Sea Ice Data and Analysis Tools page provides access to Arctic and Antarctic sea ice data organized in seven different data workbooks, updated daily or monthly. An interactive tool lets scientists, or the public, quickly compare changes in ice extent and location. Another tool allows users to map trends, anomalies, and means for user-defined time periods. Animations of September Arctic and Antarctic monthly average sea ice extent and concentration may also be accessed from this page. Our tools help the NSIDC scientists monitor and understand sea ice conditions in near real time. They also allow the public to easily interact with and explore sea ice data. Technical innovations in our data center helped NSIDC quickly build these tools and more easily maintain them. The tools were made publicly accessible to meet the desire from the public and members of the media to access the numbers and calculations that power our visualizations and analysis. This poster explores these tools and how other researchers, the media, and the general public are using them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP12C..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP12C..06S"><span>Reconstruction of the extent and variability of late Quaternary ice sheets and Arctic sea ice: Insights from new mineralogical and geochemical proxy records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stein, R. H.; Niessen, F.; Fahl, K.; Forwick, M.; Kudriavtseva, A.; Ponomarenko, E.; Prim, A. K.; Quatmann-Hense, A.; Spielhagen, R. F.; Zou, H.</p> <p>2016-12-01</p> <p>The Arctic Ocean and surrounding continents are key areas within the Earth system and very sensitive to present and past climate change. In this context, the timing and extent of circum-Arctic ice sheets and its interaction with oceanic and sea-ice dynamics are major interest and focus of international research. New sediment cores recovered during the Polarstern Expeditions PS87 (Lomonosov Ridge/2014) and PS93.1 (Fram Strait/2015) together with several sediment cores available from previous Polarstern expeditions allow to carry out a detailed sedimentological and geochemical study that may help to unravel the changes in Arctic sea ice and circum-Arctic ice sheets during late Quaternary times. Our new data include biomarkers indicative for past sea-ice extent, phytoplankton productivity and terrigenous input as well as grain size, physical property, XRD and XRF data indicative for sources and pathways of terrigenous sediments (ice-rafted debris/IRD) related to glaciations in Eurasia, East Siberia, Canada and Greenland. Here, we present examples from selected sediment cores that give new insights into the timing and extent of sea ice and glaciations during MIS 6 to MIS 2. To highlight one example: SE-NW oriented, streamlined landforms have been mapped on top of the southern Lomonosov Ridge (LR) at water depths between 800 and 1000 m over long distances during Polarstern Expedition PS87, interpreted to be glacial lineations that formed beneath grounded ice sheets and ice streams. The orientations of the lineations identified are similar to those on the East Siberian continental margin, suggesting an East Siberian Chukchi Ice Sheet extended far to the north on LR during times of extreme Quaternary glaciations. Based on our new biomarker records from Core PS2757 (located on LR near 81°N) indicating a MIS 6 ice-edge situation with some open-water phytoplankton productivity, the glacial erosional event should have been older than MIS 6 (e.g., MIS 12?).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GML....36..101M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GML....36..101M"><span>High-resolution IP25-based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18,000 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Méheust, Marie; Stein, Ruediger; Fahl, Kirsten; Max, Lars; Riethdorf, Jan-Rainer</p> <p>2016-04-01</p> <p>Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43J..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43J..05S"><span>Integrating Observations and Models to Better Understand a Changing Arctic Sea Ice Cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, J. C.</p> <p>2017-12-01</p> <p>TThe loss of the Arctic sea ice cover has captured the world's attention. While much attention has been paid to the summer ice loss, changes are not limited to summer. The last few winters have seen record low sea ice extents, with 2017 marking the 3rdyear in a row with a new record low for the winter maximum extent. More surprising is the number of consecutive months between January 2016 through April 2017 with ice extent anomalies more than 2 standard deviations below the 1981-2010 mean. Additionally, October 2016 through April 2017 saw 7 consecutive months with record low extents, something that had not happened before in the last 4 decades of satellite observations. As larger parts of the Arctic Ocean become ice-free in summer, regional seas gradually transition from a perennial to a seasonal ice cover. The Barents Sea is already only seasonally ice covered, whereas the Kara Sea has recently lost most of its summer ice and is thereby starting to become a seasonally ice covered region. These changes serve as harbinger for what's to come for other Arctic seas. Given the rapid pace of change, there is an urgent need to improve our understanding of the drivers behind Arctic sea ice loss, the implications of this ice loss and to predict future changes to better inform policy makers. Climate models play a fundamental role in helping us synthesize the complex elements of the Arctic sea ice system yet generally fail to simulate key features of the sea ice system and the pace of sea ice loss. Nevertheless, modeling advances continue to provide better means of diagnosing sea ice change, and new insights are likely to be gained with model output from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP) aim is to better understand biases and errors in sea ice simulations so that we can improve our understanding of the likely future evolution of the sea ice cover and its impacts on global climate. To reach this goal, a community-defined set of model output has been recommended that will allow scientists to better characterize the heat, momentum and mass budget of Arctic sea ice. This will allow for better quantification of the role of internal variability, external forcing and model deficiencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000039366&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000039366&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DParkinsons"><span>Changes in the Areal Extent of Arctic Sea Ice: Observations from Satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.</p> <p>2000-01-01</p> <p>Wintertime sea ice covers 15 million square kilometers of the north polar region, an area exceeding one and a half times the area of the U. S. Even at the end of the summer melt season, sea ice still covers 7 million square kilometers. This vast ice cover is an integral component of the climate system, being moved around by winds and waves, restricting heat and other exchanges between the ocean and atmosphere, reflecting most of the solar radiation incident on it, transporting cold, relatively fresh water equatorward, and affecting the overturning of ocean waters underneath, with impacts that can be felt worldwide. Sea ice also is a major factor in the Arctic ecosystem, affecting life forms ranging from minute organisms living within the ice, sometimes to the tune of millions in a single ice floe, to large marine mammals like walruses that rely on sea ice as a platform for resting, foraging, social interaction, and breeding. Since 1978, satellite technology has allowed the monitoring of the vast Arctic sea ice cover on a routine basis. The satellite observations reveal that, overall, the areal extent of Arctic sea ice has been decreasing since 1978, at an average rate of 2.7% per decade through the end of 1998. Through 1998, the greatest rates of decrease occurred in the Seas of Okhotsk and Japan and the Kara and Barents Seas, with most other regions of the Arctic also experiencing ice extent decreases. The two regions experiencing ice extent increases over this time period were the Bering Sea and the Gulf of St. Lawrence. Furthermore, the satellite data reveal that the sea ice season shortened by over 25 days per decade in the central Sea of Okhotsk and the eastern Barents Sea, and by lesser amounts throughout much of the rest of the Arctic seasonal sea ice region, although not in the Bering Sea or the Gulf of St. Lawrence. Concern has been raised that if the trends toward shortened sea ice seasons and lesser sea ice coverage continue, this could entail major consequences to the polar climate and to the lifestyles (and perhaps even the survivability) of polar bears and other polar species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813243V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813243V"><span>Insight into glacier climate interaction: reconstruction of the mass balance field using ice extent data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar</p> <p>2016-04-01</p> <p>With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7897M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7897M"><span>Recent trends in energy flows through the Arctic climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mayer, Michael; Haimberger, Leo</p> <p>2016-04-01</p> <p>While Arctic climate change can be diagnosed in many parameters, a comprehensive assessment of long-term changes and low frequency variability in the coupled Arctic energy budget still remains challenging due to the complex physical processes involved and the lack of observations. Here we draw on strongly improved observational capabilities of the past 15 years and employ observed radiative fluxes from CERES along with state-of-the-art atmospheric as well as coupled ocean-ice reanalyses to explore recent changes in energy flows through the Arctic climate system. Various estimates of ice volume and ocean heat content trends imply that the energy imbalance of the Arctic climate system was >1 Wm-2 during the 2000-2015 period, where most of the extra heat warmed the ocean and a comparatively small fraction was used to melt sea ice. The energy imbalance was partly fed by enhanced oceanic heat transports into the Arctic, especially in the mid 2000s. Seasonal trends of net radiation show a very clear signal of the ice-albedo feedback. Stronger radiative energy input during summer means increased seasonal oceanic heat uptake and accelerated sea ice melt. In return, lower minimum sea ice extent and higher SSTs lead to enhanced heat release from the ocean during fall season. These results are consistent with modeling studies finding an enhancement of the annual cycle of surface energy exchanges in a warming Arctic. Moreover, stronger heat fluxes from the ocean to the atmosphere in fall tend to warm the arctic boundary layer and reduce meridional temperature gradients, thereby reducing atmospheric energy transports into the polar cap. Although the observed results are a robust finding, extended high-quality datasets are needed to reliably separate trends from low frequency variability.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRA..114.0I06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRA..114.0I06L"><span>Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lübken, F.-J.; Berger, U.; Baumgarten, G.</p> <p>2009-11-01</p> <p>Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRD..114.0I06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRD..114.0I06L"><span>Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lübken, F.-J.; Berger, U.; Baumgarten, G.</p> <p>2009-01-01</p> <p>Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1410574B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1410574B"><span>Estimation of the uncertainty of a climate model using an ensemble simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barth, A.; Mathiot, P.; Goosse, H.</p> <p>2012-04-01</p> <p>The atmospheric forcings play an important role in the study of the ocean and sea-ice dynamics of the Southern Ocean. Error in the atmospheric forcings will inevitably result in uncertain model results. The sensitivity of the model results to errors in the atmospheric forcings are studied with ensemble simulations using multivariate perturbations of the atmospheric forcing fields. The numerical ocean model used is the NEMO-LIM in a global configuration with an horizontal resolution of 2°. NCEP reanalyses are used to provide air temperature and wind data to force the ocean model over the last 50 years. A climatological mean is used to prescribe relative humidity, cloud cover and precipitation. In a first step, the model results is compared with OSTIA SST and OSI SAF sea ice concentration of the southern hemisphere. The seasonal behavior of the RMS difference and bias in SST and ice concentration is highlighted as well as the regions with relatively high RMS errors and biases such as the Antarctic Circumpolar Current and near the ice-edge. Ensemble simulations are performed to statistically characterize the model error due to uncertainties in the atmospheric forcings. Such information is a crucial element for future data assimilation experiments. Ensemble simulations are performed with perturbed air temperature and wind forcings. A Fourier decomposition of the NCEP wind vectors and air temperature for 2007 is used to generate ensemble perturbations. The perturbations are scaled such that the resulting ensemble spread matches approximately the RMS differences between the satellite SST and sea ice concentration. The ensemble spread and covariance are analyzed for the minimum and maximum sea ice extent. It is shown that errors in the atmospheric forcings can extend to several hundred meters in depth near the Antarctic Circumpolar Current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.7955K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.7955K"><span>Springtime atmospheric transport controls Arctic summer sea-ice extent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kapsch, Marie; Graversen, Rune; Tjernström, Michael</p> <p>2013-04-01</p> <p>The sea-ice extent in the Arctic has been steadily decreasing during the satellite remote sensing era, 1979 to present, with the highest rate of retreat found in September. Contributing factors causing the ice retreat are among others: changes in surface air temperature (SAT; Lindsay and Zhang, 2005), ice circulation in response to winds/pressure patterns (Overland et al., 2008) and ocean currents (Comiso et al., 2008), as well as changes in radiative fluxes (e.g. due to changes in cloud cover; Francis and Hunter, 2006; Maksimovich and Vihma, 2012) and ocean conditions. However, large interannual variability is superimposed onto the declining trend - the ice extent by the end of the summer varies by several million square kilometer between successive years (Serreze et al., 2007). But what are the processes causing the year-to-year ice variability? A comparison of years with an anomalously large September sea-ice extent (HIYs - high ice years) with years showing an anomalously small ice extent (LIYs - low ice years) reveals that the ice variability is most pronounced in the Arctic Ocean north of Siberia (which became almost entirely ice free in September of 2007 and 2012). Significant ice-concentration anomalies of up to 30% are observed for LIYs and HIYs in this area. Focusing on this area we find that the greenhouse effect associated with clouds and water-vapor in spring is crucial for the development of the sea ice during the subsequent months. In years where the end-of-summer sea-ice extent is well below normal, a significantly enhanced transport of humid air is evident during spring into the region where the ice retreat is encountered. The anomalous convergence of humidity increases the cloudiness, resulting in an enhancement of the greenhouse effect. As a result, downward longwave radiation at the surface is larger than usual. In mid May, when the ice anomaly begins to appear and the surface albedo therefore becomes anomalously low, the net shortwave radiation anomaly becomes positive. The net shortwave radiation contributes during the rest of the melting season to an enhanced energy flux towards the surface. These findings lead to the conclusion that enhanced longwave radiation associated with positive humidity and cloud anomalies during spring plays a significant role in initiating the summer ice melt, whereas shortwave-radiation anomalies act as an amplifying feedback once the melt has started. References: Lindsay, R. and J. Zhang. The thinning of Arctic Sea Ice, 19882003: Have We Passed a Tipping Point?. J. Clim. 18, 48794894 (2005). Overland, J. E., M. Wang and S. Salo. The recent Arctic warm period. Tellus 60A, 589-597 (2008). Comiso, J. C., C. L. Parkinson, R. Gersten and L. Stock. Accelerated Decline in the Arctic sea ice cover. Geophys. Res. Lett. 35, L01703 (2008). Francis, J. A. and E. Hunter. New Insight Into the Disappearing Arctic Sea Ice. EOS T. Am. Geophys. Un. 87, 509511 (2006). Maksimovich, E. and T. Vihma. The effect of heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean. J. Geophys. Res. 117, C07012 (2012). Serreze, M. C., M. M. Holland and J. Stroeve. Perspectives on the Arctic's Shrinking Sea-Ice Cover. Science 315, 1533-1536 (2007).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008601','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008601"><span>The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten</p> <p>2010-01-01</p> <p>Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C42B..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C42B..02D"><span>Will sea ice thickness initialisation improve Arctic seasonal-to-interannual forecast skill?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day, J. J.; Hawkins, E.; Tietsche, S.</p> <p>2014-12-01</p> <p>A number of recent studies have suggested that Arctic sea ice thickness is an important predictor of Arctic sea ice extent. However, coupled forecast systems do not currently use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. A set of ensemble potential predictability experiments, with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run to investigate this. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to eight months ahead. Perturbing sea ice thickness also has a significant impact on the forecast error in the 2m temperature and surface pressure fields a few months ahead. These results show that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.7566D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.7566D"><span>Will Arctic sea ice thickness initialization improve seasonal forecast skill?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day, J. J.; Hawkins, E.; Tietsche, S.</p> <p>2014-11-01</p> <p>Arctic sea ice thickness is thought to be an important predictor of Arctic sea ice extent. However, coupled seasonal forecast systems do not generally use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. To investigate how large this source is, a set of ensemble potential predictability experiments with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to 8 months ahead, especially in summer. Perturbing sea ice thickness also has a significant impact on the forecast error in Arctic 2 m temperature a few months ahead. These results suggest that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890025240&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890025240&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dwind%2Bmonitor"><span>Wind, current and swell influences on the ice extent and flux in the Grand Banks-Labrador sea area as observed in the LIMEX '87 experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Argus, Susan Digby; Carsey, Frank; Holt, Benjamin</p> <p>1988-01-01</p> <p>This paper presents data collected by airborne and satellite instruments during the Labrador Ice Margin Experiment, that demonstrate the effects of oceanic and atmospheric processes on the ice conditions in the Grand Banks-Labrador sea area. Special consideration is given to the development of algorithms for extracting information from SAR data. It is shown that SAR data can be used to monitor ice extent, determine ice motion, locate shear zones, monitor the penetration of swell into the ice, estimate floe sizes, and establish the dimensions of the ice velocity zones. It is also shown that the complex interaction of the ice cover with winds, currents, swell, and coastlines is similar to the dynamics established for a number of sites in both polar regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150023363&hterms=permafrost&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpermafrost','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150023363&hterms=permafrost&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpermafrost"><span>Climate Trends in the Arctic as Observed from Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Hall, Dorothy K.</p> <p>2014-01-01</p> <p>The Arctic is a region in transformation. Warming in the region has been amplified, as expected from ice-albedo feedback effects, with the rate of warming observed to be approx. 0.60+/-0.07 C/decade in the Arctic (>64degN) compared to approx. 0.17 C/decade globally during the last three decades. This increase in surface temperature is manifested in all components of the cryosphere. In particular, the sea ice extent has been declining at the rate of approx. 3.8%/decade, whereas the perennial ice (represented by summer ice minimum) is declining at a much greater rate of approx.11.5%/decade. Spring snow cover has also been observed to be declining by -2.12%/decade for the period 1967-2012. The Greenland ice sheet has been losing mass at the rate of approx. 34.0Gt/year (sea level equivalence of 0.09 mm/year) during the period from 1992 to 2011, but for the period 2002-2011, a higher rate of mass loss of approx. 215 Gt/year has been observed. Also, the mass of glaciers worldwide declined at the rate of 226 Gt/year from 1971 to 2009 and 275 Gt/year from 1993 to 2009. Increases in permafrost temperature have also been measured in many parts of the Northern Hemisphere while a thickening of the active layer that overlies permafrost and a thinning of seasonally frozen ground has also been reported. To gain insight into these changes, comparative analysis with trends in clouds, albedo, and the Arctic Oscillation is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..309..277B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..309..277B"><span>The nitrogen cycles on Pluto over seasonal and astronomical timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertrand, T.; Forget, F.; Umurhan, O. M.; Grundy, W. M.; Schmitt, B.; Protopapa, S.; Zangari, A. M.; White, O. L.; Schenk, P. M.; Singer, K. N.; Stern, A.; Weaver, H. A.; Young, L. A.; Ennico, K.; Olkin, C. B.</p> <p>2018-07-01</p> <p>Pluto's landscape is shaped by the endless condensation and sublimation cycles of the volatile ices covering its surface. In particular, the Sputnik Planitia ice sheet, which is thought to be the main reservoir of nitrogen ice, displays a large diversity of terrains, with bright and dark plains, small pits and troughs, topographic depressions and evidences of recent and past glacial flows. Outside Sputnik Planitia, New Horizons also revealed numerous nitrogen ice deposits, in the eastern side of Tombaugh Regio and at mid-northern latitudes. These observations suggest a complex history involving volatile and glacial processes occurring on different timescales. We present numerical simulations of volatile transport on Pluto performed with a model designed to simulate the nitrogen cycle over millions of years, taking into account the changes of obliquity, solar longitude of perihelion and eccentricity as experienced by Pluto. Using this model, we first explore how the volatile and glacial activity of nitrogen within Sputnik Planitia has been impacted by the diurnal, seasonal and astronomical cycles of Pluto. Results show that the obliquity dominates the N2 cycle and that over one obliquity cycle, the latitudes of Sputnik Planitia between 25°S-30°N are dominated by N2 condensation, while the northern regions between 30°N and -50°N are dominated by N2 sublimation. We find that a net amount of 1 km of ice has sublimed at the northern edge of Sputnik Planitia during the last 2 millions of years. It must have been compensated by a viscous flow of the thick ice sheet. By comparing these results with the observed geology of Sputnik Planitia, we can relate the formation of the small pits and the brightness of the ice at the center of Sputnik Planitia to the sublimation and condensation of ice occurring at the annual timescale, while the glacial flows at its eastern edge and the erosion of the water ice mountains all around the ice sheet are instead related to the astronomical timescale. We also perform simulations including a glacial flow scheme which shows that the Sputnik Planitia ice sheet is currently at its minimum extent at the northern and southern edges. We also explore the stability of N2 ice deposits outside the latitudes and longitudes of the Sputnik Planitia basin. Results show that N2 ice is not stable at the poles but rather in the equatorial regions, in particular in depressions, where thick deposits may persist over tens of millions of years, before being trapped in Sputnik Planitia. Finally, another key result is that the minimum and maximum surface pressures obtained over the simulated millions of years remain in the range of milli-Pascals and Pascals, respectively. This suggests that Pluto never encountered conditions allowing liquid nitrogen to flow directly on its surface. Instead, we suggest that the numerous geomorphological evidences of past liquid flow observed on Pluto's surface are the result of liquid nitrogen that flowed at the base of thick ancient nitrogen glaciers, which have since disappeared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850042794&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850042794&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmarginal"><span>Performance of an airborne imaging 92/183 GHz radiometer during the Bering Sea Marginal Ice Zone Experiment (MIZEX-WEST)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gagliano, J. A.; Mcsheehy, J. J.; Cavalieri, D. J.</p> <p>1983-01-01</p> <p>An airborne imaging 92/183 GHz radiometer was recently flown onboard NASA's Convair 990 research aircraft during the February 1983 Bering Sea Marginal Ice Zone Experiment (MIZEX-WEST). The 92 GHz portion of the radiometer was used to gather ice signature data and to generate real-time millimeter wave images of the marginal ice zone. Dry atmospheric conditions in the Arctic resulted in good surface ice signature data for the 183 GHz double sideband (DSB) channel situated + or - 8.75 GHz away from the water vapor absorption line. The radiometer's beam scanner imaged the marginal ice zone over a + or - 45 degrees swath angle about the aircraft nadir position. The aircraft altitude was 30,000 feet (9.20 km) maximum and 3,000 feet (0.92 km) minimum during the various data runs. Calculations of the minimum detectable target (ice) size for the radiometer as a function of aircraft altitude were performed. In addition, the change in the atmospheric attenuation at 92 GHz under varying weather conditions was incorporated into the target size calculations. A radiometric image of surface ice at 92 GHz in the marginal ice zone is included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4898V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4898V"><span>Reconstruction of past equilibrium line altitude using ice extent data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Visnjevic, Vjeran; Herman, Frederic; Podladchikov, Yuri</p> <p>2017-04-01</p> <p>With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. This last glacial advance left a strong observable imprint on the landscape, such as abandoned moraines, trimlines and other glacial geomorphic features. These features provide a valuable record of past continental climate. In particular, terminal moraines reflect the extent of glaciers and ice-caps, which itself reflects past temperature and precipitation conditions. Here we present an inverse approach, based on a Tikhonov regularization, we have recently developed to reconstruct the LGM mass balance from observed ice extent data. The ice flow model is developed using the shallow ice approximation and solved explicitly using Graphical Processing Units (GPU). The mass balance field, b, is the constrained variable defined by the ice surface S, balance rate β and the spatially variable equilibrium line altitude field (ELA): b = min (β ṡ(S(x,y)- ELA (x,y)),c). (1) where c is a maximum accumulation rate. We show that such a mass balance, and thus the spatially variable ELA field, can be inferred from the observed past ice extent and ice thickness at high resolution and very efficiently. The GPU implementation allows us solve one 1024x1024 grid points forward model run under 0.5s, which significantly reduces the time needed for our inverse method to converge. We start with synthetic test to demonstrate the method. We then apply the method to LGM ice extents of South Island of New Zealand, the Patagonian Andes, where we can see a clear influence of Westerlies on the ELA, and the European Alps. These examples show that the method is capable of constraining spatial variations in mass balance at the scale of a mountain range, and provide us with information on past continental climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.1126/science.1209299','USGSPUBS'); return false;" href="http://dx.doi.org/10.1126/science.1209299"><span>Interhemispheric ice-sheet synchronicity during the last glacial maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Weber, Michael E.; Clark, Peter U.; Ricken, Werner; Mitrovica, Jerry X.; Hostetler, Steven W.; Kuhn, Gerhard</p> <p>2011-01-01</p> <p>The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22144623','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22144623"><span>Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weber, Michael E; Clark, Peter U; Ricken, Werner; Mitrovica, Jerry X; Hostetler, Steven W; Kuhn, Gerhard</p> <p>2011-12-02</p> <p>The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMED11D1122R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMED11D1122R"><span>What About Sea Ice? People, animals, and climate change in the polar regions: An online resource for the International Polar Year and beyond</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renfrow, S.; Meier, W. N.; Wolfe, J.; Scott, D.; Leon, A.; Weaver, R.</p> <p>2005-12-01</p> <p>Decreasing Arctic sea ice has been one of the most noticeable changes on Earth over the past quarter-century. The years 2002 through 2005 have had much lower summer sea ice extents than the long-term (1979-2000). Reduced sea ice extent has a direct impact on Arctic wildlife and people, as well as ramifications for regional and global climate. Students, educators, and the general public want and need to have a better understanding of sea ice. Most of us are unfamiliar with sea ice: what it is, where it occurs, and how it affects global climate. The upcoming International Polar Year will provide an opportunity for the public to learn about sea ice. Here, we provide an overview of sea ice, the changes that the sea ice is undergoing, and information about the relation between sea ice and climate. The information presented here is condensed from the National Snow and Ice Data Center's new 'All About Sea Ice' Web site (http://www.nsidc.org/seaice/), a comprehensive resource of information for sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatGe...9..231B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatGe...9..231B"><span>Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Büntgen, Ulf; Myglan, Vladimir S.; Ljungqvist, Fredrik Charpentier; McCormick, Michael; di Cosmo, Nicola; Sigl, Michael; Jungclaus, Johann; Wagner, Sebastian; Krusic, Paul J.; Esper, Jan; Kaplan, Jed O.; de Vaan, Michiel A. C.; Luterbacher, Jürg; Wacker, Lukas; Tegel, Willy; Kirdyanov, Alexander V.</p> <p>2016-03-01</p> <p>Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe and Asia. In particular, the sixth century coincides with rising and falling civilizations, pandemics, human migration and political turmoil. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring chronologies from the Russian Altai and European Alps to reconstruct summer temperatures over the past two millennia. We find an unprecedented, long-lasting and spatially synchronized cooling following a cluster of large volcanic eruptions in 536, 540 and 547 AD (ref. ), which was probably sustained by ocean and sea-ice feedbacks, as well as a solar minimum. We thus identify the interval from 536 to about 660 AD as the Late Antique Little Ice Age. Spanning most of the Northern Hemisphere, we suggest that this cold phase be considered as an additional environmental factor contributing to the establishment of the Justinian plague, transformation of the eastern Roman Empire and collapse of the Sasanian Empire, movements out of the Asian steppe and Arabian Peninsula, spread of Slavic-speaking peoples and political upheavals in China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830024511','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830024511"><span>A method of predicting flow rates required to achieve anti-icing performance with a porous leading edge ice protection system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kohlman, D. L.; Albright, A. E.</p> <p>1983-01-01</p> <p>An analytical method was developed for predicting minimum flow rates required to provide anti-ice protection with a porous leading edge fluid ice protection system. The predicted flow rates compare with an average error of less than 10 percent to six experimentally determined flow rates from tests in the NASA Icing Research Tunnel on a general aviation wing section.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160013301&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160013301&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea"><span>Assessment of Arctic and Antarctic Sea Ice Predictability in CMIP5 Decadal Hindcasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yang, Chao-Yuan; Liu, Jiping (Inventor); Hu, Yongyun; Horton, Radley M.; Chen, Liqi; Cheng, Xiao</p> <p>2016-01-01</p> <p>This paper examines the ability of coupled global climate models to predict decadal variability of Arctic and Antarctic sea ice. We analyze decadal hindcasts/predictions of 11 Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Decadal hindcasts exhibit a large multimodel spread in the simulated sea ice extent, with some models deviating significantly from the observations as the predicted ice extent quickly drifts away from the initial constraint. The anomaly correlation analysis between the decadal hindcast and observed sea ice suggests that in the Arctic, for most models, the areas showing significant predictive skill become broader associated with increasing lead times. This area expansion is largely because nearly all the models are capable of predicting the observed decreasing Arctic sea ice cover. Sea ice extent in the North Pacific has better predictive skill than that in the North Atlantic (particularly at a lead time of 3-7 years), but there is a reemerging predictive skill in the North Atlantic at a lead time of 6-8 years. In contrast to the Arctic, Antarctic sea ice decadal hindcasts do not show broad predictive skill at any timescales, and there is no obvious improvement linking the areal extent of significant predictive skill to lead time increase. This might be because nearly all the models predict a retreating Antarctic sea ice cover, opposite to the observations. For the Arctic, the predictive skill of the multi-model ensemble mean outperforms most models and the persistence prediction at longer timescales, which is not the case for the Antarctic. Overall, for the Arctic, initialized decadal hindcasts show improved predictive skill compared to uninitialized simulations, although this improvement is not present in the Antarctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035800','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035800"><span>A robust, multisite Holocene history of drift ice off northern Iceland: Implications for North Atlantic climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Andrews, John T.; Darby, D.; Eberle, D.; Jennings, A.E.; Moros, M.; Ogilvie, A.</p> <p>2009-01-01</p> <p>An important indicator of Holocene climate change is provided by evidence for variations in the extent of drift ice. A proxy for drift ice in Iceland waters is provided by the presence of quartz. Quantitative x-ray diffraction analysis of the < 2 mm sediment fraction was undertaken on 16 cores from around Iceland. The quartz weight (wt.)% estimates from each core were integrated into 250-yr intervals between ????'0.05 and 11.7 cal. ka BP. Median quartz wt.% varied between 0.2 and 3.4 and maximum values ranged between 2.8 and 11.8 wt.%. High values were attained in the early Holocene and minimum values were reached 6 - 7 cal. ka BP. Quartz wt.% then rose steadily during the late Holocene. Our data exhibit no correlation with counts on haematite-stained quartz (HSQ) grains from VM129-191 west of Ireland casting doubt on the ice-transport origin. A pilot study on the provenance of Fe oxide grains in two cores that cover the last 1.3 and 6.1 cal. ka BP indicated a large fraction of the grains between 1 and 6 cal. ka BP were from either Icelandic or presently unsampled sources. However, there was a dramatic increase in Canadian and Russian sources from the Arctic Ocean ???1 cal. ka BP. These data may indicate the beginning of an Arctic Oscillation-like climate mode. ?? 2009 SAGE Publications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-08-22/pdf/2011-21052.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-08-22/pdf/2011-21052.pdf"><span>76 FR 52239 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-08-22</p> <p>... Minimums & Obstacle DP, Orig-A Red Oak, IA, Red Oak Muni, Takeoff Minimums & Obstacle DP, Amdt 3 Storm Lake, IA, Storm Lake Muni, Takeoff Minimums & Obstacle DP, Orig Dwight, IL, Dwight, Takeoff Minimums..., Florence Rgnl, RNAV (GPS) RWY 9, Orig-A Spearfish, SD, Black Hills-Clydes Ice Field, RNAV (GPS) RWY 13...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5085383-influences-atmospheric-half-yearly-cycle-sea-ice-extent-antarctic','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5085383-influences-atmospheric-half-yearly-cycle-sea-ice-extent-antarctic"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hiroyuki Enomoto; Atsumu Ohmura</p> <p></p> <p>The relationship between sea ice and weather, one of the least known components of the climatic system, could be an important factor for the climate of high latitudes. The annual cycle of the sea ice extent is characterized by a asymmetric development, with the sea ice area slowly advancing toward the equator in the winter and rapidly retreating in summer. In this study, the seasonal asymmetric behavior of ice extent and the changes in sea ice concentration are shown to be linked to the atmospheric convergence line (ACL) around Antarctica. It is found that the relative positions of the ACLmore » characterized by the half-year cycle exert a strong influence upon the mean movement of the sea ice. It is also observed from the investigations of the areal concentration prior to the sea ice retreat is needed for a rapid retreat.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29784952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29784952"><span>Vanishing river ice cover in the lower part of the Danube basin - signs of a changing climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ionita, M; Badaluta, C -A; Scholz, P; Chelcea, S</p> <p>2018-05-21</p> <p>Many of the world's largest rivers in the extra tropics are covered with ice during the cold season, and in the Northern Hemisphere approximately 60% of the rivers experience significant seasonal effects of river ice. Here we present an observational data set of the ice cover regime for the lower part of the Danube River which spans over the period 1837-2016, and its the longest one on record over this area. The results in this study emphasize the strong impact of climate change on the occurrence of ice regime especially in the second part of the 20 th century. The number of ice cover days has decreased considerably (~28days/century) mainly due to an increase in the winter mean temperature. In a long-term context, based on documentary evidences, we show that the ice cover occurrence rate was relatively small throughout the Medieval Warm Period (MWP), while the highest occurrence rates were found during the Maunder Minimum and Dalton Minimum periods. We conclude that the river ice regime can be used as a proxy for the winter temperature over the analyzed region and as an indicator of climate-change related impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.4286W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.4286W"><span>Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weber, M. E.; Clark, P. U.; Ricken, W.; Mitrovica, J. X.; Hostetler, S. W.; Kuhn, G.</p> <p>2012-04-01</p> <p>The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood because only a few findings with robust chronologies exist for Antarctic ice sheets. We developed a chronology for the Weddell Sea sector of the East Antarctic ice sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates the advance to their maximum extent at 29 -28 ka, and retreat from their maximum extent at 19 ka was nearly synchronous with Northern Hemisphere ice sheets (Weber, M.E., Clark, P. U., Ricken, W., Mitrovica, J. X., Hostetler, S. W., and Kuhn, G. (2011): Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. - Science, 334, 1265-1269, doi: 10.1126:science.1209299). As for the deglaciation, modeling studies suggest a late ice-sheet retreat starting around 14 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, the Weddell Sea sites studied here, as well as sites from the Scotia Sea, provide evidence that specifically the EAIS responded much earlier, possibly provided a significant contribution to the last sea-level rise, and was much more dynamic than previously thought. Using the results of an atmospheric general circulation we conclude that surface climate forcing of Antarctic ice mass balance would likely cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Furthermore, our new data support teleconnections involving a sea-level fingerprint forced from Northern Hemisphere ice sheets as indicated by gravitational modeling. Also, changes in North Atlantic Deepwater formation and attendant heat flux to Antarctic grounding lines may have contributed to synchronizing the hemispheric ice sheets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870060024&hterms=Parkinsons+circulation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DParkinsons%2Bcirculation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870060024&hterms=Parkinsons+circulation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DParkinsons%2Bcirculation"><span>On the relationship between atmospheric circulation and the fluctuations in the sea ice extents of the Bering and Okhotsk Seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, D. J.; Parkinson, C. L.</p> <p>1987-01-01</p> <p>The influence of the hemispheric atmospheric circulation on the sea ice covers of the Bering Sea and the Sea of Okhotsk is examined using data obtained with the Nimbus 5 electrically scanning microwave radiometer for the four winters of the 1973-1976 period. The 3-day averaged sea ice extent data were used to establish periods for which there is an out-of-phase relationship between fluctuations of the two ice covers. A comparison of the sea-level atmospheric pressure field with the seasonal, interannual, and short-term sea ice fluctuations reveal an association between changes in the phase and the amplitude of the long waves in the atmosphere and advance and retreat of Arctic ice covers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C33E0858T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C33E0858T"><span>Multi-resolution Changes in the Spatial Extent of Perennial Arctic Alpine Snow and Ice Fields with Potential Archaeological Significance in the Central Brooks Range, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tedesche, M. E.; Freeburg, A. K.; Rasic, J. T.; Ciancibelli, C.; Fassnacht, S. R.</p> <p>2015-12-01</p> <p>Perennial snow and ice fields could be an important archaeological and paleoecological resource for Gates of the Arctic National Park and Preserve in the central Brooks Range mountains of Arctic Alaska. These features may have cultural significance, as prehistoric artifacts may be frozen within the snow and ice. Globally significant discoveries have been made recently as ancient artifacts and animal dung have been found in melting alpine snow and ice patches in the Southern Yukon and Northwest Territories in Canada, the Wrangell mountains in Alaska, as well as in other areas. These sites are melting rapidly, which results in quick decay of biological materials. The summer of 2015 saw historic lows in year round snow cover extent for most of Alaska. Twenty mid to high elevation sites, including eighteen perennial snow and ice fields, and two glaciers, were surveyed in July 2015 to quantify their areal extent. This survey was accomplished by using both low flying aircraft (helicopter), as well as with on the ground in-situ (by foot) measurements. By helicopter, visual surveys were conducted within tens of meters of the surface. Sites visited by foot were surveyed for extent of snow and ice coverage, melt water hydrologic parameters and chemistry, and initial estimates of depths and delineations between snow, firn, and ice. Imagery from both historic aerial photography and from 5m resolution IKONOS satellite information were correlated with the field data. Initial results indicate good agreement in permanent snow and ice cover between field surveyed data and the 1985 to 2011 Landsat imagery-based Northwest Alaska snow persistence map created by Macander et al. (2015). The most deviation between the Macander et al. model and the field surveyed results typically occurred as an overestimate of perennial extent on the steepest aspects. These differences are either a function of image classification or due to accelerated ablation rates in perennial snow and ice coverage between 2011 and 2015. Further work is ongoing to develop a model to guide archaeological and paleoecological snow and ice field surveys. This will entail a fine scale, empirically based model of accumulation and ablation to estimate changes in three dimensional geometries of historically perennial arctic alpine snow and ice fields in the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..187K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..187K"><span>Last Glacial-Interglacial Transition ice dynamics in the Wicklow Mountains, Ireland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knight, Lauren; Boston, Clare; Lovell, Harold; Pepin, Nick</p> <p>2017-04-01</p> <p>Understanding of the extent and dynamics of former ice masses in the Wicklow Mountains, Ireland, during the Last Glacial-Interglacial Transition (LGIT; 15-10 ka BP) is currently unresolved. Whilst it is acknowledged that the region hosted a local ice cap within the larger British-Irish Ice Sheet at the Last Glacial Maximum (LGM; 27 ka BP), there has been little consideration of ice cap disintegration to a topographically constrained ice mass during the LGIT. This research has produced the first regional glacial geomorphological map, through remote sensing (aerial photograph and digital terrain model interrogation) and field mapping. This has allowed both the style and extent of mountain glaciation and ice recession dynamics during the LGIT to be established. This geomorphological mapping has highlighted that evidence for local glaciation in the Wicklow Mountains is more extensive than previously recognised, and that small icefields and associated outlet valley glaciers existed during the LGIT following disintegration of the Wicklow Ice Cap. A relative chronology based on morphostratigraphic principles is developed, which indicates complex patterns of ice mass oscillation characterised by periods of both sustained retreat and minor readvance. Variations in the pattern of recession across the Wicklow Mountains are evident and appear to be influenced, in part, by topographic controls (e.g. slope, aspect, glacier hypsometry). In summary, this research establishes a relative chronology of glacial events in the region during the LGIT and presents constraints on ice mass extent, dynamics and retreat patterns, offering an insight into small ice mass behaviour in a warming climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060017828','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060017828"><span>Evaluation of the Simulation of Arctic and Antarctic Sea Ice Coverages by Eleven Major Global Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parksinson, Claire; Vinnikov, Konstantin Y.; Cavalieri, Donald J.</p> <p>2005-01-01</p> <p>Comparison of polar sea ice results from 11 major global climate models and satellite-derived observations for 1979-2004 reveals that each of the models is simulating seasonal cycles that are phased at least approximately correctly in both hemispheres. Each is also simulating various key aspects of the observed ice cover distributions, such as winter ice not only throughout the central Arctic basin but also throughout Hudson Bay, despite its relatively low latitudes. However, some of the models simulate too much ice, others too little ice (in some cases varying depending on hemisphere and/or season), and some match the observations better in one season versus another. Several models do noticeably better in the Northern Hemisphere than in the Southern Hemisphere, and one does noticeably better in the Southern Hemisphere. In the Northern Hemisphere all simulate monthly average ice extents to within +/-5.1 x 10(exp 6)sq km of the observed ice extent throughout the year; and in the Southern Hemisphere all except one simulate the monthly averages to within +/-6.3 x 10(exp 6) sq km of the observed values. All the models properly simulate a lack of winter ice to the west of Norway; however, most do not obtain as much absence of ice immediately north of Norway as the observations show, suggesting an under simulation of the North Atlantic Current. The spread in monthly averaged ice extents amongst the 11 model simulations is greater in the Southern Hemisphere than in the Northern Hemisphere and greatest in the Southern Hemisphere winter and spring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815826M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815826M"><span>Evaluating Antarctic sea ice predictability at seasonal to interannual timescales in global climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marchi, Sylvain; Fichefet, Thierry; Goosse, Hugues; Zunz, Violette; Tietsche, Steffen; Day, Jonny; Hawkins, Ed</p> <p>2016-04-01</p> <p>Unlike the rapid sea ice losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea ice extent over recent decades. Although many processes have already been suggested to explain this positive trend, it remains the subject of current investigations. Understanding the evolution of the Antarctic sea ice turns out to be more complicated than for the Arctic for two reasons: the lack of observations and the well-known biases of climate models in the Southern Ocean. Irrespective of those issues, another one is to determine whether the positive trend in sea ice extent would have been predictable if adequate observations and models were available some decades ago. This study of Antarctic sea ice predictability is carried out using 6 global climate models (HadGEM1.2, MPI-ESM-LR, GFDL CM3, EC-Earth V2, MIROC 5.2 and ECHAM 6-FESOM) which are all part of the APPOSITE project. These models are used to perform hindcast simulations in a perfect model approach. The predictive skill is estimated thanks to the PPP (Potential Prognostic Predictability) and the ACC (Anomaly Correlation Coefficient). The former is a measure of the uncertainty of the ensemble while the latter assesses the accuracy of the prediction. These two indicators are applied to different variables related to sea ice, in particular the total sea ice extent and the ice edge location. This first model intercomparison study about sea ice predictability in the Southern Ocean aims at giving a general overview of Antarctic sea ice predictability in current global climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010704','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010704"><span>Anomalous Variability in Antarctic Sea Ice Extents During the 1960s With the Use of Nimbus Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gallaher, David W.; Campbell, G. Garrett; Meier, Walter N.</p> <p>2013-01-01</p> <p>The Nimbus I, II, and III satellites provide a new opportunity for climate studies in the 1960s. The rescue of the visible and infrared imager data resulted in the utilization of the early Nimbus data to determine sea ice extent. A qualitative analysis of the early NASA Nimbus missions has revealed Antarctic sea ice extents that are significant larger and smaller than the historic 1979-2012 passive microwave record. The September 1964 ice mean area is 19.7x10(exp 6) sq. km +/- 0.3x10(exp 6) sq. km. This is more the 250,000 sq. km greater than the 19.44x10(exp 6) sq. km seen in the new 2012 historic maximum. However, in August 1966 the maximum sea ice extent fell to 15.9x10(exp 6) sq. km +/- 0.3x10(exp 6) sq. km. This is more than 1.5x10(exp 6) sq. km below the passive microwave record of 17.5x10(exp 6) sq. km set in September of 1986. This variation between 1964 and 1966 represents a change of maximum sea ice of over 3x10(exp 6) sq. km in just two years. These inter-annual variations while large, are small when compared to the Antarctic seasonal cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610721F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610721F"><span>The last forests in Greenland, and the age of the ice sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Funder, Svend; Schmidt, Astrid M. Z.; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder; Willerslev, Eske</p> <p>2014-05-01</p> <p>Recently ancient DNA (aDNA) studies of the basal ice in the Camp Century ice core, northern Greenland, have shown that mixed coniferous-deciduous forest grew here before the area was invaded and permanently covered by the ice sheet. The coring site is situated only 100 km from the present ice margin and more than 500 km from the ice divide, indicating that since this last inception the northern part of the ice sheet never receded more than 100 km from its present margin. Dating of the basal ice and obtaining an age for the forest and for the beginning of the ice sheet's permanency has been attempted by analyzing for optically stimulated luminescence (OSL), meteoric 10Be/36Cl cosmogenic nuclides, 234U/238U recoil. These methods all provide only minimum ages and show that the forest at Cap Century is older than 500 ka. Comparison with other Pleistocene "forest sites" in Greenland - the Kap København Formation in northernmost Greenland, the DYE-3 ice core in the south, the ODP boring 646 south of Greenland, as well as results from basal ice in the GRIP ice core - extends the minimum age to c. 1 ma. The maximum age is provided by the Kap København Formation, which must be older - or contemporaneous. The formation has recently been confirmed to date within the interval 2-2.5 ma, with a preferred age of 2.3-2.4 ma. Surprisingly, application of the molecular clock of insect COI sequences on the Camp Century aDNA now seem to push the minimum age just as far back - to 2.4 ma, suggesting that the timberline boreal forest at Kap København is contemporaneous with the mixed forest at Camp Century, 600 km to the south. From this we conclude that the northern ice sheet dome, which today contains 85% of the total ice sheet volume, has remained within 100 km of its present margin for at least 1 ma, and possibly may go back as far as 2.4 ma. The ice sheet has therefore survived both interglacials and "super interglacials" that were both warmer and longer than the present. This may give us some hope for the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NatGe...7..497B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NatGe...7..497B"><span>Deformation, warming and softening of Greenland’s ice by refreezing meltwater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, Robin E.; Tinto, Kirsteen; Das, Indrani; Wolovick, Michael; Chu, Winnie; Creyts, Timothy T.; Frearson, Nicholas; Abdi, Abdulhakim; Paden, John D.</p> <p>2014-07-01</p> <p>Meltwater beneath the large ice sheets can influence ice flow by lubrication at the base or by softening when meltwater refreezes to form relatively warm ice. Refreezing has produced large basal ice units in East Antarctica. Bubble-free basal ice units also outcrop at the edge of the Greenland ice sheet, but the extent of refreezing and its influence on Greenland’s ice flow dynamics are unknown. Here we demonstrate that refreezing of meltwater produces distinct basal ice units throughout northern Greenland with thicknesses of up to 1,100 m. We compare airborne gravity data with modelled gravity anomalies to show that these basal units are ice. Using radar data we determine the extent of the units, which significantly disrupt the overlying ice sheet stratigraphy. The units consist of refrozen basal water commonly surrounded by heavily deformed meteoric ice derived from snowfall. We map these units along the ice sheet margins where surface melt is the largest source of water, as well as in the interior where basal melting is the only source of water. Beneath Petermann Glacier, basal units coincide with the onset of fast flow and channels in the floating ice tongue. We suggest that refreezing of meltwater and the resulting deformation of the surrounding basal ice warms the Greenland ice sheet, modifying the temperature structure of the ice column and influencing ice flow and grounding line melting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4368101','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4368101"><span>Climate trends in the Arctic as observed from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Comiso, Josefino C; Hall, Dorothy K</p> <p>2014-01-01</p> <p>The Arctic is a region in transformation. Warming in the region has been amplified, as expected from ice-albedo feedback effects, with the rate of warming observed to be ∼0.60 ± 0.07°C/decade in the Arctic (>64°N) compared to ∼0.17°C/decade globally during the last three decades. This increase in surface temperature is manifested in all components of the cryosphere. In particular, the sea ice extent has been declining at the rate of ∼3.8%/decade, whereas the perennial ice (represented by summer ice minimum) is declining at a much greater rate of ∼11.5%/decade. Spring snow cover has also been observed to be declining by −2.12%/decade for the period 1967–2012. The Greenland ice sheet has been losing mass at the rate of ∼34.0 Gt/year (sea level equivalence of 0.09 mm/year) during the period from 1992 to 2011, but for the period 2002–2011, a higher rate of mass loss of ∼215 Gt/year has been observed. Also, the mass of glaciers worldwide declined at the rate of 226 Gt/year from 1971 to 2009 and 275 Gt/year from 1993 to 2009. Increases in permafrost temperature have also been measured in many parts of the Northern Hemisphere while a thickening of the active layer that overlies permafrost and a thinning of seasonally frozen ground has also been reported. To gain insight into these changes, comparative analysis with trends in clouds, albedo, and the Arctic Oscillation is also presented. How to cite this article:WIREs Clim Change 2014, 5:389�409. doi: 10.1002/wcc.277 PMID:25810765</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25810765','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25810765"><span>Climate trends in the Arctic as observed from space.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Comiso, Josefino C; Hall, Dorothy K</p> <p>2014-05-01</p> <p>The Arctic is a region in transformation. Warming in the region has been amplified, as expected from ice-albedo feedback effects, with the rate of warming observed to be ∼0.60 ± 0.07°C/decade in the Arctic (>64°N) compared to ∼0.17°C/decade globally during the last three decades. This increase in surface temperature is manifested in all components of the cryosphere. In particular, the sea ice extent has been declining at the rate of ∼3.8%/decade, whereas the perennial ice (represented by summer ice minimum) is declining at a much greater rate of ∼11.5%/decade. Spring snow cover has also been observed to be declining by -2.12%/decade for the period 1967-2012. The Greenland ice sheet has been losing mass at the rate of ∼34.0 Gt/year (sea level equivalence of 0.09 mm/year) during the period from 1992 to 2011, but for the period 2002-2011, a higher rate of mass loss of ∼215 Gt/year has been observed. Also, the mass of glaciers worldwide declined at the rate of 226 Gt/year from 1971 to 2009 and 275 Gt/year from 1993 to 2009. Increases in permafrost temperature have also been measured in many parts of the Northern Hemisphere while a thickening of the active layer that overlies permafrost and a thinning of seasonally frozen ground has also been reported. To gain insight into these changes, comparative analysis with trends in clouds, albedo, and the Arctic Oscillation is also presented. How to cite this article: WIREs Clim Change 2014, 5:389�409. doi: 10.1002/wcc.277.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCC...6..280B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCC...6..280B"><span>Mapping the future expansion of Arctic open water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnhart, Katherine R.; Miller, Christopher R.; Overeem, Irina; Kay, Jennifer E.</p> <p>2016-03-01</p> <p>Sea ice impacts most of the Arctic environment, from ocean circulation and marine ecosystems to animal migration and marine transportation. Sea ice has thinned and decreased in age over the observational record. Ice extent has decreased. Reduced ice cover has warmed the surface ocean, accelerated coastal erosion and impacted biological productivity. Declines in Arctic sea-ice extent cannot be explained by internal climate variability alone and can be attributed to anthropogenic effects. However, extent is a poor measure of ice decline at specific locations as it integrates over the entire Arctic basin and thus contains no spatial information. The open water season, in contrast, is a metric that represents the duration of open water over a year at an individual location. Here we present maps of the open water season over the period 1920-2100 using daily output from a 30-member initial-condition ensemble of business-as-usual climate simulations that characterize the expansion of Arctic open water, determine when the open water season will move away from pre-industrial conditions (`shift’ time) and identify when human forcing will take the Arctic sea-ice system outside its normal bounds (`emergence’ time). The majority of the Arctic nearshore regions began shifting in 1990 and will begin leaving the range of internal variability in 2040. Models suggest that ice will cover coastal regions for only half of the year by 2070.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870061487&hterms=correlation+coefficient&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcorrelation%2Bcoefficient','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870061487&hterms=correlation+coefficient&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcorrelation%2Bcoefficient"><span>Evaluation of icing drag coefficient correlations applied to iced propeller performance prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, Thomas L.; Shaw, R. J.; Korkan, K. D.</p> <p>1987-01-01</p> <p>Evaluation of three empirical icing drag coefficient correlations is accomplished through application to a set of propeller icing data. The various correlations represent the best means currently available for relating drag rise to various flight and atmospheric conditions for both fixed-wing and rotating airfoils, and the work presented here ilustrates and evaluates one such application of the latter case. The origins of each of the correlations are discussed, and their apparent capabilities and limitations are summarized. These correlations have been made to be an integral part of a computer code, ICEPERF, which has been designed to calculate iced propeller performance. Comparison with experimental propeller icing data shows generally good agreement, with the quality of the predicted results seen to be directly related to the radial icing extent of each case. The code's capability to properly predict thrust coefficient, power coefficient, and propeller efficiency is shown to be strongly dependent on the choice of correlation selected, as well as upon proper specificatioon of radial icing extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29806697','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29806697"><span>The Arctic's sea ice cover: trends, variability, predictability, and comparisons to the Antarctic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Serreze, Mark C; Meier, Walter N</p> <p>2018-05-28</p> <p>As assessed over the period of satellite observations, October 1978 to present, there are downward linear trends in Arctic sea ice extent for all months, largest at the end of the melt season in September. The ice cover is also thinning. Downward trends in extent and thickness have been accompanied by pronounced interannual and multiyear variability, forced by both the atmosphere and ocean. As the ice thins, its response to atmospheric and oceanic forcing may be changing. In support of a busier Arctic, there is a growing need to predict ice conditions on a variety of time and space scales. A major challenge to providing seasonal scale predictions is the 7-10 days limit of numerical weather prediction. While a seasonally ice-free Arctic Ocean is likely well within this century, there is much uncertainty in the timing. This reflects differences in climate model structure, the unknown evolution of anthropogenic forcing, and natural climate variability. In sharp contrast to the Arctic, Antarctic sea ice extent, while highly variable, has increased slightly over the period of satellite observations. The reasons for this different behavior remain to be resolved, but responses to changing atmospheric circulation patterns appear to play a strong role. © 2018 New York Academy of Sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1023C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1023C"><span>A New Attempt of 2-D Numerical Ice Flow Model to Reconstruct Paleoclimate from Mountain Glaciers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Candaş, Adem; Akif Sarıkaya, Mehmet</p> <p>2017-04-01</p> <p>A new two dimensional (2D) numerical ice flow model is generated to simulate the steady-state glacier extent for a wide range of climate conditions. The simulation includes the flow of ice enforced by the annual mass balance gradient of a valley glacier. The annual mass balance is calculated by the difference of the net accumulation and ablation of snow and (or) ice. The generated model lets users to compare the simulated and field observed ice extent of paleoglaciers. As a result, model results provide the conditions about the past climates since simulated ice extent is a function of predefined climatic conditions. To predict the glacier shape and distribution in two dimension, time dependent partial differential equation (PDE) is solved. Thus, a 2D glacier flow model code is constructed in MATLAB and a finite difference method is used to solve this equation. On the other hand, Parallel Ice Sheet Model (PISM) is used to regenerate paleoglaciers in the same area where the MATLAB code is applied. We chose the Mount Dedegöl, an extensively glaciated mountain in SW Turkey, to apply both models. Model results will be presented and discussed in this presentation. This study was supported by TÜBİTAK 114Y548 project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900060082&hterms=classification+passive&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dclassification%2Bpassive','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900060082&hterms=classification+passive&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dclassification%2Bpassive"><span>Arctic multiyear ice classification and summer ice cover using passive microwave satellite data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, J. C.</p> <p>1990-01-01</p> <p>Passive microwave data collected by Nimbus 7 were used to classify and monitor the Arctic multilayer sea ice cover. Sea ice concentration maps during several summer minima are analyzed to obtain estimates of ice floes that survived summer, and the results are compared with multiyear-ice concentrations derived from these data by using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data was found to be about 25 to 40 percent less than the summer ice-cover minimum, indicating that the multiyear ice cover in winter is inadequately represented by the passive microwave winter data and that a significant fraction of the Arctic multiyear ice floes exhibits a first-year ice signature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27650478','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27650478"><span>Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe</p> <p>2016-09-21</p> <p>Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA244618','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA244618"><span>Wave Information Studies of US Coastlines: Hindcast Wave Information for the Great Lakes: Lake Erie</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-10-01</p> <p>total ice cover) for individual grid cells measuring 5 km square. 42. The GLERL analyzed each half-month data set to provide the maximum, minimum...average, median, and modal ice concentrations for each 5-km cell . The median value, which represents an estimate of the 50-percent point of the ice...incorporating the progression and decay of the time-dependent ice cover was complicated by the fact that different grid cell sizes were used for mapping the ice</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CliPa..13...39M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CliPa..13...39M"><span>Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael</p> <p>2017-01-01</p> <p>Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C21B0343L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C21B0343L"><span>Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, S.; Im, J.; Kim, J. W.; Kim, M.; Shin, M.</p> <p>2014-12-01</p> <p>Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation. Sea ice extent has constantly declined since 1980s. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) in April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness between 2011 and 2014 were estimated using CryoSat-2 SAR and SARIn mode data that have sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard, i.e., elevation difference between the top of sea ice surface should be calculated. Freeboard can be estimated through detecting leads. We proposed a novel lead detection approach. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, stack standard deviation, skewness and kurtosis were examined to distinguish leads from sea ice. Near-real time cloud-free MODIS images corresponding to CryoSat-2 data measured were used to visually identify leads. Rule-based machine learning approaches such as See5.0 and random forest were used to identify leads. The proposed lead detection approach better distinguished leads from sea ice than the existing approaches. With the freeboard height calculated using the lead detection approach, sea ice thickness was finally estimated using the Archimedes' buoyancy principle. The estimated sea ice freeboard and thickness were validated using ESA airborne Ku-band interferometric radar and Airborne Electromagnetic (AEM) data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP44C..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP44C..03D"><span>Biogeochemical Cycling and Sea Ice Dynamics in the Bering Sea across the Mid-Pleistocene Transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Detlef, H.; Sosdian, S. M.; Belt, S. T.; Smik, L.; Lear, C. H.; Hall, I. R.; Kender, S.; Leng, M. J.; Husum, K.; Cabedo-Sanz, P.</p> <p>2017-12-01</p> <p>Today the Bering Sea is characterized by high primary productivity (PP) along the eastern shelf, maintained by CO2 and nutrient rich upwelled deep waters and nutrient release during spring sea ice melting. As such, low oxygen concentrations are pervasive in mid-depth waters. Changes in ventilation and export productivity in the past have been shown to impact this oxygen minimum zone. On glacial/interglacial (G/IG) timescales sea ice formation plays a pivotal role on intermediate water ventilation with evidence pointing to the formation of North Pacific Intermediate Water (NPIW) in the Bering Sea during Pleistocene glacial intervals. In addition, sea ice plays a significant role in both long- and short-term climate change via associated feedback mechanisms. Thus, records of sea ice dynamics and biogeochemical cycling in the Bering Sea are necessary to fully understand the interaction between PP, circulation patterns, and past G/IG climates with potential implications for the North Pacific carbon cycle. Here we use a multi-proxy approach to study sea ice dynamics and bottom water oxygenation, across three intervals prior to, across, and after the Mid-Pleistocene Transition (MPT, 1.2-0.7 Ma) from International Ocean Discovery Program Site U1343. The MPT, most likely driven by internal climate mechanisms, is ideal to study changes in sea ice dynamics and sedimentary redox conditions on orbital timescales and to investigate the implications for associated feedback mechanisms. The sea ice record, based on various biomarkers, including IP25, shows substantial increase in sea ice extent across the MPT and the occurrence of a late-glacial/deglacial sea ice spike, with consequences for glacial NPIW formation and land glacier retreat via the temperature-precipitation feedback. U/Mn of foraminiferal authigenic coatings, a novel proxy for bottom water oxygenation, also shows distinct variability on G/IG timescales across the MPT, most likely a result of PP and water mass changes in relation to sea ice dynamics. Additional records of benthic foraminiferal assemblages and biogenic opal accumulation rates further elucidate the influence of PP on U/Mn, which can help to investigate the strength of NPIW formation along the eastern Bering slope, important for CO2 outgassing and abyssal North Pacific carbon storage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.488...36L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.488...36L"><span>Precession and atmospheric CO2 modulated variability of sea ice in the central Okhotsk Sea since 130,000 years ago</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lo, Li; Belt, Simon T.; Lattaud, Julie; Friedrich, Tobias; Zeeden, Christian; Schouten, Stefan; Smik, Lukas; Timmermann, Axel; Cabedo-Sanz, Patricia; Huang, Jyh-Jaan; Zhou, Liping; Ou, Tsong-Hua; Chang, Yuan-Pin; Wang, Liang-Chi; Chou, Yu-Min; Shen, Chuan-Chou; Chen, Min-Te; Wei, Kuo-Yen; Song, Sheng-Rong; Fang, Tien-Hsi; Gorbarenko, Sergey A.; Wang, Wei-Lung; Lee, Teh-Quei; Elderfield, Henry; Hodell, David A.</p> <p>2018-04-01</p> <p>Recent reduction in high-latitude sea ice extent demonstrates that sea ice is highly sensitive to external and internal radiative forcings. In order to better understand sea ice system responses to external orbital forcing and internal oscillations on orbital timescales, here we reconstruct changes in sea ice extent and summer sea surface temperature (SSST) over the past 130,000 yrs in the central Okhotsk Sea. We applied novel organic geochemical proxies of sea ice (IP25), SSST (TEX86L) and open water marine productivity (a tri-unsaturated highly branched isoprenoid and biogenic opal) to marine sediment core MD01-2414 (53°11.77‧N, 149°34.80‧E, water depth 1123 m). To complement the proxy data, we also carried out transient Earth system model simulations and sensitivity tests to identify contributions of different climatic forcing factors. Our results show that the central Okhotsk Sea was ice-free during Marine Isotope Stage (MIS) 5e and the early-mid Holocene, but experienced variable sea ice cover during MIS 2-4, consistent with intervals of relatively high and low SSST, respectively. Our data also show that the sea ice extent was governed by precession-dominated insolation changes during intervals of atmospheric CO2 concentrations ranging from 190 to 260 ppm. However, the proxy record and the model simulation data show that the central Okhotsk Sea was near ice-free regardless of insolation forcing throughout the penultimate interglacial, and during the Holocene, when atmospheric CO2 was above ∼260 ppm. Past sea ice conditions in the central Okhotsk Sea were therefore strongly modulated by both orbital-driven insolation and CO2-induced radiative forcing during the past glacial/interglacial cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.4599S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.4599S"><span>Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, David P.; Deser, Clara</p> <p>2018-06-01</p> <p>Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..676S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..676S"><span>Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, David P.; Deser, Clara</p> <p>2017-09-01</p> <p>Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43E0592P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43E0592P"><span>The Last Arctic Sea Ice Refuge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.</p> <p>2010-12-01</p> <p>Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CliPa...9..969B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CliPa...9..969B"><span>The sensitivity of the Arctic sea ice to orbitally induced insolation changes: a study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berger, M.; Brandefelt, J.; Nilsson, J.</p> <p>2013-04-01</p> <p>In the present work the Arctic sea ice in the mid-Holocene and the pre-industrial climates are analysed and compared on the basis of climate-model results from the Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) and phase 3 (PMIP3). The PMIP3 models generally simulate smaller and thinner sea-ice extents than the PMIP2 models both for the pre-industrial and the mid-Holocene climate. Further, the PMIP2 and PMIP3 models all simulate a smaller and thinner Arctic summer sea-ice cover in the mid-Holocene than in the pre-industrial control climate. The PMIP3 models also simulate thinner winter sea ice than the PMIP2 models. The winter sea-ice extent response, i.e. the difference between the mid-Holocene and the pre-industrial climate, varies among both PMIP2 and PMIP3 models. Approximately one half of the models simulate a decrease in winter sea-ice extent and one half simulates an increase. The model-mean summer sea-ice extent is 11 % (21 %) smaller in the mid-Holocene than in the pre-industrial climate simulations in the PMIP2 (PMIP3). In accordance with the simple model of Thorndike (1992), the sea-ice thickness response to the insolation change from the pre-industrial to the mid-Holocene is stronger in models with thicker ice in the pre-industrial climate simulation. Further, the analyses show that climate models for which the Arctic sea-ice responses to increasing atmospheric CO2 concentrations are similar may simulate rather different sea-ice responses to the change in solar forcing between the mid-Holocene and the pre-industrial. For two specific models, which are analysed in detail, this difference is found to be associated with differences in the simulated cloud fractions in the summer Arctic; in the model with a larger cloud fraction the effect of insolation change is muted. A sub-set of the mid-Holocene simulations in the PMIP ensemble exhibit open water off the north-eastern coast of Greenland in summer, which can provide a fetch for surface waves. This is in broad agreement with recent analyses of sea-ice proxies, indicating that beach-ridges formed on the north-eastern coast of Greenland during the early- to mid-Holocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013478','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013478"><span>Variability and Anomalous Trends in the Global Sea Ice Cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2012-01-01</p> <p>The advent of satellite data came fortuitously at a time when the global sea ice cover has been changing rapidly and new techniques are needed to accurately assess the true state and characteristics of the global sea ice cover. The extent of the sea ice in the Northern Hemisphere has been declining by about -4% per decade for the period 1979 to 2011 but for the period from 1996 to 2010, the rate of decline became even more negative at -8% per decade, indicating an acceleration in the decline. More intriguing is the drastically declining perennial sea ice area, which is the ice that survives the summer melt and observed to be retreating at the rate of -14% per decade during the 1979 to 2012 period. Although a slight recovery occurred in the last three years from an abrupt decline in 2007, the perennial ice extent was almost as low as in 2007 in 2011. The multiyear ice, which is the thick component of the perennial ice and regarded as the mainstay of the Arctic sea ice cover is declining at an even higher rate of -19% per decade. The more rapid decline of the extent of this thicker ice type means that the volume of the ice is also declining making the survival of the Arctic ice in summer highly questionable. The slight recovery in 2008, 2009 and 2010 for the perennial ice in summer was likely associated with an apparent cycle in the time series with a period of about 8 years. Results of analysis of concurrent MODIS and AMSR-E data in summer also provide some evidence of more extensive summer melt and meltponding in 2007 and 2011 than in other years. Meanwhile, the Antarctic sea ice cover, as observed by the same set of satellite data, is showing an unexpected and counter intuitive increase of about 1 % per decade over the same period. Although a strong decline in ice extent is apparent in the Bellingshausen/ Amundsen Seas region, such decline is more than compensated by increases in the extent of the sea ice cover in the Ross Sea region. The results of analysis of MODIS, AMSR-E and SSM/I data reveal that the sea ice production rate at the coastal polynyas along the Ross Ice Shelf has been increasing since 1992. This also means that the salinization rate and the formation of bottom water in the region are going up as well. Simulation studies indicate that the stronger production rate is likely associated with the ozone hole that has caused a deepening of the lows in the West Antarctic region and therefore stronger winds off the Ross Ice Shelf. Stronger winds causes larger coastal polynyas near the shelf and hence an enhanced ice production in the region during the autumn and winter period. Results of analysis of temperature data from MODIS and AMSR-E shows that the area and concentration of the sea ice cover are highly correlated with surface temperature for both the Arctic and Antarctic, especially in the seasonal regions where the correlation coefficients are about 0.9. Abnormally high sea surface temperatures (SSTs) and surface ice temperatures (SITs) were also observed in 2007 and 2011when drastic reductions in the summer ice cover occurred, This phenomenon is consistent with the expected warming of the upper layer of the Arctic Ocean on account of ice-albedo feedback. Changes in atmospheric circulation are also expected to have a strong influence on the sea ice cover but the results of direct correlation analyses of the sea ice cover with the Northern and the Southern Annular Mode indices show relatively weak correlations, This might be due in part to the complexity of the dynamics of the system that can be further altered by some phenomena like the Antarctic Circumpolar Wave and extra polar processes like the El Nino Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (POD),</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8973H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8973H"><span>Capturing total chronological and spatial uncertainties in palaeo-ice sheet reconstructions: the DATED example</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge</p> <p>2017-04-01</p> <p>Glacial geologists generate empirical reconstructions of former ice-sheet dynamics by combining evidence from the preserved record of glacial landforms (e.g. end moraines, lineations) and sediments with chronological evidence (mainly numerical dates derived predominantly from radiocarbon, exposure and luminescence techniques). However the geomorphological and sedimentological footprints and chronological data are both incomplete records in both space and time, and all have multiple types of uncertainty associated with them. To understand ice sheets' response to climate we need numerical models of ice-sheet dynamics based on physical principles. To test and/or constrain such models, empirical reconstructions of past ice sheets that capture and acknowledge all uncertainties are required. In 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to produce an empirical reconstruction of the evolution of the last Eurasian ice sheets, (including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets) that is fully documented, specified in time, and includes uncertainty estimates. Over 5000 dates relevant to constraining ice build-up and retreat were assessed for reliability and used together with published ice-sheet margin positions based on glacial geomorphology to reconstruct time-slice maps of the ice sheets' extent. The DATED maps show synchronous ice margins with maximum-minimum uncertainty bounds for every 1000 years between 25-10 kyr ago. In the first version of results (DATED-1; Hughes et al. 2016) all uncertainties (both quantitative and qualitative, e.g. precision and accuracy of numerical dates, correlation of moraines, stratigraphic interpretations) were combined based on our best glaciological-geological assessment and expressed in terms of distance as a 'fuzzy' margin. Large uncertainties (>100 km) exist; predominantly across marine sectors and other locations where there are spatial gaps in the dating record (e.g. the timing of coalescence and separation of the Scandinavian and Svalbard-Barents-Kara ice sheets) but also in well-studied areas due to conflicting yet apparently equally robust data. In the four years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly ( 1000 new dates). Here, we present work towards the updated version of results, DATED-2, that attempts to further reduce and explicitly report all uncertainties inherent in ice sheet reconstructions. Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., Svendsen, J. I. 2016: The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas, 45, 1-45. 10.1111/bor.12142</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610408F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610408F"><span>Austrian glaciers in historical documents of the last 400 years: implications for historical hydrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischer, Andrea; Seiser, Bernd</p> <p>2014-05-01</p> <p>First documentations of Austrian glaciers date from as early as 1601. Early documentations were triggered by glacier advances that created glacier-dammed lakes that caused floods whenever the dam collapsed . Since then, Austrian glaciers have been documented in drawings, descriptions and later on in maps and photography. These data are stored in historical archives but today only partly exploited for historical glaciology. They are of special interest for historical hydrology in glacier-covered basins, as the extent of the snow, firn and ice cover and its elevation affect the hydrological response of the basin to precipitation events in several ways: - Firn cover: the more area is covered by firn, the higher is the capacity for retention or even refreezing of liquid precipitation and melt water. - Ice cover: the area covered by glaciers can be affected by melt and contributes to a peak discharge on summer afternoons. - Surface elevation and temperatures: in case of precipitation events, the lower surface temperatures and higher surface elevation of the glaciers compared to ice-free ground have some impact on the capacity to store precipitation. - Glacier floods: for the LIA maximum around 1850, a number of advancing glaciers dammed lakes which emptied during floods. These parameters show different variability with time: glacier area varies only by about 60% to 70% between the LIA maximum and today. The variability of the maximum meltwater peak changes much more than the area. Even during the LIA maximum, several years were extremely warm, so that more than twice the size of today's glacier area was subject to glacier melt. The minimum elevations of large glaciers were several hundred meters lower than today, so that in terms of today's summer mean temperatures, the melt water production from ice ablation would have been much higher than today. A comparison of historical glacier images and description with today's makes it clear that the extent of the snow cover and thus the albedo of the glacier surface has been highly variable. This has significant impact on the meltwater production. These historical glacier data complement the first available runoff data from the early 20th century taken close to the glacier tongues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title7-vol15/pdf/CFR-2012-title7-vol15-sec3201-37.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title7-vol15/pdf/CFR-2012-title7-vol15-sec3201-37.pdf"><span>7 CFR 3201.37 - General purpose de-icers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>...) that are designed to aid in the removal of snow and/or ice, and/or in the prevention of the buildup of snow and/or ice, in general use applications by lowering the freezing point of water. Specialized de-icer products, such as those used to de-ice aircraft and airport runways, are not included. (b) Minimum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title7-vol15/pdf/CFR-2013-title7-vol15-sec3201-37.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title7-vol15/pdf/CFR-2013-title7-vol15-sec3201-37.pdf"><span>7 CFR 3201.37 - General purpose de-icers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>...) that are designed to aid in the removal of snow and/or ice, and/or in the prevention of the buildup of snow and/or ice, in general use applications by lowering the freezing point of water. Specialized de-icer products, such as those used to de-ice aircraft and airport runways, are not included. (b) Minimum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title7-vol15/pdf/CFR-2014-title7-vol15-sec3201-37.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title7-vol15/pdf/CFR-2014-title7-vol15-sec3201-37.pdf"><span>7 CFR 3201.37 - General purpose de-icers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>...) that are designed to aid in the removal of snow and/or ice, and/or in the prevention of the buildup of snow and/or ice, in general use applications by lowering the freezing point of water. Specialized de-icer products, such as those used to de-ice aircraft and airport runways, are not included. (b) Minimum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title7-vol15/pdf/CFR-2011-title7-vol15-sec2902-37.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title7-vol15/pdf/CFR-2011-title7-vol15-sec2902-37.pdf"><span>7 CFR 2902.37 - General purpose de-icers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... are designed to aid in the removal of snow and/or ice, and/or in the prevention of the buildup of snow and/or ice, in general use applications by lowering the freezing point of water. Specialized de-icer products, such as those used to de-ice aircraft and airport runways, are not included. (b) Minimum biobased...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol15/pdf/CFR-2010-title7-vol15-sec2902-37.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol15/pdf/CFR-2010-title7-vol15-sec2902-37.pdf"><span>7 CFR 2902.37 - General purpose de-icers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... are designed to aid in the removal of snow and/or ice, and/or in the prevention of the buildup of snow and/or ice, in general use applications by lowering the freezing point of water. Specialized de-icer products, such as those used to de-ice aircraft and airport runways, are not included. (b) Minimum biobased...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035759','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035759"><span>Mobility of icy sand packs, with application to Martian permafrost</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Durham, W.B.; Pathare, A.V.; Stern, L.A.; Lenferink, H.J.</p> <p>2009-01-01</p> <p>[1] The physical state of water on Mars has fundamental ramifications for both climatology and astrobiology. The widespread presence of "softened" Martian landforms (such as impact craters) can be attributed to viscous creep of subsurface ground ice. We present laboratory experiments designed to determine the minimum amount of ice necessary to mobilize topography within Martian permafrost. Our results show that the jammed-to-mobile transition of icy sand packs neither occurs at fixed ice content nor is dependent on temperature or stress, but instead correlates strongly with the maximum dry packing density of the sand component. Viscosity also changes rapidly near the mobility transition. The results suggest a potentially lower minimum volatile inventory for the impact-pulverized megaregolith of Mars. Furthermore, the long-term preservation of partially relaxed craters implies that the ice content of Martian permafrost has remained close to that at the mobility transition throughout Martian history. Copyright 2009 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4114P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4114P"><span>Bedrock Erosion Surfaces Record Former East Antarctic Ice Sheet Extent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paxman, Guy J. G.; Jamieson, Stewart S. R.; Ferraccioli, Fausto; Bentley, Michael J.; Ross, Neil; Armadillo, Egidio; Gasson, Edward G. W.; Leitchenkov, German; DeConto, Robert M.</p> <p>2018-05-01</p> <p>East Antarctica hosts large subglacial basins into which the East Antarctic Ice Sheet (EAIS) likely retreated during past warmer climates. However, the extent of retreat remains poorly constrained, making quantifying past and predicted future contributions to global sea level rise from these marine basins challenging. Geomorphological analysis and flexural modeling within the Wilkes Subglacial Basin are used to reconstruct the ice margin during warm intervals of the Oligocene-Miocene. Flat-lying bedrock plateaus are indicative of an ice sheet margin positioned >400-500 km inland of the modern grounding zone for extended periods of the Oligocene-Miocene, equivalent to a 2-m rise in global sea level. Our findings imply that if major EAIS retreat occurs in the future, isostatic rebound will enable the plateau surfaces to act as seeding points for extensive ice rises, thus limiting extensive ice margin retreat of the scale seen during the early EAIS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1235897-development-global-sea-ice-cice-configuration-met-office-global-coupled-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1235897-development-global-sea-ice-cice-configuration-met-office-global-coupled-model"><span>Development of the global sea ice 6.0 CICE configuration for the Met Office global coupled model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.; ...</p> <p>2015-07-24</p> <p>The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extentmore » and volume; further work is required to rectify this in future configurations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1235897','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1235897"><span>Development of the global sea ice 6.0 CICE configuration for the Met Office global coupled model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.</p> <p></p> <p>The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extentmore » and volume; further work is required to rectify this in future configurations.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C13B0440S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C13B0440S"><span>Lacustrine Records of Holocene Mountain Glacier Fluctuations from Western Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schweinsberg, A.; Briner, J. P.; Bennike, O.</p> <p>2014-12-01</p> <p>Recent studies have focused on documenting fluctuations of the Greenland Ice Sheet margin throughout the Holocene but few data exist that constrain past changes of local glaciers independent of the ice sheet. Our research combines proglacial lake sediment analysis with cosmogenic 10Be dating of Holocene moraines and radiocarbon dating of ice-cap-killed vegetation with an overall objective to use this multi-proxy approach to generate a detailed record of the coupled climate-glacier system through the Holocene. Here, we present lacustrine records of mountain glacier variability from continuous pro-glacial lake sediment sequences recovered from two glaciated catchments in northeastern Nuussuaq, western Greenland. We use radiocarbon-dated sediments from Sikuiui and Pauiaivik lakes to reconstruct the timing of advance and retreat of local glaciers. Sediments were characterized with magnetic susceptibility (MS), gamma density, Itrax XRF and visible reflectance spectroscopy at 0.2 cm intervals and sediment organic matter at 0.5 cm intervals. Basal radiocarbon ages provide minimum-age constraints on deglaciation from Sikuiui and Pauiaivik lakes of ~9.6 and 8.7 ka, respectively. Organic-rich gyttja from deglaciation until ~5.0 ka in Pauiaivik Lake suggests minimal glacial extent there while slightly elevated MS values from ~9.0 - 7.0 ka in Sikuiui Lake may reflect early Holocene glacial advances. Minerogenic sediment input gradually increases starting at ~5.0 ka in Pauiaivik Lake, which we interpret as the onset of Neoglaciation in the catchment. Furthermore, a distinct episode of enhanced glacial activity from ~4.0 - 2.2 ka in Sikuiui Lake may be correlative to a period of persistent snowline lowering evidenced by radiocarbon dates of ice-killed vegetation from nearby ice cap margins. Results from these lacustrine records and our ice-killed vegetation dataset suggest a middle Holocene onset of Neoglaciation ~5.0 - 4.0 ka in this region. We are supplementing these records with cosmogenic 10Be exposure dating to further constrain the timing of deglaciation. In addition, these sedimentary archives will continue to be compared to radiocarbon dates of ice-killed vegetation along adjacent ice cap margins to determine if times of persistent snowline lowering are correlative to periods of glacier advance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.3105P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.3105P"><span>Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari</p> <p>2017-08-01</p> <p>The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PrOce.162..160B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PrOce.162..160B"><span>Long-term patterns of benthic irradiance and kelp production in the central Beaufort sea reveal implications of warming for Arctic inner shelves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonsell, Christina; Dunton, Kenneth H.</p> <p>2018-03-01</p> <p>This study synthesizes a multidecadal dataset of annual growth of the Arctic endemic kelp Laminaria solidungula and corresponding measurements of in situ benthic irradiance from Stefansson Sound in the central Beaufort Sea. We incorporate long-term data on sea ice concentration (National Sea Ice Data Center) and wind (National Weather Service) to assess how ice extent and summer wind dynamics affect the benthic light environment and annual kelp production. We find evidence of significant changes in sea ice extent in Stefansson Sound, with an extension of the ice-free season by approximately 17 days since 1979. Although kelp elongation at 5-7 m depths varies significantly among sites and years (3.8-49.8 cm yr-1), there is no evidence for increased production with either earlier ice break-up or a longer summer ice-free period. This is explained by very low light transmittance to the benthos during the summer season (mean daily percent surface irradiance ± SD: 1.7 ± 3.6 to 4.5 ± 6.6, depending on depth, with light attenuation values ranging from 0.5 to 0.8 m-1), resulting in minimal potential for kelp production on most days. Additionally, on month-long timescales (35 days) in the ice-free summer, benthic light levels are negatively related to wind speed. The frequent, wind-driven resuspension of sediments following ice break-up significantly reduce light to the seabed, effectively nullifying the benefits of an increased ice-free season on annual kelp growth. Instead, benthic light and primary production may depend substantially on the 1-3 week period surrounding ice break-up when intermediate sea ice concentrations reduce wind-driven sediment resuspension. These results suggest that both benthic and water column primary production along the inner shelf of Arctic marginal seas may decrease, not increase, with reductions in sea ice extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6760381-iceberg-severity-off-eastern-north-america-its-relationship-sea-ice-variability-climate-change','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6760381-iceberg-severity-off-eastern-north-america-its-relationship-sea-ice-variability-climate-change"><span>Iceberg severity off eastern North America: Its relationship to sea ice variability and climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marko, J.R.; Fissel, D.B.; Wadhams, P.</p> <p>1994-09-01</p> <p>Iceberg trajectory, deterioration (mass loss), and sea ice data are reviewed to identify the sources of observed interannual and seasonal variations in the numbers of icebergs passing south of 48[degrees]N off eastern North America. The results show the dominant role of sea ice in the observed variations. Important mechanisms involved include both seasonal modulation of the southerly iceberg flow by ice cover control of probabilities for entrapment and decay in shallow water, and the suppression of iceberg melt/deterioration rates by high concentrations of sea ice. The Labrador spring ice extent, shown to be the critical parameter in interannual iceberg numbermore » variability, was found to be either determined by or closely correlated with midwinter Davis Strait ice extents. Agreement obtained between observed year-to-year and seasonal number variations with computations based upon a simple iceberg dissipation model suggests that downstream iceberg numbers are relatively insensitive to iceberg production rates and to fluctuations in southerly iceberg fluxes in areas north of Baffin Island. Past variations in the Davis Strait ice index and annual ice extents are studied to identify trends and relationships between regional and larger-scale global climate parameters. It was found that, on decadal timescales in the post-1960 period of reasonable data quality, regional climate parameters have varied, roughly, out of phase with corresponding global and hemispheric changes. These observations are compared with expectations in terms of model results to evaluate current GCM-based capabilities for simulating recent regional behavior. 64 refs., 11 figs., 3 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C31B..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C31B..07R"><span>The Distribution and Magnitude of Glacial Erosion on 103-year Timescales at Engabreen, Norway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rand, C.; Goehring, B. M.</p> <p>2017-12-01</p> <p>We derive the magnitudes of glacial erosion integrated over 103-year timescales across a transect transverse to the direction of ice flow at Engabreen, Norway. Understanding the distribution of glacial erosion is important for several reasons, including sediment budgeting to fjord environments, development of robust landscape evolution models, and if a better understanding between erosion and ice-bed interface properties (e.g., sliding rate, basal water pressure) can be developed, we can use records of glacial erosion to infer glaciological properties that can ultimately benefit models of past and future glaciers. With few exceptions, measurements of glacial erosion are limited to the historical past and even then are rare owing to the difficulty of accessing the glacier bed. One method proven useful in estimating glacial erosion on 103-year timescales is to measure the remaining concentrations of cosmogenic nuclides that accumulate in exposed bedrock during periods of retracted glacier extent and are removed by glacial erosion and radioactive decay during ice cover. Here we will present measurements of 14C and 10Be measured in proglacial bedrock from Engabreen. Our transects are ca. 600 and 400 meters in front of the modern ice front, and based on historical imagery, was ice covered until the recent past. Initial 10Be results show an increase in concentrations of nearly an order of magnitude from the samples near the center of the glacial trough to those on the lateral margin, consistent with conceptual models of glacial erosion parameterized in terms of sliding velocity. Naïve exposure ages that assume no subglacial erosion range from 0.22 - 9.04 ka. More importantly, we can estimate erosion depths by assuming zero erosion of the highest concentration sample along the two transects and calculate the amount of material removed to yield the lower concentrations elsewhere along the two transects. Results indicate minimum erosion depths of 1-183 cm for most ice proximal transect and 7-56 cm for the more distal one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C53C0747T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C53C0747T"><span>High-resolution record of the deglaciation of the British-Irish Ice Sheet from North Atlantic deep-sea sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tarlati, S.; Benetti, S.; Callard, L.; O'Cofaigh, C.; Dunlop, P.; Chiverrell, R. C.; Fabel, D.; Moreton, S.; Clark, C.</p> <p>2016-12-01</p> <p>During the last glacial maximum the British-Irish Ice Sheet (BIIS) covered the majority of Ireland and Britain. Recent studies have described the BIIS as largely marine-based and highly dynamic with several advances and retreats recorded on the continental shelf. The focus of this study is the more recent sediment record from the Donegal Barra Fan (DBF), the largest sediment depocentre formed by the ice streaming of the western BIIS onto the North Atlantic continental margin. In this project, well-preserved, glacially-derived, deep-water sediments from 3 cores, up to 6.7 m long and retrieved from the DBF, are used to investigate and chronologically constrain the pattern of deglaciation of the BIIS. Deep-water sediments can record continuous sedimentation through time, avoiding hiatuses and erosional surfaces characteristic of a glacial environment and allow a detailed reconstruction of deglacial processes. Five lithofacies have been identified using sedimentology, x-rays, physical properties and grain size analysis. They include bioturbated foraminifera-bearing muds, interpreted as hemipelagic and contouritic deposits from interglacial periods. Chaotic and laminated muds, ice-rafted debris (IRD)-rich layers and laminated mud to sand couplets are characteristic of the glacial period including ice-sheet maximum extent and the beginning of retreat. These represent downslope mass movements, plumites from meltwater alongside melting icebergs and turbidites. Radiocarbon dates from foraminifera suggest that the deglacial sedimentary sequence is up to 5m thick. The IRD concentration and abundance of the foraminifera Neogloboquadrina pachyderma sinistral indicate a minimum of 3 different calving events during deglaciation and a marked Younger Dryas cooling and ice calving period. Additionally the δ 18O record will be used to investigate the record of climatic changes in the region and x-ray fluorescence will be used to assess sediment provenance during deglaciation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040015192&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040015192&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DParkinsons"><span>Observed and Modeled Trends in Southern Ocean Sea Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.</p> <p>2003-01-01</p> <p>Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and ice surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of sea ice variations in the model calculations. Both sea ice thickness and sea ice extent decrease markedly in the doubled CO, case, thereby allowing the ice feedbacks to occur. Stand-alone sea ice models have shown Southern Ocean hemispherically averaged winter ice-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean ice cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean sea ice since late 1978 has revealed overall increases rather than decreases in ice extents, with ice extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross Sea, while the trends are negative in the Bellingshausen/Amundsen Seas. Greater spatial detail can be obtained by examining trends in the length of the sea ice season, and those trends show a coherent picture of shortening sea ice seasons throughout almost the entire Bellingshausen and Amundsen Seas to the west of the Antarctic Peninsula and in the far western Weddell Sea immediately to the east of the Peninsula, with lengthening sea ice seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong record of temperature increases. Still, although the patterns of the temperature and ice changes match fairly well, there is a substantial ways to go before these patterns are understood (and can be modeled) in the full context of global change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23908231','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23908231"><span>Ecological consequences of sea-ice decline.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Post, Eric; Bhatt, Uma S; Bitz, Cecilia M; Brodie, Jedediah F; Fulton, Tara L; Hebblewhite, Mark; Kerby, Jeffrey; Kutz, Susan J; Stirling, Ian; Walker, Donald A</p> <p>2013-08-02</p> <p>After a decade with nine of the lowest arctic sea-ice minima on record, including the historically low minimum in 2012, we synthesize recent developments in the study of ecological responses to sea-ice decline. Sea-ice loss emerges as an important driver of marine and terrestrial ecological dynamics, influencing productivity, species interactions, population mixing, gene flow, and pathogen and disease transmission. Major challenges in the near future include assigning clearer attribution to sea ice as a primary driver of such dynamics, especially in terrestrial systems, and addressing pressures arising from human use of arctic coastal and near-shore areas as sea ice diminishes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4366H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4366H"><span>Deciphering the evolution of the last Eurasian ice sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge</p> <p>2016-04-01</p> <p>Glacial geologists need ice sheet-scale chronological reconstructions of former ice extent to set individual records in a wider context and compare interpretations of ice sheet response to records of past environmental changes. Ice sheet modellers require empirical reconstructions on size and volume of past ice sheets that are fully documented, specified in time and include uncertainty estimates for model validation or constraints. Motivated by these demands, in 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to compile and archive all published dates relevant to constraining the build-up and retreat of the last Eurasian ice sheets, including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets (BIIS, SIS and SBKIS respectively). Over 5000 dates were assessed for reliability and used together with published ice-sheet margin positions to reconstruct time-slice maps of the ice sheets' extent, with uncertainty bounds, every 1000 years between 25-10 kyr ago and at four additional periods back to 40 kyr ago. Ten years after the idea for a database was conceived, the first version of results (DATED-1) has now been released (Hughes et al. 2016). We observe that: i) both the BIIS and SBKIS achieve maximum extent, and commence retreat earlier than the larger SIS; ii) the eastern terrestrial margin of the SIS reached its maximum extent up to 7000 years later than the westernmost marine margin; iii) the combined maximum ice volume (~24 m sea-level equivalent) was reached c. 21 ka; iv) large uncertainties exist; predominantly across marine sectors (e.g. the timing of coalescence and separation of the SIS and BKIS) but also in well-studied areas due to conflicting yet equally robust data. In just three years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly (~1000 new dates). Here, we present the DATED-1 results in the context of the climatic changes of the last glacial, discuss the implications of emerging post-census data, and describe plans for the next version of the database, DATED-2. Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., Svendsen, J. I. 2016: The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas, 45, 1-45. 10.1111/bor.12142</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C11A0344D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C11A0344D"><span>Aerial Surveys of the Beaufort Sea Seasonal Ice Zone in 2012-2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dewey, S.; Morison, J.; Andersen, R.; Zhang, J.</p> <p>2014-12-01</p> <p>Seasonal Ice Zone Reconnaissance Surveys (SIZRS) of the Beaufort Sea aboard U.S. Coast Guard Arctic Domain Awareness flights were made monthly from May 2012 to October 2012, June 2013 to August 2013, and June 2014 to October 2014. In 2012 sea ice extent reached a record minimum and the SIZRS sampling ranged from complete ice cover to open water; in addition to its large spatial coverage, the SIZRS program extends temporal coverage of the seasonal ice zone (SIZ) beyond the traditional season for ship-based observations, and is a good set of measurements for model validation and climatological comparison. The SIZ, where ice melts and reforms annually, encompasses the marginal ice zone (MIZ). Thus SIZRS tracks interannual MIZ conditions, providing a regional context for smaller-scale MIZ processes. Observations with Air eXpendable CTDs (AXCTDs) reveal two near-surface warm layers: a locally-formed surface seasonal mixed layer and a layer of Pacific origin at 50-60m. Temperatures in the latter differ from the freezing point by up to 2°C more than climatologies. To distinguish vertical processes of mixed layer formation from Pacific advection, vertical heat and salt fluxes are quantified using a 1-D Price-Weller-Pinkel (PWP) model adapted for ice-covered seas. This PWP simulates mixing processes in the top 100m of the ocean. Surface forcing fluxes are taken from the Marginal Ice Zone Modeling and Assimilation System MIZMAS. Comparison of SIZRS observations with PWP output shows that the ocean behaves one-dimensionally above the Pacific layer of the Beaufort Gyre. Despite agreement with the MIZMAS-forced PWP, SIZRS observations remain fresher to 100m than do outputs from MIZMAS and ECCO.2. The shapes of seasonal cycles in SIZRS salinity and temperature agree with MIZMAS and ECCO.2 model outputs despite differences in the values of each. However, the seasonal change of surface albedo is not high enough resolution to accurately drive the PWP. Use of ice albedo observations to scale shortwave radiation and salt fluxes improves agreement between observations and PWP outputs. Sensitivity analyses suggest that these are the two most impactful surface parameters on PWP output and that better knowledge of their seasonal changes—as well as better characterization of horizontal Pacific inflow—is imperative for future modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990109666','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990109666"><span>The Formation each Winter of the Circumpolar Wave in the Sea Ice around Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloersen, Per; White, Warren B.</p> <p>1999-01-01</p> <p>Seeking to improve upon the visualization of the Antarctic Circumpolar Wave (ACW) , we compare a 16-year sequence of 6-month winter averages of Antarctic sea ice extents and concentrations with those of adjacent sea surface temperatures (SSTs). Here we follow SSTs around the globe along the maximum sea ice edge rather than in a zonal band equatorward of it. The results are similar to the earlier ones, but the ACWs do not propagate with equal amplitude or speed. Additionally in a sequence of 4 polar stereographic plots of these SSTs and sea ice concentrations, we find a remarkable correlation between SST minima and sea ice concentration maxima, even to the extent of matching contours across the ice-sea boundary, in the sector between 900E and the Palmer Peninsula. Based on these observations, we suggest that the memory of the ACW in the sea ice is carried from one Austral winter to the next by the neighboring SSTS, since the sea ice is nearly absent in the Austral summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18566098','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18566098"><span>High latitude changes in ice dynamics and their impact on polar marine ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moline, Mark A; Karnovsky, Nina J; Brown, Zachary; Divoky, George J; Frazer, Thomas K; Jacoby, Charles A; Torres, Joseph J; Fraser, William R</p> <p>2008-01-01</p> <p>Polar regions have experienced significant warming in recent decades. Warming has been most pronounced across the Arctic Ocean Basin and along the Antarctic Peninsula, with significant decreases in the extent and seasonal duration of sea ice. Rapid retreat of glaciers and disintegration of ice sheets have also been documented. The rate of warming is increasing and is predicted to continue well into the current century, with continued impacts on ice dynamics. Climate-mediated changes in ice dynamics are a concern as ice serves as primary habitat for marine organisms central to the food webs of these regions. Changes in the timing and extent of sea ice impose temporal asynchronies and spatial separations between energy requirements and food availability for many higher trophic levels. These mismatches lead to decreased reproductive success, lower abundances, and changes in distribution. In addition to these direct impacts of ice loss, climate-induced changes also facilitate indirect effects through changes in hydrography, which include introduction of species from lower latitudes and altered assemblages of primary producers. Here, we review recent changes and trends in ice dynamics and the responses of marine ecosystems. Specifically, we provide examples of ice-dependent organisms and associated species from the Arctic and Antarctic to illustrate the impacts of the temporal and spatial changes in ice dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986JGR....9110661E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986JGR....9110661E"><span>Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn</p> <p>1986-09-01</p> <p>During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033649','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033649"><span>Extent of the last ice sheet in northern Scotland tested with cosmogenic 10Be exposure ages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Phillips, W.M.; Hall, A.M.; Ballantyne, C.K.; Binnie, S.; Kubik, P.W.; Freeman, S.</p> <p>2008-01-01</p> <p>The extent of the last British-Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23-19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice-free. An alternative model implies that these three areas were ice-covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright ?? 2008 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA257132','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA257132"><span>Investigation of Antarctic Sea Ice Concentration by Means of Selected Algorithms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-05-08</p> <p>Changes in areal extent and concentration of sea ice around Antarctica may serve as sensitive indicators of global warming . A comparison study was...occurred from July, 1987 through June, 1990. Antarctic Ocean, Antarctic regions, Global warming , Sea ice-Antarctic regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024334','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024334"><span>Draped aeromagnetic survey in Transantarctic Mountains over the area of the Butcher Ridge igneous complex showing extent of underlying mafic intrusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Behrendt, John C.; Damaske, D.; Finn, C.A.; Kyle, P.; Wilson, T.J.</p> <p>2002-01-01</p> <p>A draped aeromagnetic survey over the area surrounding the Butcher Ridge igneous complex (BRIC), Transantarctic Mountains, was acquired in 1997-1998 as part of a larger Transantarctic Mountains Aerogeophysical Research Activity survey. The BRIC is a sill-like hypoabyssal intrusion ranging in composition from tholeiitic basalt to rhyolite. An 40Ar/39 Ar age of 174 Ma and the chemical character of the basaltic rocks show the BRIC to be part of the widespread Jurassic Ferrar suite of continental tholeiitic rocks, that extends for 3500 km across Antarctica. The aeromagnetic survey shows a horseshoe-shaped pattern of anomalies reaching amplitudes as great as 1900 nT generally associated with the bedrock topography where it is exposed. It is apparent that the high-amplitude anomaly pattern is more extensive than the 10-km-long exposed outcrop, first crossed by a single 1990 aeromagnetic profile. The highest-amplitude anomalies appear south of the profile acquired in 1990 and extend out of the survey area. The new aeromagnetic data allow determination of the extent of the interpreted Butcher mafic(?) intrusion beneath exposures of Beacon sedimentary rock and ice in the area covered, as well as beneath the small BRIC exposure. The magnetic anomalies show a minimum area of 3000 km2, a much greater extent than previously inferred. Magnetic models indicate a minimum thickness of ~1-2 km for a horizontal intrusion. However, nonunique models with magnetic layers decreasing in apparent susceptibility with depth are consistent with of a 4- to 8-km-thick layered intrusion. These magnetic models indicate progressively deeper erosion of the interpreted mafic-layered body from the south to north. The erosion has removed more magnetic upper layers that mask the magnetic effects of the lower less magnetic layers. The probable minimum volume of the intrusion in the area of the survey is ~6000 km3. An alternate, but less likely, interpretation of a series of dikes can also fit the observed magnetic anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050179461','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050179461"><span>Sea Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.; Cavalieri, Donald J.</p> <p>2005-01-01</p> <p>Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016TCry...10.2721E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016TCry...10.2721E"><span>Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edinburgh, Tom; Day, Jonathan J.</p> <p>2016-11-01</p> <p>In stark contrast to the sharp decline in Arctic sea ice, there has been a steady increase in ice extent around Antarctica during the last three decades, especially in the Weddell and Ross seas. In general, climate models do not to capture this trend and a lack of information about sea ice coverage in the pre-satellite period limits our ability to quantify the sensitivity of sea ice to climate change and robustly validate climate models. However, evidence of the presence and nature of sea ice was often recorded during early Antarctic exploration, though these sources have not previously been explored or exploited until now. We have analysed observations of the summer sea ice edge from the ship logbooks of explorers such as Robert Falcon Scott, Ernest Shackleton and their contemporaries during the Heroic Age of Antarctic Exploration (1897-1917), and in this study we compare these to satellite observations from the period 1989-2014, offering insight into the ice conditions of this period, from direct observations, for the first time. This comparison shows that the summer sea ice edge was between 1.0 and 1.7° further north in the Weddell Sea during this period but that ice conditions were surprisingly comparable to the present day in other sectors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3107304','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3107304"><span>Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Price, Stephen F.; Payne, Antony J.; Howat, Ian M.; Smith, Benjamin E.</p> <p>2011-01-01</p> <p>We use a three-dimensional, higher-order ice flow model and a realistic initial condition to simulate dynamic perturbations to the Greenland ice sheet during the last decade and to assess their contribution to sea level by 2100. Starting from our initial condition, we apply a time series of observationally constrained dynamic perturbations at the marine termini of Greenland’s three largest outlet glaciers, Jakobshavn Isbræ, Helheim Glacier, and Kangerdlugssuaq Glacier. The initial and long-term diffusive thinning within each glacier catchment is then integrated spatially and temporally to calculate a minimum sea-level contribution of approximately 1 ± 0.4 mm from these three glaciers by 2100. Based on scaling arguments, we extend our modeling to all of Greenland and estimate a minimum dynamic sea-level contribution of approximately 6 ± 2 mm by 2100. This estimate of committed sea-level rise is a minimum because it ignores mass loss due to future changes in ice sheet dynamics or surface mass balance. Importantly, > 75% of this value is from the long-term, diffusive response of the ice sheet, suggesting that the majority of sea-level rise from Greenland dynamics during the past decade is yet to come. Assuming similar and recurring forcing in future decades and a self-similar ice dynamical response, we estimate an upper bound of 45 mm of sea-level rise from Greenland dynamics by 2100. These estimates are constrained by recent observations of dynamic mass loss in Greenland and by realistic model behavior that accounts for both the long-term cumulative mass loss and its decay following episodic boundary forcing. PMID:21576500</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21576500','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21576500"><span>Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Price, Stephen F; Payne, Antony J; Howat, Ian M; Smith, Benjamin E</p> <p>2011-05-31</p> <p>We use a three-dimensional, higher-order ice flow model and a realistic initial condition to simulate dynamic perturbations to the Greenland ice sheet during the last decade and to assess their contribution to sea level by 2100. Starting from our initial condition, we apply a time series of observationally constrained dynamic perturbations at the marine termini of Greenland's three largest outlet glaciers, Jakobshavn Isbræ, Helheim Glacier, and Kangerdlugssuaq Glacier. The initial and long-term diffusive thinning within each glacier catchment is then integrated spatially and temporally to calculate a minimum sea-level contribution of approximately 1 ± 0.4 mm from these three glaciers by 2100. Based on scaling arguments, we extend our modeling to all of Greenland and estimate a minimum dynamic sea-level contribution of approximately 6 ± 2 mm by 2100. This estimate of committed sea-level rise is a minimum because it ignores mass loss due to future changes in ice sheet dynamics or surface mass balance. Importantly, > 75% of this value is from the long-term, diffusive response of the ice sheet, suggesting that the majority of sea-level rise from Greenland dynamics during the past decade is yet to come. Assuming similar and recurring forcing in future decades and a self-similar ice dynamical response, we estimate an upper bound of 45 mm of sea-level rise from Greenland dynamics by 2100. These estimates are constrained by recent observations of dynamic mass loss in Greenland and by realistic model behavior that accounts for both the long-term cumulative mass loss and its decay following episodic boundary forcing.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.8481G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.8481G"><span>Impact of aerosol emission controls on future Arctic sea ice cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagné, M.-Ã..; Gillett, N. P.; Fyfe, J. C.</p> <p>2015-10-01</p> <p>We examine the response of Arctic sea ice to projected aerosol and aerosol precursor emission changes under the Representative Concentration Pathway (RCP) scenarios in simulations of the Canadian Earth System Model. The overall decrease in aerosol loading causes a warming, largest over the Arctic, which leads to an annual mean reduction in sea ice extent of approximately 1 million km2 over the 21st century in all RCP scenarios. This accounts for approximately 25% of the simulated reduction in sea ice extent in RCP 4.5, and 40% of the reduction in RCP 2.5. In RCP 4.5, the Arctic ocean is projected to become ice-free during summertime in 2045, but it does not become ice-free until 2057 in simulations with aerosol precursor emissions held fixed at 2000 values. Thus, while reductions in aerosol emissions have significant health and environmental benefits, their substantial contribution to projected Arctic climate change should not be overlooked.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193618','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193618"><span>Holocene sea surface temperature and sea ice extent in the Okhotsk and Bering Seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harada, Naomi; Katsuki, Kota; Nakagawa, Mitsuhiro; Matsumoto, Akiko; Seki, Osamu; Addison, Jason A.; Finney, Bruce P.; Sato, Miyako</p> <p>2014-01-01</p> <p>Accurate prediction of future climate requires an understanding of the mechanisms of the Holocene climate; however, the driving forces, mechanisms, and processes of climate change in the Holocene associated with different time scales remain unclear. We investigated the drivers of Holocene sea surface temperature (SST) and sea ice extent in the North Pacific Ocean, and the Okhotsk and Bering Seas, as inferred from sediment core records, by using the alkenone unsaturation index as a biomarker of SST and abundances of sea ice-related diatoms (F. cylindrus and F. oceanica) as an indicator of sea ice extent to explore controlling mechanisms in the high-latitude Pacific. Temporal changes in alkenone content suggest that alkenone production was relatively high during the middle Holocene in the Okhotsk Sea and the western North Pacific, but highest in the late Holocene in the eastern Bering Sea and the eastern North Pacific. The Holocene variations of alkenone-SSTs at sites near Kamchatka in the Northwest Pacific, as well as in the western and eastern regions of the Bering Sea, and in the eastern North Pacific track the changes of Holocene summer insolation at 50°N, but at other sites in the western North Pacific, in the southern Okhotsk Sea, and the eastern Bering Sea they do not. In addition to insolation, other atmosphere and ocean climate drivers, such as sea ice distribution and changes in the position and activity of the Aleutian Low, may have systematically influenced the timing and magnitude of warming and cooling during the Holocene within the subarctic North Pacific. Periods of high sea ice extent in both the Okhotsk and Bering Seas may correspond to some periods of frequent or strong winter–spring dust storms in the Mongolian Gobi Desert, particularly one centered at ∼4–3 thousand years before present (kyr BP). Variation in storm activity in the Mongolian Gobi Desert region may reflect changes in the strength and positions of the Aleutian Low and Siberian High. We suggest that periods of eastward displacement or increased intensity of the Aleutian Low correspond with times of increased extent of sea ice in the western Okhotsk Sea and eastern Bering Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1176/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1176/"><span>Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Douglas, David C.</p> <p>2010-01-01</p> <p>The Arctic region is warming faster than most regions of the world due in part to increasing greenhouse gases and positive feedbacks associated with the loss of snow and ice cover. One consequence has been a rapid decline in Arctic sea ice over the past 3 decades?a decline that is projected to continue by state-of-the-art models. Many stakeholders are therefore interested in how global warming may change the timing and extent of sea ice Arctic-wide, and for specific regions. To inform the public and decision makers of anticipated environmental changes, scientists are striving to better understand how sea ice influences ecosystem structure, local weather, and global climate. Here, projected changes in the Bering and Chukchi Seas are examined because sea ice influences the presence of, or accessibility to, a variety of local resources of commercial and cultural value. In this study, 21st century sea ice conditions in the Bering and Chukchi Seas are based on projections by 18 general circulation models (GCMs) prepared for the fourth reporting period by the Intergovernmental Panel on Climate Change (IPCC) in 2007. Sea ice projections are analyzed for each of two IPCC greenhouse gas forcing scenarios: the A1B `business as usual? scenario and the A2 scenario that is somewhat more aggressive in its CO2 emissions during the second half of the century. A large spread of uncertainty among projections by all 18 models was constrained by creating model subsets that excluded GCMs that poorly simulated the 1979-2008 satellite record of ice extent and seasonality. At the end of the 21st century (2090-2099), median sea ice projections among all combinations of model ensemble and forcing scenario were qualitatively similar. June is projected to experience the least amount of sea ice loss among all months. For the Chukchi Sea, projections show extensive ice melt during July and ice-free conditions during August, September, and October by the end of the century, with high agreement among models. High agreement also accompanies projections that the Chukchi Sea will be completely ice covered during February, March, and April at the end of the century. Large uncertainties, however, are associated with the timing and amount of partial ice cover during the intervening periods of melt and freeze. For the Bering Sea, median March ice extent is projected to be about 25 percent less than the 1979-1988 average by mid-century and 60 percent less by the end of the century. The ice-free season in the Bering Sea is projected to increase from its contemporary average of 5.5 months to a median of about 8.5 months by the end of the century. A 3-month longer ice- free season in the Bering Sea is attained by a 1-month advance in melt and a 2-month delay in freeze, meaning the ice edge typically will pass through the Bering Strait in May and January at the end of the century rather than June and November as presently observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7955M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7955M"><span>Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.</p> <p>2017-08-01</p> <p>Arctic sea ice loss may influence midlatitude climate by changing large-scale circulation. The extent to which climate change can be understood as greenhouse gas-induced changes that are modulated by this loss depends on how additive the responses to the separate influences are. A novel sea ice nudging methodology in a fully coupled climate model reveals that the separate effects of doubled atmospheric carbon dioxide (CO2) concentrations and associated Arctic sea ice loss are remarkably additive and insensitive to the mean climate state. This separability is evident in several fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. The separability of the responses might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.5758P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.5758P"><span>The Impact of a Lower Sea Ice Extent on Arctic Greenhouse Gas Exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.</p> <p>2013-04-01</p> <p>Arctic sea ice extent hit a new record low in September 2012, when it fell to a level about two times lower than the 1979-2000 average. Record low sea ice extents such as these are often hailed as an obvious example of the impact of climate change on the Arctic. Less obvious, however, are the further implications of a lower sea ice extent on Arctic greenhouse gas exchange. For example, a reduction in sea ice, in consort with a lower snow cover, has been connected to higher surface temperatures in the terrestrial part of the Arctic (Screen et al., 2012). These higher temperatures and longer growing seasons have the potential to alter the CO2 balance of Arctic tundra through enhanced photosynthesis and respiration, as well as the magnitude of methane emissions. In fact, large changes are already observed in terrestrial ecosystems (Post et al., 2009), and concerns have been raised of large releases of carbon through permafrost thaw (Schuur et al., 2011). While these changes in the greenhouse gas balance of the terrestrial Arctic are described in numerous studies, a connection with a decline in sea ice extent is nonetheless seldom made. In addition to these changes on land, a lower sea ice extent also has a direct effect on the exchange of greenhouse gases between the ocean and the atmosphere. For example, due to sea ice retreat, more ocean surface remains in contact with the atmosphere, and this has been suggested to increase the oceanic uptake of CO2 (Bates et al., 2006). However, the sustainability of this increased uptake is uncertain (Cai et al., 2010), and carbon fluxes related directly to the sea ice itself add much uncertainty to the oceanic uptake of CO2 (Nomura et al., 2006; Rysgaard et al., 2007). Furthermore, significant emissions of methane from the Arctic Ocean have been observed (Kort et al., 2012; Shakhova et al., 2010), but the consequence of a lower sea ice extent thereon is still unclear. Overall, the decline in sea ice that has been seen in recent years has the potential to influence greenhouse gas exchange across terrestrial ecosystems and the Arctic Ocean, but the overall impact remains unclear. In this study, we therefore try to reduce this uncertainty by addressing the influence of the decline in sea ice extent on all affected greenhouse gas fluxes in the high latitudes. Also, we will address the need for more research, on the ocean and on the land, to understand the impact of a lower sea ice extent on Arctic greenhouse gas exchange. References: Bates, N. R., Moran, S. B., Hansell, D. A. and Mathis, J. T.: An increasing CO2 sink in the Arctic Ocean due to sea-ice loss, Geophys. Res. Lett., 33, L23609, doi:10.1029/2006GL027028, 2006. Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., Pierrot, D., Sullivan, K., Wang, Y., Hu, X., Huang, W.-J., et al.: Decrease in the CO2 Uptake Capacity in an Ice-Free Arctic Ocean Basin, Science, 329(5991), 556-559, doi:10.1126/science.1189338, 2010. Kort, E. A., Wofsy, S. C., Daube, B. C., Diao, M., Elkins, J. W., Gao, R. S., Hintsa, E. J., Hurst, D. F., Jimenez, R., Moore, F. L., Spackman, J. R., et al.: Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north, Nature Geosci., 5(5), 318-321, doi:10.1038/NGEO1452, 2012. Nomura, D., Yoshikawa-Inoue, H. and Toyota, T.: The effect of sea-ice growth on air-sea CO2 flux in a tank experiment, vol. 58, pp. 418-426. 2006. Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., Fox, A. D., Gilg, O., Hik, D. S., Høye, T. T., Ims, R. A., et al.: Ecological Dynamics Across the Arctic Associated with Recent Climate Change, Science, 325(5946), 1355-1358, doi:10.1126/science.1173113, 2009. Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. and Christensen, P. B.: Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas, J. Geophys. Res., 112, C03016, doi:10.1029/2006JC003572, 2007. Schuur, E. A. G., Abbott, B. and Network, P. C.: High risk of permafrost thaw, Nature, 480(7375), 32-33, 2011. Screen, J. A., Deser, C. and Simmonds, I.: Local and remote controls on observed Arctic warming, Geophys. Res. Lett., 39, L10709, doi:10.1029/2012GL051598, 2012. Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D. and Gustafsson, O.: Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf, Science, 327(5970), 1246-1250, doi:10.1126/science.1182221, 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008253','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008253"><span>Large Decadal Decline of the Arctic Multiyear Ice Cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2011-01-01</p> <p>The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered somewhat in 2008, 2009 and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, the trends in the extent and area remain strongly negative at -12.2% and -13.5 %/decade, respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data in the winters of 1979 to 2011 was studied and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2 % per decade, respectively, with record low value in 2008 followed by higher values in 2009, 2010 and 2011. Such high rate in the decline of the thick component of the Arctic ice cover means a reduction in average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007 suggesting a strong role of second year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature which is increasing at about three times global average in the Arctic but appears weakly correlated with the AO which controls the dynamics of the region. An 8 to 9-year cycle is apparent in the multiyear ice record which could explain in part the slight recovery in the last three years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120015900&hterms=export&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dexport','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120015900&hterms=export&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dexport"><span>Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.</p> <p>2011-01-01</p> <p>Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22538614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22538614"><span>Antarctic ice-sheet loss driven by basal melting of ice shelves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L</p> <p>2012-04-25</p> <p>Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/circ/1379/pdf/circ1379.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/circ/1379/pdf/circ1379.pdf"><span>The United States National Climate Assessment - Alaska Technical Regional Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart</p> <p>2012-01-01</p> <p>The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected to lengthen by 15-25 days in some areas of Alaska, with much of that corresponding with earlier spring snow melt. Future projections of precipitation (30-80 years) over Alaska show an increase across the State, with the largest changes in the northwest and smallest in the southeast. Because of increasing temperatures and growing season length, however, increased precipitation may not correspond with increased water availability, due to temperature related increased evapotranspiration. The extent of snow cover in the Northern Hemisphere has decreased by about 10 percent since the late 1960s, with stronger trends noted since the late 1980s. Alaska has experienced similar trends, with a strong decrease in snow cover extent occurring in May. When averaged across the State, the disappearance of snow in the spring has occurred from 4 to 6 days earlier per decade, and snow return in fall has occurred approximately 2 days later per decade. This change appears to be driven by climate warming rather than a decrease in winter precipitation, with average winter temperatures also increasing by about 2.5°F. The extent of sea ice has been declining, as has been widely published in both national and scientific media outlets, and is projected to continue to decline during this century. The observed decline in annual sea ice minimum extent (September) has occurred more rapidly than was predicted by climate models and has been accompanied by decreases in ice thickness and in the presence of multi-year ice. This decrease was first documented by satellite imagery in the late 1970s for the Bering and Chukchi Seas, and is projected to continue, with the potential for the disappearance of summer sea ice by mid- to late century. A new phenomenon that was not reported in previous assessments is ocean acidification. Uptake of carbon dioxide (CO2) by oceans has a significant effect on marine biogeochemistry by reducing seawater pH. Ocean acidification is of particular concern in Alaska, because cold sea water absorbs CO2 more rapidly than warm water, and a decrease in sea ice extent has allowed increased sea surface exposure and more uptake of CO2 into these northern waters. Ocean acidification will likely affect the ability of organisms to produce and maintain shell material, such as aragonite or calcite (calcium carbonate minerals structured from carbonate ions), required by many shelled organism, from mollusks to corals to microscopic organisms at the base of the food chain. Direct biological effects in Alaska further along the food chain have yet to be studied and may vary among organisms. Some of the potentially most significant changes to Alaska that could result from a changing climate are the effects on the terrestrial cryosphere - particularly glaciers and permafrost. Alaskan glaciers are changing at a rapid rate, the primary driver appearing to be temperature. Statewide, glaciers lost 13 cubic miles of ice annually from the 1950s to the 1990s, and that rate doubled in the 2000s. However, like temperature and precipitation, glacier ice loss is not spatially uniform; most glaciers are losing mass, yet some are growing (for example Hubbard Glacier in southeast Alaska). Alaska glaciers with the most rapid loss are those terminating in sea water or lakes. With this increasing rate of melt, the contribution of surplus fresh water entering into the oceans from Alaska's glaciers, as well as those in neighboring British Columbia, Canada, is approximately 20 percent of that contributed by the Greenland Ice Sheet. Permafrost degradation (that is, the thawing of ice-rich soils) is currently (2012) impacting infrastructure and surface-water availability in areas of both discontinuous and continuous ground ice. Over most of the State, the permafrost is warming, with increasing temperatures broadly consistent with increasing air temperatures. On the Arctic coastal plain of Alaska, permafrost temperatures showed some cooling in the 1950s and 1960s but have been followed by a roughly 5°F increase since the 1980s. Many areas in the continuous permafrost zone have seen increases in temperature in the seasonally active layer and a decrease in re-freezing rates. Changes in the discontinuous permafrost zone are initially much more observable due to the resulting thermokarst terrain (land surface formed as ice rich permafrost thaws), most notable in boreal forested areas. Climate warming in Alaska has potentially broad implications for human health and food security, especially in rural areas, as well as increased risk for injury with changing winter ice conditions. Additionally, such warming poses the potential for increasing damage to existing water and sanitation facilities and challenges for development of new facilities, especially in areas underlain by permafrost. Non-infectious and infectious diseases also are becoming an increasing concern. For example, from 1999 to 2006 there was a statistically significant increase in medical claims for insectbite reactions in five of six regions of Alaska, with the largest percentage increase occurring in the most northern areas. The availability and quality of subsistence foods, normally considered to be very healthy, may change due to changing access, changing habitats, and spoilage of meat in food storage cellars. These and other trends and potential outcomes resulting from a changing climate are further described in this report. In addition, we describe new science leadership activities that have been initiated to address and provide guidance toward conducting research aimed at making available information for policy makers and land management agencies to better understand, address, and plan for changes to the local and regional environment. This report cites data in both metric and standard units due to the contributions by numerous authors and the direct reference of their data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25712272','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25712272"><span>Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beall, B F N; Twiss, M R; Smith, D E; Oyserman, B O; Rozmarynowycz, M J; Binding, C E; Bourbonniere, R A; Bullerjahn, G S; Palmer, M E; Reavie, E D; Waters, Lcdr M K; Woityra, Lcdr W C; McKay, R M L</p> <p>2016-06-01</p> <p>Mid-winter limnological surveys of Lake Erie captured extremes in ice extent ranging from expansive ice cover in 2010 and 2011 to nearly ice-free waters in 2012. Consistent with a warming climate, ice cover on the Great Lakes is in decline, thus the ice-free condition encountered may foreshadow the lakes future winter state. Here, we show that pronounced changes in annual ice cover are accompanied by equally important shifts in phytoplankton and bacterial community structure. Expansive ice cover supported phytoplankton blooms of filamentous diatoms. By comparison, ice free conditions promoted the growth of smaller sized cells that attained lower total biomass. We propose that isothermal mixing and elevated turbidity in the absence of ice cover resulted in light limitation of the phytoplankton during winter. Additional insights into microbial community dynamics were gleaned from short 16S rRNA tag (Itag) Illumina sequencing. UniFrac analysis of Itag sequences showed clear separation of microbial communities related to presence or absence of ice cover. Whereas the ecological implications of the changing bacterial community are unclear at this time, it is likely that the observed shift from a phytoplankton community dominated by filamentous diatoms to smaller cells will have far reaching ecosystem effects including food web disruptions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C31B0742N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C31B0742N"><span>A Quantitative Proxy for Sea-Ice Based on Diatoms: A Cautionary Tale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nesterovich, A.; Caissie, B.</p> <p>2016-12-01</p> <p>Sea ice in the Polar Regions supports unique and productive ecosystems, but the current decline in the Arctic sea ice extent prompts questions about previous sea ice declines and the response of ice related ecosystems. Since satellite data only extend back to 1978, the study of sea ice before this time requires a proxy. Being one of the most productive, diatom-dominated regions in the world and having a wide range of sea ice concentrations, the Bering and Chukchi seas are a perfect place to find a relationship between the presence of sea ice and diatom community composition. The aim of this work is to develop a diatom-based proxy for the sea ice extent. A total of 473 species have been identified in 104 sediment samples, most of which were collected on board the US Coast Guard Cutter Healy ice breaker (2006, 2007) and the Norseman II (2008). The study also included some of the archived diatom smear slides made from sediments collected in 1969. The assemblages were compared to satellite-derived sea ice extent data averaged over the 10 years preceding the sampling. Previous studies in the Arctic and Antarctic regions demonstrated that the Generalized Additive Model (GAM) is one of the best choices for proxy construction. It has the advantage of using only several species instead of the whole assemblage, thus including only sea ice-associated species and minimizing the noise created by species responding to other environmental factors. Our GAM on three species (Connia compita, Fragilariopsis reginae-jahniae, and Neodenticula seminae) has low standard deviation, high level of explained variation, and holds under the ten-fold cross-validation; the standard residual analysis is acceptable. However, a spatial residual analysis revealed that the model consistently over predicts in the Chukchi Sea and under predicts in the Bering Sea. Including a spatial model into the GAM didn't improve the situation. This has led us to test other methods, including a non-parametric model Random Forests. All models showed the same consistent pattern in the residuals. We conclude that ecosystems of the Bering and Chukchi seas respond differently to sea ice concentration and an integrated proxy must take it into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29195456','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29195456"><span>Monitoring ice thickness and elastic properties from the measurement of leaky guided waves: A laboratory experiment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moreau, Ludovic; Lachaud, Cédric; Théry, Romain; Predoi, Mihai V; Marsan, David; Larose, Eric; Weiss, Jérôme; Montagnat, Maurine</p> <p>2017-11-01</p> <p>The decline of Arctic sea ice extent is one of the most spectacular signatures of global warming, and studies converge to show that this decline has been accelerating over the last four decades, with a rate that is not reproduced by climate models. To improve these models, relying on comprehensive and accurate field data is essential. While sea ice extent and concentration are accurately monitored from microwave imagery, an accurate measure of its thickness is still lacking. Moreover, measuring observables related to the mechanical behavior of the ice (such as Young's modulus, Poisson's ratio, etc.) could provide better insights in the understanding of sea ice decline, by completing current knowledge so far acquired mostly from radar and sonar data. This paper aims at demonstrating on the laboratory scale that these can all be estimated simultaneously by measuring seismic waves guided in the ice layer. The experiment consisted of leaving a water tank in a cold room in order to grow an ice layer at its surface. While its thickness was increasing, ultrasonic guided waves were generated with a piezoelectric source, and measurements were subsequently inverted to infer the thickness and mechanical properties of the ice with very good accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5459986','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5459986"><span>Sea-level records from the U.S. mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pico, T; Creveling, J. R.; Mitrovica, J. X.</p> <p>2017-01-01</p> <p>The U.S. mid-Atlantic sea-level record is sensitive to the history of the Laurentide Ice Sheet as the coastline lies along the ice sheet's peripheral bulge. However, paleo sea-level markers on the present-day shoreline of Virginia and North Carolina dated to Marine Isotope Stage (MIS) 3, from 50 to 35 ka, are surprisingly high for this glacial interval, and remain unexplained by previous models of ice age adjustment or other local (for example, tectonic) effects. Here, we reconcile this sea-level record using a revised model of glacial isostatic adjustment characterized by a peak global mean sea level during MIS 3 of approximately −40 m, and far less ice volume within the eastern sector of the Laurentide Ice Sheet than traditional reconstructions for this interval. We conclude that the Laurentide Ice Sheet experienced a phase of very rapid growth in the 15 kyr leading into the Last Glacial Maximum, thus highlighting the potential of mid-field sea-level records to constrain areal extent of ice cover during glacial intervals with sparse geological observables. PMID:28555637</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990ClDy....5..111M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990ClDy....5..111M"><span>Sea-ice anomalies observed in the Greenland and Labrador seas during 1901 1984 and their relation to an interdecadal Arctic climate cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mysak, L. A.; Manak, D. K.; Marsden, R. F.</p> <p>1990-12-01</p> <p>Two independent ice data sets from the Greenland and Labrador Seas have been analyzed for the purpose of characterizing interannual and decadal time scale sea-ice extent anomalies during this century. Sea-ice concentration data for the 1953 1984 period revealed the presence of a large positive anomaly in the Greenland Sea during the 1960s which coincided with the “great salinity anomaly”, an upper-ocean low-salinity water mass that was observed to travel cyclonically around the northern North Atlantic during 1968 1982. This ice anomaly as well as several smaller ones propagated into the Labrador Sea and then across to the Labrador and east Newfoundland coast, over a period of 3 to 5 years. A complex empirical orthogonal function analysis of the same data also confirmed this propagation phenomenon. An inverse relation between sea-ice and salinity anomalies in the Greenland-Labrador Sea region was also generally found. An analysis of spring and summer ice-limit data obtained from Danish Meteorological Institute charts for the period 1901 1956 indicated the presence of heavy ice conditions (i.e., positive ice anomalies) in the Greenland Sea during 1902 1920 and in the late 1940s, and generally negative ice anomalies during the 1920s and 1930s. Only limited evidence of the propagation of Greenland Sea ice anomalies into the Labrador Sea was observed, however, probably because the data were from the ice-melt seasons. On the other hand, several large ice anomalies in the Greenland Sea occurred 2 3 years after large runoffs (in the early 1930s and the late 1940s) from northern Canada into the western Arctic Ocean. Similarly, a large runoff into the Arctic during 1964 1966 preceded the large Greenland Sea ice anomaly of the 1960s. These facts, together with recent evidence of ‘climatic jumps’ in the Northern Hemisphere tropospheric circulation, suggest the existence of an interdecadal self-sustained climate cycle in the Arctic. In the Greenland Sea, this cycle is characterized by a state of large sea-ice extent overlying an upper layer of cool, relatively fresh water that does not convectively overturn, which alternates every 10 15 years with a state of small sea-ice extent and relatively warm saline surface water that frequently overturns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950045752&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950045752&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DParkinsons"><span>The role of sea ice in 2 x CO2 climate model sensitivity. Part 1: The total influence of sea ice thickness and extent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.</p> <p>1995-01-01</p> <p>As a first step in investigating the effects of sea ice changes on the climate sensitivity to doubled atmospheric CO2, the authors use a standard simple sea ice model while varying the sea ice distributions and thicknesses in the control run. Thinner ice amplifies the atmospheric temperature senstivity in these experiments by about 15% (to a warming of 4.8 C), because it is easier for the thinner ice to be removed as the climate warms. Thus, its impact on sensitivity is similar to that of greater sea ice extent in the control run, which provides more opportunity for sea ice reduction. An experiment with sea ice not allowed to change between the control and doubled CO2 simulations illustrates that the total effect of sea ice on surface air temperature changes, including cloud cover and water vapor feedbacks that arise in response to sea ice variations, amounts to 37% of the temperature sensitivity to the CO2 doubling, accounting for 1.56 C of the 4.17 C global warming. This is about four times larger than the sea ice impact when no feedbacks are allowed. The different experiments produce a range of results for southern high latitudes with the hydrologic budget over Antarctica implying sea level increases of varying magnitude or no change. These results highlight the importance of properly constraining the sea ice response to climate perturbations, necessitating the use of more realistic sea ice and ocean models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PrOce..90...62M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PrOce..90...62M"><span>Closing the loop - Approaches to monitoring the state of the Arctic Mediterranean during the International Polar Year 2007-2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mauritzen, C.; Hansen, E.; Andersson, M.; Berx, B.; Beszczynska-Möller, A.; Burud, I.; Christensen, K. H.; Debernard, J.; de Steur, L.; Dodd, P.; Gerland, S.; Godøy, Ø.; Hansen, B.; Hudson, S.; Høydalsvik, F.; Ingvaldsen, R.; Isachsen, P. E.; Kasajima, Y.; Koszalka, I.; Kovacs, K. M.; Køltzow, M.; LaCasce, J.; Lee, C. M.; Lavergne, T.; Lydersen, C.; Nicolaus, M.; Nilsen, F.; Nøst, O. A.; Orvik, K. A.; Reigstad, M.; Schyberg, H.; Seuthe, L.; Skagseth, Ø.; Skarðhamar, J.; Skogseth, R.; Sperrevik, A.; Svensen, C.; Søiland, H.; Teigen, S. H.; Tverberg, V.; Wexels Riser, C.</p> <p>2011-07-01</p> <p>During the 4th International Polar Year 2007-2009 (IPY), it has become increasingly obvious that we need to prepare for a new era in the Arctic. IPY occurred during the time of the largest retreat of Arctic sea ice since satellite observations started in 1979. This minimum in September sea ice coverage was accompanied by other signs of a changing Arctic, including the unexpectedly rapid transpolar drift of the Tara schooner, a general thinning of Arctic sea ice and a double-dip minimum of the Arctic Oscillation at the end of 2009. Thanks to the lucky timing of the IPY, those recent phenomena are well documented as they have been scrutinized by the international research community, taking advantage of the dedicated observing systems that were deployed during IPY. However, understanding changes in the Arctic System likely requires monitoring over decades, not years. Many IPY projects have contributed to the pilot phase of a future, sustained, observing system for the Arctic. We now know that many of the technical challenges can be overcome. The Norwegian projects iAOOS-Norway, POLEWARD and MEOP were significant ocean monitoring/research contributions during the IPY. A large variety of techniques were used in these programs, ranging from oceanographic cruises to animal-borne platforms, autonomous gliders, helicopter surveys, surface drifters and current meter arrays. Our research approach was interdisciplinary from the outset, merging ocean dynamics, hydrography, biology, sea ice studies, as well as forecasting. The datasets are tremendously rich, and they will surely yield numerous findings in the years to come. Here, we present a status report at the end of the official period for IPY. Highlights of the research include: a quantification of the Meridional Overturning Circulation in the Nordic Seas (“ the loop”) in thermal space, based on a set of up to 15-year-long series of current measurements; a detailed map of the surface circulation as well as characterization of eddy dispersion based on drifter data; transport monitoring of Atlantic Water using gliders; a view of the water mass exchanges in the Norwegian Atlantic Current from both Eulerian and Lagrangian data; an integrated physical-biological view of the ice-influenced ecosystem in the East Greenland Current, showing for instance nutrient-limited primary production as a consequence of decreasing ice cover for larger regions of the Arctic Ocean. Our sea ice studies show that the albedo of snow on ice is lower when snow cover is thinner and suggest that reductions in sea ice thickness, without changes in sea ice extent, will have a significant impact on the arctic atmosphere. We present up-to-date freshwater transport numbers for the East Greenland Current in the Fram Strait, as well as the first map of the annual cycle of freshwater layer thickness in the East Greenland Current along the east coast of Greenland, from data obtained by CTDs mounted on seals that traveled back and forth across the Nordic Seas. We have taken advantage of the real-time transmission of some of these platforms and demonstrate the use of ice-tethered profilers in validating satellite products of sea ice motion, as well as the use of Seagliders in validating ocean forecasts, and we present a sea ice drift product - significantly improved both in space and time - for use in operational ice-forecasting applications. We consider real-time acquisition of data from the ocean interior to be a vital component of a sustained Arctic Ocean Observing System, and we conclude by presenting an outline for an observing system for the European sector of the Arctic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000758.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000758.html"><span>2015 Arctic Sea Ice Maximum Annual Extent Is Lowest On Record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-03-19</p> <p>The sea ice cap of the Arctic appeared to reach its annual maximum winter extent on Feb. 25, according to data from the NASA-supported National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.61 million square miles (14.54 million square kilometers), this year’s maximum extent was the smallest on the satellite record and also one of the earliest. Read more: 1.usa.gov/1Eyvelz Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS51E1931C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS51E1931C"><span>Rolling the dice on the ice; New modes for underway data acquisition in the Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coakley, B.; Dove, D.</p> <p>2012-12-01</p> <p>Exploration of the Arctic Ocean has always depended on the sea ice. It has been a platform supporting drifting ice stations and an obstacle to be over come by force (icebreakers) or finesse (US Navy fast attack submarines). Reduced seasonal sea ice cover has made it possible to work more freely in the peripheral Arctic Ocean, opening relatively unknown regions to scientific exploration and study. In September 2011, the RV Marcus G. Langseth set sail from Dutch Harbor, Alaska bound through Bering Strait for the Arctic Ocean. This was the first Arctic Ocean trip for MGG data acquisition by a US academic research vessel since 1994, when the RV Maurice Ewing collected a 2-D MCS profile across the Bering Shelf, through the Strait and along the Beaufort Shelf, stopping near Barrow, Alaska. RV Langseth arrived on the mid-Chukchi shelf and streamed gear just south of the "Crackerjack" well, drilled by Shell Exploration in the late eighties. The ship sailed north, crossing the "Popcorn" well and then set a course to the NW, setting the baseline for the survey parallel to the Beaufort Shelf edge. Sailing through almost entirely ice-free waters, approximately 5300 km of multi-channel seismic reflection data were acquired on a NW-SE oriented grid, which straddled the transition from Chukchi Shelf to the Chukchi Borderland. It would not have been possible for Langseth, which is not ice reinforced, to acquire these data prior to 2007. The dramatic expansion of late Summer open water in the western Arctic Ocean made it possible to use this ship effectively across a broad swath of the shelf and the periphery of the deep central basin. While the survey region was almost entirely ice free during this cruise, which straddled the ice minimum for 2011, it was not possible to predict this a priori, despite expectations set by the previous five years of ice edge retreat. For this reason, the Canadian Ice Service was engaged to provide interpreted ice imagery, multiple times per day, substantially improving the ship's ability to operate confidently in this region, particularly at night. As confidence increases about the timing and extent of open water over the shelves and periphery of Arctic Ocean, it is possible to anticipate utilizing other UNOLS vessels and other resources (eg. JOIDES Resolution) in the Arctic. Employing these ships, with appropriate interpretive support, will open a new chapter in the exploration of this relatively unknown ocean basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.897a2006O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.897a2006O"><span>Alternating current breakdown voltage of ice electret</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oshika, Y.; Tsuchiya, Y.; Okumura, T.; Muramoto, Y.</p> <p>2017-09-01</p> <p>Ice has low environmental impact. Our research objectives are to study the availability of ice as a dielectric insulating material at cryogenic temperatures. We focus on ferroelectric ice (iceXI) at cryogenic temperatures. The properties of iceXI, including its formation, are not clear. We attempted to obtain the polarized ice that was similar to iceXI under the applied voltage and cooling to 77 K. The polarized ice have a wide range of engineering applications as electronic materials at cryogenic temperatures. This polarized ice is called ice electret. The structural difference between ice electret and normal ice is only the positions of protons. The effects of the proton arrangement on the breakdown voltage of ice electret were shown because electrical properties are influenced by the structure of ice. We observed an alternating current (ac) breakdown voltage of ice electret and normal ice at 77 K. The mean and minimum ac breakdown voltage values of ice electret were higher than those of normal ice. We considered that the electrically weak part of the normal ice was improved by applied a direct electric field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA609592','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA609592"><span>Antarctic Camps Snow Drift Management Handbook</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-01</p> <p>This is a conservative approximation as the stress will not actually be uniform throughout the ice as the load bear- ing ice will be a cone extending...ice. This figure documents the deformation (strain rate) as a function of ap- plied stress and temperature. The results presented here characterize...the stress and strain in terms of the octahedral values, invariants of the prin- cipal stress and strain components. Figure 23. Minimum strain rate</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G31A0888L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G31A0888L"><span>Deglaciation-induced uplift and seasonal variations patterns of bedrock displacement in Greenland ice sheet margin observed from GPS, GRACE and InSAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Q.; Amelung, F.; Wdowinski, S.</p> <p>2017-12-01</p> <p>The Greenland ice sheet is rapidly shrinking with the fastest retreat and thinning occurring at the ice sheet margin and near the outlet glaciers. The changes of the ice mass cause an elastic response of the bedrock. Theoretically, ice mass loss during the summer melting season is associated with bedrock uplift, whereas increasing ice mass during the winter months is associated with bedrock subsidence. Here we examine the annual changes of the vertical displacements measured at 37 GPS stations and compare the results with Greenland drainage basins' gravity from GRACE. We use both Fourier Series (FS) analysis and Cubic Smoothing Spline (CSS) method to estimate the phases and amplitudes of seasonal variations. Both methods show significant differences seasonal behaviors in southern and northern Greenland. The average amplitude of bedrock displacements (3.29±0.02mm) in south Greenland is about 2 times larger than the north (1.65±0.02mm). The phase of bedrock maximum uplift (November) is considerably consistent with the time of minimum ice mass load in south Greenland (October). However, the phase of bedrock maximum uplift in north Greenland (February) is 4 months later than the minimum ice mass load in north Greenland basins (October). In addition, we present ground deformation near several famous glaciers in Greenland such as Petermann glacier and Jakobshavn glacier. We process InSAR data from TerraSAR-X and Sentinel satellite, based on small baseline interferograms. We observed rapid deglaciation-induced uplift and seasonal variations on naked bedrock near the glacier ice margin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140016849','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140016849"><span>Reducing Spread in Climate Model Projections of a September Ice-Free Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun</p> <p>2013-01-01</p> <p>This paper addresses the specter of a September ice-free Arctic in the 21st century using newly available simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that large spread in the projected timing of the September ice-free Arctic in 30 CMIP5 models is associated at least as much with different atmospheric model components as with initial conditions. Here we reduce the spread in the timing of an ice-free state using two different approaches for the 30 CMIP5 models: (i) model selection based on the ability to reproduce the observed sea ice climatology and variability since 1979 and (ii) constrained estimation based on the strong and persistent relationship between present and future sea ice conditions. Results from the two approaches show good agreement. Under a high-emission scenario both approaches project that September ice extent will drop to approx. 1.7 million sq km in the mid 2040s and reach the ice-free state (defined as 1 million sq km) in 2054-2058. Under a medium-mitigation scenario, both approaches project a decrease to approx.1.7 million sq km in the early 2060s, followed by a leveling off in the ice extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013QSRv...79..168A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013QSRv...79..168A"><span>A review of sea ice proxy information from polar ice cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.</p> <p>2013-11-01</p> <p>Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea ice and its role in both long and short-term climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22270704','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22270704"><span>Tipping elements in the Arctic marine ecosystem.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors</p> <p>2012-02-01</p> <p>The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/26834','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/26834"><span>Anti-icing and de-icing superhydrophobic concrete to improve the safety on critical elements on roadway pavements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2013-09-01</p> <p>Icy roads lead to treacherous driving conditions in regions of the U.S. resulting in over 450 fatalities per year. Deicing chemicals, such as rock salt help to reduce ice formation on roadways to an extent, however also result in detrimental effects ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050232832','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050232832"><span>Experimental Investigation of Ice Accretion Effects on a Swept Wing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wong, S. C.; Vargas, M.; Papadakis, M.; Yeong, H. W.; Potapczuk, M.</p> <p>2005-01-01</p> <p>An experimental investigation was conducted to study the effects of 2-, 5-, 10-, and 22.5-min ice accretions on the aerodynamic performance of a swept finite wing. The ice shapes tested included castings of ice accretions obtained from icing tests at the NASA Glenn Icing Research Tunnel (IRT) and simulated ice shapes obtained with the LEWICE 2.0 ice accretion code. The conditions used for the icing tests were selected to provide five glaze ice shapes with complete and incomplete scallop features and a small rime ice shape. The LEWICE ice shapes were defined for the same conditions as those used in the icing tests. All aerodynamic performance tests were conducted in the 7- x 10-ft Low-Speed Wind Tunnel Facility at Wichita State University. Six component force and moment measurements, aileron hinge moments, and surface pressures were obtained for a Reynolds number of 1.8 million based on mean aerodynamic chord and aileron deflections in the range of -15o to 20o. Tests were performed with the clean wing, six IRT ice shape castings, seven smooth LEWICE ice shapes, and seven rough LEWICE ice shapes. Roughness for the LEWICE ice shapes was simulated with 36-size grit. The experiments conducted showed that the glaze ice castings reduced the maximum lift coefficient of the clean wing by 11.5% to 93.6%, while the 5-min rime ice casting increased maximum lift by 3.4%. Minimum iced wing drag was 133% to 3533% greater with respect to the clean case. The drag of the iced wing near the clean wing stall angle of attack was 17% to 104% higher than that of the clean case. In general, the aileron remained effective in changing the lift of the clean and iced wings for all angles of attack and aileron deflections tested. Aileron hinge moments for the iced wing cases remained within the maximum and minimum limits defined by the clean wing hinge moments. Tests conducted with the LEWICE ice shapes showed that in general the trends in aerodynamic performance degradation of the wing with the simulated ice shapes were similar to those obtained with the IRT ice shape castings. However, in most cases, the ice castings resulted in greater aerodynamic performance losses than those obtained with the LEWICE ice shapes. For the majority of the LEWICE ice shapes, the addition of 36-size grit roughness to the smooth ice shapes increased aerodynamic performance losses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.131....7H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.131....7H"><span>SIPEX 2012: Extreme sea-ice and atmospheric conditions off East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heil, P.; Stammerjohn, S.; Reid, P.; Massom, R. A.; Hutchings, J. K.</p> <p>2016-09-01</p> <p>In 2012, Antarctic sea-ice coverage was marked by weak annual-mean climate anomalies that consisted of opposing anomalies early and late in the year (some setting new records) which were interspersed by near-average conditions for most of the austral autumn and winter. Here, we investigate the ocean-ice-atmosphere system off East Antarctica, prior to and during the Sea Ice Physics and Ecosystems eXperiment [SIPEX] 2012, by exploring relationships between atmospheric and oceanic forcing together with the sea-ice and snow characteristics. During August and September 2012, just prior to SIPEX 2012, atmospheric circulation over the Southern Ocean was near-average, setting up the ocean-ice-atmosphere system for near-average conditions. However, below-average surface pressure and temperature as well as strengthened circumpolar winds prevailed during June and July 2012. This led to a new record (19.48×106 km2) in maximum Antarctic sea-ice extent recorded in late September. In contrast to the weak circum-Antarctic conditions, the East Antarctic sector (including the SIPEX 2012 region) experienced positive sea-ice extent and concentration anomalies during most of 2012, coincident with negative atmospheric pressure and sea-surface temperature anomalies. Heavily deformed sea ice appeared to be associated with intensified wind stress due to increased cyclonicity as well as an increased influx of sea ice from the east. This increased westward ice flux is likely linked to the break-up of nearly 80% of the Mertz Glacier Tongue in 2010, which strongly modified the coastal configuration and hence the width of the westward coastal current. Combined with favourable atmospheric conditions the associated changed coastal configuration allowed more sea ice to remain within the coastal current at the expense of a reduced northward flow in the region around 141°-145°E. In addition a westward propagating positive anomaly of sea-ice extent from the western Ross Sea during austral winter 2012 has been identified to have fed into the westward current of the SIPEX 2012 region. A pair of large grounded icebergs appears to have modified the local stress state as well as the structure of the ice pack upstream and also towards the Dalton Glacier Tongue. Together with the increased influx of sea ice into the regions, this contributed to the difficulties in navigating the SIPEX 2012 region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022940','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022940"><span>Variability of Mars' North Polar Water Ice Cap: I. Analysis of Mariner 9 and Viking Orbiter Imaging Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bass, Deborah S.; Herkenhoff, Kenneth; Paige, David A.</p> <p>2000-01-01</p> <p>Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars' north residual polar cap as evidence of interannual variability of ice deposition on the cap. However, these investigators did not consider the possibility that there could be significant changes in the ice coverage within the northern residual cap over the course of the summer season. Our more comprehensive analysis of Mariner 9 and Viking Orbiter imaging data shows that the appearance of the residual cap does not show large-scale variance on an interannual basis. Rather we find evidence that regions that were dark at the beginning of summer look bright by the end of summer and that this seasonal variation of the cap repeats from year to year. Our results suggest that this brightening was due to the deposition of newly formed water ice on the surface. We find that newly formed ice deposits in the summer season have the same red-to-violet band image ratios as permanently bright deposits within the residual cap. We believe the newly formed ice accumulates in a continuous layer. To constrain the minimum amount of deposited ice, we used observed albedo data in conjunction with calculations using Mie theory for single scattering and a delta-Eddington approximation of radiative transfer for multiple scattering. The brightening could have been produced by a minimum of (1) a ~35-μm-thick layer of 50-μm-sized ice particles with 10% dust or (2) a ~14-μm-thick layer of 10-μm-sized ice particles with 50% dust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C33A0663K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C33A0663K"><span>Evidence for smaller extents of the northwestern Greenland Ice Sheet and North Ice Cap during the Holocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Birkel, S. D.; Corbett, L. B.; Roy, E. P.; Thompson, J. T.; Whitecloud, S.</p> <p>2013-12-01</p> <p>The Greenland Ice Sheet (GrIS) and local glaciers on Greenland are responding dynamically to warming temperatures with widespread retreat. GRACE satellite data (e.g., Kahn et al., 2010) and the Petermann Glacier calving events document the recent expansion of ice loss into northwestern Greenland. To improve the ability to estimate future ice loss in a warming climate, we are developing records of the response of the northwestern Greenlandic cryosphere to Holocene climatic conditions, with a focus on past warm periods. Our ongoing research includes analyses of glacial geology, sub-fossil vegetation, lake sediment cores, chironomid assemblages and ice cores combined with glaciological modeling. To constrain past ice extents that were as small as, or smaller than, at present, we recovered sub-fossil vegetation exposed at the receding margins of the GrIS and North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W) and of the GrIS near Thule (~76.5°N, 68.7°W). We present vegetation types and radiocarbon ages of 30 plant samples collected in August 2012. In the Nunatarssuaq region, five ages of in situ (rooted) vegetation including Polytrichum moss, Saxifraga nathorstii and grasses located <5 m outboard of the GrIS margin are ~120-200 cal yr BP (range of medians of the 2-sigma calibrated age ranges). Nine ages of in situ Polytrichum, Saxifraga oppositafolia and grasses from ~1-5 m inboard of the NIC margin (excavated from beneath ice) range from ~50 to 310 cal yr BP. The growth of these plants occurred when the GrIS and NIC were at least as small as at present and their ages suggest that ice advances occurred in the last 50-120 yrs. In addition to the in situ samples, we collected plants from well-preserved ground material exposed along shear planes in the GrIS margins. In Nunatarssuaq, two Polytrichum mosses rooted in ground material and exposed along a shear plane in the GrIS margin date to 4680 and 4730 cal yr BP. Near Thule, three ages of Salix arctica rooted in ground material and exposed along a shear plane in the GrIS are ~170-390 cal yr BP. Four ages of plant fragments within ice in a shear plane in the NIC margin are ~600-950 cal yr BP. Since these organic remains have been transported from beneath the GrIS and NIC, respectively, they indicate times of smaller than present ice extents. Together these plants provide evidence that the northwestern GrIS was smaller than at present at ~4600-4800 and ~170-390 cal yr BP. Advance to the modern GrIS extent was likely underway at of after ~170 cal yr BP. NIC was smaller than at present at ~600-950 cal yr. Our ongoing research is investigating the climatic conditions during these times and the relationship of these restricted ice extents to those documented elsewhere on Greenland as well as on Baffin Island.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5885L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5885L"><span>Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Sanggyun; Im, Jungho; yoon, Hyeonjin; Shin, Minso; Kim, Miae</p> <p>2014-05-01</p> <p>Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation, provides a continuous insulating layer at air-sea interface, and reflects a large portion of the incoming solar radiation in Polar Regions. Sea ice extent has constantly declined since 1980s. Its area was the lowest ever recorded on 16 September 2012 since the satellite record began in 1979. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change, there has been a great effort to quantify them using various approaches. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter from National Aeronautics and Space Administration (NASA), provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) on April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness in 2012 and 2013 were estimated using CryoSat-2 SAR mode data that has sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard height, elevation difference between the top of sea ice surface and leads should be calculated. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, number of echoes, and significant wave height were examined to distinguish leads from sea ice. Several near-real time cloud-free MODIS images as CryoSat-2 data were used to identify leads. Rule-based machine learning approaches such as random forest and See5.0 and human-derived decision trees were used to produce rules to identify leads. With the freeboard height calculated from the lead analysis, sea ice thickness was finally estimated using the Archimedes' buoyancy principle with density of sea ice and sea water and the height of freeboard. The results were compared with Arctic sea ice thickness distribution retrieved from CryoSat-2 data by Alfred-Wegener-Institute.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARR50009F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARR50009F"><span>Thermodynamics of Polaronic States in Artificial Spin Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farhan, Alan</p> <p></p> <p>Artificial spin ices represent a class of systems consisting of lithographically patterned nanomagnets arranged in two-dimensional geometries. They were initially introduced as a two-dimensional analogue to geometrically frustrated pyrochlore spin ice, and the most recent introduction of artificial spin ice systems with thermally activated moment fluctuations not only delivered the possibility to directly investigate geometrical frustration and emergent phenomena with real space imaging, but also paved the way to design and investigate new two-dimensional magnetic metamaterials, where material properties can be directly manipulated giving rise to properties that do not exist in nature. Here, taking advantage of cryogenic photoemission electron microscopy, and using the concept of emergent magnetic charges, we are able to directly visualize the creation and annihilation of screened emergent magnetic monopole defects in artificial spin ice. We observe that these polaronic states arise as intermediate states, separating an energetically excited out-of-equilibrium state and low-energy equilibrium configurations. They appear as a result of a local screening effect between emergent magnetic charge defects and their neighboring magnetic charges, thus forming a transient minimum, before the system approaches a global minimum with the least amount of emergent magnetic charge defects. This project is funded by the Swiss National Science Foundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC22B..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC22B..05B"><span>Just Answer the Question: The Cryosphere in the Public Consciousness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beitler, J.; Serreze, M. C.; Meier, W.; Scambos, T.; Schaefer, K. M.</p> <p>2012-12-01</p> <p>The National Snow and Ice Data Center has helped tell the story of climate change as evidenced by dramatic changes in the cryosphere, notably the strong downward trend in summer Arctic sea ice cover. Today the state of the cryosphere is closely followed: in the media, by more than a million visitors annually to our Arctic Sea Ice News and Analysis, and through blogs and other sites that pick up and discuss our reports. The idea of sea ice decline as an indicator of climate change has entered the consciousness of the public. We engage a wide audience: journalists, meteorologists, skeptics, teachers, ordinary citizens, and scientists in other fields. Skeptic, neutral, or believer, they turn to us for information. While they do not always agree with our findings, we think they perceive us as honest brokers of scientific information—real progress from the days when scientists were perceived as a conspiracy of grant-chasers. NSIDC scientists have even been invited to do guest posts on skeptic blogs. What makes our communications work? What are the roles of old-fashioned communication strategies, recent climate communications research, social media, and solid scientific information? We track the shift in public perceptions of our data and research to present lessons learned over the last seven years, strategies that scientists can adopt now, and fodder for communications research.Arctic sea ice extent as of August 7, 2012, compared to the 1979-2000 median (orange line). Arctic sea ice extent as of August 7, 2012, along with daily ice extent data for the 2011 and for 2007, the record low year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003226','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003226"><span>Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, Patrick C.</p> <p>2016-01-01</p> <p>Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title17-vol2/pdf/CFR-2014-title17-vol2-part43-appF.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title17-vol2/pdf/CFR-2014-title17-vol2-part43-appF.pdf"><span>17 CFR Appendix F to Part 43 - Initial Appropriate Minimum Block Sizes by Asset Class for Block Trades and Large Notional Off...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>.... Light Sweet Crude Oil (NYMEX) 50,000 bbl. Live Cattle (CME) NO BLOCKS. Mid-Columbia Day-Ahead Off-Peak.... Sugar #11 (ICE and NYMEX) 5,000 metric tons. Sugar #16 (ICE) NO BLOCKS. Temperature Index (CME) 400...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P33C2901H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P33C2901H"><span>The South Circumpolar Dorsa Argentea Formation and the Noachian-Hesperian Climate of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Head, J. W., III; Scanlon, K. E.; Fastook, J.; Wordsworth, R. D.</p> <p>2017-12-01</p> <p>The Dorsa Argentea Formation (DAF), a set of geomorphologic units covering 1.5 · 106 km2 in the south circumpolar region of Mars with lobes extending along the 0° and 90°W meridians, has been interpreted as the remnants of a large Noachian-Hesperian ice sheet. Determining the extent and thermal regime of the DAF ice sheet, and the controls on its development, can therefore provide insight into the ancient martian climate. We used the Laboratoire de Météorologie Dynamique early Mars global climate model (GCM) and the University of Maine Ice Sheet Model (UMISM) glacial flow model to constrain climates that would permit both development of a south polar ice sheet of DAF-like size and shape and melting consistent with observed eskers and channels. An asymmetric south polar cold trap is a robust feature of GCM simulations with spin-axis obliquity of 15° or 25° and a 600 - 1000 mb CO2 atmosphere. The shape results from the strong dependence of surface temperature on altitude in a thicker atmosphere. Of the scenarios considered here, the shape and extent of the modeled DAF ice sheet in UMISM simulations most closely match those of the DAF when the surface water ice inventory of Mars is 20 · 106 km3 and obliquity is 15°. In climates warmed only by CO2, basal melting does not occur except when the ice inventory is larger than most estimates for early Mars. In this case, the extent of the ice sheet is also much larger than that of the DAF, and melting is more widespread than observed landforms indicate. When an idealized greenhouse gas warms the surface by at least 20° near the poles relative to CO2 alone, the extent of the ice sheet is less than that of the DAF, but strong basal melting occurs, with maxima in the locations where eskers and channels are observed. We conclude that the glaciofluvial landforms in the DAF implicate warming by a gas other than CO2 alone. Previously published exposure ages of eskers in the DAF indicate that eskers were being exposed as activity was ceasing in the equatorial valley networks, suggesting that the warming that allowed basal melting of the DAF ice sheet was broadly contemporaneous with development of the valley networks. Elevated Tharsis topography is required to produce an ice sheet with the shape of the DAF. Thus, our results are not consistent with the DAF (and the valley networks) forming before Tharsis, as recently suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006590','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006590"><span>Large Decadal Decline of the Arctic Multiyear Ice Cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2012-01-01</p> <p>The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered slightly in 2008, 2009, and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, trends in extent and area remained strongly negative at -12.2% and -13.5% decade (sup -1), respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data during the winters of 1979-2011 was studied, and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2% decade(sup -1), respectively, with a record low value in 2008 followed by higher values in 2009, 2010, and 2011. Such a high rate in the decline of the thick component of the Arctic ice cover means a reduction in the average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007, suggesting a strong role of second-year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature, which is increasing at about 3 times the global average in the Arctic but appears weakly correlated with the Arctic Oscillation (AO), which controls the atmospheric circulation in the region. An 8-9-yr cycle is apparent in the multiyear ice record, which could explain, in part, the slight recovery in the last 3 yr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.A12B..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.A12B..01M"><span>Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moritz, R. E.</p> <p>2005-12-01</p> <p>The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760036371&hterms=International+Relations&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DInternational%2BRelations','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760036371&hterms=International+Relations&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DInternational%2BRelations"><span>Selected satellite data on snow and ice in the Great Lakes basin 1972-73 /IFYGL/. [International Field Year for Great Lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wiesnet, D. R.; Mcginnis, D. F.; Forsyth, D. G.</p> <p>1974-01-01</p> <p>Three snow-extent maps of the Lake Ontario drainage basin were prepared from NOAA-2 satellite visible band images during the International Field Year for the Great Lakes. These maps are discussed and the satellite data are evaluated for snow-extent mapping. The value of ERTS-1 imagery and digital data is also discussed in relation to the Lake Ontario basin studies. ERTS-1 MSS data are excellent for ice identification and analysis but are not useful for forecasting where timely receipt of data is imperative. NOAA-2 VHRR data are timely but the lower resolution of the VHRR makes identification of certain ice features difficult. NOAA-2 VHRR is well suited for snow-extent maps and thermal maps of large areas such as the 19,000 sq-km Lake Ontario basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001449','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001449"><span>Constraining Landscape History and Glacial Erosivity Using Paired Cosmogenic Nuclides in Upernavik, Northwest Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Corbett, Lee B.; Bierman, Paul R.; Graly, Joseph A.; Neumann, Thomas A.; Rood, Dylan H.</p> <p>2013-01-01</p> <p>High-latitude landscape evolution processes have the potential to preserve old, relict surfaces through burial by cold-based, nonerosive glacial ice. To investigate landscape history and age in the high Arctic, we analyzed in situ cosmogenic Be(sup 10) and Al (sup 26) in 33 rocks from Upernavik, northwest Greenland. We sampled adjacent bedrock-boulder pairs along a 100 km transect at elevations up to 1000 m above sea level. Bedrock samples gave significantly older apparent exposure ages than corresponding boulder samples, and minimum limiting ages increased with elevation. Two-isotope calculations Al(sup26)/B(sup 10) on 20 of the 33 samples yielded minimum limiting exposure durations up to 112 k.y., minimum limiting burial durations up to 900 k.y., and minimum limiting total histories up to 990 k.y. The prevalence of BE(sup 10) and Al(sup 26) inherited from previous periods of exposure, especially in bedrock samples at high elevation, indicates that these areas record long and complex surface exposure histories, including significant periods of burial with little subglacial erosion. The long total histories suggest that these high elevation surfaces were largely preserved beneath cold-based, nonerosive ice or snowfields for at least the latter half of the Quaternary. Because of high concentrations of inherited nuclides, only the six youngest boulder samples appear to record the timing of ice retreat. These six samples suggest deglaciation of the Upernavik coast at 11.3 +/- 0.5 ka (average +/- 1 standard deviation). There is no difference in deglaciation age along the 100 km sample transect, indicating that the ice-marginal position retreated rapidly at rates of approx.120 m yr(sup-1).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989PhDT........94L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989PhDT........94L"><span>Green Icebergs: a Problem in Geophysics and Atmospheric Optics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Raymond L., Jr.</p> <p></p> <p>The curious phenomenon of green icebergs has intrigued polar travelers for centuries. Although some researchers have speculated that this ice contains colorants, an investigator who has actually examined a green iceberg sample found very little intrinsically green material. This supports our idea that at least some green icebergs are due to the combined effects of reddened sunlight illuminating intrinsically blue-green ice. In this case, "intrinsic" refers to the blue-green absorption minimum of pure ice. Naturally occurring ice containing a few inclusions that scatter light with little or no spectral selectivity also exhibits this same absorption minimum. Artists' and travelers' accounts of colored ice tell us that, while remarkable, it is not uncommon. The few 20th-century scientific reports on green icebergs agree with the earlier accounts on the unusual denseness and translucence of highly colored ice. We see the same correlation between ice colors and ice denseness in accounts of glacier ice. When we examine the optical properties of dense, relatively bubble-free ice, we find that we can nearly match its reflectance spectra with either of two multiple -scattering models for ice optics. If we pair these models' reflectance spectra with estimates of polar daylight spectra, we can duplicate the observed colors of green icebergs. Our psychophysical model of human color perception is the 1931 CIE chromaticity space. Although this form of colorimetry has some perceptual faults, we may nonetheless use it as a means of comparing the observed and theoretical colors of green icebergs. In the absence of in situ spectral reflectance measurements, we use video digitizing and spectrodensitometry to extract colorimetric information from color photographs of green icebergs. However, before using these remote sensing techniques, first we must solve the intricate problem of calibrating them against known color standards. After doing this, we find that our analyses of green iceberg photographs support the idea that some of these icebergs result from the combination of ice's intrinsic optical properties and its illumination by reddened sunlight.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001DPS....33.3406W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001DPS....33.3406W"><span>Mars Aerosol Studies with the MGS TES Emission Phase Function Observations: Opacities, Particle Sizes, and Ice Cloud Types</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolff, M. J.; Clancy, R. T.; Pitman, K. M.; Christensen, P. R.; Whitney, B. A.</p> <p>2001-11-01</p> <p>A full Mars year (1999-2001) of emission phase function (EPF) observations from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) provide the most complete study of Mars dust and ice aerosol properties to date. TES visible (solar band average) and infrared spectral EPF sequences are analyzed self-consistently with detailed multiple scattering radiative transfer codes. As a consequence of the combined angular and wavelength coverage, we are able to define two distinct ice cloud types at 45\\arcdeg S-45\\arcdeg N latitudes on Mars. Type I ice clouds exhibit small particle sizes (1-2 \\micron\\ radii), as well as a broad, deep minimum in side-scattering that are potentially indicative of aligned ice grains. Type I ice aerosols are most prevalent in the southern hemisphere during Mars aphelion, but also appear more widely distributed in season and latitude as topographic and high altitude (>20 km) ice hazes. Type II ice clouds exhibit larger particle sizes (3-5 \\micron) and a much narrower side-scattering minimum, indicative of poorer grain alignment or a change in particle shape relative to the type I ice clouds. Type II ice clouds appear most prominently in the northern subtropical aphelion cloud belt, where relatively low altitudes water vapor saturation (10 km) coincide with strong advective transport. Retrieved dust particle radii of 1.5-1.8 \\micron\\ are consistent with Pathfinder and recent Viking/Mariner 9 reanalyses. Our analyses also find EPF-derived dust single scattering albedos (ssa) in agreement with those from Pathfinder. Spatial and seasonal changes in the dust ssa (0.92-0.95, solar band average) and phase functions suggest possible dust property variations, but may also be a consequence of variable high altitude ice hazes. The annual variations of both dust and ice clouds at 45S-45N latitudes are predominately orbital rather than seasonal in character and have shown remarkable repeatability during the portions of two Mars years observed by MGS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070034026&hterms=coverage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcoverage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070034026&hterms=coverage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcoverage"><span>Annual Cycles of Multiyear Sea Ice Coverage of the Arctic Ocean: 1999-2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwok, R.</p> <p>2004-01-01</p> <p>For the years 1999-2003, we estimate the time-varying perennial ice zone (PIZ) coverage and construct the annual cycles of multiyear (MY, including second year) ice coverage of the Arctic Ocean using QuikSCAT backscatter, MY fractions from RADARSAT, and the record of ice export from satellite passive microwave observations. An area balance approach extends the winter MY coverage from QuikSCAT to the remainder of the year. From these estimates, the coverage of MY ice at the beginning of each year is 3774 x 10(exp 3) sq km (2000), 3896 x 10(exp 3) sq km (2001), 4475 x 10(exp 3) sq km (2002), and 4122 x 10(exp 3) sq km (2003). Uncertainties in coverage are approx.150 x 10(exp 3) sq km. In the mean, on 1 January, MY ice covers approx.60% of the Arctic Ocean. Ice export reduces this coverage to approx.55% by 1 May. From the multiple annual cycles, the area of first-year (FY) ice that survives the intervening summers are 1192 x 10(exp 3) sq km (2000), 1509 x 10(exp 3) sq km (2001), and 582 x 10(exp 3) sq km (2002). In order for the MY coverage to remain constant from year to year, these replenishment areas must balance the overall area export and melt during the summer. The effect of the record minimum in Arctic sea ice area during the summer of 2002 is seen in the lowest area of surviving FY ice of the three summers. In addition to the spatial coverage, the location of the PIZ is important. One consequence of the unusual location of the PIZ at the end of the summer of 2002 is the preconditioning for enhanced export of MY ice into the Barents and Kara seas. Differences between the minimums in summer sea ice coverage from our estimates and passive microwave observations are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoRL..39.8502N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoRL..39.8502N"><span>Observations reveal external driver for Arctic sea-ice retreat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Notz, Dirk; Marotzke, Jochem</p> <p>2012-04-01</p> <p>The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12154613','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12154613"><span>Ecology of southern ocean pack ice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brierley, Andrew S; Thomas, David N</p> <p>2002-01-01</p> <p>Around Antarctica the annual five-fold growth and decay of sea ice is the most prominent physical process and has a profound impact on marine life there. In winter the pack ice canopy extends to cover almost 20 million square kilometres--some 8% of the southern hemisphere and an area larger than the Antarctic continent itself (13.2 million square kilometres)--and is one of the largest, most dynamic ecosystems on earth. Biological activity is associated with all physical components of the sea-ice system: the sea-ice surface; the internal sea-ice matrix and brine channel system; the underside of sea ice and the waters in the vicinity of sea ice that are modified by the presence of sea ice. Microbial and microalgal communities proliferate on and within sea ice and are grazed by a wide range of proto- and macrozooplankton that inhabit the sea ice in large concentrations. Grazing organisms also exploit biogenic material released from the sea ice at ice break-up or melt. Although rates of primary production in the underlying water column are often low because of shading by sea-ice cover, sea ice itself forms a substratum that provides standing stocks of bacteria, algae and grazers significantly higher than those in ice-free areas. Decay of sea ice in summer releases particulate and dissolved organic matter to the water column, playing a major role in biogeochemical cycling as well as seeding water column phytoplankton blooms. Numerous zooplankton species graze sea-ice algae, benefiting additionally because the overlying sea-ice ceiling provides a refuge from surface predators. Sea ice is an important nursery habitat for Antarctic krill, the pivotal species in the Southern Ocean marine ecosystem. Some deep-water fish migrate to shallow depths beneath sea ice to exploit the elevated concentrations of some zooplankton there. The increased secondary production associated with pack ice and the sea-ice edge is exploited by many higher predators, with seals, seabirds and whales aggregating there. As a result, much of the Southern Ocean pelagic whaling was concentrated at the edge of the marginal ice zone. The extent and duration of sea ice fluctuate periodically under the influence of global climatic phenomena including the El Niño Southern Oscillation. Life cycles of some associated species may reflect this periodicity. With evidence for climatic warming in some regions of Antarctica, there is concern that ecosystem change may be induced by changes in sea-ice extent. The relative abundance of krill and salps appears to change interannually with sea-ice extent, and in warm years, when salps proliferate, krill are scarce and dependent predators suffer severely. Further research on the Southern Ocean sea-ice system is required, not only to further our basic understanding of the ecology, but also to provide ecosystem managers with the information necessary for the development of strategies in response to short- and medium-term environmental changes in Antarctica. Technological advances are delivering new sampling platforms such as autonomous underwater vehicles that are improving vastly our ability to sample the Antarctic under sea-ice environment. Data from such platforms will enhance greatly our understanding of the globally important Southern Ocean sea-ice ecosystem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1005076','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1005076"><span>Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-11-30</p> <p>information from the PIOMAS model [J. Zhang], melt pond coverage from MODIS [Rösel et al., 2012], and ice-age estimates [Maslanik et al., 2011] to...determined from MODIS satellite data using an artificial neural network, Cryosph., 6(2), 431–446, doi:10.5194/tc- 6-431-2012. PUBLICATIONS Carmack...from MODIS , and ice-age estimates to this dataset. We have used this extented dataset to build a climatology of the partitioning of solar heat between</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA497652','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA497652"><span>Toward an Arctic Strategy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-02-01</p> <p>Arctic Sea Ice Extent6 Reduced ice pack area translates to less reflected solar energy, which further accelerates the ongoing melting process . Light... process , creating a vicious cycle where melting ice causes the remaining ice to melt faster.7 Modelers previously agreed that the Arctic Ocean could be...freight ports stand to benefit by shipping through the Arctic region.10 For example, an ocean voyage from Yokohama, Japan, to Hamburg, Germany via the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20854989','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20854989"><span>Production of functional probiotic, prebiotic, and synbiotic ice creams.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Di Criscio, T; Fratianni, A; Mignogna, R; Cinquanta, L; Coppola, R; Sorrentino, E; Panfili, G</p> <p>2010-10-01</p> <p>In this work, 3 types of ice cream were produced: a probiotic ice cream produced by adding potentially probiotic microorganisms such as Lactobacillus casei and Lactobacillus rhamnosus; a prebiotic ice cream produced by adding inulin, a prebiotic substrate; and a synbiotic ice cream produced by adding probiotic microorganisms and inulin in combination. In addition to microbial counts, pH, acidity, and physical and functional properties of the ice creams were evaluated. The experimental ice creams preserved the probiotic bacteria and had counts of viable lactic acid bacteria after frozen storage that met the minimum required to achieve probiotic effects. Moreover, most of the ice creams showed good nutritional and sensory properties, with the best results obtained with Lb. casei and 2.5% inulin. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1905B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1905B"><span>Greenland-Wide Seasonal Temperatures During the Last Deglaciation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buizert, C.; Keisling, B. A.; Box, J. E.; He, F.; Carlson, A. E.; Sinclair, G.; DeConto, R. M.</p> <p>2018-02-01</p> <p>The sensitivity of the Greenland ice sheet to climate forcing is of key importance in assessing its contribution to past and future sea level rise. Surface mass loss occurs during summer, and accounting for temperature seasonality is critical in simulating ice sheet evolution and in interpreting glacial landforms and chronologies. Ice core records constrain the timing and magnitude of climate change but are largely limited to annual mean estimates from the ice sheet interior. Here we merge ice core reconstructions with transient climate model simulations to generate Greenland-wide and seasonally resolved surface air temperature fields during the last deglaciation. Greenland summer temperatures peak in the early Holocene, consistent with records of ice core melt layers. We perform deglacial Greenland ice sheet model simulations to demonstrate that accounting for realistic temperature seasonality decreases simulated glacial ice volume, expedites the deglacial margin retreat, mutes the impact of abrupt climate warming, and gives rise to a clear Holocene ice volume minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE44C1528D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE44C1528D"><span>The Effect of Recent Decreases in Sea Ice Extent and Increases in SST on the Seasonal Availability of Arctic Cod (Boreogadus saida) to Seabirds in the Beaufort Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Divoky, G.; Druckenmiller, M. L.</p> <p>2016-02-01</p> <p>With major decreases in pan-Arctic summer sea ice extent steadily underway, the Beaufort Sea has been nearly ice-free in five of the last eight summers. This loss of a critical arctic marine habitat and the concurrent warming of the recently ice-free waters could potentially cause major changes in the biological oceanography of the Beaufort Sea and alter the distribution, abundance and condition of the region's upper trophic level predators that formerly relied on prey associated with sea ice or cold (<2°C) surface waters. Arctic cod (Boreogadus saida), the primary forage fish for seabirds in the Beaufort Sea, is part of the cryopelagic fauna associated with sea ice and is also found in adjacent ice-free waters. In the extreme western Beaufort Sea near Cooper Island, Arctic cod availability to breeding Black Guillemots (Cepphus grylle), a diving seabird, has declined since 2002. Guillemots are a good indicator of Arctic cod availability in surface waters and the upper water column as they feed at depths of 1-20m. Currently, when sea ice is absent from the nearshore and SST exceeds 4°C, guillemots are observed to seasonally shift from Arctic cod to nearshore demersal prey, with a resulting decrease in nestling survival and quality. Arctic cod is the primary prey for many of the seabirds utilizing the Beaufort Sea as a post-breeding staging area and migratory corridor in late summer and early fall. The loss of approximately 200-300 thousand sq km of summer sea ice habitat in recent years could be expected to affect the distribution, abundance, and movements of these species as there are few alternative fish resources in the region. We examine temporal and spatial variation in August sea ice extent and SST in the Beaufort Sea to determine the regions, periods and bird species that are potentially most affected as the Beaufort Sea transitions to becoming regularly ice-free in late summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170009008&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170009008&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea"><span>Variability and Trends in the Arctic Sea Ice Cover: Results from Different Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert</p> <p>2017-01-01</p> <p>Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at negative 3.88 percent decade and negative 4.37 percent decade, respectively, compared to an average of negative 4.36 percent decade and negative 4.57 percent decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918039N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918039N"><span>ICESat-2, its retrievals of ice sheet elevation change and sea ice freeboard, and potential synergies with CryoSat-2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neumann, Thomas; Markus, Thorsten; Smith, Benjamin; Kwok, Ron</p> <p>2017-04-01</p> <p>Understanding the causes and magnitudes of changes in the cryosphere remains a priority for Earth science research. Over the past decade, NASA's and ESA's Earth-observing satellites have documented a decrease in both the areal extent and thickness of Arctic sea ice, and an ongoing loss of grounded ice from the Greenland and Antarctic ice sheets. Understanding the pace and mechanisms of these changes requires long-term observations of ice-sheet mass, sea-ice thickness, and sea-ice extent. NASA's ICESat-2 mission is the next-generation space-borne laser altimeter mission and will use three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. The spot size is 17 m with an along-track sampling interval of 0.7 m. This measurement concept is a result of the lessons learned from the original ICESat mission. The multi-beam approach is critical for removing the effects of ice sheet surface slope from the elevation change measurements of most interest. For sea ice, the dense spatial sampling (eliminating along-track gaps) and the small footprint size are especially useful for sea surface height measurements in the, often narrow, leads needed for sea ice freeboard and ice thickness retrievals. Currently, algorithms are being developed to calculate ice sheet elevation change and sea ice freeboard from ICESat-2 data. The orbits of ICESat-2 and Cryosat-2 both converge at 88 degrees of latitude, though the orbit altitude differences result in different ground track patterns between the two missions. This presentation will present an overview of algorithm approaches and how ICESat-2 and Cryosat-2 data may augment each other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IzAOP..51..929R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IzAOP..51..929R"><span>Peculiarities of stochastic regime of Arctic ice cover time evolution over 1987-2014 from microwave satellite sounding on the basis of NASA team 2 algorithm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raev, M. D.; Sharkov, E. A.; Tikhonov, V. V.; Repina, I. A.; Komarova, N. Yu.</p> <p>2015-12-01</p> <p>The GLOBAL-RT database (DB) is composed of long-term radio heat multichannel observation data received from DMSP F08-F17 satellites; it is permanently supplemented with new data on the Earth's exploration from the space department of the Space Research Institute, Russian Academy of Sciences. Arctic ice-cover areas for regions higher than 60° N latitude were calculated using the DB polar version and NASA Team 2 algorithm, which is widely used in foreign scientific literature. According to the analysis of variability of Arctic ice cover during 1987-2014, 2 months were selected when the Arctic ice cover was maximal (February) and minimal (September), and the average ice cover area was calculated for these months. Confidence intervals of the average values are in the 95-98% limits. Several approximations are derived for the time dependences of the ice-cover maximum and minimum over the period under study. Regression dependences were calculated for polynomials from the first degree (linear) to sextic. It was ascertained that the minimal root-mean-square error of deviation from the approximated curve sharply decreased for the biquadratic polynomial and then varied insignificantly: from 0.5593 for the polynomial of third degree to 0.4560 for the biquadratic polynomial. Hence, the commonly used strictly linear regression with a negative time gradient for the September Arctic ice cover minimum over 30 years should be considered incorrect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9833A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9833A"><span>Phase relations of natural 65 year SST variations, ocean sea level variations over 260 years, and Arctic sea-ice retreat of the satellite era - issues of cause and effect.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asten, Michael</p> <p>2017-04-01</p> <p>We study sea level variations over the past 300yr in order to quantify what fraction of variations may be considered cyclic, and what phase relations exist with respect to those cycles. The 64yr cycle detected by Chambers et al (2012) is found in the 1960-2000 data set which Hamlington et al (2013) interpreted as an expression of the PDO; we show that fitting a 64yr cycle is a better fit, accounting for 92% of variance. In a 300yr GMSL tide guage record Jeverejeva et al (2008) identified a 60-65yr cycle superimposed on an upward trend from 1800CE. Using break-points and removal of centennial trends identified by Kemp et al (2015), we produce a detrended GMSL record for 1700-2000CE which emphasizes the 60-65yr oscillations. A least-square fit using a 64yr period cosine yields an amplitude 12mm and origin at year 1958.6, which accounts for 30% of the variance. A plot of the cosine against the entire length of the 300yr detrended GMSL record shows a clear phase lock for the interval 1740 to 2000CE, denoting either a very consistent timing of an internally generated natural variation, or adding to evidence for an external forcing of astronomical origin (Scafetta 2012, 2013). Barcikowska et al (2016) have identified a 65yr cyclic variation in sea surface temperature in the first multidecadal component of Multi- Channel Singular Spectrum Analysis (MSSA) on the Hadley SST data set (RC60). A plot of RC60 versus our fitted cosine shows the phase shift to be 16 yr, close to a 90 degree phase lag of GMSL relative to RC60. This is the relation to be expected for a simple low-pass or integrating filter, which suggests that cyclic natural variations in sea-surface temperature drive similar variations in GMSL. We compare the extent of Arctic sea-ice using the time interval of 1979- 2016 (window of satellite imagery). The decrease in summer ice cover has been subject of many predictions as to when summer ice will reach zero. The plot of measured ice area can be fitted with many speculative curves, and we show three such best fit curves, a parabola (zero ice cover by 2028), a linear fit (zero by 2060) and a 64yr period cosine, where the cosine is a shape chosen as a hypothesis, given the relation we observe between SST natural variations and 260 years of detrended sea level data. The cosine best fit shows a maximum ice coverage in 1985.6 and predicted minimum in 2017.6, which compares with the detrended sea level cyclic component minimum at 1990.6 and predicted maximum at 2023.6CE. Thus the sea-ice retreat lags RC60 by about 10 yr or 60deg in phase. The consistent phase of sea-level change over 260yr, and the phase lags of sea-ice retreat and sea-level change relative to the natural 65yr cyclic component of SST, have implications in the debate over internal versus external drivers of the cyclic components of change, and in hypotheses on cause and effect of the non-anthropogenic components of change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19109440','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19109440"><span>Nonlinear threshold behavior during the loss of Arctic sea ice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eisenman, I; Wettlaufer, J S</p> <p>2009-01-06</p> <p>In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or "tipping point") beyond which the ice-albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice-albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice-albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1346837','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1346837"><span>A New Discrete Element Sea-Ice Model for Earth System Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Turner, Adrian Keith</p> <p></p> <p>Sea ice forms a frozen crust of sea water oating in high-latitude oceans. It is a critical component of the Earth system because its formation helps to drive the global thermohaline circulation, and its seasonal waxing and waning in the high north and Southern Ocean signi cantly affects planetary albedo. Usually 4{6% of Earth's marine surface is covered by sea ice at any one time, which limits the exchange of heat, momentum, and mass between the atmosphere and ocean in the polar realms. Snow accumulates on sea ice and inhibits its vertical growth, increases its albedo, and contributes to pooledmore » water in melt ponds that darken the Arctic ice surface in the spring. Ice extent and volume are subject to strong seasonal, inter-annual and hemispheric variations, and climatic trends, which Earth System Models (ESMs) are challenged to simulate accurately (Stroeve et al., 2012; Stocker et al., 2013). This is because there are strong coupled feedbacks across the atmosphere-ice-ocean boundary layers, including the ice-albedo feedback, whereby a reduced ice cover leads to increased upper ocean heating, further enhancing sea-ice melt and reducing incident solar radiation re ected back into the atmosphere (Perovich et al., 2008). A reduction in perennial Arctic sea-ice during the satellite era has been implicated in mid-latitude weather changes, including over North America (Overland et al., 2015). Meanwhile, most ESMs have been unable to simulate observed inter-annual variability and trends in Antarctic sea-ice extent during the same period (Gagne et al., 2014).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...166....4S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...166....4S"><span>Modelling sea ice formation in the Terra Nova Bay polynya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.</p> <p>2017-02-01</p> <p>Antarctic sea ice is constantly exported from the shore by strong near surface winds that open leads and large polynyas in the pack ice. The latter, known as wind-driven polynyas, are responsible for significant water mass modification due to the high salt flux into the ocean associated with enhanced ice growth. In this article, we focus on the wind-driven Terra Nova Bay (TNB) polynya, in the western Ross Sea. Brine rejected during sea ice formation processes that occur in the TNB polynya densifies the water column leading to the formation of the most characteristic water mass of the Ross Sea, the High Salinity Shelf Water (HSSW). This water mass, in turn, takes part in the formation of Antarctic Bottom Water (AABW), the densest water mass of the world ocean, which plays a major role in the global meridional overturning circulation, thus affecting the global climate system. A simple coupled sea ice-ocean model has been developed to simulate the seasonal cycle of sea ice formation and export within a polynya. The sea ice model accounts for both thermal and mechanical ice processes. The oceanic circulation is described by a one-and-a-half layer, reduced gravity model. The domain resolution is 1 km × 1 km, which is sufficient to represent the salient features of the coastline geometry, notably the Drygalski Ice Tongue. The model is forced by a combination of Era Interim reanalysis and in-situ data from automatic weather stations, and also by a climatological oceanic dataset developed from in situ hydrographic observations. The sensitivity of the polynya to the atmospheric forcing is well reproduced by the model when atmospheric in situ measurements are combined with reanalysis data. Merging the two datasets allows us to capture in detail the strength and the spatial distribution of the katabatic winds that often drive the opening of the polynya. The model resolves fairly accurately the sea ice drift and sea ice production rates in the TNB polynya, leading to realistic polynya extent estimates. The model-derived polynya extent has been validated by comparing the modelled sea ice concentration against MODIS high resolution satellite images, confirming that the model is able to reproduce reasonably well the TNB polynya evolution in terms of both shape and extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29621173','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29621173"><span>Statistical Analysis of SSMIS Sea Ice Concentration Threshold at the Arctic Sea Ice Edge during Summer Based on MODIS and Ship-Based Observational Data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ji, Qing; Li, Fei; Pang, Xiaoping; Luo, Cong</p> <p>2018-04-05</p> <p>The threshold of sea ice concentration (SIC) is the basis for accurately calculating sea ice extent based on passive microwave (PM) remote sensing data. However, the PM SIC threshold at the sea ice edge used in previous studies and released sea ice products has not always been consistent. To explore the representable value of the PM SIC threshold corresponding on average to the position of the Arctic sea ice edge during summer in recent years, we extracted sea ice edge boundaries from the Moderate-resolution Imaging Spectroradiometer (MODIS) sea ice product (MOD29 with a spatial resolution of 1 km), MODIS images (250 m), and sea ice ship-based observation points (1 km) during the fifth (CHINARE-2012) and sixth (CHINARE-2014) Chinese National Arctic Research Expeditions, and made an overlay and comparison analysis with PM SIC derived from Special Sensor Microwave Imager Sounder (SSMIS, with a spatial resolution of 25 km) in the summer of 2012 and 2014. Results showed that the average SSMIS SIC threshold at the Arctic sea ice edge based on ice-water boundary lines extracted from MOD29 was 33%, which was higher than that of the commonly used 15% discriminant threshold. The average SIC threshold at sea ice edge based on ice-water boundary lines extracted by visual interpretation from four scenes of the MODIS image was 35% when compared to the average value of 36% from the MOD29 extracted ice edge pixels for the same days. The average SIC of 31% at the sea ice edge points extracted from ship-based observations also confirmed that choosing around 30% as the SIC threshold during summer is recommended for sea ice extent calculations based on SSMIS PM data. These results can provide a reference for further studying the variation of sea ice under the rapidly changing Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C21E1165W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C21E1165W"><span>A Detailed Geophysical Investigation of the Grounding of Henry Ice Rise, with Implications for Holocene Ice-Sheet Extent.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wearing, M.; Kingslake, J.</p> <p>2017-12-01</p> <p>It is generally assumed that since the Last Glacial Maximum the West Antarctic Ice Sheet (WAIS) has experienced monotonic retreat of the grounding line (GL). However, recent studies have cast doubt on this assumption, suggesting that the retreat of the WAIS grounding line may have been followed by a significant advance during the Holocene in the Weddell and Ross Sea sectors. Constraining this evolution is important as reconstructions of past ice-sheet extent are used to spin-up predictive ice-sheet models and correct mass-balance observations for glacial isostatic adjustment. Here we examine in detail the formation of the Henry Ice Rise (HIR), which ice-sheet model simulations suggest played a key role in Holocene ice-mass changes in the Weddell Sea sector. Observations from a high-resolution ground-based, ice-penetrating radar survey are best explained if the ice rise formed when the Ronne Ice Shelf grounded on a submarine high, underwent a period of ice-rumple flow, before the GL migrated outwards to form the present-day ice rise. We constrain the relative chronology of this evolution by comparing the alignment and intersection of isochronal internal layers, relic crevasses, surface features and investigating the dynamic processes leading to their complex structure. We also draw analogies between HIR and the neighbouring Doake Ice Rumples. The date of formation is estimated using vertical velocities derived with a phase-sensitive radio-echo sounder (pRES). Ice-sheet models suggest that the formation of the HIR and other ice rises may have halted and reversed large-scale GL retreat. Hence the small-scale dynamics of these crucial regions could have wide-reaching consequences for future ice-sheet mass changes and constraining their formation and evolution further would be beneficial. One stringent test of our geophysics-based conclusions would be to drill to the bed of HIR to sample the ice for isotopic analysis and the bed for radiocarbon analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990Icar...83..441G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990Icar...83..441G"><span>Constraints on the subsurface structure of Europa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golombek, M. P.; Banerdt, W. B.</p> <p>1990-02-01</p> <p>The wedge-shaped bands appearing near the anti-Jovian point on Europa are tension cracks which, after formation on an intact lithosphere, have facilitated the rotation of ice-lithosphere sections decoupled from the silicate interior. Such factors as fluid pressure, surface temperature, silicate impurities in the ice, and strain rates, would have affected the processes in question. A minimum degree of differentiation is required for Europa to mechanically decouple the rotated ice lithosphere from the underlying, predominantly silicate mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.429...69R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.429...69R"><span>Surface exposure chronology of the Waimakariri glacial sequence in the Southern Alps of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rother, Henrik; Shulmeister, James; Fink, David; Alexander, David; Bell, David</p> <p>2015-11-01</p> <p>During the late Quaternary, the Southern Alps of New Zealand experienced multiple episodes of glaciation with large piedmont glaciers reaching the coastal plains in the west and expanding into the eastern alpine forelands. Here, we present a new 10Be exposure age chronology for a moraine sequence in the Waimakariri Valley (N-Canterbury), which has long been used as a reference record for correlating glacial events across New Zealand and the wider Southern Hemisphere. Our data indicate that the Waimakariri glacier reached its maximum last glaciation extent prior to ∼26 ka well before the global last glaciation maximum (LGM). This was followed by a gradual reduction in ice volume and the abandonment of the innermost LGM moraines at about 17.5 ka. Significantly, we find that during its maximum extent, the Waimakariri glacier overflowed the Avoca Plateau, previously believed to represent a mid-Pleistocene glacial surface (i.e. MIS 8). At the same time, the glacier extended to a position downstream of the Waimakariri Gorge, some 15 km beyond the previously mapped LGM ice limit. We use a simple steady-state mass balance model to test the sensitivity of past glacial accumulation to various climatic parameters, and to evaluate possible climate scenarios capable of generating the ice volume required to reach the full local-LGM extent. Model outcomes indicate that under New Zealand's oceanic setting, a cooling of 5 °C, assuming modern precipitation levels, or a cooling of 6.5 °C, assuming a one third reduction in precipitation, would suffice to drive the Waimakariri glacier to the eastern alpine forelands (Canterbury Plains). Our findings demonstrate that the scale of LGM glaciation in the Waimakariri Valley and adjacent major catchments, both in terms of ice volume and downvalley ice extent, has been significantly underestimated. Our observation that high-lying glacial surfaces, so far believed to represent much older glacial episodes, were glaciated during the LGM, challenges the conventional geomorphic model of glaciation in New Zealand where the vertical arrangement of glacial landform-associations is used to assign successively older glaciation ages.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050160252','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050160252"><span>Preliminary Investigation of Ice Shape Sensitivity to Parameter Variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, Dean R.; Potapczuk, Mark G.; Langhals, Tammy J.</p> <p>2005-01-01</p> <p>A parameter sensitivity study was conducted at the NASA Glenn Research Center's Icing Research Tunnel (IRT) using a 36 in. chord (0.91 m) NACA-0012 airfoil. The objective of this preliminary work was to investigate the feasibility of using ice shape feature changes to define requirements for the simulation and measurement of SLD icing conditions. It was desired to identify the minimum change (threshold) in a parameter value, which yielded an observable change in the ice shape. Liquid Water Content (LWC), drop size distribution (MVD), and tunnel static temperature were varied about a nominal value, and the effects of these parameter changes on the resulting ice shapes were documented. The resulting differences in ice shapes were compared on the basis of qualitative and quantitative criteria (e.g., mass, ice horn thickness, ice horn angle, icing limits, and iced area). This paper will provide a description of the experimental method, present selected experimental results, and conclude with an evaluation of these results, followed by a discussion of recommendations for future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28388209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28388209"><span>Wind-Driven Formation of Ice Bridges in Straits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rallabandi, Bhargav; Zheng, Zhong; Winton, Michael; Stone, Howard A</p> <p>2017-03-24</p> <p>Ice bridges are static structures composed of tightly packed sea ice that can form during the course of its flow through a narrow strait. Despite their important role in local ecology and climate, the formation and breakup of ice bridges is not well understood and has proved difficult to predict. Using long-wave approximations and a continuum description of sea ice dynamics, we develop a one-dimensional theory for the wind-driven formation of ice bridges in narrow straits, which is verified against direct numerical simulations. We show that for a given wind stress and minimum and maximum channel widths, a steady-state ice bridge can only form beyond a critical value of the thickness and the compactness of the ice field. The theory also makes quantitative predictions for ice fluxes, which are particularly useful to estimate the ice export associated with the breakup of ice bridges. We note that similar ideas are applicable to dense granular flows in confined geometries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601202','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601202"><span>Seasonal Ice Zone Reconnaissance Surveys Coordination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>of SIZRS are covered in separate reports. Our long-term goal is to track and understand the interplay among the ice, atmosphere, and ocean...OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Seasonal Ice Zone...sensing resources include MODIS visible and IR imagery, NSIDC ice extent charts based on a composite of passive microwave products (http://nsidc.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Craig; Rainville, Luc; Perry, Mary Jane</p> <p>2016-04-01</p> <p>The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Rainville, L.; Perry, M. J.</p> <p>2016-02-01</p> <p>The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011036"><span>Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan</p> <p>2013-01-01</p> <p>Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C33A0662C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C33A0662C"><span>Holocene history of North Ice Cap, northwestern Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corbett, L. B.; Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Roy, E. P.; Thompson, J. T.</p> <p>2013-12-01</p> <p>Although much research has focused on the past extents of the Greenland Ice Sheet, less is known about the smaller ice caps on Greenland and how they have evolved over time. These small ice caps respond sensitively to summer temperatures and, to a lesser extent, winter precipitation, and provide valuable information about climatic conditions along the Greenland Ice Sheet margins. Here, we investigate the Holocene history of North Ice Cap (76°55'N 68°00'W), located in the Nunatarssuaq region near Thule, northwest Greenland. Our results are based on glacial geomorphic mapping, 10Be dating, and analyses of sediment cores from a glacially fed lake. Fresh, unweathered and unvegetated boulders comprise moraines and drift that mark an extent of North Ice Cap ~25 m outboard of the present ice margin. It is likely that these deposits were formed during late Holocene time and we are currently employing 10Be surface exposure dating to examine this hypothesis. Just outboard of the fresh moraines and drift, boulders and bedrock show significant weathering and are covered with lichen. Based on glacial geomorphic mapping and detailed site investigations, including stone counts, we suggest that the weathered boulders and bedrock were once covered by erosive Greenland Ice Sheet flow from southeast to northwest over the Nunatarssuaq region. Five 10Be ages from the more weathered landscape only 100-200 m outboard of the modern North Ice Cap margin are 52 and 53 ka (bedrock) and 16, 23, and 31 ka (boulders). These ages indicate that recent ice cover has likely been cold-based and non-erosive, failing to remove inherited cosmogenic nuclides from previous periods of exposure, although the youngest boulder may provide a maximum limiting deglaciation age. Sediment cores collected from Delta Sø, a glacially-fed lake ~1.5 km outside of the modern North Ice Cap margin, contain 130 cm of finely laminated sediments overlying coarse sands and glacial till. Radiocarbon ages from just above the sands are 14,940 and 14,560 cal yr BP (medians of two-sigma ranges). Our results thus far suggest that the Nunatarssuaq region preserves a long and complex glacial history, including glaciation by the Greenland Ice Sheet and potentially North Ice Cap, as well as glaciation by both erosive and non-erosive ice. Based on the basal ages from Delta Sø and the youngest boulder 10Be age, recession at the end of the most recent glacial period likely occurred by ~15 ka. This is considerably earlier than most other terrestrial margins of Greenland that did not become ice free until ~10 ka. Our ongoing research is developing proxy and further chronological data from sediment cores from Delta Sø and nearby ice-marginal lakes to constrain the Holocene fluctuations of North Ice Cap.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010037604','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010037604"><span>Satellite Remote Sensing: Passive-Microwave Measurements of Sea Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)</p> <p>2001-01-01</p> <p>Satellite passive-microwave measurements of sea ice have provided global or near-global sea ice data for most of the period since the launch of the Nimbus 5 satellite in December 1972, and have done so with horizontal resolutions on the order of 25-50 km and a frequency of every few days. These data have been used to calculate sea ice concentrations (percent areal coverages), sea ice extents, the length of the sea ice season, sea ice temperatures, and sea ice velocities, and to determine the timing of the seasonal onset of melt as well as aspects of the ice-type composition of the sea ice cover. In each case, the calculations are based on the microwave emission characteristics of sea ice and the important contrasts between the microwave emissions of sea ice and those of the surrounding liquid-water medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMED11A0111M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMED11A0111M"><span>Whither Arctic Sea Ice? - An Earth Exploration Toolbook chapter on the climate's canary in a coal mine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meier, W. N.; Youngman, E.; Dahlman, L.</p> <p>2007-12-01</p> <p>Arctic sea ice is declining rapidly. Since 2002, summer Arctic sea ice extents have been at record or near-record lows; winter extents have also showed a marked decline. Even in comparison to the previous five extreme low years, the 2007 summer melt season has been stunning, with dramatically less ice than the previous record in 2005. This is further evidence that the Arctic sea ice may have already passed a tipping point toward a state without ice during the summer by 2050 or before. Such a change will have profound impacts on climate as well as human and wildlife activities in the region. The "Whither Arctic Sea Ice?" Earth Exploration Toolbook chapter (http://serc.carleton.edu/eet/seaice/index.html) exposes students to satellite-derived sea ice data and allows them to process and interpret the data to "discover" these sea ice changes for themselves. A sample case study in Hudson Bay has been developed that relates the physical changes occurring on the sea ice to peoples and wildlife that depend on the ice for their livelihood. This approach provides a personal connection for students and allows them to relate to the impacts of the changes. Suggestions are made for further case studies that can be developed using the same data relating to topical events in the Arctic. The EET chapter exposes students to climate change, scientific data, statistical concepts, and image processing software providing an avenue for the communication of IPY data and science to teachers and students.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038175&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbalance%2Bsheet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038175&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbalance%2Bsheet"><span>Snowmelt on the Greenland Ice Sheet as Derived From Passive Microwave Satellite Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abdalati, Waleed; Steffen, Konrad</p> <p>1997-01-01</p> <p>The melt extent of the snow on the Greenland ice sheet is of considerable importance to the ice sheet's mass and energy balance, as well as Arctic and global climates. By comparing passive microwave satellite data to field observations, variations in melt extent have been detected by establishing melt thresholds in the cross-polarized gradient ratio (XPGR). The XPGR, defined as the normalized difference between the 19-GHz horizontal channel and the 37-GHz vertical channel of the Special Sensor Microwave/Imager (SSM/I), exploits the different effects of snow wetness on different frequencies and polarizations and establishes a distinct melt signal. Using this XPGR melt signal, seasonal and interannual variations in snowmelt extent of the ice sheet are studied. The melt is found to be most extensive on the western side of the ice sheet and peaks in late July. Moreover, there is a notable increasing trend in melt area between the years 1979 and 1991 of 4.4% per year, which came to an abrupt halt in 1992 after the eruption of Mt. Pinatubo. A similar trend is observed in the temperatures at six coastal stations. The relationship between the warming trend and increasing melt trend between 1979 and 1991 suggests that a 1 C temperature rise corresponds to an increase in melt area of 73000 sq km, which in general exceeds one standard deviation of the natural melt area variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193417','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193417"><span>Implications of rapid environmental change for polar bear behavior and sociality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Atwood, Todd C.</p> <p>2017-01-01</p> <p>Historically, the Arctic sea ice has functioned as a structural barrier that has limited the nature and extent of interactions between humans and polar bears (Ursus maritimus). However, declining sea ice extent, brought about by global climate change, is increasing the potential for human-polar bear interactions. Loss of sea ice habitat is driving changes to both human and polar bear behavior—it is facilitating increases in human activities (e.g., offshore oil and gas exploration and extraction, trans-Arctic shipping, recreation), while also causing the displacement of bears from preferred foraging habitat (i.e., sea ice over biologically productive shallow) to land in some portions of their range. The end result of these changes is that polar bears are spending greater amounts of time in close proximity to people. Coexistence between humans and polar bears will require imposing mechanisms to manage further development, as well as mitigation strategies that reduce the burden to local communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110022991','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110022991"><span>Environmental Variation and Cohort Effects in an Antarctic Predator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garrott, Robert A.; Rotella, Jay J.; Siniff, Donald B.; Parkinson, Claire L.; Stauffer, Glenn E.</p> <p>2011-01-01</p> <p>Understanding the potential influence of environmental variation experienced by animals during early stages of development on their subsequent demographic performance can contribute to our understanding of population processes and aid in predicting impacts of global climate change on ecosystem functioning. Using data from 4,178 tagged female Weddell seal pups born into 20 different cohorts, and 30 years of observations of the tagged seals, we evaluated the hypothesis that environmental conditions experienced by young seals, either indirectly through maternal effects and/or directly during the initial period of juvenile nutritional independence, have long-term effects on individual demographic performance. We documented an approximately 3-fold difference in the proportion of each cohort that returned to the pupping colonies and produced a pup within the first 10 years after birth. We found only weak evidence for a correlation between annual environmental conditions during the juvenile-independence period and cohort recruitment probability. Instead, the data strongly supported an association between cohort recruitment probability and the regional extent of sea ice experienced by the mother during the winter the pup was in utero. We suggest that inter-annual variation in winter sea-ice extent influences the foraging success of pregnant seals by moderating the regional abundance of competing predators that cannot occupy areas of consolidated sea ice, and by directly influencing the abundance of mid-trophic prey species that are sea-ice obligates. We hypothesize that this environmentally-induced variation in maternal nutrition dictates the extent of maternal energetic investment in offspring, resulting in cohort variation in mean size of pups at weaning which, in turn, contributes to an individual?s phenotype and its ultimate fitness. These linkages between sea ice and trophic dynamics, combined with demonstrated and predicted changes in the duration and extent of sea ice associated with climate change, suggest significant alterations in Antarctic marine ecosystems in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014676','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014676"><span>ARCTIC SEA ICE EXTENT AND DRIFT, MODELED AS A VISCOUS FLUID.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ling, Chi-Hai; Parkinson, Claire L.</p> <p>1986-01-01</p> <p>A dynamic/thermodynamic numerical model of sea ice has been used to calculate the yearly cycle of sea ice thicknesses, concentrations, and velocities in the Arctic Ocean and surrounding seas. The model combines the formulations of two previous models, taking the thermodynamics and momentum equations from the model of Parkinson and Washington and adding the constitutive equation and equation of state from the model of Ling, Rasmussen, and Campbell. Simulated annually averaged ice drift vectors compare well with observed ice drift from the Arctic Ocean Buoy Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ESASP.722E.144H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ESASP.722E.144H"><span>Mapping Of Lake Ice In Northern Europe Using Dual-Polarization RadarSAT-2 Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hindberg, Heidi; Malnes, Erik</p> <p>2013-12-01</p> <p>In this paper, we investigate the potential of including cross-polarization data in an unsupervised classification method based on SAR data to determine ice extent over lakes in Northern Europe. By introducing cross-pol data we can increase the separability between open water and ice, and we can decrease misclassifications where open water with waves is classified as ice. Cross-pol data also helps with labelling of the classes. However, cross-pol data can decrease the separability between the classes if the ice on the lake is very thin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.C51A0542R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.C51A0542R"><span>The Increase of the Ice-free Season as Further Indication of the Rapid Decline of the Arctic sea ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodrigues, J.</p> <p>2008-12-01</p> <p>The unprecedented depletion of sea ice in large sectors of the Arctic Ocean in the summer of 2007 has been the subject of many publications which highlight the spectacular disappearance of the sea ice at the time of minimum ice cover or emphasise the losses at very high latitudes. However, minimum values can be strongly affected by specific circumstances occurring in a comparatively short time interval. The unusually clear skies and the presence of a particular wind pattern over the Arctic Ocean may partly explain the record minimum attained in September 2007. In this contribution, instead of limiting ourselves to the September minimum or the March maximum, we consider the ice conditions throughout the year, opting for a less used, and hopefully more convenient approach. We chose as variables to describe the evolution of the sea ice situation in the Arctic Ocean and peripheral seas in the 1979-2007 period the length of the ice- free season (LIFS) and the inverse sea ice index (ISII). The latter is a quantity that measures the degree of absence of sea ice in a year and varies between zero (when there is a perennial ice cover) and one (when there is open water all year round). We used sea ice concentration data obtained from passive microwave satellite imagery and processed with the Bootstrap algorithm for the SMMR and SSM/I periods, and with the Enhanced NASA Team algorithm for the AMSR-E period. From a linear fit of the observed data, we found that the average LIFS in the Arctic went from 118 days in the late 1970s to 148 days in 2006, which represents an average rate of increase of 1.1 days/year. In the period 2001-2007 the LIFS increased monotonically at an average rate of 5.5 days/year, in good agreement with the general consensus that the Arctic sea ice is currently in an accelerated decline. We also found that 2007 was the longest ice- free season on record (168 days). The ISII also reached a maximum in 2007 . We also investigated what happened at the regional level. For example, the Northwest Passage and the Northern Sea Route are especially relevant to assess the maritime transport between the Atlantic and the Pacific, changes in the ice cover in oil rich areas such as the north coast of Alaska will attract the attention of the oil industry, and the disappearance of the sea ice in Hudson Bay will strongly affect its wildlife. We divided the Arctic in 85 regions and examined how the LIFS and the ISII changed in each of them since 1979. 53 regions enjoyed their longest ice-free seasons in 2006 or 2007. 2006 was special for the Canadian Arctic (longest ice-free season on record for about half of the regions) while 2007 was the year of the Russian Arctic (with the longest ice-free season in the period under study for more than half of the regions). Some of the largest variations were observed in the Russian Arctic, where the average LIFS increased from 84 days in the late 1970s to 129 around 2006, to reach a maximum of 171 days in 2007. Let us quote the changes in the White Sea (105 days between 1979 and 2006), in the South Barents Sea (70 days), in the South East Siberian Sea (60 days) and in the mid-latitude Chukchi Sea (66 days). Other areas where important changes took place include the Gulf of Finland (101 days), the Gulf of Riga (111 days) and the West coast of Spitsbergen (61 days). In the Canadian Arctic it is worth mentioning the increase of 62 days in Hudson Strait, 36 days in Hudson and Baffin Bays, and 52 days in Davis St. In almost all straits and sounds of the High Canadian Arctic the increase has been clearly non-linear and we prefer to compare the average LIFS in the periods 1979-1983 and 2002-2006. We quote an increase of 87 days in Lancaster Sound and of 74 days in Coronation Gulf. class="ab'></p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53L..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53L..07H"><span>How do the radiative effects of springtime clouds and water vapor modulate the melt onset of Arctic sea ice?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Y.; Dong, X.; Xi, B.; Deng, Y.</p> <p>2017-12-01</p> <p>Earlier studies show that there is a strong positive correlation between the mean onset date of snow melt north of 70°N and the minimum Arctic sea ice extent (SIE) in September. Based on satellite records from 1980 to 2016, the September Arctic SIE minimum is most sensitive to the early melt onset over the Siberian Sea (73°-84°N, 90°-155°), which is defined as the area of focus (AOF) in this analysis. The day with melt onset exceeding 10% area of the AOF is marked as the initial melt date for a given year. With this definition, a strong positive correlation (r=0.59 at 99% confidence level) is found between the initial melt date over the AOF and the September SIE minimum over the Arctic. Daily anomalies of cloud and radiation properties are compared between six years with earliest initial melt dates (1990, 2012, 2007, 2003, 1991, 2016) and six years with latest initial melt dates (1996, 1984, 1983, 1982, 1987, 1992) using the NASA MERRA-2 reanalysis. Our results suggest that higher cloud water path (CWP) and precipitable water vapor (PWV) are clearly associated with early melt onset years through the period of mid-March to August. Major contrasts in CWP are found between the early and late onset years in a period of approximately 30 days prior to the onset to 30 days after the onset. As a result, the early melt onset years exhibit positive anomalies for downward longwave flux at the surface and negative anomalies for downward shortwave flux, shortwave cloud radiative effect (CRE) as well as net CRE. The negative net CRE is over-compensated by the positive longwave flux anomaly associated with elevated PWV, contributing to early melt onsets. The temporal evolution of CRE and PWV radiative effect during the entire melting season will be documented together with an analysis tracing the dynamical, mid-latitude origins of increased CWP and PWV prior to initial melt onsets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA480564','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA480564"><span>Navy Sea Ice Prediction Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2002-01-01</p> <p>for the IABP drifting buoys (red), the model (green), and the model with assimilation (black). 55 Oceanography • Vol. 15 • No. 1/2002 trate the need...SPECIAL ISSUE – NAVY OPERATIONAL MODELS : TEN YEARS LATER Oceanography • Vol. 15 • No. 1/2002 44 ice extent and/or ice thickness. A general trend...most often based on a combination of models and data. Modeling sea ice can be a difficult problem, as it exists in many different forms (Figure 1). It</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24A2918F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24A2918F"><span>Simulating hydrodynamics and ice cover in Lake Erie using an unstructured grid model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujisaki-Manome, A.; Wang, J.</p> <p>2016-02-01</p> <p>An unstructured grid Finite-Volume Coastal Ocean Model (FVCOM) is applied to Lake Erie to simulate seasonal ice cover. The model is coupled with an unstructured-grid, finite-volume version of the Los Alamos Sea Ice Model (UG-CICE). We replaced the original 2-time-step Euler forward scheme in time integration by the central difference (i.e., leapfrog) scheme to assure a neutrally inertial stability. The modified version of FVCOM coupled with the ice model is applied to the shallow freshwater lake in this study using unstructured grids to represent the complicated coastline in the Laurentian Great Lakes and refining the spatial resolution locally. We conducted multi-year simulations in Lake Erie from 2002 to 2013. The results were compared with the observed ice extent, water surface temperature, ice thickness, currents, and water temperature profiles. Seasonal and interannual variation of ice extent and water temperature was captured reasonably, while the modeled thermocline was somewhat diffusive. The modeled ice thickness tends to be systematically thinner than the observed values. The modeled lake currents compared well with measurements obtained from an Acoustic Doppler Current Profiler located in the deep part of the lake, whereas the simulated currents deviated from measurements near the surface, possibly due to the model's inability to reproduce the sharp thermocline during the summer and the lack of detailed representation of offshore wind fields in the interpolated meteorological forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919277B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919277B"><span>Quantifying model uncertainty in seasonal Arctic sea-ice forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanchard-Wrigglesworth, Edward; Barthélemy, Antoine; Chevallier, Matthieu; Cullather, Richard; Fučkar, Neven; Massonnet, François; Posey, Pamela; Wang, Wanqiu; Zhang, Jinlun; Ardilouze, Constantin; Bitz, Cecilia; Vernieres, Guillaume; Wallcraft, Alan; Wang, Muyin</p> <p>2017-04-01</p> <p>Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or post-processing techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090042797','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090042797"><span>Evaluation of Surface and Near-Surface Melt Characteristics on the Greenland Ice Sheet using MODIS and QuikSCAT Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Dorothy K.; Nghiem, Son V.; Schaaf, Crystal B.; DiGirolamo, Nicolo E.</p> <p>2009-01-01</p> <p>The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-06-29/pdf/2010-15726.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-06-29/pdf/2010-15726.pdf"><span>75 FR 37311 - Airplane and Engine Certification Requirements in Supercooled Large Drop, Mixed Phase, and Ice...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-06-29</p> <p>... maximum time interval between any engine run-ups from idle and the minimum ambient temperature associated with that run-up interval. This limitation is necessary because we do not currently have any specific requirements for run-up procedures for engine ground operation in icing conditions. The engine run-up procedure...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23413190','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23413190"><span>Export of algal biomass from the melting Arctic sea ice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boetius, Antje; Albrecht, Sebastian; Bakker, Karel; Bienhold, Christina; Felden, Janine; Fernández-Méndez, Mar; Hendricks, Stefan; Katlein, Christian; Lalande, Catherine; Krumpen, Thomas; Nicolaus, Marcel; Peeken, Ilka; Rabe, Benjamin; Rogacheva, Antonina; Rybakova, Elena; Somavilla, Raquel; Wenzhöfer, Frank</p> <p>2013-03-22</p> <p>In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2629232','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2629232"><span>Nonlinear threshold behavior during the loss of Arctic sea ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Eisenman, I.; Wettlaufer, J. S.</p> <p>2009-01-01</p> <p>In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or “tipping point”) beyond which the ice–albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice–albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice–albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely. PMID:19109440</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1399D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1399D"><span>Nudging the Arctic Ocean to quantify Arctic sea ice feedbacks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dekker, Evelien; Severijns, Camiel; Bintanja, Richard</p> <p>2017-04-01</p> <p>It is well-established that the Arctic is warming 2 to 3 time faster than rest of the planet. One of the great uncertainties in climate research is related to what extent sea ice feedbacks amplify this (seasonally varying) Arctic warming. Earlier studies have analyzed existing climate model output using correlations and energy budget considerations in order to quantify sea ice feedbacks through indirect methods. From these analyses it is regularly inferred that sea ice likely plays an important role, but details remain obscure. Here we will take a different and a more direct approach: we will keep the sea ice constant in a sensitivity simulation, using a state-of -the-art climate model (EC-Earth), applying a technique that has never been attempted before. This experimental technique involves nudging the temperature and salinity of the ocean surface (and possibly some layers below to maintain the vertical structure and mixing) to a predefined prescribed state. When strongly nudged to existing (seasonally-varying) sea surface temperatures, ocean salinity and temperature, we force the sea ice to remain in regions/seasons where it is located in the prescribed state, despite the changing climate. Once we obtain fixed' sea ice, we will run a future scenario, for instance 2 x CO2 with and without prescribed sea ice, with the difference between these runs providing a measure as to what extent sea ice contributes to Arctic warming, including the seasonal and geographical imprint of the effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1013572','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1013572"><span>Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979-2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Belchansky, G.I.; Douglas, David C.; Platonov, Nikita G.</p> <p>2004-01-01</p> <p>Melt onset dates, freeze onset dates, and melt season duration were estimated over Arctic sea ice, 1979–2001, using passive microwave satellite imagery and surface air temperature data. Sea ice melt duration for the entire Northern Hemisphere varied from a 104-day minimum in 1983 and 1996 to a 124-day maximum in 1989. Ranges in melt duration were highest in peripheral seas, numbering 32, 42, 44, and 51 days in the Laptev, Barents-Kara, East Siberian, and Chukchi Seas, respectively. In the Arctic Ocean, average melt duration varied from a 75-day minimum in 1987 to a 103-day maximum in 1989. On average, melt onset in annual ice began 10.6 days earlier than perennial ice, and freeze onset in perennial ice commenced 18.4 days earlier than annual ice. Average annual melt dates, freeze dates, and melt durations in annual ice were significantly correlated with seasonal strength of the Arctic Oscillation (AO). Following high-index AO winters (January–March), spring melt tended to be earlier and autumn freeze later, leading to longer melt season durations. The largest increases in melt duration were observed in the eastern Siberian Arctic, coincident with cyclonic low pressure and ice motion anomalies associated with high-index AO phases. Following a positive AO shift in 1989, mean annual melt duration increased 2–3 weeks in the northern East Siberian and Chukchi Seas. Decreasing correlations between consecutive-year maps of melt onset in annual ice during 1979–2001 indicated increasing spatial variability and unpredictability in melt distributions from one year to the next. Despite recent declines in the winter AO index, recent melt distributions did not show evidence of reestablishing spatial patterns similar to those observed during the 1979–88 low-index AO period. Recent freeze distributions have become increasingly similar to those observed during 1979–88, suggesting a recurrent spatial pattern of freeze chronology under low-index AO conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..916E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..916E"><span>Diagnosing sea ice from the north american multi model ensemble and implications on mid-latitude winter climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elders, Akiko; Pegion, Kathy</p> <p>2017-12-01</p> <p>Arctic sea ice plays an important role in the climate system, moderating the exchange of energy and moisture between the ocean and the atmosphere. An emerging area of research investigates how changes, particularly declines, in sea ice extent (SIE) impact climate in regions local to and remote from the Arctic. Therefore, both observations and model estimates of sea ice become important. This study investigates the skill of sea ice predictions from models participating in the North American Multi-Model Ensemble (NMME) project. Three of the models in this project provide sea-ice predictions. The ensemble average of these models is used to determine seasonal climate impacts on surface air temperature (SAT) and sea level pressure (SLP) in remote regions such as the mid-latitudes. It is found that declines in fall SIE are associated with cold temperatures in the mid-latitudes and pressure patterns across the Arctic and mid-latitudes similar to the negative phase of the Arctic Oscillation (AO). These findings are consistent with other studies that have investigated the relationship between declines in SIE and mid-latitude weather and climate. In an attempt to include additional NMME models for sea-ice predictions, a proxy for SIE is used to estimate ice extent in the remaining models, using sea surface temperature (SST). It is found that SST is a reasonable proxy for SIE estimation when compared to model SIE forecasts and observations. The proxy sea-ice estimates also show similar relationships to mid-latitude temperature and pressure as the actual sea-ice predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title5-vol3/pdf/CFR-2010-title5-vol3-sec1315-4.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title5-vol3/pdf/CFR-2010-title5-vol3-sec1315-4.pdf"><span>5 CFR 1315.4 - Prompt payment standards and required notices to vendors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... minimum, liquid milk, cheese, certain processed cheese products, butter, yogurt, and ice cream, edible fats or oils, and food products prepared from edible fats or oils (including, at a minimum, mayonnaise... commodities, dairy products, edible fats or oils and food products prepared from edible fats or oils), the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title5-vol3/pdf/CFR-2011-title5-vol3-sec1315-4.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title5-vol3/pdf/CFR-2011-title5-vol3-sec1315-4.pdf"><span>5 CFR 1315.4 - Prompt payment standards and required notices to vendors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... minimum, liquid milk, cheese, certain processed cheese products, butter, yogurt, and ice cream, edible fats or oils, and food products prepared from edible fats or oils (including, at a minimum, mayonnaise... commodities, dairy products, edible fats or oils and food products prepared from edible fats or oils), the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C42B..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C42B..03D"><span>Assessing deformation and morphology of Arctic landfast sea ice using InSAR to support use and management of coastal ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dammann, D. O.; Eicken, H.; Meyer, F. J.; Mahoney, A. R.</p> <p>2016-12-01</p> <p>Arctic landfast sea ice provides important services to people, including coastal communities and industry, as well as key marine biota. In many regions of the Arctic, the use of landfast sea ice by all stakeholders is increasingly limited by reduced stability of the ice cover, which results in more deformation and rougher ice conditions as well as reduced extent and an increased likelihood of detachment from the shore. Here, we use Synthetic Aperture Radar Interferometry (InSAR) to provide stakeholder-relevant data on key constraints for sea ice use, in particular ice stability and morphology, which are difficult to assess using conventional SAR. InSAR has the capability to detect small-scale landfast ice displacements, which are linked to important coastal hazards, including the formation of cracks, ungrounding of ice pressure ridges, and catastrophic breakout events. While InSAR has previously been used to identify the extent of landfast ice and regions of deformation within, quantitative analysis of small-scale ice motion has yet to be thoroughly validated and its potential remains largely underutilized in sea ice science. Using TanDEM-X interferometry, we derive surface displacements of landfast ice within Elson Lagoon near Barrow, Alaska, which we validate using in-situ DGPS data. We then apply an inverse model to estimate rates and patterns of shorefast ice deformation in other regions of landfast ice using interferograms generated with long-temporal baseline L-band ALOS-1 PALSAR-1 data. The model is able to correctly identify deformation modes and proxies for the associated relative internal elastic stress. The derived potential for fractures corresponds well with large-scale sea ice patterns and local in-situ observations. The utility of InSAR to quantify sea ice roughness has also been explored using TanDEM-X bistatic interferometry, which eliminates the effects of temporal changes in the ice cover. The InSAR-derived DEM shows good correlation with a high-resolution Structure from Motion DEM and laser surveys collected during a field campaign utilizing unmanned aircraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170007774&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170007774&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea"><span>Skillful Spring Forecasts of September Arctic Sea Ice Extent Using Passive Microwave Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Petty, A. A.; Schroder, D.; Stroeve, J. C.; Markus, Thorsten; Miller, Jeffrey A.; Kurtz, Nathan Timothy; Feltham, D. L.; Flocco, D.</p> <p>2017-01-01</p> <p>In this study, we demonstrate skillful spring forecasts of detrended September Arctic sea ice extent using passive microwave observations of sea ice concentration (SIC) and melt onset (MO). We compare these to forecasts produced using data from a sophisticated melt pond model, and find similar to higher skill values, where the forecast skill is calculated relative to linear trend persistence. The MO forecasts shows the highest skill in March-May, while the SIC forecasts produce the highest skill in June-August, especially when the forecasts are evaluated over recent years (since 2008). The high MO forecast skill in early spring appears to be driven primarily by the presence and timing of open water anomalies, while the high SIC forecast skill appears to be driven by both open water and surface melt processes. Spatial maps of detrended anomalies highlight the drivers of the different forecasts, and enable us to understand regions of predictive importance. Correctly capturing sea ice state anomalies, along with changes in open water coverage appear to be key processes in skillfully forecasting summer Arctic sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP31C1285G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP31C1285G"><span>Physical basis for a thick ice shelf in the Arctic Basin during the penultimate glacial maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gasson, E.; DeConto, R.; Pollard, D.; Clark, C.</p> <p>2017-12-01</p> <p>A thick ice shelf covering the Arctic Ocean during glacial stages was discussed in a number of publications in the 1970s. Although this hypothesis has received intermittent attention, the emergence of new geophysical evidence for ice grounding in water depths of up to 1 km in the central Arctic Basin has renewed interest into the physical plausibility and significance of an Arctic ice shelf. Various ice shelf configurations have been proposed, from an ice shelf restricted to the Amerasian Basin (the `minimum model') to a complete ice shelf cover in the Arctic. Attempts to simulate an Arctic ice shelf have been limited. Here we use a hybrid ice sheet / shelf model that has been widely applied to the Antarctic ice sheet to explore the potential for thick ice shelves forming in the Arctic Basin. We use a climate forcing appropriate for MIS6, the penultimate glacial maximum. We perform a number of experiments testing different ice sheet / shelf configurations and compare the model results with ice grounding locations and inferred flow directions. Finally, we comment on the potential significance of an Arctic ice shelf to the global glacial climate system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814515Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814515Y"><span>Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea-ice to open ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Young, Gillian; Jones, Hazel M.; Crosier, Jonathan; Bower, Keith N.; Darbyshire, Eoghan; Taylor, Jonathan W.; Liu, Dantong; Allan, James D.; Williams, Paul I.; Gallagher, Martin W.; Choularton, Thomas W.</p> <p>2016-04-01</p> <p>The Arctic sea-ice is intricately coupled to the atmosphere[1]. The decreasing sea-ice extent with the changing climate raises questions about how Arctic cloud structure will respond. Any effort to answer these questions is hindered by the scarcity of atmospheric observations in this region. Comprehensive cloud and aerosol measurements could allow for an improved understanding of the relationship between surface conditions and cloud structure; knowledge which could be key in validating weather model forecasts. Previous studies[2] have shown via remote sensing that cloudiness increases over the marginal ice zone (MIZ) and ocean with comparison to the sea-ice; however, to our knowledge, detailed in-situ data of this transition have not been previously presented. In 2013, the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign was carried out in the vicinity of Svalbard, Norway to collect in-situ observations of the Arctic atmosphere and investigate this issue. Fitted with a suite of remote sensing, cloud and aerosol instrumentation, the FAAM BAe-146 aircraft was used during the spring segment of the campaign (Mar-Apr 2013). One case study (23rd Mar 2013) produced excellent coverage of the atmospheric changes when transitioning from sea-ice, through the MIZ, to the open ocean. Clear microphysical changes were observed, with the cloud liquid-water content increasing by almost four times over the transition. Cloud base, depth and droplet number also increased, whilst ice number concentrations decreased slightly. The surface warmed by ~13 K from sea-ice to ocean, with minor differences in aerosol particle number (of sizes corresponding to Cloud Condensation Nuclei or Ice Nucleating Particles) observed, suggesting that the primary driver of these microphysical changes was the increased heat fluxes and induced turbulence from the warm ocean surface as expected. References: [1] Kapsch, M.L., Graversen, R.G. and Tjernström, M. Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Clim. Change 3, 744-748, doi:10.1038/nclimate1884 (2013) [2] Palm, S. P., Strey, S. T., Spinhirne, J., and Markus, T.: Influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate. Journal of Geophysical Research (Atmospheres), 115, D21209, doi:10.1029/2010JD013900 (2010)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C13C0849P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C13C0849P"><span>Comparing the Accuracy of AMSRE, AMSR2, SSMI and SSMIS Satellite Radiometer Ice Concentration Products with One-Meter Resolution Visible Imagery in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peterson, E. R.; Stanton, T. P.</p> <p>2016-12-01</p> <p>Determining ice concentration in the Arctic is necessary to track significant changes in sea ice edge extent. Sea ice concentrations are also needed to interpret data collected by in-situ instruments like buoys, as the amount of ice versus water in a given area determines local solar heating. Ice concentration products are now routinely derived from satellite radiometers including the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Special Sensor Microwave Imager (SSMI), and the Special Sensor Microwave Imager/Sounder (SSMIS). While these radiometers are viewed as reliable to monitor long-term changes in sea ice extent, their accuracy should be analyzed, and compared to determine which radiometer performs best over smaller features such as melt ponds, and how seasonal conditions affect accuracy. Knowledge of the accuracy of radiometers at high resolution can help future researchers determine which radiometer to use, and be aware of radiometer shortcomings in different ice conditions. This will be especially useful when interpreting data from in-situ instruments which deal with small scale measurements. In order to compare these passive microwave radiometers, selected high spatial resolution one-meter resolution Medea images, archived at the Unites States Geological Survey, are used for ground truth comparison. Sea ice concentrations are derived from these images in an interactive process, although estimates are not perfect ground truth due to exposure of images, shadowing and cloud cover. 68 images are retrieved from the USGS website and compared with 9 useable, collocated SSMI, 33 SSMIS, 36 AMSRE, and 14 AMSR2 ice concentrations in the Arctic Ocean. We analyze and compare the accuracy of radiometer instrumentation in differing ice conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMPP31A1300S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMPP31A1300S"><span>Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroup, J. S.; Kelly, M. A.; Lowell, T.</p> <p>2009-12-01</p> <p>A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPP31A1826A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPP31A1826A"><span>Holocene temperature history at the west Greenland Ice Sheet margin reconstructed from lake sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Axford, Y.; Losee, S.; Briner, J. P.; Francis, D.; Langdon, P. G.; Walker, I.</p> <p>2011-12-01</p> <p>Paleoclimate proxy data can help reduce uncertainties regarding how the Greenland Ice Sheet, and thus global sea level, will respond to future climate change. Studies of terrestrial deposits along Greenland's margins offer opportunities to reconstruct both past temperature changes and the associated changes in Greenland Ice Sheet extent, thus empirically characterizing the ice sheet's response to temperature change. Here we present Holocene paleoclimate reconstructions developed from sediment records of five lakes along the western ice sheet margin, near Jakobshavn Isbræ and Disko Bugt. Insect (Chironomidae, or non-biting midge) remains from North Lake provide quantitative estimates of summer temperatures over the past ca. 7500 years at multi-centennial resolution, and changes in sediment composition at all five lakes offer evidence for glacier fluctuations, changes in lake productivity, and other environmental changes throughout the Holocene. Aims of this study include quantification of warmth in the early to mid Holocene, when summer solar insolation forcing exceeded present-day values at northern latitudes and the local Greenland Ice Sheet margin receded inboard of its present position, and the magnitude of subsequent Neoglacial and Little Ice Age cooling that drove ice sheet expansion. We find that the Jakobshavn Isbrae region experienced the warmest temperatures of the Holocene (with summers 2 to 3.5 degrees C warmer than present) between ~6000 and 4000 years ago. Neoglacial cooling began rather abruptly ~4000 years ago and intensified 3000 years ago. Our proxy data suggest that the coldest summers of the Holocene occurred during the 18th and 19th centuries in the Jakobshavn region. These results agree well with previous glacial geologic studies reconstructing local ice margin positions through the Holocene. Such reconstructions of paleoclimate and past ice sheet extent provide targets for testing and improving ice sheet models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1763V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1763V"><span>The Little Ice Age and Solar Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velasco Herrera, Victor Manuel; Leal Silva, C. M. Carmen; Velasco Herrera, Graciela</p> <p></p> <p>We analyze the ice winter severity index on the Baltic region since 1501-1995. We found that the variability of this index is modulated among other factors by the secular solar activity. The little ice ages that have appeared in the North Hemisphere occurred during periods of low solar activity. Seemingly our star is experiencing a new quiet stage compared with Maunder or Dalton minimum, this is important because it is estimated that even small changes in weather can represent a great impact in ice index. These results are relevant since ice is a very important element in the climate system of the Baltic region and it can affect directly or indirectly many of the oceanographic, climatic, eco-logical, economical and cultural patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21141043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21141043"><span>Loss of sea ice in the Arctic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perovich, Donald K; Richter-Menge, Jacqueline A</p> <p>2009-01-01</p> <p>The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015207','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015207"><span>Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2011-01-01</p> <p>Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811086D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811086D"><span>Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dale, Ethan; McDonald, Adrian; Rack, Wolfgang</p> <p>2016-04-01</p> <p>Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C14B..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C14B..04C"><span>Polarimetric C-/X-band Synthetic Aperture Radar Observations of Melting Sea Ice in the Canadian Arctic Archipelago</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.</p> <p>2013-12-01</p> <p>Operational ice information services rely heavily on space-borne synthetic aperture radar (SAR) data for the production of ice charts to meet their mandate of providing timely and accurate sea ice information to support safe and efficient marine operations. During the summer melt period, the usefulness of SAR data for sea ice monitoring is limited by the presence of wet snow and melt ponds on the ice surface, which can mask the signature of the underlying ice. This is a critical concern for ice services whose clients (e.g. commercial shipping, cruise tourism, resource exploration and extraction) are most active at this time of year when sea ice is at its minimum extent, concentration and thickness. As a result, there is a need to further quantify the loss of ice information in SAR data during the melt season and to identify what information can still be retrieved about ice surface conditions and melt pond evolution at this time of year. To date the majority of studies have been limited to analysis of single-polarization C-band SAR data. This study will investigate the potential complimentary and unique sea ice information that polarimetric C- and X-band SAR data can provide to supplement the information available from traditional single co-polarized C-band SAR data. A time-series of polarimetric C- and X-band SAR data was acquired over Jones Sound in the Canadian Arctic Archipelago, in the vicinity of the Grise Fiord, Nunavut. Five RADARSAT-2 Wide Fine Quad-pol images and 11 TerraSAR-X StripMap dual-pol (HH/VV) images were acquired. The time-series begins at the onset of melt in early June and extends through advanced melt conditions in late July. Over this period several ponding and drainage events and two snowfall events occurred. Field observations of sea ice properties were collected using an Ice Mass Balance (IMB) buoy, hourly photos from a time-lapse camera deployed on a coastal cliff, and manual in situ measurements of snow thickness and melt pond depth. Where available, clear-sky data from optical sensors (MODIS, Landsat-8, and WorldView) are also used to provide supplementary information on melt pond coverage and evolution. Meteorological data are available from an Environment Canada weather station in Grise Fiord. In this presentation we will discuss the sea ice information provided by each polarization and frequency and evaluate the impact of melt pond evolution on SAR backscatter. Results to date indicate that C- and X-band provide predominantly redundant information, and cross-polarized backscatter (only acquired at C-band) is often very low and near the system noise floor. Early in the melt season a thick wet snow pack is present and both frequencies provide very little ice information. This is attributed to the strong attenuation of the microwave signal by the wet snow. At this time the underlying ice is effectively obscured. During heavily ponded periods backscatter is highly variable, attributed to changing winds and thus variable melt pond surface roughness. In the final week of observations the fast ice in the region is breaking up and open water is present in some images. In these images C-band appears to provide greater contrast between the melting ice and open water than X-band. Analysis of polarimetric parameters is ongoing.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/43689','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/43689"><span>Growth ring response in shortleaf pine following glaze icing conditions in western Arkansas and eastern Oklahoma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Douglas J. Stevenson; Thomas B. Lynch; James M. Guldin</p> <p>2013-01-01</p> <p>Width reduction in growth rings in shortleaf pine (Pinus echinata Mill.) following glaze ice conditions produces a characteristic pattern dependent on live-crown ratio and extent of crown loss. Ring widths of 133 trees for 3 years preceding and 7 years following the December 2000 ice storm (Bragg and others 2002) in western Arkansas and eastern...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810016149','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810016149"><span>Ice conditions on the Chesapeake Bay as observed from LANDSAT during the winters of 1977, 1978 and 1979</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Foster, J. L.</p> <p>1980-01-01</p> <p>The LANDSAT observations during the winters of 1977, 1978 and 1979, which were unusually cold in the northeastern U.S. and in the Chesapeake Bay area, were evaluated. Abnormal atmospheric circulation patterns displaced cold polar air to the south, and as a result, the Chesapeake Bay experienced much greater than normal icing conditions during these 3 years. The LANDSAT observations of the Chesapeake Bay area during these winters demonstrate the satellite's capabilities to monitor ice growth and melt, to detect ice motions, and to measure ice extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930082126','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930082126"><span>The Calculation of the Heat Required for Wing Thermal Ice Prevention in Specified Icing Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.</p> <p>1947-01-01</p> <p>Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JApMe..37...23S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JApMe..37...23S"><span>Variability of AVHRR-Derived Clear-Sky Surface Temperature over the Greenland Ice Sheet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, Julienne; Steffen, Konrad</p> <p>1998-01-01</p> <p>The Advanced Very High Resolution Radiometer is used to derive surface temperatures for one satellite pass under clear skies over the Greenland ice sheet from 1989 through 1993. The results of these temperatures are presented as monthly means, and their spatial and temporal variability are discussed. Accuracy of the dry snow surface temperatures is estimated to be better than 1 K during summer. This error is expected to increase during polar night due to problems in cloud identification. Results indicate the surface temperature of the Greenland ice sheet is strongly dominated by topography, with minimum surface temperatures associated with the high elevation regions. In the summer, maximum surface temperatures occur during July along the western coast and southern tip of the ice sheet. Minimum temperatures are found at the summit during summer and move farther north during polar night. Large interannual variability in surface temperatures occurs during winter associated with katabatic storm events. Summer temperatures show little variation, although 1992 stands out as being colder than the other years. The reason for the lower temperatures during 1992 is believed to be a result of the 1991 eruption of Mount Pinatubo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..299..339S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..299..339S"><span>The Dorsa Argentea Formation and the Noachian-Hesperian climate transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scanlon, K. E.; Head, J. W.; Fastook, J. L.; Wordsworth, R. D.</p> <p>2018-01-01</p> <p>The Dorsa Argentea Formation (DAF), a set of geomorphologic units covering ∼1.5 million square kilometers in the south circumpolar region of Mars, has been interpreted as the remnants of a large south polar ice sheet that formed near the Noachian-Hesperian boundary and receded in the early Hesperian. Determining the extent and thermal regime of the DAF ice sheet, as well as the mechanism and timing of its recession, can therefore provide insight into the ancient martian climate and the timing of the transition from a presumably thicker CO2 atmosphere to the present climate. We used the Laboratoire de Météorologie Dynamique (LMD) early Mars global climate model (GCM) and the University of Maine Ice Sheet Model (UMISM) glacial flow model to constrain climates allowing development of a south polar ice sheet of DAF-like size and shape. In addition, we modeled basal melting of this ice sheet in amounts and locations consistent with observed glaciofluvial landforms. A large, asymmetric region of ice stability surrounding the south pole is a robust feature of GCM simulations with spin-axis obliquity of 15° or 25° and a 600-1000 mb CO2 atmosphere. The shape results from the large-scale south polar topography of Mars and the strong dependence of surface temperature on altitude under a thicker atmosphere. Of the scenarios considered in this study, the extent of the modeled DAF ice sheet in UMISM simulations most closely matches that of the DAF when the surface water ice inventory of Mars is a ∼137 m global equivalent layer (GEL) and spin-axis obliquity is 15°. In climates warmed only by CO2, significant basal melting does not occur except when the ice inventory is larger than plausible estimates for early Mars. In this case, the extent of the south polar ice sheet is also much larger than that of the DAF, and basal melting is more widespread than observed landforms indicate. When an idealized greenhouse gas warms the surface by at least 20°C near the poles relative to CO2 alone, the stable extent of the ice sheet is less than that of the DAF units, but widespread basal melting occurs, with maxima in the locations where eskers are currently observed. We therefore conclude that warming by a gas other than CO2 alone was necessary to enable the construction of glaciofluvial landforms in the DAF. Previously published crater exposure ages of eskers in the DAF indicate that eskers were being exposed as activity was ceasing in the equatorial valley networks, suggesting that the warming that allowed basal melting at the edges of the DAF ice sheet were broadly contemporaneous with those in which the valley networks were carved. Finally, elevated Tharsis topography is required to produce an ice sheet with the shape of the DAF. Thus, our results are not consistent with the DAF (and the valley networks) forming before the emplacement of Tharsis, as recently suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1762A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1762A"><span>Global warming related transient albedo feedback in the Arctic and its relation to the seasonality of sea ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andry, Olivier; Bintanja, Richard; Hazeleger, Wilco</p> <p>2015-04-01</p> <p>The Arctic is warming two to three times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (i.e. 2007, 2012). Considering that the Arctic Ocean is mainly ice-covered and that the albedo of sea ice is very high compared to that of open water, the change in sea ice cover is very likely to have a strong impact on the local surface albedo feedback. Here we quantify the temporal changes in surface albedo feedback in response to global warming. Usually feedbacks are evaluated as being representative and constant for long time periods, but we show here that the strength of climate feedbacks in fact varies strongly with time. For instance, time series of the amplitude of the surface albedo feedback, derived from future climate simulations (CIMP5, RCP8.5 up to year 2300) using a kernel method, peaks around the year 2100. This maximum is likely caused by an increased seasonality in sea-ice cover that is inherently associated with sea ice retreat. We demonstrate that the Arctic average surface albedo has a strong seasonal signature with a maximum in spring and a minimum in late summer/autumn. In winter when incoming solar radiation is minimal the surface albedo doesn't have an important effect on the energy balance of the climate system. The annual mean surface albedo is thus determined by the seasonality of both downwelling shortwave radiation and sea ice cover. As sea ice cover reduces the seasonal signature is modified, the transient part from maximum sea ice cover to its minimum is shortened and sharpened. The sea ice cover is reduced when downwelling shortwave radiation is maximum and thus the annual surface albedo is drastically smaller. Consequently the change in annual surface albedo with time will become larger and so will the surface albedo feedback. We conclude that a stronger seasonality in sea ice leads to a stronger surface albedo feedback, which accelerates melting of sea ice. Hence, the change in seasonality and the associated change in feedback strength is an integral part of the positive surface albedo feedback leading to Arctic amplification and diminishing sea ice cover in the next century when global climate warms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41A0639L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41A0639L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.</p> <p>2016-12-01</p> <p>The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong lateral gradients at the MIZ. This presentation will discuss the evolution of the Arctic upper ocean over the summer to the start of freeze up and the relationship of its variability to sea ice extent and atmospheric forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171197','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171197"><span>MODIS Snow and Sea Ice Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.</p> <p>2004-01-01</p> <p>In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.1399B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.1399B"><span>Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.</p> <p>2017-08-01</p> <p>Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRE..122.2250B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRE..122.2250B"><span>Preservation of Midlatitude Ice Sheets on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bramson, A. M.; Byrne, S.; Bapst, J.</p> <p>2017-11-01</p> <p>Excess ice with a minimum age of tens of millions of years is widespread in Arcadia Planitia on Mars, and a similar deposit has been found in Utopia Planitia. The conditions that led to the formation and preservation of these midlatitude ice sheets hold clues to past climate and subsurface structure on Mars. We simulate the thermal stability and retreat of buried excess ice sheets over 21 Myr of Martian orbital solutions and find that the ice sheets can be orders of magnitude older than the obliquity cycles that are typically thought to drive midlatitude ice deposition and sublimation. Retreat of this ice in the last 4 Myr could have contributed 6% of the volume of the north polar layered deposits (NPLD) and more than 10% if the NPLD are older than 4 Myr. Matching the measured dielectric constants of the Arcadia and Utopia Planitia deposits requires ice porosities of 25-35%. We model geothermally driven vapor migration through porous ice under Martian temperatures and find that Martian firn may be able to maintain porosity for timescales longer than we predict for retreat of the ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170005812&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170005812&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea"><span>Bellingshausen Sea Ice Extent Recorded in an Antarctic Peninsula Ice Core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Porter, Stacy E.; Parkinson, Claire L.; Mosley-Thompson, Ellen</p> <p>2016-01-01</p> <p>Annual net accumulation (A(sub n)) from the Bruce Plateau (BP) ice core retrieved from the Antarctic Peninsula exhibits a notable relationship with sea ice extent (SIE) in the Bellingshausen Sea. Over the satellite era, both BP A(sub n) and Bellingshausen SIE are influenced by large-scale climatic factors such as the Amundsen Sea Low, Southern Annular Mode, and Southern Oscillation. In addition to the direct response of BP A(sub n) to Bellingshausen SIE (e.g., more open water as a moisture source), these large-scale climate phenomena also link the BP and the Bellingshausen Sea indirectly such that they exhibit similar responses (e.g., northerly wind anomalies advect warm, moist air to the Antarctic Peninsula and neighboring Bellingshausen Sea, which reduces SIE and increases A(sub n)). Comparison with a time series of fast ice at South Orkney Islands reveals a relationship between BP A(sub n) and sea ice in the northern Weddell Sea that is relatively consistent over the twentieth century, except when it is modulated by atmospheric wave patterns described by the Trans-Polar Index. The trend of increasing accumulation on the Bruce Plateau since approximately 1970 agrees with other climate records and reconstructions in the region and suggests that the current rate of sea ice loss in the Bellingshausen Sea is unrivaled in the twentieth century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRD..120.1404R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRD..120.1404R"><span>Stable "Waterbelt" climates controlled by tropical ocean heat transport: A nonlinear coupled climate mechanism of relevance to Snowball Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rose, Brian E. J.</p> <p>2015-02-01</p> <p>Ongoing controversy about Neoproterozoic Snowball Earth events motivates a theoretical study of stability and hysteresis properties of very cold climates. A coupled atmosphere-ocean-sea ice general circulation model (GCM) has four stable equilibria ranging from 0% to 100% ice cover, including a "Waterbelt" state with tropical sea ice. All four states are found at present-day insolation and greenhouse gas levels and with two idealized ocean basin configurations. The Waterbelt is stabilized against albedo feedback by intense but narrow wind-driven ocean overturning cells that deliver roughly 100 W m-2 heating to the ice edges. This requires three-way feedback between winds, ocean circulation, and ice extent in which circulation is shifted equatorward, following the baroclinicity at the ice margins. The thermocline is much shallower and outcrops in the tropics. Sea ice is snow-covered everywhere and has a minuscule seasonal cycle. The Waterbelt state spans a 46 W m-2 range in solar constant, has a significant hysteresis, and permits near-freezing equatorial surface temperatures. Additional context is provided by a slab ocean GCM and a diffusive energy balance model, both with prescribed ocean heat transport (OHT). Unlike the fully coupled model, these support no more than one stable ice margin, the position of which is slaved to regions of rapid poleward decrease in OHT convergence. Wide ranges of different climates (including the stable Waterbelt) are found by varying the magnitude and spatial structure of OHT in both models. Some thermodynamic arguments for the sensitivity of climate, and ice extent to OHT are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29388677','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29388677"><span>Effects of Emulsifier, Overrun and Dasher Speed on Ice Cream Microstructure and Melting Properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Warren, Maya M; Hartel, Richard W</p> <p>2018-03-01</p> <p>Ice cream is a multiphase frozen food containing ice crystals, air cells, fat globules, and partially coalesced fat globule clusters dispersed in an unfrozen serum phase (sugars, proteins, and stabilizers). This microstructure is responsible for ice cream's melting characteristics. By varying both formulation (emulsifier content and overrun) and processing conditions (dasher speed), the effects of different microstructural elements, particularly air cells and fat globule clusters, on ice cream melt-down properties were studied. Factors that caused an increase in shear stress within the freezer, namely increasing dasher speed and overrun, caused a decrease in air cell size and an increase in extent of fat destabilization. Increasing emulsifier content, especially of polysorbate 80, caused an increase in extent of fat destabilization. Both overrun and fat destabilization influenced drip-through rates. Ice creams with a combination of low overrun and low fat destabilization had the highest drip-through rates. Further, the amount of remnant foam left on the screen increased with reduced drip-through rates. These results provide a better understanding of the effects of microstructure components and their interactions on drip-through rate. Manipulating operating and formulation parameters in ice cream manufacture influences the microstructure (air cells, ice crystals, and fat globule clusters). This work provides guidance on which parameters have most effect on air cell size and fat globule cluster formation. Further, the structural characteristics that reduce melt-down rate were determined. Ice cream manufacturers will use these results to tailor their products for the desired quality attributes. © 2018 Institute of Food Technologists®.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24950115','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24950115"><span>A review of the physics of ice surface friction and the development of ice skating.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Formenti, Federico</p> <p>2014-01-01</p> <p>Our walking and running movement patterns require friction between shoes and ground. The surface of ice is characterised by low friction in several naturally occurring conditions, and compromises our typical locomotion pattern. Ice skates take advantage of this slippery nature of ice; the first ice skates were made more than 4000 years ago, and afforded the development of a very efficient form of human locomotion. This review presents an overview of the physics of ice surface friction, and discusses the most relevant factors that can influence ice skates' dynamic friction coefficient. It also presents the main stages in the development of ice skating, describes the associated implications for exercise physiology, and shows the extent to which ice skating performance improved through history. This article illustrates how technical and materials' development, together with empirical understanding of muscle biomechanics and energetics, led to one of the fastest forms of human powered locomotion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24015900','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24015900"><span>Sea ice ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arrigo, Kevin R</p> <p>2014-01-01</p> <p>Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC32B..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC32B..02P"><span>Contrasting Trends in Arctic and Antarctic Sea Ice Coverage Since the Late 1970s</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parkinson, C. L.</p> <p>2016-12-01</p> <p>Satellite observations have allowed a near-continuous record of Arctic and Antarctic sea ice coverage since late 1978. This record has revealed considerable interannual variability in both polar regions but also significant long-term trends, with the Arctic losing, the Antarctic gaining, and the Earth as a whole losing sea ice coverage. Over the period 1979-2015, the trend in yearly average sea ice extents in the Arctic is -53,100 km2/yr (-4.3 %/decade) and in the Antarctic is 23,800 km2/yr (2.1 %/decade). For all 12 months, trends are negative in the Arctic and positive in the Antarctic, with the highest magnitude monthly trend being for September in the Arctic, at -85,300 km2/yr (-10.9 %/decade). The decreases in Arctic sea ice extents have been so dominant that not a single month since 1986 registered a new monthly record high, whereas 75 months registered new monthly record lows between 1987 and 2015 and several additional record lows were registered in 2016. The Antarctic sea ice record highs and lows are also out of balance, in the opposite direction, although not in such dramatic fashion. Geographic details on the changing ice covers, down to the level of individual pixels, can be seen by examining changes in the length of the sea ice season. Results reveal (and quantify) shortening ice seasons throughout the bulk of the Arctic marginal ice zone, the main exception being within the Bering Sea, and lengthening sea ice seasons through much of the Southern Ocean but shortening seasons in the Bellingshausen Sea, southern Amundsen Sea, and northwestern Weddell Sea. The decreasing Arctic sea ice coverage was widely anticipated and fits well with a large array of environmental changes in the Arctic, whereas the increasing Antarctic sea ice coverage was not widely anticipated and explaining it remains an area of active research by many scientists exploring a variety of potential explanations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP53B2008W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP53B2008W"><span>Greenhouse to Icehouse Antarctic Paleoclimate and Ice History from George V Land and Adélie Land Shelf Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, T.; Escutia, C.; De Santis, L.; O'Brien, P.; Pekar, S. F.; Brinkhuis, H.; Domack, E. W.</p> <p>2013-12-01</p> <p>Along the George V and Adélie Land continental shelf of East Antarctica, shallowly-buried strata contain a record of Antarctica's climate and ice history from the lush forests of the Eocene greenhouse to the dynamic ice sheet margins of the Neogene. Short piston cores and dredges have recovered Early Cretaceous and Eocene organic-rich sediment at the seabed, and in 2010, IODP Expedition 318 recovered earliest Oligocene and early Pliocene subglacial and proglacial diamictites. However, challenging ice and drilling conditions from the JOIDES Resolution on the shelf resulted in poor core recovery and sites had to be abandoned before the stratigraphic targets could be reached. Therefore, in a new IODP drilling proposal submitted earlier this year, we propose to use the MeBo sea bed drill for improved core recovery and easier access to the shelf, and drill a stratigraphic transect of shallow (~80m) holes. To investigate the evolution of the Antarctic ice sheet in this sector, we target strata above and below regional erosional and downlap surfaces to date and characterize major episodes of ice sheet advance and retreat. These direct records of ice extent on the shelf can be set in the context of Southern Ocean records of temperature, ice-rafted debris (IRD) and latitudinal fluctuations of the opal belt, and hence we can relate ice sheet evolution to paleoclimate conditions. Targets include possible late Eocene precursor glaciations, the Eocene/Oligocene boundary erosion surface, Oligocene and Miocene ice extents, and ice margin fluctuations in the Pliocene. At the Cretaceous and Eocene proposed sites, marine and terrestrial temperature proxies and palynological records will provide information on high-latitude paleoenvironments and pole-equator temperature gradients. Here we present existing data from the area and the proposed new drill sites. The ice and climate history of the George V and Adélie Land margin can provide warm-world scenarios to help understand ice sheet instability in analogous future warm climates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810447B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810447B"><span>Rate and style of ice stream retreat constrained by new surface-exposure ages: The Minch, NW Scotland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bradwell, Tom; Small, David; Fabel, Derek; Dove, Dayton; Cofaigh, Colm O.; Clark, Chris; Consortium, Britice-Chrono</p> <p>2016-04-01</p> <p>Chronologically constrained studies of former ice-sheet extents and dynamics are important for understanding past cryospheric responses and modelling future ice-sheet and sea-level change. As part of the BRITICE-CHRONO project, we present new geomorphological and chronological data from a marine-terminating ice stream system in NW Europe that operated during the Late Weichselian Glaciation. A suite of 51 cosmogenic-nuclide exposure ages from ice sheet moraines and glacially transported boulders constrain the maximum extent of the ice sheet on the continental shelf (~28 ka BP) and its subsequent retreat, between ~27 and 16 ka BP, into a large marine embayment (ca. 7000 km2; the Minch, NW Scotland). Recently acquired swath bathymetry and acoustic sub-bottom profiler data reveal several large transverse grounding-zone wedges up to 40 m thick and 5 km wide with diagnostic acoustic-facies architecture. These seabed sediment wedges mark former quasi-stable positions of grounded marine-terminating ice-stream fronts; their size and thickness suggest long-lived stillstands of the order of centuries. Statistically significant clusters of exposure ages from glacial deposits on islands and intervening headlands shed important new light on the age of these marine grounding-zone wedges and, by inference, the rate and timing of Minch palaeo-ice stream retreat. We find strong evidence for episodic ice stream retreat on the continental shelf between ~28-24 ka BP, in the outer Minch between ~24-22 ka BP, and in the central Minch between 22-18.5 ka BP. In contrast, final ice stream deglaciation (<18 ka) across the deepest parts of the inner Minch embayment, was probably rapid and uninterrupted - with the ice sheet margin at or close to the present-day coastline in NW Scotland by 16.1 ka BP. It is hoped that these results will form the empirical basis for future ice-sheet modelling of this dynamically sensitive sector of the British-Irish Ice Sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000757.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000757.html"><span>Arctic Sea Ice Sets New Record Winter Low</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-03-19</p> <p>The sea ice cap of the Arctic appeared to reach its annual maximum winter extent on February 25, according to data from the NASA-supported National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.61 million square miles (14.54 million square kilometers), this year’s maximum extent was the smallest on the satellite record and also one of the earliest. Credit: NASA Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0754M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0754M"><span>Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.</p> <p>2016-12-01</p> <p>Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25978903','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25978903"><span>Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cox, Stephen J; Kathmann, Shawn M; Slater, Ben; Michaelides, Angelos</p> <p>2015-05-14</p> <p>Coarse grained molecular dynamics simulations are presented in which the sensitivity of the ice nucleation rate to the hydrophilicity of a graphene nanoflake is investigated. We find that an optimal interaction strength for promoting ice nucleation exists, which coincides with that found previously for a face centered cubic (111) surface. We further investigate the role that the layering of interfacial water plays in heterogeneous ice nucleation and demonstrate that the extent of layering is not a good indicator of ice nucleating ability for all surfaces. Our results suggest that to be an efficient ice nucleating agent, a surface should not bind water too strongly if it is able to accommodate high coverages of water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186594','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186594"><span>Diminishing sea ice in the western Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stone, R.S.; Belchansky, G.I.; Drobot, Sheldon; Douglas, David C.; Levinson, D.H.; Waple, A.M.</p> <p>2004-01-01</p> <p>Since the advent of satellite passive microwave radiometry (1978), variations in sea ice extent and concentration have been carefully monitored from space. An estimated 7.4% decrease in sea ice extent has occurred in the last 25 yr (Johannessen et al. 2004), with recent record minima (e.g., Maslanik et al. 1999; Serreze et al. 2003) accounting for much of the decline. Comparisons between the time series of Arctic sea ice melt dynamics and snowmelt dates at the NOAA–CMDL Barrow Observatory (BRW) reveal intriguing correlations.Melt-onset dates over sea ice (Drobot and Anderson 2001) were cross correlated with the melt-date time series from BRW, and a prominent region of high correlation between snowmelt onset over sea ice and the BRW record of melt dates was approximately aligned with the climatological center of the Beaufort Sea Anticyclone (BSA). The BSA induces anticyclonic ice motion in the region, effectively forcing the Beaufort gyre. A weak gyre caused by a breakdown of the BSA diminishes transport of multiyear ice into this region (Drobot and Maslanik 2003). Similarly, the annual snow cycle at BRW varies with the position and intensity of the BSA (Stone et al. 2002, their Fig. 6). Thus, variations in the BSA appear to have far-reaching effects on the annual accumulation and subsequent melt of snow over a large region of the western Arctic.A dramatic increase in melt season duration (Belchansky et al. 2004) was also observed within the same region of high correlation between onset of melt over the ice pack and snowmelt at BRW (Fig. 5.7). By inference, this suggests linkages between factors that modulate the annual cycle of snow on land and processes that influence melting of snow and ice in the western Arctic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020038906&hterms=aircraft+mass+properties&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Daircraft%2Bmass%2Bproperties','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020038906&hterms=aircraft+mass+properties&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Daircraft%2Bmass%2Bproperties"><span>The Effects of Aircraft Wake Dynamics on Contrail Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lewellen, D. C.; Lewellen, W. S.; Grose, W. L. (Technical Monitor)</p> <p>2001-01-01</p> <p>Results of large-eddy simulations of the development of young persistent ice contrails are presented, concentrating on the interactions between the aircraft wake dynamics and the ice cloud evolution over ages front a few seconds to approx. 30 min. The 3D unsteady evolution of the dispersing engine exhausts, trailing vortex pair interaction and breakup, and subsequent Brunt-Vaisala oscillations of the older wake plume are modeled in detail in high-resolution simulations, coupled with it bulk microphysics model for the contrail ice development. The simulations confirm that the early wake dynamics can have a strong influence on the properties of persistent contrails even at late times. The vortex dynamics are the primary determinant of the vertical extent of the contrail (until precipitate ton becomes significant): and this together with the local wind shear largely determines the horizontal extent. The ice density, ice crystal number density, and a conserved exhaust tracer all develop and disperse in different fashions from each other. The total ice crystal number can be significantly reduced due to adiabatic compression resulting from the downward motion of the vortex system, even for ambient conditions that are substantially supersaturated with respect to ice. The fraction of the initial ice crystals surviving, their spatial distribution and the ice mass distribution are all sensitive to the aircraft type, ambient humidity, assumed initial ice crystal number, and ambient turbulence conditions. There is a significant range of conditions for which a smaller transport such as a B737 produces as significant a persistent contrail as a larger transport such as a B747, even though the latter consumes almost five times as much fuel. The difficulties involved in trying to minimize persistent contrail production are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.422...58T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.422...58T"><span>Bathymetry in Petermann fjord from Operation IceBridge aerogravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinto, Kirsty J.; Bell, Robin E.; Cochran, James R.; Münchow, Andreas</p> <p>2015-07-01</p> <p>Petermann Glacier is a major glacier in northern Greenland, maintaining one of the few remaining floating ice tongues in Greenland. Monitoring programs, such as NASA's Operation IceBridge have surveyed Petermann Glacier over several decades and have found it to be stable in terms of mass balance, velocity and grounding-line position. The future vulnerability of this large glacier to changing ocean temperatures and climate depends on the ocean-ice interactions beneath its floating tongue. These cannot currently be predicted due to a lack of knowledge of the bathymetry underneath the ice tongue. Here we use aerogravity data from Operation IceBridge, together with airborne radar and laser data and shipborne bathymetry-soundings to model the bathymetry beneath the Petermann ice tongue. We find a basement-cored inner sill at 540-610 m depth that results in a water cavity with minimum thickness of 400 m about 25 km from the grounding line. The sill is coincident with the location of the melt rate minimum. Seaward of the sill the fjord is strongly asymmetric. The deepest point occurs on the eastern side of the fjord at 1150 m, 600 m deeper than on the western side. This asymmetry is due to a sedimentary deposit on the western side of the fjord. A 350-410 m-deep outer sill, also mapped by marine surveys, marks the seaward end of the fjord. This outer sill is aligned with the proposed Last Glacial Maximum (LGM) grounding-line position for Petermann Glacier. The inner sill likely provided a stable pinning point for the grounding line in the past, punctuating the retreat of Petermann Glacier since the LGM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040161139','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040161139"><span>Towards a Three-Dimensional Near-Real Time Cloud Product for Aviation Safety and Weather Diagnoses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Minnis, Patrick; Nguyen, Louis; Palikonda, Rabindra; Spangeberg, Douglas; Nordeen, Michele L.; Yi, Yu-Hong; Ayers, J. Kirk</p> <p>2004-01-01</p> <p>Satellite data have long been used for determining the extent of cloud cover and for estimating the properties at the cloud tops. The derived properties can also be used to estimate aircraft icing potential to improve the safety of air traffic in the region. Currently, cloud properties and icing potential are derived in near-real time over the United States of America (USA) from the Geostationary Operational Environmental Satellite GOES) imagers at 75 W and 135 W. Traditionally, the results have been given in two dimensions because of the lack of knowledge about the vertical extent of clouds and the occurrence of overlapping clouds. Aircraft fly in a three-dimensional space and require vertical as well as horizontal information about clouds, their intensity, and their potential for icing. To improve the vertical component of the derived cloud and icing parameters, this paper explores various methods and datasets for filling in the three-dimensional space over the USA with cloud water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMED33A0541T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMED33A0541T"><span>Techniques for integrating the animations, multimedia, and interactive features of NASA’s climate change website, Climate Change: NASA’s Eyes on the Earth, into the classroom to advance climate literacy and encourage interest in STEM disciplines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tenenbaum, L. F.; Jackson, R.; Greene, M.</p> <p>2009-12-01</p> <p>I developed a variety of educational content for the "Climate Change: NASA’s Eyes on the Earth" website, notably an interactive feature for the "Key Indicators: Ice Mass Loss" link that includes photo pair images of glaciers around the world, changes in Arctic sea ice extent videos, Greenland glacial calving time lapse videos, and Antarctic ice shelf break up animations, plus news pieces and a Sea Level Quiz. I integrated these resources and other recent NASA and JPL climate and oceanography data and information into climate change components of Oceanography Lab exercises, Oceanography lectures and Introduction to Environmental Technology courses. I observed that using these Internet interactive features in the classroom greatly improved student participation, topic comprehension, scientific curiosity and interest in Earth and climate science across diverse student populations. Arctic Sea Ice Extent Summer 2007 Credit: NASA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720021667','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720021667"><span>Lewis Research Center earth resources program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mark, H.</p> <p>1972-01-01</p> <p>The Lewis Research Center earth resources program efforts are in the areas of: (1) monitoring and rapid evaluation of water quality; (2) determining ice-type and ice coverage distribution to aid operations in a possible extension of the Great Lakes ice navigation and shipping season; (3) monitoring spread of crop viruses; and (4) extent of damage to strip mined areas as well as success of efforts to rehabilitate such areas for agriculture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17781630','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17781630"><span>The surface of the ice-age Earth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>1976-03-19</p> <p>In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based ice sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the extent of pack ice and marine-based ice sheets. In the Southern Hemisphere the most striking contrast was the greater extent of sea ice. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive areas of permanent ice and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP51A2283T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP51A2283T"><span>Spatial Variability of Climate Signatures Recorded in an Array of Shallow Firn Cores from the Western Greenland Percolation Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thundercloud, Z. R.; Osterberg, E. C.; Ferris, D. G.; Graeter, K.; Lewis, G.; Hawley, R. L.; Marshall, H. P.</p> <p>2016-12-01</p> <p>Greenland ice cores provide seasonally to annually resolved proxy records of past temperature, accumulation and atmospheric circulation. Most Greenland ice cores have been collected from the dry snow zone at elevations greater than 2500 m to produce records of North Atlantic paleoclimate over the last full glacial cycle. Ice cores collected from more costal regions, however, provide the opportunity to develop regional-scale records of climate conditions along ice sheet margins where recent temperature and precipitation changes have been larger than those in the ice sheet interior. These cores are more readily comparable to lake sediment and landscape (i.e. moraine) records from the ice sheet margin, and are potentially more sensitive to sea-ice variability due to the proximity to the coast. Here we present major ion and stable isotope records from an array of firn cores (40-55 year records) collected in the western Greenland percolation zone, and assess the spatial variability of ice core statistical relationships with the North Atlantic Oscillation (NAO) and Baffin Bay sea ice extent. Seven cores were collected from elevations of 2100-2500 m along a 400-km segment of the ice sheet from Dye-2 to Milcent as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project from May-June 2016. They were sampled by a continuous melter system at Dartmouth College, and analyzed using Dionex ion chromatographs and a Picarro L2130-i laser ring-down spectrometer. We focus on the signature of the NAO and Baffin Bay sea ice extent in the sea-salt, dust, deuterium excess (d-excess), and methanesulfonic acid (MSA) firn core records, and assess the special variability of these climate-ice core relationships across the study area. Climate reanalysis data indicate that NAO-ice core correlations should be stronger at lower elevation in the percolation zone than high in the dry snow zone. Our results will provide valuable insight into the sensitivity of Greenland ice core paleoclimate reconstructions to the specific ice core location, and thereby aid in site selection for deeper ice cores that could span the Holocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C24A..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C24A..01N"><span>Arctic and Antarctic Sea Ice Changes and Impacts (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nghiem, S. V.</p> <p>2013-12-01</p> <p>The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and impacts helps to serve as a science basis for international agreements, such as the Minamata Convention, a global treaty to curb mercury pollution to be signed in 2013, and for intergovernmental climate negotiations as the IPCC AR5 report is to be released this year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815224A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815224A"><span>Numerical modeling of Drangajökull Ice Cap, NW Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, Leif S.; Jarosch, Alexander H.; Flowers, Gwenn E.; Aðalgeirsdóttir, Guðfinna; Magnússon, Eyjólfur; Pálsson, Finnur; Muñoz-Cobo Belart, Joaquín; Þorsteinsson, Þorsteinn; Jóhannesson, Tómas; Sigurðsson, Oddur; Harning, David; Miller, Gifford H.; Geirsdóttir, Áslaug</p> <p>2016-04-01</p> <p>Over the past century the Arctic has warmed twice as fast as the global average. This discrepancy is likely due to feedbacks inherent to the Arctic climate system. These Arctic climate feedbacks are currently poorly quantified, but are essential to future climate predictions based on global circulation modeling. Constraining the magnitude and timing of past Arctic climate changes allows us to test climate feedback parameterizations at different times with different boundary conditions. Because Holocene Arctic summer temperature changes have been largest in the North Atlantic (Kaufman et al., 2004) we focus on constraining the paleoclimate of Iceland. Glaciers are highly sensitive to changes in temperature and precipitation amount. This sensitivity allows for the estimation of paleoclimate using glacier models, modern glacier mass balance data, and past glacier extents. We apply our model to the Drangajökull ice cap (~150 sq. km) in NW Iceland. Our numerical model is resolved in two-dimensions, conserves mass, and applies the shallow-ice-approximation. The bed DEM used in the model runs was constructed from radio echo data surveyed in spring 2014. We constrain the modern surface mass balance of Drangajökull using: 1) ablation and accumulation stakes; 2) ice surface digital elevation models (DEMs) from satellite, airborne LiDAR, and aerial photographs; and 3) full-stokes model-derived vertical ice velocities. The modeled vertical ice velocities and ice surface DEMs are combined to estimate past surface mass balance. We constrain Holocene glacier geometries using moraines and trimlines (e.g., Brynjolfsson, etal, 2014), proglacial-lake cores, and radiocarbon-dated dead vegetation emerging from under the modern glacier. We present a sensitivity analysis of the model to changes in parameters and show the effect of step changes of temperature and precipitation on glacier extent. Our results are placed in context with local lacustrine and marine climate proxies as well as with glacier extent and volume changes across the North Atlantic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70073660','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70073660"><span>Recent developments in hydrologic instrumentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Latkovich, Vito J.; Futrell, James C.; Kane, Douglas L.</p> <p>1986-01-01</p> <p>The programs of the U.S. Geological Survey require instrumentation for collecting and monitoring hydrologic data in cold regions. The availability of space-age materials and implementation of modern electronics and mechanics is making possible the recent developments of hydrologic instrumentation, especially in the area of measuring streamflow under ice cover. Material developments include: synthetic-fiber sounding and tag lines; polymer (plastic) sheaves, pulleys, and sampler components; and polymer (plastic) current-meter bucket wheels. Electronic and mechanical developments include: a current-meter digitizer; a fiber-optic closure system for current-meters; non-contact water-level sensors; an adaptable hydrologic data acquisition system; a minimum data recorder; an ice rod; an ice foot; a handled sediment sampler; a light weight ice auger with improved cutter head and blades; and an ice chisel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-07-16/pdf/2013-16938.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-07-16/pdf/2013-16938.pdf"><span>78 FR 42436 - Procedures To Establish Appropriate Minimum Block Sizes for Large Notional Off-Facility Swaps and...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-07-16</p> <p>... (ICE). Gold (COMEX and NYSE Liffe).. 2,500 troy oz. Goldman Sachs Commodity Index 5,000 times dollars... (NYMEX) 1,000 troy oz. PG&E Citygate Basis (ICE and 62,500 MMBtu. NYMEX). PJM Western Hub Real Time Off...). Platinum (NYMEX) 500 troy oz. Rainfall Index (CME)......... 10,000 times dollars. index. Rough Rice (CBOT...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS14A..04Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS14A..04Z"><span>Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.</p> <p>2013-12-01</p> <p>Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and downstream the skin SST is mixed within the turbulent wake over 10s of meters. We compare the structure of circulation and mixing of the influx of cold skin SST driven by surface currents and wind. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. Furthermore, comparisons to satellite-derived sea surface temperature of the region are presented. The accuracy of satellite derived SST products and how well the observed skin SSTs represent ocean bulk temperatures in polar regions is not well understood, due in part to lack of observations. Estimated error in the polar seas is relatively high at up to 0.4 deg. C compared to less than 0.2 deg. C for other areas. The goal of these and future analyses of the MIZOPEX data set is to elucidate a basic question that is significant for the entire Earth system. Have these regions passed a tipping point, such that they are now essentially acting as sub-Arctic seas where ice disappears in summer, or instead whether the changes are transient, with the potential for the ice pack to recover?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830037367&hterms=Skylight&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSkylight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830037367&hterms=Skylight&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSkylight"><span>Effects on skylight at South Pole Station, Antarctica, by ice crystal precipitation in the atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fitch, B. W.; Coulson, K. L.</p> <p>1983-01-01</p> <p>Measurements of the radiance and polarization of the skylight at South Pole Station, Antarctica, were made for clear cloud-free skies and cloudless skies with ice crystal precipitation. The measurements were made at six narrowband wavelengths from 321 to 872 nm in the principal plane. The data show that scattering by ice crystals increases the radiance in the backscatter plane, decreases it in the solar plane, and shifts the radiance minimum to a point closer to the sun. The crystals decrease the maximum value of linear polarization and shift the position of the maximum away from the sun. The influence of ice crystal scattering is greatest at the longer wavelengths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18195749','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18195749"><span>Effects on skylight at South Pole Station, Antarctica, by ice crystal precipitation in the atmosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fitch, B W; Coulson, K L</p> <p>1983-01-01</p> <p>Measurements of the radiance and polarization of the skylight at South Pole Station, Antarctica, were made for clear cloud-free skies and cloudless skies with ice crystal precipitation. The measurements were made at six narrowband wavelengths from 321 to 872 nm in the principal plane. The data show that scattering by ice crystals increases the radiance in the backscatter plane, decreases it in the solar plane, and shifts the radiance minimum to a point closer to the sun. The crystals decrease the maximum value of linear polarization and shift the position of the maximum away from the sun. The influence of ice crystal scattering is greatest at the longer wavelengths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C21C0622M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C21C0622M"><span>Meteorological conditions influencing the formation of level ice within the Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mazur, A. K.; Krezel, A.</p> <p>2012-12-01</p> <p>The Baltic Sea is covered by ice every winter and on average, the ice-covered area is 45% of the total area of the Baltic Sea. The beginning of ice season usually starts in the end of November, ice extent is the largest between mid-February and mid-March and sea ice disappears completely in May. The ice covered areas during a typical winter are the Gulf of Bothnia, the Gulf of Finland and the Gulf of Riga. The studies of sea ice in the Baltic Sea are related to two aspects: climate and marine transport. Depending on the local weather conditions during the winter different types of sea ice can be formed. From the point of winter shipping it is important to locate level and deformed ice areas (rafted ice, ridged ice, and hummocked ice). Because of cloud and daylight independency as well as good spatial resolution, SAR data seems to be the most suitable source of data for sea ice observation in the comparatively small area of the Baltic Sea. We used ASAR Wide Swath Mode data with spatial resolution 150 m. We analyzed data from the three winter seasons which were examples of severe, typical and mild winters. To remove the speckle effect the data were resampled to 250 m pixel size and filtred using Frost filter 5x5. To detect edges we used Sobel filter. The data were also converted into grayscale. Sea ice classification was based on Object-Based Image Analysis (OBIA). Object-based methods are not a common tool in sea ice studies but they seem to accurately separate level ice within the ice pack. The data were segmented and classified using eCognition Developer software. Level ice were classified based on texture features defined by Haralick (Grey Level Co-Occurrence Matrix homogeneity, GLCM contrast, GLCM entropy and GLCM correlation). The long-term changes of the Baltic Sea ice conditions have been already studied. They include date of freezing, date of break-up, sea ice extent and some of work also ice thickness. There is a little knowledge about the relationship of short term changes in sea ice cover and meteorological conditions. In following studies we analyzed the formation of level sea ice depending on some weather conditions (temperature, humidity, pressure at sea level, 10 meter wind). It can be clearly seen that the most important factors influencing formation of level ice are the temperature and wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/23346','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/23346"><span>Development of a model for the ice scraping process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1996-10-01</p> <p>A laboratory study has been conducted with two aims in mind. The first goal was : to develop a description of how a cutting edge scrapes ice from the road surface. The : second goal was to investigate the extent, if any, to which serrated blades were...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.482..396J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.482..396J"><span>Asynchronous behavior of the Antarctic Ice Sheet and local glaciers during and since Termination 1, Salmon Valley, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jackson, Margaret S.; Hall, Brenda L.; Denton, George H.</p> <p>2018-01-01</p> <p>The stability of the Antarctic Ice Sheet under future warming remains an open question with broad implications for sea-level prediction and adaptation. In particular, knowledge of whether the ice sheet has the capacity for rapid drawdown or collapse, or whether it can remain stable during periods of warming, is essential for predicting its future behavior. Here we use 55 radiocarbon dates, coupled with geomorphologic mapping, to reconstruct the timing of changes in ice extent and elevation during the last ice-age termination in Salmon Valley, adjacent to McMurdo Sound in the western Ross Sea Embayment. Results indicate that a grounded ice sheet in the Ross Sea Embayment achieved its maximum elevation and extent along the headlands of Salmon Valley at ∼18,000 yr BP, during a period of increasing temperatures and accumulation over the Antarctic continent. This ice remained at or near its maximum on the headlands near the valley mouth until after ∼14,000 yr BP. Removal of grounded Ross Sea ice from Salmon Valley was complete shortly after ∼7900 yr BP, indicating that the grounding line had retreated through southern McMurdo Sound by that time. We suggest the primary driver of Ross Sea ice removal from McMurdo Sound was marine-based, either through basal melting or calving due to sea-level rise. When combined with regional data, the Salmon Valley record suggests that this sector of the Antarctic Ice Sheet did not contribute in a significant way to deglacial meltwater pulses, such as meltwater pulse 1a. In contrast to the Ross Sea ice, our work also shows that local, independent alpine glaciers in Salmon Valley have advanced through the Holocene. Land-terminating glaciers such as these elsewhere in the region show a similar pattern, and may reflect the continued influence of increased accumulation following the termination of the last ice age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22260128','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22260128"><span>Sensory acceptance and survival of probiotic bacteria in ice cream produced with different overrun levels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ferraz, Juliana L; Cruz, Adriano G; Cadena, Rafael S; Freitas, Monica Q; Pinto, Uelinton M; Carvalho, Celio C; Faria, Jose A F; Bolini, Helena M A</p> <p>2012-01-01</p> <p>The effect of different overrun levels on the sensory acceptance and survival of probiotic bacteria in ice cream was investigated. Vanilla ice creams supplemented with Lactobacillus acidophilus were processed with overruns of 45%, 60%, and 90%. Viable probiotic bacterial counts and sensory acceptance were assessed. All the ice creams presented a minimum count of 6 log CFU/g at the end of 60 d of frozen storage. However, higher overrun levels negatively influenced cell viability, being reported a decrease of 2 log CFU/g for the 90% overrun treatment. In addition, it was not reported an influence about acceptability with respect to appearance, aroma, and taste of the ice creams (P > 0.05). Overall, the results suggest that lower overrun levels should be adopted during the manufacture of ice cream in order to maintain its probiotic status through the shelf life. © 2012 Institute of Food Technologists®</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040070783','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040070783"><span>Representation of Ice Geometry by Parametric Functions: Construction of Approximating NURBS Curves and Quantification of Ice Roughness--Year 1: Approximating NURBS Curves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dill, Loren H.; Choo, Yung K. (Technical Monitor)</p> <p>2004-01-01</p> <p>Software was developed to construct approximating NURBS curves for iced airfoil geometries. Users specify a tolerance that determines the extent to which the approximating curve follows the rough ice. The user can therefore smooth the ice geometry in a controlled manner, thereby enabling the generation of grids suitable for numerical aerodynamic simulations. Ultimately, this ability to smooth the ice geometry will permit studies of the effects of smoothing upon the aerodynamics of iced airfoils. The software was applied to several different types of iced airfoil data collected in the Icing Research Tunnel at NASA Glenn Research Center, and in all cases was found to efficiently generate suitable approximating NURBS curves. This method is an improvement over the current "control point formulation" of Smaggice (v.1.2). In this report, we present the relevant theory of approximating NURBS curves and discuss typical results of the software.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15890879','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15890879"><span>Glacial/interglacial changes in subarctic north pacific stratification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jaccard, S L; Haug, G H; Sigman, D M; Pedersen, T F; Thierstein, H R; Röhl, U</p> <p>2005-05-13</p> <p>Since the first evidence of low algal productivity during ice ages in the Antarctic Zone of the Southern Ocean was discovered, there has been debate as to whether it was associated with increased polar ocean stratification or with sea-ice cover, shortening the productive season. The sediment concentration of biogenic barium at Ocean Drilling Program site 882 indicates low algal productivity during ice ages in the Subarctic North Pacific as well. Site 882 is located southeast of the summer sea-ice extent even during glacial maxima, ruling out sea-ice-driven light limitation and supporting stratification as the explanation, with implications for the glacial cycles of atmospheric carbon dioxide concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..409J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..409J"><span>Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jahn, Alexandra</p> <p>2018-05-01</p> <p>Arctic sea ice has declined rapidly with increasing global temperatures. However, it is largely unknown how Arctic summer sea-ice impacts would vary under the 1.5 °C Paris target compared to scenarios with greater warming. Using the Community Earth System Model, I show that constraining warming to 1.5 °C rather than 2.0 °C reduces the probability of any summer ice-free conditions by 2100 from 100% to 30%. It also reduces the late-century probability of an ice cover below the 2012 record minimum from 98% to 55%. For warming above 2 °C, frequent ice-free conditions can be expected, potentially for several months per year. Although sea-ice loss is generally reversible for decreasing temperatures, sea ice will only recover to current conditions if atmospheric CO2 is reduced below present-day concentrations. Due to model biases, these results provide a lower bound on summer sea-ice impacts, but clearly demonstrate the benefits of constraining warming to 1.5 °C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3804104','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3804104"><span>Floating Ice-Algal Aggregates below Melting Arctic Sea Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef</p> <p>2013-01-01</p> <p>During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24204642','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24204642"><span>Floating ice-algal aggregates below melting arctic sea ice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef</p> <p>2013-01-01</p> <p>During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1690J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1690J"><span>Antarctic Climate Variability: Covariance of Ozone and Sea Ice in Atmosphere - Ocean Coupled Model Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jrrar, Amna; Abraham, N. Luke; Pyle, John A.; Holland, David</p> <p>2014-05-01</p> <p>Changes in sea ice significantly modulate climate change because of its high reflective and insulating nature. While Arctic Sea Ice Extent (SIE) shows a negative trend. Antarctic SIE shows a weak but positive trend, estimated at 0.127 x 106 km2 per decade. The trend results from large regional cancellations, more ice in the Weddell and the Ross seas, and less ice in the Amundsen - Bellingshausen seas. A number of studies had demonstrated that stratospheric ozone depletion has had a major impact on the atmospheric circulation, causing a positive trend in the Southern Annular Mode (SAM), which has been linked to the observed positive trend in autumn sea ice in the Ross Sea. However, other modelling studies show that models forced with prescribed ozone hole simulate decreased sea ice in all regions comparative to a control run. A recent study has also shown that stratospheric ozone recovery will mitigate Antarctic sea ice loss. To verify this assumed relationship, it is important first to investigate the covariance between ozone's natural (dynamical) variability and Antarctic sea ice distribution in pre-industrial climate, to estimate the trend due to natural variability. We investigate the relationship between anomalous Antarctic ozone years and the subsequent changes in Antarctic sea ice distribution in a multidecadal control simulation using the AO-UMUKCA model. The model has a horizontal resolution of 3.75 X 2.5 degrees in longitude and latitude; and 60 hybrid height levels in the vertical, from the surface up to a height of 84 km. The ocean component is the NEMO ocean model on the ORCA2 tripolar grid, and the sea ice model is CICE. We evaluate the model's performance in terms of sea ice distribution, and we calculate sea ice extent trends for composites of anomalously low versus anomalously high SH polar ozone column. We apply EOF analysis to the seasonal anomalies of sea ice concentration, MSLP, and Z 500, and identify the leading climate modes controlling the variability of Antarctic sea ice in each case, and study their relationship with SH polar ozone column.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C21C0372G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C21C0372G"><span>McMurdo Ice Shelf Sounding and Radar Statistical Reconnaissance at 60-MHz: Brine Infiltration Extent and Surface Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grima, C.; Rosales, A.; Blankenship, D. D.; Young, D. A.</p> <p>2014-12-01</p> <p>McMurdo Ice Shelf, Antarctica, is characterized by two particular geophysical processes. (1) Marine ice accretion supplies most of the ice shelf material rather than meteoric ice from glacier outflow and snow-falls. (2) A brine layer infiltrates the ice shelf laterally up to 20-km inward. The infiltration mainly initiates at the ice-front from sea water percolation when the firn/snow transition is below sea-level. A better characterization of the McMurdo ice shelf could constrain our knowledges of these mechanisms and assess the stability of the region that hosts numerous human activities from the close McMurdo station (USA) and Scott base (New-Zealand). McMurdo ice shelf is also an analog for the Jovian icy moon Europa where brine pockets are supposed to reside in the ice crust and accretion to occur at the 10-30-km deep ice-ocean interface.The University of Texas Institute for Geophysics (UTIG) acquired two radar survey grids over the McMurdo Ice Shelf during southern summers 2011-2012 and 2012-2013 with the High Capability Radar Sounder (HiCARS) on-board a Basler DC-3 aircraft. HiCARS transmits a chirped signal at 60-MHz central frequency and 15-MHz bandwidth. The corresponding vertical resolution in ice is 5-10 m. An important design goal of the radar was to maintain sufficient dynamic range to correctly measure echo intensities.Here we present the brine infiltration extent and bathymetry derived from its dielectric horizon well distinguishable on the HiCARS radargram. We complement the ice-shelf characterization by classifying its surface thanks to the novel Radar Statistical Reconnaissance (RSR) methodology. The RSR observable is the statistical distribution of the surface echo amplitudes from successive areas defined along-track. The distributions are best-fitted with a theoretical stochastic envelop parameterized with the signal reflectance and scattering. Once those two components are deduced from the fit, they are used in a backscattering model to invert surface properties such as roughness, density, and/or impurity load. This combined analysis gives new insights into the superficial processes and exchanges at the McMurdo ice shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040171463&hterms=SSM&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSSM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040171463&hterms=SSM&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSSM"><span>Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Dorothy K.; Williams, Richard S., Jr.; Steffen, Konrad; Chien, Y. L.; Foster, James L.; Robinson, David A.; Riggs, George A.</p> <p>2004-01-01</p> <p>Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 degree isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plus or minus 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approximately 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171217','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171217"><span>Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Dorothy K.; Williams, Richard S.; Steffen, Konrad; Chien, Janet Y. L.</p> <p>2004-01-01</p> <p>Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 deg. isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 +/- 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approx. 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near- surface melt on the Greenland ice sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026165','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026165"><span>Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hall, D.K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.</p> <p>2004-01-01</p> <p>Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0?? isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3??2.09??C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ???2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191437','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191437"><span>Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hall, D. K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.</p> <p>2004-01-01</p> <p>Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0deg isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plusmn 2.09 degC, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ~2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12..675O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12..675O"><span>Mechanisms influencing seasonal to inter-annual prediction skill of sea ice extent in the Arctic Ocean in MIROC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ono, Jun; Tatebe, Hiroaki; Komuro, Yoshiki; Nodzu, Masato I.; Ishii, Masayoshi</p> <p>2018-02-01</p> <p>To assess the skill of seasonal to inter-annual predictions of the detrended sea ice extent in the Arctic Ocean (SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on 1 January, 1 April, 1 July and 1 October for each year from 1980 to 2011, for lead times up to three years, using the Model for Interdisciplinary Research on Climate (MIROC) version 5 initialised with the observed atmosphere and ocean anomalies and sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 11 months ahead (anomaly correlation coefficient is 0.42). This skill might be attributed to the subsurface ocean heat content originating in the North Atlantic. A plausible mechanism is as follows: the subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to two months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian seas initialised in July, as suggested by previous studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512466B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512466B"><span>Monitoring Snow and Land Ice Using Satellite data in the GMES Project CryoLand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bippus, Gabriele; Nagler, Thomas</p> <p>2013-04-01</p> <p>The main objectives of the project "CryoLand - GMES Service Snow and Land Ice" are to develop, implement and validate services for snow, glaciers and lake and river ice products as a Downstream Service within the Global Monitoring for Environment and Security (GMES) program of the European Commission. CryoLand exploits Earth Observation data from current optical and microwave sensors and of the upcoming GMES Sentinel satellite family. The project prepares also the basis for the cryospheric component of the GMES Land Monitoring services. The CryoLand project team consists of 10 partner organisations from Austria, Finland, Norway, Sweden, Switzerland and Romania and is funded by the 7th Framework Program of the European Commission. The CryoLand baseline products for snow include fractional snow extent from optical satellite data, the extent of melting snow from SAR data, and coarse resolution snow water equivalent maps from passive microwave data. Experimental products include maps of snow surface wetness and temperature. The products range from large scale coverage at medium resolution to regional products with high resolution, in order to address a wide user community. Medium resolution optical data (e.g. MODIS, in the near future Sentinel-3) and SAR (ENVISAT ASAR, in the near future Sentinel-1) are the main sources of EO data for generating large scale products in near real time. For generation of regional products high resolution satellite data are used. Glacier products are based on high resolution optical (e.g. SPOT-5, in the near future Sentinel-2) and SAR (TerraSAR-X, in the near future Sentinel-1) data and include glacier outlines, mapping of glacier facies, glacier lakes and ice velocity. The glacier products are generated on users demand. Current test areas are located in the Alps, Norway, Greenland and the Himalayan Mountains. The lake and river ice products include ice extent and its temporal changes and snow extent on ice. The algorithms for these products are in development. One major task of CryoLand is the performance assessment of the products, which is carried out in different environments, climate zones and land cover types, selected jointly with users. Accuracy assessment is done for test areas using in-situ data and very high resolution satellite data. This presentation gives an overview on the processing lines and demonstration products for snow, glacier and lake ice parameters including examples of the product accuracy assessment. An important point of the CryoLand project is the use of advanced information technology, which is applied to process and distribute snow and land ice products in near real time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2085.6048G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2085.6048G"><span>Interactions Between Ocean Circulation and Topography in Icy Worlds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodman, J. C.</p> <p>2018-05-01</p> <p>To what extent does topography at the water-rock interface control the general circulation patterns of icy world oceans? And contrariwise, to what extent does liquid flow control the topography at the ice-water interface (or interfaces)?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B41A1923B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B41A1923B"><span>Humidification of the Arctic: Effects of more open ocean water on land temperatures and tundra productivity along continental and maritime bioclimate transects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Epstein, H. E.</p> <p>2017-12-01</p> <p>Amplified Arctic warming linked to declining sea-ice extent led to generally enhanced productivity of the tundra biome during the period 1982-2008. After about 2002, coinciding with a recent precipitous decline in sea ice, large areas of the Arctic began showing reversals of previous positive productivity trends. To better understand these recent vegetation productivity declines and whether they are associated with differences in a general humidification of portions of the Arctic, we focus analysis on two transects with ground information: the more continental North America Arctic Transect (NAAT) and the more maritime Eurasia Arctic Transect (EAT). We compare ground information with satellite-derived trends in open water, summer terrestrial temperatures, and vegetation greenness and changes in continentality of the two transects, as indicated by the differences in the annual maximum and minimum mean monthly temperatures. Areas adjacent to perennial sea ice along in the northern parts of the NAAT exhibit climates with positive trends in summer warmth, but negative greening trends, possibly due to soil drying. Southern parts of the NAAT in the vicinity of more open water show positive greenness trends. Along the EAT, cooling midsummer conditions and reduced greenness appear to be caused by cloudier conditions, and possibly later snow melt during the period of maximum potential photosynthesis. Ground-based environmental and vegetation data indicate that biomass, particularly moss biomass is much greater along the more maritime EAT, indicating a buffering effect of the vegetation that will act to damp productivity as humidification of the Arctic proceeds. This multi-scale analysis is one step in the direction of understanding the drivers of tundra vegetation productivity in the Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-05-16/pdf/2011-11374.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-05-16/pdf/2011-11374.pdf"><span>76 FR 28171 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-05-16</p> <p>...-Clyde Ice Field, Takeoff Minimum and Obstacle DP, Amdt 1 Gladewater, TX, Gladewater Muni, Takeoff... Field, VOR/DME RWY 12, Amdt 4 Devil's Lake, ND, Devil's Lake Rgnl, ILS OR LOC/DME RWY 31, Amdt 2 Devil's Lake, ND, Devil's Lake Rgnl, RNAV (GPS) RWY 3, Amdt 1 Ely, NV, Ely Airport-Yelland Field, Takeoff...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS31E1776E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS31E1776E"><span>Integrating Research on Global Climate Change and Human Use of the Oceans: a Geospatial Method for Daily Monitoring of Sea Ice and Ship Traffic in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eucker, W.; McGillivary, P. A.</p> <p>2012-12-01</p> <p>One apparent consequence of global climate change has been a decrease in the extent and thickness of Arctic sea ice more rapidly than models have predicted, while Arctic ship traffic has likewise increased beyond economic predictions. To ensure representative observations of changing climate conditions and human use of the Arctic Ocean, we concluded a method of tracking daily changes in both sea ice and shipping in the Arctic Ocean was needed. Such a process improves the availability of sea ice data for navigational safety and allows future developments to be monitored for understanding of ice and shipping in relation to policy decisions appropriate to optimize sustainable use of a changing Arctic Ocean. The impetus for this work was the 2009 Arctic Marine Shipping Assessment (AMSA) which provided baseline data on Arctic ship traffic. AMSA was based on responses from circumpolar countries, was manpower intensive, and took years to compile. A more timely method of monitoring human use of the Arctic Ocean was needed. To address this, a method of monitoring sea ice on a scale relevant to ship-navigation (<10km) was developed and implemented in conjunction with arctic ship tracking using S-AIS (Satellite Automatic Identification Systems). S-AIS is internationally required on ships over a certain size, which includes most commercial vessels in the Arctic Ocean. Daily AIS and sea ice observations were chosen for this study. Results of this method of geospatial analysis of the entire arctic are presented for a year long period from April 1, 2010 to March 31, 2011. This confirmed the dominance of European Arctic ship traffic. Arctic shipping is maximal during August and diminishes in September with a minimum in winter, although some shipping continues year-round in perennially ice-free areas. Data are analyzed for the four principal arctic quadrants around the North Pole by season for number and nationality of vessels. The goal of this study was not merely to monitor ship traffic and ice conditions concurrently, but also to demonstrate a new method of ocean monitoring based on daily assimilation, data fusion, and integrated visualization of satellite ice remote sensing data and S-AIS ship data. In the future, as Arctic ship traffic and cryosphere sea ice cover variability are both expected to increase, this method can provide near real-time physical data on global climate change and human dimensions of ocean use of to guide policies addressing arctic resource management, Search and Rescue (SAR) operations, oil spill response, and issues such as ship noise impacts on marine mammals, and whale-ship collision avoidance. An internationally agreed implementation of this methodology would benefit ships operating in the Arctic and advance sustainable use of the Arctic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1282/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1282/report.pdf"><span>Simulation of flow and habitat conditions under ice, Cache la Poudre River - January 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waddle, Terry</p> <p>2007-01-01</p> <p>The objectives of this study are (1) to describe the extent and thickness of ice cover, (2) simulate depth and velocity under ice at the study site for observed and reduced flows, and (3) to quantify fish habitat in this portion of the mainstem Cache la Poudre River for the current winter release schedule as well as for similar conditions without the 0.283 m3/s winter release.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011LPI....42.1063F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011LPI....42.1063F"><span>Formation of Ice-Rich Lobate Debris Aprons Through Regional Icesheet Collapse and Debris-Cover Armoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fastook, J. L.; Head, J. W.; Marchant, D. R.</p> <p>2011-03-01</p> <p>We use a flowband model to assess development of lobate debris apron sublimation lag thickness and lateral extent beneath scarps. We obtain estimates of the climate in place as the LDAs were forming during collapse of a larger, regional ice sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=storms&pg=5&id=EJ813972','ERIC'); return false;" href="https://eric.ed.gov/?q=storms&pg=5&id=EJ813972"><span>Project Ice Storm: Prenatal Maternal Stress Affects Cognitive and Linguistic Functioning in 5 1/2-Year-Old Children</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Laplante, David P.; Brunet, Alain; Schmitz, Norbert; Ciampi, Antonio; King, Suzanne</p> <p>2008-01-01</p> <p>The study used data from Project Ice Storm to determine the extent to which exposure to prenatal maternal stress due to a natural disaster can explain variance in the intellectual and language performance of offspring at age 5 1/2.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.C21B1106R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.C21B1106R"><span>Antarctic Sea Ice-Atmosphere Interactions: A Self-organizing Map-based Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reusch, D. B.</p> <p>2005-12-01</p> <p>Interactions between the ocean, sea ice and the atmosphere are a significant component of the dynamic nature of the Earth's climate system. Self-organizing maps (SOMs), an analysis tool from the field of artificial neural networks, have been used to study variability in Antarctic sea ice extent and the West Antarctic atmospheric circulation, plus the relationship and interactions between these two systems. Self-organizing maps enable unsupervised classification of large, multivariate/multidimensional data sets, e.g., time series of the atmospheric circulation or sea-ice extent, into a fixed number of distinct generalized states or modes, organized spatially as a two-dimensional grid, that are representative of the input data. When applied to atmospheric data, the analysis yields a nonlinear classification of the continuum of atmospheric conditions. In contrast to principal component analysis, SOMs do not force orthogonality or require subjective rotations to produce interpretable patterns. Twenty four years (1973-96) of monthly sea ice extent data (10 deg longitude bands; Simmonds and Jacka, 1995) were analyzed with a 30-node SOM. The resulting set of generalized patterns concisely captures the spatial and temporal variability in this data. An example of the former is variability in the longitudinal region of greatest extent. The SOM patterns readily show that there are multiple spatial patterns corresponding to "greatest extent conditions". Temporal variability is examined by creating frequency maps (i.e., which patterns occur most often) by month. With the annual cycle still in the data, the monthly frequency maps show a cycle moving from least extent, through expansion to greatest extent and back through retreat. When plotted in "SOM space", month-to-month transitions occur at different rates of change, suggesting that there is variability in the rate of change in extent at different times of the year, e.g., retreat in January is faster than November. Twenty five years (1977-2001) of monthly 500 mb temperature and pressure data (from the ECMWF 40-year reanalysis, ERA-40) from a region centered on the Antarctic Peninsula were analyzed independently for a separate SOMs-based study. Dominant SOM temperature patterns include the expected summer warmth and winter cold, plus "dipoles" of warm Atlantic (Pacific) and cold Pacific (Atlantic) sectors (with corresponding pressure patterns). Temporally, there is the expected annual progression from warmth, through cooling and back to warmth, with no particularly predominant patterns in many of the monthly frequency maps when the full record is used. Stratifying by high/low values of the Southern Oscillation Index (SOI) suggests that the spatial patterns of cooling and warming may be related to conditions in the tropical Pacific: in a low SOI year (1987), cooling and warming both begin in the Atlantic sector, with the opposite true in a high SOI year (1989). Further study of this aspect is planned. In addition to direct comparisons of the SOM analysis results from each study, a joint SOM analysis will be done on the combined data sets, exploiting the flexibility and power of this technique. We anticipate additional useful insights into the joint variability and relationships between Antarctic sea ice and the overlying atmosphere through this expanded analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1325643','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1325643"><span>Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare</p> <p></p> <p>Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012219','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012219"><span>Ice-Sheet Glaciation of the Puget lowland, Washington, during the Vashon Stade (late pleistocene)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thorson, R.M.</p> <p>1980-01-01</p> <p>During the Vashon Stade of the Fraser Glaciation, about 15,000-13,000 yr B.P., a lobe of the Cordilleran Ice Sheet occupied the Puget lowland of western Washington. At its maximum extent about 14,000 yr ago, the ice sheet extended across the Puget lowland between the Cascade Range and Olympic Mountains and terminated about 80 km south of Seattle. Meltwater streams drained southwest to the Pacific Ocean and built broad outwash trains south of the ice margin. Reconstructed longitudinal profiles for the Puget lobe at its maximum extent are similar to the modern profile of Malaspina Glacier, Alaska, suggesting that the ice sheet may have been in a near-equilibrium state at the glacial maximum. Progressive northward retreat from the terminal zone was accompanied by the development of ice-marginal streams and proglacial lakes that drained southward during initial retreat, but northward during late Vashon time. Relatively rapid retreat of the Juan de Fuca lobe may have contributed to partial stagnation of the northwestern part of the Puget lobe. Final destruction of the Puget lobe occurred when the ice retreated north of Admiralty Inlet. The sea entered the Puget lowland at this time, allowing the deposition of glacial-marine sediments which now occur as high as 50 m altitude. These deposits, together with ice-marginal meltwater channels presumed to have formed above sea level during deglaciation, suggest that a significant amount of postglacial isostatic and(or) tectonic deformation has occurred in the Puget lowland since deglaciation. ?? 1980.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1325643-uncertainty-quantification-global-sensitivity-analysis-los-alamos-sea-ice-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1325643-uncertainty-quantification-global-sensitivity-analysis-los-alamos-sea-ice-model"><span>Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare; ...</p> <p>2016-04-01</p> <p>Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.2709U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.2709U"><span>Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urrego-Blanco, Jorge R.; Urban, Nathan M.; Hunke, Elizabeth C.; Turner, Adrian K.; Jeffery, Nicole</p> <p>2016-04-01</p> <p>Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. It is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5067M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5067M"><span>Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang</p> <p>2017-04-01</p> <p>The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990064620','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990064620"><span>Parametric Experimental Study of the Formation of Glaze Ice Shapes on Swept Wings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vargas, Mario; Reshotko, Eli</p> <p>1999-01-01</p> <p>An experiment was conducted to study the effect of velocity and sweep angle on the critical distance in ice accretion formation on swept wings at glaze ice conditions. The critical distance is defined as the distance from the attachment line to the beginning of the zone where roughness elements develop into glaze ice feathers. Icing runs were performed on a NACA 00 1 2 swept wing tip at velocities of 75, 100, 150, and 200 miles per hour. At each velocity and tunnel condition, the sweep angle was changed from 0 deg to 45 deg at 5 deg increments. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that at given velocity and tunnel conditions, as the sweep angle is increased from 0 deg to 25 deg the critical distance slowly decreases. As the sweep angle is increased past 25 deg, the critical distance starts decreasing more rapidly. For 75 and 100 mph it reaches a value of 0 millimeters at 35 deg. For 150 and 200 mph it reaches a value of 0 millimeters at 40 deg. On the ice accretion, as the sweep angle is increased from 0 deg to 25 deg, the extent of the attachment line zone slowly decreases. In the glaze ice feathers zone, the angle that the preferred direction of growth of the feathers makes with respect to the attachment line direction increases. But overall, the ice accretions remain similar to the 0 deg sweep angle case. As the sweep angle is increased above 25 deg, the extent of the attachment line zone decreases rapidly and complete scallops form at 35 deg sweep angle for 75 and 100 mph, and at 40 deg for 150 and 200 mph.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C53A0767E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C53A0767E"><span>The North Water Polynya and Velocity, Calving Front and Mass Change in Surrounding Glaciers in Greenland and Canada Over the Last 30 Years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, L.</p> <p>2015-12-01</p> <p>Major uncertainties surround future estimates of sea level rise attributable to mass loss from Greenland and the surrounding ice caps in Canada. Understanding changes across these regions is vital as their glaciers have experienced dramatic changes in recent times. Attention has focused on the periphery of these regions where land ice meets the ocean and where ice acceleration, thinning and increased calving have been observed. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~85,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas strongly impact regional oceanography and play a vital role in heat and moisture exchange between the polar oceans and atmosphere. Where polynyas are present adjacent to tidewater glaciers their influence on ocean circulation and water temperatures has the potential to play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. They also have the potential to influence air masses reaching nearby glaciers and ice caps by creating a maritime climate which may impact on the glaciers' accumulation and surface melt and hence their thickness and mass balance. Polynya presence and size also have implications for sea ice extent and therefore may influence the buttressing effect on neighbouring tidewater glaciers. The work presented uses remote sensing and mass balance model data to study changes in the North Water polynya (extent, ice concentration, duration) and neighbouring glaciers and ice caps (velocities, calving front positions and mass balance) in Canada and Greenland over a period of approximately 30 years from the mid-1980s through to 2015.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CliPa..11.1165W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CliPa..11.1165W"><span>Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Willeit, M.; Ganopolski, A.</p> <p>2015-09-01</p> <p>Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.G52B..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.G52B..03B"><span>The East Antarctic Ice Sheet and the Gamburtsev Subglacial Mountains (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, R. E.; Studinger, M.; Ferraccioli, F.; Damaske, D.; Finn, C.; Braaten, D. A.; Fahnestock, M. A.; Jordan, T. A.; Corr, H.; Elieff, S.; Frearson, N.; Block, A. E.; Rose, K.</p> <p>2009-12-01</p> <p>Models of the onset of glaciation in Antarctica routinely document the early growth of the ice sheet on the summit of the Gamburtsev Subglacial Mountains in the center of the East Antarctic Craton. While ice sheet models replicate the formation of the East Antarctic ice sheet 35 million years ago, the age, evolution and structure of the Gamburtsev Mountains remain completely unresolved. During the International Polar Year scientists from seven nations have launched a major collaborative program (AGAP) to explore the Gamburtsev Subglacial Mountains buried by the East Antarctic ice sheet and bounded by numerous subglacial lakes. The AGAP umbrella is a multi-national, multi-disciplinary effort and includes aerogeophysics, passive seismology, traverse programs and will be complimented by future ice core and bedrock drilling. A major new airborne data set including gravity; magnetics; ice thickness; SAR images of the ice-bed interface; near-surface and deep internal layers; and ice surface elevation is providing insights into a more dynamic East Antarctica. More than 120,000 km of aerogeophysical data have been acquired from two remote field camps during the 2008/09 field season. AGAP effort was designed to address several fundamental questions including: 1) What role does topography play in the nucleation of continental ice sheets? 2) How do tectonic processes control the formation, distribution, and stability of subglacial lakes? The preliminary analysis of this major new data set indicated these 3000m high mountains are deeply dissected by a dendritic system. The northern margin of the mountain range terminates against the inland extent of the Lambert Graben. Evidence of the onset of glaciation is preserved as cirques and U shaped valleys along the axis of the uplifted massifs. The geomorphology reflects the interaction between the ice sheet and the Gamburtsev Mountains. Bright reflectors in the radar data in the deep valleys indicate the presence of water that has the potential to influence ice sheet flow. Crevassing and disrupted internal layers are present in the deep ice found in the inland extent of the Lambert Graben. Preliminary analysis indicates both a more dynamic East Antarctic ice sheet and a more complex tectonic evolution for East Antarctica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13C..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13C..01S"><span>Coherent Sea Ice Variations in the Nordic Seas and Abrupt Greenland Climate Changes over Dansgaard-Oeschger Cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadatzki, H.; Berben, S.; Dokken, T.; Stein, R.; Fahl, K.; Jansen, E.</p> <p>2016-12-01</p> <p>Rapid changes in sea ice extent in the Nordic Seas may have played a crucial role in controlling the abruptness of ocean circulation and climate changes associated with Dansgaard-Oeschger (D-O) cycles during the last glacial (Li et al., 2010; Dokken et al., 2013). To investigate the role of sea ice for abrupt climate changes, we produced a sea ice record from the Norwegian Sea Core MD99-2284 at a temporal resolution approaching that of ice core records, covering four D-O cycles at ca. 32-41 ka. This record is based on the sea ice diatom biomarker IP25, open-water phytoplankton biomarker dinosterol and semi-quantitative phytoplankton-IP25 (PIP25) estimates. A detailed tephrochronology of MD99-2284 corroborates the tuning-based age model and independently constrains the GS9/GIS8 transition, allowing for direct comparison between our sediment and ice core records. For cold stadials we find extremely low fluxes of total organic carbon, dinosterol and IP25, which points to a general absence of open-water phytoplankton and ice algae production under a near-permanent sea ice cover. For the interstadials, in turn, all biomarker fluxes are strongly enhanced, reflecting a highly productive sea ice edge situation and implying largely open ocean conditions for the eastern Nordic Seas. As constrained by three tephra layers, we observe that the stadial-interstadial sea ice decline was rapid and may have induced a coeval abrupt northward shift in the Greenland precipitation moisture source as recorded in ice cores. The sea ice retreat also facilitated a massive heat release through deep convection in the previously stratified Nordic Seas, generating atmospheric warming of the D-O events. We thus conclude that rapid changes in sea ice extent in the Nordic Seas amplified oceanic reorganizations and were a key factor in controlling abrupt Greenland climate changes over D-O cycles. Dokken, T.M. et al., 2013. Paleoceanography 28, 491-502 Li, C. et al., 2010. Journ. Clim. 23, 5457-5475</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CliPa..14..619B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CliPa..14..619B"><span>Simulation of the Greenland Ice Sheet over two glacial-interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet-ice-shelf model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.</p> <p>2018-05-01</p> <p>Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland ice sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS) and Innuitian Ice Sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the ice-sheet-ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations, controlled by the sub-ice-shelf melting which was dictated by the RSL forcing and the glacial history of the IIS and LIS. In contrast, the southwestern part of the ice sheet was insensitive to these forcings, with a uniform response in all simulations controlled by the surface air temperature, derived from ice cores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.A61C0107P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.A61C0107P"><span>Impact of lakes and wetlands on present and future boreal climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poutou, E.; Krinner, G.; Genthon, C.</p> <p>2002-12-01</p> <p>Impact of lakes and wetlands on present and future boreal climate The role of lakes and wetlands in present-day high latitude climate is quantified using a general circulation model of the atmosphere. The atmospheric model includes a lake module which is presented and validated. Seasonal and spatial wetland distribution is calculated as a function of the hydrological budget of the wetlands themselves and of continental soil whose runoff feeds them. Wetland extent is simulated and discussed both in simulations forced by observed climate and in general circulation model simulations. In off-line simulations, forced by ECMWF reanalyses, the lake model simulates correctly observed lake ice durations, while the wetland extent is somewhat underestimated in the boreal regions. Coupled to the general circulation model, the lake model yields satisfying ice durations, although the climate model biases have impacts on the modeled lake ice conditions. Boreal wetland extents are overestimated in the general circulation model as simulated precipitation is too high. The impact of inundated surfaces on the simulated climate is strongest in summer when these surfaces are ice-free. Wetlands seem to play a more important role than lakes in cooling the boreal regions in summer and in humidifying the atmosphere. The role of lakes and wetlands in future climate change is evaluated by analyzing simulations of present and future climate with and without prescribed inland water bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14577883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14577883"><span>Subfreezing activity of microorganisms and the potential habitability of Mars' polar regions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jakosky, Bruce M; Nealson, Kenneth H; Bakermans, Corien; Ley, Ruth E; Mellon, Michael T</p> <p>2003-01-01</p> <p>The availability of water-ice at the surface in the Mars polar cap and within the top meter of the high-latitude regolith raises the question of whether liquid water can exist there under some circumstances and possibly support the existence of biota. We examine the minimum temperatures at which liquid water can exist at ice grain-dust grain and ice grain-ice grain contacts, the minimum subfreezing temperatures at which terrestrial organisms can grow or multiply, and the maximum temperatures that can occur in martian high-latitude and polar regions, to see if there is overlap. Liquid water can exist at grain contacts above about -20 degrees C. Measurements of growth in organisms isolated from Siberian permafrost indicate growth at -10 degrees C and metabolism at -20 degrees C. Mars polar and high-latitude temperatures rise above -20 degrees C at obliquities greater than ~40 degrees, and under some conditions rise above 0 degrees C. Thus, the environment in the Mars polar regions has overlapped habitable conditions within relatively recent epochs, and Mars appears to be on the edge of being habitable at present. The easy accessibility of the polar surface layer relative to the deep subsurface make these viable locations to search for evidence of life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG44B2001H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG44B2001H"><span>Reliable radiocarbon evidence for the maximum extent of the West Antarctic Ice Sheet in the easternmost Amundsen Sea Embayment during the Last Glacial Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hillenbrand, C. D.; Klages, J. P.; Kuhn, G.; Smith, J.; Graham, A. G. C.; Gohl, K.; Wacker, L.</p> <p>2016-02-01</p> <p>We present the first age control and sedimentological data for the upper part of a stratified seismic unit that is unusually thick ( 6-9 m) for the outer shelf of the ASE and overlies an acoustically transparent unit. The transparent unit probably consists of soft till deposited during the last advance of grounded ice onto the outer shelf. We mapped subtle mega-scale glacial lineations (MSGL) on the seafloor and suggest that these are probably the expressions of bedforms originally moulded into the surface of the underlying till layer. We note that the lineations are less distinct when compared to MSGLs recorded in bathymetric data collected further upstream and suggest that this is because of the blanketing influence of the thick overlying drape. The uppermost part (≤ 3 m) of the stratified drape was sampled by two of our sediment cores and contains sufficient amounts of calcareous foraminifera throughout to establish reliable age models by radiocarbon dating. In combination with facies analysis of the recovered sediments the obtained radiocarbon dates suggest deposition of the draping unit in a sub-ice shelf/sub-sea ice to seasonal-open marine environment that existed on the outer shelf from well before (>45 ka BP) the Last Glacial Maximum until today. This indicates the maximum extent of grounded ice at the LGM must have been situated south of the two core locations, where a well-defined grounding-zone wedge (`GZWa') was deposited. The third sediment core was recovered from the toe of this wedge and retrieved grounding-line proximal glaciogenic debris flow sediments that were deposited by 14 cal. ka BP. Our new data therefore provide direct evidence for 1) the maximum extent of grounded ice in the easternmost ASE at the LGM (=GZWa), 2) the existence of a large shelf area seawards the wedge that was not covered by grounded ice during that time, and 3) landward grounding line retreat from GZWa prior to 14 cal. ka BP. This knowledge will help to improve LGM ice sheet reconstructions and to quantify precisely the volume of LGM ice-sheet build-up in Antarctica. Our study also alludes to the possibility that refugia for Antarctic shelf benthos may have existed in the ASE during the last glacial period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43D2493M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43D2493M"><span>Remarkable separability of the circulation response to Arctic sea ice loss and greenhouse gas forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.</p> <p>2017-12-01</p> <p>Arctic sea ice loss has an important effect on local climate through increases in ocean to atmosphere heat flux and associated feedbacks, and may influence midlatitude climate by changing large-scale circulation that can enhance or counter changes that are due to greenhouse gases. The extent to which climate change in a warming world can be understood as greenhouse gas-induced changes that are modulated by Arctic sea ice loss depends on how additive the responses to the separate influences are. Here we use a novel sea ice nudging methodology in the Canadian Earth System Model, which has a fully coupled ocean, to isolate the effects of Arctic sea ice loss and doubled atmospheric carbon dioxide (CO2) to determine their additivity and sensitivity to mean state. We find that the separate effects of Arctic sea ice loss and doubled CO2 are remarkably additive and relatively insensitive to mean climate state. This separability is evident in several thermodynamic and dynamic fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. In this model, Arctic sea ice loss enhances the CO2-induced surface air temperature changes nearly everywhere and zonal wind changes over the Pacific sector, whereas sea ice loss counters CO2-induced sea level pressure changes nearly everywhere over land and zonal wind changes over the Atlantic sector. This separability of the response to Arctic sea ice loss from the response to CO2 doubling gives credence to the body of work in which Arctic sea ice loss is isolated from the forcing that modified it, and might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980021232','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980021232"><span>Sea Ice on the Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacobs, Stanley S.</p> <p>1998-01-01</p> <p>Year-round satellite records of sea ice distribution now extend over more than two decades, providing a valuable tool to investigate related characteristics and circulations in the Southern Ocean. We have studied a variety of features indicative of oceanic and atmospheric interactions with Antarctic sea ice. In the Amundsen & Bellingshausen Seas, sea ice extent was found to have decreased by approximately 20% from 1973 through the early 1990's. This change coincided with and probably contributed to recently warmer surface conditions on the west side of the Antarctic Peninsula, where air temperatures have increased by approximately 0.5 C/decade since the mid-1940's. The sea ice decline included multiyear cycles of several years in length superimposed on high interannual variability. The retreat was strongest in summer, and would have lowered the regional mean ice thickness, with attendant impacts upon vertical heat flux and the formation of snow ice and brine. The cause of the regional warming and loss of sea ice is believed to be linked to large-scale circulation changes in the atmosphere and ocean. At the eastern end of the Weddell Gyre, the Cosmonaut Polyna revealed greater activity since 1986, a recurrence pattern during recent winters and two possible modes of formation. Persistence in polynya location was noted off Cape Ann, where the coastal current can interact more strongly with the Antarctic Circumpolar Current. As a result of vorticity conservation, locally enhanced upwelling brings warmer deep water into the mixed layer, causing divergence and melting. In the Ross Sea, ice extent fluctuates over periods of several years, with summer minima and winter maxima roughly in phase. This leads to large interannual cycles of sea ice range, which correlate positively with meridinal winds, regional air temperatures and subsequent shelf water salinities. Deep shelf waters display considerable interannual variability, but have freshened by approximately 0.03/decade since the late 1950's. That could have slowed the thermohaline circulation beneath the Ross Ice Shelf and the properties or volume of local bottom water production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860017714','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860017714"><span>Experimental and analytical investigation of a freezing point depressant fluid ice protection system. M.S. Thesis. Final Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Albright, A. E.</p> <p>1984-01-01</p> <p>A glycol-exuding porous leading edge ice protection system was tested in the NASA Icing Research Tunnel. Stainless steel mesh, laser drilled titanium, and composite panels were tested on two general aviation wing sections. Two different glycol-water solutions were evaluated. Minimum glycol flow rates required for anti-icing were obtained as a function of angle of attack, liquid water content, volume median drop diameter, temperature, and velocity. Ice accretions formed after five minutes of icing were shed in three minutes or less using a glycol fluid flow equal to the anti-ice flow rate. Two methods of predicting anti-ice flow rates are presented and compared with a large experimental data base of anti-ice flow rates over a wide range of icing conditions. The first method presented in the ADS-4 document typically predicts flow rates lower than the experimental flow rates. The second method, originally published in 1983, typically predicts flow rates up to 25 percent higher than the experimental flow rates. This method proved to be more consistent between wing-panel configurations. Significant correlation coefficients between the predicted flow rates and the experimental flow rates ranged from .867 to .947.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268266','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268266"><span>Structure of ice crystallized from supercooled water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.</p> <p>2012-01-01</p> <p>The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22232652','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22232652"><span>Structure of ice crystallized from supercooled water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G</p> <p>2012-01-24</p> <p>The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C52B..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C52B..05L"><span>Tracking sea ice floes from the Lincoln Sea to Nares Strait and deriving large scale melt from coincident spring and summer (2009) aerial EM thickness surveys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lange, B. A.; Haas, C.; Beckers, J.; Hendricks, S.</p> <p>2011-12-01</p> <p>Satellite observations demonstrate a decreasing summer Arctic sea ice extent over the past ~40 years, as well as a smaller perennial sea ice zone, with a significantly accelerated decline in the last decade. Recent ice extent observations are significantly lower than predicted by any model employed by the Intergovernmental Panel on Climate Change. The disagreement of the modeled and observed results, along with the large variability of model results, can be in part attributed to a lack of consistent and long term sea ice mass balance observations for the High Arctic. This study presents the derivation of large scale (individual floe) seasonal sea ice mass balance in the Lincoln Sea and Nares Strait. Large scale melt estimates are derived by comparing aerial borne electromagnetic induction thickness surveys conducted in spring with surveys conducted in summer 2009. The comparison of coincident floes is ensured by tracking sea ice using ENIVSAT ASAR and MODIS satellite imagery. Only EM thickness survey sections of floes that were surveyed in both spring and summer are analyzed and the resulting modal thicknesses of the distributions, which represent the most abundant ice type, are compared to determine the difference in thickness and therefore total melt (snow+basal ice+surface ice melt). Preliminary analyses demonstrate a bulk (regional ice tracking) seasonal total thickness variability of 1.1m, Lincoln Sea modal thickness 3.7m (April, 2009) and Nares Strait modal thickness 2.6m (August 2009)(Fig1). More detailed floe tracking, in depth analysis of EM surveys and removal of deformed ridged/rafted sea ice (due to inaccuracies over deformed ice) will result in more accurate melt estimates for this region and will be presented. The physical structure of deformed sea ice and the footprint of the EM instrument typically underestimate the total thicknesses observed. Seasonal variations of sea ice properties can add additional uncertainty to the response of the EM instrument over deformed ridged/rafted sea ice. Here we will present additional analysis of the data comparing total thickness to ridge height that will provide some insight into the magnitude of seasonal discrepancies experienced by the EM instrument over deformed ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16905428','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16905428"><span>Crustacea in Arctic and Antarctic sea ice: distribution, diet and life history strategies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arndt, Carolin E; Swadling, Kerrie M</p> <p>2006-01-01</p> <p>This review concerns crustaceans that associate with sea ice. Particular emphasis is placed on comparing and contrasting the Arctic and Antarctic sea ice habitats, and the subsequent influence of these environments on the life history strategies of the crustacean fauna. Sea ice is the dominant feature of both polar marine ecosystems, playing a central role in physical processes and providing an essential habitat for organisms ranging in size from viruses to whales. Similarities between the Arctic and Antarctic marine ecosystems include variable cover of sea ice over an annual cycle, a light regimen that can extend from months of total darkness to months of continuous light and a pronounced seasonality in primary production. Although there are many similarities, there are also major differences between the two regions: The Antarctic experiences greater seasonal change in its sea ice extent, much of the ice is over very deep water and more than 80% breaks out each year. In contrast, Arctic sea ice often covers comparatively shallow water, doubles in its extent on an annual cycle and the ice may persist for several decades. Crustaceans, particularly copepods and amphipods, are abundant in the sea ice zone at both poles, either living within the brine channel system of the ice-crystal matrix or inhabiting the ice-water interface. Many species associate with ice for only a part of their life cycle, while others appear entirely dependent upon it for reproduction and development. Although similarities exist between the two faunas, many differences are emerging. Most notable are the much higher abundance and biomass of Antarctic copepods, the dominance of the Antarctic sea ice copepod fauna by calanoids, the high euphausiid biomass in Southern Ocean waters and the lack of any species that appear fully dependent on the ice. In the Arctic, the ice-associated fauna is dominated by amphipods. Calanoid copepods are not tightly associated with the ice, while harpacticoids and cyclopoids are abundant. Euphausiids are nearly absent from the high Arctic. Life history strategies are variable, although reproductive cycles and life spans are generally longer than those for temperate congeners. Species at both poles tend to be opportunistic feeders and periods of diapause or other reductions in metabolic expenditure are not uncommon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050041627','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050041627"><span>Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abdalati, Waleed (Technical Monitor); Scambos, Ted</p> <p>2004-01-01</p> <p>Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approximately 0 deg C and persistent melt ponding is observed, a rapid retreat and disintegration begins. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', B', and Wilkins Ice shelves) in the results of a previous grant under ADRO-1. Modeling of shelf ice flow and the effects of meltwater indicated that melt ponding accelerates shelf breakup by increasing fracturing. The ADRO-2 funding (topic of this report) supported further inquiry into the evolution of ice shelves under warming conditions, and the post-breakup effects on their feeder glaciers. Also, this grant considered fast ice and sea ice characteristics, to the extent that they provide information regarding shelf stability. A major component of this work was in the form of NSIDC image data support and in situ sea ice research on the Aurora Australis 'ARISE' cruise of September 9 2003 through October 28 2003.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.C11B0499S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.C11B0499S"><span>Expanding research capabilities with sea ice climate records for analysis of long-term climate change and short-term variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scott, D. J.; Meier, W. N.</p> <p>2008-12-01</p> <p>Recent sea ice analysis is leading to predictions of a sea ice-free summertime in the Arctic within 20 years, or even sooner. Sea ice topics, such as concentration, extent, motion, and age, are predominately studied using satellite data. At the National Snow and Ice Data Center (NSIDC), passive microwave sea ice data sets provide timely assessments of seasonal-scale variability as well as consistent long-term climate data records. Such data sets are crucial to understanding changes and assessing their impacts. Noticeable impacts of changing sea ice conditions on native cultures and wildlife in the Arctic region are now being documented. With continued deterioration in Arctic sea ice, global economic impacts will be seen as new shipping routes open. NSIDC is at the forefront of making climate data records available to address the changes in sea ice and its global impacts. By focusing on integrated data sets, NSIDC leads the way by broadening the studies of sea ice beyond the traditional cryospheric community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040035786&hterms=ships+location&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dships%2Blocation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040035786&hterms=ships+location&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dships%2Blocation"><span>Studies of the Antarctic Sea Ice Edges and Ice Extents from Satellite and Ship Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Worby, Anthony P.; Comiso, Josefino C.</p> <p>2003-01-01</p> <p>Passive-microwave derived ice edge locations in Antarctica are assessed against other satellite data as well as in situ observations of ice edge location made between 1989 and 2000. The passive microwave data generally agree with satellite and ship data but the ice concentration at the observed ice edge varies greatly with averages of 14% for the TEAM algorithm and 19% for the Bootstrap algorithm. The comparisons of passive microwave with the field data show that in the ice growth season (March - October) the agreement is extremely good, with r(sup 2) values of 0.9967 and 0.9797 for the Bootstrap and TEAM algorithms respectively. In the melt season however (November - February) the passive microwave ice edge is typically 1-2 degrees south of the observations due to the low concentration and saturated nature of the ice. Sensitivity studies show that these results can have significant impact on trend and mass balance studies of the sea ice cover in the Southern Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EOSTr..90R.169P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EOSTr..90R.169P"><span>Developing and Implementing Protocols for Arctic Sea Ice Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perovich, Donald K.; Gerland, Sebastian</p> <p>2009-05-01</p> <p>Arctic Surface-Based Sea Ice Observations: Integrated Protocols and Coordinated Data Acquisition; Tromsø, Norway, 26-27 January 2009; The Arctic sea ice cover is diminishing. Over the past several years, not only has ice thinned but the extent of ice at the end of summer, and hence perennial ice, has declined markedly. These changes affect a wide range of issues and are important for a varied group of stakeholders, including Arctic coastal communities, policy makers, industry, the scientific community, and the public. Concerns range from the role of sea ice cover as an indicator and amplifier of climate change to marine transportation, resource extraction, and coastal erosion. To understand and respond to these ongoing changes, it is imperative to develop and implement consistent and robust observational protocols that can be used to describe the current state of the ice cover as well as future changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29080010','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29080010"><span>Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad</p> <p>2017-12-01</p> <p>The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future sea ice conditions. Our results showed that, despite a general tendency toward less sea ice cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by sea ice blocking narrow passages. This will make sea ice forecasts on shorter time and space scales and Arctic weather prediction even more important.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036603','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036603"><span>Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reed, Bradley C.; Budde, Michael E.; Spencer, Page; Miller, Amy E.</p> <p>2009-01-01</p> <p>Impacts of global climate change are expected to result in greater variation in the seasonality of snowpack, lake ice, and vegetation dynamics in southwest Alaska. All have wide-reaching physical and biological ecosystem effects in the region. We used Moderate Resolution Imaging Spectroradiometer (MODIS) calibrated radiance, snow cover extent, and vegetation index products for interpreting interannual variation in the duration and extent of snowpack, lake ice, and vegetation dynamics for southwest Alaska. The approach integrates multiple seasonal metrics across large ecological regions. Throughout the observation period (2001-2007), snow cover duration was stable within ecoregions, with variable start and end dates. The start of the lake ice season lagged the snow season by 2 to 3??months. Within a given lake, freeze-up dates varied in timing and duration, while break-up dates were more consistent. Vegetation phenology varied less than snow and ice metrics, with start-of-season dates comparatively consistent across years. The start of growing season and snow melt were related to one another as they are both temperature dependent. Higher than average temperatures during the El Ni??o winter of 2002-2003 were expressed in anomalous ice and snow season patterns. We are developing a consistent, MODIS-based dataset that will be used to monitor temporal trends of each of these seasonal metrics and to map areas of change for the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP41A2212R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP41A2212R"><span>Climate in the Absence of Ocean Heat Transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rose, B. E. J.</p> <p>2015-12-01</p> <p>The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on the climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify this by comparing a realistic control climate simulation with a slab ocean simulation in which OHT is disabled. Using the state-of-the-art CESM with a realistic present-day continental configuration, I show that the absence of OHT leads to a 23 K global cooling and massive expansion of sea ice to near 30º latitude in both hemisphere. The ice expansion is asymmetric, with greatest extent in the South Pacific and South Indian ocean basins. I discuss implications of this enormous and asymmetric climate change for atmospheric circulation, heat transport, and tropical precipitation. Parameter sensitivity studies show that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT, with some perturbations sufficient to cause a runaway Snowball Earth glaciation. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is still rather uncertain. I will also present some ideas on adapting the simple energy balance model to account for the enhanced sensitivity of sea ice to heating from the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....9515959H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....9515959H"><span>One hundred years of Arctic ice cover variations as simulated by a one-dimensional, ice-ocean model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hakkinen, S.; Mellor, G. L.</p> <p>1990-09-01</p> <p>A one-dimensional ice-ocean model consisting of a second moment, turbulent closure, mixed layer model and a three-layer snow-ice model has been applied to the simulation of Arctic ice mass and mixed layer properties. The results for the climatological seasonal cycle are discussed first and include the salt and heat balance in the upper ocean. The coupled model is then applied to the period 1880-1985, using the surface air temperature fluctuations from Hansen et al. (1983) and from Wigley et al. (1981). The analysis of the simulated large variations of the Arctic ice mass during this period (with similar changes in the mixed layer salinity) shows that the variability in the summer melt determines to a high degree the variability in the average ice thickness. The annual oceanic heat flux from the deep ocean and the maximum freezing rate and associated nearly constant minimum surface salinity flux did not vary significantly interannually. This also implies that the oceanic influence on the Arctic ice mass is minimal for the range of atmospheric variability tested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PrOce.136..151D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PrOce.136..151D"><span>Effects of recent decreases in arctic sea ice on an ice-associated marine bird</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Divoky, George J.; Lukacs, Paul M.; Druckenmiller, Matthew L.</p> <p>2015-08-01</p> <p>Recent major reductions in summer arctic sea ice extent could be expected to be affecting the distributions and life histories of arctic marine biota adapted to living adjacent to sea ice. Of major concern are the effects of ice reductions, and associated increasing SST, on the most abundant forage fish in the Arctic, Arctic cod (Boreogadus saida), the primary prey for the region's upper trophic level marine predators. The black guillemot (Cepphus grylle mandtii) is an ice-obligate diving seabird specializing in feeding on Arctic cod and has been studied annually since 1975 at a breeding colony in the western Beaufort Sea. The data set is one of the few allowing assessment of the response of an upper trophic marine predator to recent decadal changes in the region's cryosphere. Analysis of oceanographic conditions north of the colony from 1975 to 2012 for the annual period when parents provision young (mid-July to early September), found no major regime shifts in ice extent or SST until the late 1990s with major decreases in ice and increases in SST in the first decade of the 21st Century. We examined decadal variation in late summer oceanographic conditions, nestling diet and success, and overwinter adult survival, comparing a historical period (1975-1984) with a recent (2003-2012) one. In the historical period sea ice retreated an average of 1.8 km per day from 15 July to 1 September to an average distance of 95.8 km from the colony, while in the recent period ice retreat averaged 9.8 km per day to an average distance of 506.9 km for the same time period. SST adjacent to the island increased an average of 2.9 °C between the two periods. While Arctic cod comprised over 95% of the prey provided to nestlings in the historical period, in the recent period 80% of the years had seasonal decreases, with Arctic cod decreasing to <5% of the nestling diet, and nearshore demersals, primarily sculpin (Cottidae), comprising the majority of the diet. A five-fold increase in the rate of nestling starvation and reductions in nestling growth and fledging mass were associated with the shift from Arctic cod. Annual adult survival during the nonbreeding season (September-May), showed no significant difference between the two periods, indicating no major change in availability of Arctic cod or other prey in the wintering area in the Bering Sea. Our findings of a substantial decrease in Arctic cod availability in late summer in response to decreased ice extent and increasing SST have implications for the entire Arctic given the ongoing and predicted basin-wide reductions in sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920051541&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920051541&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DParkinsons"><span>Interannual variability of monthly Southern Ocean sea ice distributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.</p> <p>1992-01-01</p> <p>The interannual variability of the Southern-Ocean sea-ice distributions was mapped and analyzed using data from Nimbus-5 ESMR and Nimbus-7 SMMR, collected from 1973 to 1987. The set of 12 monthly maps obtained reveals many details on spatial variability that are unobtainable from time series of ice extents. These maps can be used as baseline maps for comparisons against future Southern Ocean sea ice distributions. The maps are supplemented by more detailed maps of the frequency of ice coverage, presented in this paper for one month within each of the four seasons, and by the breakdown of these results to the periods covered individually by each of the two passive-microwave imagers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912967S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912967S"><span>Sediment features at the grounding zone and beneath Ekström Ice Shelf, East Antarctica, imaged using on-ice vibroseis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Emma C.; Eisen, Olaf; Hofstede, Coen; Lambrecht, Astrid; Mayer, Christoph</p> <p>2017-04-01</p> <p>The grounding zone, where an ice sheet becomes a floating ice shelf, is known to be a key threshold region for ice flow and stability. A better understanding of ice dynamics and sediment transport across such zones will improve knowledge about contemporary and palaeo ice flow, as well as past ice extent. Here we present a set of seismic reflection profiles crossing the grounding zone and continuing to the shelf edge of Ekström Ice Shelf, East Antarctica. Using an on-ice vibroseis source combined with a snowstreamer we have imaged a range of sub-glacial and sub-shelf sedimentary and geomorphological features; from layered sediment deposits to elongated flow features. The acoustic properties of the features as well as their morphology allow us to draw conclusions as to their material properties and origin. These results will eventually be integrated with numerical models of ice dynamics to quantify past and present interactions between ice and the solid Earth in East Antarctica; leading to a better understanding of future contributions of this region to sea-level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JCli...10..593W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JCli...10..593W"><span>Modeling of Antarctic Sea Ice in a General Circulation Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Xingren; Simmonds, Ian; Budd, W. F.</p> <p>1997-04-01</p> <p>A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distribution. The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. A lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..185....9G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..185....9G"><span>The MIS 3 maximum of the Torres del Paine and Última Esperanza ice lobes in Patagonia and the pacing of southern mountain glaciation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>García, Juan-Luis; Hein, Andrew S.; Binnie, Steven A.; Gómez, Gabriel A.; González, Mauricio A.; Dunai, Tibor J.</p> <p>2018-04-01</p> <p>The timing, structure and termination of the last southern mountain glaciation and its forcing remains unclear. Most studies have focused on the global Last Glacial Maximum (LGM; 26.5-19 ka) time period, which is just part of the extensive time-frame within the last glacial period, including Marine Isotope Stages 3 and 4. Understanding the glacial fluctuations throughout the glacial period is a prerequisite for uncovering the cause and climate mechanism driving southern glaciation and the interhemispheric linkages of climate change. Here, we present an extensive (n = 65) cosmogenic 10Be glacier chronology derived from moraine belts marking the pre-global LGM extent of the former Patagonian Ice Sheet in southernmost South America. Our results show the mountain ice sheet reached its maximum extent at 48.0 ± 1.8 ka during the local LGM, but attained just half this extent at 21.5 ± 1.8 ka during the global LGM. This finding, supported by nearby glacier chronologies, indicates that at orbital time scales, the southern mid-latitude glaciers fluctuated out-of-phase with northern hemisphere ice sheets. At millennial time-scales, our data suggest that Patagonian and New Zealand glaciers advanced in unison with cold Antarctic stadials and reductions in Southern Ocean sea surface temperatures. This implies a southern middle latitudes-wide millennial rhythm of climate change throughout the last glacial period linked to the north Atlantic by the bipolar seesaw. We suggest that winter insolation, acting alongside other drivers such as the strength and/or position of the southern westerlies, controlled the extents of major southern mountain glaciers such as those in southernmost South America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036436','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036436"><span>Optical ages indicate the southwestern margin of the Green Bay Lobe in Wisconsin, USA, was at its maximum extent until about 18,500 years ago</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Attig, J.W.; Hanson, P.R.; Rawling, J.E.; Young, A.R.; Carson, E.C.</p> <p>2011-01-01</p> <p>Samples for optical dating were collected to estimate the time of sediment deposition in small ice-marginal lakes in the Baraboo Hills of Wisconsin. These lakes formed high in the Baraboo Hills when drainage was blocked by the Green Bay Lobe when it was at or very near its maximum extent. Therefore, these optical ages provide control for the timing of the thinning and recession of the Green Bay Lobe from its maximum position. Sediment that accumulated in four small ice-marginal lakes was sampled and dated. Difficulties with field sampling and estimating dose rates made the interpretation of optical ages derived from samples from two of the lake basins problematic. Samples from the other two lake basins-South Bluff and Feltz basins-responded well during laboratory analysis and showed reasonably good agreement between the multiple ages produced at each site. These ages averaged 18.2. ka (n= 6) and 18.6. ka (n= 6), respectively. The optical ages from these two lake basins where we could carefully select sediment samples provide firm evidence that the Green Bay Lobe stood at or very near its maximum extent until about 18.5. ka.The persistence of ice-marginal lakes in these basins high in the Baraboo Hills indicates that the ice of the Green Bay Lobe had not experienced significant thinning near its margin prior to about 18.5. ka. These ages are the first to directly constrain the timing of the maximum extent of the Green Bay Lobe and the onset of deglaciation in the area for which the Wisconsin Glaciation was named. ?? 2011 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP43B1345K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP43B1345K"><span>Antarctic Circumpolar Current Dynamics and Their Relation to Antarctic Ice Sheet and Perennial Sea-Ice Variability in the Central Drake Passage During the Last Climate Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuhn, G.; Wu, S.; Hass, H. C.; Klages, J. P.; Zheng, X.; Arz, H. W.; Esper, O.; Hillenbrand, C. D.; Lange, C.; Lamy, F.; Lohmann, G.; Müller, J.; McCave, I. N. N.; Nürnberg, D.; Roberts, J.; Tiedemann, R.; Timmermann, A.; Titschack, J.; Zhang, X.</p> <p>2017-12-01</p> <p>The evolution of the Antarctic Ice Sheet during the last climate cycle and the interrelation to global atmospheric and ocean circulation remains controversial and plays an important role for our understanding of ice sheet response to modern global warming. The timing and sequence of deglacial warming is relevant for understanding the variability and sensitivity of the Antarctic Ice Sheet to climatic changes, and the continuing rise of atmospheric greenhouse gas concentrations. The Antarctic Ice Sheet is a pivotal component of the global water budget. Freshwater fluxes from the ice sheet may affect the Antarctic Circumpolar Current (ACC), which is strongly impacted by the westerly wind belt in the Southern Hemisphere (SHWW) and constricted to its narrowest extent in the Drake Passage. The flow of ACC water masses through Drake Passage is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global meridional overturning circulation and global climate change. In order to address orbital and millennial-scale variability of the Antarctic ice sheet and the ACC, we applied a multi-proxy approach on a sediment core from the central Drake Passage including grain size, iceberg-rafted debris, mineral dust, bulk chemical and mineralogical composition, and physical properties. In combination with already published and new sediment records from the Drake Passage and Scotia Sea, as well as high-resolution data from Antarctic ice cores (WDC, EDML), we now have evidence that during glacial times a more northerly extent of the perennial sea-ice zone decreased ACC current velocities in the central Drake Passage. During deglaciation the SHWW shifted southwards due to a decreasing temperature gradient between subtropical and polar latitudes caused by sea ice and ice sheet decline. This in turn caused Southern Hemisphere warming, a more vigorous ACC, stronger Southern Ocean ventilation, and warm Circumpolar Deep Water (CDW) upwelling on Antarctic shelves resulting in increased ice shelf melting. Stronger upwelling is associated with a rise in atmospheric carbon dioxide to reach a threshold at which full deglaciation could become inevitable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.P42A0542C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.P42A0542C"><span>Types, Sizes, Shapes and Distributions of Mars Ice and Dust Aerosols from the MGS TES Emission Phase Function Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clancy, R. T.; Wolff, M. J.; Christensen, P. R.</p> <p>2001-12-01</p> <p>A full Mars year (1999-2001) of emission phase function (EPF observations from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) provide the most complete study of Mars dust and ice aerosol properties to date. TES visible (solar band average) and infrared spectral (6-30 micron, 10 invcm res) EPF sequences are analyzed self-consistently with detailed multiple scattering radiative transfer (RT) codes to obtain first-time seasonal/latitudinal distributions of aerosol visible optical depths, particle sizes, and single scattering phase functions. As a consequence of the combined angular and wavelength coverage, we are able to define two distinct ice cloud types at 45S-45N latitudes on Mars. Type 1 ice clouds exhibit small particle sizes (1-2 micron radii), as well as a broad, deep minimum in side scattering indicative of aligned ice grains (see Wolff et al., 2001). Type 1 ice aerosols are most prevalent in the southern hemisphere during Mars aphelion, but also appear more widely distributed in season and latitude as topographic and high altitude (above 20 km) ice hazes. Type 2 ice clouds exhibit larger particle sizes (2-4 microns) and a much narrower side-scattering minimum, indicative of poorer grain alignment or a change in particle shape relative to the type 1 ice clouds (see Wolff et al., 2001). Type 2 ice clouds appear most prominently in the northern subtropical aphelion cloud belt, where relatively low altitudes of water vapor saturation (10 km) coincide with strong advective transport (Clancy et al., 1996). Retrieved dust particle radii of 1.5-1.8 micron are consistent with Pathfinder (Tomasko et al., 1999) and recent Viking/Mariner 9 reanalyses (e.g., size distribution B of Clancy et al., 1995). Detailed spectral modeling of the solar passband also implies agreement of EPF-derived dust single scattering albedos (ssa) with the ssa results from Tomasko et al.(table 8 therein). Spatial and seasonal changes in the dust ssa (0.92-0.95, solar band average) and phase functions suggest possible dust property variations, but may also be a consequence of variable high altitude ice hazes. The annual variations of both dust and ice clouds at 45S-45N latitudes are predominately orbital rather than seasonal in character and have shown close repeatability during the portions of first two Mars years observed by MGS (i.e., prior to the July 2001 global dust storm which began at Ls=185, a most striking departure from the previous two Mars years observed). Minimum visible dust opacities of 0.05-0.10 occur at southern latitudes in aphelion, maximum dust opacities of 1.0-1.5 at northern latitudes after Ls=200 (and greater than 3 in the 2001 global dust storm). Type 2 ice clouds abruptly disappear at Ls=145, as does the widespread occurrence of type 1 clouds in the southern hemisphere. Dust loading in the southern hemisphere increases at this time, but does not do so in the northern hemisphere. A comparison of dust solar band to thermal infrared optical depth ratios also provides strong evidence for non-uniform vertical mixing of the dust loading. A large fraction of the dust column (20-50 percent) appears to be concentrated in the lower boundary layer of the Mars atmosphere, particularly during conditions of low-to-moderate dust loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SolE....5..371S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SolE....5..371S"><span>Comparing a thermo-mechanical Weichselian Ice Sheet reconstruction to reconstructions based on the sea level equation: aspects of ice configurations and glacial isostatic adjustment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, P.; Lund, B.; Näslund, J.-O.; Fastook, J.</p> <p>2014-05-01</p> <p>In this study we compare a recent reconstruction of the Weichselian Ice Sheet as simulated by the University of Maine ice sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modelling: ICE-5G and ANU (Australian National University, also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling, whereas ANU and ICE-5G are global models based on the sea level equation. The three models of the Weichselian Ice Sheet are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. Whereas UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), the thickness and areal extent of the ICE-5G ice sheet is more or less constant up until the LGM. During the post-LGM deglaciation phase ANU and ICE-5G melt relatively uniformly over the entire ice sheet in contrast to UMISM, which melts preferentially from the edges, thus reflecting the fundamental difference in the reconstruction scheme. We find that all three reconstructions fit the present-day uplift rates over Fennoscandia equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present-day uplift rates, and ANU the slowest. Moreover, only for ANU can a unique best-fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present-day uplift rates equally well. This is understood from the higher present-day uplift rates predicted by ICE-5G and UMISM, which result in bifurcations in the best-fit upper- and lower-mantle viscosities. We study the areal distributions of present-day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice sheet reconstructions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512341E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512341E"><span>Arctic polynya and glacier interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, Laura</p> <p>2013-04-01</p> <p>Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring tidewater glaciers. The work presented discusses preliminary satellite observations of concurrent changes in the North Water and Nares Strait polynyas and neighbouring tidewater glaciers in Greenland and the Canadian Arctic where notable thinning and acceleration of glaciers have been observed. Also included is an outline of how these observations will fit into a much wider project on the topic involving ocean, atmosphere and sea ice modelling and short-term and longer-term in-situ measurements.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12210873F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12210873F"><span>Seasonal-Scale Dating of a Shallow Ice Core From Greenland Using Oxygen Isotope Matching Between Data and Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furukawa, Ryoto; Uemura, Ryu; Fujita, Koji; Sjolte, Jesper; Yoshimura, Kei; Matoba, Sumito; Iizuka, Yoshinori</p> <p>2017-10-01</p> <p>A precise age scale based on annual layer counting is essential for investigating past environmental changes from ice core records. However, subannual scale dating is hampered by the irregular intraannual variabilities of oxygen isotope (δ18O) records. Here we propose a dating method based on matching the δ18O variations between ice core records and records simulated by isotope-enabled climate models. We applied this method to a new δ18O record from an ice core obtained from a dome site in southeast Greenland. The close similarity between the δ18O records from the ice core and models enables correlation and the production of a precise age scale, with an accuracy of a few months. A missing δ18O minimum in the 1995/1996 winter is an example of an indistinct δ18O seasonal cycle. Our analysis suggests that the missing δ18O minimum is likely caused by a combination of warm air temperature, weak moisture transport, and cool ocean temperature. Based on the age scale, the average accumulation rate from 1960 to 2014 is reconstructed as 1.02 m yr-1 in water equivalent. The annual accumulation rate shows an increasing trend with a slope of 3.6 mm yr-1, which is mainly caused by the increase in the autumn accumulation rate of 2.6 mm yr-1. This increase is likely linked to the enhanced hydrological cycle caused by the decrease in Arctic sea ice area. Unlike the strong seasonality of precipitation amount in the ERA reanalysis data in the southeast dome region, our reconstructed accumulation rate suggests a weak seasonality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51C1002M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51C1002M"><span>Ramifications of a potential gap in passive microwave data for the long-term sea ice climate record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meier, W.; Stewart, J. S.</p> <p>2017-12-01</p> <p>The time series of sea ice concentration and extent from passive microwave sensors is one of the longest satellite-derived climate records and the significant decline in Arctic sea ice extent is one of the most iconic indicators of climate change. However, this continuous and consistent record is under threat due to the looming gap in passive microwave sensor coverage. The record started in late 1978 with the launch of the Scanning Multichannel Microwave Radiometer (SMMR) and has continued with a series of Special Sensor Microwave Imager (SSMI) and Special Sensor Microwave Imager and Sounder (SSMIS) instruments on U.S. Defense Meteorological Satellite Program (DMSP) satellites. The data from the different sensors are intercalibrated at the algorithm level by adjusting algorithm coefficients so that the output sea ice data is as consistent as possible between the older and the newer sensor. A key aspect in constructing the time series is to have at least two sensors operating simultaneously so that data from the older and newer sensor can be obtained from the same locations. However, with recent losses of the DMSP F19 and F20, the remaining SSMIS sensors are all well beyond their planned mission lifetime. This means that risk of failure is not small and is increasing with each day of operation. The newest passive microwave sensor, the JAXA Advanced Microwave Scanning Radiometer-2 (AMSR2), is a potential contributor to the time series (though it too is now beyond it's planned 5-year mission lifetime). However, AMSR2's larger antenna and higher spatial resolution presents a challenge in integrating its data with the rest of the sea ice record because the ice edge is quite sensitive to the sensor resolution, which substantially affects the total sea ice extent and area estimates. This will need to be adjusted for if AMSR2 is used to continue the time series. Here we will discuss efforts at NSIDC to integrate AMSR2 estimates into the sea ice climate record if needed. We will also discuss potential contingency plans, such as using operational sea ice charts, to fill any gaps. This would allow the record to continue, but the consistency of the time series will be degraded because the ice charts use human analysis and differing sources, amounts and quality of input data, which makes them sub-optimal for long-term climate records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031160&hterms=sutherland&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsutherland','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031160&hterms=sutherland&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsutherland"><span>SAR and passive microwave observations of the Odden during Mizex '87</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sutherland, Laura L.; Shuchman, Robert A.; Gloersen, Per; Johannessen, Johnny A.; Johannessen, Ola M.</p> <p>1989-01-01</p> <p>The Odden, a protuberance of sea ice in the Greenland Sea Basin, was studied using the NIMBUS-7 scanning multichannel microwave radiometer (SMMR) satellite and an X-band (3 cm) synthetic aperture radar (SAR) aircraft. The sea ice, meteorological, and oceanographic conditions within the northern portion of the Odden were also studied in March and April 1987. The SMMR data, which were first validated with in situ ship measurements and the SAR data, showed rapid 2-4 day oscillations of the Odden ice edge. The oscillations at 74-75 deg N were several hundred kilometers in extent. The rapid oscillation of the Odden does not appear to be a result of wind-induced ice drift, but rather results from the rapid formation of thin ice off the main ice edge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70121037','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70121037"><span>Glacial landforms on German Bank, Scotian Shelf: evidence for Late Wisconsinan ice-sheet dynamics and implications for the formation of De Geer moraines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Todd, Brian J.; Valentine, Page C.; Longva, Oddvar; Shaw, John</p> <p>2007-01-01</p> <p>The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920052554&hterms=AES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DAES','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920052554&hterms=AES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DAES"><span>NASA, Navy, and AES/York sea ice concentration comparison of SSM/I algorithms with SAR derived values</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jentz, R. R.; Wackerman, C. C.; Shuchman, R. A.; Onstott, R. G.; Gloersen, Per; Cavalieri, Don; Ramseier, Rene; Rubinstein, Irene; Comiso, Joey; Hollinger, James</p> <p>1991-01-01</p> <p>Previous research studies have focused on producing algorithms for extracting geophysical information from passive microwave data regarding ice floe size, sea ice concentration, open water lead locations, and sea ice extent. These studies have resulted in four separate algorithms for extracting these geophysical parameters. Sea ice concentration estimates generated from each of these algorithms (i.e., NASA/Team, NASA/Comiso, AES/York, and Navy) are compared to ice concentration estimates produced from coincident high-resolution synthetic aperture radar (SAR) data. The SAR concentration estimates are produced from data collected in both the Beaufort Sea and the Greenland Sea in March 1988 and March 1989, respectively. The SAR data are coincident to the passive microwave data generated by the Special Sensor Microwave/Imager (SSM/I).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MsT.........22S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MsT.........22S"><span>Analysis of an Artificial Tailplane Icing Flight Test of a High-Wing, Twin-Engine Aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaikh, Shehzad M.</p> <p></p> <p>The US Air Force Flight Test Center (AFFTC) conducted a civilian, Federal Aviation Administration (FAA) sponsored, evaluation of tailplane icing of a twin-turboprop business transport at Edwards Air Force Base. The flight test was conducted to evaluate ice shape growth and extent of ice on the tailplane for specific weather conditions of Liquid Water Content (LWC), droplet size, and ambient temperature. This work analyzes the flight test data comparing the drag for various tailplane icing conditions with respect to a flight test verified calibrated aircraft model. Although less than a third of the test aircraft was involved in the icing environment, the results of this analysis shows a significant increase in the aircraft drag with respect to the LWC, droplet size, and ambient temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA127954','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA127954"><span>Decision Models for Conducting an Economic Analysis of Alternative Fuels for the Ice Engine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1983-03-01</p> <p>p.cduc.d ICE vehicles. This analysis focusqs on electric vehicles d=.signed for commercial use. Electric hybrid vehicles which combine electric...ccntain -:he minimum gross veicle weight, engine size, and other characterist-ca of vehicles generally procured by the Federal governmen. The ir...Electric and Hybrid Vehicles, Energy Technology Review Nc. 44 published by Noyes Data Corpora’-ion. It summarizes data cn characteristics, cost, maints</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCC...6..479F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCC...6..479F"><span>The safety band of Antarctic ice shelves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fürst, Johannes Jakob; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Rankl, Melanie; Braun, Matthias; Gagliardini, Olivier</p> <p>2016-05-01</p> <p>The floating ice shelves along the seaboard of the Antarctic ice sheet restrain the outflow of upstream grounded ice. Removal of these ice shelves, as shown by past ice-shelf recession and break-up, accelerates the outflow, which adds to sea-level rise. A key question in predicting future outflow is to quantify the extent of calving that might precondition other dynamic consequences and lead to loss of ice-shelf restraint. Here we delineate frontal areas that we label as `passive shelf ice’ and that can be removed without major dynamic implications, with contrasting results across the continent. The ice shelves in the Amundsen and Bellingshausen seas have limited or almost no `passive’ portion, which implies that further retreat of current ice-shelf fronts will yield important dynamic consequences. This region is particularly vulnerable as ice shelves have been thinning at high rates for two decades and as upstream grounded ice rests on a backward sloping bed, a precondition to marine ice-sheet instability. In contrast to these ice shelves, Larsen C Ice Shelf, in the Weddell Sea, exhibits a large `passive’ frontal area, suggesting that the imminent calving of a vast tabular iceberg will be unlikely to instantly produce much dynamic change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730015654','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730015654"><span>Sea ice and surface water circulation, Alaskan Continental Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.</p> <p>1973-01-01</p> <p>The author has identified the following significant results. The boundaries of land-fast ice, distribution of pack ice, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack ice during 24 hours was determined by plotting the distinctly identifiable ice floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast ice. This ice hinders the movement of ice formed in eastern Chukchi Sea southward through the Bering Strait. The movement of ice along the Russian coast is relatively faster. Plotting of some of the ice floes indicated movement of ice in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of ice observed during March 6 and 7 considerably altered the distribution and extent of polynya. These features when continually plotted should be of considerable aid in navigation of ice breakers. The movement of ice will also help delineate the migration and distribution of sea mammals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec29-1323.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec29-1323.pdf"><span>14 CFR 29.1323 - Airspeed indicating system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... minimum practicable instrument calibration error when the corresponding pitot and static pressures are... pitot tube or an equivalent means of preventing malfunction due to icing. [Doc. No. 5084, 29 FR 16150...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840002650','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840002650"><span>Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.</p> <p>1983-01-01</p> <p>Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC44B..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC44B..04H"><span>The Arctic-Subarctic Sea Ice System is Entering a Seasonal Regime: Implications for Future Arctic Amplication</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haine, T. W. N.; Martin, T.</p> <p>2017-12-01</p> <p>The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..153...97P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..153...97P"><span>The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen P.</p> <p>2016-12-01</p> <p>The Eurasian ice-sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum (LGM), after the Antarctic and North American ice sheets. Despite its global significance, a comprehensive account of its evolution from independent nucleation centres to its maximum extent is conspicuously lacking. Here, a first-order, thermomechanical model, robustly constrained by empirical evidence, is used to investigate the dynamics of the EISC throughout its build-up to its maximum configuration. The ice flow model is coupled to a reference climate and applied at 10 km spatial resolution across a domain that includes the three main spreading centres of the Celtic, Fennoscandian and Barents Sea ice sheets. The model is forced with the NGRIP palaeo-isotope curve from 37 ka BP onwards and model skill is assessed against collated flowsets, marginal moraines, exposure ages and relative sea-level history. The evolution of the EISC to its LGM configuration was complex and asynchronous; the western, maritime margins of the Fennoscandian and Celtic ice sheets responded rapidly and advanced across their continental shelves by 29 ka BP, yet the maximum aerial extent (5.48 × 106 km2) and volume (7.18 × 106 km3) of the ice complex was attained some 6 ka later at c. 22.7 ka BP. This maximum stand was short-lived as the North Sea and Atlantic margins were already in retreat whilst eastern margins were still advancing up until c. 20 ka BP. High rates of basal erosion are modelled beneath ice streams and outlet glaciers draining the Celtic and Fennoscandian ice sheets with extensive preservation elsewhere due to frozen subglacial conditions, including much of the Barents and Kara seas. Here, and elsewhere across the Norwegian shelf and North Sea, high pressure subglacial conditions would have promoted localised gas hydrate formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160013876','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160013876"><span>Dramatic Contrasts in Arctic vs Antarctic Sea Ice Trends in 3-D Visualizations and Compilations of Monthly Record Highs and Lows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.; DiGirolamo, Nicolo E.</p> <p>2016-01-01</p> <p>New visualizations dramatically display the decreases in Arctic sea ice coverage over the years 1979-2015, apparent in each month of the year, with not a single record high in ice extents occurring in any month since 1986, a time period with 75 monthly record lows. Results are less dramatic in the Antarctic, but intriguingly in the opposite direction, with only 6 record lows since 1986 and 45 record highs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T51K..01J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T51K..01J"><span>New aerogeophysical data reveal the extent of the Weddell Sea Rift beneath the Institute and Möller ice streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jordan, T. A.; Ferraccioli, F.; Siegert, M. J.; Ross, N.; Corr, H.; Bingham, R. G.; Rippin, D. M.; Le Brocq, A. M.</p> <p>2011-12-01</p> <p>Significant continental rifting associated with Gondwana breakup has been widely recognised in the Weddell Sea region. However, plate reconstructions and the extent of this rift system onshore beneath the West Antarctic Ice Sheet (WAIS) are ambiguous, due to the paucity of modern geophysical data across the Institute and Möller ice stream catchments. Understanding this region is key to unravelling Gondwana breakup and the possible kinematic links between the Weddell Sea and the West Antarctic Rift System. The nature of the underlying tectonic structure is also critical, as it provides the template for ice-flow draining ~20% of the West Antarctic Ice Sheet (WAIS). During the 2010/11 Antarctic field season ~25,000 km of new airborne radar, aerogravity and aeromagnetic data were collected to help unveil the crustal structure and geological boundary conditions beneath the Institute and Möller ice streams. Our new potential field maps delineate varied subglacial geology beneath the glacial catchments, including Jurassic intrusive rocks, sedimentary basins, and Precambrian basement rocks of the Ellsworth Mountains. Inversion of airborne gravity data reveal significant crustal thinning directly beneath the faster flowing coastal parts of the Institute and Möller ice streams. We suggest that continental rifting focussed along the Weddell Sea margin of the Ellsworth-Whitmore Mountains block, providing geological controls for the fast flowing ice streams of the Weddell Sea Embayment. Further to the south we suggest that strike-slip motion between the East Antarctica and the Ellsworth-Whitmore Mountains block may provide a kinematic link between Cretaceous-Cenozoic extension in the West Antarctic Rift System and deformation in the Weddell Sea Embayment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7631H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7631H"><span>Modelling distributed mountain glacier volumes: A sensitivity study in the Austrian Alps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helfricht, Kay; Huss, Matthias; Fischer, Andrea; Otto, Jan Christoph</p> <p>2017-04-01</p> <p>Knowledge about the spatial ice thickness distribution in glacier covered mountain regions and the elevation of the bedrock underneath the glaciers yields the basis for numerous applications in geoscience. Applications include the modelling of glacier dynamics, natural risk analyses and studies on mountain hydrology. Especially in recent times of accelerating and unprecedented changes of glacier extents, the remaining ice volume is of interest regarding future glacier and sea level scenarios. Subglacial depressions concern because of their hazard potential in case of sudden releases of debris or water. A number of approaches with different level of complexity have been developed in the past years to infer glacier ice thickness from surface characteristics. Within the FUTURELAKES project, the ice thickness estimation method presented by Huss and Farinotti (2012) was applied to all glaciers in the Austrian Alps based on glacier extents and surface topography corresponding to the three Austrian glacier inventories (1969 - 1997 - 2006) with the aim to predict size and location of future proglacial lakes. The availability of measured ice thickness data and a time series of glacier inventories of Austrian glaciers, allowed carrying out a sensitivity study of the key parameter, the apparent mass balance gradient. First, the parameters controlling the apparent mass balance gradient of 58 glaciers where calibrated glacier-wise with the aim to minimize mean deviations and mean absolute deviations to measured ice thickness. The results were analysed with respect to changes of the mass balance gradient with time. Secondly, we compared the observed to modelled ice thickness changes. For doing so, glacier-wise as well as regional means of mass balance gradients have been used. The results indicate that the initial values for the apparent mass balance gradient have to be adapted to the changing conditions within the four decades covered by the glacier inventories. The gradients flatten from the first to last inventory. This is consistent with the decreasing deviation between glaciological and geodetical glacier mass balance when a period with negative mass balances results in decreasing ice dynamics. The comparison of mean ice thickness changes between the Inventories reveals the effect of changes in glacier mass transport in addition to changes in glacier area and topography. 93% of the mean observed ice thickness change could be reproduced using the glacier-wise optimized mass balance gradients. More than 85% of mean ice thickness change was calculated from modelled ice thickness distributions with inventory mean optimized mass balance gradients. The ratio decreases to 60% the same parameters for all three glacier inventories and can be attributed to changes in glacier extent. Thus, the actual glacier mass turnover has to be considered to model glacier volumes based on glacier topography more realistically. Huss, M., and D. Farinotti (2012), Distributed ice thickness and volume of all glaciers around the globe, J. Geophys. Res., 117, F04010, doi:10.1029/2012JF002523.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913097K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913097K"><span>Improved method for sea ice age computation based on combination of sea ice drift and concentration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe</p> <p>2017-04-01</p> <p>Sea Ice Age is one of the components of the Sea Ice ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea ice state in addition to sea ice concentration (SIC) and thickness (SIT). The amount of old/thick ice in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea ice age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and Ice Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-ice-age/]. The sea ice age algorithm [Fowler et al., 2004] is using satellite-derived ice drift for Lagrangian tracking of individual ice parcels (12-km grid cells) defined by areas of sea ice concentration > 15% [Maslanik et al., 2011], i.e. sea ice extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea ice extent instead of sea ice concentration leads to overestimation of the amount of older ice. (2) The individual ice parcels are not advected uniformly over (long) time. This leads to undersampling in areas of consistent ice divergence. (3) The end product grid cells are assigned the age of the oldest ice parcel within that cell, and the frequency distribution of the ice age is not taken into account. In addition, the base sea ice drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea ice drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-ice content, incorrect shape of the old-ice pack, and lack of information about the ice age distribution within the grid cells. We propose an improved algorithm for sea ice age computation based on combination of sea ice drift and concentration, both derived from satellite measurements. The base sea ice drift product is from the Ocean and Sea Ice Satellite Application Facility (EUMETSAT OSI-SAF, Lavergne et al., 2011). This operational product was recently upgraded to also process ice drift during the summer season [http://osisaf.met.no/]. . The Sea Ice Concentration product from the ESA Sea Ice Climate Change Initiative (ESA SI CCI) project is used to adjust the partial concentrations at every advection step [http://esa-cci.nersc.no/]. Each grid cell is characterised by its partial concentration of water and ice of different ages. Also, sea ice convergence and divergence are used to realistically adjust the ratio of young ice / multi year ice. Comparison of results from this new algorithm with results derived from drifting ice buoys deployed in 2013 - 2016 demonstrates clear improvement in the ice age estimation. The spatial distribution of sea ice age in the new product compares better to the Sea Ice Type derived from satellite passive microwave and scatterometer measurements, both with regard to the decreased patchiness and the shape. The new ice age algorithm is developed in the context of the ESA CCI, and is designed for production of more accurate sea ice age climate data records in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920029922&hterms=deforestation+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddeforestation%2Bglobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920029922&hterms=deforestation+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddeforestation%2Bglobal%2Bwarming"><span>Applications of the EOS SAR to monitoring global change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schier, Marguerite; Way, Jobea; Holt, Benjamin</p> <p>1991-01-01</p> <p>The SAR employed by NASA's Earth Observing System (EOS) is a multifrequency multipolarization radar which can conduct global monitoring of geophysical and biophysical parameters. The present discussion of the EOS SAR's role in global monitoring emphasizes geophysical product variables applicable to global hydrologic, biogeochemical, and energy cycle models. EOS SAR products encompass biomass, wetland areas, and phenologic and environmental states, in the field of ecosystem dynamics; soil moisture, snow moisture and extent, and glacier and ice sheet extent and velocity, in hydrologic cycle studies; surface-wave fields and sea ice properties, in ocean/atmosphere circulation; and the topography, erosion, and land forms of the solid earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000090513','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000090513"><span>Update on the Greenland Ice Sheet Melt Extent: 1979-1999</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abdalati, Waleed; Steffen, Konrad</p> <p>2000-01-01</p> <p>Analysis of melt extent on the Greenland ice sheet is updated to span the time period 1979-1999 is examined along with its spatial and temporal variability using passive microwave satellite data. In order to acquire the full record, the issue of continuity between previous passive microwave sensors (SMMR, SSM/I F-8, and SSM/I F-11), and the most recent SSM/I F-13 sensor is addressed. The F-13 Cross-polarized gradient ratio (XPGR) melt-classification threshold is determined to be -0.0154. Results show that for the 21-year record, an increasing melt trend of nearly 1 %/yr is observed, and this trend is driven by conditions on in the western portion of the ice sheet, rather than the east, where melt appears to have decreased slightly. Moreover, the eruption of Mt. Pinatubo in 1991 is likely to have had some impact the melt, but not as much as previously suspected. The 1992 melt anomaly is 1.7 standard deviations from the mean. Finally, the relationship between coastal temperatures and melt extent suggest an increase in surface runoff contribution to sea level of 0.31 mm/yr for a 1 C temperature rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title45-vol4/pdf/CFR-2010-title45-vol4-sec2521-60.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title45-vol4/pdf/CFR-2010-title45-vol4-sec2521-60.pdf"><span>45 CFR 2521.60 - To what extent must my share of program costs increase over time?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>...(percent) Year 7(percent) Year 8(percent) Year 9(percent) Year 10(percent) Minimum member support 15 15 15...(percent) Year 6(percent) Year 7(percent) Year 8(percent) Year 9(percent) Year 10(percent) Minimum member... 45 Public Welfare 4 2010-10-01 2010-10-01 false To what extent must my share of program costs...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title45-vol4/pdf/CFR-2011-title45-vol4-sec2521-60.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title45-vol4/pdf/CFR-2011-title45-vol4-sec2521-60.pdf"><span>45 CFR 2521.60 - To what extent must my share of program costs increase over time?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>...(percent) Year 7(percent) Year 8(percent) Year 9(percent) Year 10(percent) Minimum member support 15 15 15...(percent) Year 6(percent) Year 7(percent) Year 8(percent) Year 9(percent) Year 10(percent) Minimum member... 45 Public Welfare 4 2011-10-01 2011-10-01 false To what extent must my share of program costs...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1080513.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1080513.pdf"><span>Extent of Implementation of Minimum Standards of Basic Education for the Realisation of the Second Millennium Development Goal in Bayelsa State</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ogochukwu, Emeka; Gbendu, Olaowei Godiva</p> <p>2015-01-01</p> <p>The study was carried out in Salga Education Zone of Bayelsa State specifically to determine the extent of implementation of the minimum standards for basic education in order to ensure the realization of the second millennium development goal. The study adopted the descriptive research design. The population of the study comprised of all the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...710325H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...710325H"><span>Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hein, Andrew S.; Woodward, John; Marrero, Shasta M.; Dunning, Stuart A.; Steig, Eric J.; Freeman, Stewart P. H. T.; Stuart, Finlay M.; Winter, Kate; Westoby, Matthew J.; Sugden, David E.</p> <p>2016-02-01</p> <p>Past fluctuations of the West Antarctic Ice Sheet (WAIS) are of fundamental interest because of the possibility of WAIS collapse in the future and a consequent rise in global sea level. However, the configuration and stability of the ice sheet during past interglacial periods remains uncertain. Here we present geomorphological evidence and multiple cosmogenic nuclide data from the southern Ellsworth Mountains to suggest that the divide of the WAIS has fluctuated only modestly in location and thickness for at least the last 1.4 million years. Fluctuations during glacial-interglacial cycles appear superimposed on a long-term trajectory of ice-surface lowering relative to the mountains. This implies that as a minimum, a regional ice sheet centred on the Ellsworth-Whitmore uplands may have survived Pleistocene warm periods. If so, it constrains the WAIS contribution to global sea level rise during interglacials to about 3.3 m above present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G31A0897K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G31A0897K"><span>Land motion due to 20th century mass balance of the Greenland Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kjeldsen, K. K.; Khan, S. A.</p> <p>2017-12-01</p> <p>Quantifying the contribution from ice sheets and glaciers to past sea level change is of great value for understanding sea level projections into the 21st century. However, quantifying and understanding past changes are equally important, in particular understanding the impact in the near-field where the signal is highest. We assess the impact of 20th century mass balance of the Greenland Ice Sheet on land motion using results from Kjeldsen et al, 2015. These results suggest that the ice sheet on average lost a minimum of 75 Gt/yr, but also show that the mass balance was highly spatial- and temporal variable, and moreover that on a centennial time scale changes were driven by a decreasing surface mass balance. Based on preliminary results we discuss land motion during the 20th century due to mass balance changes and the driving components surface mass balance and ice dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT........38L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT........38L"><span>A model of the Greenland ice sheet deglaciation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lecavalier, Benoit</p> <p></p> <p>The goal of this thesis is to improve our understanding of the Greenland ice sheet (GrIS) and how it responds to climate change. This was achieved using ice core records to infer elevation changes of the GrIS during the Holocene (11.7 ka BP to Present). The inferred elevation changes show the response of the ice sheet interior to the Holocene Thermal Maximum (HTM; 9-5 ka BP) when temperatures across Greenland were warmer than present. These ice-core derived thinning curves act as a new set of key constraints on the deglacial history of the GrIS. Furthermore, a calibration was conducted on a three-dimensional thermomechanical ice sheet, glacial isostatic adjustment, and relative sea-level model of GrIS evolution during the most recent deglaciation (21 ka BP to present). The model was data-constrained to a variety of proxy records from paleoclimate archives and present-day observations of ice thickness and extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3952195','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3952195"><span>Counting whales in a challenging, changing environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Williams, R.; Kelly, N.; Boebel, O.; Friedlaender, A. S.; Herr, H.; Kock, K.-H.; Lehnert, L. S.; Maksym, T.; Roberts, J.; Scheidat, M.; Siebert, U.; Brierley, A. S.</p> <p>2014-01-01</p> <p>Estimating abundance of Antarctic minke whales is central to the International Whaling Commission's conservation and management work and understanding impacts of climate change on polar marine ecosystems. Detecting abundance trends is problematic, in part because minke whales are frequently sighted within Antarctic sea ice where navigational safety concerns prevent ships from surveying. Using icebreaker-supported helicopters, we conducted aerial surveys across a gradient of ice conditions to estimate minke whale density in the Weddell Sea. The surveys revealed substantial numbers of whales inside the sea ice. The Antarctic summer sea ice is undergoing rapid regional change in annual extent, distribution, and length of ice-covered season. These trends, along with substantial interannual variability in ice conditions, affect the proportion of whales available to be counted by traditional shipboard surveys. The strong association between whales and the dynamic, changing sea ice requires reexamination of the power to detect trends in whale abundance or predict ecosystem responses to climate change. PMID:24622821</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840035150&hterms=Functions+helicopter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DFunctions%2Bhelicopter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840035150&hterms=Functions+helicopter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DFunctions%2Bhelicopter"><span>Experimental study of performance degradation of a model helicopter main rotor with simulated ice shapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Korkan, K. D.; Cross, E. J., Jr.; Cornell, C. C.</p> <p>1984-01-01</p> <p>An experimental study utilizing a remote controlled model helicopter has been conducted to measure the performance degradation due to simulated ice accretion on the leading edge of the main rotor for hover and forward flight. The 53.375 inch diameter main rotor incorporates a NACA 0012 airfoil with a generic ice shape corresponding to a specified natural ice condition. Thrust coefficients and torque coefficients about the main rotor were measured as a function of velocity, main rotor RPM, angle-of-incidence of the fuselage, collective pitch angle, and extent of spanwise ice accretion. An experimental airfoil data bank has been determined using a two-dimensional twenty-one inch NACA 0012 airfoil with scaled ice accretion shapes identical to that used on the model helicopter main rotor. The corresponding experimental data are discussed with emphasis on Reynolds number effects and ice accretion scale model testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20140008940&hterms=parkinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dparkinson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20140008940&hterms=parkinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dparkinson"><span>On the 2012 Record Low Arctic Sea Ice Cover: Combined Impact of Preconditioning and an August Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.; Comiso, Josefino C.</p> <p>2013-01-01</p> <p>A new record low Arctic sea ice extent for the satellite era, 3.4 x 10(exp 6) square kilometers, was reached on 13 September 2012; and a new record low sea ice area, 3.01 x 10(exp 6) square kilometers was reached on the same date. Preconditioning through decades of overall ice reductions made the ice pack more vulnerable to a strong storm that entered the central Arctic in early August 2012. The storm caused the separation of an expanse of 0.4 x 10(exp 6) square kilometers of ice that melted in total, while its removal left the main pack more exposed to wind and waves, facilitating the main pack's further decay. Future summer storms could lead to a further acceleration of the decline in the Arctic sea ice cover and should be carefully monitored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.1035T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.1035T"><span>Seasonal to interannual Arctic sea ice predictability in current global climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tietsche, S.; Day, J. J.; Guemas, V.; Hurlin, W. J.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Collins, M.; Hawkins, E.</p> <p>2014-02-01</p> <p>We establish the first intermodel comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic sea ice extent and volume, there is potential predictive skill for lead times of up to 3 years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. Sea ice concentration errors are largest in the marginal ice zone, and in winter they are almost zero away from the ice edge. Sea ice thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by sea ice advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUSM.C42A..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUSM.C42A..02D"><span>Operationally Monitoring Sea Ice at the Canadian Ice Service</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Abreu, R.; Flett, D.; Carrieres, T.; Falkingham, J.</p> <p>2004-05-01</p> <p>The Canadian Ice Service (CIS) of the Meteorological Service of Canada promotes safe and efficient maritime operations and protects Canada's environment by providing reliable and timely information about ice and iceberg conditions in Canadian waters. Daily and seasonal charts describing the extent, type and concentration of sea ice and icebergs are provided to support navigation and other activities (e.g. oil and gas) in coastal waters. The CIS relies on a suite of spaceborne visible, infrared and microwave sensors to operationally monitor ice conditions in Canadian coastal and inland waterways. These efforts are complemented by operational sea ice models that are customized and run at the CIS. The archive of these data represent a 35 year archive of ice conditions and have proven to be a valuable dataset for historical sea ice analysis. This presentation will describe the daily integration of remote sensing observations and modelled ice conditions used to produce ice and iceberg products. A review of the decadal evolution of this process will be presented, as well as a glimpse into the future of ice and iceberg monitoring. Examples of the utility of the CIS digital sea ice archive for climate studies will also be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C33A0669O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C33A0669O"><span>Recent Increases in Snow Accumulation and Decreases in Sea-Ice Concentration Recorded in a Coastal NW Greenland Ice Core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osterberg, E. C.; Thompson, J. T.; Wong, G. J.; Hawley, R. L.; Kelly, M. A.; Lutz, E.; Howley, J.; Ferris, D. G.</p> <p>2013-12-01</p> <p>A significant rise in summer temperatures over the past several decades has led to widespread retreat of the Greenland Ice Sheet (GIS) margin and surrounding sea ice. Recent observations from geodetic stations and GRACE show that ice mass loss progressed from South Greenland up to Northwest Greenland by 2005 (Khan et al., 2010). Observations from meteorological stations at the U.S. Thule Air Force Base, remote sensing platforms, and climate reanalyses indicate a 3.5C mean annual warming in the Thule region and a 44% decrease in summer (JJAS) sea-ice concentrations in Baffin Bay from 1980-2010. Mean annual precipitation near Thule increased by 12% over this interval, with the majority of the increase occurring in fall (SON). To improve projections of future ice loss and sea-level rise in a warming climate, we are currently developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate variability and cryospheric response in NW Greenland, with a focus on past warm periods. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 20 m) from the coastal region of the GIS (2Barrel site; 76.9317 N, 63.1467 W) and the summit of North Ice Cap (76.938 N, 67.671 W) in 2011 and 2012, respectively. The 2Barrel ice core was sampled using a continuous ice core melting system at Dartmouth, and subsequently analyzed for major anion and trace element concentrations and stable water isotope ratios. Here we show that the 2Barrel ice core spanning 1990-2010 records a 25% increase in mean annual snow accumulation, and is positively correlated (r = 0.52, p<0.01) with ERA-Interim precipitation. The 2Barrel annual sea-salt Na concentration is strongly correlated (r = 0.5-0.8, p<0.05) with summer and fall sea-ice concentrations in northern Baffin Bay near Thule (Figure 1). We hypothesize that the positive correlation represents a significant Na contribution from frost flowers growing on fall frazil ice. Ongoing analyses will evaluate the relationship between MSA concentrations and sea ice extent. Our results show that a deep ice core collected from this dynamic and climate-sensitive region of NW Greenland would produce a valuable record of late Holocene climate and sea ice extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C23C0646G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C23C0646G"><span>Numerical model of ice melange expansion during abrupt ice-shelf collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guttenberg, N.; Abbot, D. S.; Amundson, J. M.; Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W.</p> <p>2010-12-01</p> <p>Satellite imagery of the February 2008 Wilkins Ice-Shelf Collapse event reveals that a large percentage of the involved ice shelf was converted to capsized icebergs and broken fragments of icebergs over a relatively short period of time, possibly less than 24 hours. The extreme violence and short time scale of the event, and the considerable reduction of gravitational potential energy between upright and capsized icebergs, suggests that iceberg capsize might be an important driving mechanism controlling both the rate and spatial extent of ice shelf collapse. To investigate this suggestion, we have constructed an idealized, 2-dimensional model of a disintegrating ice shelf composed of a large number (N~100 to >1000) of initially well-packed icebergs of rectangular cross section. The model geometry consists of a longitudinal cross section of the idealized ice shelf from grounding line (or the upstream extent of ice-shelf fragmentation) to seaward ice front, and includes the region beyond the initial ice front to cover the open, ice-free water into which the collapsing ice shelf expands. The seawater in which the icebergs float is treated as a hydrostatic fluid in the computation of iceberg orientation (e.g., the evaluation of buoyancy forces and torques), thereby eliminating the complexities of free-surface waves, but net horizontal drift of the icebergs is resisted by a linear drag law designed to energy dissipation by viscous forces and surface-gravity-wave radiation. Icebergs interact via both elastic and inelastic contacts (typically a corner of one iceberg will scrape along the face of its neighbor). Ice-shelf collapse in the model is embodied by the mass capsize of a large proportion of the initially packed icebergs and the consequent advancement of the ice front (leading edge). Model simulations are conducted to examine (a) the threshold of stability (e.g., what density of initially capsizable icebergs is needed to allow a small perturbation to the system evolve into full-blown collapse of the ice shelf? What proportion of uncapsizable icebergs prevent a collapse?), (b) the rates of mobilization and their dependence on iceberg geometry (e.g., what determines the speed at which the expanding ice melange moves into the open, ice-free water?), and (c) the factors that promote the arrest of the system (e.g., are there circumstances where only partial collapses can occur?). Results of simulations are compared with observational parameters derived from satellite imagery, seismic analysis and laboratory experiment to determine what aspects of the numerical model's physical formulation may have most relevance to the disappearance of ice shelves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AeoRe..17..139M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AeoRe..17..139M"><span>Synthesis on Quaternary aeolian research in the unglaciated eastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Markewich, Helaine W.; Litwin, Ronald J.; Wysocki, Douglas A.; Pavich, Milan J.</p> <p>2015-06-01</p> <p>Late-middle and late Pleistocene, and Holocene, inland aeolian sand and loess blanket >90,000 km2 of the unglaciated eastern United States of America (USA). Deposits are most extensive in the Lower Mississippi Valley (LMV) and Atlantic Coastal Plain (ACP), areas presently lacking significant aeolian activity. They provide evidence of paleoclimate intervals when wind erosion and deposition were dominant land-altering processes. This study synthesizes available data for aeolian sand deposits in the LMV, the Eastern Gulf Coastal Plain (EGCP) and the ACP, and loess deposits in the Middle Atlantic Coastal Plain (MACP). Data indicate: (a) the most recent major aeolian activity occurred in response to and coincident with growth and decay of the Laurentide Ice Sheet (LIS); (b) by ∼40 ka, aeolian processes greatly influenced landscape evolution in all three regions; (c) aeolian activity peaked in OIS2; (d) OIS3 and OIS2 aeolian records are in regional agreement with paleoecological records; and (e) limited aeolian activity occurred in the Holocene (EGCP and ACP). Paleoclimate and atmospheric-circulation models (PCMs/ACMs) for the last glacial maximum (LGM) show westerly winter winds for the unglaciated eastern USA, but do not resolve documented W and SW winds in the SEACP and WNW and N winds in the MACP. The minimum areal extent of aeolian deposits in the EGCP and ACP is ∼10,000 km2. For the LMV, it is >80,000 km2. Based on these estimates, published PCMs/ACMs likely underrepresent the areal extent of LGM aeolian activity, as well as the extent and complexity of climatic changes during this interval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C44B..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C44B..08S"><span>How will we ensure the long-term sea ice data record continues?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, J. C.; Kaleschke, L.</p> <p>2017-12-01</p> <p>The multi-channel satellite passive microwave record has been of enormous benefit to the science community and society at large since the late 1970s. Starting with the launch of the Nimbus-7 Scanning Multi-Channel Microwave Radiometer (SMMR) in October 1978, and continuing with the launch of a series of Special Sensor Microwave Imagers (SSM/Is) in June 1987 by the Defense Meteorological Satellite Program (DMSP), places previously difficult to monitor year-round, such as the polar regions, came to light. Together these sensors have provided nearly 4 decades of climate data records on the state of sea ice cover over the ocean and snow on land. This data has also been used to map melt extent on the large ice sheets, timing of snow melt onset over land and sea ice. Application also extend well beyond the polar regions, mapping important climate variables, such as soil moisture content, oceanic wind speed, rainfall, water vapor, cloud liquid water and total precipitable water. Today the current SSMIS operational satellite (F18) is 7 years old and there is no follow-on mission planned by the DMSP. With the end of the SSMI family of Sensors, will the polar regions once again be in the dark? Other sensors that may contribute to the long-term data record include the JAXA AMSR2 (5 years old as of May 2017), the Chinese Fen-Yung-3 and the Russian Meteor-N2. Scatterometry and L-band radiometry from SMOS and NASA's SMOS may also provide some potential means of extending the sea ice extent data record, as well as future sensors by the DoD, JAXA and ESA. However, this will require considerable effort to intercalibrate the different sensors to ensure consistency in the long-term data record. Differences in measurement approach, frequency and spatial resolution make this a non-trivial matter. The passive microwave sea ice extent data record is one of the longest and most consistent climate data records available. It provides daily monitoring of one of the most striking changes in our climate system, the loss of the Arctic sea ice cover. A series of replacement sensors is urgently needed, preferably at higher spatial resolution to better delineate the ice edge for marine applications such as ship routing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMAE31A0022P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMAE31A0022P"><span>Preliminary Results From a Laboratory Study of Positive Streamer Discharges on Simulated Ice Hydrometeors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petersen, D.; Bailey, M.; Hallett, J.; Beasley, W.</p> <p>2007-12-01</p> <p>The initiation of lightning remains an open question, due in large part to a deficit of in-situ observational evidence. Recent theoretical descriptions of lightning initiation have focused on runaway breakdown and related secondary processes, but have not convincingly explained the details of onset of the embryonic lightning leader channel. Among possible mechanisms contributing to the initial leader formation are positive streamer discharges from ice hydrometeors, themselves once favored as the primary explanation of lightning initiation. We present preliminary results from a new laboratory study of positive streamer discharges on simulated ice hydrometeors. Emphasis is given to precisely defining the minimum electric field strength required for onset of positive streamer generation, with variables of interest being ice crystal size, habit and environmental temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title29-vol7/pdf/CFR-2012-title29-vol7-sec1917-127.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title29-vol7/pdf/CFR-2012-title29-vol7-sec1917-127.pdf"><span>29 CFR 1917.127 - Sanitation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... employees. The facilities shall have: (i) Running water, including hot and cold or tepid water at a minimum... containers shall be clean, containing only water and ice, and shall be fitted with covers. (3) Common...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title29-vol7/pdf/CFR-2014-title29-vol7-sec1917-127.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title29-vol7/pdf/CFR-2014-title29-vol7-sec1917-127.pdf"><span>29 CFR 1917.127 - Sanitation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... employees. The facilities shall have: (i) Running water, including hot and cold or tepid water at a minimum... containers shall be clean, containing only water and ice, and shall be fitted with covers. (3) Common...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title29-vol7/pdf/CFR-2013-title29-vol7-sec1917-127.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title29-vol7/pdf/CFR-2013-title29-vol7-sec1917-127.pdf"><span>29 CFR 1917.127 - Sanitation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... employees. The facilities shall have: (i) Running water, including hot and cold or tepid water at a minimum... containers shall be clean, containing only water and ice, and shall be fitted with covers. (3) Common...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16163347','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16163347"><span>Polar ocean ecosystems in a changing world.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smetacek, Victor; Nicol, Stephen</p> <p>2005-09-15</p> <p>Polar organisms have adapted their seasonal cycles to the dynamic interface between ice and water. This interface ranges from the micrometre-sized brine channels within sea ice to the planetary-scale advance and retreat of sea ice. Polar marine ecosystems are particularly sensitive to climate change because small temperature differences can have large effects on the extent and thickness of sea ice. Little is known about the interactions between large, long-lived organisms and their planktonic food supply. Disentangling the effects of human exploitation of upper trophic levels from basin-wide, decade-scale climate cycles to identify long-term, global trends is a daunting challenge facing polar bio-oceanography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/484365-modeling-antarctic-sea-ice-general-circulation-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/484365-modeling-antarctic-sea-ice-general-circulation-model"><span>Modeling of Antarctic sea ice in a general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wu, Xingren; Budd, W.F.; Simmonds, I.</p> <p>1997-04-01</p> <p>A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distributions The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. Amore » lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution. 64 refs., 15 figs., 2 tabs.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS21B0197M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS21B0197M"><span>Biologically-Oriented Processes in the Coastal Sea Ice Zone of the White Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melnikov, I. A.</p> <p>2002-12-01</p> <p>The annual advance and retreat of sea ice is a major physical determinant of spatial and temporal changes in the structure and function of marine coastal biological communities. Sea ice biological data obtained in the tidal zone of Kandalaksha Gulf (White Sea) during 1996-2001 period will be presented. Previous observations in this area were mainly conducted during the ice-free summer season. However, there is little information on the ice-covered winter season (6-7 months duration), and, especially, on the sea-ice biology in the coastal zone within tidal regimes. During the January-May period time-series observations were conducted on transects along shorelines with coastal and fast ice. Trends in the annual extent of sea ice showed significant impacts on ice-associated biological communities. Three types of sea ice impact on kelps, balanoides, littorinas and amphipods are distinguished: (i) positive, when sea ice protects these populations from grinding (ii) negative, when ice grinds both fauna and flora, and (iii) a combined effect, when fast ice protects, but anchored ice grinds plant and animals. To understand the full spectrum of ecological problems caused by pollution on the coastal zone, as well as the problems of sea ice melting caused by global warming, an integrated, long-term study of the physical, chemical, and biological processes is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA112819','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA112819"><span>Breakup of Solid Ice Covers Due to Rapid Water Level Variations,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-02-01</p> <p>Larsen, and Dr. Devinder S. Sodhi for their valuable comments and reviews of the report. He also thanks Dr. Ashton and Guenther E. Frankenstein for the...for wave periods larger than about 10 seconds. What are the minimum wave lengths that might be generated by discharge variations at a hydro- electric ...Canadian Electrical Association, Research and Development, Suite 580, One Westmount Square, Montreal, Canada. 2. Ashton, G.D. (1974a) Entrainment of ice</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.C41C0990P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.C41C0990P"><span>Assessing, understanding, and conveying the state of the Arctic sea ice cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perovich, D. K.; Richter-Menge, J. A.; Rigor, I.; Parkinson, C. L.; Weatherly, J. W.; Nghiem, S. V.; Proshutinsky, A.; Overland, J. E.</p> <p>2003-12-01</p> <p>Recent studies indicate that the Arctic sea ice cover is undergoing significant climate-induced changes, affecting both its extent and thickness. Satellite-derived estimates of Arctic sea ice extent suggest a reduction of about 3% per decade since 1978. Ice thickness data from submarines suggest a net thinning of the sea ice cover since 1958. Changes (including oscillatory changes) in atmospheric circulation and the thermohaline properties of the upper ocean have also been observed. These changes impact not only the Arctic, but the global climate system and are likely accelerated by such processes as the ice-albedo feedback. It is important to continue and expand long-term observations of these changes to (a) improve the fundamental understanding of the role of the sea ice cover in the global climate system and (b) use the changes in the sea ice cover as an early indicator of climate change. This is a formidable task that spans a range of temporal and spatial scales. Fortunately, there are numerous tools that can be brought to bear on this task, including satellite remote sensing, autonomous buoys, ocean moorings, field campaigns and numerical models. We suggest the integrated and coordinated use of these tools during the International Polar Year to monitor the state of the Arctic sea ice cover and investigate its governing processes. For example, satellite remote sensing provides the large-scale snapshots of such basic parameters as ice distribution, melt zone, and cloud fraction at intervals of half a day to a week. Buoys and moorings can contribute high temporal resolution and can measure parameters currently unavailable from space including ice thickness, internal ice temperature, and ocean temperature and salinity. Field campaigns can be used to explore, in detail, the processes that govern the ice cover. Numerical models can be used to assess the character of the changes in the ice cover and predict their impacts on the rest of the climate system. This work affords extraordinary opportunities for outreach activities, because of the public interest in both the Arctic and climate change. Data can be streamed to public web sites in near real time, as can photographs and commentaries from field camps. The breadth of activities affords considerable opportunities to engage the next generation of researchers in such diverse fields as computer science, engineering, and geophysics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ESASP.740E.346P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ESASP.740E.346P"><span>Remote Oil Spill Detection and Monitoring Beneath Sea Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polak, Adam; Marshall, Stephen; Ren, Jinchang; Hwang, Byongjun (Phil); Hagan, Bernard; Stothard, David J. M.</p> <p>2016-08-01</p> <p>The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full extent of the oil seepage beneath the sea ice. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a potential tool to detect the presence of oil beneath the sea ice. A small sample, lab based experiment, serving as a proof of concept, resulted in the successful identification of oil presence beneath the thin ice layer as opposed to the other sample with ice only. The paper demonstrates the results of this experiment that granted a financial support to execute full feasibility study of this technology for oil spill detection beneath the sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18720967','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18720967"><span>Workman-Reynolds freezing potential measurements between ice and dilute salt solutions for single ice crystal faces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilson, P W; Haymet, A D J</p> <p>2008-09-18</p> <p>Workman-Reynolds freezing potentials have been measured for the first time across the interface between single crystals of ice 1h and dilute electrolyte solutions. The measured electric potential is a strictly nonequilibrium phenomenon and a function of the concentration of salt, freezing rate, orientation of the ice crystal, and time. When all these factors are controlled, the voltage is reproducible to the extent expected with ice growth experiments. Zero voltage is obtained with no growth or melting. For rapidly grown ice 1h basal plane in contact with a solution of 10 (-4) M NaCl the maximum voltage exceeds 30 V and decreases to zero at both high and low salt concentrations. These single-crystal experiments explain much of the data captured on this remarkable phenomenon since 1948.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814616F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814616F"><span>First Younger Dryas moraines in Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Funder, Svend; Larsen, Nicolaj K.; Linge, Henriette; Möller, Per; Schomacker, Anders; Fabel, Derek; Kjær, Kurt H.; Xu, Sheng</p> <p>2016-04-01</p> <p>Over the Greenland ice sheet the Younger Dryas (YD) cold climate oscillation (12.9-11.7 kaBP) began with up to 10°C drop in temperatures and ended with up to 12°C abrupt warming. In the light of the present warming and melting of the ice sheet, and its importance for future climate change, the ice sheet's response to these dramatic changes in the past is of great interest. However, even though much effort has gone into charting YD ice margin behaviour around Greenland in recent years, no clear-cut signal of response to the oscillation has been uncovered. Here we show evidence to suggest that three major outlets from a local ice cap at Greenland's north coast advanced and retreated synchronously during YD. The evidence comprises OSL (optically stimulated luminescence) dates from a marine transgression of the coastal valleys that preceded the advance, and exposure ages from boulders on the moraines, formed by glaciers that overrode the marine sediment. The OSL ages suggest a maximum age of 12.4 ±0.6 kaBP for the marine incursion, and 10 exposure ages on boulders from the three moraines provide an average minimum age of 12.5 ±0.7 kaBP for the moraines, implying that the moraines were formed within the interval 11.8-13.0 kaBP. Elsewhere in Greenland evidence for readvance has been recorded in two areas. Most notably, in the East Greenland fjord zone outlet glaciers over a stretch of 800 km coast advanced through the fjords. In Scoresby Sund, where the moraines form a wide belt, an extensive 14C and exposure dating programme has shown that the readvance here probably culminated before YD, while cessation of moraine formation and rapid retreat from the moraine belt did not commence until c. 11.5 kaBP, but no moraines have so far been dated to YD. Readvance is also seen in Disko Bugt, the largest ice sheet outlet in West Greenland. However, here the advance and retreat of the ice stream took place in mid YD times, and lasted only a few hundred years, while YD in general was characterised by large scale, more than 200 km, retreat on the shelf. Therefore, although readvance and retreat occurred in both areas, the readvance was apparently not triggered by the initial YD cooling nor was the retreat caused by the abrupt warming at the end. At all other sites with a record that run through or into YD - Southeast Greenland, South Greenland, northern West Greenland - the ice margins were apparently retreating through YD, leaving the north coast as the only area with evidence for a climatically conditioned YD readvance/retreat. The apparent mismatch between ice core temperatures and ice margin behaviour is generally seen as a function of reduced AMOC (Atlantic Meridional Overturning Circulation), inducing both higher seasonality with very cold winters and warm summers, and also occurrence of warm subsurface water to melt the ice sheet margin along some coasts. Therefore the ice margin response to the cold oscillation was to some extent determined by the nearness to the North Atlantic - with North Greenland being the farthest away. Although this may explain why glaciers advanced in North Greenland, while they melted in more southerly parts, it still leaves the question with a bearing on the future: why don't we see any ice margin response neither to the initial YD cooling, nor to the abrupt warming at the end?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43E0587P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43E0587P"><span>A Changing Arctic Sea Ice Cover and the Partitioning of Solar Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perovich, D. K.; Light, B.; Polashenski, C.; Nghiem, S. V.</p> <p>2010-12-01</p> <p>Certain recent changes in the Arctic sea ice cover are well established. There has been a reduction in sea ice extent, an overall thinning of the ice cover, reduced prevalence of perennial ice with accompanying increases in seasonal ice, and a lengthening of the summer melt season. Here we explore the effects of these changes on the partitioning of solar energy between reflection to the atmosphere, absorption within the ice, and transmission to the ocean. The physical changes in the ice cover result in less light reflected and more light absorbed in the ice and transmitted to the ocean. These changes directly affect the heat and mass balance of the ice as well as the amount of light available for photosynthesis within and beneath the ice cover. The central driver is that seasonal ice covers tend to have lower albedo than perennial ice throughout the melt season, permitting more light to penetrate into the ice and ocean. The enhanced light penetration increases the amount of internal melting of the ice and the heat content of the upper ocean. The physical changes in the ice cover mentioned above have affected both the amount and the timing of the photosynthetically active radiation (PAR) transmitted into the ice and ocean, increasing transmitted PAR, particularly in the spring. A comparison of the partitioning of solar irradiance and PAR for both historical and recent ice conditions will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930063983&hterms=photography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Dphotography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930063983&hterms=photography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Dphotography"><span>Ice patterns and hydrothermal plumes, Lake Baikal, Russia - Insights from Space Shuttle hand-held photography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Evans, Cynthia A.; Helfert, Michael R.; Helms, David R.</p> <p>1992-01-01</p> <p>Earth photography from the Space Shuttle is used to examine the ice cover on Lake Baikal and correlate the patterns of weakened and melting ice with known hydrothermal areas in the Siberian lake. Particular zones of melted and broken ice may be surface expressions of elevated heat flow in Lake Baikal. The possibility is explored that hydrothermal vents can introduce local convective upwelling and disrupt a stable water column to the extent that the melt zones which are observed in the lake's ice cover are produced. A heat flow map and photographs of the lake are overlaid to compare specific areas of thinned or broken ice with the hot spots. The regions of known hydrothermal activity and high heat flow correlate extremely well with circular regions of thinned ice, and zones of broken and recrystallized ice. Local and regional climate data and other sources of warm water, such as river inlets, are considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28100401','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28100401"><span>Modelling the long-term evolution of worst-case Arctic oil spills.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blanken, Hauke; Tremblay, Louis Bruno; Gaskin, Susan; Slavin, Alexander</p> <p>2017-03-15</p> <p>We present worst-case assessments of contamination in sea ice and surface waters resulting from hypothetical well blowout oil spills at ten sites in the Arctic Ocean basin. Spill extents are estimated by considering Eulerian passive tracers in the surface ocean of the MITgcm (a hydrostatic, coupled ice-ocean model). Oil in sea ice, and contamination resulting from melting of oiled ice, is tracked using an offline Lagrangian scheme. Spills are initialized on November 1st 1980-2010 and tracked for one year. An average spill was transported 1100km and potentially affected 1.1 million km 2 . The direction and magnitude of simulated oil trajectories are consistent with known large-scale current and sea ice circulation patterns, and trajectories frequently cross international boundaries. The simulated trajectories of oil in sea ice match observed ice drift trajectories well. During the winter oil transport by drifting sea ice is more significant than transport with surface currents. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070010003&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtime%2Bzone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070010003&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtime%2Bzone"><span>Contrasts in Sea Ice Formation and Production in the Arctic Seasonal and Perennial Ice Zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwok, R.</p> <p>2006-01-01</p> <p>Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea ice deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) ice zones. Ice production is of seasonal ice in openings during the winter. 3-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the mid-winter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is in the SIZ north of coastal Alaska. Both ice deformation and production are higher in the SIZ: deformation-related ice production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m) - this is connected to ice strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal ice growth in ice fractures accounts for approx.25-40% of the total ice production of the Arctic Ocean. By itself, this deformation-ice production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on ice production in the face of increasing seasonal and thinner/weaker ice coverage could be modified by: local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and, the upwelling of the pynocline associated with increased occurrence of large shear motion in sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038180&hterms=dependency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddependency','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038180&hterms=dependency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddependency"><span>The Role of Sea Ice in 2 x CO2 Climate Model Sensitivity. Part 2; Hemispheric Dependencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.</p> <p>1997-01-01</p> <p>How sensitive are doubled CO2 simulations to GCM control-run sea ice thickness and extent? This issue is examined in a series of 10 control-run simulations with different sea ice and corresponding doubled CO2 simulations. Results show that with increased control-run sea ice coverage in the Southern Hemisphere, temperature sensitivity with climate change is enhanced, while there is little effect on temperature sensitivity of (reasonable) variations in control-run sea ice thickness. In the Northern Hemisphere the situation is reversed: sea ice thickness is the key parameter, while (reasonable) variations in control-run sea ice coverage are of less importance. In both cases, the quantity of sea ice that can be removed in the warmer climate is the determining factor. Overall, the Southern Hemisphere sea ice coverage change had a larger impact on global temperature, because Northern Hemisphere sea ice was sufficiently thick to limit its response to doubled CO2, and sea ice changes generally occurred at higher latitudes, reducing the sea ice-albedo feedback. In both these experiments and earlier ones in which sea ice was not allowed to change, the model displayed a sensitivity of -0.02 C global warming per percent change in Southern Hemisphere sea ice coverage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........48D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........48D"><span>Arctic Sea Ice Trafficability - New Strategies for a Changing Icescape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dammann, Dyre Oliver</p> <p></p> <p>Sea ice is an important part of the Arctic social-environmental system, in part because it provides a platform for human transportation and for marine flora and fauna that use the ice as a habitat. Sea ice loss projected for coming decades is expected to change ice conditions throughout the Arctic, but little is known about the nature and extent of anticipated changes and in particular potential implications for over-ice travel and ice use as a platform. This question has been addressed here through an extensive effort to link sea ice use and key geophysical properties of sea ice, drawing upon extensive field surveys around on-ice operations and local and Indigenous knowledge for the widely different ice uses and ice regimes of Utqiagvik, Kotzebue, and Nome, Alaska.. A set of nine parameters that constrain landfast sea ice use has been derived, including spatial extent, stability, and timing and persistence of landfast ice. This work lays the foundation for a framework to assess and monitor key ice-parameters relevant in the context of ice-use feasibility, safety, and efficiency, drawing on different remote-sensing techniques. The framework outlines the steps necessary to further evaluate relevant parameters in the context of user objectives and key stakeholder needs for a given ice regime and ice use scenario. I have utilized this framework in case studies for three different ice regimes, where I find uses to be constrained by ice thickness, roughness, and fracture potential and develop assessment strategies with accuracy at the relevant spatial scales. In response to the widely reported importance of high-confidence ice thickness measurements, I have developed a new strategy to estimate appropriate thickness compensation factors. Compensation factors have the potential to reduce risk of misrepresenting areas of thin ice when using point-based in-situ assessment methods along a particular route. This approach was tested on an ice road near Kotzebue, Alaska, where substantial thickness variability results in the need to raise thickness thresholds by 50%. If sea ice is thick enough for safe travel, then the efficiency of travel is relevant and is influenced by the roughness of the ice surface. Here, I develop a technique to derive trafficability measures from ice roughness using polarimetric and interferometric synthetic aperture radar (SAR). Validated using Structure-from-Motion analysis of imagery obtained from an unmanned aerial system near Utqiagvik, Alaska, I demonstrate the ability of these SAR techniques to map both topography and roughness with potential to guide trail construction efforts towards more trafficable ice. Even when the ice is sufficiently thick to ensure safe travel, potential for fracturing can be a serious hazard through the ability of cracks to compromise load-bearing capacity. Therefore, I have created a state-of-the-art technique using interferometric SAR to assess ice stability with capability of assessing internal ice stress and potential for failure. In an analysis of ice deformation and potential hazards for the Northstar Island ice road near Prudhoe Bay on Alaska's North Slope I have identified a zone of high relative fracture intensity potential that conformed with road inspections and hazard assessments by the operator. Through this work I have investigated the intersection between ice use and geophysics, demonstrating that quantitative evaluation of a given region in the ice use assessment framework developed here can aid in tactical routing of ice trails and roads as well as help inform long-term strategic decision-making regarding the future of Arctic operations on or near sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCo...815875A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCo...815875A"><span>Skillful prediction of northern climate provided by the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Årthun, Marius; Eldevik, Tor; Viste, Ellen; Drange, Helge; Furevik, Tore; Johnson, Helen L.; Keenlyside, Noel S.</p> <p>2017-06-01</p> <p>It is commonly understood that a potential for skillful climate prediction resides in the ocean. It nevertheless remains unresolved to what extent variable ocean heat is imprinted on the atmosphere to realize its predictive potential over land. Here we assess from observations whether anomalous heat in the Gulf Stream's northern extension provides predictability of northwestern European and Arctic climate. We show that variations in ocean temperature in the high latitude North Atlantic and Nordic Seas are reflected in the climate of northwestern Europe and in winter Arctic sea ice extent. Statistical regression models show that a significant part of northern climate variability thus can be skillfully predicted up to a decade in advance based on the state of the ocean. Particularly, we predict that Norwegian air temperature will decrease over the coming years, although staying above the long-term (1981-2010) average. Winter Arctic sea ice extent will remain low but with a general increase towards 2020.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6656640-size-bacterial-ice-nucleation-sites-measured-situ-radiation-inactivation-analysis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6656640-size-bacterial-ice-nucleation-sites-measured-situ-radiation-inactivation-analysis"><span>Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Govindarajan, A.G.; Lindow, S.E.</p> <p>1988-03-01</p> <p>Four bacterial species are known to catalyze ice formation at temperatures just below 0/sup 0/C. To better understand the relationship between the molecular structure of bacterial ice-nucleation site(s) and the quantitative and qualitative features of the ice-nucleation-active phenotype, the authors determined by ..gamma..-radiation analysis the in situ size of ice-nucleation sites in strains of Pseudomonas syringae and Erwinia herbicola and in Escherichia coli HB101 carrying the plasmid pICE1.1. Lyophilized cells of each bacterial strain were irradiated with a flux of ..gamma.. radiation from 0 to 10.2 Mrad. Differential concentrations of active ice nuclei decreased as a first-order function of radiationmore » dose in all strains as temperature was decreased from -2/sup 0/C to -14/sup 0/C in 1/sup 0/C intervals. Sizes of ice nuclei were calculated from the /sup +/-radiation flux at which 37% of initial ice nuclei active within each 1/sup 0/C temperature interval remained. The minimum mass of a functional ice nucleus was about 150 kDa for all strains. The size of ice nuclei increased logarithmically with increasing temperature from -12/sup 0/CC to -2/sup 0/C, where the estimated nucleant mass was 19,000 kDa. The ice nucleant in these three bacterial species may represent an oligomeric structure, composed at least in part of an ice gene product that can self-associate to assume many possible sizes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC23D1173L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC23D1173L"><span>Sparse ice: Geophysical, biological and Indigenous knowledge perspectives on a habitat for ice-associated fauna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, O. A.; Eicken, H.; Weyapuk, W., Jr.; Adams, B.; Mohoney, A. R.</p> <p>2015-12-01</p> <p>The significance of highly dispersed, remnant Arctic sea ice as a platform for marine mammals and indigenous hunters in spring and summer may have increased disproportionately with changes in the ice cover. As dispersed remnant ice becomes more common in the future it will be increasingly important to understand its ecological role for upper trophic levels such as marine mammals and its role for supporting primary productivity of ice-associated algae. Potential sparse ice habitat at sea ice concentrations below 15% is difficult to detect using remote sensing data alone. A combination of high resolution satellite imagery (including Synthetic Aperture Radar), data from the Barrow sea ice radar, and local observations from indigenous sea ice experts was used to detect sparse sea ice in the Alaska Arctic. Traditional knowledge on sea ice use by marine mammals was used to delimit the scales where sparse ice could still be used as habitat for seals and walrus. Potential sparse ice habitat was quantified with respect to overall spatial extent, size of ice floes, and density of floes. Sparse ice persistence offshore did not prevent the occurrence of large coastal walrus haul outs, but the lack of sparse ice and early sea ice retreat coincided with local observations of ringed seal pup mortality. Observations from indigenous hunters will continue to be an important source of information for validating remote sensing detections of sparse ice, and improving understanding of marine mammal adaptations to sea ice change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6085044-arctic-ice-shelves-ice-islands-origin-growth-disintegration-physical-characteristics-structural-stratigraphic-variability-dynamics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6085044-arctic-ice-shelves-ice-islands-origin-growth-disintegration-physical-characteristics-structural-stratigraphic-variability-dynamics"><span>Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jeffries, M.O.</p> <p>1992-08-01</p> <p>Ice shelves are thick, floating ice masses most often associated with Antarctica where they are seaward extensions of the grounded Antarctic ice sheet and sources of many icebergs. However, there are also ice shelves in the Arctic, primarily located along the north coast of Ellesmere Island in the Canadian High Arctic. The only ice shelves in North America and the most extensive in the north polar region, the Ellesmere ice shelves originate from glaciers and from sea ice and are the source of ice islands, the tabular icebergs of the Arctic Ocean. The present state of knowledge and understanding ofmore » these ice features is summarized in this paper. It includes historical background to the discovery and early study of ice shelves and ice islands, including the use of ice islands as floating laboratories for polar geophysical research. Growth mechanisms and age, the former extent and the twentieth century disintegration of the Ellesmere ice shelves, and the processes and mechanisms of ice island calving are summarized. Surface features, thickness, thermal regime, and the size, shape, and numbers of ice islands are discussed. The structural-stratigraphic variability of ice islands and ice shelves and the complex nature of their growth and development are described. Large-scale and small-scale dynamics of ice islands are described, and the results of modeling their drift and recurrence intervals are presented. The conclusion identifies some unanswered questions and future research opportunities and needs. 97 refs., 18 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.elsevier.com/books/encyclopedia-of-marine-mammals/wursig/978-0-12-804327-1','USGSPUBS'); return false;" href="https://www.elsevier.com/books/encyclopedia-of-marine-mammals/wursig/978-0-12-804327-1"><span>Polar bears, Ursus maritimus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rode, Karyn D.; Stirling, Ian</p> <p>2017-01-01</p> <p>Polar bears are the largest of the eight species of bears found worldwide and are covered in a pigment-free fur giving them the appearance of being white. They are the most carnivorous of bear species consuming a high-fat diet, primarily of ice-associated seals and other marine mammals. They range throughout the circumpolar Arctic to the southernmost extent of seasonal pack ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860014106','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860014106"><span>Analytical determination of propeller performance degradation due to ice accretion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, T. L.</p> <p>1986-01-01</p> <p>A computer code has been developed which is capable of computing propeller performance for clean, glaze, or rime iced propeller configurations, thereby providing a mechanism for determining the degree of performance degradation which results from a given icing encounter. The inviscid, incompressible flow field at each specified propeller radial location is first computed using the Theodorsen transformation method of conformal mapping. A droplet trajectory computation then calculates droplet impingement points and airfoil collection efficiency for each radial location, at which point several user-selectable empirical correlations are available for determining the aerodynamic penalities which arise due to the ice accretion. Propeller performance is finally computed using strip analysis for either the clean or iced propeller. In the iced mode, the differential thrust and torque coefficient equations are modified by the drag and lift coefficient increments due to ice to obtain the appropriate iced values. Comparison with available experimental propeller icing data shows good agreement in several cases. The code's capability to properly predict iced thrust coefficient, power coefficient, and propeller efficiency is shown to be dependent on the choice of empirical correlation employed as well as proper specification of radial icing extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SolED...5.2345S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SolED...5.2345S"><span>Comparing a thermo-mechanical Weichselian ice sheet reconstruction to GIA driven reconstructions: aspects of earth response and ice configuration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, P.; Lund, B.; Näslund, J.-O.</p> <p>2013-12-01</p> <p>In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1436580','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1436580"><span>Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise: North American MWP1a Contribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gregoire, Lauren J.; Otto-Bliesner, Bette; Valdes, Paul J.</p> <p></p> <p>Elucidating the source(s) of Meltwater Pulse 1a, the largest rapid sea level rise caused by ice melt (14-18 m in less than 340 years, 14,600 years ago), is important for understanding mechanisms of rapid ice melt and the links with abrupt climate change. Here we quantify how much and by what mechanisms the North American ice sheet could have contributed to Meltwater Pulse 1a, by driving an ice sheet model with two transient climate simulations of the last 21,000 years. Ice sheet perturbed physics ensembles were run to account for model uncertainties, constraining ice extent and volume with reconstructions ofmore » 21,000 years ago to present. We determine that the North American ice sheet produced 3-4 m global mean sea level rise in 340 years due to the abrupt Bølling warming, but this response is amplified to 5-6 m when it triggers the ice sheet saddle collapse.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>