Armstrong, Eliana S; Mikulca, Janelle A; Cloutier, Daniel J; Bliss, Caleb A; Steenbergen, Judith N
2016-11-25
Fluoroquinolones are a guideline-recommended therapy for complicated urinary tract infections, including pyelonephritis. Elevated drug concentrations of fluoroquinolones in the urine and therapy with high-dose levofloxacin are believed to overcome resistance and effectively treat infections caused by resistant bacteria. The ASPECT-cUTI phase 3 clinical trial (ClinicalTrials.gov, NCT01345929 and NCT01345955 , both registered April 28, 2011) provided an opportunity to test this hypothesis by examining the clinical and microbiological outcomes of high-dose levofloxacin treatment by levofloxacin minimum inhibitory concentration. Patients were randomly assigned 1:1 to ceftolozane/tazobactam (1.5 g intravenous every 8 h) or levofloxacin (750 mg intravenous once daily) for 7 days of therapy. The ASPECT-cUTI study provided data on 370 patients with at least one isolate of Enterobacteriaceae at baseline who were treated with levofloxacin. Outcomes were assessed at the test-of-cure (5-9 days after treatment) and late follow-up (21-42 days after treatment) visits in the microbiologically evaluable population (N = 327). Test-of-cure clinical cure rates above 90% were observed at minimum inhibitory concentrations ≤4 μg/mL. Microbiological eradication rates were consistently >90% at levofloxacin minimum inhibitory concentrations ≤0.06 μg/mL. Lack of eradication of causative pathogens at the test-of-cure visit increased the likelihood of relapse by the late follow-up visit. Results from this study do not support levofloxacin therapy for complicated urinary tract infections caused by organisms with levofloxacin minimum inhibitory concentrations ≥4 μg/mL. ClinicalTrials.gov, NCT01345929 and NCT01345955.
Silva, Ary G; Almeida, Drielle L; Ronchi, Silas N; Bento, Amarildo C; Scherer, Rodrigo; Ramos, Alessandro C; Cruz, Zilma Ma
2010-08-27
The ability of mosquitoes of the genus Aedes and its allies, such as Stegomyia, to transmit diseases such as dengue and yellow fever, makes them important in public health. This study aims to evaluate the use of the essential oil of Brazilian pepper in biological control of by assessing and quantifying the larvicidal effect against S. aegypti, the only available access to dengue control, and test its risk of genotoxicity with Salmonella typhimurium as an indicator of safety for its environmental use. The density of the oil was 0.8622 g mL-1. Gas chromatography coupled with mass spectrometry revealed six major constituents: δ-3-carene (55.43%), α-pinene (16.25%), sylvestrene (10.67%), germacrene D (2.17), β-myrcene (1.99%), and isoterpinolene (1.4%). The minimum inhibitory dose to larvae development was 862.20 μg mL-1. The median lethal dose (LD50) of the essential oil for larvae was between the concentrations of 172.44-344.88 μg mL-1. There was no mutagenic risk for the essential oil, since there were no biochemical or morphological changes in S. typhimurium after exposure to the essential oil. The minimum inhibitory essential oil concentration and the median lethal dose pointed to the value of the use of water dispersions of Brazilian pepper essential oil as an environmental safe natural larvicidal for S. aegypti.
2014-04-24
intermittent dosing regimens. CONCLUSION: Given its ability to predict antimicrobial clearance above populationmedians, which could compromise therapy, the...campaign dedicated to improve out- comes.1,2 In the era ofmultiply drug- resistant pathogens and rising antimicrobial minimum inhibitory concentrations (MICs...urinary creatinine clearance significantly exceeds what is predicted by the serum creatinine concentration according to various mathematical
2010-01-01
Background The ability of mosquitoes of the genus Aedes and its allies, such as Stegomyia, to transmit diseases such as dengue and yellow fever, makes them important in public health. This study aims to evaluate the use of the essential oil of Brazilian pepper in biological control of by assessing and quantifying the larvicidal effect against S. aegypti, the only available access to dengue control, and test its risk of genotoxicity with Salmonella typhimurium as an indicator of safety for its environmental use. Results The density of the oil was 0.8622 g mL-1. Gas chromatography coupled with mass spectrometry revealed six major constituents: δ-3-carene (55.43%), α-pinene (16.25%), sylvestrene (10.67%), germacrene D (2.17), β-myrcene (1.99%), and isoterpinolene (1.4%). The minimum inhibitory dose to larvae development was 862.20 μg mL-1. The median lethal dose (LD50) of the essential oil for larvae was between the concentrations of 172.44-344.88 μg mL-1. There was no mutagenic risk for the essential oil, since there were no biochemical or morphological changes in S. typhimurium after exposure to the essential oil. Conclusions The minimum inhibitory essential oil concentration and the median lethal dose pointed to the value of the use of water dispersions of Brazilian pepper essential oil as an environmental safe natural larvicidal for S. aegypti. PMID:20799936
The effect of methylphenidate and rearing environment on behavioral inhibition in adult male rats.
Hill, Jade C; Covarrubias, Pablo; Terry, Joel; Sanabria, Federico
2012-01-01
The ability to withhold reinforced responses-behavioral inhibition-is impaired in various psychiatric conditions including Attention Deficit Hyperactivity Disorder (ADHD). Methodological and analytical limitations have constrained our understanding of the effects of pharmacological and environmental factors on behavioral inhibition. To determine the effects of acute methylphenidate (MPH) administration and rearing conditions (isolated vs. pair-housed) on behavioral inhibition in adult rats. Inhibitory capacity was evaluated using two response-withholding tasks, differential reinforcement of low rates (DRL) and fixed minimum interval (FMI) schedules of reinforcement. Both tasks made sugar pellets contingent on intervals longer than 6 s between consecutive responses. Inferences on inhibitory and timing capacities were drawn from the distribution of withholding times (interresponse times, or IRTs). MPH increased the number of intervals produced in both tasks. Estimates of behavioral inhibition increased with MPH dose in FMI and with social isolation in DRL. Nonetheless, burst responding in DRL and the divergence of DRL data relative to past studies, among other limitations, undermined the reliability of DRL data as the basis for inferences on behavioral inhibition. Inhibitory capacity was more precisely estimated from FMI than from DRL performance. Based on FMI data, MPH, but not a socially enriched environment, appears to improve inhibitory capacity. The highest dose of MPH tested, 8 mg/kg, did not reduce inhibitory capacity but reduced the responsiveness to waiting contingencies. These results support the use of the FMI schedule, complemented with appropriate analytic techniques, for the assessment of behavioral inhibition in animal models.
Kimura, T; Nishizawa, T; Yoshimizu, M; De Clercq, E
1988-01-01
The highly potent and selective anti-herpesvirus agent, (E)-5-(2-bromovinyl)-2'deoxyuridine (BVdU), was examined for its inhibitory effect on the salmonid herpesviruses Oncorhynchus masou virus (OMV) and Herpesvirus salmonis (H. salmonis). Minimum inhibitory concentrations (MIC) of BVdU for OMV and H. salmonis were 1.25 and 3.0 micrograms/ml, respectively; these values were equal to or higher than those obtained for acyclovir or cytarabine. OMV DNA polymerase activity was reduced in a dose-dependent fashion by BVdU 5'-triphosphate (BVdUTP) within the concentration range of 3 to 30 microM. However, BVdUTP could also be substituted for the natural substrate, TTP, in the OMV DNA polymerase assay. It is postulated that the inhibitory action of BVdU on the salmonid herpesviruses is more or less similar to that on other herpesviruses and resides with respect to the inhibition of the virus DNA polymerase activity as well as incorporation of BVdU into the viral DNA.
Pharmacodynamics of oxytetracycline administered alone and in combination with carprofen in calves.
Brentnall, C; Cheng, Z; McKellar, Q A; Lees, P
2012-09-15
The pharmacodynamics (PD) of oxytetracycline was investigated against a strain of Mannheimia haemolytica. In vitro measurements, comprising minimum inhibitory concentration (MIC), minimum bactericidal concentration and time-kill curves, were conducted in five matrices; Mueller Hinton Broth (MHB), cation-adjusted MHB (CAMHB) and calf serum, exudate and transudate. MICs were much higher in the biological fluids than in MHB and CAMHB. Ratios of MIC were, serum: CAMHB 19 : 1; exudate:CAMHB 16.1; transudate:CAMHB 14 : 1. Ex vivo data, generated in the tissue cage model of inflammation, demonstrated that oxytetracycline, administered to calves intramuscularly at a dose rate of 20 mg/kg, did not inhibit the growth of M haemolytica in serum, exudate and transudate, even at peak concentration. However, using in vitro susceptibility in CAMHB and in vivo-determined pharmacokinetic (PK) variables, average and minimum oxytetracycline concentrations relative to MIC (C(av)/MIC and C(min)/MIC) predicted achievement of efficacy for approximately 48 hours after dosing. Similar C(av)/MIC and C(min)/MIC data were obtained when oxytetracycline was administered in the presence of carprofen. PK-PD integration of data for oxytetracycline, based on MICs determined in the three biological fluids, suggests that it possesses, at most, limited direct killing activity against M haemolytica. These data raise questions concerning the mechanism(s) of action of oxytetracycline, when administered at clinically recommended dose rates.
In-vitro and in-vivo anti-Trichophyton activity of essential oils by vapour contact.
Inouye, S; Uchida, K; Yamaguchi, H
2001-05-01
The minimum inhibitory doses (MIDs) of essential oils by vapour contact to inhibit the growth of Trichophyton mentagrophytes and Trichophyton rubrum on agar medium were determined using airtight boxes. Among seven essential oils examined, cinnamon bark oil showed the least MID, followed by lemongrass, thyme and perilla oils. Lavender and tea tree oils showed moderate MID, and citron oil showed the highest MID, being 320 times higher than that of cinnamon bark oil. The MID values were less than the minimum inhibitory concentration (MIC) values determined by agar dilution assay. Furthermore, the minimum agar concentration (MAC) of essential oils absorbed from vapour was determined at the time of MID determination as the second antifungal measure. The MAC value by vapour contact was 1.4 to 4.7 times less than the MAC remaining in the agar at the time of MIC determination by agar dilution assay. Using selected essential oils, the anti-Trichophyton activity by vapour contact was examined in more detail. Lemongrass, thyme and perilla oils killed the conidia, inhibited germination and hyphal elongation at 1-4 micrograms ml-1 air, whereas lavender oil was effective at 40-160 micrograms ml-1 air. The in-vivo efficacy of thyme and perilla oils by vapour contact was shown against an experimental tinea pedis in guinea pigs infected with T. mentagrophytes. These results indicated potent anti-Trichophyton action of essential oils by vapour contact.
Chemical composition and antimicrobial activity of the essential oil of apricot seed.
Lee, Hyun-Hee; Ahn, Jeong-Hyun; Kwon, Ae-Ran; Lee, Eun Sook; Kwak, Jin-Hwan; Min, Yu-Hong
2014-12-01
In traditional oriental medicine, apricot (Prunus armeniaca L.) seed has been used to treat skin diseases such as furuncle, acne vulgaris and dandruff, as well as coughing, asthma and constipation. This study describes the phytochemical profile and antimicrobial potential of the essential oil obtained from apricot seeds (Armeniacae Semen). The essential oil isolated by hydrodistillation was analysed by gas chromatography-mass spectroscopy. Benzaldehyde (90.6%), mandelonitrile (5.2%) and benzoic acid (4.1%) were identified. Disc diffusion, agar dilution and gaseous contact methods were performed to determine the antimicrobial activity against 16 bacteria and two yeast species. The minimum inhibitory concentrations ranged from 250 to 4000, 500 to 2000 and 250 to 1000 µg/mL for Gram-positive bacteria, Gram-negative bacteria and yeast strains, respectively. The minimum inhibitory doses by gaseous contact ranged from 12.5 to 50, 12.5 to 50 and 3.13 to 12.5 mg/L air for Gram-positive bacteria, Gram-negative bacteria and yeast strains, respectively. The essential oil exhibited a variable degree of antimicrobial activity against a range of bacteria and yeasts tested. Copyright © 2014 John Wiley & Sons, Ltd.
Killing of Serratia marcescens biofilms with chloramphenicol.
Ray, Christopher; Shenoy, Anukul T; Orihuela, Carlos J; González-Juarbe, Norberto
2017-03-29
Serratia marcescens is a Gram-negative bacterium with proven resistance to multiple antibiotics and causative of catheter-associated infections. Bacterial colonization of catheters mainly involves the formation of biofilm. The objectives of this study were to explore the susceptibility of S. marcescens biofilms to high doses of common antibiotics and non-antimicrobial agents. Biofilms formed by a clinical isolate of S. marcescens were treated with ceftriaxone, kanamycin, gentamicin, and chloramphenicol at doses corresponding to 10, 100 and 1000 times their planktonic minimum inhibitory concentration. In addition, biofilms were also treated with chemical compounds such as polysorbate-80 and ursolic acid. S. marcescens demonstrated susceptibility to ceftriaxone, kanamycin, gentamicin, and chloramphenicol in its planktonic form, however, only chloramphenicol reduced both biofilm biomass and biofilm viability. Polysorbate-80 and ursolic acid had minimal to no effect on either planktonic and biofilm grown S. marcescens. Our results suggest that supratherapeutic doses of chloramphenicol can be used effectively against established S. marcescens biofilms.
NASA Astrophysics Data System (ADS)
Lacroix, Monique; Caillet, Stéphane; Shareck, Francois
2009-07-01
Spice extracts under the form of essential oils were tested for their efficiency to increase the relative radiosensitivity of Listeria monocytogenes and Escherichia coli O157H7 in culture media. The two pathogens were treated by gamma-irradiation alone or in combination with oregano essential oil to evaluate their mechanism of action. The membrane murein composition, and the intracellular and extracellular concentration of ATP was determined. The bacterial strains were treated with two irradiation doses: 1.2 kGy to induce cell damage and 3.5 kGy to cause cell death for L. monocytogenes. A dose of 0.4 kGy to induce cell damages, 1.1 kGy to obtain viable but nonculturable (VBNC) state and 1.3 kGy to obtain a lethal dose was also applied on E. coli O157H7. Oregano essential oil was used at 0.020% and 0.025% (w/v), which is the minimum inhibitory concentration (MIC) for L. monocytogenes. For E. coli O157H7, a concentration of 0.006% and 0.025% (w/v) which is the minimum inhibitory concentration was applied. The use of essential oils in combination with irradiation has permitted an increase of the bacterial radiosensitization by more than 3.1 times. All treatments had also a significant effect ( p⩽0.05) on the murein composition, although some muropeptides did not seem to be affected by the treatment. Each treatment influenced differently the relative percentage and number of muropeptides. There was a significant ( p⩽0.05) correlation between the reduction of intracellular ATP and increase in extracellular ATP following treatment of the cells with oregano oil. The reduction of intracellular ATP was even more important when essential oil was combined with irradiation, but irradiation of L. monocytogenes alone induced a significant decrease ( p⩽0.05) of the internal ATP without affecting the external ATP.
Zheng, Kebin; Li, Chunhui; Shan, Xiaosong; Liu, Haipeng; Fan, Wufang; Wang, Zhenshan
2014-01-01
Sophora flavescens Ait. is a traditional Chinese medicine with a long history in China. It is mainly used in the treatment of heat dysentery and similar ailments in the clinical. The objective of this paper was to isolate, purify and identify alkaloids from Sophora flavescens Ait. and to explore their inhibitory effects on C6 glioma cells. Column chromatography, extraction and NMR spectroscopy were used to structurally identify the isolated compounds. MTT assay and flow cytometry were used to detect the inhibitory effect of matrine on C6 cells. Three compounds were isolated from Sophora flavescens Ait., namely matrine, oxymatrine and lupeol. Different concentrations of matrine solution all had inhibitory effects on growth of C6 cell lines, which showed apparent dose-effect relationship. Compared with the control group, proportion of G0/G1 phase cells increased in each matrine concentration group to a maximum of 79.8%; proportion of S phase cells reduced, and proportion of G2/M phase cells declined slightly to a minimum of 6.3%, suggesting that after the action of matrine proliferation of C6 cells was significantly inhibited and the cells were arrested in the G1 phase. We concluded that Sophora flavescens Ait. has an inhibitory effect on C6 cell proliferation.
Readman, John Benedict; Dickson, George; Coldham, Nick G
2017-06-01
The bacterial cell wall presents a barrier to the uptake of unmodified synthetic antisense oligonucleotides, such as peptide nucleic acids, and so is one of the greatest obstacles to the development of their use as therapeutic anti-bacterial agents. Cell-penetrating peptides have been covalently attached to antisense agents, to facilitate penetration of the bacterial cell wall and deliver their cargo into the cytoplasm. Although they are an effective vector for antisense oligonucleotides, they are not specific for bacterial cells and can exhibit growth inhibitory properties at higher doses. Using a bacterial cell growth assay in the presence of cefotaxime (CTX 16 mg/L), we have developed and evaluated a self-assembling non-toxic DNA tetrahedron nanoparticle vector incorporating a targeted anti-bla CTX-M-group 1 antisense peptide nucleic acid (PNA4) in its structure for penetration of the bacterial cell wall. A dose-dependent CTX potentiating effect was observed when PNA4 (0-40 μM) was incorporated into the structure of a DNA tetrahedron vector. The minimum inhibitory concentration (to CTX) of an Escherichia coli field isolate harboring a plasmid carrying bla CTX-M-3 was reduced from 35 to 16 mg/L in the presence of PNA4 carried by the DNA tetrahedron vector (40 μM), contrasting with no reduction in MIC in the presence of PNA4 alone. No growth inhibitory effects of the DNA tetrahedron vector alone were observed.
Ndiaye, D; Diongue, K; Bane, K; Seck, A; Niang, S O; Lèye Benoist, F; Ndiaye, D; Touré, B
2016-12-01
Endodontic flora is dominated in the apical part of the channels by strict anaerobic and some facultative anaerobic bacteria but also by Candida yeasts, especially Candida albicans species that are involved in the maintenance and persistence of endodontic infections. Their elimination of the canal system in practice by chemo-mechanical methods of disinfection is not always guaranteed. Thus, this in vitro study was performed to determine the sensitivity of C. albicans with sodium hypochlorite (NaOCl) dosed at 2.5 %, the chlorhexidine digluconate 0.5 % and calcium hydroxide used in inter-session medication. The diffusion method was used initially to test the sensitivity of C. albicans strains with the above products. Then a dilution technique has allowed us to determine the minimum inhibitory concentration of these active products on C. albicans. Strains from infected pulp teeth of patients showed a sensitivity of C. albicans to sodium hypochlorite to a minimum inhibitory concentration less than 70μg/mL and 30μg/mL for chlorhexidine. This study demonstrated a sensitivity of C. albicans to sodium hypochlorite and chlorhexidine. Copyright © 2016. Published by Elsevier Masson SAS.
Büdingen, Fiona V.; Gonzalez, Daniel; Tucker, Amelia N.
2014-01-01
The liver is a complex organ with great ability to influence drug pharmacokinetics (PK). Due to its wide array of function, its impairment has the potential to affect bioavailability, enterohepatic circulation, drug distribution, metabolism, clearance, and biliary elimination. These alterations differ widely depending on the cause of the liver failure, if it is acute or chronic in nature, the extent of impairment, and comorbid conditions. In addition, the effects on liver functions do not occur in a proportional or predictable manner for escalating degrees of liver impairment. The ability of hepatic alterations to influence PK is also dependent on drug characteristics, such as administration route, chemical properties, protein binding, and extraction ratio, among others. This complexity makes it difficult to predict what effects these changes will have on a particular drug. Unlike certain classes of agents, efficacy of anti-infectives is most often dependent on fulfilling PK/pharmacodynamic targets, such as maximum concentration/minimum inhibitory concentration (Cmax/MIC), area under the curve/minimum inhibitory concentration (AUC/MIC), time above MIC (T>MIC), half-maximal inhibitory concentration (IC50) or half-maximal effective concentration (EC50), or the time above the concentration which inhibits viral replication by 95% (T>EC95). Loss of efficacy and/or an increased risk of toxicity may occur in certain circumstances of liver injury. Although it is important to consider these potential alterations and their effects on specific anti-infectives, many lack data to constitute specific dosing adjustments, making it important to monitor patients for effectiveness and toxicities of therapy. PMID:24949199
Fluoroquinolone Treatment and Susceptibility of Isolates From Bacterial Keratitis
Ray, Kathryn J.; Prajna, Lalitha; Srinivasan, Muthiah; Geetha, Manoharan; Karpagam, Rajarathinam; Glidden, David; Oldenburg, Catherine E.; Sun, Catherine Q.; McLeod, Stephen D.; Acharya, Nisha R.; Lietman, Thomas M.
2013-01-01
Objective To analyze the relationship between fluoroquinolone use at presentation and minimum inhibitory concentration in bacterial keratitis. Methods The Steroids for Corneal Ulcers Trial was a randomized, double-masked, placebo-controlled trial assessing the effect of adjunctive topical corticosteroid treatment on outcomes in bacterial keratitis. After presentation, all patients were treated with moxifloxacin hydrochloride, 0.5%. We compare antibiotic use at presentation with minimum inhibitory concentration against moxifloxacin for all isolates. Separate analyses accounted for organism species and fluoroquinolone generation. Results Topical fluoroquinolone use at presentation was reported in 92 of 480 cases (19.2%). Causative organisms in the 480 cases included Streptococcus pneumoniae (247 cases [51.5%]), Pseudomonas aeruginosa (109 cases [22.7%]), and Nocardia species (55 cases [11.5%]). Isolates from patients who reported fluoroquinolone use at presentation had a 2.01-fold–higher minimum inhibitory concentration (95% CI, 1.39-fold to 2.91-fold; P <.001). Fourth-generation fluoroquinolones were associated with a 3.48-fold–higher minimum inhibitory concentration than those isolates that were not exposed to pretreatment at enrollment (95% CI, 1.99-fold to 6.06-fold; P <.001). Conclusion This study provides evidence that prior use of fluoroquinolones is associated with antibiotic resistance. PMID:23307105
Fluoroquinolone treatment and susceptibility of isolates from bacterial keratitis.
Ray, Kathryn J; Prajna, Lalitha; Srinivasan, Muthiah; Geetha, Manoharan; Karpagam, Rajarathinam; Glidden, David; Oldenburg, Catherine E; Sun, Catherine Q; McLeod, Stephen D; Acharya, Nisha R; Lietman, Thomas M
2013-03-01
To analyze the relationship between fluoroquinolone use at presentation and minimum inhibitory concentration in bacterial keratitis. The Steroids for Corneal Ulcers Trial was a randomized, double-masked, placebo-controlled trial assessing the effect of adjunctive topical corticosteroid treatment on outcomes in bacterial keratitis. After presentation, all patients were treated with moxifloxacin hydrochloride, 0.5%. We compare antibiotic use at presentation with minimum inhibitory concentration against moxifloxacin for all isolates. Separate analyses accounted for organism species and fluoroquinolone generation. Topical fluoroquinolone use at presentation was reported in 92 of 480 cases (19.2%). Causative organisms in the 480 cases included Streptococcus pneumoniae (247 cases [51.5%]), Pseudomonas aeruginosa (109 cases [22.7%]), and Nocardia species (55 cases [11.5%]). Isolates from patients who reported fluoroquinolone use at presentation had a 2.01-fold-higher minimum inhibitory concentration (95% CI, 1.39-fold to 2.91-fold; P < .001). Fourth-generation fluoroquinolones were associated with a 3.48-fold-higher minimum inhibitory concentration than those isolates that were not exposed to pretreatment at enrollment (95% CI, 1.99-fold to 6.06-fold; P < .001). This study provides evidence that prior use of fluoroquinolones is associated with antibiotic resistance. clinicaltrials.gov Identifier: NCT00324168.
Yoshizawa, Kenichi; Ikawa, Kazuro; Ikeda, Kayo; Ohge, Hiroki; Morikawa, Norifumi
2013-11-01
Population pharmacokinetic (PK)-pharmacodynamic target attainment analysis of imipenem was performed to elucidate the PK properties in neonates and children and to rationalize and optimize dosing regimens. Population PK models were separately developed in neonates and children by simultaneously fitting plasma and urine data from 60 neonates and 39 children. The newly developed models were then used to estimate the probability of attaining the pharmacodynamic target (40% of the time above the minimum inhibitory concentration) against clinical isolates of common bacteria in pediatric patients. The data were best described by a 1-compartment model in neonates and a 2-compartment model in children, respectively. Renal clearance in children (0.187 L/h/kg) was double that of neonates (0.0783 L/h/kg), whereas the volume of distribution at steady-state was approximately 1.8-fold larger in neonates (0.466 L/kg) than in children (0.260 L/kg). Age was not a statistically significant covariate in the PK of both groups. Infusions (0.5 h) of 15 mg/kg every 8 h (45 mg/kg/day) and 25 mg/kg every 12 h (50 mg/kg/day) were shown to be sufficient against common bacterial isolates in both patient populations. However, 1.5-h infusions of 25 mg/kg every 8 h (75 mg/kg/day) in neonates and 25 mg/kg every 6 h (100 mg/kg/day) in children were required to be effective against Pseudomonas aeruginosa (minimum inhibitory concentration for 90% of the isolates=16 μg/mL). These results explain the changes in imipenem PK properties during the human growth process and provide guidance for tailoring dosing regimens in each pediatric age group.
Conte, John E; Golden, Jeffrey A; McIver, Marina; Zurlinden, Elisabeth
2006-08-01
The objective of this study was to determine the plasma and intrapulmonary pharmacokinetic parameters of intravenously administered levofloxacin in healthy volunteers. Three doses of either 750 mg or 1000 mg levofloxacin were administered intravenously to 4 healthy adult subjects (750 mg) to 20 healthy adult subjects divided into five groups of 4 subjects (1000 mg). Standardised bronchoscopy and timed bronchoalveolar lavage (BAL) were performed following administration of the last dose. Blood was obtained for drug assay prior to drug administration and at the time of BAL. Levofloxacin was measured in plasma, BAL fluid and alveolar cells (ACs) using a sensitive and specific combined high-performance liquid chromatographic tandem mass spectrometric technique (HPLC/MS/MS). Plasma, epithelial lining fluid (ELF) and AC pharmacokinetics were derived using non-compartmental methods. The maximum plasma drug concentration to minimum inhibitory concentration ratio (C(max)/MIC(90)) and the area under the drug concentration curve to minimum inhibitory concentration ratio (AUC/MIC(90)) during the dosing interval were calculated for potential respiratory pathogens with MIC(90) values from 0.03 microg/mL to 2 microg/mL. In the 1000 mg dose group, the C(max) (mean+/-standard deviation (S.D.)), AUC(0-8h) and half-life were: for plasma, 9.2+/-1.9 microg/mL, 103.6 microg h/mL and 7.45 h; for ELF, 25.8+/-7.9 microg/mL, 279.1 microg h/mL and 8.10h; and for ACs, 51.8+/-26.2 microg/mL, 507.5 microg h/mL and 14.32 h. In the 750 mg dose group, the C(max) values in plasma, ELF and ACs were 5.7+/-0.4, 28.0+/-23.6 and 34.2+/-18.7 microg/mL, respectively. Levofloxacin concentrations were significantly higher in ELF and ACs than in plasma at all time points. For pathogens commonly associated with community-acquired pneumonia, C(max)/MIC(90) ratios in ELF ranged from 12.9 for Mycoplasma pneumoniae to 859 for Haemophilus influenzae, and AUC/MIC(90) ratios ranged from 139 to 9303, respectively. The C(max)/MIC(90) ratios in ACs ranged from 25.9 for M. pneumoniae to 1727 for H. influenzae, and AUC/MIC(90) ratios ranged from 254 to 16917, respectively. The C(max)/MIC(90) and AUC/MIC(90) ratios provide a pharmacokinetic rationale for once-daily administration of a 1000 mg dose of levofloxacin and are favourable for the treatment of community-acquired respiratory pathogens.
Tapsall, J W; Phillips, E A; Morris, L M
1987-01-01
Single dose Augmentin treatment fails to cure an appreciable proportion of patients infected with penicillinase producing Neisseria gonorrhoeae (PPNG) strains in parts of the world where high levels of chromosomally mediated intrinsic resistance are also present in gonococci. The levels of intrinsic resistance to penicillin of 31 PPNG strains isolated in Sydney were assessed by obtaining beta lactamase negative variants of these strains and measuring the minimum inhibitory concentration of penicillin by agar plate dilution techniques. The levels of intrinsic resistance found in these imported PPNG strains were higher than those recorded for local isolates of non-PPNG strains, which indicates that caution should be exercised in the use of single dose Augmentin treatment of infections with PPNG strains in Sydney. PMID:3119461
Sivakumar, K. K.; Rajasekharan, A.; Rao, R.; Narasimhan, B.
2013-01-01
In the present investigation, a series of 12 Mannich bases (QP1-12) and 5 Schiff bases (QSP1-5) of pyrazol-5(4H)-one moiety containing 3-(hydrazinyl)-2-phenylquinazolin-4(3H)-one has been synthesized and characterized by physicochemical as well as spectral means. The synthesized Mannich and Schiff bases were screened for their preliminary antimicrobial activity against Gram-positive and Gram-negative bacterial as well as fungal strains by the determination of zone of inhibition. Mannich bases (QP1-12) were found to be more potent antibacterial agents against Gram-positive bacteria, whereas Schiff bases (QSP1-5) were more potent against Gram-negative bacteria and fungi. Minimum inhibitory concentration result demonstrated that Mannich base compound (QP7) having ortho -OH and para -COOH group showed some improvement in antibacterial activity (minimum inhibitory concentration of 48.88×10−3 μM/ml) among the tested Gram-positive organisms and it also exhibit minimum inhibitory concentration of value of 12.22×10−3 μM/ml for Klebsiella pneumoniae. The antitubercular activity of synthesized compounds against Mycobacterium tuberculosis (H37Rv) was determined using microplate alamar blue assay. Compound QP11 showed appreciable antitubercular activity (minimum inhibitory concentration of 6.49×10−3 μM/ml) which was more active than the standard drugs, ethambutol (minimum inhibitory concentration of 7.60×10−3 μM/ml) and ciprofloxacin (9.4×10−3 μM/ml). Compounds QP11, QP9, QSP1, QSP2, and QSP5 have good selective index and may be selected as a lead compound for the development of novel antitubercular agents. PMID:24302802
Inouye, Shigeharu; Nishiyama, Yayoi; Uchida, Katsuhisa; Hasumi, Yayoi; Yamaguchi, Hideyo; Abe, Shigeru
2006-12-01
The vapor activity of six essential oils against a Trichophyton mentagrophytes was examined using a closed box. The antifungal activity was determined from colony size, which was correlated with the inoculum size. As judged from the minimum inhibitory dose and the minimum fungicidal dose determined after vapor exposure for 24 h, the vapor activity of the six essential oils was ranked in the following order: oregano > clove, perilla > geranium, lavender, tea tree. The vapors of oregano, perilla, tea tree, and lavender oils killed the mycelia by short exposure, for 3 h, but the vapors of clove and geranium oils were only active after overnight exposure. The vapor of oregano and other oils induced lysis of the mycelia. Morphological examination by scanning electron microscope (SEM) revealed that the cell membrane and cell wall were damaged in a dose- and time-dependent manner by the action of oregano vapor, causing rupture and peeling of the cell wall, with small bulges coming from the cell membrane. The vapor activity increased after 24 h, but mycelial accumulation of the active oil constituents was maximized around 15 h, and then decreased in parallel with the decrease of vapor concentration. This suggested that the active constituent accumulated on the fungal cells around 15 h caused irreversible damage, which eventually led to cellular death.
Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics.
Samy, Ramar Perumal; Thwin, Maung Maung; Stiles, Brad G; Satyanarayana-Jois, Seetharama; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Siveen, Kodappully Sivaraman; Sikka, Sakshi; Kumar, Alan Prem; Sethi, Gautam; Lim, Lina Hsiu Kim
2015-04-01
Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 μg/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], β-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 μg/ml), with a remarkable activity noted against S. aureus at 6.8 μg/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 μg/ml revealed that PIP-18[59-76], β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 μg/ml), while a much less inhibitory potency (MICs 12.5 μg/ml) was noted for β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 μg/disc). When the two most active peptides, PIP-18[59-76] and β-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and β-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 μg/ml) and cytotoxic (1000-3.125 μg/ml) effects evident on human cells in vitro. Copyright © 2015. Published by Elsevier B.V.
Babiuk, Lorne A.; Meldrum, Blair; Gupta, V. Sagar; Rouse, Barry T.
1975-01-01
The antiviral activity of 5-methoxymethyl-2′-deoxyuridine (MMUdR) was compared with that of 5-iodo-2′-deoxyuridine (IUdR), cytosine arabinoside (Ara-C), and adenine arabinoside (Ara-A). At concentrations of 2 to 4 μg/ml, MMUdR was inhibitory to herpes simplex virus type 1, but concentrations as high as 128 μg/ml were not inhibitory to three other herpesviruses tested (equine rhinopneumonitis virus, murine cytomegalovirus, and feline rhinopneumonitis virus) or to vaccinia virus. The other nucleosides, in contrast, were inhibitory at similar concentrations (1 to 8 μg/ml) against all viruses tested. The inhibition of HSV-1 by MMUdR appeared to be the result of interference with virus replication rather than the result of drug toxicity to host cells. The drug was not toxic to host cells at 100 times the antiviral concentrations, and pretreatment of host cells with high concentrations of MMUdR had no effect on subsequent virus replication. Combination of MMUdR with either IUdR, Ara-A, or Ara-C gave an enhanced antiviral effect, suggesting that the mechanism of action of MMUdR is different from that of the other three drugs. Antiviral indexes were calculated for each compound and were found to be >250, 80, 40, and 8 for MMUdR, IUdR, Ara-A, and Ara-C, respectively. These were defined as the minimum dose at which toxicity was observed microscopically divided by the dose which reduced plaque numbers by 50%. PMID:1239978
Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections
NASA Astrophysics Data System (ADS)
Chu, Ming; Zhang, Ming-Bo; Liu, Yan-Chen; Kang, Jia-Rui; Chu, Zheng-Yun; Yin, Kai-Lin; Ding, Ling-Yu; Ding, Ran; Xiao, Rong-Xin; Yin, Yi-Nan; Liu, Xiao-Yan; Wang, Yue-Dan
2016-04-01
Berberine is an isoquinoline alkaloid widely used in the treatment of microbial infections. Recent studies have shown that berberine can enhance the inhibitory efficacy of antibiotics against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). However, the underlying mechanisms are poorly understood. Here, we demonstrated that sub-minimum inhibitory concentrations (MICs) of berberine exhibited no bactericidal activity against MRSA, but affected MRSA biofilm development in a dose dependent manner within the concentration ranging from 1 to 64 μg/mL. Further study indicated that berberine inhibited MRSA amyloid fibrils formation, which consist of phenol-soluble modulins (PSMs). Molecular dynamics simulation revealed that berberine could bind with the phenyl ring of Phe19 in PSMα2 through hydrophobic interaction. Collectively, berberine can inhibit MRSA biofilm formation via affecting PSMs’ aggregation into amyloid fibrils, and thereby enhance bactericidal activity of antibiotics. These findings will provide new insights into the multiple pharmacological properties of berberine in the treatment of microbial-generated amyloid involved diseases.
Ruesen, Carolien; Riza, Anca Lelia; Florescu, Adriana; Chaidir, Lidya; Editoiu, Cornelia; Aalders, Nicole; Nicolosu, Dragos; Grecu, Victor; Ioana, Mihai; van Crevel, Reinout; van Ingen, Jakko
2018-06-26
Mycobacterium tuberculosis drug resistance poses a major threat to tuberculosis control. Current phenotypic tests for drug susceptibility are time-consuming, technically complex, and expensive. Whole genome sequencing is a promising alternative, though the impact of different drug resistance mutations on the minimum inhibitory concentration (MIC) remains to be investigated. We examined the genomes of 72 phenotypically drug-resistant Mycobacterium tuberculosis isolates from 72 Romanian patients for drug resistance mutations. MICs for first- and second-line drugs were determined using the MycoTB microdilution method. These MICs were compared to macrodilution critical concentration testing by the Mycobacterium Growth Indicator Tube (MGIT) platform and correlated to drug resistance mutations. Sixty-three (87.5%) isolates harboured drug resistance mutations; 48 (66.7%) were genotypically multidrug-resistant. Different drug resistance mutations were associated with different MIC ranges; katG S315T for isoniazid, and rpoB S450L for rifampicin were associated with high MICs. However, several mutations such as in rpoB, rrs and rpsL, or embB were associated with MIC ranges including the critical concentration for rifampicin, aminoglycosides or ethambutol, respectively. Different resistance mutations lead to distinct MICs, some of which may still be overcome by increased dosing. Whole genome sequencing can aid in the timely diagnosis of Mycobacterium tuberculosis drug resistance and guide clinical decision-making.
Balancing vancomycin efficacy and nephrotoxicity: should we be aiming for trough or AUC/MIC?
Patel, Karisma; Crumby, Ashley S; Maples, Holly D
2015-04-01
Sixty years later, the question that still remains is how to appropriately utilize vancomycin in the pediatric population. The Infectious Diseases Society of America published guidelines in 2011 that provide guidance for dosing and monitoring of vancomycin in adults and pediatrics. However, goal vancomycin trough concentrations of 15-20 μg/mL for invasive infections caused by methicillin-resistant Staphylococcus aureus were based primarily on adult pharmacokinetic and pharmacodynamic data that achieved an area under the curve to minimum inhibitory concentration ratio (AUC/MIC) of ≥400. Recent pediatric literature shows that vancomycin trough concentrations needed to achieve the target AUC/MIC are different than the adult goal troughs cited in the guidelines. This paper addresses several thoughts, including the role of vancomycin AUC/MIC in dosing strategies and safety monitoring, consistency in laboratory reporting, and future directions for calculating AUC/MIC in pediatrics.
Combating resistance: application of the emerging science of pharmacokinetics and pharmacodynamics.
Jacobs, Michael R
2007-12-01
During the last 10-15 years understanding of relationships between pharmacokinetic (PK) and pharmacodynamic (PD) parameters and bacteriological and clinical outcomes has expanded allowing correlation between in vitro potency and in vivo efficacy. PK and PD principles can be applied to development of new antibacterials and formulation of existing agents to help address the increasing prevalence of antibacterial resistance. For beta-lactams, such as penicillins, the unbound serum concentration of the drug exceeding the minimum inhibitory concentration of the causative pathogen for 40-50% of the dosing interval is predictive of bacteriologic efficacy (bacterial eradication) and can be used to determine a PK/PD breakpoint for that specific dosing regimen. Amoxicillin/clavulanate was one of the earliest antibacterials to use the unique approach of PK/PD principles to develop new and enhanced formulations, allowing it to remain a significant antibacterial agent in the management of respiratory tract infections.
NASA Astrophysics Data System (ADS)
Hermsmeier, Maiko; Sawant, Tanvee; Lac, Diana; Yamamoto, Akira; Chen, Xin; Huang, Susan Y.; Nagavarapu, Usha; Evans, Conor L.; Chan, Kin Foong; Daniels, AnnaMarie
2017-02-01
Acne vulgaris is a chronic inflammatory skin condition commonly resulting in negative aesthetic and social impacts on those affected. Minocycline, currently available as an oral antibiotic for moderate to severe acne, has a known minimum inhibitory concentration (MIC) for the acne-causing bacterium Propionibacterium acnes (P. acnes) in vitro, with its anti-inflammatory properties also eliciting inhibitory effects on pro-inflammatory molecules. A novel topical gel composition containing solubilized minocycline (BPX-01) has been developed to directly deliver the drug to the skin. Because minocycline is a known fluorophore, fluorescence microscopy and concurrent quantitative measurements were performed on excised human facial skin dosed with different concentrations, in order to determine the spatial distribution of the drug and quantification of its local concentration in the epidermis and the pilosebaceous unit where P. acnes generally reside. Local minocycline delivery confirmed achievement of an adequate therapeutic dose to support clinical studies. Subsequently, a 4-week double-blind, randomized, vehicle controlled clinical study was performed to assess the safety and efficacy of 1% minocycline BPX-01 applied daily. No instances of cutaneous toxicity were reported, and a greater than 1 log reduction of P. acnes count was observed at week 4 with statistical significance from baseline and vehicle control. In addition, no detectable amounts of minocycline in the plasma were reported, suggesting the potential of this new formulation to diminish the known systemic adverse effects associated with oral minocycline. Follow-on clinical plans are underway to further establish the safety of BPX-01 and to evaluate its efficacy against inflammatory acne lesions in a 225 patient multi-center dose-finding study.
Kulow, Megan; Zibaee, Fahimeh; Allard, Marianne; Döpfer, Dörte
2015-11-01
Infectious claw diseases continue to plague cattle in intensively managed husbandry systems. Poor foot hygiene and constant moist environments lead to the infection and spread of diseases such as digital dermatitis (hairy heel warts), interdigital dermatitis, and interdigital phlegmon (foot rot). Currently, copper sulfate and formalin are the most widely used disinfecting agents in bovine footbaths; however, the industry could benefit from more environmentally and worker friendly substitutes. This study determined the in vitro minimum inhibitory concentrations and minimum bactericidal concentrations of Thymox (Laboratoire M2, Sherbrooke, Québec, Canada) for a selection of microorganisms related to infectious bovine foot diseases. Thymox is a broad-spectrum agricultural disinfectant that is nontoxic, noncorrosive, and readily biodegradable. The values for minimum inhibitory concentration and minimum bactericidal concentration indicated that Thymox inhibited growth and killed the various species of microorganisms under study at much lower concentrations compared with the recommended working concentration of a 1% solution. Overall, the values found in this study of minimum inhibitory concentration and minimum bactericidal concentration of Thymox show its potential as an alternative antibacterial agent used in bovine footbaths; however, field trials are needed to determine its effectiveness for the control and prevention of infectious claw diseases. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
George, Jaimee; Halami, Prakash Motiram
2017-10-01
The study aimed to analyze the effects of sub-inhibitory concentrations of gentamicin on the expressions of high level aminoglycoside resistant (HLAR) bifunctional aac(6')Ie-aph(2″)Ia, biofilm and chaperone genes in Lactobacillus plantarum. The analysis of the biofilm formation in five isolates obtained from chicken sausages indicated their role in exhibiting phenotypic resistance based on the varied MIC values despite carrying the bifunctional gene. The biofilm formation significantly increased when L. plantarum MCC 3011 was grown in sub-inhibitory concentrations of gentamicin (4 μg/ml), kanamycin (8 μg/ml) and streptomycin (2 μg/ml). Thirty day gentamicin selection increased minimum inhibitory concentration (MIC) values from 4 to 64 and 2 to 256 fold for gentamicin and kanamycin, respectively when compared to the parental cultures. Expression studies revealed that constant exposure to gentamicin had induced chaperon [groEL] and the bifunctional gene, aac(6')Ie-aph(2″)Ia upto nine fold. Induction of groEL, groES and lamC genes in gentamicin (4 μg/ml) preincubated MCC 3011 indicated their significant role in aminoglycoside mediated response. Our study indicates that constant exposure to sub inhibitory concentrations of gentamicin allows L. plantarum to adapt against higher doses of aminoglycosides. This highlights the risks and food safety issues associated with the use of aminoglycosides in livestock and consumption of farm oriented fermented food products. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Asari, Tomo; Takayama, Kentaro; Nakamura, Akari; Shimada, Takahiro; Taguchi, Akihiro; Hayashi, Yoshio
2017-01-12
Myostatin inhibition is one of the promising strategies for treating muscle atrophic disorders, including muscular dystrophy. It is well-known that the myostatin prodomain derived from the myostatin precursor acts as an inhibitor of mature myostatin. In our previous study, myostatin inhibitory minimum peptide 1 (WRQNTRYSRIEAIKIQILSKLRL-amide) was discovered from the mouse myostatin prodomain. In the present study, alanine scanning of 1 demonstrated that the key amino acid residues for the effective inhibitory activity are rodent-specific Tyr and C-terminal aliphatic residues, in addition to N-terminal Trp residue. Subsequently, we designed five Pro-substituted peptides and examined the relationship between secondary structure and inhibitory activity. As a result, we found that Pro-substitutions of Ala or Gln residues around the center of 1 significantly decreased both α-helicity and inhibitory activity. These results suggested that an α-helical structure possessing hydrophobic faces formed around the C-terminus is important for inhibitory activity.
Antibacterial potential assessment of jasmine essential oil against e. Coli.
Rath, C C; Devi, S; Dash, S K; Mishra, R K
2008-01-01
The antibacterial activity of Jasmine (Jasminum sambac L.) flower hydro steam distilled essential oil, synthetic blends and six major individual components was assessed against Escherichia coli (MTCC-443) strain. The activity was bactericidal. Minimum inhibitory concentration was determined by tube dilution technique, and the Minimum inhibitory concentration ranged between 1.9-31.25 mul/ml. Phenolcoefficient of the oil, synthetic blends and components varied between 0.6-1.7. The activity of the chemicals was possibly due to the inhibition of cell membrane synthesis.
Penicillin dosing for pneumococcal pneumonia.
Bryan, C S; Talwani, R; Stinson, M S
1997-12-01
Most textbook authors still endorse penicillin G as the specific antibiotic of choice for pneumococcal pneumonia. However, problems with early precise etiologic diagnosis of pneumonia and the emergence of drug-resistant pneumococci cause penicillin to be seldom used for this purpose today. A third explanation for the infrequent use of penicillin is lack of clear consensus dosing guidelines. Emergence of pneumococci resistant to the newer cephalosporins and concerns about overuse of vancomycin, however, have prompted renewed interest in the development of precise, rapid methods for diagnosis of pneumococcal pneumonia with the implication that penicillin might be used more frequently. We review several issues concerning penicillin dosing: intermittent vs continuous therapy, high dose vs low dose, relationship of dose to resistance, and cost-effective pharmacology. An optimum "high-dose" regimen for life-threatening pneumococcal pneumonia in a 70-kg adult consists of a 3 million unit (mu) loading dose followed by continuous infusion of 10 to 12 mu of freshly prepared drug every 12 h. The maintenance dose should be reduced in elderly patients and in patients with renal failure according to the following formula: dose (mu/24 h = 4+[creatinine clearance divided by 7]). This regimen provides a penicillin serum level of 16 to 20 microg/mL, which should suffice for all but the most highly resistant strains (minimum inhibitory concentration > or = 4 microg/mL). Newer cephalosporins and vancomycin can be reserved for patients with suspected meningitis or endocarditis or for localities in which highly resistant pneumococci are known to be prevalent.
Zhao, D H; Yu, Y; Zhou, Y F; Shi, W; Deng, H; Liu, Y H
2014-02-01
The postantibiotic effect (PAE) and postantibiotic sub-minimum inhibitory concentration (MIC) effect (PA-SME) of valnemulin against Staphylococcus aureus were investigated in vitro using a spectrophotometric technique and classic viable count method. A standard curve was constructed by regression analysis of the number of colonies and the corresponding optical density (OD) at 630 nm of the inoculum. After exposure to valnemulin at different concentrations for an hour, the antibiotic was removed by centrifuging and washing. The PA-SMEs were measured after initial exposure to valnemulin at 4 × the MIC, and then, valnemulin was added to reach corresponding desired concentrations in the resuspended culture. Samples were collected hourly until the culture became turbid. The results were calculated by converting the OD values into the counts of bacteria in accordance with the curve. The MIC of valnemulin against eight strains was identically 0.125 μg ml(-1) . The mean PAEs were 2.12 h (1 × MIC) and 5.06 h (4 × MIC), and the mean PA-SMEs were 6.85 h (0.1 × MIC), 9.12 h (0.2 × MIC) and 10.8 h (0.3 × MIC). The results showed that the strains with identical MICs exhibited different PAEs and PA-SMEs. Valnemulin produced prolonged PAE and PA-SME periods for Staph. aureus, supporting a longer dosing interval while formulating a daily administration dosage. In this study, valnemulin demonstrated prolonged postantibiotic effects and postantibiotic sub-MIC effects on strains of Staphylococcus aureus. The strains with identical MICs of valnemulin exhibited different PAEs and PA-SMEs. Staphylococcus aureus isolated from different species has little impact on the postantibiotic effect of valnemulin. The result suggests a longer dosing interval while formulating a daily administration dosage, and it may play a valuable role of valnemulin in treating Staph. aureus infections in animals. © 2013 The Society for Applied Microbiology.
So, Wonhee; Crandon, Jared L; Nicolau, David P
2015-08-01
We assessed the effects of the urine matrix and its varying pH on the potency of the novel broad-spectrum fluoroquinolone delafloxacin and of ciprofloxacin against 16 urogenic Enterobacteriaceae in the urine of patients with suspected urinary tract infection. We determined minimum inhibitory concentrations in broth and urine using microdilution in 9 Escherichia coli and 7 Klebsiella pneumoniae specimens. The change in potency between broth and urine was calculated. Against 16 highly ciprofloxacin resistant Enterobacteriaceae with a broth minimum inhibitory concentration of 32 mg/l or greater the minimum inhibitory concentration in delafloxacin in broth was 2 mg/l (1 and 0 isolates of E. coli and K. pneumoniae, respectively), 4 mg/l (3 and 0), 8 mg/l (3 and 1), 16 mg/l (2 and 4) and 32 mg/l (0 and 2). Across the 143 collected urines pH ranged from 4.7 to 9.0 with 71% at pH 6.5 or less. The delafloxacin minimum inhibitory concentration measured in 80% urine from 100 unique patient samples (pH 5.0 to 8.3) was 2 mg/l or less (18% and 0.8% for E. coli and K. pneumoniae, respectively), 4 mg/l (23% and 6%), 8 mg/l (21% and 18%), 16 mg/l (23% and 33%) and 32 mg/l or greater (15% and 42%). For E. coli and K. pneumoniae combined the median changes in the delafloxacin minimum inhibitory concentration were a 1 doubling dilution decrease at pH 6.0 or less, no change at pH 6.1 to 7.0 and a 1 doubling dilution increase at pH 7.1 or greater. Unlike delafloxacin, ciprofloxacin showed a 1 doubling dilution increase for E. coli and no change for K. pneumoniae at pH 7.0 or less with no change observed at pH 7.1 or greater. Most urines collected from patients with urinary tract infection had a pH of 6.5 or less. Delafloxacin broth minimum inhibitory concentrations were twofold to fivefold doubling dilutions lower than those of ciprofloxacin. In contrast to ciprofloxacin, the potency of delafloxacin was further enhanced in the acidic environment commonly observed in the setting of urinary tract infection. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Introducing Urtica dioica, A Native Plant of Khuzestan, As an Antibacterial Medicinal Plant.
Motamedi, Hossein; Seyyednejad, Seyyed Mansour; Bakhtiari, Ameneh; Vafaei, Mozhan
2014-11-01
Urtica dioica is a flowering plant with long history of use in folk medicine and as a food source. This study examined in vitro antibacterial potential of alcoholic extracts of U. dioica. Hydroalcoholic extracts from aerial parts were prepared using aqueous solution of ethanol and methanol and their inhibitory effects against clinical isolates was examined by disc diffusion method at different doses. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) indexes were also investigated. The scanning electron microscopy (SEM) analysis was also performed to find structural changes of affected bacteria consequent to exposing with extracts. Both extracts were active against Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli with respectively 16, 10, 18, and 14 mm (methanolic) and 11, 9, 17, and 16 mm (ethanolic) inhibition zone. The MIC of ethanolic extract against S. epidermidis and E. coli was respectively 10 and 40 mg/mL. The MIC of methanolic extract against S. aureus and S. epidermidis was 40 and 10 mg/mL, respectively. The MBC was found only for S. epidermidis (20 mg/mL). In SEM analysis the round shape of S. epidermidis was changed and irregular shapes were appeared, which suggest that the main target of these extracts was cell wall. Extracts of U. dioica showed significant antibacterial effect against some clinically important pathogenic bacteria. Based on the obtained results it can be concluded that U. dioica is useful as antibacterial and bactericidal agent in treating infectious diseases.
Blondeau, J M; Borsos, S; Blondeau, L D; Blondeau, B J J; Hesje, C E
2012-11-09
Mannheimia haemolytica is the most prevalent cause of bovine respiratory disease (BRD) and this disease accounts for 75% of morbidity, 50-70% of feedlot deaths and is estimated to cost up to $1 billion dollars annually in the USA. Antimicrobial therapy is essential for reducing morbidity, mortality and impacting on the financial burden of this disease. Due to the concern of increasing antimicrobial resistance, investigation of antibacterial agents for their potential for selecting for resistance is of paramount importance. A novel in vitro measurement called the mutant prevention concentration (MPC) defines the antimicrobial drug concentration necessary to block the growth of the least susceptible cells present in high density (≥10(7) colony forming units/ml) bacterial populations such as those seen in acute infection. We compared the minimum inhibitory concentration (MIC) and MPC values for 5 antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tilmicosin, tulathromycin) against 285 M. haemolytica clinical isolates. The MIC(90)/MPC(90) values for each agent respectively were as follows: 0.016/2, 0.125/1, 2/≥16, 8/≥32, 2/8. Dosing to achieve MPC concentrations (where possible) may serve to reduce the selection of bacterial subpopulations with reduced antimicrobial susceptibility. The rank order of potency based on MIC(90) values was ceftiofur > enrofloxacin > florfenicol = tulathromycin > tilmicosin. The rank order of potency based on MPC(90) values was enrofloxacin > ceftiofur > tulathromycin > florfenicol ≥ tilmicosin. Copyright © 2012 Elsevier B.V. All rights reserved.
Varadarajan, Saranya; Narasimhan, Malathi; Malaisamy, Malaiyandi; Duraipandian, Chamundeeswari
2015-08-01
Candidiasis is one of the most common opportunistic infections caused by Candida albicans. Fluconazole is the drug of choice for prevention and management of this condition. However, the emergence of fluconazole resistant candidal strains has become a major concern. Many herbs like fenugreek, cinnamon, papaya, oregano, garlic are rich in phytochemical constituents known to express antimycotic activity. With the available information, the present research study was carried out to assess the invitro anti-mycotic activity of hydro alcoholic extracts of Trigonella foenum-graecum seeds, Cinnamomum verum bark and Carica papaya leaves and seeds against fluconazole resistant Candida albicans. Hydro alcoholic extracts of Trigonella foenum-graecum (seeds), Cinnamomum verum (bark), Carica papaya CO.2 strain (male and female leaves) and Carica papaya CO.2 strain (seeds) were prepared by maceration. The anti-mycotic activity of the prepared extracts against Candida albicans was assessed by agar well diffusion method. Three independent experiments were performed in triplicates and the mean and standard deviation were calculated. Minimum inhibitory concentration was determined. The results of the present study revealed that all the extracts exhibited anti-mycotic activity in a dose dependent manner and minimum inhibitory concentration of all the extracts was found to be 15.62 μg/ml. The results of the present study shed light on the fact that plant extracts could be used not only as an alternate drug for management of fluconazole resistant candidiasis but also explored further for oral cancer prevention as a therapeutic adjunct.
The direct anti-MRSA effect of emodin via damaging cell membrane.
Liu, Ming; Peng, Wei; Qin, Rongxin; Yan, Zifei; Cen, Yanyan; Zheng, Xinchuan; Pan, Xichun; Jiang, Weiwei; Li, Bin; Li, Xiaoli; Zhou, Hong
2015-09-01
Methicillin-resistant Staphylococcus aureus (MRSA) has become an important bacterium for nosocomial infection. Only a few antibiotics can be effective against MRSA. Therefore, searching for new drugs against MRSA is important. Herein, anti-MRSA activities of emodin and its mechanisms were investigated. Firstly, in vitro antimicrobial activity was investigated by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-growth curve, and multipassage resistance testing was performed. Secondly, protection of emodin on mice survival and blood bacterial load in mice challenged with lethal or sublethal dose of MRSA were investigated. Subsequently, the influences of emodin on the bacterial morphology, messenger RNA (mRNA) expressions related to cell wall synthesis and lysis, β-lactamase activity, drug accumulation, membrane fluidity, and integrity were performed to investigate its mechanisms. Lastly, in vitro cytotoxicity assay were performed using the 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) method. The results showed MICs and MBCs of emodin against MRSA252 and 36 clinical MRSA strains were among 2-8 and 4-32 μg/mL, respectively. There was no MIC increase for emodin during 20 passages. In vivo, emodin dose-dependently protected mice challenged with lethal dose of MRSA and decreased bacterial load in mice challenged with sublethal dose of MRSA. Morphology observation showed emodin might disrupt cell wall and membrane of MRSA. Although emodin had no influence on genes related to cell wall synthesis and lysis as well as β-lactamase activity and drug accumulation, emodin reduced membrane fluidity and disrupted membrane integrity. Based on the fact that emodin had no significant cytotoxicity against mammalian cells, it could be further investigated as a membrane-damage bactericide against MRSA in the future.
Yue, Xuan-Feng; Shang, Xiao; Zhang, Zhi-Juan; Zhang, Yan-Ni
2017-04-01
Essential oils from the seed, pulp, and leaf of sea buckthorn were obtained with hydrodistillation, and their phytochemical composition was analyzed through gas chromatography-mass spectrometry. Furthermore, the antibacterial activity of the oils was tested on five food-borne bacteria by spectrometry and evaluated in terms of minimum inhibitory concentration. The results indicate that the composition of all essential oils is dominated by free fatty acids, esters, and alkanes. Minimum inhibitory concentration values on each bacterium were obtained for oils from different parts. The oils from different parts exhibited nearly equal inhibitory effect on Staphylococcus aureus. The pulp oil was found to be the most effective for the rest of bacteria tested except Escherichia coli, on which seed oil shows twice the inhibitory effect to that of leaf or pulp oil. Three natural inhibitory examples were found comparable with or even better than the positive control: pulp oil on Bacillus subtilis, and pulp oil and leaf oil on Bacillus coagulans. Copyright © 2016. Published by Elsevier B.V.
Polymicrobial Biofilm Inhibition Effects of Acetate-Buffered Chitosan Sponge Delivery Device.
Jennings, Jessica Amber; Beenken, Karen E; Parker, Ashley C; Smith, James Keaton; Courtney, Harry S; Smeltzer, Mark S; Haggard, Warren O
2016-04-01
Polymicrobial biofilm-associated implant infections present a challenging clinical problem. Through modifications of lyophilized chitosan sponges, degradable drug delivery devices for antibiotic solution have been fabricated for prevention and treatment of contaminated musculoskeletal wounds. Elution of amikacin, vancomycin, or a combination of both follows a burst release pattern with vancomycin released above minimum inhibitory concentration for Staphylococcus aureus for 72 h and amikacin released above inhibitory concentrations for Pseudomonas aeruginosa for 3 h. Delivery of a vancomycin, amikacin, or a combination of both reduces biofilm formation on polytetrafluoroethylene catheters in an in vivo model of contamination. Release of dual antibiotics from sponges is more effective at preventing biofilm formation than single-loaded chitosan sponges. Treatment of pre-formed biofilm with high-dose antibiotic release from chitosan sponges shows minimal reduction after 48 h. These results demonstrate infection-preventive efficacy for antibiotic-loaded sponges, as well as the need for modifications in the development of advanced materials to enhance treatment efficacy in removing established biofilm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antibacterial Potential Assessment of Jasmine Essential Oil Against E. Coli
Rath, C. C.; Devi, S.; Dash, S. K.; Mishra, R. K.
2008-01-01
The antibacterial activity of Jasmine (Jasminum sambac L.) flower hydro steam distilled essential oil, synthetic blends and six major individual components was assessed against Escherichia coli (MTCC-443) strain. The activity was bactericidal. Minimum inhibitory concentration was determined by tube dilution technique, and the Minimum inhibitory concentration ranged between 1.9-31.25 μl/ml. Phenolcoefficient of the oil, synthetic blends and components varied between 0.6-1.7. The activity of the chemicals was possibly due to the inhibition of cell membrane synthesis. PMID:20046722
Lagator, Mato; Vogwill, Tom; Mead, Andrew; Colegrave, Nick; Neve, Paul
2013-05-01
The widespread evolution of resistance to herbicides is a pressing issue in global agriculture. Evolutionary principles and practices are key to the management of this threat to global food security. The application of mixtures of herbicides has been advocated as an anti-resistance strategy, without substantial empirical support for its validation. We evolved experimentally populations of the unicellular green chlorophyte, Chlamydomonas reinhardtii, to minimum inhibitory concentrations (MICs) of single-herbicide modes of action and to pair-wise and three-way mixtures between different herbicides at various total combined doses. Herbicide mixtures were most effective when each component was applied at or close to its MIC. When doses were high, increasing the number of mixture components was also effective in reducing the evolution of resistance. Employing mixtures at low combined doses did not retard resistance evolution, even accelerating the evolution of resistance to some components. At low doses, increasing the number of herbicides in the mixture tended to select for more generalist resistance (cross-resistance). Our results reinforce findings from the antibiotic resistance literature and confirm that herbicide mixtures can be very effective for resistance management, but that mixtures should only be employed where the economic and environmental context permits the applications of high combined doses. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Population pharmacokinetics of levofloxacin in Korean patients.
Kiem, Sungmin; Ryu, Sung-Mun; Lee, Yun-Mi; Schentag, Jerome J; Kim, Yang-Wook; Kim, Hyeon-Kuk; Jang, Hang-Jae; Joo, Yong-Don; Jin, Kyubok; Shin, Jae-Gook; Ghim, Jong-Lyul
2016-08-01
Levofloxacin (LVFX) has different effects depending on the area under the concentration-time curve (AUC)/minimum inhibitory concentration (MIC) ratio. While AUC can be expressed as dose/clearance (CL), we measured serial concentrations of LVFX in Koreans and tried to set a Korean-specific equation, estimating the CL of the antibiotic. In total, 38 patients, aged 18-87 years, received once daily intravenous LVFX doses of 500 mg or 250 mg, depending on their renal function. Four plasma samples were obtained according to a D optimal sampling design. The population pharmacokinetic (PK) parameters of LVFX were estimated using non-linear mixed-effect modeling (NONMEM, ver. 7.2). The CL of LVFX was dependent on creatinine clearance (CLCR) as a covariate. The mean population PK parameters of LVFX in Koreans were as follows: CL (l/hour) = 6.19 × (CLCR/75)(1.32). The CL of LVFX in Koreans is expected to be lower than that in Western people.
Mothana, Ramzi; Alsaid, Mansour; Khaled, Jamal M; Alharbi, Naiyf S; Alatar, Abdulrahman; Raish, Mohammad; Al-Yahya, Mohammed; Rafatullah, Syed; Parvez, Mohammad Khalid; Ahamad, Syed Rizwan
2016-03-01
This study was designed to investigate the possible antiniciceptive, antipyretic and antimicrobial activities of the essential oil obtained from the fruits of Piper Cubeba (L.). To assess the antinociceptive and antipyretic activities, three doses (150, 300 and 600 mg/kg, i.p.) were tested in acetic acid-induced abdominal writhing, tail flick reaction and hot-plate and Brewer's yeast-induced hyperpyrexia test models in animals. Moreover, the antimicrobial activity was examined using agar diffusion method and broth micro-dilution assay for minimum inhibitory concentrations (MIC). The Piper Cubeba essential oil (PCEO) showed a marked antinociception (17, 30 and 54%) and an increase in reaction time in mice in the flick tailed and hot-plate tests. The brewer's yeast induced hyperpyrexia was decreased in a dose dependent manner. PCEO also exhibited a strong antimicrobial potential. These findings confirm the traditional analgesic indications of P. cubeba oil and provide persuasive evidence and support its use in Arab traditional medicine.
Singh, Gagandeep; Sharma, Anuradha; Kaur, Harpreet; Ishar, Mohan Paul S
2016-02-01
Regio- and stereoselective 1,3-dipolar cycloadditions of C-(chrom-4-one-3-yl)-N-phenylnitrones (N) with different mono-substituted, disubstituted, and cyclic dipolarophiles were carried out to obtain substituted N-phenyl-3'-(chrom-4-one-3-yl)-isoxazolidines (1-40). All the synthesized compounds were assayed for their in vitro antibacterial activity and display significant inhibitory potential; in particular, compound 32 exhibited good inhibitory activity against Salmonella typhymurium-1 & Salmonella typhymurium-2 with minimum inhibitory concentration value of 1.56 μg/mL and also showed good potential against methicillin-resistant Staphylococcus aureus with minimum inhibitory concentration 3.12 μg/mL. Quantitative structure activity relationship investigations with stepwise multiple linear regression analysis and docking simulation studies have been performed for validation of the observed antibacterial potential of the investigated compounds for determination of the most important parameters regulating antibacterial activities. © 2015 John Wiley & Sons A/S.
Li, Ya-Ru; Li, Chao; Liu, Jia-Chun; Guo, Meng; Zhang, Tian-Yi; Sun, Liang-Peng; Zheng, Chang-Ji; Piao, Hu-Ri
2015-11-15
Three series of 1,3-diaryl pyrazole derivatives bearing aminoguanidine or furan-2-carbohydrazide moieties have been synthesized, characterized and evaluated for antibacterial and anti-inflammatory activities. Most of the synthesized compounds showed potent inhibition of several Gram-positive bacterial strains (including multidrug-resistant clinical isolates) and Gram-negative bacterial strains with minimum inhibitory concentration values in the range of 1-64 μg/mL. Compounds 6g, 6l and 7l presented the most potent inhibitory activity against Gram-positive bacteria (e.g. Staphylococcus aureus 4220), Gram-negative bacteria (e.g. Escherichia coli 1924) and the fungus, Candida albicans 7535, with minimum inhibitory concentration values of 1 or 2 μg/mL. Compared with previous studies, these compounds exhibited a broad spectrum of inhibitory activity. Furthermore, compound 7l showed the greatest anti-inflammatory activity (93.59% inhibition, 30 min after intraperitoneal administration), which was more potent than the reference drugs ibuprofen and indomethacin. Copyright © 2015 Elsevier Ltd. All rights reserved.
AUC-Guided Vancomycin Dosing in Adolescent Patients With Suspected Sepsis.
Lanke, Shankar; Yu, Tian; Rower, Joseph E; Balch, Alfred H; Korgenski, E Kent; Sherwin, Catherine M
2017-01-01
Vancomycin is a first-line treatment for β-lactam-resistant Gram-positive bacterial infections. Understanding the pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of vancomycin in an adolescent population is of clinical importance in this often overlooked pediatric population. This retrospective study investigated vancomycin PK-PD in an adolescent cohort (12 to 18 years of age) of 463 patients (57% male, 81% white) admitted to the Intermountain Healthcare System between January 2006 and December 2013. Population PK modeling was performed in NONMEM 7.3. Vancomycin PK was well described with a 1-compartment model that identified both body weight (WT) and creatinine clearance (CRCL) as covariates significantly impacting vancomycin disposition. The model was then utilized to determine dosing strategies that achieved the targeted area under the 24-hour time curve vs minimum inhibitory concentration (AUC 0-24 /MIC) ratio of ≥400. Additionally, these data were correlated with minimum steady-state concentrations (C ss,min ) to find an acceptable target trough concentration range in adolescents. This analysis demonstrated that C ss,min ranging from 10 to 12.5 mg/L were highly predictive of achieving an AUC 0-24 /MIC ≥400 when the MIC was ≤1 mg/L. These results suggest that the target trough concentration for adolescents may be lower than that for adults. © 2016, The American College of Clinical Pharmacology.
Fujimura, Morihiro; Izumimoto, Naoki; Kanie, Sayoko; Kobayashi, Ryosuke; Yoshikawa, Satoru; Momen, Shinobu; Hirakata, Mikito; Komagata, Toshikazu; Okanishi, Satoshi; Iwata, Masashi; Hashimoto, Tadatoshi; Doi, Takayuki; Yoshimura, Naoki; Kawai, Koji
2017-04-01
To clarify the mechanism of inhibitory action of TRK-130 (Naltalimide), a unique µ-opioid receptor partial agonist, on the micturition reflex. The effect of TRK-130 on isovolumetric rhythmic bladder contractions (RBCs) was examined in guinea pigs, the effect of which was clarified by co-treatment with naloxone or in spinal cord transection. The effect of TRK-130 on urodynamic parameters was also observed in guinea pigs. In addition, the effect of TRK-130 on bladder contraction induced by peripheral stimulation of the pelvic nerve was investigated in rats. TRK-130 (0.001-0.01 mg/kg, iv) dose-dependently inhibited RBCs, which was dose-dependently antagonized by naloxone; however, the antagonism susceptibility was different from morphine (1 mg/kg, iv). The minimum effective dose (0.003 mg/kg) of TRK-130 remained similar in spinal cord-transected animals. TRK-130 (0.0025 mg/kg, iv) increased bladder capacity without changing the voiding efficiency, maximum flow rate, and intravesical pressure at the maximum flow rate, whereas oxybutynin (1 mg/kg, iv) increased the bladder capacity but affected the other parameters. TRK-130 (0.005 mg/kg, iv) did not produce significant changes on the bladder contractions induced by peripheral stimulation of the pelvic nerve, while oxybutynin (1 mg/kg, iv) significantly suppressed the bladder contractions. These results suggest that TRK-130 enhances the bladder storage function by modulating the afferent limb of the micturition reflex through µ-opioid receptors in the spinal cord. TRK-130 could be a more effective and safer therapeutic agent with a different fashion from antimuscarinics and conventional opioids for overactive bladder.
Zeng, Dongping; Sun, Meizhen; Lin, Zhoumeng; Li, Miao; Gehring, Ronette; Zeng, Zhenling
2018-01-01
Tildipirosin, a 16-membered-ring macrolide antimicrobial, has recently been approved for the treatment of swine respiratory disease and bovine respiratory disease. This macrolide is extensively distributed to the site of respiratory infection followed by slow elimination. Clinical efficacy has been demonstrated in cattle and swine clinical field trials. However, the pharmacokinetic/pharmacodynamic (PK/PD) index that best correlates with the efficacy of tildipirosin remains undefined. The objective of this study was to develop a PK/PD model following subcutaneous injection of tildipirosin against Pasteurella multocida in a murine lung infection model. The PK studies of unbound (f) tildipirosin in plasma were determined following subcutaneous injection of single doses of 1, 2, 4, 6, and 8 mg/kg of body weight in neutropenic lung-infected mice. The PD studies were conducted over 24 h based on twenty intermittent dosing regimens, of which total daily dose ranged from 1 to 32 mg/kg and dosage intervals included 6, 8, 12, and 24 h. The minimum inhibitory concentration (MIC) of tildipirosin against P. multocida was determined in serum. The inhibitory effect Imax model was employed for PK/PD modeling. The area under the unbound concentration-time profile over 24 h to MIC (fAUC0-24 h/MIC) was the PK/PD index that best described the antibacterial activity in the murine infection model. The fAUC0-24 h/MIC targets required to achieve the bacteriostatic action, a 1-log10 kill and 2-log10 kill of bacterial counts were 19.93, 31.89, and 53.27 h, respectively. These results can facilitate efforts to define more rational designs of dosage regimens of tildipirosin using classical PK/PD concepts for the treatment of respiratory diseases in pigs and cattle. PMID:29867911
Stoessel, Andrew M; Hale, Cory M; Seabury, Robert W; Miller, Christopher D; Steele, Jeffrey M
2018-01-01
This study aimed to assess the impact of area under the curve (AUC)-based vancomycin monitoring on pharmacist-initiated dose adjustments after transitioning from a trough-only to an AUC-based monitoring method at our institution. A retrospective cohort study of patients treated with vancomycin for complicated methicillin-resistant Staphylococcus aureus (MRSA) infection between November 2013 and December 2016 was conducted. The frequency of pharmacist-initiated dose adjustments was assessed for patients monitored via trough-only and AUC-based approaches for trough ranges: 10 to 14.9 mg/L and 15 to 20 mg/L. Fifty patients were included: 36 in the trough-based monitoring and 14 in the AUC-based-monitoring group. The vancomycin dose was increased in 71.4% of patients when troughs were 10 to 14.9 mg/L when a trough-only approach was used and in only 25% of patients when using AUC estimation ( P = .048). In the AUC group, the dose was increased only when AUC/minimum inhibitory concentration (MIC) <400; unchanged regimens had an estimated AUC/MIC ≥400. The AUC-based monitoring did not significantly increase the frequency of dose reductions when trough concentrations were 15 to 20 mg/L (AUC: 33.3% vs trough: 4.6%; P = .107). The AUC-based monitoring resulted in fewer patients with dose adjustments when trough levels were 10 to 14.9 mg/L. The AUC-based monitoring has the potential to reduce unnecessary vancomycin exposure and warrants further investigation.
Sun, Haoyu; Calabrese, Edward J; Zheng, Min; Wang, Dali; Pan, Yongzheng; Lin, Zhifen; Liu, Ying
2018-08-01
Hormesis occurs frequently in broadly ranging biological areas (e.g. plant biology, microbiology, biogerontology), toxicology, pharmacology and medicine. While numerous mechanisms (e.g. receptor and pathway mediated pathway responses) account for stimulatory and inhibitory features of hormetic dose responses, the vast majority emphasizes the inclusion of many doses but only one timepoint or use of a single optimized dose that is assessed over a broad range of timepoints. In this paper, a toxicity study was designed using a large number of properly spaced doses with responses determined over a large number of timepoints, which could help us reveal the underlying mechanism of hormesis. We present the results of a dose-time-response study on hormesis using five antibacterial chemicals on the bioluminescence of Aliivibrio fischeri, measuring expression of protein mRNA based on quorum sensing, simulating bioluminescent reaction and analyzing toxic actions of test chemicals. The findings show dose-time-dependent responses conforming to the hormetic dose-response model, while revealing unique response dynamics between agent induced stimulatory and inhibitory effects within bacterial growth phase dynamics. These dynamic dose-time features reveal a type of biological seesaw model that integrates stimulatory and inhibitory responses within unique growth phase, dose and time features, which has faultlessly explained the time-dependent hormetic phenomenon induced by five antibacterial chemicals (characterized by low-dose stimulation and high-dose inhibition). This study offers advances in understanding cellular dynamics, the biological integration of diverse and opposing responses and their role in evolutionary adaptive strategies to chemicals, which can provide new insight into the mechanistic investigation of hormesis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aguilar-Galvez, Ana; Noratto, Giuliana; Chambi, Flor; Debaste, Frédéric; Campos, David
2014-08-01
Gallotannins obtained from tara pod extracts (EE) and from the products of acid hydrolysis for 4 and 9h (HE-4 and HE-9) were characterised for their composition, antioxidant activity, antimicrobial activity (AA) and minimum inhibitory concentration (MIC). Results of AA and MIC showed that EE exerted the highest inhibitory activity against Staphylococcus aureus, followed by Pseudomonas fluorescens; and among these bacteria, the antibacterial potency was enhanced after EE hydrolysis only against S. aureus. The lowest minimum inhibitory concentration (MIC) value (0.13mg gallic acid equivalent (GAE)/ml) was exerted by HE-4 against S. aureus. These results indicate that tara gallotannins have the potential to inhibit pathogenic bacteria with potential application in foods as antimicrobials and their AA can be enhanced by acid hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yamada, Masami; Ichikawa, Takashi; Ii, Masayuki; Sunamoto, Mie; Itoh, Katsumi; Tamura, Norikazu; Kitazaki, Tomoyuki
2005-11-17
To develop a new therapeutic agent for sepsis, screening of the Takeda chemical library was carried out using mouse macrophages stimulated with lipopolysaccharide (LPS) to identify a new class of small-molecule inhibitors of inflammatory mediator production. The lead compound 5a was discovered, from which a series of novel cyclohexene derivatives I bearing a sulfamoyl and ester group were designed, synthesized and tested for their inhibitory activity against nitric oxide (NO) production. Derivatives I were synthesized by the coupling of sulfonyl chlorides and anilines with concomitant double bond migration in the presence of triethylamine, and phenyl ring substitution and modification of the ester and cyclohexene moieties were carried out. Among the compounds synthesized, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate [(R)-(+)-5n, TAK-242] was found to exhibit the most potent suppressive activity for the production of not only NO but also inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) induced by LPS-stimulated mouse macrophages with IC50 values of 1.8, 1.9 and 1.3 nM, respectively. It shows marked beneficial effects in vivo also. Intravenous administration of (R)-(+)-5n at doses of 0.1 mg/kg or more suppressed the production of NO and various cytokines [TNF-alpha, IL-6 and IL-1beta] in the mouse endotoxin shock model. Furthermore, it protected mice from death dose-dependently and all mice survived at a dose of 3 mg/kg. The minimum effective dose to protect mice from lethality in this model was 0.3 mg/kg, which was consistent with those for inhibitory effects on the production of NO and cytokines. Compound (R)-(+)-5n is currently undergoing clinical trials for the treatment of sepsis.
Antimicrobial activity of fresh garlic juice: An in vitro study
Yadav, Seema; Trivedi, Niyati A.; Bhatt, Jagat D.
2015-01-01
Introduction: Antimicrobial resistance has been a global concern. Currently, interest has been focused on exploring antimicrobial properties of plants and herbs. One such botanical is Allium sativum (garlic). Aim: To evaluate the antimicrobial activity of fresh juice of garlic. Materials and Methods: Varying concentrations of fresh garlic juice (FGJ) were tested for their antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara, using well diffusion method. Moreover, minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of FGJ were tested using broth dilution method. Sensitivity pattern of the conventional antimicrobials against common pathogenic bacteria was tested using disc diffusion method. Results: FGJ produced dose-dependent increase in the zone of inhibition at a concentration of 10% and higher. MIC of FGJ against the pathogens ranged from 4% to 16% v/v whereas MLC value ranged from 4% to 32% v/v with Escherichia coli and Staphylococcus aureus spp. showed highest sensitivity. Conclusion: FGJ has definite antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara. Further studies are needed to find out the efficacy, safety, and kinetic data of its active ingredients. PMID:27011724
Alp, Sehnaz; Sancak, Banu; Hascelik, Gulsen; Arikan, Sevtap
2010-11-01
We investigated the incidence of trailing growth with fluconazole in 101 clinical Candida isolates (49 C. albicans and 52 C. tropicalis) and tried to establish the convenient susceptibility testing method and medium for fluconazole minimum inhibitory concentration (MIC) determination. MICs were determined by CLSI M27-A2 broth microdilution (BMD) and Etest methods on RPMI-1640 agar supplemented with 2% glucose (RPG) and on Mueller-Hinton agar supplemented with 2% glucose and 0.5 μg ml(-1) methylene blue (GMB). BMD and Etest MICs were read at 24 and 48 h, and susceptibility categories were compared. All isolates were determined as susceptible with BMD, Etest-RPG and Etest-GMB at 24 h. While all isolates were interpreted as susceptible at 48 h on Etest-RPG and Etest-GMB, one C. albicans isolate was interpreted as susceptible-dose dependent (S-DD) and two C. tropicalis isolates were interpreted as resistant with BMD. On Etest-RPG, trailing growth caused widespread microcolonies within the inhibition zone and resulted in confusion in MIC determination. On Etest-GMB, because of the nearly absence of microcolonies within the zone of inhibition, MICs were evaluated more easily. We conclude that, for the determination of fluconazole MICs of trailing Candida isolates, the Etest method has an advantage over BMD and can be used along with this reference method. Moreover, GMB appears more beneficial than RPG for the fluconazole Etest. © 2009 Blackwell Verlag GmbH.
Varadarajan, Saranya; Malaisamy, Malaiyandi; Duraipandian, Chamundeeswari
2015-01-01
Background Candidiasis is one of the most common opportunistic infections caused by Candida albicans. Fluconazole is the drug of choice for prevention and management of this condition. However, the emergence of fluconazole resistant candidal strains has become a major concern. Many herbs like fenugreek, cinnamon, papaya, oregano, garlic are rich in phytochemical constituents known to express antimycotic activity. With the available information, the present research study was carried out to assess the invitro anti-mycotic activity of hydro alcoholic extracts of Trigonella foenum-graecum seeds, Cinnamomum verum bark and Carica papaya leaves and seeds against fluconazole resistant Candida albicans Materials and Methods Hydro alcoholic extracts of Trigonella foenum-graecum (seeds), Cinnamomum verum (bark), Carica papaya CO.2 strain (male and female leaves) and Carica papaya CO.2 strain (seeds) were prepared by maceration. The anti-mycotic activity of the prepared extracts against Candida albicans was assessed by agar well diffusion method. Three independent experiments were performed in triplicates and the mean and standard deviation were calculated. Minimum inhibitory concentration was determined. Results The results of the present study revealed that all the extracts exhibited anti-mycotic activity in a dose dependent manner and minimum inhibitory concentration of all the extracts was found to be 15.62 μg/ml. Conclusion The results of the present study shed light on the fact that plant extracts could be used not only as an alternate drug for management of fluconazole resistant candidiasis but also explored further for oral cancer prevention as a therapeutic adjunct. PMID:26436036
Introducing Urtica dioica, A Native Plant of Khuzestan, As an Antibacterial Medicinal Plant
Motamedi, Hossein; Seyyednejad, Seyyed Mansour; Bakhtiari, Ameneh; Vafaei, Mozhan
2014-01-01
Background: Urtica dioica is a flowering plant with long history of use in folk medicine and as a food source. Objectives: This study examined in vitro antibacterial potential of alcoholic extracts of U. dioica. Materials and Methods: Hydroalcoholic extracts from aerial parts were prepared using aqueous solution of ethanol and methanol and their inhibitory effects against clinical isolates was examined by disc diffusion method at different doses. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) indexes were also investigated. The scanning electron microscopy (SEM) analysis was also performed to find structural changes of affected bacteria consequent to exposing with extracts. Results: Both extracts were active against Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli with respectively 16, 10, 18, and 14 mm (methanolic) and 11, 9, 17, and 16 mm (ethanolic) inhibition zone. The MIC of ethanolic extract against S. epidermidis and E. coli was respectively 10 and 40 mg/mL. The MIC of methanolic extract against S. aureus and S. epidermidis was 40 and 10 mg/mL, respectively. The MBC was found only for S. epidermidis (20 mg/mL). In SEM analysis the round shape of S. epidermidis was changed and irregular shapes were appeared, which suggest that the main target of these extracts was cell wall. Conclusions: Extracts of U. dioica showed significant antibacterial effect against some clinically important pathogenic bacteria. Based on the obtained results it can be concluded that U. dioica is useful as antibacterial and bactericidal agent in treating infectious diseases. PMID:25625045
Kashimoto, Yoshinori; Kurosaka, Yuichi; Karibe, Yukie; Uoyama, Saori; Fujikawa, Katsuko; Namba, Kenji; Otani, Tsuyoshi; Yamaguchi, Keizo
2009-10-01
The in vitro and in vivo antibacterial activities of levofloxacin (LVFX), a quinolone antibacterial, against clinically isolated Legionella pneumophila were investigated in comparison with those of existing antimicrobial agents approved for legionnaires disease. The minimum inhibitory concentrations (MICs) of the agents against 42 strains of L. pneumophila isolated in Japan were determined using agar dilution methods with buffered starch yeast extract agar. MIC90 of LVFX was 0.03 microg/ml and this activity was similar to ciprofloxacin and pazufloxacin, and higher than telithromycin and minocycline. Therapeutic efficacy of LVFX was studied against a pneumonia model induced by intranasal of L. pneumophila strain suzuki serogoup 1 in DBA/2 mice. Therapeutic doses in mice were selected that would closely match human exposure profile, area under the concentration-time curve (AUC) for a human oral dose of LVFX at 500 mg once a day. LVFX decreased significantly the bacterial burden in the lungs from the next day of commencing treatment. These results, including in vitro antibacterial activity against clinical isolates and therapeutic efficacy of a humanized dosing regimen, provide good evidence to support the use of LVFX at 500 mg once a day for treating patient with legionnaires disease.
Isoflavone formononetin from red propolis acts as a fungicide against Candida sp.
das Neves, Michelline Viviane Marques; da Silva, Tânia Maria Sarmento; Lima, Edeltrudes de Oliveira; da Cunha, Emídio Vasconcelos Leitão; Oliveira, Eduardo de Jesus
2016-01-01
A bioassay-guided fractionation of two samples of Brazilian red propolis (from Igarassu, PE, Brazil, hereinafter propolis 1 and 2) was conducted in order to determine the components responsible for its antimicrobial activity, especially against Candida spp. Samples of both the crude powdered resin and the crude ethanolic extract of propolis from both locations inhibited the growth of all 12 tested Candida strains, with a minimum inhibitory concentration of 256μg/mL. The hexane, acetate and methanol fractions of propolis 1 also inhibited all strains with minimum inhibitory concentration values ranging from 128 to 512μg/mL for the six bacteria tested and from 32 to 1024μg/mL for the yeasts. Similarly, hexane and acetate fractions of propolis sample 2 inhibited all microorganisms tested, with minimum inhibitory concentration values of 512μg/mL for bacteria and 32μg/mL for yeasts. The extracts were analyzed by HPLC and their phenolic profile allowed us to identify and quantitate one phenolic acid and seven flavonoids in the crude ethanolic extract. Formononetin and pinocembrin were the major constituents amongst the identified compounds. Formononetin was detected in all extracts and fractions tested, except for the methanolic fraction of sample 2. The isolated isoflavone formononetin inhibited the growth of all the microorganisms tested, with a minimum inhibitory concentration of 200μg/mL for the six bacteria strains tested and 25μg/mL for the six yeasts. Formononetin also exhibited fungicidal activity against five of the six yeasts tested. Taken together our results demonstrate that the isoflavone formononetin is implicated in the reported antimicrobial activity of red propolis. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Isoflavone formononetin from red propolis acts as a fungicide against Candida sp
das Neves, Michelline Viviane Marques; da Silva, Tânia Maria Sarmento; Lima, Edeltrudes de Oliveira; da Cunha, Emídio Vasconcelos Leitão; Oliveira, Eduardo de Jesus
2016-01-01
A bioassay-guided fractionation of two samples of Brazilian red propolis (from Igarassu, PE, Brazil, hereinafter propolis 1 and 2) was conducted in order to determine the components responsible for its antimicrobial activity, especially against Candida spp. Samples of both the crude powdered resin and the crude ethanolic extract of propolis from both locations inhibited the growth of all 12 tested Candida strains, with a minimum inhibitory concentration of 256 μg/mL. The hexane, acetate and methanol fractions of propolis 1 also inhibited all strains with minimum inhibitory concentration values ranging from 128 to 512 μg/mL for the six bacteria tested and from 32 to 1024 μg/mL for the yeasts. Similarly, hexane and acetate fractions of propolis sample 2 inhibited all microorganisms tested, with minimum inhibitory concentration values of 512 μg/mL for bacteria and 32 μg/mL for yeasts. The extracts were analyzed by HPLC and their phenolic profile allowed us to identify and quantitate one phenolic acid and seven flavonoids in the crude ethanolic extract. Formononetin and pinocembrin were the major constituents amongst the identified compounds. Formononetin was detected in all extracts and fractions tested, except for the methanolic fraction of sample 2. The isolated isoflavone formononetin inhibited the growth of all the microorganisms tested, with a minimum inhibitory concentration of 200 μg/mL for the six bacteria strains tested and 25 μg/mL for the six yeasts. Formononetin also exhibited fungicidal activity against five of the six yeasts tested. Taken together our results demonstrate that the isoflavone formononetin is implicated in the reported antimicrobial activity of red propolis. PMID:26887239
Karuppiah, Ponmurugan; Mustaffa, Muhammed
2013-01-01
Objective To investigate different Musa sp. leave extracts of hexane, ethyl acetate and methanol were evaluated for antibacterial activity against multi-drug resistant pathogens causing nosocomial infection by agar well diffusion method and also antioxidant activities. Methods The four different Musa species leaves were extracted with hexane, ethyl acetate and methanol. Antibacterial susceptibility test, minimum inhibitory concentration and minimum inhibitory bacterial concentration were determined by agar well diffusion method. Total phenolic content and in vitro antioxidant activity was determined. Results All the Musa sp. extracts showed moderate antibacterial activities expect Musa paradisiaca with the inhibition zone ranging from 8.0 to 18.6 mm. Among four species ethyl acetate extracts of Musa paradisiaca showed highest activity against tested pathogens particularly E. coli, P. aeruginosa and Citrobacter sp. The minimum inhibitory concentrations were within the value of 15.63- 250 µg/mL and minimum bactericidal concentrations were ranging from 31.25- 250 µg/mL. Antioxidant activity of Musa acuminate exhibited maximum activity among other three Musa species. Conclusions The present study concluded that among the different Musa species, Musa paradisiaca displayed efficient antibacterial activity followed by Musa acuminata against multi-drug resistant nosocomial infection causing pathogens. Further, an extensive study is needed to identify the bioactive compounds, mode of action and toxic effect in vivo of Musa sp. PMID:23998016
Karuppiah, Ponmurugan; Mustaffa, Muhammed
2013-09-01
To investigate different Musa sp. leave extracts of hexane, ethyl acetate and methanol were evaluated for antibacterial activity against multi-drug resistant pathogens causing nosocomial infection by agar well diffusion method and also antioxidant activities. The four different Musa species leaves were extracted with hexane, ethyl acetate and methanol. Antibacterial susceptibility test, minimum inhibitory concentration and minimum inhibitory bacterial concentration were determined by agar well diffusion method. Total phenolic content and in vitro antioxidant activity was determined. All the Musa sp. extracts showed moderate antibacterial activities expect Musa paradisiaca with the inhibition zone ranging from 8.0 to 18.6 mm. Among four species ethyl acetate extracts of Musa paradisiaca showed highest activity against tested pathogens particularly E. coli, P. aeruginosa and Citrobacter sp. The minimum inhibitory concentrations were within the value of 15.63- 250 µg/mL and minimum bactericidal concentrations were ranging from 31.25- 250 µg/mL. Antioxidant activity of Musa acuminate exhibited maximum activity among other three Musa species. The present study concluded that among the different Musa species, Musa paradisiaca displayed efficient antibacterial activity followed by Musa acuminata against multi-drug resistant nosocomial infection causing pathogens. Further, an extensive study is needed to identify the bioactive compounds, mode of action and toxic effect in vivo of Musa sp.
Wu, Benjamin M; Sabarinath, Sreedharan N; Rand, Kenneth; Johnson, Judith; Derendorf, Hartmut
2011-06-01
Current dosing approaches for treating microbial infections ignore resistant subpopulations. A clinical isolate of Pseudomonas aeruginosa was cultured in a dynamic in vitro kill curve system designed to simulate the half-lives of drugs in order to evaluate the drug-microbial response relationship. The first dose of ciprofloxacin (CIP) uses a concentration equivalent to the unbound fraction of a 200mg clinical dose. A second dose of 200mg or 600 mg CIP, or ceftriaxone (CFX) or gentamicin (GEN) was administered at 12h. Dynamics of the minimum inhibitory concentration (MIC) were assessed using Etest strips before and throughout the CIP treatment period. In addition, the microbroth dilution method was used to evaluate drug susceptibility across a wide range of antibiotics using samples from before and after CIP exposure. A significant loss of CIP effects was observed at the second dose. Cross-resistance to many antibiotics (cefoxitin, cefuroxime, cefotetan, ampicillin and ertapenem) was observed. GEN, but not CFX or high-dose CIP, was sufficient to suppress the developed resistant subpopulation following the initial CIP exposure. The CIP MIC increased substantially from 0.13 μg/mL pre dose to 4 μg/mL at 12h after a CIP dose. In addition, aztreonam induced a similar resistance pattern as CIP, indicating that induction of resistance was not limited to fluoroquinolones. In conclusion, the in vitro dynamic kill curve system revealed that aminoglycosides, more than other classes of antibiotics, were effective against the CIP-induced resistant subpopulations. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Shryock, Thomas R; Staples, J Mitchell; DeRosa, David C
2002-09-01
Tilmicosin is a novel macrolide antibiotic developed for exclusive use in veterinary medicine. Tilmicosin has been approved as a feed premix to control porcine respiratory disease associated with Pasteurella multocida and Actinobacillus pleuropneumoniae. The development of antimicrobial susceptibility testing guidelines for tilmicosin was predicated on the relationship of clinical efficacy studies that demonstrated a favorable therapeutic outcome, on pharmacokinetic data, and on in vitro test data, as recommended by the National Committee for Clinical Laboratory Standards (NCCLS). The approved breakpoints for the minimum inhibitory concentration dilution testing for both species are resistant, > or = 32 microg/ml, and susceptible, < or = 16 microg/ml. The zone of inhibition interpretive criteria for disk diffusion testing with a 15-microg tilmicosin disk are resistant, < or = 10 mm, and susceptible, > or = 11 mm.
Alnajjar, Lina M; Bulatova, Nailya R; Darwish, Rula M
2018-04-14
In this study we aimed to evaluate the ability of four calcium channel blockers, verapamil, diltiazem, nicardipine and nifedipine to enhance sensitivity of Candida glabrata strains to fluconazole. The synergistic antifungal effect was examined by checkerboard method; fractional inhibitory concentration index (FIC) was determined. Time-kill curve method was used for the most promising combination to further evaluate the synergetic effects. nicardipine showed additive effect with fluconazole against fluconazole-resistant and fluconazole-susceptible-dose-dependent strains (DSY565 and CBS138) known to express efflux pumps but not against fluconazole-sensitive strains. Nifedipine exhibited additive effect with fluconazole in both checkerboard (0.5< FIC <1) and time-kill curve methods (<2 log10 colony-forming units (CFU)/ml decrease in viable count). Additionally, nifedipine had own antifungal effect consistently against most of the strains used in this study with minimum inhibitory concentration of 8μg/ml. nicardipine showed additive effect with fluconazole in fluconazole-resistant strains of Candida glabrata-most probably via efflux pump inhibition as demonstrated selectively in fluconazole-resistant strains with known efflux pumps. Nifedipine displayed promising antifungal effect alone and additive effects with fluconazole. Copyright © 2018. Published by Elsevier Ltd.
Císarová, Miroslava; Tančinová, Dana; Medo, Juraj; Kačániová, Miroslava
2016-10-02
The aim of the present study was to assess the antifungal and anti-toxinogenic activity of 15 essential oils (EOs) against three fungi of the genus Aspergillus (A. parasiticus KMi-227-LR, A. parasiticus KMi-220-LR and A. flavus KMi-202-LR). The minimum inhibitory doses (MIDs) of the tested essential oils and their antifungal activity were determined using the micro-atmosphere method. The original commercial essential oil samples of Jasminum officinale L., Thymus vulgaris L., Syzygium aromaticum (L.) Merrill & Perry, Rosmarinus officinalis L., Ocimum basilicum L., Eucalyptus globulus Labill., Salvia officinalis L., Citrus limon (L.) Burm, Origanum vulgare L., Lavandula angustifolia Mill., Carum carvi L., Citrus sinensis (L.) Osbeck., Zingiber officinalis Rosc., Mentha piperita L. and Cinnamomum zeylanicum Nees. (C. verum J.S.Presl.) were produced in Slovakia (Calendula a.s., Nová Ľubovňa, Slovakia). All essential oils exhibited activity against all tested strains of fungi. After 14 days of incubation, A. flavus (KMi-202-LR) showed the highest susceptibility with a growth inhibition percentage (GIP) of 18.70% to C. limon and 5.92% to C. sinensis, while A. parasiticus (KMi-220-LR) exhibited a GIP of 20.56% to J. officinale. The minimum inhibitory doses (MIDs) of EOs with the most significant activity were recorded. The best antifungal activity, using the micro-atmosphere method was found in S. aromaticum with an MID of 62.5 μL L -1 air, T. vulgaris (MID of 62.5 μL L -1 air) and O. vulgare (MID of 31.5 μL L -1 air) against all tested strains. Mycotoxin production of the tested strains was evaluated by the thin layer chromatography (TLC) method. Mycotoxin production of AFB 1 and AFG 1 was inhibited following all treatments with C. carvi, R. officinale and S. officinale, Eucalyptus globulus L. and O. basilicum L. Essential oils exhibited a potential inhibition activity against toxic fungi, although, these affected only the production of AFB 1 .
Lindquist, Danielle A; Baynes, Ronald E; Smith, Geof W
2015-03-01
Mastitis remains a critical disease in the dairy industry and the use of intramammary antibiotics plays a critical role in mastitis treatment. Hetacillin is currently approved as an intramammary antibiotic that is used to treat mastitis in dairy cows. It is approved for once a day administration and can be used for a total of 3 d. An increasing number of dairy farms are milking 3 times per day (instead of the traditional 2 times per day) and very little pharmacokinetic data exists on the use of intramammary drugs in a 3×system. The primary purpose of this study was to determine if once a day intramammary infusion of hetacillin is sufficient to maintain therapeutic drug concentrations in cattle milked 3 times per day. Eight Holstein cattle milked 3 times per day were used in this study. After collecting a baseline milk sample, each cow received intramammary infusions of hetacillin in the left front and right rear quarters once a day for 3 d. Milk samples from each of the treated quarters were collected at each milking and frozen until analysis. Milk samples were analyzed for ampicillin concentrations using an ultra-performance liquid chromatography method. All treated quarters had antibiotic concentrations well above the minimum inhibitory concentration (MIC) for gram-positive mastitis pathogens at 8 and 16 h postinfusion. Milk concentrations had fallen well below the MIC by the 24-h period (before the next infusion). All 8 cows in this study consistently had individual quarter milk ampicillin concentrations below the FDA tolerance of 0.01 μg/mL (10 ppb) within 48 h of the last infusion. Based on this study, milk ampicillin concentrations exceed the minimum inhibitory concentration required to inhibit the growth of 90% of organisms (MIC90) for at least 65% of the dosing interval, which is sufficient for once-daily dosing with most cases of gram-positive mastitis. Therefore, intramammary hetacillin should be an effective treatment for the vast majority of gram-positive mastitis pathogens when used according to label (once per day) in cows milked 3 times per day. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
PK-PD Analysis of Marbofloxacin against Streptococcus suis in Pigs.
Lei, Zhixin; Liu, Qianying; Yang, Bing; Khaliq, Haseeb; Cao, Jiyue; He, Qigai
2017-01-01
Marbofloxacin is a fluoroquinolone antibiotic and highly effective treatment for respiratory diseases. Here we aimed to evaluate the ex vivo activity of marbofloxacin against Streptococcus suis in pig serum, as well as the optimal dosages scheme for avoiding the fluoroquinolone resistance development. A single dose of 8 mg/kg body weight (bw) was administrated orally to healthy pigs and serum samples were collected during the next 72 h. Serum marbofloxacin content was determined by high-performance liquid chromatography. We estimated the C max (6.28 μg/ml), AUC 0-24 h (60.30 μg.h/ml), AUC 0-∞ (88.94 μg.h/ml), T 1/2ke, (12.48 h), T max (0.75 h) and Cl b (0.104 L/h) of marbofloxacin in pigs, as well as the bioavailability of marbofloxacin (94.21%) after a single 8 mg/kg oral administration. We also determined the pharmacodynamic of marbofloxacin against 134 Streptococcus suis strains isolated from Chinese cities in TSB and serum. These isolated strains had a MIC 90 of 1 μg/ml. HB2, a virulent, serotype 2 isolate of SS , was selected for having antibacterial activity in TSB and serum to marbofloxacin. We determined the minimum inhibitory concentration (MIC, 1 μg/ml in TSB, 2 μg/ml in serum), minimum bactericidal concentration (MBC, 4 μg/ml in TSB, 4 μg/ml in serum), and mutant prevention concentration (2.56 μg/ml in TSB) for marbofloxacin against Streptococcus suis (HB2). In serum, by inhibitory sigmoid E max modeling, the AUC 0-24h /MIC values for marbofloxacin against HB2 were 25.23 (bacteriostatic), 35.64 (bactericidal), and 39.71 (elimination) h. Based on Monte Carlo simulations, the predicted optimal oral doses of marbofloxacin curing Streptococcus suis were 5.88 (bacteriostatic), 8.34 (bactericidal), and 9.36 (elimination) mg/kg.bw for a 50% target attainment ratio, and 8.16 (bacteriostatic), 11.31 (bactericidal), and 12.35 (elimination) mg/kg.bw for a 90% target attainment ratio. The data presented here provides optimized dosage information for clinical use; however, these predicted dosages should also be validated in clinical practice.
Youssef, Magdy M; Arafa, Reem K; Ismail, Mohamed A
2016-01-01
This research work deals with the design and synthesis of a series of substituted phenylfuranylnicotinamidines 4a–i. Facile preparation of the target compounds was achieved by Suzuki coupling-based synthesis of the nitrile precursors 3a–i, followed by their conversion to the corresponding nicotinamidines 4a–i utilizing LiN(TMS)2. The antimicrobial activities of the newly synthesized nicotinamidine derivatives were evaluated against the Gram-negative bacterial strains Escherichia coli and Pseudomonas aeruginosa as well as the Gram-positive bacterial strains Staphylococcus aureus and Bacillus megaterium. The minimum inhibitory concentration values of nicotinamidines against all tested microorganisms were in the range of 10–20 μM. In specific, compounds 4a and 4b showed excellent minimum inhibitory concentration values of 10 μM against Staphylococcus aureus bacterial strain and were similar to ampicillin as an antibacterial reference. On the other hand, selected nicotinamidine derivatives were biologically screened for their cytotoxic activities against a panel of 60 cell lines representing nine types of human cancer at a single high dose at National Cancer Institute, Bethesda, MD, USA. Nicotinamidines showing promising activities were further assessed in a five-dose screening assay to determine their compound concentration causing 50% growth inhibition of tested cell (GI50), compound concentration causing 100% growth inhibition of tested cell (TGI), and compound concentration causing 50% lethality of tested cell (LC50) values. Structure-activity relationship studies demonstrated that the activity of members of this series can be modulated from cytostatic to cytotoxic based on the substitution pattern/nature on the terminal phenyl ring. The most active compound was found to be 4e displaying a submicromolar GI50 value of 0.83 μM, with TGI and LC50 values of 2.51 and 100 μM, respectively. Finally, the possible underlying mechanism of action of this series of compounds was investigated by determining their nuclease-like DNA degradation ability in addition to their antioxidant power and all monocations proved to be effective in all assays. PMID:27042005
NASA Astrophysics Data System (ADS)
Choi, Eun-Jin; Jeong, Moon-Taeg; Jang, Seong-Joo; Choi, Nam-Gil; Han, Jae-Bok; Yang, Nam-Hee; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Yun-Jong; Ryu, Young-Hwan; Choi, Sung-Hyun; Seong, Kyeong-Jeong
2014-01-01
This study examined whether scanning could be performed with minimum dose and minimum exposure to the patient after an attenuation correction. A Hoffman 3D Brain Phantom was used in BIO_40 and D_690 PET/CT scanners, and the CT dose for the equipment was classified as a low dose (minimum dose), medium dose (general dose for scanning) and high dose (dose with use of contrast medium) before obtaining the image at a fixed kilo-voltage-peak (kVp) and milliampere (mA) that were adjusted gradually in 17-20 stages. A PET image was then obtained to perform an attenuation correction based on an attenuation map before analyzing the dose difference. Depending on tube current in the range of 33-190 milliampere-second (mAs) when BIO_40 was used, a significant difference in the effective dose was observed between the minimum and the maximum mAs (p < 0.05). According to a Scheffe post-hoc test, the ratio of the minimum to the maximum of the effective dose was increased by approximately 5.26-fold. Depending on the change in the tube current in the range of 10-200 mA when D_690 was used, a significant difference in the effective dose was observed between the minimum and the maximum of mA (p < 0.05). The Scheffe posthoc test revealed a 20.5-fold difference. In conclusion, because effective exposure dose increases with increasing operating current, it is possible to reduce the exposure limit in a brain scan can be reduced if the CT dose can be minimized for a transmission scan.
Ando, H; Kurata, A; Kishimoto, N
2015-04-01
To evaluate the antimicrobial properties of the main Ginjo-flavour components of sake, volatile isoamyl acetate and isoamyl alcohol. Volatile isoamyl acetate and isoamyl alcohol both inhibited growth of the five yeast and 10 bacterial test strains. The minimum inhibitory dose and minimum bactericidal (fungicidal) dose of isoamyl acetate were higher than those of isoamyl alcohol. Escherichia coli and Acetobacter aceti were markedly sensitive to isoamyl acetate and isoamyl alcohol. In E. coli exposed to isoamyl acetate for 5 h, changes in expression were noted in proteins involved in sugar metabolism (MalE, MglB, TalB and PtsI), tricarboxylic acid cycle (AceA, Pfl and AcnB) and protein synthesis (EF-Tu, EF-G, and GlyS). Expression of acid and alcohol stress-response proteins was altered in E. coli exposed to isoamyl acetate. Esterase activity was detected in E. coli, suggesting that isoamyl acetate was hydrolyzed to acetic acid and isoamyl alcohol. Acetic acid and isoamyl alcohol damaged E. coli cell membranes and inactivated membrane proteins, impairing respiration. Volatile isoamyl acetate and isoamyl alcohol were effective in inactivating various micro-organisms, and antimicrobial mechanism of volatile isoamyl acetate against E. coli was clarified based on proteome analysis. To the best of our knowledge, this is the first report to examine the antimicrobial mechanism of volatile organic compound using proteome analysis combining two-dimensional difference gel electrophoresis with peptide mass fingerprinting. © 2015 The Society for Applied Microbiology.
Strickland, Justin C; Bolin, B Levi; Romanelli, Michael R; Rush, Craig R; Stoops, William W
2017-01-01
Cocaine users display deficits in inhibitory control and make impulsive choices that may increase risky behavior. Buspirone is an anxiolytic that activates dopaminergic and serotonergic systems and improves impulsive choice (i.e., reduces sexual risk-taking intent) in cocaine users when administered chronically. We evaluated the effects of acutely administered buspirone on inhibitory control and impulsive choice. Eleven subjects with a recent history of cocaine use completed this within-subject, placebo-controlled study. Subjects performed two cued go/no-go and a sexual risk delay-discounting task following oral administration of buspirone (10 and 30 mg), triazolam (0.375 mg; positive control), and placebo (negative control). Physiological and psychomotor performance and subject-rated data were also collected. Buspirone failed to change inhibitory control or impulsive choice; however, slower reaction times were observed at the highest dose tested. Buspirone did not produce subject-rated drug effects but dose-dependently decreased diastolic blood pressure. Triazolam impaired psychomotor performance and increased ratings of positive subject-rated effects (e.g., Like Drug). These findings indicate that acutely administered buspirone has little impact on behavioral measures of inhibitory control and impulsive sexual decision-making. Considering previous findings with chronic dosing, these findings highlight that the behavioral effects of buspirone differ as a function of dosing conditions. Copyright © 2017 John Wiley & Sons, Ltd.
Luna, T; Santos, S B; Nascimento, M; Porto, M A F; Muniz, A L; Carvalho, E M; Jesus, A R
2011-11-01
Human T lymphotropic virus type 1 (HTLV-1) is the causal agent of myelopathy/tropical spastic paraparesis (HAM/TSP), a disease mediated by the immune response. HTLV-1 induces a spontaneous proliferation and production of pro-inflammatory cytokines by T cells, and increasing interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) levels are potentially involved in tissue damage in diseases related to HTLV-1. This exaggerated immune response is also due to an inability of the natural regulatory mechanisms to down-modulate the immune response in this group of patients. TNF-α inhibitors reduce inflammation and have been shown to improve chronic inflammatory diseases in clinical trials. The aim of this study was to evaluate the ability of pentoxifylline, forskolin, rolipram, and thalidomide to decrease in vitro production of TNF-α and IFN-γ in cells of HTLV-1-infected subjects. Participants of the study included 19 patients with HAM/TSP (mean age, 53 ± 11; male:female ratio, 1:1) and 18 HTLV-1 carriers (mean age, 47 ± 11; male:female ratio, 1:2.6). Cytokines were determined by ELISA in supernatants of mononuclear cell cultures. Pentoxifylline inhibited TNF-α and IFN-γ synthesis with the minimum dose used (50 µM). The results with forskolin were similar to those observed with pentoxifylline. The doses of rolipram used were 0.01-1 µM and the best inhibition of TNF-α production was achieved with 1 µM and for IFN-γ production it was 0.01 µM. The minimum dose of thalidomide used (1 µM) inhibited TNF-α production but thalidomide did not inhibit IFN-γ production even when the maximum dose (50 µM) was used. All drugs had an in vitro inhibitory effect on TNF-α production and, with the exception of thalidomide, all of them also decreased IFN-γ production.
AUC versus peak-trough dosing of vancomycin: applying new pharmacokinetic paradigms to an old drug.
Brown, Daniel L; Lalla, Christina D; Masselink, Andrew J
2013-08-01
To compare and contrast the pharmacokinetic/pharmacodynamic foundations of traditional "peak-trough" vancomycin dosing methods versus newer "area under the curve" (AUC) strategies. To propose a new AUC-based dosing chart for empirically determining an initial vancomycin dosing regimen designed to achieve a desired AUC24 using the minimum inhibitory concentration (MIC), creatinine clearance (CrCl), and vancomycin clearance (ClVanco). Peak-trough vancomycin dosing is designed to achieve a Cpeak of 20-40 mg/L and a Ctrough of 10-15 or 15-20 mg/L, depending on the severity of the infection and the nature of the pathogen. New treatment guidelines for vancomycin suggest that therapy should achieve an AUC24/MIC of ≥400. AUC-based vancomycin dosing derives the daily dose from ClVanco, MIC, and the desired AUC24/MIC, without consideration of the patient's weight. A vancomycin dosing chart is proposed that estimates ClVanco using the following formula developed by Matzke et al: ClVanco in L/h = [(CrClmL/min × 0.689) + 3.66] × 0.06, which simplifies to (CrClmL/min × 0.41) + 0.22. Two levels of dosing are included-high dose (Ctrough: 15-20 mg/L) and moderate dose (Ctrough: 10-15 mg/L). Although the chart has not been validated clinically, it represents the product of standard dosing equations that are used to determine a starting dosing regimen based on well-established vancomycin pharmacokinetic parameters. An understanding of pharmacokinetic and pharmacodynamic principles, including the relevance of AUC in relation to MIC, enables clinicians to make the best use of vancomycin dosing options. The proposed dosing chart is pharmacokinetically valid but has yet to be applied clinically. It provides a foundation for further study of how clinicians can determine an optimal AUC-based starting vancomycin dosing regimen without having to derive ClVanco or AUC24.
Radaelli, Marcela; da Silva, Bárbara Parraga; Weidlich, Luciana; Hoehne, Lucélia; Flach, Adriana; da Costa, Luiz Antonio Mendonça Alves; Ethur, Eduardo Miranda
2016-01-01
Despite recent advances in food production technology, food-borne diseases (FBD) remain a challenging public health concern. In several countries, including Brazil, Clostridium perfringens is among the five main causative agents of food-borne diseases. The present study determines antimicrobial activities of essential oils of six condiments commonly used in Brazil, viz., Ocimum basilicum L. (basil), Rosmarinus officinalis L. (rosemary), Origanum majorana L. (marjoram), Mentha × piperita L. var. Piperita (peppermint), Thymus vulgaris L. (thyme) and Pimpinella anisum L. (anise) against C. perfringens strain A. Chemical compositions of the oils were determined by GC-MS (gas chromatography-mass spectrometry). The identities of the isolated compounds were established from the respective Kováts indices, and a comparison of mass spectral data was made with those reported earlier. The antibacterial activity was assessed from minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using the microdilution method. Minimum inhibitory concentration values were 1.25mgmL(-1) for thyme, 5.0mgmL(-1) for basil and marjoram, and 10mgmL(-1) for rosemary, peppermint and anise. All oils showed bactericidal activity at their minimum inhibitory concentration, except anise oil, which was only bacteriostatic. The use of essential oils from these common spices might serve as an alternative to the use of chemical preservatives in the control and inactivation of pathogens in commercially produced food systems. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
[Determination of sensitivity of biofilm-positive forms of microorganisms to antibiotics].
Holá, Veronika; Růzicka, Filip; Tejkalová, Renata; Votava, Miroslav
2004-10-01
Nosocomial infections caused by biofilm-positive microorganisms are a serious therapeutic problem. In the biofilm, microorganisms are protected against adverse effects of the external environment, including the action of antibiotics. It is well known that the values of minimum inhibitory concentrations (MIC) determined for planktonic forms do not correspond to the actual concentrations of antibiotics necessary for the eradication of bacteria in a biofilm. The purpose of the study was to propose a method of determining minimum biofilm inhibitory concentrations (MBIC) and minimum biofilm eradication concentrations (MBEC) and to compare these values with MIC values. Biofilm-positive strains of Staphylococcus epidermidis were cultured so as to form a biofilm layer on polystyrene pegs. The biofilm on the pegs was then exposed to the action of antibiotics and after 18 hours we determined the minimum biofilm inhibitory concentration (MBIC). The evaluation of minimum biofilm eradication concentrations was done colorimetrically from the metabolic activity of surviving cells. MBIC and MBEC values were many times higher than MIC values. We selected such a duration of the biofilms cultivation on the pegs of the plate, which ensured that the number of bacterial cells corresponded to standard MIC assessment. The MBEC values established in our study indicate that the currently used concentrations of tested antibiotics cannot be used in monotherapy for an efficacious eradication of a biofilm. The MBEC determination is a far more laborious and time-consuming method than the determination of MIC, but the use of plates with pegs facilitates the handling of biofilms. The advantage of our method is the possibility of standardization of the size of the inoculum and thus of the whole MBEC assessment.
[Effect of biologically active compounds on the resistance of bacteria to antibiotics].
Levchenko, A B; Belousova, I I; El'gart, R E; Chistiakova, A M; Tereshin, I M
1975-11-01
A number of biologically active substances, i. e. main protamine proteins and histones, EDTA, lysozyme, methacyl and pentoxyl was studied with respect to their effect on the levels of the minimum inhibitory concentrations of antibiotics against E. coli and Staph. aureus and transfer of resistence to chloramphenicol in E. coli on conjugation. It was shown that the above substances lowered the minimum inhibitory concentrations of the antibiotics 2--10 times when added to the culture simultaneously with the latter. The results varied depending on the strain and the resistance nature. Marked inhibition of transfer of resistance to chloramphenicol in the presence of the main proteins and EDTA was found.
Yamano, Tetsuo; Shimizu, Mitsuru; Noda, Tsutomu
2005-07-01
We compared the results of the multiple-dose guinea pig maximization test (GPMT) and the non-radioactive murine local lymph-node assay (LLNA) for various biocides. Thirteen out of 17 positive biocides in the GPMT gave positive results in the LLNA. In the GPMT, the minimum first induction doses ranged over four orders (0.00005-0.5%), while elicitation-threshold doses, which were evaluated using an optimally sensitized group of animals in the multiple-dose studies, ranged over five orders (0.00006-2.8%). In the LLNA, minimum induction doses ranged over more than three orders (0.01-30%). With respect to 13 biocides that were positive in both the GPMT and the LLNA, results were quantitatively compared. When compared after conversion to corresponding area doses (microg/cm), the minimum doses required to elicit skin reaction in guinea pigs were always lower than that for induction in mice with all biocides. Correlation between minimum induction doses from the GPMT and the LLNA seemed poor (r=0.57), while that between minimum induction doses in the LLNA and elicitation-threshold doses in the GPMT was relatively good (r=0.73). The results suggest the possibility to estimate human elicitation-threshold doses, which are definitely lacking in the process of risk assessment for skin-sensitizers, from the data of the LLNA.
2013-01-01
Background Aquilaria crassna Pierre ex Lecomte has been traditionally used in Thailand for treatment of infectious diseases such as diarrhoea and skin diseases for a long time. The main objectives of this study were to examine antibacterial activity of the Aquilaria crassna leaf extract against Staphylococcus epidermidis and its underlying mechanism. The antioxidant activity and acute toxicity were studied as well. Methods Antioxidant activities were examined by FRAP, ABTS and DPPH scavenging methods. Antibacterial activity was conducted using disc diffusion assay and the minimum inhibitory concentration (MIC) was determined by dilution method. The minimum bactericidal concentration (MBC) was reported as the lowest concentration producing no growth of microbes in the subcultures. Morphological changes of the microbe were observed by scanning electron microscopy, while an inhibitory effect on biofilm formation was evaluated by phase contrast microscopic analysis. Bacterial cell wall integrity was assessed by transmission electron microscopy. Acute toxicity was conducted in accordance with the OECD for Testing of Chemicals (2001) guidelines. Results The extract exhibited considerable antioxidant activity. Staphylococcus epidermidis was susceptible to the extract with the MIC and MBC of 6 and 12 mg/ml, respectively. The extract caused swelling and distortion of bacterial cells and inhibited bacterial biofilm formation. Rupture of bacterial cell wall occurred after treated with the extract for 24 h. Acute toxicity test in mice showed no sign of toxicity or death at the doses of 2,000 and 15,000 mg/kg body weight. Conclusion The aqueous extract of Aquilaria crassna leaves possesses an in vitro antibacterial activity against Staphylococcus epidermidis, with no sign of acute oral toxicity in mice, probably by interfering with bacterial cell wall synthesis and inhibiting biofilm formation. PMID:23962360
Ho, Karen K; Conley, Austin C; Kennis, Robert A; Hathcock, Terri L; Boothe, Dawn M; White, Amelia G
2018-05-29
Meticillin-resistant (MR) staphylococcal pyoderma in dogs has led to increased use of alternate antibiotics such as rifampicin (RFP). However, little information exists regarding its pharmacodynamics in MR Staphylococcus pseudintermedius. To determine the minimum inhibitory concentration (MIC) and killing properties of RFP for canine Staphylococcus pseudintermedius isolates. The MIC of RFP was determined using the ETEST ® for 50 meticillin-susceptible (MS) and 50 MR S. pseudintermedius isolates collected from dogs. From these isolates, two MS isolates (RFP MIC of 0.003 and 0.008 μg/mL, respectively) and two MR isolates (RFP MIC of 0.003 and 0.012 μg/mL, respectively) were subjected to time-kill studies. Mueller-Hinton broth was supplemented with RFP at 0, 0.5, 1, 2, 4, 8, 16 and 32 times the MIC for 0, 2, 4, 10, 16 and 24 h. The number of viable colony forming units in each sample was determined using a commercial luciferase assay kit. The MIC 50 and MIC 90 were the same for MS and MR isolates, at 0.004 μg/mL and 0.008 μg/mL, respectively. Rifampicin kill curves were not indicative of concentration-dependency, suggesting time-dependent activity. Two isolates (MS 0.003 and 0.008 μg/mL) exhibited bacteriostatic activity, whereas two others (MR 0.003 and 0.012 μg/mL) exhibited bactericidal activity. This study demonstrated that MS and MR S. pseudintermedius isolates were equally susceptible to rifampicin and that dosing intervals should be designed for time-dependent efficacy. These data can support pharmacokinetic studies of RFP in dogs with susceptible infections caused by S. pseudintermedius. © 2018 ESVD and ACVD.
Determinants of amikacin first peak concentration in critically ill patients.
Boidin, Clément; Jenck, Sophie; Bourguignon, Laurent; Torkmani, Sejad; Roussey-Jean, Aurore; Ledochowski, Stanislas; Marry, Lucie; Ammenouche, Nacim; Dupont, Hervé; Marçon, Frédéric; Allaouchiche, Bernard; Bohé, Julien; Lepape, Alain; Goutelle, Sylvain; Friggeri, Arnaud
2018-04-16
Amikacin antimicrobial effect has been correlated with the ratio of the peak concentration (C max ) to the minimum inhibitory concentration. A target C max ≥ 60-80 mg/L has been suggested. It has been shown that such target is not achieved in a large proportion of critically ill patients in intensive care units. A retrospective analysis was performed to examine the determinants of C max ≥ 80 mg/L on the first peak in 339 critically ill patients treated by amikacin. The influence of available variables on C max target attainment was analyzed using a classification and regression tree (CART) and logistic regression. Mean C max in the 339 patients was 73.0 ± 23.9 mg/L, with a target attainment rate (TAR, C max ≥ 80 mg/L) of 37.5%. In CART analysis, the strongest predictor of amikacin target peak attainment was dose per kilogram of lean body weight (dose/LBW). TAR was 60.1% in patients with dose/LBW ≥ 37.8 vs. 19.9% in patients with lower dose/LBW (OR = 6.0 (95% CI: 3.6-10.2)). Renal function was a secondary predictor of C max . Logistic regression analysis identified dose per kilogram of ideal body weight (OR = 1.13 (95% CI: 1.09-1.17)) and creatinine clearance (OR = 0.993 (95% CI: 0.988-0.998)) as predictors of target peak achievement. Based on our results, an amikacin dose ≥ 37.8 mg/kg of LBW should be used to optimize the attainment of C max ≥ 80 mg/L after the first dose in critically ill patients. An even higher dose may be necessary in patients with normal renal function. © 2018 Société Française de Pharmacologie et de Thérapeutique.
Acinetobacter Prosthetic Joint Infection Treated with Debridement and High-Dose Tigecycline.
Vila, Andrea; Pagella, Hugo; Amadio, Claudio; Leiva, Alejandro
2016-12-01
Prosthesis retention is not recommended for multidrug-resistant Acinetobacter prosthetic joint infection due to its high failure rate. Nevertheless, replacing the prosthesis implies high morbidity and prolonged hospitalization. Although tigecycline is not approved for the treatment of prosthetic joint infection due to multidrug resistant Acinetobacter baumannii, its appropriate use may preclude prosthesis exchange. Since the area under the curve divided by the minimum inhibitory concentration is the best pharmacodynamic predictor of its efficacy, we used tigecycline at high dose, in order to optimize its efficacy and achieve implant retention in 3 patients who refused prosthesis exchange. All patients with prosthetic joint infections treated at our Institution are prospectively registered in a database. Three patients with early prosthetic joint infection of total hip arthroplasty due to multidrug resistant A. baumannii were treated with debridement, antibiotics and implant retention, using a high maintenance dose of tigecycline (100 mg every 12 hours). The cases were retrospectively reviewed. All patients signed informed consent for receiving off-label use of tigecycline. Tigecycline was well tolerated, allowing its administration at high maintenance dose for a median of 40 days (range 30-60). Two patients were then switched to minocycline at standard doses for a median of 3.3 months in order to complete treatment. Currently, none of the patients showed relapse. Increasing the dose of tigecycline could be considered as a means to better attain pharmacodynamic targets in patients with severe or difficult-to-treat infections. Tigecycline at high maintenance dose might be useful when retention of the implant is attempted for treatment for prosthetic joint infections due to multidrug resistant Acinetobacter. Although this approach might be promising, off-label use of tigecycline should be interpreted cautiously until prospective data are available. Tigecycline is probably under-dosed for the treatment of implant and biofilm associated infections.
Rachitha, P.; Krupashree, K.; Jayashree, G. V.; Gopalan, Natarajan; Khanum, Farhath
2017-01-01
Objective: The aim of this study is to determine the phytochemical composition, antifungal activity of Mentha piperita essential oil (MPE) against Fusarium sporotrichioides. Methods: The phytochemical composition was conducted by gas chromatography mass spectrometry (GC MS) analysis and mycelia growth inhibition was determined by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), the morphological characterization was observed by scanning electron microscopy. Finally, the membrane permeability was determined by the release of extracellular constituents, pH, and total lipid content. Result: In GC MS analysis, 22 metabolites were identified such as menthol, l menthone, pulegone, piperitone, caryophyllene, menthol acetate, etc. The antifungal activity against targeted pathogen, with MIC and MFC 500 μg/mL and 1000 μg/mL, respectively. The MPE altered the morphology of F. sporotrichoides hyphae with the loss of cytoplasm content and contorted the mycelia. The increasing concentration of MPE showed increase in membrane permeability of F. sporotrichoides as evidenced by the release of extracellular constituents and pH with the disruption of cell membrane indicating decrease in lipid content of F. sporotrichoides. Conclusion: The observed results showed that MPE exhibited promising new antifungal agent against Fusarium sporotrichioides. SUMMARY F. sporotrichioides, filamentous fungi contaminate to corn and corn--based productsF. sporotrichioides mainly responsible for the production of T-2 toxinPhytochemical composition was conducted by gas chromatography--mass spectrometry analysisMentha piperita essential oil (MPE) is commonly known as peppermintThe F. sporotrichioides growth was inhibited by MPE (minimum inhibitory concentration, minimum fungicidal concentration)Morphological observation by scanning electron microscope. Abbreviations Used: Cfu: Colony forming unit; DMSO: Dimethyl sulfoxide, °C: Degree celsius; F. Sporotrichoides: Fusarium sporotrichioides; EOs: Essential oils; M: Molar, g: Gram/gravity, mg: Milligram; μg: Microgram, ml: Milliliter; mm: Millimeter, min: Minutes; M. piperita: Mentha piperita, MIC: Minimum inhibitory concentration; MFC: Minimum fungicidal concentration; MAE: Mentha arvensis essential oil; Na2SO4: Sodium sulfate; pH: Potential Hydrogen; PDB: Potato Dextrose Broth; SEM: Scanning electron microscope PMID:28250658
[ANTIMICROBIAL ACTION OF NOCARDIA VACCINII IMV B-7405 SURFACTANTS].
Pirog, T P; Beregova, K A; Savenko, I V; Shevchuk, T A; Iutynska, G O
2015-01-01
To study the effect of Nocardia vaccinii IMV B-7405 surfactants on some bacteria (including pathogens of genera Proteus, Staphylococcus, Enterobacter), yeast of Candida species and fungi (Aspergillus niger R-3, Fusarium culmorum T-7). The antimi- crobial properties of surfactant were determined in suspension culture by Koch method and also by index of the minimum inhibitory concentration. Surfactants were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2:1). It is shown that the antimicrobial properties of N. vaccinii IMV B-7405 surfactant depended on the degree of purification (supernatant, solution of surfactant), concentration and exposure. Survival of Escherichia coli IEM-1 and Bacillus subtilis BT-2 (both vegetative cells and spores) after treatment for 1-2 hours with surfactants solution and the supernatant (the surfactant concentration 21 µg/ml) was 3-28%. Minimum inhibitory concentrations of N. vaccinii IMV B-7405 surfactants on studied bacteria, yeast and micromycetes were 11.5-85.0; 11.5-22.5 and 165.0-325.0 µ/ml respectively. Minimum inhibitory concentrations of N. vaccinii IMV B-7405 surfactants are comparable to those of the known microbial surfactants. The possibility of using the supernatant of culture liquid as an effective antimicrobial agent noticeably simplifies and reduces the cost of the technology of its obtaining.
Qin, Youfa; Zhang, Jie; Wu, Lei; Zhang, Dailong; Fu, Lunjiao; Xue, Xiaoyan
2018-03-01
The present study examined the effect of high-dose cefoperazone-sulbactam combined with tigecycline against ventilator-associated pneumonia (VAP) caused by extensively drug-resistant Acinetobacter baumannii(XDR-AB). 42 patients with VAP due to XDR-AB infection were randomized into two groups: the TIG group (received tigecycline injection) and the TIG+CFS group (received tigecycline and cefoperazone-sulbactam (1 : 1) injection). Pulsed field gel electrophoresis (PFGE) was used for genotyping the isolated XDR-AB. The microdilution method was used to test the minimum inhibitory concentration (MIC) of cefoperazone-sulbactam or tigecycline in vitro and the combined effect was determined with the checkerboard method. The total combined effectiveness rate (including all patients who demonstrated an improved condition) was significantly higher in the TIG+CFS group (85.7%) compared with the TIG group (47.6%) (p = 0.010). No significant differences were noted with regard to the adverse reactions between the two groups. The 42 isolated XDR-AB strains were classified into four types. The MIC of the two drugs in combination was significantly lower than that of each drug used alone (p < 0.05). High dose of cefoperazone-sulbactam can improve the antimicrobial activity of tigecycline against XDR-AB. .
The activity of silver nanoparticles against microalgae of the Prototheca genus.
Jagielski, Tomasz; Bakuła, Zofia; Pleń, Małgorzata; Kamiński, Michał; Nowakowska, Julita; Bielecki, Jacek; Wolska, Krystyna I; Grudniak, Anna M
2018-05-01
To investigate the in vitro activity of silver NPs (AgNPs) against pathogenic microalgae of the Prototheca genus. The antialgal potential of AgNPs against Prototheca species of both clinical and environmental origin was assessed from minimum inhibitory (algistatic) and algicidal concentrations. The in vitro cytotoxicity of AgNPs against bovine mammary epithelial cell line was evaluated by means of the standard MTT assay. AgNPs showed a strong killing activity toward Prototheca algae, as the minimal algicidal concentration (MAC) values matched perfectly the corresponding minimum inhibitory concentration (MIC) values for all species (MAC = MIC, 1-4 mg/l), except P. stagnora (MIC > 8 mg/l). The concentrations inhibitory to pathogenic Prototheca spp. (MIC, 1-4 mg/l) were below the concentrations at which any toxicity in epithelial cells could be observed (CC 20 > 6 mg/l). The study emphasizes the potential of AgNPs as a new therapeutic tool for the management of Prototheca infections.
Aujard, C; Chany, E; Frayssinet, C
1976-12-08
We have shown that extracts of liver from young Rats are less active, than extracts of liver from adult Rats, in inhibiting the multiplication of cells in culture. This inhibitory activity is at a minimum in livers taken from 10 to 15 days old Rats, which corresponds to the time of maximum increase in weight of the liver. The existence of an inverse relationship between the inhibitory activity of these extracts and the state of proliferation of the liver suggests that the inhibitory substance contained in the liver extracts may act as a regulator of growth of the organ.
2010-01-01
Background The leaves of Dissotis rotundifolia are used ethnomedically across Africa without scientific basis or safety concerns. Determination of its phytochemical constituents, antimicrobial activity, effects on the gastrointestinal tract (GIT) as well as toxicological profile will provide supportive scientific evidence in favour of its continous usage. Method Chemical and chromatographic tests were employed in phytochemical investigations. Inhibitory activity against clinical strains of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella typhi were compared with Gentamycin. Our report includes minimum inhibitory concentration (MIC) against the tested organisms. The effect of the ethanol extract on the motility of the GIT in mice using the charcoal plug method and castor oil induced diarrhoea in rats was evaluated. Toxicological evaluation was determined by administering 250 mg/kg and 500 mg/kg of extracts on male Wistar rats for 14 days with normal saline as control. The tissues of the kidneys, liver, heart and testes were examined. Results Phytochemical studies revealed the presence of alkaloids, saponin and cardiac glycosides. The crude ethanol extract and fractions inhibited the growth of E. coli, P. aeruginosa, S. aureus and S. typhi to varying extents. The degree of transition exhibited by the charcoal meal was dose-dependent. In the castor oil induced diarrhoea test, all the doses showed anti-spasmodic effects. The LD50 in mice was above 500 mg/kg body weight. Toxicological evaluation at 500 mg/kg showed increased cytoplasmic eosinophilia and densely stained nuclei of the liver, tubular necrosis of the kidney, presence of ill-defined testes with indistinct cell outlines and no remarkable changes in the heart. Conclusion Ethanol extracts of Dissotis rotundifolia have demonstrated antimicrobial activity against clinical strains of selected microorganisms. The plant showed potential for application in the treatment of diarrhoea, thereby justifying its usage across Africa. It also demonstrated toxicity in certain organs at the dose of 500 mg/kg, and it will be necessary to fully establish its safety profile. PMID:21083876
Abere, Tavs A; Okoto, Pius E; Agoreyo, Freddy O
2010-11-17
The leaves of Dissotis rotundifolia are used ethnomedically across Africa without scientific basis or safety concerns. Determination of its phytochemical constituents, antimicrobial activity, effects on the gastrointestinal tract (GIT) as well as toxicological profile will provide supportive scientific evidence in favour of its continous usage. Chemical and chromatographic tests were employed in phytochemical investigations. Inhibitory activity against clinical strains of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella typhi were compared with Gentamycin. Our report includes minimum inhibitory concentration (MIC) against the tested organisms. The effect of the ethanol extract on the motility of the GIT in mice using the charcoal plug method and castor oil induced diarrhoea in rats was evaluated. Toxicological evaluation was determined by administering 250 mg/kg and 500 mg/kg of extracts on male Wistar rats for 14 days with normal saline as control. The tissues of the kidneys, liver, heart and testes were examined. Phytochemical studies revealed the presence of alkaloids, saponin and cardiac glycosides. The crude ethanol extract and fractions inhibited the growth of E. coli, P. aeruginosa, S. aureus and S. typhi to varying extents. The degree of transition exhibited by the charcoal meal was dose-dependent. In the castor oil induced diarrhoea test, all the doses showed anti-spasmodic effects. The LD50 in mice was above 500 mg/kg body weight. Toxicological evaluation at 500 mg/kg showed increased cytoplasmic eosinophilia and densely stained nuclei of the liver, tubular necrosis of the kidney, presence of ill-defined testes with indistinct cell outlines and no remarkable changes in the heart. Ethanol extracts of Dissotis rotundifolia have demonstrated antimicrobial activity against clinical strains of selected microorganisms. The plant showed potential for application in the treatment of diarrhoea, thereby justifying its usage across Africa. It also demonstrated toxicity in certain organs at the dose of 500 mg/kg, and it will be necessary to fully establish its safety profile.
Stein, Gary E; Schooley, Sharon L; Nicolau, David P
2008-10-01
Increasing resistance to fluoroquinolones in uropathogens has become a clinical concern. The purpose of this study was to analyse the urinary bactericidal activity (UBA) of levofloxacin against fluoroquinolone-resistant strains of Escherichia coli. Ten healthy adult subjects (aged 23-60 years) received single doses of levofloxacin (250, 500, 750 and 1000 mg) and then blood and urine samples were collected in intervals (0-1.5, 1.5-4, 4-8, 8-12 and 12-24h) over 24h. Both serum and urine concentrations were measured by a validated high-performance liquid chromatography assay. Bactericidal titres in urine were determined against E. coli isolates with minimum inhibitory concentrations of 0.125, 4, 8, 16, 32 and 64microg/mL for levofloxacin. The mean serum pharmacokinetic parameters for these doses of levofloxacin were similar to previously published values. The mean peak urinary concentrations (0-1.5h) were 210, 347, 620 and 536microg/mL for the 250, 500, 750 and 1000 mg dose, respectively. Each dose of levofloxacin exhibited early (0-1.5h time period) bactericidal activity in urine in virtually all subjects against E. coli strains with MICs
Effect of citrus lemon oil on growth and adherence of Streptococcus mutans.
Liu, Ying; Zhang, Xiangyu; Wang, Yuzhi; Chen, Feifei; Yu, Zhifen; Wang, Li; Chen, Shuanglu; Guo, Maoding
2013-07-01
In order to exploit novel anticaries agents, we investigated the effects of citrus lemon oil (CLO), a type of natural product, on growth and adherence of the primary oral cariogenic bacteria Streptococcus mutans (S. mutans). The growth inhibitory effect was explored with a micro-dilution assay. Adherence was analyzed by colony counts on the respective surfaces and the adherence inhibition rate (AIR). Real time-PCR was used to investigate the effects of CLO on transcription of glucosyltransferase (Gtf) encoding genes, gtfB, C and D. Neson-Somogyi method was used to measure the effects of CLO on Gtf activity. The minimum inhibitory concentration of CLO against S. mutans was 4.5 mg/ml. The CLO effectively reduced the adherence of S. mutans on glass surface (the AIR were from 98.3 to 100 %, P > 0.05) and saliva-coated enamel surface (the AIR were from 54.8 to 79.2 %, P < 0.05). CLO effectively reduced the activity of Gtf and the transcription of gtfs in a dose dependent manner (P < 0.05). In conclusion, CLO can effectively inhibit the growth and the adherence to glass and saliva-coated enamel surfaces of S. mutans. It can also inhibit the transcription of gtfs, as well as the Gtf enzyme activity.
Jang, Seongho; Lee, Dongyun; Jang, Il Sang; Choi, Hyeon-Son
2015-01-01
Summary The objective of this study is to evaluate the antilisterial effect of Pediococcus pentosaceus T1, which was isolated from kimchi, and to assess its potential for extending the shelf life of salmon and kimchi. Pediococcus pentosaceus T1 culture effectively inhibited proliferation of Listeria monocytogenes in a dose-dependent manner in a salmon-based medium. Antilisterial effect of the culture was stronger than that of nisin, an antibacterial peptide, as evidenced by lower minimum inhibitory concentration value (20 mg/mL) compared to nisin (over 20 mg/mL). P. pentosaceus T1 culture also effectively inhibited the growth of Listeria in salmon fillet. In particular, the culture (6 g per 100 mL) showed a stronger inhibitory effect than sodium hypochlorite (0.2 mg/mL), a disinfectant used in food processing. In kimchi fermentation, the treatment with P. pentosaceus T1 culture suppressed changes of acidity and pH during maturation. The inhibitory effect of the culture on kimchi lactic acid bacteria, which include Leuconostoc mesenteroides and Lactobacillus sakei, led to a drastic decrease in maturation rates of kimchi. Moreover, sensory test on kimchi treated with P. pentosaceus T1 showed that the culture improved overall acceptability of kimchi, which can be observed in higher scores of sourness, texture, off-flavour and mouthfeel compared with untreated kimchi. The results of this study suggest that kimchi-derived P. pentosaceus T1 could be a potential antilisterial agent in fish products as well as a starter to control overmaturation of kimchi. PMID:27904329
Ruiz, Sara Melisa Arciniegas; Olvera, Lilia Gutiérrez; Chacón, Sara del Carmen Caballero; Estrada, Dinorah Vargas
2015-04-01
To determine the pharmacokinetics of doxycycline hyclate administered orally in the form of experimental formulations with different proportions of acrylic acid-polymethacrylate-based matrices. 30 healthy adult dogs. In a crossover study, dogs were randomly assigned (in groups of 10) to receive a single oral dose (20 mg/kg) of doxycycline hyclate without excipients (control) or extended-release formulations (ERFs) containing doxycycline, acrylic acid polymer, and polymethacrylate in the following proportions: 1:0.5:0.0075 (ERF1) or 1:1:0.015 (ERF2). Serum concentrations of doxycycline were determined for pharmacokinetic analysis before and at several intervals after each treatment. Following oral administration to the study dogs, each ERF resulted in therapeutic serum doxycycline concentrations for 48 hours, whereas the control treatment resulted in therapeutic serum doxycycline concentrations for only 24 hours. All pharmacokinetic parameters for ERF1 and ERF2 were significantly different; however, findings for ERF1 did not differ significantly from those for the control treatment. Results indicated that both ERFs containing doxycycline, acrylic acid polymer, and polymethacrylate had an adequate pharmacokinetic-pharmacodynamic relationship for a time-dependent drug and a longer release time than doxycycline alone following oral administration in dogs. Given the minimum effective serum doxycycline concentration of 0.26 μg/mL, a dose interval of 48 hours can be achieved for each tested ERF. This minimum inhibitory concentration has the potential to be effective against several susceptible bacteria involved in important infections in dogs. Treatment of dogs with either ERF may have several benefits over treatment with doxycycline alone.
Vasanthanathan, Poongavanam; Lakshmi, Manickavasagam; Arockia Babu, Marianesan; Kaskhedikar, Sathish Gopalrao
2006-06-01
A quantitative structure activity relationship, Hansch approach was applied on twenty compounds of chromene derivatives as Lanosterol 14alpha-demethylase inhibitory activity against eight fungal organisms. Various physicochemical descriptors and reported minimum inhibitory concentration values of different fungal organisms were used as independent variables and dependent variable respectively. The best models for eight different fungal organisms were first validated by leave-one-out cross validation procedure. It was revealed that thermodynamic parameters were found to have overall significant correlationship with anti fungal activity and these studies provide an insight to design new molecules.
Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae.
Panizzi, L; Flamini, G; Cioni, P L; Morelli, I
1993-08-01
Essential oils from Satureja montana L., Rosmarinus officinalis L., Thymus vulgaris L., and Calamintha nepeta (L.) Savi, were chemically analysed and their antimicrobial and fungicide activities evaluated on the basis of their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). All four oils have a biotoxic effect, the most active being those from Calamintha and Thymus.
Antibacterial, antifungal and cytotoxic evaluation of some new quinazolinone derivatives
Hassanzadeh, F.; Jafari, E.; Hakimelahi, G.H.; Khajouei, M. Rahmani; Jalali, M.; Khodarahmi, G.A.
2012-01-01
Quinazolinone ring system is renown because of its wide spectrum of pharmacological activities due to various substitutions on this ring system. In this study, the minimum inhibitory concentration of the synthesized compounds in our laboratory was determined by micro dilution Alamar Blue® Assay against six strains of bacteria (three Gram-positive and three Gram-negative) and three strains of fungi. Following a broth micro dilution minimum inhibitory concentration (MIC) test, Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC) tests were performed. Cytotoxic effects of the compounds were measured using the MTT colorimetric assay on HeLa cell line. Results of antimicrobial screening showed that compounds had better bacteriostatic activity against Gram-negative bacteria. Results from MBC revealed that these compounds had more significant bacteriostatic than bactericidal activities. Nearly all screened compounds showed good activity against C. albicans and A. niger. Results from MFC indicated that these compounds had better fungistatic rather than fungicidal activities. The synthesized target molecules were found to exhibit different cytotoxicity in the range of 10 to 100 μM on HeLa cell line. Compounds 6 and 7 exhibited acceptable cytotoxicity approximately 50% at 10 μM concentration. PMID:23181085
Rodrigues, Igor A; Azevedo, Mariana M B; Chaves, Francisco C M; Alviano, Celuta S; Alviano, Daniela S; Vermelho, Alane B
2014-01-01
Currently available leishmaniasis treatments are limited due to severe side effects. Arrabidaea chica is a medicinal plant used in Brazil against several diseases. In this study, we investigated the effects of 5 fractions obtained from the crude hexanic extract of A. chica against Leishmania amazonensis and L. infantum, as well as on the interaction of these parasites with host cells. Promastigotes were treated with several concentrations of the fractions obtained from A. chica for determination of their minimum inhibitory concentration (MIC). In addition, the effect of the most active fraction (B2) on parasite's ultrastructure was analyzed by transmission electron microscopy. To evaluate the inhibitory activity of B2 fraction on Leishmania peptidases, parasites lysates were treated with the inhibitory and subinhibitory concentrations of the B2 fraction. The minimum inhibitory concentration of B2 fraction was 37.2 and 18.6 μg/mL for L. amazonensis and L. infantum, respectively. Important ultrastructural alterations as mitochondrial swelling with loss of matrix content and the presence of vesicles inside this organelle were observed in treated parasites. Moreover, B2 fraction was able to completely inhibit the peptidase activity of promastigotes at pH 5.5. The results presented here further support the use of A. chica as an interesting source of antileishmanial agents.
Lillico, Ryan; Sayre, Casey L; Sitar, Daniel S; Davies, Neal M; Baron, Cynthia M; Lakowski, Ted M
2016-09-15
Higher doses of cefazolin are required in obese patients for preoperative antibiotic prophylaxis, owing to its low lipophilicity. An ultra high performance liquid chromatography-tandem mass spectrometry method was developed to quantify cefazolin in serum and adipose tissue from 6 obese patients undergoing cesarean delivery, and using stable-isotope labeled cefazolin as an internal standard. The method has a 2μg/g lower limit of quantitation. The concentration in adipose tissue was 3.4±1.6μg/mL, which is less than half of the reported minimum inhibitory concentration of 8μg/mL for cefazolin. Serum cefazolin concentrations were more than 30-fold higher than in adipose tissue. Copyright © 2016 Elsevier B.V. All rights reserved.
Behrouzvaziri, Abolhassan; Fu, Daniel; Tan, Patrick; Yoo, Yeonjoo; Zaretskaia, Maria V.; Rusyniak, Daniel E.; Molkov, Yaroslav I.; Zaretsky, Dmitry V.
2015-01-01
Experimental Data Orexinergic neurotransmission is involved in mediating temperature responses to methamphetamine (Meth). In experiments in rats, SB-334867 (SB), an antagonist of orexin receptors (OX1R), at a dose of 10 mg/kg decreases late temperature responses (t>60 min) to an intermediate dose of Meth (5 mg/kg). A higher dose of SB (30 mg/kg) attenuates temperature responses to low dose (1 mg/kg) of Meth and to stress. In contrast, it significantly exaggerates early responses (t<60 min) to intermediate and high doses (5 and 10 mg/kg) of Meth. As pretreatment with SB also inhibits temperature response to the stress of injection, traditional statistical analysis of temperature responses is difficult. Mathematical Modeling We have developed a mathematical model that explains the complexity of temperature responses to Meth as the interplay between excitatory and inhibitory nodes. We have extended the developed model to include the stress of manipulations and the effects of SB. Stress is synergistic with Meth on the action on excitatory node. Orexin receptors mediate an activation of on both excitatory and inhibitory nodes by low doses of Meth, but not on the node activated by high doses (HD). Exaggeration of early responses to high doses of Meth involves disinhibition: low dose of SB decreases tonic inhibition of HD and lowers the activation threshold, while the higher dose suppresses the inhibitory component. Using a modeling approach to data assimilation appears efficient in separating individual components of complex response with statistical analysis unachievable by traditional data processing methods. PMID:25993564
Lei, Zhixin; Liu, Qianying; Yang, Bing; Ahmed, Saeed; Cao, Jiyue; He, Qigai
2018-01-01
The goal of this study was to establish the epidemiological, pharmacodynamic cut-off values, optimal dose regimens for tildipirosin against Haemophilus parasuis. The minimum inhibitory concentrations (MIC) of 164 HPS isolates were determined and SH0165 whose MIC (2 μg/ml ) were selected for PD analysis. The ex vivo MIC in plasma of SH0165 was 0.25 μg/ml which was 8 times lower than that in TSB. The bacteriostatic, bactericidal and elimination activity (AUC24h/MIC) in serum were 26.35, 52.27 and 73.29 h based on the inhibitory sigmoid Emax modeling. The present study demonstrates that 97.9% of the wild-type (WT) isolates were covered when the epidemiological cut-off value (ECV) was set at 8 μg/ml. The parameters including AUC24h, AUC, T1/2, Cmax, CLb and MRT in PELF were 19.56, 60.41, 2.32, 4.02, 56.6, and 2.63 times than those in plasma, respectively. Regarding the Monte Carlo simulation, the COPD was defined as 0.5 μg/ml in vitro, and the optimal doses to achieve bacteriostatic, bactericidal and elimination effect were 1.85, 3.67 and 5.16 mg/kg for 50% target, respectively, and 2.07, 4.17 and 5.78 mg/kg for 90% target, respectively. The results of this study offer a more optimised alternative for clinical use and demonstrated that 4.17 mg/kg of tildipirosin by intramuscular injection could have an effect on bactericidal activity against HPS. These values are of great significance for the effective treatment of HPS infections, but it also be deserved to be validated in clinical practice in the future research. PMID:29416722
Kannan, Rajaretinam Rajesh; Iniyan, Appadurai Muthamil; Vincent, Samuel Gnana Prakash
2014-01-01
Background & objectives: Antibiotic resistance in pathogens has become a serious problem worldwide. Therefore, the search for new antibiotics for drug resistanct pathogens is an important endeavor. The present study deals with the production of anti-methicillin resistant Staphylococcus aureus (MRSA) potential of Streptomyces rubrolavendulae ICN3 and evaluation of anti-MRSA compound in zebrafish embryos. Methods: The antibiotic production from S. rubrolavendulae ICN3 was optimized in solid state fermentation and extracted. The antagonistic activity was confirmed against MRSA and purified in silica gel column and reverse phase - HPLC with an absorption maximum at 215 nm. Minimal inhibitory concentration of the compound was determined by broth microdilution method. Zebrafish embryos were used to evaluate the extract/compound for its minimal inhibition studies, influences on heart beat rates, haematopoietic blood cell count and lethal dose values. Results: Streptomyces rubrolavendulae ICN3 showed potent antagonistic activity against MRSA with a zone of 42 mm. The minimum inhibitory concentration was calculated as 500 μg/ml of the crude extract and the purified C23 exhibited 2.5 μg/ml in in vitro assay. The LC50 value of the anti MRSA compound C23 was calculated as 60.49 μg/ml and the MRSA treated embryos survived in the presence of purified compound C23 at a dose of 10 μg/ml. Interpretation & conclusions: Our results suggested that the compound was potent with less toxic effects in zebrafish embryonic model system for MRSA infection. Further structural evaluation and analysis in higher mammalian model system may lead to a novel drug candidate for drug resistant Staphylococcus aureus. PMID:25109726
Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations.
Karlsson, B; Lindquist, C; Steiner, L
1997-03-01
To define the factors of importance for the obliteration of cerebral arteriovenous malformations (AVMs), thus making a prediction of the probability for obliteration possible. In 945 AVMs of a series of 1319 patients treated with the gamma knife during 1970 to 1990, the relationship between patient, AVMs, and treatment parameters on the one hand and the obliteration of the nidus on the other was analyzed. The obliteration rate increased both with increased minimum (lowest periphery) and average dose and decreased with increased AVM volume. The minimum dose to the AVMs was the decisive dose factor for the treatment result. The higher the minimum dose, the higher the chance for total obliteration. The curve illustrating this relation increased logarithmically to a value of 87%. A higher average dose shortened the latency to AVM obliteration. For the obliterated cases, the larger the malformation, the lower the minimum dose used. This prompted us to relate the obliteration rate to the product minimum dose (AVM volume)1/3 (K index). The obliteration rate increased linearly with the K index up to a value of approximately 27, and for higher K values, the obliteration rate had a constant value of approximately 80%. For the group of 273 cases treated with a minimum dose of at least 25 Gy, the obliteration rate at the study end point (defined as 2-yr latency) was 80% (95% confidence interval = 75-85%). If obliterations that occurred beyond the end point are included, the obliteration rate increased to 85% (81-89%). The probability of obliteration of AVMs after gamma knife surgery is related both to the lowest dose to the AVMs and the AVM volume, and it can be predicted using the K index.
Dorey, L; Pelligand, L; Cheng, Z; Lees, P
2017-10-01
Pharmacokinetic-pharmacodynamic (PK/PD) integration and modelling were used to predict dosage schedules of oxytetracycline for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined in broth and porcine serum. PK/PD integration established ratios of average concentration over 48 h (C av0-48 h )/MIC of 5.87 and 0.27 μg/mL (P. multocida) and 0.70 and 0.85 μg/mL (A. pleuropneumoniae) for broth and serum MICs, respectively. PK/PD modelling of in vitro time-kill curves established broth and serum breakpoint values for area under curve (AUC 0-24 h )/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4 log 10 reductions in bacterial count. Doses were then predicted for each pathogen, based on Monte Carlo simulations, for: (i) bacteriostatic and bactericidal levels of kill; (ii) 50% and 90% target attainment rates (TAR); and (iii) single dosing and daily dosing at steady-state. For 90% TAR, predicted daily doses at steady-state for bactericidal actions were 1123 mg/kg (P. multocida) and 43 mg/kg (A. pleuropneumoniae) based on serum MICs. Lower TARs were predicted from broth MIC data; corresponding dose estimates were 95 mg/kg (P. multocida) and 34 mg/kg (A. pleuropneumoniae). © 2017 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.
Welsch, C; Augustin, P; Allyn, J; Massias, L; Montravers, P; Allou, N
2015-02-01
Venovenous extracorporeal membrane oxygenation (ECMO) is increasingly used in patients with respiratory failure who fail conventional treatment. Postoperative pneumonia is the most common infection after lung transplantation (40%). Imipenem is frequently used for empirical treatment of nosocomial pneumonia in the intensive care unit. Nevertheless, few data are available on the impact of ECMO on pharmacokinetics, and no data on imipenem dosing during ECMO. Currently, no guidelines exist for antibiotic dosing during ECMO support. We report the cases of 2 patients supported with venovenous ECMO for refractory acute respiratory distress syndrome following single lung transplantation for pulmonary fibrosis, treated empirically with 1 g of imipenem intravenously every 6 h. Enterobacter cloacae was isolated from the respiratory sample of Patient 1 and Klebsiella pneumoniae was isolated from the respiratory sample of Patient 2. Minimum inhibitory concentrations of the 2 isolated strains were 0.125 and 0.25 mg/L, respectively. Both patients were still alive on day 28. This is the first report, to our knowledge, of imipenem concentrations in lung transplantation patients supported with ECMO. This study confirms high variability in imipenem trough concentrations in patients on ECMO and with preserved renal function. An elevated dosing regimen (4 g/24 h) is more likely to optimize drug exposure, and therapeutic drug monitoring is recommended, where available. Population pharmacokinetic studies are indicated to develop evidence-based dosing guidelines for ECMO patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sharma, Amit Kumar; Gangwar, Mayank; Kumar, Dharmendra; Nath, Gopal; Kumar Sinha, Akhoury Sudhir; Tripathi, Yamini Bhushan
2016-01-01
Objective: This study aims to evaluate the antimicrobial activity, phytochemical studies and thin layer chromatography analysis of machine oil, hexane extract of seed oil and methanol extract of presscake & latex of Jatropha curcas Linn (family Euphorbiaceae). Materials and Methods: J. curcas extracts were subjected to preliminary qualitative phytochemical screening to detect the major phytochemicals followed by its reducing power and content of phenol and flavonoids in different fractions. Thin layer chromatography was also performed using different solvent systems for the analysis of a number of constituents in the plant extracts. Antimicrobial activity was evaluated by the disc diffusion method, while the minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration were calculated by micro dilution method. Results: The methanolic fraction of latex and cake exhibited marked antifungal and antibacterial activities against Gram-positive and Gram-negative bacteria. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, terpenoids, steroids, glycosides, phenols and flavonoids. Reducing power showed dose dependent increase in concentration compared to standard Quercetin. Furthermore, this study recommended the isolation and separation of bioactive compounds responsible for the antibacterial activity which would be done by using different chromatographic methods such as high-performance liquid chromatography (HPLC), GC-MS etc. Conclusion: The results of the above study suggest that all parts of the plants possess potent antibacterial activity. Hence, it is important to isolate the active principles for further testing of antimicrobial and other biological efficacy. PMID:27516977
Sharma, Amit Kumar; Gangwar, Mayank; Kumar, Dharmendra; Nath, Gopal; Kumar Sinha, Akhoury Sudhir; Tripathi, Yamini Bhushan
2016-01-01
This study aims to evaluate the antimicrobial activity, phytochemical studies and thin layer chromatography analysis of machine oil, hexane extract of seed oil and methanol extract of presscake & latex of Jatropha curcas Linn (family Euphorbiaceae). J. curcas extracts were subjected to preliminary qualitative phytochemical screening to detect the major phytochemicals followed by its reducing power and content of phenol and flavonoids in different fractions. Thin layer chromatography was also performed using different solvent systems for the analysis of a number of constituents in the plant extracts. Antimicrobial activity was evaluated by the disc diffusion method, while the minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration were calculated by micro dilution method. The methanolic fraction of latex and cake exhibited marked antifungal and antibacterial activities against Gram-positive and Gram-negative bacteria. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, terpenoids, steroids, glycosides, phenols and flavonoids. Reducing power showed dose dependent increase in concentration compared to standard Quercetin. Furthermore, this study recommended the isolation and separation of bioactive compounds responsible for the antibacterial activity which would be done by using different chromatographic methods such as high-performance liquid chromatography (HPLC), GC-MS etc. The results of the above study suggest that all parts of the plants possess potent antibacterial activity. Hence, it is important to isolate the active principles for further testing of antimicrobial and other biological efficacy.
Role of catalase overproduction in drug resistance and virulence in Candida albicans.
Román, Elvira; Prieto, Daniel; Martin, Ry; Correia, Inês; Mesa Arango, Ana Cecilia; Alonso-Monge, Rebeca; Zaragoza, Oscar; Pla, Jesús
2016-10-03
To investigate the role of Cat1 overproduction in Candida albicans. Strains overproducing the CAT1 gene were constructed. Cells overproducing CAT1 were found to be more resistant to some oxidants and mammalian phagocytic cells. They also showed reduced intracellular reactive oxygen species generated by amphotericin B or ciclopirox olamine. CAT1 overproduction did not change the minimum inhibitory concentration of fungal cells to fungistatic or fungicidal azoles nor to amphotericin B although increased twofold the minimum inhibitory concentration to caspofungin. The role of Cat1 overproduction in virulence and colonization was also analyzed in mouse models. The overproduction of Cat1 protects against oxidants, phagocytes and certain antifungals at subinhibitory concentration but does not increase virulence in a systemic infection mouse model.
Van Dyke, Knox; Ghareeb, Erica; Van Dyke, Mark; Van Thiel, David H
2007-01-01
Previously our group developed a water-soluble antioxidant screening system using the luminescence of the reaction of peroxynitrite and luminol. In the present study we replaced luminol with the luminol-like compound L-012. This increases the production of luminescence approximately 100-fold and therefore, with a higher signal:noise ratio, this new system can detect antioxidation and antinitration effects at lower doses of the inhibitor. We studied acetaminophen (Tylenol) and its metabolite 3-nitroacetaminophen, tyrosine and nitrotyrosine and all these substances were inhibitory in a dose-responsive manner and below micromolar amounts. In addition quercetin, a polyphenol, was highly active (below micromolar amounts) as an antioxidant and antinitrating compound. 4-OH tempol, the stable free radical, superoxide dismutase (SOD) mimetic, was inhibitory in a dose-responsive manner and below micromolar amounts. Carboxy-PTIO was inhibitory at 10 times micromolar amount but not below that dose, which may be related to colour quenching, since the drug is deeply blue, or possibly it is an inhibitor with a slow kinetic profile. Finally, the amino acid tyrosine has been found to be inhibitory in micromolar amounts, similar to acetaminophen. This indicates that tyrosine can act as an antioxidant and antinitration target alone or conjugated in protein, e.g. insulin. (c) 2007 John Wiley & Sons, Ltd.
The antifungal effect of silver nanoparticles on Trichosporon asahii.
Xia, Zhi-Kuan; Ma, Qiu-Hua; Li, Shu-Yi; Zhang, De-Quan; Cong, Lin; Tian, Yan-Li; Yang, Rong-Ya
2016-04-01
Silver nanoparticles are receiving increasing attention in biomedical applications. This study aims at evaluating the antifungal properties of silver nanoparticles against the pathogenic fungus Trichosporon asahii. The growth of T. asahii on potato dextrose agar medium containing different concentrations of silver nanoparticles was examined and the antifungal effect was evaluated using minimum inhibitory concentration. Scanning and transmission electron microscopy were also used to investigate the antifungal effect of silver nanoparticles on T. asahii. Silver nanoparticles had a significant inhibitory effect on the growth of T. asahii. The minimum inhibitory concentration of silver nanoparticles against T. asahii was 0.5 μg/mL, which was lower than amphotericin B, 5-flucytosine, caspofungin, terbinafine, fluconazole, and itraconazole and higher than voriconazole. Silver nanoparticles obviously damaged the cell wall, cell membrane, mitochondria, chromatin, and ribosome. Our results demonstrate that silver nanoparticles have good antifungal activity against T. asahii. Based on our electron microscopy observations, silver nanoparticles may inhibit the growth of T. asahii by permeating the fungal cell and damaging the cell wall and cellular components. Copyright © 2014. Published by Elsevier B.V.
Sadar, Miranda J; Hawkins, Michelle G; Byrne, Barbara A; Cartoceti, Andrew N; Keel, Kevin; Drazenovich, Tracy L; Tell, Lisa A
2015-12-01
To determine the pharmacokinetics and adverse effects at the injection site of ceftiofur crystalline-free acid (CCFA) following IM administration of 1 dose to red-tailed hawks (Buteo jamaicensis). 7 adult nonreleasable healthy red-tailed hawks. In a randomized crossover study, CCFA (10 or 20 mg/kg) was administered IM to each hawk and blood samples were obtained. After a 2-month washout period, administration was repeated with the opposite dose. Muscle biopsy specimens were collected from the injection site 10 days after each sample collection period. Pharmacokinetic data were calculated. Minimum inhibitory concentrations of ceftiofur for various bacterial isolates were assessed. Mean peak plasma concentrations of ceftiofur-free acid equivalent were 6.8 and 15.1 μg/mL for the 10 and 20 mg/kg doses, respectively. Mean times to maximum plasma concentration were 6.4 and 6.7 hours, and mean terminal half-lives were 29 and 50 hours, respectively. Little to no muscle inflammation was identified. On the basis of a target MIC of 1 μg/mL and target plasma ceftiofur concentration of 4 μg/mL, dose administration frequencies for infections with gram-negative and gram-positive organisms were estimated as every 36 and 45 hours for the 10 mg/kg dose and every 96 and 120 hours for the 20 mg/kg dose, respectively. Study results suggested that CCFA could be administered IM to red-tailed hawks at 10 or 20 mg/kg to treat infections with ceftiofur-susceptible bacteria. Administration resulted in little to no inflammation at the injection site. Additional studies are needed to evaluate effects of repeated CCFA administration.
High-dose, short-course levofloxacin for community-acquired pneumonia: a new treatment paradigm.
Dunbar, Lala M; Wunderink, Richard G; Habib, Michael P; Smith, Leon G; Tennenberg, Alan M; Khashab, Mohammed M; Wiesinger, Barbara A; Xiang, Jim X; Zadeikis, Neringa; Kahn, James B
2003-09-15
Levofloxacin demonstrates concentration-dependent bactericidal activity most closely related to the pharmacodynamic parameters of the ratio of area under the concentration-time curve (AUC) to minimum inhibitory concentration (MIC) and the ratio of peak plasma concentration (C(max)) to MIC. Increasing the dose of levofloxacin to 750 mg exploits these parameters by increasing peak drug concentrations, allowing for a shorter course of treatment without diminishing therapeutic benefit. This was demonstrated in a multicenter, randomized, double-blind investigation that compared levofloxacin dosages of 750 mg per day for 5 days with 500 mg per day for 10 days for the treatment of mild to severe community-acquired pneumonia (CAP). In the clinically evaluable population, the clinical success rates were 92.4% (183 of 198 persons) for the 750-mg group and 91.1% (175 of 192 persons) for the 500-mg group (95% confidence interval, -7.0 to 4.4). Microbiologic eradication rates were 93.2% and 92.4% in the 750-mg and 500-mg groups, respectively. These data demonstrate that 750 mg of levofloxacin per day for 5 days is at least as effective as 500 mg per day for 10 days for treatment of mild-to-severe CAP.
VAHID DASTJERDI, Elahe; ABDOLAZIMI, Zahra; GHAZANFARIAN, Marzieh; AMDJADI, Parisa; KAMALINEJAD, Mohammad; MAHBOUBI, Arash
2014-01-01
Background: Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire. Methods: Antibacterial property of P. granatum L. water extract was primarily evaluated in brain heart infusion agar medium using well-plate method. The minimum inhibitory concentration and minimum bactericidal concentration were determined by macro-dilution method. The inhibitory effect on orthodontic wire bacterial biofilm formation was evaluated using viable cell count in biofilm medium. At the final phase, samples were fixed and analyzed by Scanning Electron Microscopy. Results: The growth inhibition zone diameter was proportional to the extract concentration. The water extract demonstrated the maximum antibacterial effect on Streptococcus sanguinis ATCC 10556 with a minimum inhibitory concentration of 6.25 mg/ml and maximum bactericidal effect on S. sanguinis ATCC 10556 and S. sobrinus ATCC 27607 with minimum bactericidal concentration of 25 mg/ml. The water extract decreased bacterial biofilm formation by S. sanguinis, S. sobrinus, S. salivarius, S. mutans ATCC 35608 and E. faecalis CIP 55142 by 93.7–100%, 40.6–99.9%, 85.2–86.5%, 66.4–84.4% and 35.5–56.3% respectively. Conclusion: Punica granatum L. water extract had significant antibacterial properties against 5 oral bacteria and prevented orthodontic wire bacterial biofilm formation. However, further investigations are required to generalize these results to the clinical setting. PMID:26171362
In vitro and in vivo anti-MRSA activities of nosokomycins.
Uchida, Ryuji; Hanaki, Hideaki; Matsui, Hidenori; Hamamoto, Hiroshi; Sekimizu, Kazuhisa; Iwatsuki, Masato; Kim, Yong Pil; Tomoda, Hiroshi
2014-12-01
The anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of nosokomycins A to D discovered in the silkworm-MRSA infection screening was investigated. The minimum inhibitory concentration (MIC) values of nosokomycins for authentic MRSA and S. aureus strains were calculated to be 0.06 to 2.0 μg/mL. They also showed potent inhibitory activity against 54 clinically isolated MRSA strains. Furthermore, nosokomycin A proved effective in the mouse-MRSA infection model.
Cavassin, Emerson Danguy; de Figueiredo, Luiz Francisco Poli; Otoch, José Pinhata; Seckler, Marcelo Martins; de Oliveira, Roberto Angelo; Franco, Fabiane Fantinelli; Marangoni, Valeria Spolon; Zucolotto, Valtencir; Levin, Anna Sara Shafferman; Costa, Silvia Figueiredo
2015-10-05
Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial. This study evaluated the in vitro activity of silver nanoparticles against 36 susceptible and 54 multidrug resistant Gram-positive and Gram-negative bacteria from clinical sources. The multidrug resistant bacteria were oxacilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., carbapenem- and polymyxin B-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant Enterobacteriaceae. We analyzed silver nanoparticles stabilized with citrate, chitosan and polyvinyl alcohol and commercial silver nanoparticle. Silver sulfadiazine and silver nitrate were used as control. Different methods were used: agar diffusion, minimum inhibitory concentration, minimum bactericidal concentration and time-kill. The activity of AgNPs using diffusion in solid media and the MIC methods showed similar effect against MDR and antimicrobial-susceptible isolates, with a higher effect against Gram-negative isolates. The better results were achieved with citrate and chitosan silver nanoparticle, both with MIC90 of 6.75 μg mL(-1), which can be due the lower stability of these particles and, consequently, release of Ag(+) ions as revealed by X-ray diffraction (XRD). The bactericidal effect was higher against antimicrobial-susceptible bacteria. It seems that agar diffusion method can be used as screening test, minimum inhibitory concentration/minimum bactericidal concentration and time kill showed to be useful methods. The activity of commercial silver nanoparticle and silver controls did not exceed the activity of the citrate and chitosan silver nanoparticles. The in vitro inhibitory effect was stronger against Gram-negative than Gram-positive, and similar against multidrug resistant and susceptible bacteria, with best result achieved using citrate and chitosan silver nanoparticles. The bactericidal effect of silver nanoparticle may, in the future, be translated into important therapeutic and clinical options, especially considering the shortage of new antimicrobials against the emerging antimicrobial resistant microorganisms, in particular against Gram-negative bacteria.
Serrano-Rodríguez, J M; Cárceles-García, C; Cárceles-Rodríguez, C M; Gabarda, M L; Serrano-Caballero, J M; Fernández-Varón, E
2017-04-15
Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of veterinary fluoroquinolones as enrofloxacin, its metabolite ciprofloxacin, danofloxacin, difloxacin and marbofloxacin against Staphylococcus aureus strains (n=24) isolated from milk of sheep and goats affected by clinical mastitis were evaluated. The authors have used the MIC and MPC, as well as the pharmacokinetic-pharmacodynamic relationships in plasma and milk. MIC values were significantly different between drugs, unlike MPC values. Lower MIC values were obtained for danofloxacin and difloxacin, middle and higher values for enrofloxacin, ciprofloxacin and marbofloxacin. However, differences in MPC values were not found between drugs. At conventional doses, the AUC 24 /MIC and AUC 24 /MPC ratios were close to 30-80 hours and 5-30 hours, with exception of danofloxacin, in plasma and milk. The time inside the mutant selection window (T MSW ) was close to 3-6 hours for enrofloxacin, ciprofloxacin and marbofloxacin, near to 8 hours for danofloxacin and 12-22 hours for difloxacin. From these data, the mutant selection window could be higher for danofloxacin and difloxacin compared with the other fluoroquinolones tested. The authors concluded that enrofloxacin and marbofloxacin, at conventional doses, could prevent the selection of bacterial subpopulations of S aureus , unlike danofloxacin and difloxacin, where higher doses could be used. British Veterinary Association.
Xu, Qianqian; Shen, Zhiqiang; Wang, Yubo; Guo, Shijin; Li, Feng; Wang, Yanping; Zhou, Chunfeng
2013-07-09
Flos populi (male inflorescence of Populus tomentosa Carrière) has been traditionally used in East Asian countries for the treatment of various inflammatory diseases, strengthening the spleen and stomach, anti-rheumatic, anti-tumor and anti-diarrhoeal. To evaluate the in vivo or in vitro anti-diarrhoeal and anti-microbial activity of Flos populi aqueous extract. Acute toxicity of Flos populi aqueous extract (FPAE) was investigated. Castor oil-induced diarrhoea method was used to evaluate the anti-diarrhoeal activity, inhibition of defecation and diarrhoea were determined in mice, effects on castor oil-induced enteropooling, intestinal transit and intestinal fluid secretion in rats or mice. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of FPAE against strains of three clinical bacterial isolates and one reference strain were used to test the anti-microbial activity. The FPAE reduced the frequency of diarrhoea episodes and decreased the propulsion of charcoal meal through the gastrointestinal tract in a dose dependent manner. FPAE (100-500 mg/kg, p.o.) produced dose-dependent and significant (P<0.01) protection of mice against castor oil-induced diarrhoea. FPAE, dose-dependently and significantly (P< 0.01) delayed the onset of castor-oil induced diarrhoea, decreased the frequency of defecation, and reduced the severity of diarrhoea. Compared with control animals, FPAE, dose-dependently and significantly (P< 0.01) decreased the volume of castor oil-induced intestinal fluid secretion, and reduced the number, weight and wetness of faecal droppings. There was no deaths or abnormalities in behaviour seen in the acute toxicity test. The aqueous extract displayed anti-microbial effects to three species of bacteria in anti-microbial test. The findings of this study indicate that FPAE possesses anti-diarrhoeal property in rats and mice and confirm the ethnomedicinal use of Flos Populi as a valuable natural remedy for the treatment, management and/or control of diarrhoea. These results may support the fact that this plant is traditionally used to cure diarrhoea. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Miao, F J; Benowitz, N L; Heller, P H; Levine, J D
1997-01-01
1. In this study, we examined the mechanism(s) by which s.c. nicotine inhibits synovial plasma extravasation. We found that nicotine dose-dependently inhibited bradykinin (BK)- and platelet activating factor (PAF)-induced plasma extravasation. 2. The effect of nicotine on both BK- and PAF-induced plasma extravasation was attenuated by adrenal medullectomy. ICI-118,551 (a selective beta 2-adrenoceptor blocker) (30 micrograms ml-1, intra-articularly) significantly attenuated the inhibitory action of high-dose (1 mg kg-1) nicotine on BK-induced plasma extravasation without affecting the inhibition by low- (0.01 microgram kg-1) dose nicotine or that on PAF-induced plasma extravasation by nicotine at any dose. This suggested that beta 2-adrenoceptors mediate the inhibitory actions of high-dose, but not low-dose, nicotine. We also found that systemic naloxone (an opioid receptor antagonist) (two hourly injections of 1 mg kg-1, i.p.) attenuated the inhibitory action produced by all doses of nicotine on BK- or PAF-induced plasma extravasation, suggesting the contribution of endogenous opioids. 3. RU-38,486 (a glucocorticoid receptor antagonist) (30 mg kg-1, s.c.), and metyrapone (a glucocorticoid synthesis inhibitor) (two hourly injections of 100 mg kg-1, i.p.) both attenuated the action of high-dose nicotine without affecting that of low-dose nicotine. 4. Spinal mecamylamine (a nicotinic receptor antagonist) (0.025 mg kg-1, intrathecally, i.t.) attenuated the action of high-dose, but not low-dose, nicotine, suggesting that part of the action of high-dose nicotine is mediated by spinal nicotinic receptors. 5. Combined treatment with ICI-118,551, naloxone and RU-38,486 attenuated the action of low-dose nicotine by an amount similar to that produced by naloxone alone but produced significantly greater attenuation of the effect of high-dose nicotine when compared to the action of any of the three antagonists alone.
Jia-Pei Miao, Frederick; Benowitz, Neal L; Heller, Philip H; Levine, Jon D
1997-01-01
In this study, we examined the mechanism(s) by which s.c. nicotine inhibits synovial plasma extravasation. We found that nicotine dose-dependently inhibited bradykinin (BK)- and platelet activating factor (PAF)-induced plasma extravasation. The effect of nicotine on both BK- and PAF-induced plasma extravasation was attenuated by adrenal medullectomy. ICI-118,551 (a selective β2-adrenoceptor blocker) (30 μg ml−1, intra-articularly) significantly attenuated the inhibitory action of high-dose (1 mg kg−1) nicotine on BK-induced plasma extravasation without affecting the inhibition by low- (0.01 μg kg−1) dose nicotine or that on PAF-induced plasma extravasation by nicotine at any dose. This suggested that β2-adrenoceptors mediate the inhibitory actions of high-dose, but not low-dose, nicotine. We also found that systemic naloxone (an opioid receptor antagonist) (two hourly injections of 1 mg kg−1, i.p.) attenuated the inhibitory action produced by all doses of nicotine on BK- or PAF-induced plasma extravasation, suggesting the contribution of endogenous opioids. RU-38,486 (a glucocorticoid receptor antagonist) (30 mg kg−1, s.c.) and metyrapone (a glucocorticoid synthesis inhibitor) (two hourly injections of 100 mg kg−1, i.p.) both attenuated the action of high-dose nicotine without affecting that of low-dose nicotine. Spinal mecamylamine (a nicotinic receptor antagonist) (0.025 mg kg−1, intrathecally, i.t.) attenuated the action of high-dose, but not low-dose, nicotine, suggesting that part of the action of high-dose nicotine is mediated by spinal nicotinic receptors. Combined treatment with ICI-118,551, naloxone and RU-38,486 attenuated the action of low-dose nicotine by an amount similar to that produced by naloxone alone but produced significantly greater attenuation of the effect of high-dose nicotine when compared to the action of any of the three antagonists alone. PMID:9117123
Effect of applying cinnamaldehyde incorporated in wax on green mould decay in citrus fruits.
Duan, Xiaofang; OuYang, Qiuli; Tao, Nengguo
2018-01-01
Green mould caused by Penicillium digitatum is the most damaging postharvest diseases of citrus fruit. Cinnamaldehyde (CA) is a food additive that has potential use in controlling postharvest disease of fruits and vegetables. In this study, the effectiveness of wax with CA (WCA) in controlling Ponkan (Citrus reticulata Blanco) green mould was investigated. The mycelial growth of P. digitatum was inhibited by CA in a dose-dependent manner. The minimum inhibitory concentration and minimum fungicidal concentration (MFC) were both 0.50 mL L -1 . In vivo tests demonstrated that WCA (1 × and 10 × MFC) applied to Ponkan fruits inoculated with P. digitatum could significantly decrease the incidence of green mould for up to 5 days. The WCA treatment increased the activities of catalase, superoxide dismutase, peroxidase, phenylalanine ammonia lyase, polyphenol oxidase, as well as the total phenols and flavonoids contents. Meanwhile, the treatment remarkably decreased the weight loss rate of fruits and maintained fruit quality. These results indicated that WCA treatment might induce defence responses against green mould in citrus fruit. Our findings suggest that WCA might be a promising approach in controlling green mould of citrus fruits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Tian, Jun; Wang, Yanzhen; Zeng, Hong; Li, Zongyun; Zhang, Peng; Tessema, Akalate; Peng, Xue
2015-06-02
A variety of plant products have been recognized for their antifungal activity and recently have attracted food industry attention for their efficacy in controlling postharvest fungal decay of fruits. The antifungal activity of perillaldehyde (PAE) was evaluated against Aspergillus niger, a known cause of grape spoilage, and possible mechanisms were explored. PAE showed notable antifungal activity against A. niger, with a minimum inhibitory concentration (MIC) and a minimum fungicidal concentration (MFC) of 0.25 and 1 μl/ml, respectively. The accumulation of mycelial biomass was also inhibited by PAE in a dose-dependent manner, completely inhibiting mycelial growth at 1 μl/ml. In vivo data confirmed that the vapour treatment of grapes with various concentrations of PAE markedly improved control of A. niger and suppressed natural decay. Concentrations of PAE of 0.075 μl/ml air showed the greatest inhibition of fungal growth compared to the controls. Further experiments indicated that PAE activated a membrane-active mechanism that inhibits ergosterol synthesis, increases membrane permeability (as evidenced by extracellular pH and conductivity measurements), and disrupts membrane integrity, leading to cell death. Our findings suggest that this membrane-active mechanism makes PAE a promising potential antifungal agent for postharvest control of grape spoilage. Copyright © 2015 Elsevier B.V. All rights reserved.
León, Jorge; Aponte, Juan José; Rojas, Rosario; Cuadra, D'Lourdes; Ayala, Nathaly; Tomás, Gloria; Guerrero, Marco
2011-06-01
To determine the antimicrobial potential of marine actinomycetes against drug-resistant pathogens represented by strains of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). Strains of actinomycetes (29) isolated from marine sediment were evaluated by their characteristics in two culture media and by testing their inhibitory capacity by in vitro antagonism against multi-drug resistant (MDR) pathogenic bacteria for MRSA and VRE. Organic extracts of 3 selected actinomicetes were processed to determine the minimum inhibitory concentration (MIC) of the active compound. Most isolated actinomycetes belong to a homogeneous group of write-gray actinomycetes with a good growth in Marine Agar. The inhibitory rates of the isolates were above 85% for both pathogens with inhibition zones greater than 69 and 78 mm in diameter for MRSA and VRE respectively. Dichloromethane extracts of 3 isolates (I-400A, B1-T61, M10-77) showed strong inhibitory activity of both pathogens, M10-77 being the highest actinomycete strain with antibiotic activity against methicillin-resistant S. aureus ATCC 43300 and vancomycin-resistant E. faecalis ATCC 51299 with a minimum inhibitory concentrations (MIC) of 7.9 and 31.7 μg/ml respectively. Phylogenetic analysis of M10-77 strain showed 99% similarity with the marine species Streptomyces erythrogriseus. Marine sediments of the central coast of Peru, are a source of actinomycetes strains showing high capacity to produce bioactive compounds able to inhibit pathogens classified as multi-drug-resistant such as methicillin-resistant S. aureus and vancomycin-resistant E. faecalis.
Cytotoxicity of Doxycycline Effluent Generated by the Fenton Process
Borghi, Alexandre Augusto; Stephano, Marco Antônio; Monteiro de Souza, Paula; Alves Palma, Mauri Sérgio
2014-01-01
This study aims at determining the Minimum Inhibitory Concentration with Escherichia coli ATCC 25922 and cytotoxicity to L929 cells (ATCC CCL-1) of the waste generated by doxycycline degradation by the Fenton process. This process has shown promise in this treatment thanks mainly to the fact that the waste did not show any relevant inhibitory effect on the test organism and no cytotoxicity to L-929 cells, thus demonstrating that the antibiotic properties were inactivated. PMID:25379532
Capoor, M R; Aggarwal, S; Raghvan, C; Gupta, D K; Jain, A K; Chaudhary, R
2014-01-01
Rhodotorula spp. are an emergent opportunistic pathogen, particularly in immunocompromised individuals. The aim of the study was to review reported cases of Rhodotorula infection over a period of 9 years to determine epidemiology, risk factors, treatment and outcome. The Rhodotorula spp. were isolated from cerebrospinal fluid (9) and blood (5). The most common pre-disposing factors were prolonged hospital stay (>1 month) and prolonged usage of broad-spectrum antibiotics (>1 month). All the isolates were identified as R. mucilaginosa by conventional methods. Amphotericin B demonstrated lowest minimum inhibitory concentration (MIC) as compared with other anti-fungal agents (fluconazole, itraconazole and voriconazole). The recognition of unusual yeasts as an agent of life-threatening infection and their intrinsic resistance increases the burden on the mycology laboratory for complete species identification and to determine minimum inhibitory concentration.
Norden, C W; Keleti, E
1980-01-01
Rifampin and trimethoprim were used alone and in combination in the treatment of chronic osteomyelitis due to Staphylococcus aureus in rabbits. Rifampicin levels in infected bone were well above the minimum inhibitory concentration of the infecting strain of S. aureus for at least 4 h after injection. In contrast, trimethoprim levels in diseased bone were below the minimum inhibitory concentration as early as 1 h after injection. Trimethoprim or rifampin, administered alone for 14 days, were ineffective in sterilizing infected rabbit bones. The combination of rifampin plus trimethoprim was significantly more effective (P less than 0.005) than either agents given alone for a comparable duration of time. Staphylococci isolated from the bones of rabbits treated with rifampin alone or rifampin plus trimethoprim were uniformly resistant to rifampin, but retained their susceptibility to trimethoprim. PMID:7396451
Influence of the ischaemic tourniquet in antibiotic prophylaxis in total knee replacement.
Prats, Laura; Valls, Joan; Ros, Joaquim; Jover, Alfredo; Pérez-Villar, Ferran; Fernández-Martínez, José Juan
2015-01-01
There is level iv evidence that the preoperative administration of antibiotics helps in the prevention of prosthetic infection. There is controversy on whether the ischemia applied during surgery may affect the minimum inhibitory concentration of the antibiotic in the peri-prosthetic tissues. The aim of this study is to review this phenomenon through the determination of antibiotic concentration in the synovial tissue. A prospective observational clinical study was conducted on 32 patients undergoing total knee replacement. Cefonicid 2g was administered as prophylaxis, with a tourniquet used for all patients. The antibiotic concentration was quantified by high performance liquid chromatography in samples of synovial tissue collected at the beginning and at the end of the intervention. The mean concentration of antibiotic was 23.16 μg/g (95% CI 19.19 to 27.13) in the samples at the beginning of the intervention and 15.45 μg/g (95% CI 13.20 to 17.69) in the final samples, being higher than the minimum inhibitory concentration of cefonicid, set at 8 μg/g. These results were statistically significant for both concentrations (P<.00001). The antibiotic concentration throughout the standard total knee prosthesis surgery performed with tourniquet gradually decreases throughout the intervention. The concentration determined at the end of the intervention was higher than the minimum inhibitory concentration required for the antibiotic studied. In conclusion, the use of a tourniquet does not increase the risk of infection. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.
Abdel-Baky, Rehab Mahmoud; Ali, Mohamed Abdullah; Abuo-Rahma, Gamal El-Din Ali A; AbdelAziz, Neveen
2017-01-01
Proteus mirabilis is one of the important pathogens that colonize the urinary tract and catheters resulting in various complications, such as blockage of the catheters and the formation of infective stones. In this study we evaluated the effect of N-acetyl cysteine (NAC) and dipropyl disulphide on some virulence factors expressed by a Proteus mirabilis strain isolated from a catheterized patient. Antibacterial activity of both compounds was determined by broth microdilution method. Their effect on different types of motility was determined by LB medium with variable agar content and sub-MIC of each drug. Their effect on adherence and mature biofilms was tested by tissue culture plate assay. Inhibitory effect on urease production was determined and supported by molecular docking studies. The minimum inhibitory concentration (MIC) of NAC and dipropyl disulphide was 25 mM and 100 mM, respectively. Both compounds decreased the swarming ability and biofilm formation of the tested isolate in a dose-dependent manner. NAC had higher urease inhibitory activity (IC50 249 ±0.05 mM) than that shown by dipropyl disulphide (IC 50 10±0.2 mM). Results were supported by molecular docking studies which showed that NAC and dipropyl disulphide interacted with urease enzyme with binding free energy of -4.8 and -8.528 kcal/mol, respectively. Docking studies showed that both compounds interacted with Ni ion and several amino acids (His-138, Gly-279, Cysteine-321, Met-366 and His-322) which are essential for the enzyme activity. NAC and dipropyl disulphide could be used in the control of P. mirabilis urinary tract infections.
Sharma, Abhishek; Rajendran, Sasireka; Srivastava, Ankit; Sharma, Satyawati; Kundu, Bishwajit
2017-03-01
The antifungal effects of four essential oils viz., clove (Syzygium aromaticum), lemongrass (Cymbopogon citratus), mint (Mentha × piperita) and eucalyptus (Eucalyptus globulus) were evaluated against wilt causing fungus, Fusarium oxysporum f. sp. lycopersici 1322. The inhibitory effect of oils showed dose-dependent activity on the tested fungus. Most active being the clove oil, exhibiting complete inhibition of mycelial growth and spore germination at 125 ppm with IC 50 value of 18.2 and 0.3 ppm, respectively. Essential oils of lemongrass, mint and eucalyptus were inhibitory at relatively higher concentrations. The Minimum inhibitory concentration (MIC) of clove oil was 31.25 ppm by broth microdilution method. Thirty one different compounds of clove oil, constituting approximately ≥99% of the oil, were identified by gas chromatography-mass spectroscopy analysis. The major components were eugenol (75.41%), E-caryophyllene (15.11%), α-humulene (3.78%) and caryophyllene oxide (1.13%). Effect of clove oil on surface morphology of F. oxysporum f. sp. lycopersici 1322 was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM observation revealed shrivelled hyphae while AFM observation showed shrunken and disrupted spores in clove oil treated samples. In pots, 5% aqueous emulsion of clove oil controlled F. oxysporum f. sp. lycopersici 1322 infection on tomato plants. This study demonstrated clove oil as potent antifungal agent that could be used as biofungicide for the control of F. oxysporum f. sp. lycopersici in both preventive and therapeutic manner. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Srivastava, Shashikant; Deshpande, Devyani; Pasipanodya, Jotam; Nuermberger, Eric; Swaminathan, Soumya; Gumbo, Tawanda
2016-01-01
Background. When treated with the same antibiotic dose, children achieve different 0- to 24-hour area under the concentration-time curves (AUC0–24) because of maturation and between-child physiological variability on drug clearance. Children are also infected by Mycobacterium tuberculosis isolates with different antibiotic minimum inhibitory concentrations (MICs). Thus, each child will achieve different AUC0–24/MIC ratios when treated with the same dose. Methods. We used 10 000-subject Monte Carlo experiments to identify the oral doses of linezolid, moxifloxacin, and faropenem that would achieve optimal target exposures associated with optimal efficacy in children with disseminated tuberculosis. The linezolid and moxifloxacin exposure targets were AUC0–24/MIC ratios of 62 and 122, and a faropenem percentage of time above MIC >60%, in combination therapy. A linezolid AUC0–24 of 93.4 mg × hour/L was target for toxicity. Population pharmacokinetic parameters of each drug and between-child variability, as well as MIC distribution, were used, and the cumulative fraction of response (CFR) was calculated. We also considered drug penetration indices into meninges, bone, and peritoneum. Results. The linezolid dose of 15 mg/kg in full-term neonates and infants aged up to 3 months and 10 mg/kg in toddlers, administered once daily, achieved CFR ≥ 90%, with <10% achieving linezolid AUC0–24 associated with toxicity. The moxifloxacin dose of 25 mg/kg/day achieved a CFR > 90% in infants, but the optimal dose was 20 mg/kg/day in older children. The faropenem medoxomil optimal dosage was 30 mg/kg 3–4 times daily. Conclusions. The regimen and doses of linezolid, moxifloxacin, and faropenem identified are proposed to be adequate for all disseminated tuberculosis syndromes, whether drug-resistant or -susceptible. PMID:27742641
Kassel, Lynn E; Van Matre, Edward T; Foster, Charles J; Fish, Douglas N; Mueller, Scott W; Sherman, Deb S; Wempe, Michael F; MacLaren, Robert; Neumann, Robert T; Kiser, Tyree H
2018-06-15
Neurocritically-ill patients have clinically significant alterations in pharmacokinetic parameters of renally-eliminated medications, which may result in subtherapeutic plasma and cerebrospinal fluid antibiotic concentrations. Prospective, randomized, open-label study of adult neurocritically-ill patients treated with vancomycin and cefepime. Vancomycin 15 mg/kg and cefepime 2 g were dosed at every 8 or 12-hour intervals. The primary outcomes were the achievement of pharmacodynamic targets related to time of unbound drug above minimum inhibitory concentrations (MIC) for 60% or more of the dosing interval (fT>MIC ≥60%) for β-lactams and ratio of 24-hour area under the curve (AUC):MIC of 400 or greater for vancomycin. Twenty patients were included in the study. Patients were divided equally between the every 12-hour (n=10) and every 8-hour (n=10) dosing groups. Patients (mean age of 51.8 ± 11 years) were primarily male (60%) and Caucasian (95%), and the majority had an admission diagnosis of intracranial hemorrhage (80%). Compared to the every 12-hour group, the every 8-hour vancomycin group achieved target trough concentrations (>15 μg/ml) significantly more frequently at initial measurement (0% vs 80%, p<0.01) and at 7 to 10 days (0% vs 90%, p=0.045) and achieved pharmacodynamic targets more frequently at increasing MICs. Similarly, compared to every 12-hour dosing, the every 8-hour cefepime dosing strategy significantly increased pharmacodynamic target attainment (fT>MIC ≥60%) at an MIC of 8 μg/ml (20% vs 70%, p=0.02). This study demonstrated that more frequent dosing of vancomycin and cefepime is required to achieve optimal pharmacodynamic targets in adult neurocritically-ill patients. The need for increased total daily doses is potentially secondary to the development of augmented renal clearance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Kajwadkar, Ruma; Shin, Jae M; Lin, Guo-Hao; Fenno, J Christopher; Rickard, Alexander H; Kapila, Yvonne L
2017-06-01
Nisin, a broad-spectrum bacteriocin, has recently been highlighted for its biomedical applications. To date, no studies have examined the antimicrobial and antibiofilm properties of high-purity (>95%) nisin (nisin ZP) on Enterococcus faecalis and biofilms formed by this species. We hypothesize that nisin can inhibit E. faecalis and reduce biofilm biomass, and combinations of nisin and sodium hypochlorite (NaOCl) will enhance the antibiofilm properties against E. faecalis biofilms. Using broth cultures, disc diffusion assays, and biofilm assays, we examined the effects of nisin on various E. faecalis growth parameters and biofilm properties (biovolume, thickness, and roughness). Confocal microscopy was used in conjunction with Imaris and Comstat2 software (Kongens Lyngby, Copenhagen, Denmark) to measure and analyze the biofilm properties. Nisin significantly decreased the growth of planktonic E. faecalis dose dependently. The minimum inhibitory concentrations against E. faecalis strains OG-1 and ATCC 29212 were 15 and 50 μg/mL, and the minimum bactericidal concentrations were 150 and 200 μg/mL, respectively. A reduction in biofilm biovolume and thickness was observed for biofilms treated with nisin at ≥10 μg/mL for 10 minutes. In addition, the combination of nisin with low doses of NaOCl enhanced the antibiofilm properties of both antimicrobial agents. Nisin alone or in combination with low concentrations of NaOCl reduces the planktonic growth of E. faecalis and disrupts E. faecalis biofilm structure. Our results suggest that nisin has potential as an adjunctive endodontic therapeutic agent and as an alternative to conventional NaOCl irrigation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Mahmoudvand, Hossein; Ayatollahi Mousavi, Seyyed Amin; Sepahvand, Asghar; Sharififar, Fariba; Ezatpour, Behrouz; Gorohi, Fatemeh; Saedi Dezaki, Ebrahim; Jahanbakhsh, Sareh
2014-01-01
In this study, in vitro antidermatophytic activity against Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis, and Microsporum gypseum was studied by disk diffusion test and assessment of minimum inhibitory concentration (MIC) using CLSI broth macrodilution method (M38-A2). Moreover, antileishmanial and cytotoxicity activity of B. vulgaris and berberine against promastigotes of Leishmania major and Leishmania tropica were evaluated by colorimetric MTT assay. The findings indicated that the various extracts of B. vulgaris particularly berberine showed high potential antidermatophytic against pathogenic dermatophytes tested with MIC values varying from 0.125 to >4 mg/mL. The results revealed that B. vulgaris extracts as well as berberine were effective in inhibiting L. major and L. tropica promastigotes growth in a dose-dependent manner with IC50 (50% inhibitory concentration) values varying from 2.1 to 26.6 μg/mL. Moreover, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages with CC50 (cytotoxicity concentration for 50% of cells) values varying from 27.3 to 362.6 μg/mL. Results of this investigation were the first step in the search for new antidermatophytic and antileishmanial drugs. However, further works are required to evaluate exact effect of these extracts in animal models as well as volunteer human subjects. PMID:24977052
Mahmoudvand, Hossein; Ayatollahi Mousavi, Seyyed Amin; Sepahvand, Asghar; Sharififar, Fariba; Ezatpour, Behrouz; Gorohi, Fatemeh; Saedi Dezaki, Ebrahim; Jahanbakhsh, Sareh
2014-01-01
In this study, in vitro antidermatophytic activity against Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis, and Microsporum gypseum was studied by disk diffusion test and assessment of minimum inhibitory concentration (MIC) using CLSI broth macrodilution method (M38-A2). Moreover, antileishmanial and cytotoxicity activity of B. vulgaris and berberine against promastigotes of Leishmania major and Leishmania tropica were evaluated by colorimetric MTT assay. The findings indicated that the various extracts of B. vulgaris particularly berberine showed high potential antidermatophytic against pathogenic dermatophytes tested with MIC values varying from 0.125 to >4 mg/mL. The results revealed that B. vulgaris extracts as well as berberine were effective in inhibiting L. major and L. tropica promastigotes growth in a dose-dependent manner with IC50 (50% inhibitory concentration) values varying from 2.1 to 26.6 μ g/mL. Moreover, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages with CC50 (cytotoxicity concentration for 50% of cells) values varying from 27.3 to 362.6 μ g/mL. Results of this investigation were the first step in the search for new antidermatophytic and antileishmanial drugs. However, further works are required to evaluate exact effect of these extracts in animal models as well as volunteer human subjects.
Raafat, Karim; Breitinger, Ulrike; Mahran, Laila; Ayoub, Nahla; Breitinger, Hans-Georg
2010-11-01
The inhibitory glycine receptor (GlyR) is a key mediator of synaptic signaling in spinal cord, brain stem, and higher central nervous system regions. The flavonoids quercetin and genistein have been identified previously as promising GlyR antagonists in vitro, but their detailed mechanism of action was not known. Here, inhibition of recombinant human α1 GlyRs in HEK 293 cells by genistein, quercetin, and strychnine was studied using whole-cell recording techniques. The interaction of several inhibitors applied alone or in combination was analyzed using a minimum mechanism of receptor activation and inhibition. Receptor inhibition in vivo was studied in a mouse model of strychnine toxicity. Genistein, quercetin, and strychnine were noncompetitive GlyR inhibitors. The inhibitory potency of one flavonoid (either genistein or quercetin) was not affected by simultaneous application of the other, suggesting that both flavonoids target the same site on the receptor. In combination with strychnine, flavonoid inhibition was augmented, indicating that strychnine binds to a position on the receptor physically distant from the flavonoid site. Potentiation of strychnine inhibition by flavonoids was also observed in vivo, where harmless doses of flavonoids enhanced strychnine toxicity in mice. Thus, in vitro and in vivo studies demonstrated a true synergism between flavonoids and strychnine for GlyR inhibition. The mechanism-based approach used here allows a rapid analysis of the effects of single drugs versus drug combinations.
Boros, Melinda; Benkó, Rita; Bölcskei, Kata; Szolcsányi, János; Barthó, Loránd; Pethő, Gábor
2013-12-01
The study aimed at validating an increasing-temperature water bath suitable for determining the noxious heat threshold for use in mice. The noxious heat threshold was determined by immersing the tail of the gently held awake mouse into a water container whose temperature was near-linearly increased at a rate of 24°C/min. until the animal withdrew its tail, that is, heating attained the noxious threshold. The effects of standard analgesic, neuroleptic and anxiolytic drugs were investigated in a parallel way on both the noxious heat threshold and the psychomotor activity assessed by the open field test. Morphine, diclofenac and metamizol (dipyrone) elevated the heat threshold of mice with minimum effective doses of 6, 30 and 1000 mg/kg i.p., respectively. These doses of morphine and diclofenac failed to induce any remarkable effect on psychomotor activity in the open field test while that of metamizol exerted a profound inhibition. The anxiolytic diazepam and the neuroleptic droperidol at doses evoking a mild and moderate, respectively, psychomotor inhibition failed to alter the heat threshold. Combination of a subliminal dose of morphine (regarding both antinociceptive and psychomotor inhibitory action) with diclofenac, metamizol, diazepam or droperidol at doses also subliminal regarding the thermal antinociceptive effect elevated the noxious heat threshold without major additional effects in the open field test. It is concluded that the increasing-temperature water bath is suitable for studying the thermal antinociceptive effects of morphine and diclofenac as well as the morphine-sparing action of diclofenac, metamizol, droperidol and diazepam. Behavioural testing is recommended when testing analgesics. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.
Gandolf, A Rae; Papich, Mark G; Bringardner, Amy B; Atkinson, Mark W
2005-05-01
To determine plasma concentrations of enrofloxacin and the active metabolite ciprofloxacin after p.o, s.c., and i.v. administration of enrofloxacin to alpacas. 6 adult female alpacas. A crossover design was used for administration of 3 single-dose treatments of enrofloxacin to alpacas, which was followed by an observational 14-day multiple-dose regimen. Single-dose treatments consisted of i.v. and s.c. administration of injectable enrofloxacin (5 mg/kg) and p.o administration of enrofloxacin tablets (10 mg/kg) dissolved in grain to form a slurry. Plasma enrofloxacin concentrations were measured by use of high-performance liquid chromatography. The multiple-dose regimen consisted of feeding a mixture of crushed and moistened enrofloxacin tablets mixed with grain. Behavior, appetite, and fecal quality were monitored throughout the 14-day treatment regimen and for 71 additional days following treatment. Mean half-life following i.v., s.c., and p.o. administration was 11.2, 8.7, and 16.1 hours, respectively. For s.c. and p.o administration, mean total systemic availability was 90.18% and 29.31%, respectively; mean maximum plasma concentration was 3.79 and 1.81 microg/mL, respectively; and area under the curve (AUC) was 50.05 and 33.97 (microg x h)/mL, respectively. The s.c. or p.o administration of a single dose of enrofloxacin yielded a ratio for AUC to minimum inhibitory concentration > 100 for many grampositive and gram-negative bacterial pathogens common to camelids. Conclusions and Clinical Relevance-The administration of enrofloxacin (5 mg/kg, s.c., or 10 mg/kg, p.o) may be appropriate for antimicrobial treatment of alpacas.
Roberts, Jason A; Paul, Sanjoy K; Akova, Murat; Bassetti, Matteo; De Waele, Jan J; Dimopoulos, George; Kaukonen, Kirsi-Maija; Koulenti, Despoina; Martin, Claude; Montravers, Philippe; Rello, Jordi; Rhodes, Andrew; Starr, Therese; Wallis, Steven C; Lipman, Jeffrey
2014-04-01
Morbidity and mortality for critically ill patients with infections remains a global healthcare problem. We aimed to determine whether β-lactam antibiotic dosing in critically ill patients achieves concentrations associated with maximal activity and whether antibiotic concentrations affect patient outcome. This was a prospective, multinational pharmacokinetic point-prevalence study including 8 β-lactam antibiotics. Two blood samples were taken from each patient during a single dosing interval. The primary pharmacokinetic/pharmacodynamic targets were free antibiotic concentrations above the minimum inhibitory concentration (MIC) of the pathogen at both 50% (50% f T>MIC) and 100% (100% f T>MIC) of the dosing interval. We used skewed logistic regression to describe the effect of antibiotic exposure on patient outcome. We included 384 patients (361 evaluable patients) across 68 hospitals. The median age was 61 (interquartile range [IQR], 48-73) years, the median Acute Physiology and Chronic Health Evaluation II score was 18 (IQR, 14-24), and 65% of patients were male. Of the 248 patients treated for infection, 16% did not achieve 50% f T>MIC and these patients were 32% less likely to have a positive clinical outcome (odds ratio [OR], 0.68; P = .009). Positive clinical outcome was associated with increasing 50% f T>MIC and 100% f T>MIC ratios (OR, 1.02 and 1.56, respectively; P < .03), with significant interaction with sickness severity status. Infected critically ill patients may have adverse outcomes as a result of inadeqaute antibiotic exposure; a paradigm change to more personalized antibiotic dosing may be necessary to improve outcomes for these most seriously ill patients.
Maiti, Asis Prosun; Pal, Subodh Chandra; Chattopadhyay, Debaprasad; De, Samar; Nandy, Anutosh
1985-01-01
A preliminary investigations was carried out to study the antibacterial activity of the water soluble extracts of five and ten years old barks of Eugenia Jambolana Lam. (fam. Myrtaceae) on dysentery and diarrhoea forming micro organisms. It was observed that the barks of young plants have a better inhibitory effect on micro – organisms like Salmonella viballerup, Shigella dysenteriae 10, Shigella boydii 5, Sgigella dysenteriae 2. PMID:22557509
Antibacterial activity of Thai herbal extracts on acne involved microorganism.
Niyomkam, P; Kaewbumrung, S; Kaewnpparat, S; Panichayupakaranant, P
2010-04-01
Ethyl acetate and methanol extracts of 18 Thai medicinal plants were investigated for their antibacterial activity against Propionibacterium acnes, Stapylococcus aureus, and S. epidermidis. Thirteen plant extracts were capable of inhibiting the growth of P. acnes and S. epidermidis, while 14 plant extracts exhibited an inhibitory effect on S. aureus. Based on the broth dilution method, the ethyl acetate extract of Alpinia galanga (L.) Wild. (Zingiberaceae) rhizome showed the strongest antibacterial effect against P. acnes, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 156.0 and 312.0 microg/mL, respectively. On the basis of bioassay-guided purification, the ethyl acetate extract was isolated to afford the antibacterial active compound, which was identified as 1'-acetoxychavicol acetate (1'-ACA). 1'-ACA had a strong inhibitory effect on P. acnes with MIC and MBC values of 62.0 and 250.0 microg/mL, respectively. Thus, 1'-ACA was used as an indicative marker for standardization of A. galanga extract using high performance liquid chromatography. These results suggest that A. galanga extract could be an interesting agent for further studies on an alternative treatment of acne.
Hussain, Khaja Amjad; Tarakji, Bassel; Kandy, Binu Purushothaman Panar; John, Jacob; Mathews, Jacob; Ramphul, Vandana; Divakar, Darshan Devang
2015-01-01
Use of plant extracts and phytochemicals with known antimicrobial properties may have great significance in therapeutic treatments. To assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for periodontal pathogens. Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. Confidence level and level of significance were set at 95% and 5% respectively. Prevotella intermedia and Porphyromonas gingivalis were resistant to aqueous extracts while Aggregatibacter actinomycetemcomitans was inhibited at very high cncentrations. Hot ethanolic extracts showed significantly higher zone of inhibition than cold ethanolic extract. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against all three periodontal pathogens. Both extracts were found sensitive and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.
Azithromycin in the treatment of uncomplicated genital chlamydial infections.
Stamm, W E
1991-09-12
Chlamydia trachomatis is among the most prevalent of sexually transmitted diseases and causes serious sequelae, especially in women. A major difficulty facing the clinician has been the effective treatment of patients with chlamydial infections, since existing drugs require 7 or more days of multidose therapy, and hence considerable commitment from the patient. Many patients, especially those who are minimally symptomatic or asymptomatic, are likely to be noncompliant when given such multiple day regimens and thus may fail therapy. Azithromycin is an azalide antibiotic that has a minimum inhibitory concentration against C. trachomatis of between 0.03 and 0.25 mg/L, as well as good in vitro activity against other sexually transmitted pathogens that are often present concurrently. Azithromycin also achieves high intracellular concentrations, which may be beneficial in eradicating Chlamydia, an obligate intracellular pathogen. More importantly, azithromycin has high tissue bioavailability and a tissue half-life of between 2 and 4 days. These pharmacokinetic properties imply that the dosing period for azithromycin can be greatly reduced while still achieving high antimicrobial activity at sites of infection. Clinical experience to date shows that a single 1 g oral dose of azithromycin is as effective as a standard 7-day twice daily regimen of doxycycline and more effective than 7 days of ciprofloxacin in eradicating uncomplicated chlamydial genital infections. As such, azithromycin is the first single-dose therapy for the treatment of urethritis and cervicitis due to C. trachomatis. Single-dose therapy for chlamydial infection, which could be administered under supervision in the clinic, would be a significant advance in the management and public health control of chlamydial infections.
Churgin, Sarah M; Musgrave, Kari E; Cox, Sherry K; Sladky, Kurt K
2014-05-01
To compare pharmacokinetics after a single IM or SC injection of ceftiofur crystalline-free acid (CCFA) to bearded dragons (Pogona vitticeps). 8 adult male bearded dragons. In a preliminary experiment, doses of 15 and 30 mg/kg, SC, were compared in 2 animals, and 30 mg/kg resulted in a more desirable pharmacokinetic profile. Then, in a randomized, complete crossover experimental design, each bearded dragon (n = 6) received a single dose of 30 mg of CCFA/kg IM or SC; the experiment was repeated after a 28-day washout period with the other route of administration. Blood samples were collected at 10 time points for 288 hours after injection. Plasma concentrations of ceftiofur and desfuroylceftiofur metabolites were measured via reverse-phase high-performance liquid chromatography. Data were analyzed with a noncompartmental model. No adverse effects were observed. Plasma concentrations greater than a target minimum inhibitory concentration of 1 μg/mL were achieved by 4 hours after administration by both routes. Mean plasma concentrations remained > 1 μg/mL for > 288 hours for both routes of administration. A single dose of CCFA (30 mg/kg) administered IM or SC to bearded dragons yielded plasma concentrations of ceftiofur and its metabolites > 1 μg/mL for > 288 hours. The SC route would be preferred because of less variability in plasma concentrations and greater ease of administration than the IM route. Future studies should include efficacy data as well as evaluation of the administration of multiple doses.
In vitro activity and rodent efficacy of clinafloxacin for bovine and swine respiratory disease.
Sweeney, Michael T; Quesnell, Rebecca; Tiwari, Raksha; Lemay, Mary; Watts, Jeffrey L
2013-01-01
Clinafloxacin is a broad-spectrum fluoroquinolone that was originally developed and subsequently abandoned in the late 1990s as a human health antibiotic for respiratory diseases. The purpose of this study was to investigate the activity of clinafloxacin as a possible treatment for respiratory disease in cattle and pigs. Minimum inhibitory concentration (MIC) values were determined using Clinical and Laboratory Standards Institute recommended procedures with recent strains from the Zoetis culture collection. Rodent efficacy was determined in CD-1 mice infected systemically or intranasally with bovine Mannheimia haemolytica or Pasteurella multocida, or swine Actinobacillus pleuropneumoniae, and administered clinafloxacin for determination of ED50 (efficacious dose-50%) values. The MIC90 values for clinafloxacin against bovine P. multocida, M. haemolytica, Histophilus somni, and M. bovis were 0.125, 0.5, 0.125, and 1 μg/ml, respectively, and the MIC90 values against swine P. multocida, A. pleuropneumoniae, S. suis, and M. hyopneumoniae were í0.03, í0.03, 0.125, and í0.008 μg/ml, respectively. Efficacy in mouse models showed average ED50 values of 0.019 mg/kg/dose in the bovine M. haemolytica systemic infection model, 0.55 mg/kg in the bovine P. multocida intranasal lung challenge model, 0.08 mg/kg/dose in the bovine P. multocida systemic infection model, and 0.7 mg/kg/dose in the swine A. pleuropneumoniae systemic infection model. Clinafloxacin shows good in vitro activity and efficacy in mouse models and may be a novel treatment alternative for the treatment of respiratory disease in cattle and pigs.
Fernandes, Prabhavathi
2016-01-01
Fusidic acid is an oral antistaphylococcal antibiotic that has been used in Europe for more than 40 years to treat skin infections as well as chronic bone and joint infections. It is a steroidal antibiotic and the only marketed member of the fusidane class. Fusidic acid inhibits protein synthesis by binding EF-G-GDP, which results in the inhibition of both peptide translocation and ribosome disassembly. It has a novel structure and novel mode of action and, therefore, there is little cross-resistance with other known antibiotics. Many mutations can occur in the FusA gene that codes for EF-G, and some of these mutations can result in high-level resistance (minimum inhibitory concentration [MIC] > 64 mg/L), whereas others result in biologically unfit staphylococci that require compensatory mutations to survive. Low-level resistance (<8 mg/L) is more common and is mediated by fusB, fusC, and fusD genes that code for small proteins that protect EF-G-GDP from binding fusidic acid. The genes for these proteins are spread by plasmids and can be selected mostly by topical antibiotic use. Reports of resistance have led to combination use of fusidic acid with rifampin, which is superseded by the development of a new dosing regimen for fusidic acid that can be used in monotherapy. It consists of a front-loading dose to decrease the potential for resistance development followed by a maintenance dose. This dosing regimen is now being used in clinical trials in the United States for skin and refractory bone and joint infections. PMID:26729758
Studies on cadmium-induced inhibition of hepatic microsomal drug biotransformation in the rat.
Schnell, R C; Means, J R; Roberts, S A; Pence, D H
1979-01-01
Cadmium is a potent inhibitor of hepatic microsomal drug biotransformation in the rat. Male rats receiving a single intraperitoneal dose of cadmium exhibit significant decreases in hepatic microsomal metabolism of a variety of substrates. The threshold cadmium dose is 0.84 mg Cd/kg, and the effect lasts at least 28 days. Mechanistically, the inhibitory effect results from decreased cytochrome P-450 content since cadmium does not alter NADPH cytochrome c reductase activity. This effect is also observed following acute oral administration of cadmium in doses greater than 80 mg Cd/kg but is not observed following chronic administration of the metal via drinking water in concentrations of 5-200 ppm for periods ranging from 2 to 50 weeks. A tolerance to the inhibitory cadmium effect is observed if male rats are pretreated with subthreshold doses of the metal prior to the challenge cadmium dose. The degree of tolerance can be overcome by increasing the challenge dose of cadmium. Characterization of the tolerance phenomenon in terms of onset, duration, and intensity reveals a good correlation with the kinetics of metallothionein production, suggesting that the underlying basis for the tolerance phenomenon is likely the induction of metallothionein. A sex-related difference in the inhibitory effect of cadmium was observed. Cadmium did not inhibit the metabolism of hexobarbital or ethylmorphine in female rats but did inhibit that of aniline or zoxazolamine. Cadmium did not lower cytochrome P-450 content in female rats. PMID:488042
Targeting of Antithrombin in Hemophilia A or B with RNAi Therapy.
Pasi, K John; Rangarajan, Savita; Georgiev, Pencho; Mant, Tim; Creagh, Michael D; Lissitchkov, Toshko; Bevan, David; Austin, Steve; Hay, Charles R; Hegemann, Inga; Kazmi, Rashid; Chowdary, Pratima; Gercheva-Kyuchukova, Liana; Mamonov, Vasily; Timofeeva, Margarita; Soh, Chang-Heok; Garg, Pushkal; Vaishnaw, Akshay; Akinc, Akin; Sørensen, Benny; Ragni, Margaret V
2017-08-31
Current hemophilia treatment involves frequent intravenous infusions of clotting factors, which is associated with variable hemostatic protection, a high treatment burden, and a risk of the development of inhibitory alloantibodies. Fitusiran, an investigational RNA interference (RNAi) therapy that targets antithrombin (encoded by SERPINC1), is in development to address these and other limitations. In this phase 1 dose-escalation study, we enrolled 4 healthy volunteers and 25 participants with moderate or severe hemophilia A or B who did not have inhibitory alloantibodies. Healthy volunteers received a single subcutaneous injection of fitusiran (at a dose of 0.03 mg per kilogram of body weight) or placebo. The participants with hemophilia received three injections of fitusiran administered either once weekly (at a dose of 0.015, 0.045, or 0.075 mg per kilogram) or once monthly (at a dose of 0.225, 0.45, 0.9, or 1.8 mg per kilogram or a fixed dose of 80 mg). The study objectives were to assess the pharmacokinetic and pharmacodynamic characteristics and safety of fitusiran. No thromboembolic events were observed during the study. The most common adverse events were mild injection-site reactions. Plasma levels of fitusiran increased in a dose-dependent manner and showed no accumulation with repeated administration. The monthly regimen induced a dose-dependent mean maximum antithrombin reduction of 70 to 89% from baseline. A reduction in the antithrombin level of more than 75% from baseline resulted in median peak thrombin values at the lower end of the range observed in healthy participants. Once-monthly subcutaneous administration of fitusiran resulted in dose-dependent lowering of the antithrombin level and increased thrombin generation in participants with hemophilia A or B who did not have inhibitory alloantibodies. (Funded by Alnylam Pharmaceuticals; ClinicalTrials.gov number, NCT02035605 .).
Besra, Mamta; Kumar, Vipin
2018-05-01
The study aimed to evaluate the antimicrobial activity of medicinal plant extracts against the bacterial pathogens prominent in dental caries. A total of 20 plant species (herbs, shrubs and trees) belonging to 18 genera and 15 families were documented for dental caries. Antimicrobial activity of solvent extracts and essential oil from plants were determined by zone of inhibition on the growth of Streptococcus mutans (MTCC 497) and Lactobacillus acidophilus (MTCC 10307) using the agar well diffusion method. The results of in vitro antimicrobial assay prove that methanol is more successful in the extraction of phytochemicals from plant samples than aqueous solvent, as methanol extracts show higher antimicrobial activity than aqueous extracts against both the test pathogens. Methanol extracts of Nigella sativa, Psidium guajava and Syzygium aromaticum were the most effective among all 20 plant samples and have potent inhibitory activity against both dental caries pathogens with minimum inhibitory concentration of 0.2 mg mL - 1 . N. sativa seed methanol extract was more effective with 22.3 mm zone of inhibition at 0.2 mg mL - 1 against S. mutans (MTCC 497), while L. acidophilus (MTCC 10307) was more sensitive to S. aromaticum bud methanol extract at 11.3 mm zone of inhibition at concentration 0.1 mg mL - 1 . Essential oil extracted from plants also possesses strong antimicrobial activity for both test pathogens, with a minimum inhibitory concentration range of 0.05-0.16 mg mL - 1 . Syzygium aromaticum bud essential oil at 0.05 mg mL - 1 was most active against S. mutans (MTCC 497). Plant extracts viewing antimicrobial activity with minimum inhibitory concentration show the efficacy of the plant products that could be considered as a good indicator of prospective plants for discovering new antimicrobial agents against dental caries pathogens. The findings of this study provide a lead to further polyherbal formulations for the treatment of dental caries malaise.
Ma, Xiao Xue; Sun, Dan Dan; Hu, Jian; Wang, En Hua; Luo, En Jie
2011-06-01
In the present study, we report on the reduced susceptibility to teicoplanin among clinical isolates of Staphylococcus haemolyticus in a hematology ward of a teaching hospital. The molecular characterization of 17 S. haemolyticus strains was performed using mec gene complex classification, pulsed-field gel electrophoresis analysis, and minimum inhibitory concentration examination. Pulsotype A strains carrying a class C2 mec gene complex were the most prevalent strains, at 64.7%. In vivo selection of stepwise increase in resistance to vancomycin and teicoplanin was observed in three S. haemolyticus strains serially isolated from a case patient. The results of the present study suggest the regional spread of certain S. haemolyticus clones with diminished susceptibility to glycopeptides, emphasizing the need for continuous monitoring of minimum inhibitory concentration levels of vancomycin and teicoplanin in S. haemolyticus strains, and the importance of infection control practices to prevent its transmission.
Synergistic action of starch and honey against Candida albicans in correlation with diastase number
Boukraa, Laïd; Benbarek, Hama; Moussa, Ahmed
2008-01-01
To evaluate the synergistic action of starch on the antifungal activity of honey, a comparative method of adding honey with and without starch to culture media was used. Candida albicans has been used to determine the minimum inhibitory concentration (MIC) of five varieties of honey. In a second step, lower concentrations of honey than the MIC were incubated with a set of concentrations of starch added to media to determine the minimum synergistic inhibitory concentration (MSIC). The MIC for the five varieties of honey without starch against C. albicans ranged between 40% and 45% (v/v). When starch was incubated with honey and then added to media, a MIC drop has been noticed with each variety. It ranged between 7% and 25%. A negative correlation has been established between the MIC drop and the diastase number (DN). PMID:24031175
Godinho, Kevin S; Keane, Sue G; Nanjiani, Ian A; Benchaoui, Hafid A; Sunderland, Simon J; Jones, M Anne; Weatherley, Andrew J; Gootz, Thomas D; Rowan, Tim G
2005-01-01
The in vitro activity of tulathromycin was evaluated against common bovine and porcine respiratory pathogens collected from outbreaks of clinical disease across eight European countries from 1998 to 2001. Minimum inhibitory concentrations (MICs) for one isolate of each bacterial species from each outbreak were determined using a broth microdilution technique. The lowest concentrations inhibiting the growth of 90% of isolates (MIC90) for tulathromycin were 2 microg/ml for Mannheimia (Pasteurella) haemolytica, 1 microg/ml for Pasteurella multocida (bovine), and 2 microg/ml for Pasteurella multocida (porcine) and ranged from 0.5 to 4 microg/ml for Histophilus somni (Haemophilus somnus) and from 4 to 16 microg/ml for Actinobacillus pleuropneumoniae. Isolates were retested in the presence of serum. The activity of tulathromycin against fastidious organisms was affected by culture conditions, and MICs were reduced in the presence of serum.
Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara.
Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur
2015-03-01
The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry.
Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara
Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur
2015-01-01
The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry. PMID:26221099
Turchi, Barbara; Mancini, Simone; Pistelli, Luisa; Najar, Basma; Cerri, Domenico; Fratini, Filippo
2018-03-01
Fourteen wild strains of Staphylococcus aureus positive for gene sea were tested for enterotoxins production and the minimum inhibitory concentration of Leptospermum scoparium, Origanum majorana, Origanum vulgare, Satureja montana and Thymus vulgaris essential oils (EOs) were determined. After this trial, bacteria stressed with sub-inhibitory concentration of each EO were tested for enterotoxins production by an immunoenzymatic assay and resistance to the same EO. Oregano oil exhibited the highest antibacterial activity followed by manuka and thyme oils. After the exposure to a sub-inhibitory concentration of EOs, strains displayed an increased sensitivity in more than 95% of the cases. After treatment with oregano and marjoram EOs, few strains showed a modified enterotoxins production, while 43% of the strains were no longer able to produce enterotoxins after treatment with manuka EO. The results obtained in this study highlight that exposure to sub-inhibitory concentration of EO modifies strains enterotoxins production and EOs susceptibility profile.
Minimum Detectable Dose as a Measure of Bioassay Programme Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.
2003-01-01
This paper suggests that minimum detectable dose (MDD) be used to describe the capability of bioassay programs for which intakes are expected to be rare. This allows expression of the capability in units that correspond directly to primary dose limits. The concept uses the well-established analytical statistic minimum detectable amount (MDA) as the starting point and assumes MDA detection at a prescribed time post intake. The resulting dose can then be used as an indication of the adequacy or capability of the program for demonstrating compliance with the performance criteria. MDDs can be readily tabulated or plotted to demonstrate themore » effectiveness of different types of monitoring programs. The inclusion of cost factors for bioassay measurements can allow optimisation.« less
Minimum detectable dose as a measure of bioassay programme capability.
Carbaugh, E H
2003-01-01
This paper suggests that minimum detectable dose (MDD) be used to describe the capability of bioassay programmes for which intakes are expected to be rare. This allows expression of the capability in units that correspond directly to primary dose limits. The concept uses the well established analytical statistic minimum detectable amount (MDA) as the starting point, and assumes MDA detection at a prescribed time post-intake. The resulting dose can then be used as an indication of the adequacy or capability of the programme for demonstrating compliance with the performance criteria. MDDs can be readily tabulated or plotted to demonstrate the effectiveness of different types of monitoring programmes. The inclusion of cost factors for bioassay measurements can allow optimisation.
Skrivanova, Eva; Van Immerseel, Filip; Hovorkova, Petra; Kokoska, Ladislav
2016-01-01
Clostridium perfringens-induced necrotic enteritis is generally controlled by antibiotics. However, because of increasing antibiotic resistance, other antibacterial agents are required, preferably ones that do not affect the beneficial intestinal microbiota of the host. This study evaluated the in vitro selective growth-inhibitory effect of 8-hydroxyquinoline (8HQ) on C. perfringens vs. bifidobacteria in a medium containing chicken ileal digesta. Prior to the experiments, the minimum inhibitory concentrations of 8HQ and penicillin G were determined by broth microdilution assay. The minimum inhibitory concentration values of 8HQ for C. perfringens were 16-32 times lower than the values for bifidobacteria. Treatment of autoclaved and non-autoclaved chicken ileal digesta with 8HQ showed a selective anticlostridial effect. After incubation of C. perfringens with autoclaved ileal digesta for 3 h, all 8HQ concentrations tested (32-2048 μg/mL) significantly reduced C. perfringens bacterial count. In contrast, the same treatment had no or only a slight effect on bifidobacteria counts. Unlike 8HQ, penicillin G did not exhibit any selectivity. Similar results were obtained after incubation for 24 h. In non-autoclaved ileal digesta, all 8HQ concentrations tested significantly reduced C. perfringens bacterial counts after incubation for 30 min and 3 h, while no effect was observed on bifidobacteria. These results suggest that 8HQ may serve as a prospective veterinary compound for use against necrotic enteritis in poultry.
Wall, Jack R.; Ryan, E. Ann
1980-01-01
Tests for the production of migration inhibitory factor by peripheral blood leukocytes in response to ubiquitous bacterial and fungal antigens were carried out in patients with untreated Graves' disease and in healthy control subjects. Dose-response studies, tests for the production of this factor after 72 hours' stimulation with phytohemagglutinin as a test for reserve, and tests before and after 24 hours' preculture to deplete suppressor cells were also performed in some patients. The antigens used were Candida, Trichophyton-Oidiomyces-Epidermophyton, mumps live attenuated virus and purified protein derivative of tuberculin. The production of migration inhibitory factor was measured by the agarose microdroplet method. The production of migration inhibitory factor in response to all the antigens except mumps virus was slightly greater in the patients than in the control subjects, although the differences were not significant. The dose-response characteristics and the production of migration inhibitory factor after stimulation with phytohemagglutinin were similar in the two groups. The production of migration inhibitory factor in response to suboptimal concentrations of Candida, Trichophyton-Oidiomyces-Epidermophyton and mumps virus was not enhanced in either group after 24 hours' preculture apart from a slight increase in response to mumps virus in the patients. These results fail to support the suggestion that patients with Graves' disease have a deficiency of suppressor cells. PMID:6446374
Survey of Occupational Noise Exposure in CF Personnel in Selected High-Risk Trades
2003-11-01
peak, maximum level , minimum level , average sound level , time weighted average, dose, projected 8-hour dose, and upper limit time were measured for...10 4.4.2 Maximum Sound Level ...11 4.4.3 Minimum Sound Level
Comparative Study of Hydroalcoholic Extracts of Momordica charantia L. against Foodborne Pathogens
Rakholiya, Kalpna; Vaghela, P.; Rathod, T.; Chanda, Sumitra
2014-01-01
The antimicrobial effect of 24 different hydroalcoholic extracts (100, 75, 50 and 25% methanol and water) obtained from four parts (leaf+stem (aerial), peel, pulp and seed) of Momordica charantia L. were investigated against five Gram-positive, six Gram-negative and four fungal strains. The extraction was done by individual cold percolation method using hexane, different hydroalcoholic solvent (100, 75, 50 and 25% methanol) and water. The antimicrobial activity was done by agar well diffusion assay. The extracts, which showed >15 mm zone of inhibition, were further screened to determine minimum inhibitory concentration and minimum bactericidal concentration using a broth dilution method performed in 96-well microtitre plate. The extractive yield was highest in aqueous extracts of all the four parts closely followed by 25% methanol. Micrococcus flavus was the most susceptible Gram-positive bacteria and Pseudomonas testosteroni was the most susceptible Gram-negative bacteria. The highest antibacterial activity was shown by 100% methanol. The Gram-negative Pseudomonas spp. was more susceptible towards all the extracts than the Gram-positive bacteria or fungal strains investigated. One hundred percent and 50% methanol extracts of seed showed lowest minimum inhibitory concentration and minimum bactericidal concentration values, that is <39 and 625 μg/ml, respectively, against Pseudomonas pictorum. Therefore, these extracts would be of interest in the control of Pseudomonas spp. in food industry as well as used for therapeutic purposes. PMID:24843188
Maina, Angeline W.; Wagacha, John M.
2017-01-01
The objective of this study was to evaluate the antifungal activity of essential oil (EO) of Eucalyptus camaldulensis Dehnh. against five Fusarium spp. commonly associated with maize. The essential oil had been extracted by steam distillation in a modified Clevenger-type apparatus from leaves of E. camaldulensis and their chemical composition characterized by gas chromatography mass spectrometry. Poisoned food technique was used to determine the percentage inhibition of mycelial growth, minimum inhibitory concentration, and minimum fungicidal concentration of the EO on the test pathogens. Antifungal activity of different concentrations of the EO was evaluated using disc diffusion method. The most abundant compounds identified in the EO were 1,8-cineole (16.2%), α-pinene (15.6%), α-phellandrene (10.0%), and p-cymene (8.1%). The EO produced complete mycelial growth inhibition in all the test pathogens at a concentration of 7-8 μL/mL after five days of incubation. The minimum inhibitory concentration and minimum fungicidal concentration of the EO on the test fungi were in the range of 7-8 μL/mL and 8–10 μL/mL, respectively. These findings confirm the fungicidal properties of E. camaldulensis essential oils and their potential use in the management of economically important Fusarium spp. and as possible alternatives to synthetic fungicides. PMID:28127308
Schiave, Letícia Aparecida; Nascimento, Erika; Vilar, Fernando Crivelenti; de Haes, Tissiana Marques; Takayanagui, Osvaldo Massaiti; Gaitani, Cristiane Masetto de; Martinez, Roberto
Fluconazole is extensively used for the treatment of candidiasis and cryptococcosis. Among other factors, successful treatment is related to appropriate fluconazole levels in blood and cerebrospinal fluid. In the present study, fluconazole levels were determined in 15 patients, 14 of whom had AIDS and 13 had neurocryptococcosis. The only selection criterion was treatment with fluconazole, which was performed with a generic or similar form of the drug. Fluconazole level was determined by high performance liquid chromatography and the susceptibility profile of Cryptococcus spp. isolated from the patients was assessed by broth microdilution. Blood and cerebrospinal fluid fluconazole levels were found to be related to the fluconazole daily dose, and exceeded the minimum inhibitory concentration of this antifungal for the Cryptococcus spp. isolates. A good correlation was observed between serum and cerebrospinal fluid drug concentration. In conclusion, treatment with non-original fluconazole under usual medical practice conditions results in appropriate blood and cerebrospinal fluid levels of the drug for inhibiting Cryptococcus spp. susceptible to this antifungal drug. The relatively common failures of neurocryptococcosis treatment appear not to be due to insufficient fluconazole levels in the cerebrospinal fluid, especially with the use of daily doses of 400-800mg. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Cohen-Wolkowiez, Michael; Sampson, Mario; Bloom, Barry T; Arrieta, Antonio; Wynn, James L; Martz, Karen; Harper, Barrie; Kearns, Gregory L; Capparelli, Edmund V; Siegel, David; Benjamin, Daniel K; Smith, P Brian
2013-09-01
Limited pharmacokinetic (PK) data of metronidazole in premature infants have led to various dosing recommendations. Surrogate efficacy targets for metronidazole are ill-defined and therefore aimed to exceed minimum inhibitory concentration of organisms responsible for intra-abdominal infections. We evaluated the PK of metronidazole using plasma and dried blood spot samples from infants ≤32 weeks gestational age in an open-label, PK, multicenter (N = 3) study using population PK modeling (NONMEM). Monte Carlo simulations (N = 1000 virtual subjects) were used to evaluate the surrogate efficacy target. Metabolic ratios of parent and metabolite were calculated. Twenty-four premature infants (111 plasma and 51 dried blood spot samples) were enrolled: median (range) gestational age at birth 25 (23-31) weeks, postnatal age 27 (1-82) days, postmenstrual age 31 (24-39) weeks and weight 740 (431-1466) g. Population clearance (L/h/kg) was 0.038 × (postmenstrual age/30) and volume of distribution (L/kg) of 0.93. PK parameter estimates and precision were similar between plasma and dried blood spot samples. Metabolic ratios correlated with clearance. Simulations suggested the majority of infants in the neonatal intensive care unit (>80%) would meet the surrogate efficacy target using postmenstrual age-based dosing.
Cohen-Wolkowiez, Michael; Sampson, Mario; Bloom, Barry T.; Arrieta, Antonio; Wynn, James L.; Martz, Karen; Harper, Barrie; Kearns, Gregory L.; Capparelli, Edmund V.; Siegel, David; Benjamin, Daniel K.; Smith, P. Brian
2013-01-01
Background Limited pharmacokinetic (PK) data of metronidazole in premature infants has led to various dosing recommendations. Surrogate efficacy targets for metronidazole are ill-defined and therefore aimed to exceed minimum inhibitory concentration of organisms responsible for intra-abdominal infections. Methods We evaluated the PK of metronidazole using plasma and dried blood spot (DBS) samples from infants ≤32 weeks gestational age in an open-label, PK, multicenter (N=3) study using population PK modeling (NONMEM). Monte Carlo simulations (N=1000 virtual subjects) were used to evaluate the surrogate efficacy target. Metabolic ratios of parent and metabolite were calculated. Results Twenty-four premature infants (111 plasma and 51 DBS samples) were enrolled: median (range) gestational age at birth 25 (23–31) weeks, postnatal age 27 (1–82) days, postmenstrual age (PMA) 31 (24–39) weeks, and weight 740 (431–1466) g. Population clearance (CL, L/h/kg) was 0.038 × (PMA/30)2.45 and volume of distribution (L/kg) of 0.93. PK parameter estimates and precision were similar between plasma and DBS samples. Metabolic ratios correlated with CL. Conclusion Simulations suggested the majority of infants in the neonatal intensive care unit (>80%) would meet the surrogate efficacy target using PMA-based dosing. PMID:23587979
Albarellos, Gabriela A; Denamiel, Graciela A; Montoya, Laura; Quaine, Pamela C; Lupi, Martín P; Landoni, María F
2013-06-01
The study describes the pharmacokinetics and predicted efficacy of imipenem after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration to five adult cats at a dose of 5 mg/kg. Susceptibility to imipenem [minimum inhibitory concentration (MIC)] was determined for antimicrobial resistant Escherichia coli (n = 13) and staphylococci (n = 3) isolated from domestic cat infections (urinary system, skin and conjunctiva). Maximum plasma concentrations of imipenem were 13.45 µg/ml (IV), 6.47 µg/ml (IM) and 3.83 µg/ml (SC). Bioavailability was 93.18% (IM) and 107.90% (SC). Elimination half-lives for IV, IM and SC administration were 1.17, 1.44 and 1.55 h, respectively. All tested bacteria were susceptible to imipenem; MIC values were 0.03 µg/ml for Staphylococcus species and <0.25-0.5 µg/ml for E coli. Mean imipenem concentrations remained above a MIC of 0.5 µg/ml for approximately 4 h (IV and IM) and 9 h (SC). Imipenem would be predicted to be effective for the treatment of antimicrobial resistant bacterial infections in cats at a dosage of 5 mg/kg every 6-8 h (IV, IM), or longer for the SC route. However, clinical trials are mandatory to establish its efficacy and proper dosing.
Akihisa, Toshihiro; Franzblau, Scott Gary; Tokuda, Harukuni; Tagata, Masaaki; Ukiya, Motohiko; Matsuzawa, Tsunetomo; Metori, Koichi; Kimura, Yumiko; Suzuki, Takashi; Yasukawa, Ken
2005-06-01
Seven sterols (1-7) and eight polyisoprenepolyols (8-15), isolated from the non-saponifiable lipid fraction of the dichloromethane extract of an edible mushroom, Hypsizigus marmoreus (Buna-shimeji), were tested for their antitubercular activity against Mycobacterium tuberculosis strain H37Rv using the Microplate Alamar Blue Assay (MABA). Six sterols (2-7) and two polyisoprenepolyols (8, 12) showed a minimum inhibitory concentration (MIC) in the range of 1-51 microg/ml, while the others (1, 9-11, 13-15) were inactive (MIC>128 microg/ml). The seven sterols (1-7) and three polyisoprenepolyols (8, 10, 12) were further evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Sterols 6 and 7 showed potent inhibitory effects while preserving the high viability of Raji cells.
Anti-Salmonella activity of medicinal plants from Cameroon.
Nkuo-Akenji, T; Ndip, R; McThomas, A; Fru, E C
2001-06-01
To evaluate the effects of herbal extracts derived from plants commonly prescribed by traditional practitioners for the treatment of typhoid fever. A cross sectional study. Departments of Life Sciences and Chemistry, University of Buea, Cameroon. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever were tested for antibacterial activity against Salmonella typhi, S. paratyphi and S. typhimurium. The formulations used were: 1) Formulation A comprising Cymbogogon citratus leaves, Carica papaya leaves, and Zea mays silk. 2) Formulation B comprising C. papaya roots, Mangifera indica leaves, Citrus limon fruit and C. citratus leaves. 3) C. papaya leaves. 4) Emilia coccinea whole plant. 5) Comelina bengalensis leaves. 6) Telfaria occidentalis leaves. 7) Gossypium arboreum whole plant. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Generally, Formulation A elicited inhibitory activity at a lower range of 0.02 to 0.06 mg/ml. Similarly, Formulation B elicited bacterial activity at the lowest range of 0.06 to 0.25 mg/ml. C. bengalensis leaves on the other hand, showed the lowest activity with a concentration range of 0.132 to 2.0 mg/ml and 1 to 4 mg/ml in MIC and MBC assays respectively. S. paratyphi was most sensitive to the formulations (concentration range of 0.02 to 1 mg/ml in both MIC and MBC assays) while S. typhimurium was the least sensitive and concentrations of up to 4 mg/ml were required to be bactericidal. It is concluded that plant extracts with low MIC and MBC values (1 mg/ml and lower) may contain compounds with therapeutic activity.
Roy, Ranita; Tiwari, Monalisa; Donelli, Gianfranco; Tiwari, Vishvanath
2018-01-01
ABSTRACT Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host. PMID:28362216
[Pharmacokinetics and pharmacodynamics of antibiotics in intensive care].
Sörgel, F; Höhl, R; Glaser, R; Stelzer, C; Munz, M; Vormittag, M; Kinzig, M; Bulitta, J; Landersdorfer, C; Junger, A; Christ, M; Wilhelm, M; Holzgrabe, U
2017-02-01
Optimized dosage regimens of antibiotics have remained obscure since their introduction. During the last two decades pharmacokinetic(PK)-pharmacodynamic(PD) relationships, originally established in animal experiments, have been increasingly used in patients. The action of betalactams is believed to be governed by the time the plasma concentration is above the minimum inhibitory concentration (MIC). Aminoglycosides act as planned when the peak concentration is a multiple of the MIC and vancomycin seems to work best when the area under the plasma vs. time curve (AUC) to MIC has a certain ratio. Clinicians should be aware that these relationships can only be an indication in which direction dosing should go. Larger studies with sufficiently high numbers of patients and particularly severely sick patients are needed to prove the concepts. In times where all antibiotics can be measured with new technologies, the introduction of therapeutic drug monitoring (TDM) is suggested for ICUs (Intensive Care Unit). The idea of a central lab for TDM of antibiotics such as PEAK (Paul Ehrlich Antibiotika Konzentrationsmessung) is supported.
NASA Astrophysics Data System (ADS)
Hosny, A. M. S.; Kashef, M. T.; Rasmy, S. A.; Aboul-Magd, D. S.; El-Bazza, Z. E.
2017-12-01
Silver nanoparticles (AgNPs) are promising antimicrobial agents for treatment of wounds and burns. We synthesized AgNPs using honey at different pH values or with different gamma irradiation doses. The resulting nanoparticles were characterized by UV-vis spectroscopy, TEM, DLS and FTIR. Their antimicrobial activity, against standard bacterial strains and silver-resistant clinical isolates from infected wounds and burns, was evaluated in vitro through determination of their minimum inhibitory concentration (MIC). AgNPs prepared using 30 g of honey exposed to 5 kGy gamma radiation had the best physical characters regarding stability and uniformity of particle size and shape. They recorded the lowest MIC values against both the standard and silver-resistant isolates. In conclusion, honey and gamma radiation can be used in synthesis of highly stable pure AgNPs, without affecting the physico-chemical and antimicrobial activity of honey. This offered an advantage in terms of inhibition of silver-resistant bacteria isolates.
Yutani, Masahiro; Hashimoto, Yukie; Ogita, Akira; Kubo, Isao; Tanaka, Toshio; Fujita, Ken-ichi
2011-11-01
trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum with antimicrobial activity relatively weaker than those of well-known antibiotics, and significantly enhances the antifungal activity of polygodial and dodecanol against the baker's yeast Saccharomyces cerevisiae and human pathogenic yeast Candida albicans. However, the antifungal mechanism of anethole is unresolved. Anethole demonstrated antifungal activity against the filamentous fungus, Mucor mucedo IFO 7684, accompanied by hyphal morphological changes such as swollen hyphae at the tips. Its minimum growth inhibitory concentration was 0.625 mM. A hyperosmotic condition (1.2 M sorbitol) restricted the induction of morphological changes, while hypoosmotic treatment (distilled water) induced bursting of hyphal tips and leakage of cytoplasmic constituents. Furthermore, anethole dose-dependently inhibited chitin synthase (CHS) activity in permeabilized hyphae in an uncompetitive manner. These results suggest that the morphological changes of M. mucedo could be explained by the fragility of cell walls caused by CHS inhibition. Copyright © 2011 John Wiley & Sons, Ltd.
Anon, Jack B
2004-08-02
Acute bacterial rhinosinusitis (ABRS) is a secondary bacterial infection of the nose and paranasal sinuses, usually preceded by a viral upper respiratory infection or allergy, with symptoms that have not improved after 10 days or that have worsened after 5 to 7 days. Streptococcus pneumoniae and Haemophilus influenzae are the most common causes of ABRS in adults. Increasing rates of antimicrobial resistance among S. pneumoniae and beta-lactamase production among H. influenzae are formidable challenges to the successful treatment of infections caused by these organisms. To this end, various formulations of amoxicillin-clavulanate have been developed, the most recent of which is pharmacokinetically enhanced and provides a total daily dose of 4,000 mg of amoxicillin and 250 mg of clavulanate. This formulation has been shown to be safe and effective in the treatment of infections caused by penicillin-resistant S. pneumoniae (minimum inhibitory concentration 2 microg/mL); the clavulanate component provides adequate coverage of beta-lactamase-producing pathogens.
Identification of KasA as the cellular target of an anti-tubercular scaffold
Abrahams, Katherine A.; Chung, Chun-wa; Ghidelli-Disse, Sonja; Rullas, Joaquín; Rebollo-López, María José; Gurcha, Sudagar S.; Cox, Jonathan A. G.; Mendoza, Alfonso; Jiménez-Navarro, Elena; Martínez-Martínez, María Santos; Neu, Margarete; Shillings, Anthony; Homes, Paul; Argyrou, Argyrides; Casanueva, Ruth; Loman, Nicholas J.; Moynihan, Patrick J.; Lelièvre, Joël; Selenski, Carolyn; Axtman, Matthew; Kremer, Laurent; Bantscheff, Marcus; Angulo-Barturen, Iñigo; Izquierdo, Mónica Cacho; Cammack, Nicholas C.; Drewes, Gerard; Ballell, Lluis; Barros, David; Besra, Gurdyal S.; Bates, Robert H.
2016-01-01
Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related β-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis. PMID:27581223
Yang, Shih-Chun; Yen, Feng-Lin; Wang, Pei-Wen; Aljuffali, Ibrahim A; Weng, Yi-Han; Tseng, Chih-Hua; Fang, Jia-You
2017-09-01
Naphtho[1,2-b]furan-4,5-dione (N12D) and naphtho[2,3-b]furan-4,9-dione (N23D) are furanonaphthoquinone derivatives from natural resources. We examined the antimicrobial activity of N12D and N23D against drug-resistant Staphylococcus aureus. Minimum inhibitory concentration, minimum bactericidal concentration, bacterial viability and agar diffusion assay were conducted against methicillin-resistant S. aureus (MRSA) and clinical isolates of vancomycin-resistant S. aureus. The minimum inhibitory concentration of N12D and N23D against MRSA was 4.9-9.8 and 39 μM, respectively. With regard to the agar diffusion test, the inhibition zone of the quinone compounds was threefold larger than that of oxacillin. N12D was found to inhibit MRSA biofilm thickness from 24 to 16 μm as observed by confocal microscopy. N12D showed a significant reduction of the intracellular MRSA burden without decreasing the macrophage viability. The antibacterial mechanisms of N12D may be bacterial wall/membrane damage and disturbance of gluconeogenesis and the tricarboxylic acid cycle.
NASA Astrophysics Data System (ADS)
Muzafri, A.; Julianti, E.; Rusmarilin, H.
2018-02-01
Andaliman (Zanthoxylum acanthopodium DC.) is a well known wild species in North Sumatera and used for seasoning in Batak’s traditional cuisine. This study was aimed to examine the phytochemical constituents of andaliman fruit extracts after simple macerated in water, methanol, ethyl acetate and hexana using qualitative phytochemical analysis, and to determine its potential antimicrobial activity against Staphylococus aureus, Escherichia coli and Salmonella sp by using agar well difussion method and minimum inhibitory concentration (MIC). Phytochemicals such as alkaloids, flavonoid, glycosides, saponins, tannins, triterpene/steroid and glycoside anthroquinones were detected in the methanol extracts, but steroids and glycisode antraquinones were absent in the ethyl acetate extract. The ethyl acetate extracts showed maximum zone of inhibition and minimum inhibitory concentration against all the experimental microorganisms. The minimum zone of inhibition was determined in hexane extracts showing less antimicrobial activity against all the experimental microorganisms. The MIC of the ethyl acetate extracts was 0,5% w/v for all tested bacteria. Apllication of ethyl acetate extracts of andaliman fruits showed effective for catfish (Pangasius Sutchi) fillet stored in refrigerator (5 °C) for 3 days.
In vitro and in vivo activity of Manuka honey against NDM-1-producing Klebsiella pneumoniae ST11.
Qamar, Muhammad Usman; Saleem, Sidrah; Toleman, Mark Alexander; Saqalein, Muhammad; Waseem, Muhammad; Nisar, Muhammad Atif; Khurshid, Mohsin; Taj, Zeeshan; Jahan, Shah
2018-01-01
To determine the therapeutic potential of Manuka honey against New Delhi metallo-β-lactamase-1-producing Klebsiella pneumoniae ST11 in vitro and in vivo. Carbapenamases and metallo-β-lactamases-producing K. pneumoniae ST11 isolated from blood culture was confirmed by VITEK-2 ® system, matrix-assisted laser desorption ionization-time of flight and multilocus sequence typing, followed by determination of minimum inhibitory concentration (μg/ml) using VITEK-2 system. Genetic analysis of bla NDM-1 was done by PCR, pulsed-field gel electrophoresis and DNA hybridization. In vitro and in vivo efficacy of Manuka honey was performed by microbroth dilution assay and BALB/c mice model respectively. K. pneumoniae ST11 displayed resistance to commonly used antibiotics. bla NDM-1 was located on 150 and 270kb plasmids. Minimum inhibitory concentration and minimum bactericidal concentration of Manuka honey was 30% (v/v) and substantial reduction of bacterial mean log value (>1 log) was observed in mice. Histological analysis of mice liver and kidneys demonstrated mild to moderate inflammation. Manuka honey can be used as an alternate therapeutic approach for management of New Delhi metallo-β-lactamase-producing pathogens.
Moriyama, Brad; Henning, Stacey A; Childs, Richard; Holland, Steven M; Anderson, Victoria L; Morris, John C; Wilson, Wyndham H; Drusano, George L; Walsh, Thomas J
2010-05-01
To report a case series of high-dose continuous infusion beta-lactam antibiotics for the treatment of resistant Pseudomonas aeruginosa infections. Continuous infusion ceftazidime or aztreonam was administered to achieve target drug concentrations at or above the minimum inhibitory concentration, when possible, in 3 patients with P. aeruginosa infections. The maximal calculated target drug concentration was 100 mg/L. In the first patient, with primary immunodeficiency, neutropenia, and aggressive cutaneous T-cell lymphoma/leukemia, continuous infusion ceftazidime (6.5-9.6 g/day) was used to successfully treat multidrug-resistant P. aeruginosa bacteremia. In the second patient, with leukocyte adhesion deficiency type 1, continuous infusion aztreonam (8.4 g/day) was used to successfully treat multidrug-resistant P. aeruginosa wound infections. In the third patient, with severe aplastic anemia, continuous infusion ceftazidime (7-16.8 g/day) was used to treat P. aeruginosa pneumonia and bacteremia. In each patient, bacteremia cleared, infected wounds healed, and pneumonia improved in response to continuous infusion ceftazidime or aztreonam. Treatment strategies for multidrug-resistant P. aeruginosa infections are limited. A novel treatment strategy, when no other options are available, is the continuous infusion of existing beta-lactam antibiotics to maximize their pharmacodynamic activity. High-dose continuous infusion ceftazidime or aztreonam was used for the successful treatment of resistant systemic P. aeruginosa infections in 3 chronically immunocompromised patients. Continuous infusion beta-lactam antibiotics are a potentially useful treatment strategy for resistant P. aeruginosa infections in immunocompromised patients.
Dose rates of antimicrobial substances in boar semen preservation-time to establish new protocols.
Schulze, M; Grobbel, M; Riesenbeck, A; Brüning, S; Schaefer, J; Jung, M; Grossfeld, R
2017-06-01
To achieve a standardized number of spermatozoa in the final AI dose, varying amounts of extender fluid with a fixed concentration of antimicrobial substances are currently added to boar ejaculates. This practice ignores the different degrees of dilution of the antimicrobials in the end product. In calculating the final concentration of gentamicin in AI doses from 27,538 processed boar ejaculates, we demonstrated varying gentamicin concentrations in the resultant extended boar semen samples. The median concentration was 220.37 mg/L. In 25 of the samples (0.09%), the gentamicin concentration fell below 5 mg/L, which is close to or below the epidemiological cut-off value for many bacteria. We calculated the minimum inhibitory concentration of gentamicin for bacteria isolated from raw and extended ejaculates. Five of the isolates from extended ejaculates exceeded the maximum test concentration of 512 mg/L. As a result, we are presenting an alternative method of boar semen preservation whereby a particular combination of gentamicin concentrate and antibiotic-free extender is incorporated that standardizes the antibiotic concentration in the diluted semen. The addition of standardized antibiotic concentrations did not negatively affect sperm quality when compared to the use of ready-to-use extenders. In conclusion, an end volume-based and standardized addition of gentamicin to boar ejaculates can be a helpful alternative to prevent insufficient dosage of antibiotics in liquid preserved boar semen without affecting semen quality. © 2017 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, M; Cazoulat, G; Polan, D
Purpose: It is well documented that the delivered dose to patients undergoing radiotherapy (RT) is often different from the planned dose due to geometric variability and uncertainties in patient positioning. Recent work suggests that accumulated dose to the GTV is a better predictor of progression compared to the minimum planned dose to the PTV. The purpose of this study is to evaluate if deviations from the planned dose can contributed to tumor progression. Methods: From 2010 to 2014 an in-house Phase II clinical trial of adaptive stereotactic body RT was completed. Of the 90 patients enrolled, 7 patients had amore » local recurrence defined on contrast enhanced CT or MR imaging 3–21 months after completion of RT. Retrospective dose accumulation was performed using a biomechanical model-based deformable image registration algorithm (DIR) to accumulate the dose based on the kV CBCT acquired prior to each fraction for soft tissue alignment of the patient. The DIR algorithm was previously validated for geometric accuracy in the liver (target registration error = 2.0 mm) and dose accumulation in a homogeneous image, similar to a liver CBCT (gamma index = 91%). Following dose accumulation, the minimum dose to 0.5 cc of the GTV was compared between the planned and accumulated dose. Work is ongoing to evaluate the tumor control probability based on the planned and accumulated dose. Results: DIR and dose accumulation was performed on all fractions for 6 patients with local recurrence. The difference in minimum dose to 0.5 cc of the GTV ranged from −0.3–2.3 Gy over 3–5 fractions. One patient had a potentially significant difference in minimum dose of 2.3 Gy. Conclusion: Dose accumulation can reveal tumor underdosage, improving our ability to understand recurrence and tumor progression patterns, and could aid in adaptive re-planning during therapy to correct for this. This work was supported in part by NIH P01CA059827.« less
Dose-dependent inhibition of gastric injury by hydrogen in alkaline electrolyzed drinking water.
Xue, Jinling; Shang, Guodong; Tanaka, Yoshinori; Saihara, Yasuhiro; Hou, Lingyan; Velasquez, Natalia; Liu, Wenjun; Lu, Yun
2014-03-03
Hydrogen has been reported to relieve damage in many disease models, and is a potential additive in drinking water to provide protective effects for patients as several clinical studies revealed. However, the absence of a dose-response relationship in the application of hydrogen is puzzling. We attempted to identify the dose-response relationship of hydrogen in alkaline electrolyzed drinking water through the aspirin induced gastric injury model. In this study, hydrogen-rich alkaline water was obtained by adding H2 to electrolyzed water at one atmosphere pressure. After 2 weeks of drinking, we detected the gastric mucosal damage together with MPO, MDA and 8-OHdG in rat aspirin induced gastric injury model. Hydrogen-dose dependent inhibition was observed in stomach mucosal. Under pH 8.5, 0.07, 0.22 and 0.84 ppm hydrogen exhibited a high correlation with inhibitory effects showed by erosion area, MPO activity and MDA content in the stomach. Gastric histology also demonstrated the inhibition of damage by hydrogen-rich alkaline water. However, 8-OHdG level in serum did not have significant hydrogen-dose dependent effect. pH 9.5 showed higher but not significant inhibitory response compared with pH 8.5. Hydrogen is effective in relieving the gastric injury induced by aspirin-HCl, and the inhibitory effect is dose-dependent. The reason behind this may be that hydrogen-rich water directly interacted with the target tissue, while the hydrogen concentration in blood was buffered by liver glycogen, evoking a suppressed dose-response effect. Drinking hydrogen-rich water may protect healthy individuals from gastric damage caused by oxidative stress.
Negri, Clara E; Johnson, Adam; McEntee, Laura; Box, Helen; Whalley, Sarah; Schwartz, Julie A; Ramos-Martín, V; Livermore, Joanne; Kolamunnage-Dona, Ruwanthi; Colombo, Arnaldo L; Hope, William W
2018-01-01
Abstract Background Aspergillus flavus is one of the most common agents of invasive aspergillosis and is associated with high mortality. The orotomides are a new class of antifungal agents with a novel mechanism of action. An understanding of the pharmacodynamics (PD) of the lead compound F901318 is required to plan safe and effective regimens for clinical use. Methods The pharmacokinetics (PK) and PD of F901318 were evaluated by developing new in vitro and in vivo models of invasive fungal sinusitis. Galactomannan was used as a pharmacodynamic endpoint in all models. Mathematical PK-PD models were used to describe dose-exposure-response relationships. Results F901318 minimum inhibitory concentrations (MICs) ranged from 0.015 to 0.06 mg/L. F901318 induced a concentration-dependent decline in galactomannan. In the in vitro model, a minimum concentration:MIC of 10 resulted in suppression of galactomannan; however, values of approximately 10 and 9–19 when assessed by survival of mice or the decline in galactomannan, respectively, were equivalent or exceeded the effect induced by posaconazole. There was histological clearance of lung tissue that was consistent with the effects of F901318 on galactomannan. Conclusions F901318 is a potential new agent for the treatment of invasive infections caused by A flavus with PDs that are comparable with other first-line triazole agents. PMID:28968675
Belz, Regina G
2016-01-01
Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected.
Dose Dependent Dual Effect of Baicalin and Herb Huang Qin Extract on Angiogenesis
Lawless, John; He, Jianchen
2016-01-01
Huang Qin (root of Scutellaria baicalensis) is a widely used herb in different countries for adjuvant therapy of inflammation, diabetes, hypertension, different kinds of cancer and virus related diseases. Baicalin is the main flavonoid in this herb and has been extensively studied for 30 years. The angiogenic effect of herb Huang Qin extract and baicalin was found 13 years ago, however, the results were controversial with pro-angiogenic effect in some studies and anti-angiogenic effect in others. In this paper, the angiogenic effect of baicalin, its aglycone form baicalein and aqueous extract of Huang Qin was studied in chick embryo chorioallantoic membrane (CAM) model. Dose dependent dual effect was found in both aqueous extract and baicalin, but not in baicalein, in which only inhibitory effect was observed. In order to reveal the cellular and molecular mechanism of how baicalin and baicalein affect angiogenesis, cell proliferation and programmed cell death assays were performed in treated CAM. In addition, quantitative PCR array including 84 angiogenesis related genes was used to detect high and low dosage of baicalin and baicalein responsive genes. Low dose baicalin increased cell proliferation in developing blood vessels through upregulation of multiple angiogenic genes expression, but high dose baicalin induced cell death, performing inhibitory effect on angiogenesis. Both high and low dose of baicalein down regulated the expression of multiple angiogenic genes, decreased cell proliferation, and leads to inhibitory effects on angiogenesis. PMID:27902752
de Lima, Ewelyne Miranda; Cazelli, Didley Sâmia Paiva; Pinto, Fernanda Endringer; Mazuco, Renata Alves; Kalil, Ieda Carneiro; Lenz, Dominik; Scherer, Rodrigo; de Andrade, Tadeu Uggere; Endringer, Denise Coutinho
2016-01-01
Protium heptaphyllum (Aubl.) March is popularly used as an analgesic and anti-inflammatory agent. This study aimed to evaluate the chemical composition of P. heptaphyllum essential oil, its cytotoxicity in a breast cancer cell line (MCF-7), antimicrobial activity, and its antimutagenicity in vivo. The chemical composition of the essential oil collected in three 3 years was determined by gas chromatography-mass spectrometry. The cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Annexin V conjugated with fluorescein isothiocyanate, caspase-3, and tumor necrosis factor-alpha (TNF-α) assays were performed to evaluate apoptosis and inflammatory events. The antimutagenic activity at doses of 25, 50, and 100 mg/kg was determined using a micronucleus test in murine bone marrow. The essential oil showed a predominance of monoterpene compounds, being the terpinolene, p-cymene-8-ol, and p-cymene, present in the essential oil extracted in the 3 years. The essential oil showed a protection against cyclophosphamide-induced genotoxicity, and the cytotoxicity index polychromatic erythrocytes/normochromatic erythrocytes ratio in animals treated with oil at all doses (1.34 ± 0.33; 1.15 ± 0.1; 1.11 ± 0.13) did not differ from the negative control animal (1.31 ± 0.33), but from the cyclophosphamide group (0.61 ± 0.12). Cytotoxicity, at a concentration of 40.0 μg/mL, and antimicrobial activity were not observed for the essential oil (minimum inhibitory concentration ≥0.5 mg/mL). The essential oil did not change the levels of caspase-3 in the TNF-α level. The essential oil showed antimutagenic activity due to its chemical composition. Terpinolene, p-cymene-8-ol, and p-cymene are the main constituents of the essential oil of P. heptaphyllum collected within 3-yearsThe essential oil of P. heptaphyllum did not show antimicrobial activity (MIC >0.5 mg/mL) against E. coli, S. aureus, E. faecalis, and C. albicansThe essential oil of P. heptaphyllum has activity against S. mutans (MIC = 0.5 mg/mL)The essential oil showed a protection against cyclophosphamide-induced genotoxicity in the micronuclei assay. Abbreviations used: GC-MS: Gas Chromatography-Mass Spectrometry, MTT: 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Annexin V-FITC: Annexin V conjugated with fluorescein isothiocyanate, TNF-α: Tumor necrosis factor alpha, MIC: Minimum Inhibitory Concentration.
de Barros, Jefferson C.; da Conceição, Maria Lúcia; Neto, Nelson Justino Gomes; da Costa, Ana Caroliny Vieira; de Souza, Evandro Leite
2012-01-01
This study assessed the occurrence of an enhancing inhibitory effect of the combined application of Origanum vulgare L. essential oil and lactic acid against Staphylococcus aureus by the determination of Fractional Inhibitory Concentration (FIC) index and cell viability in meat broth and meat model. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the oil was 0.6 and 1.25 µL.mL-1, respectively. Lactic acid showed MIC and MBC of 2.5 and 5µL.mL-1, respectively. FIC indices of the combined application of the oil and lactic acid were 0.5 showing a synergic interaction. The essential oil and lactic acid showed similar (p>0.05) anti-S. aureus effect in meat broth over 96 h of exposure. Treatment with essential oil or lactic acid presented a smaller anti-staphylococcal effect in meat in comparison to meat broth. No significant difference (p>0.05) was found for the microbial counts in meat treated with each antimicrobial alone or in mixture. These results could arise as an interesting approach for the improvement of food preservation using more natural procedures, considering the current demand of consumer and sensory quality of foods. PMID:24031936
Determination of Optimal Amikacin Dosing Regimens for Pediatric Patients With Burn Wound Sepsis.
Yu, Tian; Stockmann, Chris; Healy, Daniel P; Olson, Jared; Wead, Stephanie; Neely, Alice N; Kagan, Richard J; Spigarelli, Michael G; Sherwin, Catherine M T
2015-01-01
This study aimed to develop optimal amikacin dosing regimens for the empirical treatment of Gram-negative bacterial sepsis in pediatric patients with burn injuries. A pharmacodynamic (PD) target in which the peak concentration (Cmax) is ≥8 times the minimum inhibitory concentration (MIC) (Cmax/MIC ≥ 8) is reflective of optimal bactericidal activity and has been used to predict clinical outcomes. Population pharmacokinetic modeling was performed in NONMEM 7.2 for pediatric patients with and without burn injuries. Amikacin pharmacokinetic parameters were compared between the two groups and multiple dosing regimens were simulated using MATLAB to achieve the PD target in ≥90% of patients with burn injuries. The pharmacokinetic analysis included 282 amikacin concentrations from 70 pediatric patients with burn injuries and 99 concentrations from 32 pediatric patients without burns. A one-compartment model with first-order elimination described amikacin pharmacokinetics well for both groups. Clearance (CL) was significantly higher in patients with burn injuries than in patients without (7.22 vs 5.36 L/h, P < .001). The volume of distribution (V) was also significantly increased in patients with burn injuries (22.7 vs 18.7 L, P < .01). Weight significantly influenced amikacin CL (P < .001) and V (P < .001) for both groups. Model-based simulations showed that a higher amikacin dose (≥25 mg/kg) achieved a Cmax/MIC ≥8 in ≥90% of patients with assumed infections of organisms with an MIC = 8 mg/L. Amikacin pharmacokinetics are altered in patients with burn injuries, including a significant increase in CL and V. In simulations, increased doses (≥25 mg/kg) led to improved PD target attainment rates. Further clinical evaluation of this proposed dosing regimen is warranted to assess clinical and microbiological outcomes in pediatric patients with burn wound sepsis.
Nguyen, H V; Caruso, D; Lebrun, M; Nguyen, N T; Trinh, T T; Meile, J-C; Chu-Ky, S; Sarter, S
2016-08-01
The aims of this study were to characterize the antibacterial activity and the chemotype of Litsea cubeba leaf essential oil (EO) harvested in North Vietnam and to investigate the biological effects induced by the leaf powder on growth, nonspecific immunity and survival of common carp (Cyprinus carpio) challenged with Aeromonas hydrophila. The EO showed the prevalence of linalool (95%, n = 5). It was bactericidal against the majority of tested strains, with minimum inhibitory concentrations ranging from 0·72 to 2·89 mg ml(-1) (Aer. hydrophila, Edwarsiella tarda, Vibrio furnissii, Vibrio parahaemolyticus, Streptococcus garvieae, Escherichia coli, Salmonella Typhimurium). The fish was fed with 0 (control), 2, 4 and 8% leaf powder supplementation diets for 21 days. Nonspecific immunity parameters (lysozyme, haemolytic and bactericidal activities of plasma) were assessed 21 days after feeding period and before the experimental infection. Weight gain, specific growth rate and feed conversion ratio were improved by supplementation of L. cubeba in a dose-related manner, and a significant difference appeared at the highest dose (8%) when compared to the control. The increase in plasma lysozyme was significant for all the treated groups. Haemolysis activity was higher for the groups fed with 4 and 8% plant powder. Antibacterial activity increased significantly for the 8% dose only. Litsea cubeba leaf powder increased nonspecific immunity of carps in dose-related manner. After infection with Aer. hydrophila, survivals of fish fed with 4 and 8% L. cubeba doses were significantly higher than those fed with 2% dose and the control. A range of 4-8% L. cubeba leaf powder supplementation diet (from specific linalool-rich chemotype) can be used in aquaculture to reduce antibiotic burden and impacts of diseases caused by Aer. hydrophila. © 2016 The Society for Applied Microbiology.
Kinetics of heavy metal inhibition of 1,2-dichloroethane biodegradation in co-contaminated water.
Arjoon, Ashmita; Olaniran, Ademola Olufolahan; Pillay, Balakrishna
2015-03-01
Sites co-contaminated with heavy metals and 1,2-DCA may pose a greater challenge for bioremediation, as the heavy metals could inhibit the activities of microbes involved in biodegradation. Therefore, this study was undertaken to quantitatively assess the effects of heavy metals (arsenic, cadmium, mercury, and lead) on 1,2-DCA biodegradation in co-contaminated water. The minimum inhibitory concentrations (MICs) and concentrations of the heavy metals that caused half-life doubling (HLDs) of 1,2-DCA as well as the degradation rate coefficient (k(1)) and half-life (t(½)) of 1,2-DCA were measured and used to predict the toxicity of the heavy metals in the water microcosms. An increase in heavy metal concentration resulted in a progressive increase in the t(½) and relative t(½) and a decrease in k(1). The MICs and HLDs of the heavy metals were found to vary, depending on the heavy metals type. In addition, the presence of heavy metals was shown to inhibit 1,2-DCA biodegradation in a dose-dependent manner, with the following order of decreasing inhibitory effect: Hg(2+) > As(3+) > Cd(2+) > Pb(2+). Findings from this study have significant implications for the development of bioremediation strategies for effective degradation of 1,2-DCA and other related compounds in wastewater co-contaminated with heavy metals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria
NASA Astrophysics Data System (ADS)
Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S. V.; Ganesan, V.; Kulkarni, Anjali
2013-12-01
Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle-RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml-1) as compared to neat RIF (125 μg ml-1). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle-RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml-1, respectively. Further studies are underway to determine the efficacy of NPs-RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates.
Roberts, Jason A; Kwa, Andrea; Montakantikul, Preecha; Gomersall, Charles; Kuti, Joseph L; Nicolau, David P
2011-03-01
Due to escalating antimicrobial resistance amongst Gram-negative organisms, the choice of effective empirical antimicrobial regimens has become challenging. Monte Carlo simulations were conducted for conventional and prolonged infusion regimens of doripenem, imipenem and meropenem using pharmacokinetic data from adult patients with conserved renal function. Minimum inhibitory concentration data against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii were incorporated from the COMPACT surveillance programme in the Asia-Pacific region of the world. The cumulative fraction of response (CFR) was determined for each regimen against each bacterial population. All simulated carbapenem regimens achieved an optimal CFR against E. coli and K. pneumoniae (94.5-100% CFR). Against P. aeruginosa, doripenem achieved 78.7-92.6% CFR, imipenem achieved 60.4-79.0% CFR and meropenem achieved 73.0-85.1% CFR. The only dosing regimen to achieve ≥ 90% CFR against P. aeruginosa was doripenem 1000 mg and 2000 mg every 8 h (4-h infusion). Carbapenem CFRs against A. baumannii were much lower (29.2-54.4% CFR). CFRs for non-fermenting isolates were ca. 10% lower for isolates collected in the Intensive Care Unit. Carbapenem resistance amongst Enterobacteriaceae remains low in the Asia-Pacific region and thus standard carbapenem dosing regimens had a high likelihood of achieving pharmacodynamic exposures. However, larger doses combined with prolonged infusion will be required to increase the CFR for these carbapenems against resistant non-fermenting Gram-negatives that are common in these countries. The safety and efficacy of these high dosing regimens will need to be confirmed in the clinical setting. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Aires, Alfredo; Dias, Carla; Carvalho, Rosa; Saavedra, Maria José
2017-01-01
The aim of this study was to evaluate the bioactivity of flavonoids extracted from sweet-cherry stems which are often used by a traditional system of medicine to treat gastro-intestinal and urinary tract infections but lacking any consistent scientific evidence; moreover the information about the class of phenolics, their content and the potential bioactivity of such material is very scarce. Thus, in this context, we have set a research study in which we evaluated the profile and content of phenolics extracted from sweet-cherry stems through a conventional (70ºC and 20 min) and ultrasound assisted extraction (40 kHz, room temperature and 20 min). The extracts were phytochemically characterized by using an HPLC-DAD-UV/VIS system and assayed by an in vitro minimum inhibitory concentration (MIC) bioassay against Escherichia coli isolates. Simultaneously, the total antioxidant activities were measured using the 2,2'-azinobis-3-ethylbenzothiazoline-6-sulphonate (ABTS •+ ) radical cation assay. Our results indicate that sweet-cherry stems have a high content of sakuranetin, ferulic acid, p-coumaric acid, p-coumaroylquinic acid, chlorogenic acid and its isomer neochlorogenic acid. Their average levels were highly affected by the extraction method used (p<0.001). The same trend was observed for total antioxidant activity and MIC values. The extracts produced with ultrasounds presented both, a higher total antioxidant activity and a lower minimum inhibitory concentration. Statistical analyses of our results showed a significant correlation (p<0.01) of total antioxidant activity and minimum inhibitory concentration with phenolics present in the extracts studied. Thus, we can conclude that cherry stems can be further exploited to purify compounds and produce coproducts with enhanced biologically added value for pharmaceutical industry.
In Vitro Evaluations and In Vivo Toxicity and Efficacy Studies of MFM501 against MRSA.
Johari, Saiful Azmi; Mohtar, Mastura; Syed Mohamad, Sharifah Aminah; Mohammat, Mohd Fazli; Sahdan, Rohana; Mohamed, Azman; Mohamad Ridhwan, Mohamad Jemain
2017-01-01
Previously we have discovered a synthetically derived pyrrolidone alkaloid, MFM501, exhibiting good inhibitory activity against 53 MRSA and MSSA isolates with low cytotoxicity against three normal cell-lines with IC 50 values at >625 µ g/ml. Time-kill assay, scanning electron microscopy (SEM) analysis, in vivo oral acute toxicity test, and mice peritonitis model were carried out in this study. In the time-kill study, MFM501 showed a less than 3 log 10 decrease in bacterial colony concentration value (CFU/ml) which represented a bacteriostatic action while displaying a time-dependent inhibitory mechanism. Following that, SEM analysis suggested that MFM501 may exert its inhibitory activity via cytoplasmic membrane disruption. Moreover, MFM501 showed no toxicity effect on treated mice at an estimated median acute lethal dose (LD 50 ) value of more than 300 mg/kg and less than 2000 mg/kg. For the efficacy test, a mean effective dose (ED 50 ) of 87.16 mg/kg was obtained via a single dose oral administration. Our data demonstrated that MFM501 has the potential to be developed further as a new, safe, and effective oral-delivered antibacterial agent against MRSA isolates.
In Vitro Evaluations and In Vivo Toxicity and Efficacy Studies of MFM501 against MRSA
Mohtar, Mastura; Syed Mohamad, Sharifah Aminah; Mohammat, Mohd Fazli; Sahdan, Rohana; Mohamed, Azman; Mohamad Ridhwan, Mohamad Jemain
2017-01-01
Previously we have discovered a synthetically derived pyrrolidone alkaloid, MFM501, exhibiting good inhibitory activity against 53 MRSA and MSSA isolates with low cytotoxicity against three normal cell-lines with IC50 values at >625 µg/ml. Time-kill assay, scanning electron microscopy (SEM) analysis, in vivo oral acute toxicity test, and mice peritonitis model were carried out in this study. In the time-kill study, MFM501 showed a less than 3 log10 decrease in bacterial colony concentration value (CFU/ml) which represented a bacteriostatic action while displaying a time-dependent inhibitory mechanism. Following that, SEM analysis suggested that MFM501 may exert its inhibitory activity via cytoplasmic membrane disruption. Moreover, MFM501 showed no toxicity effect on treated mice at an estimated median acute lethal dose (LD50) value of more than 300 mg/kg and less than 2000 mg/kg. For the efficacy test, a mean effective dose (ED50) of 87.16 mg/kg was obtained via a single dose oral administration. Our data demonstrated that MFM501 has the potential to be developed further as a new, safe, and effective oral-delivered antibacterial agent against MRSA isolates. PMID:28536702
NASA Astrophysics Data System (ADS)
Chatterjee, Arijit Kumar; Sarkar, Raj Kumar; Prasun Chattopadhyay, Asoke; Aich, Pulakesh; Chakraborty, Ruchira; Basu, Tarakdas
2012-03-01
A method for preparation of copper nanoparticles (Cu-NPs) was developed by simple reduction of CuCl2 in the presence of gelatin as a stabilizer and without applying stringent conditions like purging with nitrogen. The NPs were characterized by spectrophotometry, dynamic light scattering, x-ray diffraction, transmission electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy. The particles were about 50-60 nm in size and highly stable. The antibacterial activity of this Cu-NP on Gram-negative Escherichia coli was demonstrated by the methods of agar plating, flow cytometry and phase contrast microscopy. The minimum inhibitory concentration (3.0 µg ml-1), minimum bactericidal concentration (7.5 µg ml-1) and susceptibility constant (0.92) showed that this Cu-NP is highly effective against E. coli at a much lower concentration than that reported previously. Treatment with Cu-NPs made E. coli cells filamentous. The higher the concentration of Cu-NPs, the greater the population of filamentous cells; average filament size varied from 7 to 20 µm compared to the normal cell size of ˜2.5 µm. Both filamentation and killing of cells by Cu-NPs (7.5 µg ml-1) also occurred in an E. coli strain resistant to multiple antibiotics. Moreover, an antibacterial effect of Cu-NPs was also observed in Gram-positive Bacillus subtilis and Staphylococcus aureus, for which the values of minimum inhibitory concentration and minimum bactericidal concentration were close to that for E. coli.
Guimarães, Anna Luísa Aguijar; Cunha, Elisa Alves; Matias, Fernanda Oliveira; Garcia, Patrícia Guedes; Danopoulos, Panagiota; Swikidisa, Rosita; Pinheiro, Vanessa Alves; Nogueira, Rodrigo José Lupatini
2016-01-01
The Amazon rainforest is the largest reserve of natural products in the world. Its rich biodiversity of medicinal plants has been utilized by local populations for hundreds of years for the prevention and treatment of various diseases and ailments. Oil extracts from plant species such as Copaifera officinalis and Pentaclethra macroloba are used in compounded formulations for their antiinflammatory, antimicrobial, emollient, moisturizing, and wound-healing activities. The objective of this study was to investigate the in vitro bacteriostatic effect of two Amazonian oils, Copaiba and Pracaxi, against Staphylococcus aureus, a clinically important microorganism responsible for wound infection, to support the use of these oils as novel natural products for compounded wound-treatment modalities. The antibacterial activity of Copaiba and Pracaxi oils against a standard strain of Staphylococcus aureus was assessed using broth microdilution to determine the Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of the oil extracts. Copaiba oil demonstrated antibacterial activity against Staphylococcus aureus, with a Minimum Inhibitory Concentration of 0.3125 mg/mL and a Minimum Bactericidal Concentration of 0.3125 mg/mL. Conversely, Pracaxi oil failed to inhibit Staphylococcus aureus growth. While additional studies are required to further evaluate the antimicrobial activity of Pracaxi oil, even low concentrations of Copaiba oil effectively inhibited Staphylococcus aureus growth, supporting its potential use as a promising adjuvant in compounded topical formulations for wound and scar healing.
77 FR 40320 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... irradiation treatment of imported fruits and vegetables including a minimum generic dose for the fruit fly family, the minimum dose of irradiation for some specific fruit fly species, and provides for the use of irradiation as a treatment for cut flowers and foliage. Need and Use of the Information: Certain fruits and...
Wu, Wei; Tang, Su-Ni; Zhang, Yong; Puppala, Manohar; Cooper, Timothy K; Xing, Chengguo; Jiang, Cheng; Lü, Junxuan
2017-01-01
We have previously shown that the ethanol extract of dried Angelica gigas Nakai (AGN) root exerts anticancer activity against androgen receptor (AR)-negative human DU145 and PC-3 prostate cancer xenografts and primary carcinogenesis in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The major pyranocoumarin isomers decursin (D) and decursinol angelate (DA), when provided at equi-molar intake to that provided by AGN extract, accounted for the inhibitory efficacy against precancerous epithelial lesions in TRAMP mice. Since we and others have shown in rodents and humans that D and DA rapidly and extensively convert to decursinol, here we tested whether decursinol might be an in vivo active compound for suppressing xenograft growth of human prostate cancer cells expressing AR. In SCID-NSG mice carrying subcutaneously inoculated human LNCaP/AR-Luc cells overexpressing the wild type AR, we compared the efficacy of 4.5[Formula: see text]mg decursinol per mouse with equi-molar dose of 6[Formula: see text]mg D/DA per mouse. The result showed that decursinol decreased xenograft tumor growth by 75% and the lung metastasis, whereas D/DA exerted a much less effect. Measurement of plasma decursinol concentration, at 3[Formula: see text]h after the last dose of respective dosing regimen, showed higher circulating level in the decursinol-treated NSG mice than in the D/DA-treated mice. In a subsequent single-dose pharmacokinetic experiment, decursinol dosing led to 3.7-fold area under curve (AUC) of plasma decursinol over that achieved by equi-molar D/DA dosing. PK advantage notwithstanding, decursinol represents an active compound to exert in vivo prostate cancer growth and metastasis inhibitory activity in the preclinical model.
Alshami, Issam; Alharbi, Ahmed E
2014-02-01
To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract. In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent.
Jepson, Alys K; Schwarz-Linek, Jana; Ryan, Lloyd; Ryadnov, Maxim G; Poon, Wilson C K
2016-01-01
We measured the minimum inhibitory concentration (MIC) of the antimicrobial peptide pexiganan acting on Escherichia coli , and found an intrinsic variability in such measurements. These results led to a detailed study of the effect of pexiganan on the growth curve of E. coli, using a plate reader and manual plating (i.e. time-kill curves). The measured growth curves, together with single-cell observations and peptide depletion assays, suggested that addition of a sub-MIC concentration of pexiganan to a population of this bacterium killed a fraction of the cells, reducing peptide activity during the process, while leaving the remaining cells unaffected. This pharmacodynamic hypothesis suggests a considerable inoculum effect, which we quantified. Our results cast doubt on the use of the MIC as 'a measure of the concentration needed for peptide action' and show how 'coarse-grained' studies at the population level give vital information for the correct planning and interpretation of MIC measurements.
Ozkan, Semiha; Kaynak, Fatma; Kalkanci, Ayse; Abbasoglu, Ufuk; Kustimur, Semra
2005-05-01
Slime and proteinase activity of 54 strains consisting of 19 Candida parapsilosis and 35 C. albicans strains isolated from blood samples were investigated in this study. Ketoconazole, amphothericin B, and fluconazole susceptibility of Candida species were compared with slime production and proteinase activity of these species. For both Candida species, no correlation was detected between the slime activity and minimum inhibitory concentration (MIC) values of the three antifungal agents. For both Candida species no correlation was detected between the proteinase activity and the MIC values of amphothericin B, and fluconazole however, statistically significant difference, was determined between the proteinase activity and MIC values of ketoconazole (p = 0.007). Slime production was determined by using modified Christensen macrotube method and proteinase activity was measured by the method of Staib. Antifungal susceptibility was determined through the guidelines of National Committee for Laboratory Standards (NCCLS M27-A).
Efficient synthesis of new 2,3-dihydrooxazole-spirooxindoles hybrids as antimicrobial agents.
Tiwari, Shailendra; Pathak, Poonam; Sagar, Ram
2016-05-15
Two series of new 2,3-dihydrooxazole-spirooxindole derivatives were efficiently synthesized starting from N'-(2-oxoindolin-3-ylidene) benzohydrazide/N'-(2-oxoindolin-3-ylidene)-2-phenoxyacetohydrazide using designed synthetic route. Newly synthesized 2,3-dihydrooxazole-spirooxindole derivatives were screened for their antibacterial and antifungal activity against different pathogenic strain of bacteria and fungi. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) were determined for the test compounds as well as for reference standards. Compounds 4e, 4g, 7g have shown good antibacterial activity whereas compounds 4f, 7b, 7d have displayed better antifungal activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... radiation environment to which the veteran was exposed and shall include inhaled, ingested and neutron doses. In determining the veteran's dose, initial neutron, initial gamma, residual gamma, and internal... dose, neutron dose, and internal dose. The minimum standards for reporting dose estimates are set forth...
Code of Federal Regulations, 2010 CFR
2010-07-01
... radiation environment to which the veteran was exposed and shall include inhaled, ingested and neutron doses. In determining the veteran's dose, initial neutron, initial gamma, residual gamma, and internal... dose, neutron dose, and internal dose. The minimum standards for reporting dose estimates are set forth...
Code of Federal Regulations, 2012 CFR
2012-07-01
... radiation environment to which the veteran was exposed and shall include inhaled, ingested and neutron doses. In determining the veteran's dose, initial neutron, initial gamma, residual gamma, and internal... dose, neutron dose, and internal dose. The minimum standards for reporting dose estimates are set forth...
Code of Federal Regulations, 2014 CFR
2014-07-01
... radiation environment to which the veteran was exposed and shall include inhaled, ingested and neutron doses. In determining the veteran's dose, initial neutron, initial gamma, residual gamma, and internal... dose, neutron dose, and internal dose. The minimum standards for reporting dose estimates are set forth...
Code of Federal Regulations, 2013 CFR
2013-07-01
... radiation environment to which the veteran was exposed and shall include inhaled, ingested and neutron doses. In determining the veteran's dose, initial neutron, initial gamma, residual gamma, and internal... dose, neutron dose, and internal dose. The minimum standards for reporting dose estimates are set forth...
Discovery of DF-461, a Potent Squalene Synthase Inhibitor
2013-01-01
We report the development of a new trifluoromethyltriazolobenzoxazepine series of squalene synthase inhibitors. Structure–activity studies and pharmacokinetics optimization on this series led to the identification of compound 23 (DF-461), which exhibited potent squalene synthase inhibitory activity, high hepatic selectivity, excellent rat hepatic cholesterol synthesis inhibitory activity, and plasma lipid lowering efficacy in nonrodent repeated dose studies. PMID:24900587
Yang, Ping; Jiang, Yuchuan; Hong, Pengzhi; Cao, Wenhong
2013-06-01
Cobia head protein hydrolysate (CHPH) with angiotensin I converting enzyme (ACE) inhibitory activity was prepared with papain. The 3 kDa ultrafiltration filtrate CHPH-IV of the hydrolysate exerted a potent ACE inhibitory activity with IC50 being 0.24 mg/mL. The fractions with molecular weight located between 1749 Da and 173 Da represented up 66.96% of CHPH-IV, and those between 494 Da and 173 Da represented up 31.37% of CHPH-IV. It was found that the ACE inhibitory activity of CHPH-IV was intensified from IC50 0.24 mg/mL to 0.17 mg/mL after incubation with gastrointestinal proteases. The CHPH-IV significantly decreased the systolic blood pressure in a dose-dependent manner after oral administration to spontaneously hypertensive rats (SHR) at dose of 150 mg/kg, 600 mg/kg and 1200 mg/kg body weight. These results suggested that CHPH-IV from cobia head protein hydrolysate by papain could serve as a source of peptides with antihypertensive activity in functional food industry.
1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells.
Yoshimura, Hiroko; Sawai, Yu; Tamotsu, Satoshi; Sakai, Atsushi
2011-03-01
Volatile monoterpenes such as 1,8-cineole inhibit the growth of Brassica campestris seedlings in a dose-dependent manner, and the growth-inhibitory effects are more severe for roots than hypocotyls. The preferential inhibition of root growth may be explained if the compounds inhibit cell proliferation more severely than cell elongation because root growth requires both elongation and proliferation of the constituent cells, whereas hypocotyl growth depends exclusively on elongation of existing cells. In order to examine this possibility, BY-2 suspension-cultured tobacco (Nicotiana tabacum) cells were treated with 1,8-cineole, and the inhibitory effects on cell proliferation and on cell elongation were assessed quantitatively. Treatment with 1,8-cineole lowered both the mitotic index and elongation of the cells in a dose-dependent manner, and the half-maximal inhibitory concentration (IC₅₀) for cell elongation was lower than that for cell proliferation. Moreover, 1,8-cineole also inhibited starch synthesis, with IC₅₀ lower than that for cell proliferation. Thus, the inhibitory effects of 1,8-cineole were not specific to cell proliferation; rather, 1,8-cineole seemed inhibitory to a variety of physiological activities when it was in direct contact with target cells. Based on these results, possible mechanisms for the mode of action of 1,8-cineole and for its preferential inhibition on root growth are discussed.
QSAR Analysis of 2-Amino or 2-Methyl-1-Substituted Benzimidazoles Against Pseudomonas aeruginosa
Podunavac-Kuzmanović, Sanja O.; Cvetković, Dragoljub D.; Barna, Dijana J.
2009-01-01
A set of benzimidazole derivatives were tested for their inhibitory activities against the Gram-negative bacterium Pseudomonas aeruginosa and minimum inhibitory concentrations were determined for all the compounds. Quantitative structure activity relationship (QSAR) analysis was applied to fourteen of the abovementioned derivatives using a combination of various physicochemical, steric, electronic, and structural molecular descriptors. A multiple linear regression (MLR) procedure was used to model the relationships between molecular descriptors and the antibacterial activity of the benzimidazole derivatives. The stepwise regression method was used to derive the most significant models as a calibration model for predicting the inhibitory activity of this class of molecules. The best QSAR models were further validated by a leave one out technique as well as by the calculation of statistical parameters for the established theoretical models. To confirm the predictive power of the models, an external set of molecules was used. High agreement between experimental and predicted inhibitory values, obtained in the validation procedure, indicated the good quality of the derived QSAR models. PMID:19468332
Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.
Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio
2016-04-19
Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Helmick, Kelly E; Brown, Daniel R; Jacobson, Elliott R; Brown, Mary B
2002-06-01
A recently described mycoplasma, Mycoplasma alligatoris, was isolated from dead American alligators (Alligator mississippiensis) that had demonstrated clinical signs of lethargy, anorexia, bilateral ocular discharge, edema. paraparesis, and polyarthritis. The in vitro minimum inhibitory concentration for nine antibacterial agents was determined through serial dilution in broth and plate culture for M. alligatoris isolates. The inhibitory concentration obtained for doxycycline, enrofloxacin, sarafloxacin, oxytetracycline, tilmicosin, and tylosin (< 1 microg/ml) was lower than that of clindamycin (1-8 microg/ml), chloramphenicol (8-16 microg/ml), and erythromycin (32-138 microg/ml).
Refolding of soluble leukemia inhibitory factor receptor fusion protein (gp 190 sol DAF) from urea.
Liu, H; Moreau, J F; Gualde, N; Fu, J
1997-04-01
The insoluble inclusion bodies of soluble leukemia inhibitory factor receptor fusion protein (gp 190 sol DAF) was solubilized in 8 M urea on the unfolding transitions, and several factors on the aggregate formation were indirectly analyzed for the refolding of gp 190 sol DAF. Results indicate that the refolding yield can be considerably increased at lowering concentration of the unfolding protein, a little soluble protein with the slow refolding appears in the process of the aggregate formation and the concentration of the denaturant must be down to a minimum level for its refolding.
USDA-ARS?s Scientific Manuscript database
To determine if Campylobacter isolation method influenced antimicrobial susceptibility results, the minimum inhibitory concentrations (MIC) of nine antimicrobials were compared for 291 pairs of Campylobacter isolates recovered from chicken carcass rinse samples using direct plating and an enrichment...
Lu, Hai-Peng; Jia, Ya-Nan; Peng, Ya-Lin; Yu, Yan; Sun, Si-Long; Yue, Meng-Ting; Pan, Min-Hui; Zeng, Ling-Shu; Xu, Li
2017-12-01
Morus alba L. (mulberry) twig is known to have an inhibitory effect on pathogens in traditional Chinese medicine. In the present study, the dermophytic fungus, Trichophyton rubrum, was used to evaluate the inhibitory effect of total M. alba twig extract and extracts obtained using solvents with different polarities by the method of 96-well MTT colorimetry. The main active substance was isolated and identified by tracking its activity. In addition, the inhibitory effects of active extracts and a single active substance were investigated in combination with miconazole nitrate. Our data indicated that ethyl acetate extracts of mulberry twig (TEE) exhibited a desired inhibitory activity on T. rubrum with the minimum inhibitory concentration (MIC) of 1.000 mg/mL. With activity tracking, the main substance showing antimicrobial activity was oxyresveratrol (OXY), which was isolated from TEE. Its MIC for inhibiting the growth of T. rubrum was 0.500 mg/mL. The combined use of miconazole nitrate and OXY showed a synergistic inhibitory effect, as shown by a significant decrease in the MIC of both components. Based on the OXY content in TEE, the contribution rate of OXY to the inhibitory effect of TEE on T. rubrum was 80.52%, so it was determined to be the main antimicrobial substance in M. alba twig. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Lowrance, T Courtney; Loneragan, Guy H; Kunze, David J; Platt, Tammy M; Ives, Samuel E; Scott, H Morgan; Norby, Bo; Echeverry, Alejandro; Brashears, Mindy M
2007-05-01
To determine effects of administration of ceftiofur crystalline-free acid (CCFA) on antimicrobial susceptibility of Escherichia coli in feedlot cattle. 61 feedlot steers. A cohort study was conducted. Steers were housed in pens (5 pens with 10 steers and 1 pen with 11 steers). Five steers in each pen were administered CCFA, and 5 served as control steers (1 pen had 6 control steers). The CCFA administration included a single-dose regimen (6.6 mg/kg, SC, on day 0), two-thirds-dose regimen (4.4 mg/kg, SC, on day 0), and 3-dose regimen (6.6 mg/kg, SC, on days 0, 6, and 13). Fecal samples were collected on days 0, 2, 6, 9, 13, 16, 20, and 28. Fecal samples were collected immediately before CCFA administration. Minimum inhibitory concentrations of 15 antimicrobials were determined for 3 E coli isolates/fecal sample. Escherichia coli were enumerated by use of direct-plating techniques. Resistance to 1 or more antimicrobials was detected in 986 of 1,441 (68.4%) isolates recovered. Administration of CCFA was associated with a transient increase in the population of ceftiofur-resistant isolates. Susceptibility returned to day 0 values (ie, samples collected immediately before CCFA administration) approximately 2 weeks after completion of CCFA administration. Agreement between ceftiofur resistance and co-resistance to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline was almost perfect (kappa 0.97). We did not detect variation in susceptibility of E coli recovered from commingled control steers. Administration of CCFA provided selection pressure that favored transient expansion of multiple-resistant variants.
The management of multidrug-resistant Enterobacteriaceae.
Bassetti, Matteo; Peghin, Maddalena; Pecori, Davide
2016-12-01
Multidrug-resistant (MDR) Enterobacteriaceae are often related to the production of extended-spectrum b-lactamases (ESBLs) and carbapenemase-producing Enterobacteriaceae (CRE), and represent an increasing global threat. Recommendations for the therapeutic management of MDR-related infections, however, are mainly derived from retrospective and nonrandomized prospective studies. The aim of this review is to discuss the challenges in the treatment of patients with infections because of MDR Enterobacteriaceae and provide an expert opinion while awaiting for more definitive data. To avoid the selection of carbapenemase-producing Enterobacteriaceae, carbapenem-sparing strategies should be considered. B-lactams/b-lactamase inhibitors, mainly piperacillin-tazobactam, minimum inhibitory concentration (MIC) 16/4mg/ml or less represents the best alternative to carbapenems for the treatment of ESBL-producing strains. Overall, combination therapy may be preferred over monotherapy for CRE. The combination of a carbapenem-containing regimen with colistin or high-dose tigecycline or aminoglycoside can be administered at high-dose prolonged infusion with therapeutic drug monitoring for the treatment of CRE with MIC for meropenem 8-16 mg/l or less. For MIC higher than 8-16 mg/l, the use of meropenem should be avoided and various combination therapies based on the in-vitro susceptibility of antimicrobials (e.g., colistin, high-dose tigecycline, fosfomycin, and aminoglycosides) should be selected. Carbapenem-sparing strategies should be used, when feasible, for ESBL infections. The majority of available nonrandomized studies highlight that combination for CRE seem to offer some therapeutic advantage over monotherapy. Strict infection control measures toward MDR Gram-negative pathogens remain necessary while awaiting for new treatment options.
Black, L A; Landersdorfer, C B; Bulitta, J B; Griffith, J E; Govendir, M
2014-06-01
Clinically normal koalas (n = 6) received a single dose of intravenous enrofloxacin (10 mg/kg). Serial plasma samples were collected over 24 h, and enrofloxacin concentrations were determined via high-performance liquid chromatography. Population pharmacokinetic modeling was performed in S-ADAPT. The probability of target attainment (PTA) was predicted via Monte Carlo simulations (MCS) using relevant target values (30-300) based on the unbound area under the curve over 24 h divided by the minimum inhibitory concentration (MIC) (fAUC0-24 /MIC), and published subcutaneous data were incorporated (Griffith et al., 2010). A two-compartment disposition model with allometrically scaled clearances (exponent: 0.75) and volumes of distribution (exponent: 1.0) adequately described the disposition of enrofloxacin. For 5.4 kg koalas (average weight), point estimates for total clearance (SE%) were 2.58 L/h (15%), central volume of distribution 0.249 L (14%), and peripheral volume 2.77 L (20%). MCS using a target fAUC0-24 /MIC of 40 predicted highest treatable MICs of 0.0625 mg/L for intravenous dosing and 0.0313 mg/L for subcutaneous dosing of 10 mg/kg enrofloxacin every 24 h. Thus, the frequently used dosage of 10 mg/kg enrofloxacin every 24 h subcutaneously may be appropriate against gram-positive bacteria with MICs ≤ 0.03 mg/L (PTA > 90%), but appears inadequate against gram-negative bacteria and Chlamydiae in koalas. © 2013 John Wiley & Sons Ltd.
Jankowska, Petra J; Kong, Christine; Burke, Kevin; Harrington, Kevin J; Nutting, Christopher
2007-10-01
High dose irradiation of the posterior cervical lymph nodes usually employs applied electron fields to treat the target volume and maintain the spinal cord dose within tolerance. In the light of recent advances in elective lymph node localisation we investigated optimization of field shape and electron energy to treat this target volume. In this study, three sequential hypotheses were tested. Firstly, that customization of the electron fields based on the nodal PTV outlined gives better PTV coverage than conventional field delineation. Using the consensus guidelines, customization of the electron field shape was compared to conventional fields based on bony landmarks. Secondly, that selection of electron energy using DVHs for spinal cord and PTV improves the minimum dose to PTV. Electron dose-volume histograms (DVHs) for the PTV, spinal cord and para-vertebral muscles, were generated using the Monte Carlo electron algorithm. These DVHs were used to compare standard vs optimized electron energy calculations. Finally, that combination of field customization and electron energy optimization improves both the minimum and mean doses to PTV compared with current standard practice. Customized electron beam shaping based on the consensus guidelines led to fewer geographical misses than standard field shaping. Customized electron energy calculation led to higher minimum doses to the PTV. Overall, the customization of field shape and energy resulted in an improved mean dose to the PTV (92% vs 83% p=0.02) and a 27% improvement in the minimum dose delivered to the PTV (45% vs 18% p=0.0009). Optimization of electron field shape and beam energy based on current consensus guidelines led to significant improvement in PTV coverage and may reduce recurrence rates.
Continuous infusion of beta-lactam antibiotics in severe infections: a review of its role.
Roberts, Jason A; Paratz, Jennifer; Paratz, Elizabeth; Krueger, Wolfgang A; Lipman, Jeffrey
2007-07-01
Continuous infusion of beta-lactam antibiotics has been widely promoted to optimise their time-dependent activity. Increasing evidence is emerging suggesting potential benefits in patient populations with altered pathophysiology, such as seriously ill patients. From a pharmacokinetic viewpoint, much information supports higher trough concentrations of beta-lactam antibiotics when administered by continuous infusion. This advantage of continuous infusion translates into a superior ability to achieve pharmacodynamic targets, particularly when the minimum inhibitory concentration (MIC) of the pathogen is >or=4 mg/L. One drawback of continuous infusion may be limited physicochemical stability. This issue exists particularly for carbapenem antibiotics whereby prolonged infusions (i.e. >3h) can be used to improve the time above the MIC compared with conventional bolus dosing. Few studies have examined clinical outcomes of bolus and continuous dosing of beta-lactam antibiotics in seriously ill patients. No statistically significant differences have been shown for: mortality; time to normalisation of leukocytosis or pyrexia; or duration of mechanical ventilation, intensive care unit stay or hospital stay. Some evidence suggests improved clinical cure and resolution of illness with continuous infusion in seriously ill patients. Pharmacoeconomic advantages of continuous infusion of beta-lactam antibiotics are well characterised. Available data suggest that seriously ill patients with severe infections requiring significant antibiotic courses (>or=4 days) may be the subgroup that will achieve better outcomes with continuous infusion.
Forskolin enhances in vivo bone formation by human mesenchymal stromal cells.
Doorn, Joyce; Siddappa, Ramakrishnaiah; van Blitterswijk, Clemens A; de Boer, Jan
2012-03-01
Activation of the protein kinase A (PKA) pathway with dibutyryl cyclic adenosine monophosphate (db-cAMP) was recently shown to enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs) in vitro and bone formation in vivo. The major drawback of this compound is its inhibitory effect on proliferation of hMSCs. Therefore, we investigated whether fine-tuning of the dose and timing of PKA activation could enhance bone formation even further, with minimum effects on proliferation. To test this, we selected two different PKA activators (8-bromo-cAMP (8-br-cAMP) and forskolin) and compared their effects on proliferation and osteogenic differentiation with those of db-cAMP. We found that all three compounds induced alkaline phosphatase levels, bone-specific target genes, and secretion of insulin-like growth factor-1, although 8-br-cAMP induced adipogenic differentiation in long-term cultures and was thus considered unsuitable for further in vivo testing. All three compounds inhibited proliferation of hMSCs in a dose-dependent manner, with forskolin inhibiting proliferation most. The effect of forskolin on in vivo bone formation was tested by pretreating hMSCs before implantation, and we observed greater amounts of bone using forskolin than db-cAMP. Our data show forskolin to be a novel agent that can be used to increase bone formation and also suggests a role for PKA in the delicate balance between adipogenic and osteogenic differentiation.
Albarellos, Gabriela A; Montoya, Laura; Passini, Sabrina M; Lupi, Martín P; Lorenzini, Paula M; Landoni, María F
2016-12-01
The aim of the study was to describe the pharmacokinetics and predicted efficacy of meropenem after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration to cats at a single dose of 10 mg/kg. Five adult healthy cats were used. Blood samples were withdrawn at predetermined times over a 12 h period. Meropenem concentrations were determined by microbiological assay. Pharmacokinetic analyses were performed with computer software. Initial estimates were determined using the residual method and refitted by non-linear regression. The time that plasma concentrations were greater than the minimum inhibitory concentration (T >MIC) was estimated by applying bibliographic MIC values and meropenem MIC breakpoint. Maximum plasma concentrations of meropenem were 101.02 µg/ml (C p(0) , IV), 27.21 µg/ml (C max , IM) and 15.57 µg/ml (C max , SC). Bioavailability was 99.69% (IM) and 96.52 % (SC). Elimination half-lives for the IV, IM and SC administration were 1.35, 2.10 and 2.26 h, respectively. Meropenem, when administered to cats at a dose of 10 mg/kg q12h,, is effective against bacteria with MIC values of 6 μg/ml, 7 μg/ml and 10 μg/ml for IV, IM and SC administration, respectively. However, clinical trials are necessary to confirm clinical efficacy of the proposed dosage regimen. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Beyzaei, Hamid; Aryan, Reza; Moghaddam-Manesh, Mohammadreza; Ghasemi, Behzad; Karimi, Pouya; Samareh Delarami, Hojat; Sanchooli, Mahmood
2017-09-01
The synthesis of pyrazolo[3,4-d]pyrimidine derivatives is important due to their presence in various biologically active compounds such as anticancer, antimicrobial, antiparasitic, anti-inflammatory and antidiabetic agents. In this project, a new and efficient approach for the synthesis of some novel 4-imino-5H-pyrazolo[3,4-d]pyrimidin-5-amines from reaction of 5-amino-pyrazole-4-carbonitrile with various hydrazides in ethanolic sodium ethoxide medium was reported. Antimicrobial activities of all synthesized derivatives were evaluated against eight Gram-positive and five Gram-negative pathogenic bacteria. The moderate to good inhibitory effects were observed based on inhibition zone diameter (IZD), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. In order to determine the reasonable relationship between antibacterial activities and physiochemical properties of the derivatives, computational studies were carried out in terms of geometry optimization, short-range van der Waals forces, dipole moments, atomic charges and frontier orbital energies. It was found that both short-range forces and covalent bonds are important in the observed inhibitory effects of the molecules. The results suggested that pyrazolo[3,4-d]pyrimidine derivatives prefer a soft nucleophilic attack on bio-macromolecular targets. Furthermore, our models proposed that the antibacterial activities of these derivatives can be improved by substituting large electron donating groups on the 6-phenyl rings.
Bukvicki, Danka; Giweli, Abdulhmid; Stojkovic, Dejan; Vujisic, Ljubodrag; Tesevic, Vele; Nikolic, Milos; Sokovic, Marina; Marin, Petar D
2018-05-01
The essential oil of Thymus algeriensis was analyzed as a potential preservative in soft cheese. We developed a novel method to test the preserving properties of essential oil in soft cheese. Contamination incidence of Penicillium aurantiogriseum was absent after 30 d of storage at 4°C with 25 µL of essential oil added. The antimicrobial activity was tested against 8 bacteria and 8 fungi. Thymus algeriensis oil showed inhibitory activity against tested bacteria at 0.03 to 0.09 mg/mL, and bactericidal activity was achieved at 0.05 to 0.15 mg/mL. For antifungal activity, minimum inhibitory concentrations ranged between 0.01 and 0.04 mg/mL and minimum fungicidal concentrations between 0.01 and 0.04 mg/mL. Furthermore, the oil was also screened for antiradical activity using the 1,1-diphenyl-2-picrylhydrazyl assay. The results showed that the oil was active and achieved half-maximal inhibitory activity at 0.132 mg/mL. We used gas chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectrometry to investigate the volatile compounds from the oil. Carvacrol was identified as the main compound in the oil, represented by 80.9% of the total constituents, followed by p-cymene (7.7%). Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Antibacterial Activity of Anthraquinone from Aloe on Spiced Pig Head
NASA Astrophysics Data System (ADS)
Xu, Lingyi; Li, Xiao; Cui, Yuqian; Pang, Meixia; Wang, Fang; Qi, Jinghua
2017-12-01
[Objective] To optimize the extraction of anthraquinone from Aloe by ultrasonic extraction and its antibacterialactivity. [Method]The influences of different extraction time and ethanol concentration, on anthraquinone contentwere evaluated by asingle factor experiment. And anthraquinone content was determined by ultraviolet spectrophotometry. The bacteriostasis of anthraquinone on spiced pig head’s common putrefying bacteria: Staphylococcus, Serratieae, Bacillus, Proteus and the minimal inhibitory concentration (MIC) were studied by oxford plate assay system. [Result]The best extraction time was 30 minutes and the best ethanol concentration was 80%. The antibacterial activity of the Aloe anthraquinone on Staphylococcus Aureus, Bacillus Proteus is obviously, the minimum inhibitory concentrations were 0.0625 g/mL, 0.05 g/mL, 0.125 g/mL respectively and no inhibitory effect on Serratieae. [Conclusions] The anthraquinones from Aloe can inhibit a part Of spoilage bacteria inspiced pig heads.
Riccobene, Todd A; Khariton, Tatiana; Knebel, William; Das, Shampa; Li, James; Jandourek, Alena; Carrothers, Timothy J; Bradley, John S
2017-03-01
Ceftaroline, the active form of the prodrug ceftaroline fosamil, is approved for use in adults with community-acquired bacterial pneumonia (CABP) or acute bacterial skin and skin structure infections (ABSSSI) in the United States and for similar indications in Europe. Pharmacokinetic (PK) data from 5 pediatric (birth to <18 years) studies of ceftaroline fosamil were combined with PK data from adults to update a population PK model for ceftaroline and ceftaroline fosamil. This model, based on a data set including 305 children, was used to conduct simulations to estimate ceftaroline exposures and percentage of time that free drug concentrations were above the minimum inhibitory concentration (%fT>MIC) for pediatric dose regimens. With dose regimens of 8 mg/kg every 8 hours (q8h) in children aged 2 months to <2 years and 12 mg/kg (up to a maximum of 400 mg) q8h in children aged 2 years to <18 years or 600 mg q12h in children aged 12 to <18 years, >90% of children were predicted to achieve a target of 36% fT>MIC at an MIC of 2 mg/L, and >97% were predicted to achieve 44% fT>MIC at an MIC of 1 mg/L. Thus, high PK/pharmacodynamic target attainment would be maintained in children for targets associated with 1-log kill of Staphylococcus aureus and Streptococcus pneumoniae. The predicted ceftaroline exposures for these dose regimens were similar to those in adults given 600 mg q12h ceftaroline fosamil. This work contributed to the approval of dose regimens for children aged 2 months to <18 years by the FDA and EMA, which are presented. © 2016, The American College of Clinical Pharmacology.
Basak, Suradeep; Guha, Proshanta
2015-12-23
The current study aimed at characterizing the chemical components of betel leaf (Piper betle L. var. Tamluk Mitha) essential oil (BLEO) and modelling its effect on growth of Penicillium expansum on semi-synthetic medium. Gas chromatography-mass spectrophotometry (GC-MS) analysis of BLEO revealed the presence of different bioactive phenolic compounds in significant amounts. Among 46 different components identified, chavibetol (22.0%), estragole (15.8%), β-cubebene (13.6%), chavicol (11.8%), and caryophyllene (11.3%) were found to be the major compounds of BLEO. A disc diffusion and disc volatilization method were used to evaluate antifungal activity of the oil against a selected food spoilage mould. The logistic model was used to study the kinetics of spore germination. Prediction and validation of antifungal effect of BLEO was performed on semi-synthetic medium (apple juice agar) using predictive microbiological tools. The Baranyi and Roberts model was used to estimate maximum growth rate (μmax in mm/day) and apparent lag time (λ in days) of the mould. Secondary modelling was performed using a re-parameterized Monod-type equation based on cardinal values to study the effect of different BLEO concentration on estimated growth parameters. Emax (minimum concentration of oil at which mould growth was inhibited) and MIC (minimum inhibitory concentration of BLEO at which lag time is infinite) value of BLEO against P. expansum was estimated to be 0.56 and 0.74 μl/ml, respectively, which was found to be similar on potato dextrose agar (PDA) as well as apple juice agar (AJA) medium. The correlation between estimated growth parameters of the mould on both the media was obtained with satisfactory statistical indices (R(2) and RMSE). This study revealed inhibitory efficacy of BLEO on spore germination, mycelial growth and apparent lag time of P. expansum in a dose-dependent manner. Hence, BLEO has potential to be used as a natural food preservative. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Liamocin oil from Aureobasidium pullulans NRRL 50380 was tested for antibacterial activity. Liamocins inhibited growth of Streptococcus agalactiae, S. uberis, S. mitis, S. infantarius, and S. mutans, with minimum inhibitory concentrations from 20 'g/ml to 78 'g/ml. Enterococcus faecalis was less sus...
Shin, Jae M.; Ateia, Islam; Paulus, Jefrey R.; Liu, Hongrui; Fenno, J. Christopher; Rickard, Alexander H.; Kapila, Yvonne L.
2015-01-01
Objectives: Nisin is a lantibiotic widely used for the preservation of food and beverages. Recently, investigators have reported that nisin may have clinical applications for treating bacterial infections. The aim of this study was to investigate the effects of ultra pure food grade Nisin ZP (>95% purity) on taxonomically diverse bacteria common to the human oral cavity and saliva derived multi-species oral biofilms, and to discern the toxicity of nisin against human cells relevant to the oral cavity. Methods: The minimum inhibitory concentrations and minimum bactericidal concentrations of taxonomically distinct oral bacteria were determined using agar and broth dilution methods. To assess the effects of nisin on biofilms, two model systems were utilized: a static and a controlled flow microfluidic system. Biofilms were inoculated with pooled human saliva and fed filter-sterilized saliva for 20–22 h at 37°C. Nisin effects on cellular apoptosis and proliferation were evaluated using acridine orange/ethidium bromide fluorescent nuclear staining and lactate dehydrogenase activity assays. Results: Nisin inhibited planktonic growth of oral bacteria at low concentrations (2.5–50 μg/ml). Nisin also retarded development of multi-species biofilms at concentrations ≥1 μg/ml. Specifically, under biofilm model conditions, nisin interfered with biofilm development and reduced biofilm biomass and thickness in a dose-dependent manner. The treatment of pre-formed biofilms with nisin resulted in dose- and time-dependent disruption of the biofilm architecture along with decreased bacterial viability. Human cells relevant to the oral cavity were unaffected by the treatment of nisin at anti-biofilm concentrations and showed no signs of apoptotic changes unless treated with much higher concentrations (>200 μg/ml). Conclusion: This work highlights the potential therapeutic value of high purity food grade nisin to inhibit the growth of oral bacteria and the development of biofilms relevant to oral diseases. PMID:26150809
Oxytrex: an oxycodone and ultra-low-dose naltrexone formulation.
Webster, Lynn R
2007-08-01
Oxytrex (Pain Therapeutics, Inc.) is an oral opioid that combines a therapeutic amount of oxycodone with an ultra-low dose of the antagonist naltrexone. Animal data indicate that this combination minimizes the development of physical dependence and analgesic tolerance while prolonging analgesia. Oxytrex is in late-stage clinical development by Pain Therapeutics for the treatment of moderate-to-severe chronic pain. To evaluate the safety and efficacy of the oxycodone/naltrexone combination, three clinical studies have been conducted, one in healthy volunteers and the other two in patients with chronic pain. The putative mechanism of ultra-low-dose naltrexone is to prevent an alteration in G-protein coupling by opioid receptors that is associated with opioid tolerance and dependence. Opioid agonists are initially inhibitory but become excitatory through constant opioid receptor activity. The agonist/antagonist combination of Oxytrex may reduce the conversion from an inhibitory to an excitatory receptor, thereby decreasing the development of tolerance and physical dependence.
Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks.
Gibbs, M E; Johnston, G A R
2005-01-01
The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.
Gonçalves, Randys Caldeira; da Silva, Diego Pereira; Signini, Roberta; Naves, Plínio Lázaro Faleiro
2017-12-01
Investigation of the antimicrobial action of carboxymethyl chitosan (CMCh) is among the alternative approaches in the control of pathogenic microorganisms. This study aimed to screen the toxicity using the brine shrimp lethality assay and to investigate the inhibitory activity of carboxymethyl in isolation or in combination with silver nitrate, copper sulfate and zinc sulfate on biofilm formation by Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, Kocuria rhizophila ATCC 9341, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 25312, and Burkholderia cepacia ATCC 17759. The CMCh was obtained by reacting chitosan with monochloroacetic acid under alkaline conditions, and the occurrence of carboxymethylation was evidenced by FTIR and 1 H NMR spectroscopy. The CMCh was combined with metallic salts (AgNO 3 , CuSO 4 ·5H 2 O and ZnSO 4 ) to perform the bioassays to screen the toxicity, to determine the minimum inhibitory concentration and the impact of sub-inhibitory concentrations against biofilm formation. Although CMCh did not show inhibitory activity against bacterial growth, it had an interesting level of inhibition of bacterial biofilm. The results suggest that sub-inhibitory concentrations of compounds were effective against biofilm formation. Copyright © 2017 Elsevier B.V. All rights reserved.
Thierry-Chef, Isabelle; Simon, Steven L.; Weinstock, Robert M.; Kwon, Deukwoo; Linet, Martha S.
2013-01-01
The assessment of potential benefits versus harms from mammographic examinations as described in the controversial breast cancer screening recommendations of the U.S. Preventive Task Force included limited consideration of absorbed dose to the fibroglandular tissue of the breast (glandular tissue dose), the tissue at risk for breast cancer. Epidemiological studies on cancer risks associated with diagnostic radiological examinations often lack accurate information on glandular tissue dose, and there is a clear need for better estimates of these doses. Our objective was to develop a quantitative summary of glandular tissue doses from mammography by considering sources of variation over time in key parameters including imaging protocols, x-ray target materials, voltage, filtration, incident air kerma, compressed breast thickness, and breast composition. We estimated the minimum, maximum, and mean values for glandular tissue dose for populations of exposed women within 5-year periods from 1960 to the present, with the minimum to maximum range likely including 90% to 95% of the entirety of the dose range from mammography in North America and Europe. Glandular tissue dose from a single view in mammography is presently about 2 mGy, about one-sixth the dose in the 1960s. The ratio of our estimates of maximum to minimum glandular tissue doses for average-size breasts was about 100 in the 1960s compared to a ratio of about 5 in recent years. Findings from our analysis provide quantitative information on glandular tissue doses from mammographic examinations which can be used in epidemiologic studies of breast cancer. PMID:21988547
Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting.
Hsu, Ching-Yun; Yang, Shih-Chun; Sung, Calvin T; Weng, Yi-Han; Fang, Jia-You
2017-01-01
Pathogens usually invade hair follicles when skin infection occurs. The accumulated bacteria in follicles are difficult to eradicate. The present study aimed to assess the cutaneous and follicular delivery of chloramphenicol (Cm)-loaded liposomes and the antibacterial activity of these liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Skin permeation was conducted by in vitro Franz diffusion cell. The anti-MRSA potential was checked using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), a well diffusion test, and intracellular MRSA killing. The classic, dimyristoylphosphatidylcholine (DMPC), and deoxycholic acid (DA) liposomes had a vesicle size of 98, 132, and 239 nm, respectively. The incorporation of DMPC or DA into the liposomes increased the bilayer fluidity. The malleable vesicles containing DMPC and DA showed increased follicular Cm uptake over the control solution by 1.5- and 2-fold, respectively. The MIC and MBC of DA liposomes loaded with Cm were 62.5 and 62.5-125 μg/mL, comparable to free Cm. An inhibition zone about 2-fold higher was achieved by DA liposomes as compared to the free control at a Cm dose of 0.5 mg/mL. DA liposomes also augmented antibacterial activity on keratinocyte-infected MRSA. The deformable liposomes had good biocompatibility against keratinocytes and neutrophils (viability >80%). In vivo administration demonstrated that DA liposomes caused negligible toxicity on the skin, based on physiological examination and histology. These data suggest the potential application of malleable liposomes for follicular targeting and the treatment of MRSA-infected dermatologic conditions.
Dorey, L; Hobson, S; Lees, P
2017-04-01
Pharmacodynamic properties of marbofloxacin were established for six isolates each of the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Three in vitro indices of potency were determined; Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Mutant Prevention Concentration (MPC). For MIC determination Clinical Laboratory Standards Institute guidelines were modified in three respects: (1) comparison was made between two growth media, an artificial broth and pig serum; (2) a high inoculum count was used to simulate heavy clinical bacteriological loads; and (3) five overlapping sets of two-fold dilutions were used to improve accuracy of determinations. Similar methods were used for MBC and MPC estimations. MIC and MPC serum:broth ratios for A. pleuropneumoniae were 0.79:1 and 0.99:1, respectively, and corresponding values for P. multocida were 1.12:1 and 1.32:1. Serum protein binding of marbofloxacin was 49%, so that fraction unbound (fu) serum MIC values were significantly lower than those predicted by correction for protein binding; fu serum:broth MIC ratios were 0.40:1 (A. pleuropneumoniae) and 0.50:1 (P. multocida). For broth, MPC:MIC ratios were 13.7:1 (A. pleuropneumoniae) and 14.2:1 (P. multocida). Corresponding ratios for serum were similar, 17.2:1 and 18.8:1, respectively. It is suggested that, for dose prediction purposes, serum data might be preferable to potency indices measured in broths. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anti-bacterial activity of synthetic N-heterocyclic oxidizing compounds.
Babalola, G O
1998-01-01
Synthetic chlorochromate derivatives of pyridine and quinoline were active in vitro against type cultures of Escherichia coli (ATCC 128), Staphylococcus aureus (ATCC 14775), Pseudomonas aeruginosa (ATCC 10145) and Bacillus subtilis (NCTC 8236). The minimum inhibitory concentrations (MIC) were 125-250 micrograms ml-1 and 250-500 micrograms ml-1 for pyridinium chlorochromate and quinolinium chlorochromate, respectively. An established derivative of quinoline (Perfloxacin) had an MIC of 125-250 micrograms ml-1. The extinction time for 10(5) cfu in broth was 90 min for pyridinium chlorochromate and 120 min for quinolinium chlorochromate, except for B. subtilis which survived up to about 180 min and 360 min. A combination of the two compounds produced an antagonistic effect. The 50% lethal dose (LD50 toxicity) in mice was estimated at 76 micrograms g-1 and 33 micrograms g-1 body weight for the quinolinium and pyridinium chlorochromates. The compounds also exhibited some potential for suppressing a simulated staphylococcal infection in mice at the dosage levels of ca 22 micrograms g-1 for pyridinium chlorochromate and 45 micrograms g-1 for quinolinium chlorochromate.
Evaluation of ceftiofur–PHBV microparticles in rats
Vilos, Cristian; Constandil, Luis; Rodas, Paula I; Cantin, Mario; Zepeda, Katherine; Herrera, Natalia; Velasquez, Luis A
2014-01-01
Despite the high number of antibiotics used for the treatment of infectious disease in animals, the development of slow release formulations presents a significant challenge, particularly in using novel biomaterials with low cost. In this report, we studied the pharmacokinetics, toxicity, and therapeutic activity of ceftiofur–PHBV (ceftiofur–poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) in rats. The pharmacokinetic study demonstrated a sustained release of ceftiofur into the bloodstream, with detectable levels over the minimum inhibitory concentration for at least 17 days after a single intramuscular injection of ceftiofur–PHBV (10 mg/kg weight). In addition, the toxicological evaluation of biochemical, hematological, and coagulation blood parameters at the therapeutic dose demonstrated the safety of ceftiofur–PHBV, with no adverse effects. In addition, ceftiofur–PHBV exhibited a therapeutic effect for a longer time period than the nonencapsulated ceftiofur in rats challenged with Salmonella Typhimurium. The slow release of ceftiofur from the ceftiofur–PHBV, its low toxicity in the blood parameters evaluated, and the efficacy in the rats infected with Salmonella Typhimurium make ceftiofur–PHBV a strong candidate for biotechnological applications in the veterinary industry. PMID:24936127
Demirci, Betul; Yusufoglu, Hasan Soliman; Tabanca, Nurhayat; Temel, Halide Edip; Bernier, Ulrich R; Agramonte, Natasha M; Alqasoumi, Saleh Ibrahim; Al-Rehaily, Adnan Jathlan; Başer, Kemal Husnu Can; Demirci, Fatih
2017-07-01
The essential oil (EO) of the aerial parts of Rhanterium epapposum Oliv. (Asteraceae), was obtained by hydrodistillation. The oil was subsequently analyzed by both GC-FID and GC-MS, simultaneously. Forty-five components representing 99.2% of the oil composition were identified. The most abundant compounds were camphene (38.5%), myrcene (17.5%), limonene (10.1%) and α-pinene (8.7%). Referring to the ethnobotanical utilization, an insecticidal assay was performed, where the oil repelled the yellow fever mosquito Aedes aegypti L. at a minimum effective dose (MED of 0.035 ± 0.010 mg/cm 2 ) compared to the positive control DEET (MED of 0.015 ± 0.004 mg/cm 2 ). Additionally, the in vitro antimicrobial activity against a panel of pathogens was determined using a microdilution method. The acetyl- and butyrylcholine esterase inhibitory activities were measured using the colorimetric Ellman method. The bioassay results showed that the oil was rather moderate in antimicrobial and cholinesterase inhibitions when compared to the standard compounds.
Korting, H C; Abeck, D
1989-01-01
The highest minimum inhibitory concentrations of ceftriaxone and cefotaxime in 89 analysed Neisseria gonorrhoeae isolates amounted to 0.008 and 0.031 micrograms/ml, respectively. In a randomized controlled trial the single intramuscular injection of ceftriaxone 250 mg and cefotaxime 500 mg cured bacteriologically 35 out of 35, and 29 out of 30 patients, respectively, with uncomplicated gonorrhoea. Facing the different phenotypes of the isolates grown before and after therapy in the case of the non-cured patient within the cefotaxime treatment group, reinfection rather than failure has to be presumed. Postgonococcal urethritis occurred about as often in both groups, the percentage amounting to 24.2 and 28.6%, respectively. If side effects were noted at all, they were considered minor: 4 patients belonging to the first and 3 belonging to the second treatment group complained temporarily about pain at the injection site. Due to the data presented here, ceftriaxone and cefotaxime appear equally effective and safe when used in the dose generally preferred, irrespective of differences in in vitro activity and pharmacokinetic behaviour.
Xiang, Hua; Cao, Fengjiao; Ming, Di; Zheng, Yanyang; Dong, Xiaoyun; Zhong, Xiaobo; Mu, Dan; Li, Bangbang; Zhong, Ling; Cao, Junjie; Wang, Lin; Ma, Hongxia; Wang, Tiedong; Wang, Dacheng
2017-09-01
Staphylococcus aureus (S. aureus) biofilms are clinically serious and play a critical role in the persistence of chronic infections due to their ability to resist antibiotics. The inhibition of biofilm formation is viewed as a new strategy for the prevention of S. aureus infections. Here, we demonstrated that minimum inhibitory concentrations (MICs) of aloe-emodin exhibited no bactericidal activity against S. aureus but affected S. aureus biofilm development in a dose-dependent manner. Further studies indicated that aloe-emodin specifically inhibits the initial adhesion and proliferation stages of S. aureus biofilm development. Scanning electron microscopy (SEM) indicated that the S. aureus ATCC29213 biofilm extracellular matrix is mainly composed of protein. Laser scanning confocal microscope assays revealed that aloe-emodin treatment primarily inhibited extracellular protein production. Moreover, the Congo red assay showed that aloe-emodin also reduced the accumulation of polysaccharide intercellular adhesin (PIA) on the cell surface. These findings will provide new insights into the mode of action of aloe-emodin in the treatment of infections by S. aureus biofilms.
NASA Astrophysics Data System (ADS)
Song, Mingzhu; Wang, Xirui; Mao, Canquan; Yao, Wei
2018-01-01
Natural medicinal plants and their extracts are important sources of antimicrobial drug development. In this study, we reported an ancient formula of Chinese folk medicine, the compound natural medicinal plant fermentation extracts (CNMPFE) for its antimicrobial effects. The effects and mechanisms of CNMPFE on C. albicans were studied by cell damage experiments including antimicrobial kinetics, fungal growth curve, alkaline phosphatase (AKP) activity, ultraviolet absorption, electric conductivity and the evaluation of cellular ultra microstructure. The results showed that the minimal inhibitory concentration and minimum fungicidal concentration of CNMPFE against C. albicans were 75% (vol/vol) and 80% (vol/vol) respectively. The inhibition of CNMPFE for C. albicans was dose and time dependent, based on increasing of the AKP activities and the ultraviolet absorptions and the electric conductivities of the fungal solutions, it may exert its antifungal properties by disrupting the structure of cell wall and the cell membrane integrity and their permeability, subsequently resulting in cell death. Taken together, these findings suggest that CNMPFE may be a promising drug candidate for the treatment of fungal infections skin diseases.
Nikolaou, Kyriaki; Critchley, Hugo; Duka, Theodora
2013-01-01
Alcohol impairs inhibitory control, including the ability to terminate an initiated action. While there is increasing knowledge about neural mechanisms involved in response inhibition, the level at which alcohol impairs such mechanisms remains poorly understood. Thirty-nine healthy social drinkers received either 0.4 g/kg or 0.8 g/kg of alcohol, or placebo, and performed two variants of a Visual Stop-signal task during acquisition of functional magnetic resonance imaging (fMRI) data. The two task variants differed only in their instructions: in the classic variant (VSST), participants inhibited their response to a "Go-stimulus" when it was followed by a "Stop-stimulus". In the control variant (VSST_C), participants responded to the "Go-stimulus" even if it was followed by a "Stop-stimulus". Comparison of successful Stop-trials (Sstop)>Go, and unsuccessful Stop-trials (Ustop)>Sstop between the three beverage groups enabled the identification of alcohol effects on functional neural circuits supporting inhibitory behaviour and error processing. Alcohol impaired inhibitory control as measured by the Stop-signal reaction time, but did not affect other aspects of VSST performance, nor performance on the VSST_C. The low alcohol dose evoked changes in neural activity within prefrontal, temporal, occipital and motor cortices. The high alcohol dose evoked changes in activity in areas affected by the low dose but importantly induced changes in activity within subcortical centres including the globus pallidus and thalamus. Alcohol did not affect neural correlates of perceptual processing of infrequent cues, as revealed by conjunction analyses of VSST and VSST_C tasks. Alcohol ingestion compromises the inhibitory control of action by modulating cortical regions supporting attentional, sensorimotor and action-planning processes. At higher doses the impact of alcohol also extends to affect subcortical nodes of fronto-basal ganglia- thalamo-cortical motor circuits. In contrast, alcohol appears to have little impact on the early visual processing of infrequent perceptual cues. These observations clarify clinically-important effects of alcohol on behaviour.
Antiviral activity of Quercus persica L.: High efficacy and low toxicity
Karimi, Ali; Moradi, Mohammad-Taghi; Saeedi, Mojtaba; Asgari, Sedigheh; Rafieian-kopaei, Mahmoud
2013-01-01
Background: Drug-resistant strain of Herpes simplex virus type 1 (HSV-I) has increased the interest in the use of natural substances. Aims: This study was aimed to determine minimum inhibitory concentration of hydroalchoholic extract of a traditionally used herbal plant, Quercus persica L., on HSV-1 replication on baby hamster kidney (BHK) cells. Setting: The study was conducted in Shahrekord University of Medical Sciences, Iran. Design: This was an experimental study. Materials and Methods: BHK cells were grown in monolayer culture with Dulbecco's modified Eagle's medium (DMEM) supplemented with 5% fetal calf serum and plated onto 48-well culture plates. Fifty percent cytotoxic concentration (CC50%) of Q. persica L. on BHK cells was determined. Subsequently, 50% inhibitory concentration (IC50%) of the extract on replication of HSV-1 both in interacellular and exteracellular cases was assessed. Statistical Analysis: Statistic Probit model was used for statistical analysis. The dose-dependent effect of antiviral activity of the extracts was determined by linear regression. Results: Q. persica L. had no cytotoxic effect on this cell line. There was significant relationship between the concentration of the extract and cell death (P<0.01). IC50s of Q. persica L. on HSV-1, before and after attachment to BHK cells were 1.02 and 0.257 μg/mL, respectively. There was significant relationship between the concentration of this extract and inhibition of cytopathic effect (CPE) (P<0.05). Antioxidant capacity of the extract was 67.5%. Conclusions: The hydroalchoholic extract of Q. persica L. is potentially an appropriate and promising anti herpetic herbal medicine. PMID:24516836
Basu-Roy, Somapriya; Kar, Sanjay Kumar; Das, Sounik; Lahiri, Annesha
2017-01-01
Purpose This study is intended to compare dose-volume parameters evaluated using different forward planning- optimization techniques, involving two applicator systems in intracavitary brachytherapy for cervical cancer. It looks for the best applicator-optimization combination to fulfill recommended dose-volume objectives in different high-dose-rate (HDR) fractionation schedules. Material and methods We used tandem-ring and Fletcher-style tandem-ovoid applicator in same patients in two fractions of brachytherapy. Six plans were generated for each patient utilizing 3 forward optimization techniques for each applicator used: equal dwell weight/times (‘no optimization’), ‘manual dwell weight/times’, and ‘graphical’. Plans were normalized to left point A and dose of 8 Gy was prescribed. Dose volume and dose point parameters were compared. Results Without graphical optimization, maximum width and thickness of volume enclosed by 100% isodose line, dose to 90%, and 100% of clinical target volume (CTV); minimum, maximum, median, and average dose to both rectum and bladder are significantly higher with Fletcher applicator. Even if it is done, dose to both points B, minimum dose to CTV, and treatment time; dose to 2 cc (D2cc) rectum and rectal point etc.; D2cc, minimum, maximum, median, and average dose to sigmoid colon; D2cc of bladder remain significantly higher with this applicator. Dose to bladder point is similar (p > 0.05) between two applicators, after all optimization techniques. Conclusions Fletcher applicator generates higher dose to both CTV and organs at risk (2 cc volumes) after all optimization techniques. Dose restriction to rectum is possible using graphical optimization only during selected HDR fractionation schedules. Bladder always receives dose higher than recommended, and 2 cc sigmoid colon always gets permissible dose. Contrarily, graphical optimization with ring applicators fulfills all dose volume objectives in all HDR fractionations practiced. PMID:29204164
Pancreatic lipase inhibitory activity of taraxacum officinale in vitro and in vivo
Zhang, Jian; Kang, Min-Jung; Kim, Myung-Jin; Kim, Mi-Eun; Song, Ji-Hyun; Lee, Young-Min
2008-01-01
Obesity has become a worldwide health problem. Orlistat, an inhibitor of pancreatic lipase, is currently approved as an anti-obesity drug. However, gastrointestinal side effects caused by Orlistat may limit its use. In this study the inhibitory activities of dandelion (Taraxacum officinale) against pancreatic lipase in vitro and in vivo were measured to determine its possible use as a natural anti-obesity agent. The inhibitory activities of the 95% ethanol extract of T. officinale and Orlistat were measured using 4-methylumbelliferyl oleate (4-MU oleate) as a substrate at concentrations of 250, 125, 100, 25, 12.5 and 4 µg/ml. To determine pancreatic lipase inhibitory activity in vivo, mice (n=16) were orally administered with corn oil emulsion (5 ml/kg) alone or with the 95% ethanol extract of T. officinale (400 mg/kg) following an overnight fast. Plasma triglyceride levels were measured at 0, 90, 180, and 240 min after treatment and incremental areas under the response curves (AUC) were calculated. The 95% ethanol extract of T. officinale and Orlistat, inhibited, porcine pancreatic lipase activity by 86.3% and 95.7% at a concentration of 250 µg/ml, respectively. T. officinale extract showed dose-dependent inhibition with the IC50 of 78.2 µg/ml. A single oral dose of the extract significantly inhibited increases in plasma triglyceride levels at 90 and 180 min and reduced AUC of plasma triglyceride response curve (p<0.05). The results indicate that T. officinale exhibits inhibitory activities against pancreatic lipase in vitro and in vivo. Further studies to elucidate anti-obesity effects of chronic consumption of T. officinale and to identify the active components responsible for inhibitory activity against pancreatic lipase are necessary. PMID:20016719
Comparison of Alcohol Impairment of Behavioral and Attentional Inhibition
Weafer, Jessica; Fillmore, Mark T.
2012-01-01
Background Despite the wealth of studies demonstrating the impairing effects of alcohol on behavioral inhibition, less is known regarding effects of the drug on attentional inhibition (i.e., the ability to ignore distracting stimuli in the environment in order to focus attention on relevant information). The current study examined alcohol impairment of both behavioral and attentional inhibition, as well as potential associations between the two mechanisms of inhibitory control. Methods Men (n = 27) and women (n = 21) performed a measure of behavioral inhibition (cued go/no-go task) and a measure of attentional inhibition (delayed ocular return task) following three doses of alcohol: 0.65 g/kg, 0.45 g/kg, and 0.0 g/kg (placebo). Results Alcohol impaired both behavioral and attentional inhibition relative to placebo; however, correlational analyses revealed no associations between measures of behavioral and attentional inhibition following any dose. Additionally, men committed more inhibitory failures on the behavioral inhibition task, whereas women committed more inhibitory failures on the attentional inhibition task. Conclusions These findings suggest that behavioral and attentional inhibition are equally sensitive to the impairing effects of alcohol, yet represent distinct components of inhibitory control. Additionally, the observed gender differences in control of behavior and attention could have important implications regarding negative consequences associated with alcohol-induced disinhibition in men and women. PMID:22673197
Dual Effects of N,N-dimethylformamide on Cell Proliferation and Apoptosis in Breast Cancer
Zhang, Jihong; Zhou, Daibing; Zhang, Lingyun; Lin, Qunbo; Ren, Weimin; Zhang, Jinguo; Nadeem, Lubna; Xu, Guoxiong
2017-01-01
N,N-dimethylformamide (DMF) has been widely used as an organic solvent in industries. DMF is a potential medication. However, the antitumorigenic role of DMF in breast cancer remains unclear. Here, we examined dose-dependent effects of DMF on proliferation and apoptosis in breast cancer MCF-7 and nontumorous MCF-12A cells. We found that DMF had a growth inhibitory effect in MCF-12A cells in a dose-dependent manner. By contrast, however, DMF had dual effects on cell proliferation and apoptosis in MCF-7 cells. DMF at a high dose (100 mM) significantly inhibited MCF-7 cell growth while at a low dose (1 mM) significantly stimulated MCF-7 cell growth (both P < .05). The inhibitory effect of DMF on cell proliferation was accompanied by the decrease of cyclin D1 and cyclin E1 protein expression, leading to the cell cycle arrest at the G0/G1 phase. Furthermore, a high-dose DMF significantly increased the number of early apoptotic cells by increasing cleaved caspase-9 and proapoptotic protein Bax expression and decreased the ratio of Bcl-xL/Bax (P < .01). Thus, our data demonstrated for the first time that DMF has dual effects on breast cancer cell behaviors depending upon its dose. Caution must be warranted in determining its effective dose for targeting breast cancer. PMID:29238273
USDA-ARS?s Scientific Manuscript database
The Minimum Inhibitory Concentration (MIC) of basil oil, was determined for two pathogenic fungi of rice, Aspergillus niger and Penicillium chrysogenum. The antifungal activity of the basil oil in combination with ionising radiation was then investigated to determine if basil oil caused radiosensit...
USDA-ARS?s Scientific Manuscript database
A recently discovered and characterized rice hull liquid smoke extract was tested for bactericidal activity against Salmonella Typhimurium using the disc-agar method. The Minimum Inhibitory Concentration (MIC) value of rice hull smoke extract was found to be 0.822% (v/v). The in vivo antibacterial a...
USDA-ARS?s Scientific Manuscript database
The aim of this study was to investigate the population structure and antimicrobial resistance profiles of a set of Campylobacter jejuni strains isolated from broiler carcasses in Belgium, and to further analyze the molecular mechanisms responsible for the resistance phenotypes. Minimum inhibitory c...
Alshami, Issam; Alharbi, Ahmed E
2014-01-01
Objective To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract. Methods In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Results Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. Conclusions The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent. PMID:25182280
Monte, Daniel F. M.; Tavares, Adassa G.; Albuquerque, Allan R.; Sampaio, Fábio C.; Oliveira, Tereza C. R. M.; Franco, Octavio L.; Souza, Evandro L.; Magnani, Marciane
2014-01-01
Multidrug-resistant Salmonella enterica isolates from human outbreaks or from poultry origin were investigated for their ability to develop direct-tolerance or cross-tolerance to sodium chloride, potassium chloride, lactic acid, acetic acid, and ciprofloxacin after habituation in subinhibitory amounts ( of the minimum inhibitory concentration – (MIC) and of the minimum inhibitory concentration – MIC) of Origanum vulgare L. essential oil (OVEO) at different time intervals. The habituation of S. enterica to OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by the modulation of MIC values. However, cells habituated to OVEO maintained or increased susceptibility to the tested antimicrobials agents, with up to fourfold double dilution decrease from previously determined MIC values. This study reports for the first time the non-inductive effect of OVEO on the acquisition of direct-tolerance or cross-tolerance in multidrug-resistant S. enterica strains to antimicrobial agents that are largely used in food preservation, as well as to CIP, the therapeutic drug of salmonellosis. PMID:25566231
Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae
Nguyen, Marcus; Brettin, Thomas; Long, S. Wesley; ...
2018-01-11
Here, antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ± 1 two-fold dilution factor, is 92%. Individual accuracies aremore » >= 90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.« less
Evaluation of the stability and antimicrobial activity of an ethanolic extract of Libidibia ferrea
de Oliveira Marreiro, Raquel; Bandeira, Maria Fulgência Costa Lima; de Souza, Tatiane Pereira; de Almeida, Mailza Costa; Bendaham, Katiana; Venâncio, Gisely Naura; Rodrigues, Isis Costa; Coelho, Cristiane Nagai; Milério, Patrícia Sâmea Lêdo Lima; de Oliveira, Glauber Palma; de Oliveira Conde, Nikeila Chacon
2014-01-01
Biofilm is a dense, whitish, noncalcified aggregate of bacteria, with desquamated epithelial cells and food debris creating conditions for an imbalance of resident oral microflora and favoring the destruction of hard and soft tissues by development of caries and gingivitis. The aim of this study was to obtain and characterize an extract of Libidibia ferrea, ex Caesalpinia ferrea L. and to evaluate its feasibility for formulation as a mouthwash, according to current legislation. For this purpose, pH, sedimentation, density, and stability were evaluated, along with microbiological testing of the extract. The microbiological test was used to verify the presence of Staphylococcus aureus, Pseudomonas aeruginosa, fungi, yeasts, coliforms, and minimum inhibitory concentrations of Streptococcus mutans and Streptococcus oralis strains. Characterization, microbiological evaluation, and minimum inhibitory concentration results were tabulated and described using descriptive statistics. The L. ferrea extract showed stable characteristics, product quality, and antibacterial activity against the microorganisms tested irrespective of experimental time intervals. According to these results, it can be concluded that formulation of a mouthwash containing L. ferrea extract to control biofilm is feasible, but further studies are needed. PMID:24501546
Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Marcus; Brettin, Thomas; Long, S. Wesley
Here, antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ± 1 two-fold dilution factor, is 92%. Individual accuracies aremore » >= 90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.« less
Lenczewski, M E; McGavin, S T; VanDyke, K
1996-01-01
Minimum inhibitory concentration (MIC) is used to test resistance of microorganisms against antibiotics and to test cosmetic preservatives. This research expanded traditional MIC with automation and application of colorimetric endpoint MIC. All experiments included common cosmetic preservatives and microorganisms used in testing preservative efficacy. An autodilutor using three 96-well microtiter plates processed 6 preservatives against 1 microorganism in 15 min. The unique tip design made it possible to accurately deliver viscous test materials that cannot be dispensed accurately with vacuum or fluid-filled systems. Tetrazolium violet, a redox indicator, provided a visual color change from clear to purple at the MIC. Optimum concentration of tetrazolium violet was 0.01% with addition of 0.2% glucose to Mueller-Hinton broth for both gram-positive and gram-negative bacteria. The colorimetric endpoint was evident after 24 h from previously cryogenically stored organisms that were thawed before use and after 4 h for 18-24 h broth cultures subcultured from agar plates. The autodilutor accurately pipetted viscous cosmetic products such as hand lotion and shampoo, which cannot be pipetted with a traditional micropipetter.
Medium Effects on Minimum Inhibitory Concentrations of Nylon-3 Polymers against E. coli
Choi, Heejun; Chakraborty, Saswata; Liu, Runhui; Gellman, Samuel H.; Weisshaar, James C.
2014-01-01
Minimum inhibitory concentrations (MICs) against E. coli were measured for three nylon-3 polymers using Luria-Bertani broth (LB), brain-heart infusion broth (BHI), and a chemically defined complete medium (EZRDM). The polymers differ in the ratio of hydrophobic to cationic subunits. The cationic homopolymer is inert against E. coli in BHI and LB, but becomes highly potent in EZRDM. A mixed hydrophobic/cationic polymer with a hydrophobic t-butylbenzoyl group at its N-terminus is effective in BHI, but becomes more effective in EZRDM. Supplementation of EZRDM with the tryptic digest of casein (often found in LB) recapitulates the LB and BHI behavior. Additional evidence suggests that polyanionic peptides present in LB and BHI may form electrostatic complexes with cationic polymers, decreasing activity by diminishing binding to the anionic lipopolysaccharide layer of E. coli. In contrast, two natural antimicrobial peptides show no medium effects. Thus, the use of a chemically defined medium helps to reveal factors that influence antimicrobial potency of cationic polymers and functional differences between these polymers and evolved antimicrobial peptides. PMID:25153714
Roshan, Niloufar; Rippers, Thomas; Locher, Cornelia; Hammer, Katherine A
2017-03-01
The physicochemical parameters and antibacterial activity of 10 Western Australian (WA) and two comparator honeys were determined. Honeys showed a pH range of 4.0-4.7, colour range of 41.3-470.7 mAU, methylglyoxal levels ranging from 82.2 to 325.9 mg kg -1 and hydrogen peroxide levels after 2 h of 22.7-295.5 µM. Antibacterial activity was assessed by the disc diffusion assay, phenol equivalence assay, determination of minimum inhibitory and bactericidal concentrations and a time-kill assay. Activity was shown for all honeys by one or more method, however, activity varied according to which assay was used. Minimum inhibitory concentrations for WA honeys against 10 organisms ranged from 4.0 to >32.0% (w/v). Removal of hydrogen peroxide activity by catalase resulted in decreased activity for several honeys. Overall, the data showed that honeys in addition to those derived from Leptospermum spp. have antimicrobial activity and should not be overlooked as potential sources of clinically useful honey.
Antibacterial activity of anthraquinone from cassia seed on spiced pig head
NASA Astrophysics Data System (ADS)
Xu, L. Y.; Li, X.; Cui, Y. Q.; Pang, M. X.; Wang, F.; Qi, J. H.
2018-01-01
[Objective] To optimize the extraction of anthraquinone from cassia seed by ultrasonic extraction and its antibacterial activity. [Method] The influences of different extraction time and ethanol concentration, on anthraquinone content were evaluated by a single factor experiment. And anthraquinone content was determined by ultraviolet spectrophotometry. The bacteriostasis of anthraquinone on spiced pig head’s common putrefying bacteria: Staphylococcus, Serratieae, Bacillus, Proteus and the minimal inhibitory concentration (MIC) were studied by oxford plate assay system. [Result] The best extraction time was 30 minutes and the best ethanol concentration was 80%. The antibacterial activity of the cassia seed anthraquinone on Staphylococcus Aureus, Bacillus Proteus is obviously, the minimum inhibitory concentrations were 0.125 g/mL, 0.125 g/mL, 1 g/mL respectively and no inhibitory effect on Serratieae. [Conclusions] The anthraquinones from Cassia seed can inhibit a part of spoilage bacteria in spiced pig heads.
Antimicrobial flavonoids from Tridax procumbens.
Jindal, Alka; Kumar, Padma
2012-01-01
Callus culture of Tridax procumbens has been established on Murashige and Skoog's medium supplemented with NAA and BAP from nodal segments. Free and bound flavonoids were extracted from 2, 4, 6 and 8 weeks old calli by a well-established method. These free flavonoids were then screened against Staphylococcus aureus (bacteria) and Candida albicans (yeast) for their antimicrobial potential. Minimum inhibitory concentration, minimum bactericidal/fungicidal concentrations and total activity were also evaluated. Apigenin, quercetin and kaempferol were identified from free flavonoids of 4 weeks old callus (most active) through, thin layer chromatography, (TLC) preparative TLC, MP and IR spectral studies.
Inhibitory effects of 3-bromopyruvate on human gastric cancer implant tumors in nude mice.
Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei
2014-01-01
Gastric cancer is a common malignant tumor. Our previous study demonstrated inhibitory effects of 3-bromopyruvate (3-BrPA) on pleural mesothelioma. Moreover, we found that 3-BrPA could inhibit human gastric cancer cell line SGC-7901 proliferation in vitro, but whether similar effects might be exerted in vivo have remained unclear. To investigate the effect of 3-BrPA to human gastric cancer implant tumors in nude mice. Animals were randomly divided into 6 groups: 3-BrPA low, medium and high dose groups, PBS negative control group 1 (PH7.4), control group 2 (PH 6.8-7.8) and positive control group receiving 5-FU. The TUNEL method was used to detect apoptosis, and cell morphology and structural changes of tumor tissue were observed under transmission electron microscopy (TEM). 3-BrPA low, medium, high dose group, and 5-FU group, the tumor volume inhibition rates were 34.5%, 40.2%, 45.1%, 47.3%, tumor volume of experimental group compared with 2 PBS groups (p<0.05), with no significant difference between the high dose and 5-FU groups (p>0.05). TEM showed typical characteristics of apoptosis. TUNEL demonstrated apoptosis indices of 28.7%, 39.7%, 48.7% for the 3-BrPA low, medium, high dose groups, 42.2% for the 5-FU group and 5% and 4.3% for the PBS1 (PH7.4) and PBS2 (PH6.8-7.8) groups. Compared each experimental group with 2 negative control groups, there was significant difference (p<0.05); there was no significant difference between 5-FU group and medium dose group (p>0.05), but there was between the 5-FU and high dose groups (p<0.05). This study indicated that 3-BrPA in vivo has strong inhibitory effects on human gastric cancer implant tumors in nude mice .
Herzog, Roland W; Fields, Paul A; Arruda, Valder R; Brubaker, Jeff O; Armstrong, Elina; McClintock, Darryl; Bellinger, Dwight A; Couto, Linda B; Nichols, Timothy C; High, Katherine A
2002-07-20
Intramuscular injection of an adeno-associated virus (AAV) vector has resulted in vector dose-dependent, stable expression of canine factor IX (cF.IX) in hemophilia B dogs with an F.IX missense mutation (Herzog et al., Nat. Med. 1999;5:56-63). The use of a species-specific transgene allowed us to study risks and characteristics of antibody formation against the therapeutic transgene product. We analyzed seven dogs that had been injected at a single time point at multiple intramuscular sites with varying vector doses (dose per kilogram, dose per animal, dose per site). Comparison of individual animals suggests an increased likelihood of inhibitory anti-cF.IX (inhibitor) development with increased vector doses, with dose per site showing the strongest correlation with the risk of inhibitor formation. In six of seven animals, such immune responses were either absent or transient, and therefore did not prevent sustained systemic expression of cF.IX. Transient inhibitory/neutralizing anti-cF.IX responses occurred at vector doses of 2 x 10(12)/site, whereas a 6-fold higher dose resulted in a longer lasting, higher titer inhibitor. Anti-cF.IX was efficiently blocked in an eighth animal that was injected with a high vector dose per site, but in addition received transient immune suppression. Inhibitor formation was characterized by synthesis of two IgG subclasses and in vitro proliferation of lymphocytes to cF.IX antigen, indicating a helper T cell-dependent mechanism. Anti-cF.IX formation is likely influenced by the extent of local antigen presentation and may be avoided by limited vector doses or by transient immune modulation.
Wang, Shiying; Herbst, Elizabeth B.; Mauldin, F. William; Diakova, Galina B.; Klibanov, Alexander L.; Hossack, John A.
2016-01-01
Objectives The objective of this study is to evaluate the minimum microbubble dose for ultrasound molecular imaging to achieve statistically significant detection of angiogenesis in a mouse model. Materials and Methods The pre-burst minus post-burst method was implemented on a Verasonics ultrasound research scanner using a multi-frame compounding pulse inversion imaging sequence. Biotinylated lipid (distearoyl phosphatidylcholine, DSPC-based) microbubbles that were conjugated with anti-vascular endothelial growth factor 2 (VEGFR2) antibody (MBVEGFR2) or isotype control antibody (MBControl) were injected into mice carrying adenocarcinoma xenografts. Different injection doses ranging from 5 × 104 to 1 × 107 microbubbles per mouse were evaluated to determine the minimum diagnostically effective dose. Results The proposed imaging sequence was able to achieve statistically significant detection (p < 0.05, n = 5) of VEGFR2 in tumors with a minimum MBVEGFR2 injection dose of only 5 × 104 microbubbles per mouse (DSPC at 0.053 ng/g mouse body mass). Non-specific adhesion of MBControl at the same injection dose was negligible. Additionally, the targeted contrast ultrasound signal of MBVEGFR2 decreased with lower microbubble doses, while non-specific adhesion of MBControl increased with higher microbubble doses. Conclusions 5 × 104 microbubbles per animal is now the lowest injection dose on record for ultrasound molecular imaging to achieve statistically significant detection of molecular targets in vivo. Findings in this study provide us with further guidance for future developments of clinically translatable ultrasound molecular imaging applications using a lower dose of microbubbles. PMID:27654582
Yasukawa, Ken; Okuda, Sakiko; Nobushi, Yasuhito
2014-01-01
Ethanol extracts of gymnema (Gymnema sylvestre) leaves exhibited marked antitumour-promoting activity in an in vivo two-stage carcinogenesis test in mice using 7,12-dimethylbenz[a]anthracene as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. From the active fraction of the ethanol extract of the gymnema leaves, three triterpenoids were isolated and identified. These compounds were evaluated for their inhibitory effects on TPA-induced inflammation (1 µg/ear) in mice. The tested compounds showed marked anti-inflammatory effects, with a 50% inhibitory dose of 50–555 nmol/ear. PMID:24734106
Yasukawa, Ken; Okuda, Sakiko; Nobushi, Yasuhito
2014-01-01
Ethanol extracts of gymnema (Gymnema sylvestre) leaves exhibited marked antitumour-promoting activity in an in vivo two-stage carcinogenesis test in mice using 7,12-dimethylbenz[a]anthracene as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. From the active fraction of the ethanol extract of the gymnema leaves, three triterpenoids were isolated and identified. These compounds were evaluated for their inhibitory effects on TPA-induced inflammation (1 µg/ear) in mice. The tested compounds showed marked anti-inflammatory effects, with a 50% inhibitory dose of 50-555 nmol/ear.
The effects of low dose MK-801 administration on NMDAR dependent executive functions in pigeons.
Gökhan, Nurper; Neuwirth, Lorenz S; Meehan, Edward F
2017-05-01
An avian analogue of human fronto-executive dysfunction was used to study the long-term effects of a repeated low dose of MK-801. MK-801 is known to selectively antagonize the excitatory N-methyl-d-aspartate receptors (NMDA R ) and indirectly impair inhibitory related processes (GABA- AR ). First, eight pigeons were divided into two groups, receiving either 0.15mg/kg MK-801 or saline (i.p.) 1-hour prior to each session. Thirty 90-min sessions of a Differential Reinforcement of Low Rate of Response (DRL-10s) schedule were run over 3-months. Both overall number of responses and efficiency were unaffected by treatment, establishing a sub-threshold motoric dose. Then, another eight pigeons, treated identically, were given an operant visual discrimination task. Results demonstrated impairment of the fronto-striatal function of both excitatory and inhibitory processes in the MK-801 group during the entire 3-months. A 30-session treatment cross-over showed that the Saline-to-MK-801 group was unaffected, whereas the MK-801-to-Saline group exhibited rapid recovery of inhibitory control, however excitatory control did not fully recover. Together, these results suggested that the NMDA R system is involved in the acquisition of excitatory learning, but only in the expression of inhibitory learning. Our findings were discussed in terms of the value of avian models in translational research. Furthermore, our results were examined within the context of the NIH Research Domain of Criteria initiative and the role of NMDA R disruption, which underlie executive dysfunction in various neuropsychiatric disorders. Finally, our findings suggested that the potential long-term effects of the clinical and recreational use of NMDA R antagonists require further study. Copyright © 2017 Elsevier Inc. All rights reserved.
Nord, Carl Erik; Peterson, Janet; Ambruzs, Mary; Fisher, Alan C
2009-06-01
To determine the proportion of subjects with oropharyngeal streptococci resistant to either levofloxacin or azithromycin prior to and during antibacterial exposure, and to follow temporal changes in the proportion of resistant and susceptible isolates through 6 weeks post-exposure. This randomized, open-label, single-center study is registered with ClinicalTrials.gov (identifier: NCT00821782). A total of 143 healthy volunteers (levofloxacin, n = 71; azithromycin, n = 72) without antibacterial exposure in the previous 90 days received either levofloxacin 750 mg once daily for 5 days or azithromycin 500 mg once daily on day 1 and 250 mg once daily on days 2 through 5. Oropharyngeal cultures were obtained pre-exposure, at day 5, and at 2, 4, and 6 weeks post-dosing. Bacterial strains were identified and the minimum inhibitory concentrations for levofloxacin and azithromycin were determined. At study entry 117 streptococci were isolated from 72 subjects randomized to azithromycin and 53 (45.3%) were azithromycin-resistant. None of the 121 streptococci isolated from 71 subjects randomized to.levofloxacin were colonized by a levofloxacin-resistant microorganism prior to dosing. At the end of dosing, the number of subjects with resistant streptococci (S. mitis, S. salivarius, S. sanguis, or alpha streptococcus species [spp.]) increased in azithromycin-exposed subjects and resistant isolates remained through 6 weeks post-dosing. In contrast, a small number of levofloxacin-resistant streptococci were observed at the end of dosing but decreased by week 2 post-dosing and continued to decrease through the 6-week evaluation period (p < 0.001 azithromycin vs. levofloxacin for S. mitis, S. salivarius, S. sanguis and alpha streptococcus spp. at week 6). Limitations of this study included the fact that, since previous antibiotic use was self-reported, genetic typing was not done. The results of this study may not be completely generalizable, because subjects in this study received study drug under directly-observed conditions, thus ensuring compliance. Both antibacterial agents were well tolerated. Levofloxacin 750 mg administered for 5 days was associated with less microbial resistance than that observed with azithromycin in healthy subjects.
NASA Astrophysics Data System (ADS)
Yusoff, Nik Yusliyana Nik; Mohamad, Suharni; Abdullah, Haswati@Nurhayati; Rahman, Nurhayu Ab
2016-12-01
Malaysian honey and propolis extracts were investigated for their antifungal properties against pathogens implicated in denture stomatitis. Each of the honey and aqueous extracts propolis at net preparation, 1:1 and 1:2 dilutions was evaluated by using agar well diffusion assay and further investigated by minimum inhibitory concentration (MIC) within the range of 500 mg/mL to 62.5 mg/mL against oral fungi. The findings indicated that there was no effect of propolis on Candida spp for both types of propolis based on no inhibition zones was recorded. Meanwhile, for antifungal activity of honey, only honey from Trigona spp has shown activity at net preparation against C. albicans (10.47 ± 0.23 mm), C. tropicalis (12.29 ± 0.23 mm) and C. glabrata (8.69 ± 0.53 mm). For minimum inhibitory concentration, the data indicates that both propolis have shown inhibitory effect at 500 mg/mL. As for honey, Trigona spp was the effective honey that give MIC value at 250 mg/mL against Candida spp. Apis dorsata honey has shown MIC value at 500 mg/mL while Apis mellifera honey had inhibited C.albicans and C.glabrata at 500 mg/mL except for C.tropicalis at 250 mg/mL. It can be concluded that both propolis has shown weaker antifungal activity against oral fungi while only honey produced from Trigona spp had strong antifungal activity compare to other honey against oral fungi implicated in denture stomatitis.
Anand, J; Rai, N
2017-03-01
The present investigation aims at evaluating synergistic herbal based composition of purified catechins with fluconazole, amphotericin B and copper sulphate against Candida albicans (MTCC 3017) and Candida glabrata (MTCC 3019). The catechins were isolated from green tea leaves of Assam, Himachal Pradesh and Uttarakhand regions of India. The synergistic activity of combinations against Candida species was assessed following microdilution checkerboard technique and time kill assay. The inhibitory action of most significant combination on treated Candida cells was assessed by scanning electron microscopy. Cytotoxicity of synergistic compositions was further analyzed by performing MTT assay on Vero cell lines. Purified catechins of Assam and Himachal Pradesh green tea showed synergistic activity with fluconazole and amphotericin B against Candida species. Time kill assay depicted synergistic activity at minimum inhibitory concentration and twice of minimum inhibitory concentration of purified catechins and antimycotics. Further, Copper sulphate increased anticandidal efficacy of synergistic combinations by 0.4% to 6.63%. SEM analysis revealed morphological distortions of treated Candida cells. Cytotoxicity analysis of synergistic composition depicted high percentage viability (≥91.4% to≥100%) of Vero cell line, which suggests non-cytotoxic activity of proposed composition on healthy cells. It can be inferred that present evaluated synergistic composition can confer promising anticandidal efficacy and requires further investigation of safety and translational guidelines for effective and safer green tea based potent therapeutic drug. Copyright © 2016. Published by Elsevier Masson SAS.
Shetty, Sapna B.; Mahin-Syed-Ismail, Prabu; Varghese, Shaji; Thomas-George, Bibin; Kandathil- Thajuraj, Pathinettam; Baby, Deepak; Haleem, Shaista; Sreedhar, Sreeja
2016-01-01
Background Ethnomedicine is gaining admiration since years but still there is abundant medicinal flora which is unrevealed through research. The study was conducted to assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for dental caries pathogens. Material and Methods Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. One way ANOVA with Post Hoc Bonferroni test was applied for statistical analysis. Confidence level and level of significance were set at 95% and 5% respectively. Results Dental caries pathogens were inhibited most by hot ethanolic extract of Citrus sinensispeel followed by cold ethanolic extract. Aqueous extracts were effective at very high concentrations. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against both the dental caries pathogens. Conclusions Citrus sinensispeels extract was found to be effective against dental caries pathogens and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy. Key words:Agar well diffusion, antimicrobial activity, dental caries, Streptococcus mutans, Lactobacillus acidophilus. PMID:26855710
Malca-García, G.; Glenn, A.; Sharon, D.; Chait, G.; Díaz, D.; Pourmand, K.; Jonat, B.; Somogy, S.; Guardado, G.; Aguirre, C.; Chan, R.; Meyer, K.; Kuhlman, A.; Townesmith, A.; Effio-Carbajal, J.; Frías-Fernandez, F.; Benito, M.
2010-01-01
Aim The plant species reported here are traditionally used in Northern Peru to treat bacterial infections, often addressed by the local healers as “inflammation”. The aim of this study was to evaluate the Minimum Inhibitory Concentration (MIC) of their antibacterial properties against Gram-positive and Gram-negative bacteria. Materials and methods The antimicrobial activity of ethanolic and water extracts of 141 plant species was determined using a deep-well broth microdilution method on commercially available bacterial strains. Results The ethanolic extracts of 51 species inhibited Escherichia coli, and 114 ethanolic extracts inhibited Staphylococcus aureus. In contrast, only 30 aqueous extracts showed activity against E. coli and 38 extracts against S. aureus. The MIC concentrations were mostly very high and ranged from 0.008 to 256mg/ml, with only 36 species showing inhibitory concentrations of <4mg/ml. The ethanolic extracts exhibited stronger activity and a much broader spectrum of action than the aqueous extracts. Hypericum laricifolium, Hura crepitans, Caesalpinia paipai, Cassia fistula, Hyptis sidifolia, Salvia sp., Banisteriopsis caapi, Miconia salicifolia and Polygonum hydropiperoides showed the lowest MIC values and would be interesting candidates for future research. Conclusions The presence of antibacterial activity could be confirmed in most species used in traditional medicine in Peru which were assayed in this study. However, the MIC for the species employed showed a very large range, and were mostly very high. Nevertheless, traditional knowledge might provide some leads to elucidate potential candidates for future development of new antibiotic agents. PMID:20678568
Bussmann, R W; Malca-García, G; Glenn, A; Sharon, D; Chait, G; Díaz, D; Pourmand, K; Jonat, B; Somogy, S; Guardado, G; Aguirre, C; Chan, R; Meyer, K; Kuhlman, A; Townesmith, A; Effio-Carbajal, J; Frías-Fernandez, F; Benito, M
2010-10-28
The plant species reported here are traditionally used in Northern Peru to treat bacterial infections, often addressed by the local healers as "inflammation". The aim of this study was to evaluate the minimum inhibitory concentration (MIC) of their antibacterial properties against gram-positive and gram-negative bacteria. The antimicrobial activity of ethanolic and water extracts of 141 plant species was determined using a deep-well broth microdilution method on commercially available bacterial strains. The ethanolic extracts of 51 species inhibited Escherichia coli, and 114 ethanolic extracts inhibited Staphylococcus aureus. In contrast, only 30 aqueous extracts showed activity against Escherichia coli and 38 extracts against Staphylococcus aureus. The MIC concentrations were mostly very high and ranged from 0.008 to 256 mg/ml, with only 36 species showing inhibitory concentrations of <4 mg/ml. The ethanolic extracts exhibited stronger activity and a much broader spectrum of action than the aqueous extracts. Hypericum laricifolium, Hura crepitans, Caesalpinia paipai, Cassia fistula, Hyptis sidifolia, Salvia sp., Banisteriopsis caapi, Miconia salicifolia and Polygonum hydropiperoides showed the lowest MIC values and would be interesting candidates for future research. The presence of antibacterial activity could be confirmed in most species used in traditional medicine in Peru which were assayed in this study. However, the MIC for the species employed showed a very large range, and were mostly very high. Nevertheless, traditional knowledge might provide some leads to elucidate potential candidates for future development of new antibiotic agents. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Yoon, J H; Feeney, D A; Jessen, C R; Walter, P A
2008-02-01
A retrospective analysis of survival times in dogs with intranasal tumors was performed comparing those treated using hypofractionated or full course Co-60 radiotherapy protocols alone or with surgical adjuvant therapy and those receiving no radiation treatment. One hundred thirty-nine dogs presented to the University of Minnesota Veterinary Medical Center for treatment of histologically-confirmed nasal neoplasia between July 1983 and October 2001 met the criteria for review. Statistically analyzed parameters included age at diagnosis, tumor histologic classification, fractionation schedule (number of treatments, and number of treatment days/week) (classified as hypofractionated if 2 or less treatments/week); calculated minimum tumor dose/fraction; calculated total minimum tumor dose (classified as hypofractionated if less than 37 Gy in six or fewer fractions); number of radiotherapy portals, a treatment gap of more than 7 days in a full course (3-5 treatments/week, 3-3.5 week treatment time) radiotherapy protocol, the influence of eye shields on survival following single portal DV fields, the survey radiographic extent of the disease, and the presence or absence of cytoreductive surgery. There was a significant relationship only between protocols using 3 or more treatments/week and at least 37 Gy cumulative minimum tumor dose and survival. However, there was no significant relationship between either total minimum tumor dose or dose/fraction and survival and there were no significant relationships between survival and any of the other variables analyzed including tumor histologic type.
Thermoluminescence response of flat optical fiber subjected to 9 MeV electron irradiations
NASA Astrophysics Data System (ADS)
Hashim, S.; Omar, S. S. Che; Ibrahim, S. A.; Hassan, W. M. S. Wan; Ung, N. M.; Mahdiraji, G. A.; Bradley, D. A.; Alzimami, K.
2015-01-01
We describe the efforts of finding a new thermoluminescent (TL) media using pure silica flat optical fiber (FF). The present study investigates the dose response, sensitivity, minimum detectable dose and glow curve of FF subjected to 9 MeV electron irradiations with various dose ranges from 0 Gy to 2.5 Gy. The above-mentioned TL properties of the FF are compared with commercially available TLD-100 rods. The TL measurements of the TL media exhibit a linear dose response over the delivered dose using a linear accelerator. We found that the sensitivity of TLD-100 is markedly 6 times greater than that of FF optical fiber. The minimum detectable dose was found to be 0.09 mGy for TLD-100 and 8.22 mGy for FF. Our work may contribute towards the development of a new dosimeter for personal monitoring purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smitherman, C; Chen, B; Samei, E
2014-06-15
Purpose: This work involved a comprehensive modeling of task-based performance of CT across a wide range of protocols. The approach was used for optimization and consistency of dose and image quality within a large multi-vendor clinical facility. Methods: 150 adult protocols from the Duke University Medical Center were grouped into sub-protocols with similar acquisition characteristics. A size based image quality phantom (Duke Mercury Phantom) was imaged using these sub-protocols for a range of clinically relevant doses on two CT manufacturer platforms (Siemens, GE). The images were analyzed to extract task-based image quality metrics such as the Task Transfer Function (TTF),more » Noise Power Spectrum, and Az based on designer nodule task functions. The data were analyzed in terms of the detectability of a lesion size/contrast as a function of dose, patient size, and protocol. A graphical user interface (GUI) was developed to predict image quality and dose to achieve a minimum level of detectability. Results: Image quality trends with variations in dose, patient size, and lesion contrast/size were evaluated and calculated data behaved as predicted. The GUI proved effective to predict the Az values representing radiologist confidence for a targeted lesion, patient size, and dose. As an example, an abdomen pelvis exam for the GE scanner, with a task size/contrast of 5-mm/50-HU, and an Az of 0.9 requires a dose of 4.0, 8.9, and 16.9 mGy for patient diameters of 25, 30, and 35 cm, respectively. For a constant patient diameter of 30 cm, the minimum detected lesion size at those dose levels would be 8.4, 5, and 3.9 mm, respectively. Conclusion: The designed CT protocol optimization platform can be used to evaluate minimum detectability across dose levels and patient diameters. The method can be used to improve individual protocols as well as to improve protocol consistency across CT scanners.« less
Nicolle, Lindsay; Duckworth, Heather; Sitar, Dan; Bryski, Lisa; Harding, Godfrey; Zhanel, George
2008-03-01
This pilot study was undertaken to characterise the pharmacokinetics, pharmacodynamics and potential clinical efficacy of levofloxacin 750 mg once daily for 5 days for treatment of women with acute uncomplicated pyelonephritis. Four women diagnosed with acute pyelonephritis were enrolled. Following pre-therapy specimen collection, an initial oral dose of 750 mg levofloxacin was administered. The mean pharmacokinetic parameters for the first dose were: maximum serum concentration (C(max)) 12.5+/-4.7 mg/L (range 5.6-16.0mg/L) (fC(max) 8.8+/-3.3, where f indicates the levofloxacin free or non-protein-bound fraction), area under the serum concentration-time curve (AUC) 85.4+/-14.1 mgh/L (range 66.2-96.8 mgh/L) (fAUC 59.8+/-9.9) and serum half-life (t(1/2)) 6.7+/-0.5h. Mean urine concentrations were 88.0+/-100mg/L at the 0-3 h collection, 307+/-143 mg/L at 3-6 h, 170+/-107 mg/L at 6-12 h and 85+/-8 mg/L at 12-24 h. Mean levofloxacin serum pharmacodynamics for infecting Escherichia coli were: C(max)/minimum inhibitory concentration (MIC) 323+/-185(fC(max)/MIC 226+/-129); and AUC/MIC 2339+/-830(fAUC/MIC 1647+/-579). Mean urine levofloxacin concentration/MIC ratios were: 900+/-1389 for 0-3 h, 12100+/-4950 for 3-6 h, 5922+/-3912 for 6-12 h and 2233+/-1037 for 12-24 h. Levofloxacin eradicated E. coli from the urine by 3-6 h after the first dose. Levofloxacin 750 mg once daily for 5 days has pharmacodynamics that support further evaluation of this regimen for treatment of women with acute uncomplicated pyelonephritis.
Mase, Sundari R.; Jereb, John A.; Gonzalez, Daniel; Martin, Fatma; Daley, Charles L.; Fred, Dorina; Loeffler, Ann; Menon, Lakshmy; Morris, Sapna Bamrah; Brostrom, Richard; Chorba, Terence; Peloquin, Charles A.
2016-01-01
Background In the Federated States of Micronesia (FSM) and then the Republic of the Marshall Islands (RMI), levofloxacin pharmacokinetics (PK) were studied in children receiving directly observed once-daily regimens (10 mg/kg, age >5 years; 15–20 mg/kg, age ≤5 years) for either multidrug-resistant tuberculosis (MDR TB) disease or latent infection after MDR TB exposure, to inform future dosing strategies. Methods Blood samples were collected at 0 (RMI only), 1, 2, and 6 hours (50 children, aged 6 months to 15 years) after oral levofloxacin at >6 weeks of treatment. Clinical characteristics and levofloxacin Cmax, elimination half-life (t1/2), and area under the curve from 0 to 24 hours (AUC0–24 hours * µg/mL) were correlated to determine optimal dosage and to examine associations. Population PK and target attainment were modeled. With results from FSM, dosages were increased in RMI toward the target maximal drug concentration (Cmax) for Mycobacterium tuberculosis, 8–12 µg/ml. Results Cmax correlated linearly with per-weight dosage. Neither Cmax nor t1/2 was associated with gender, age, body mass index, concurrent medications, or pre-dose meals. At levofloxacin dosage of 15–20 mg/kg, Cmax ≥ 8 µg/ml was observed, and modeling corroborated a high target attainment across the ratio of the area under the free-concentration-versus-time curve to minimum inhibitory concentration (fAUCss,0–24/MIC) values. Conclusions Levofloxacin dosage should be 15–20 mg/kg for Cmax ≥ 8 µg/ml and a high target attainment across fAUCss,0–24/MIC values in children ≥2 years of age. PMID:26658531
Fusco, Nicholas M; Prescott, William A; Meaney, Calvin J
2018-05-04
A correlation between vancomycin trough concentrations (VTC) and area under the curve (AUC) to minimum inhibitory concentration (MIC) ratio (AUC/MIC) has not been established in children/adolescents with cystic fibrosis (CF). The primary objective of this study was to determine the correlation between measured VTCs and AUC/MIC using population-based pharmacokinetics. A retrospective cohort study of children/adolescents diagnosed with CF, age 6 to < 18 years, treated with vancomycin (VAN) for methicillin-resistant Staphylococcus aureus (MRSA) infection was conducted. The relationship between final VTCs and calculated AUC/MIC, using models established by Le et al and Stockmann et al, was assessed using Pearson and Spearman correlations. All tests were two-tailed with alpha set at 0.05. Thirty children/adolescents, age 7 to 17 years (median age 15 [IQR 9-17] years), were included. The mean final VAN dose was 58.03±18.58 mg/kg/day and the median final VTC was 12.6 (11-13.6) mg/L. The mean AUC/MIC was 355.34±138.46 (Le model) versus 426.79±178.92 (Stockmann model) (p=0.089). No correlation existed between VTCs and AUC/MIC using either the model by Le (r=0.140, p=0.461) or Stockmann (r=0.115; p=0.564). Using the Stockmann model: VAN dose (mg/kg/dose) was found to have a strong positive correlation with AUC (r=0.8874, p<0.0001) and AUC/MIC (r=0.7877, p<0.0001). VTCs did not correlate with AUC or AUC/MIC. Further research is needed to determine which estimate of VAN treatment efficacy is most appropriate for children and adolescents with CF infected with MRSA.
Hui, Katrina; Patel, Kashyap; Kong, David C M; Kirkpatrick, Carl M J
2017-07-01
Clearance of small molecules such as amoxicillin and clavulanic acid is expected to increase during high-flux haemodialysis, which may result in lower concentrations and thus reduced efficacy. To date, clearance of amoxicillin/clavulanic acid (AMC) during high-flux haemodialysis remains largely unexplored. Using published pharmacokinetic parameters, a two-compartment model with first-order input was simulated to investigate the impact of high-flux haemodialysis on the probability of target attainment (PTA) of orally administered AMC combination therapy. The following pharmacokinetic/pharmacodynamic targets were used to calculate the PTA. For amoxicillin, the time that the free concentration remains above the minimum inhibitory concentration (MIC) of ≥50% of the dosing period (≥50%ƒT >MIC ) was used. For clavulanic acid, the time that the free concentration was >0.1 mg/L of ≥45% of the dosing period (≥45%ƒT >0.1 mg/L ) was used. Dialysis clearance reported in low-flux haemodialysis for both compounds was doubled to represent the likely clearance during high-flux haemodialysis. Monte Carlo simulations were performed to produce concentration-time profiles over 10 days in 1000 virtual patients. Seven different regimens commonly seen in clinical practice were explored. When AMC was dosed twice daily, the PTA was mostly ≥90% for both compounds regardless of when haemodialysis commenced. When administered once daily, the PTA was 20-30% for clavulanic acid and ≥90% for amoxicillin. The simulations suggest that once-daily orally administered AMC in patients receiving high-flux haemodialysis may result in insufficient concentrations of clavulanic acid to effectively treat infections, especially on days when haemodialysis occurs. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Isla, Arantxazu; Trocóniz, Iñaki F; Canut, Andrés; Labora, Alicia; Martín-Herrero, José Emilio; Pedraz, José Luis; Gascón, Alicia R
2011-03-01
Acute otitis media is the most common respiratory tract infection in infancy and early childhood that is managed with antimicrobial agents. Ninety-three per cent of the cases diagnosed in Spain are treated with antibiotics, and Streptococcus pneumoniae and untypeable Haemophilus influenzae are the most frequently isolated pathogens. The aim of this work was to evaluate the usefulness of amoxicillin, amoxicillin/clavulanate and ceftriaxone for the empirical treatment of acute otitis media, looking at the pharmacokinetic variability and the antimicrobial susceptibility of paediatric strains of the two main pathogens responsible for AOM in Spain, Streptococcus pneumoniae and Haemophilus influenzae. Free-drug plasma concentrations were simulated and the probability of target attainment at each minimum inhibitory concentration and the cumulative fraction of response (CFR) were determined. Microbiological susceptibility information was extracted from SAUCE 3 surveillance. CFR with amoxicillin varied from 83% to 96% against S. pneumoniae and from 78% to 86% against H. influenzae. CFR was always >85% with amoxicillin/clavulanate. With the 3-day ceftriaxone regimen, the probability of achieving free concentrations above MIC at 72 hours significantly increased compared to the single dose, with which CFR ranged from 70% to 84%. High-dose amoxicillin (at least 80 mg/kg/day) should be the first-line therapy in uncomplicated infections, whereas amoxicillin/clavulanate (40 mg/kg/day) should be the choice when additional coverage for H. influenzae is desired. Administration of 3 daily doses of ceftriaxone increases bacteriological eradication probability when compared with one-day regimen, although additional clinical evaluations are necessary to establish the best target attainment with ceftriaxone. Copyright © 2009 Elsevier España, S.L. All rights reserved.
Pharmacokinetic Studies in Neonates: The Utility of an Opportunistic Sampling Design.
Leroux, Stéphanie; Turner, Mark A; Guellec, Chantal Barin-Le; Hill, Helen; van den Anker, Johannes N; Kearns, Gregory L; Jacqz-Aigrain, Evelyne; Zhao, Wei
2015-12-01
The use of an opportunistic (also called scavenged) sampling strategy in a prospective pharmacokinetic study combined with population pharmacokinetic modelling has been proposed as an alternative strategy to conventional methods for accomplishing pharmacokinetic studies in neonates. However, the reliability of this approach in this particular paediatric population has not been evaluated. The objective of the present study was to evaluate the performance of an opportunistic sampling strategy for a population pharmacokinetic estimation, as well as dose prediction, and compare this strategy with a predetermined pharmacokinetic sampling approach. Three population pharmacokinetic models were derived for ciprofloxacin from opportunistic blood samples (SC model), predetermined (i.e. scheduled) samples (TR model) and all samples (full model used to previously characterize ciprofloxacin pharmacokinetics), using NONMEM software. The predictive performance of developed models was evaluated in an independent group of patients. Pharmacokinetic data from 60 newborns were obtained with a total of 430 samples available for analysis; 265 collected at predetermined times and 165 that were scavenged from those obtained as part of clinical care. All datasets were fit using a two-compartment model with first-order elimination. The SC model could identify the most significant covariates and provided reasonable estimates of population pharmacokinetic parameters (clearance and steady-state volume of distribution) compared with the TR and full models. Their predictive performances were further confirmed in an external validation by Bayesian estimation, and showed similar results. Monte Carlo simulation based on area under the concentration-time curve from zero to 24 h (AUC24)/minimum inhibitory concentration (MIC) using either the SC or the TR model gave similar dose prediction for ciprofloxacin. Blood samples scavenged in the course of caring for neonates can be used to estimate ciprofloxacin pharmacokinetic parameters and therapeutic dose requirements.
Cefazolin pharmacokinetics in cats under surgical conditions.
Albarellos, Gabriela A; Montoya, Laura; Passini, Sabrina M; Lupi, Martín P; Lorenzini, Paula M; Landoni, María F
2017-10-01
Objectives The aim of this study was to determine the plasma pharmacokinetic profile, tissue concentrations and urine elimination of cefazolin in cats under surgical conditions after a single intravenous dose of 20 mg/kg. Methods Intravenous cefazolin (20 mg/kg) was administered to nine young mixed-breed cats 30 mins before they underwent surgical procedures (ovariectomy or orchiectomy). After antibiotic administration, samples from blood, some tissues and urine were taken. Cefazolin concentrations were determined in all biological matrices and pharmacokinetic parameters were estimated. Results Initial plasma concentrations were high (C p(0) , 134.80 ± 40.54 µg/ml), with fast and moderately wide distribution (distribution half-life [t ½(d) ] 0.16 ± 0.15 h; volume of distribution at steady state [V (d[ss]) ] 0.29 ± 0.10 l/kg) and rapid elimination (body clearance [Cl B ], 0.21 ± 0.06 l/h/kg; elimination half-life [t ½ ], 1.18 ± 0.27 h; mean residence time 1.42 ± 0.36 h). Thirty to 60 mins after intravenous administration, cefazolin tissue concentrations ranged from 9.24 µg/ml (subcutaneous tissue) to 26.44 µg/ml (ovary). The tissue/plasma concentration ratio ranged from 0.18 (muscle) to 0.58 (ovary). Cefazolin urine concentrations were high with 84.2% of the administered dose being eliminated in the first 6 h postadministration. Conclusions and relevance Cefazolin plasma concentrations remained above a minimum inhibitory concentration of ⩽2 µg/ml up to 4 h in all the studied cats. This suggests that a single intravenous dose of 20 mg/kg cefazolin would be adequate for perioperative prophylactic use in cats.
Effects of caffeine and Bombesin on ethanol and food intake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietze, M.A.; Kulkosky, P.J.
1991-01-01
The methylxanthine caffeine and ethyl alcohol are widely used and powerful psychotropic drugs, but their interactions are not well understood. Bombesin is a brain-gut neuropeptide which is thought to function as a neurochemical factor in the inhibitory control of voluntary alcohol ingestion. We assessed the effects of combinations of intraperitoneal doses of caffeine and bombesin on 5% w/v ethanol solution and food intake in deprived rats. Deprived male and female Wistar rats received access to 5% ethanol or Purina chow for 30 minutes after i.p. injections. In single doses, CAF and BBS significantly decreased both ethanol and food consumption, atmore » 50 mg/kg and 10 {mu}g/kg, respectively. CAF and BBS combinations produced infra-additive, or less-than-expected inhibitory effects on ethanol intake, but simple additive inhibitory effects on food intake. This experimental evidence suggests a reciprocal blocking of effects of CAF and BBS on ethanol intake but not food intake. Caffeine, when interacting and bombesin, increases alcohol consumption beyond expected values. Caffeine could affect the operation of endogenous satisfy signals for alcohol consumption.« less
Synergistic effects of loxoprofen and glycine on the micturition reflex in conscious rats.
Fukiya, Yumiko; Yoshizumi, Masaru; Saito, Mikako; Matsumoto-Miyai, Kazumasa; Nimura, Toshie; Kawatani, Masahito
2014-01-01
We examined the inhibitory effects of loxoprofen, a cyclooxygenase inhibitor, and glycine, a major inhibitory neurotransmitter, on the micturition reflex in conscious rats and hypothesized that these drugs would interact synergistically to inhibit micturition. Voiding behaviors were assessed using a metabolic cage. Oral loxoprofen decreased the urinary frequency, and only a high dose(10 mg/kg) significantly reduced the voided volume. With cystometry, intravenous loxoprofen(0.1-3 mg/kg) and glycine (30 and 100 mg/kg) prolonged the intercontraction intervals (ICI) in adose-dependent manner, but did not change the maximum voiding pressure (MVP) in conscious rats. The combination of loxoprofen (3 mg/kg) and glycine (100 mg/kg) strongly prolonged the ICI more than with either drug alone. The lowest dose of loxoprofen (0.1 mg/kg) and glycine(30 mg/kg) did not affect either the ICI or the MVP, but their combination resulted in a significant increase in the ICI. These results suggest that the combined administration of loxoprofen and glycine produced a synergistic inhibitory effect on the micturition reflex.
2013-01-01
Background Streptococcus pneumoniae is the bacterial agent which most frequently causes pneumonia. In some Scandinavian countries, this infection is treated with penicillin V since the resistances of pneumococci to this antibiotic are low. Four reasons justify the undertaking of this study; firstly, the cut-off points which determine whether a pneumococcus is susceptible or resistant to penicillin have changed in 2008 and according to some studies published recently the pneumococcal resistances to penicillin in Spain have fallen drastically, with only 0.9% of the strains being resistant to oral penicillin (minimum inhibitory concentration>2 μg/ml); secondly, there is no correlation between pneumococcal infection by a strain resistant to penicillin and therapeutic failure in pneumonia; thirdly, the use of narrow-spectrum antibiotics is urgently needed because of the dearth of new antimicrobials and the link observed between consumption of broad-spectrum antibiotics and emergence and spread of antibacterial resistance; and fourthly, no clinical study comparing amoxicillin and penicillin V in pneumonia in adults has been published. Our aim is to determine whether high-dose penicillin V is as effective as high-dose amoxicillin for the treatment of uncomplicated community-acquired pneumonia. Methods We will perform a parallel group, randomised, double-blind, trial in primary healthcare centres in Spain. Patients aged 18 to 65 without significant associated comorbidity attending the physician with signs and symptoms of lower respiratory tract infection and radiological confirmation of the diagnosis of pneumonia will be randomly assigned to either penicillin V 1.6 million units thrice-daily during 10 days or amoxicillin 1,000 mg thrice-daily during 10 days. The main outcome will be clinical cure at 14 days, defined as absence of fever, resolution or improvement of cough, improvement of general wellbeing and resolution or reduction of crackles indicating that no other antimicrobial treatment will be necessary. Any clinical result other than the anterior will be considered as treatment failure. A total of 210 patients will be recruited to detect a non-inferiority margin of 15% between the two treatments with a minimum power of 80% considering an alpha error of 2.5% for a unilateral hypothesis and maximum possible losses of 15%. Discussion This pragmatic trial addresses the long-standing hypothesis that the administration of high doses of a narrow-spectrum antibiotic (penicillin V) in patients with non-severe pneumonia attended in the community is not less effective than high doses of amoxicillin (treatment currently recommended) in patients under the age of 65 years. Trial registration EudraCT number 2012-003511-63. PMID:23594463
Monleón, Santiago; Urquiza, Adoración; Vinader-Caerols, Concepción; Parra, Andrés
2009-12-28
We have previously observed that amitriptyline and other antidepressants produce impairing effects on inhibitory avoidance (also called passive avoidance) in mice of both sexes. In the present study we investigated the involvement of the cholinergic system in the inhibitory avoidance impairment produced by acute amitriptyline in male and female CD1 mice. For this purpose, the effects on said task of acute i.p. administration of several doses of amitriptyline, either alone or in combination with the cholinergic agonists oxotremorine and physostigmine, were evaluated. Pre-training administration of 5, 7.5, 10 or 15 mg/kg of amitriptyline produced a significant impairment of inhibitory avoidance in both males and females. When oxotremorine (0.05 or 0.1 mg/kg) was co-administered with amitriptyline, the antidepressant's impairing effect was partially counteracted, although inhibitory avoidance learning was not significant. Physostigmine (0.15, 0.3 or 0.6 mg/kg) counteracted the impairment produced by amitriptyline, as mice treated with both drugs exhibited inhibitory avoidance learning. These results show that the inhibitory avoidance impairment produced by amitriptyline in male and female mice is mediated, at least partially, by the cholinergic system.
Lupatini, Nogueira Rodrigo José; Danopoulos, Panagiota; Swikidisa, Rosita; Alves, Pinheiro Vanessa
2016-01-01
The use of natural products in compounded wound care formulas is an exciting avenue to pursue for compounding pharmacists since these natural products may contain compounds that promote healing on their own. The use of these natural extracts as an alternative therapy for wound care may also provide several benefits, such as decreased inflammation, infection, side effects, and treatment costs. Thus far, several studies have demonstrated antimicrobial activity for various natural product extracts, including green propolis and meadowsweet. The antimicrobial properties of these extracts make them particularly interesting for wound care because the healing process is significantly delayed by bacterial infection and colonization at the site of injury. Therefore, to further investigate the antimicrobial properties of green propolis and meadowsweet extracts, we performed minimum inhibitory concentration and minimum bactericidal concentration assays against Staphylococcus aureus, a microorganism known to cause wound infections. The antimicrobial activity of green propolis and meadowsweet extracts was tested in vitro against a standard strain of Staphylococcus aureus in brain heart infusion broth and Mueller-Hinton agar plates. Green propolis extract demonstrated antimicrobial activity against Staphylococcus aureus with a minimum inhibitory concentration of 1.25 mg/mL and a minimum bactericidal concentration of 1.25 mg/mL. In contrast, meadowsweet extract failed to inhibit Staphylococcus aureus growth at the highest concentration tested (30 mg/mL). Green propolis was more effective than meadowsweet extract at inhibiting the growth of Staphylococcus aureus, suggesting that the addition of green propolis extract in wound care formulas might be more beneficial for the treatment of wounds. Therefore, we propose that green propolis extract is a promising natural product for wound care formulations. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Campana, Raffaella; Casettari, Luca; Fagioli, Laura; Cespi, Marco; Bonacucina, Giulia; Baffone, Wally
2017-01-16
Food safety is a fundamental concern for both consumers and the food industry, especially as the numbers of reported cases of food-associated infections continue to increase. Industrial surfaces can provide a suitable substrate for the development and persistence of bacterial organized in biofilms that represent a potential source of food contamination. The negative consumer perception of chemical disinfectants has shifted the attention to natural substances, such as plant extracts. The aim of this study was to investigate the possibility of using the essential oils (EOs) in the fight against S. aureus biofilms. First, the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Biofilm Inhibitory Concentration (MBIC), Minimum Biofilm Eradication Concentration (MBEC) of eleven EOs against S. aureus were determined. Cinnamomum cassia and Salvia officinalis EOs showed the greatest antibacterial properties with 1.25% MIC and MBC, 1.25% MBIC and 2.5% MBEC respectively. Gas Chromatography/Mass Spectrometry analysis revealed cinnamaldehyde (82.66%) and methoxy cinnamaldehyde (10.12%) as the most abundant substances of C. cassia, while cis-thujone (23.90%), camphor (19.22%) and 1.8-cineole (10.62%) of S. officinalis. Three different microemulsions, formulated with C. cassia, S. officinalis or both, were finally tested against S. aureus biofilms in different culture media and growth conditions, causing a >3 logarithmic reductions in S. aureus 24h-old biofilms and desiccated biofilms, and up to 68% of biofilm removal after 90min of exposure. The obtained data suggest the potential use of EOs, alone or in combination, for the formulation of sanitizers as alternative or in support in the disinfection of contaminated surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening.
Pothineni, Venkata Raveendra; Wagh, Dhananjay; Babar, Mustafeez Mujtaba; Inayathullah, Mohammed; Solow-Cordero, David; Kim, Kwang-Min; Samineni, Aneesh V; Parekh, Mansi B; Tayebi, Lobat; Rajadas, Jayakumar
2016-01-01
Lyme disease is the most common zoonotic bacterial disease in North America. It is estimated that >300,000 cases per annum are reported in USA alone. A total of 10%-20% of patients who have been treated with antibiotic therapy report the recrudescence of symptoms, such as muscle and joint pain, psychosocial and cognitive difficulties, and generalized fatigue. This condition is referred to as posttreatment Lyme disease syndrome. While there is no evidence for the presence of viable infectious organisms in individuals with posttreatment Lyme disease syndrome, some researchers found surviving Borrelia burgdorferi population in rodents and primates even after antibiotic treatment. Although such observations need more ratification, there is unmet need for developing the therapeutic agents that focus on removing the persisting bacterial form of B. burgdorferi in rodent and nonhuman primates. For this purpose, high-throughput screening was done using BacTiter-Glo assay for four compound libraries to identify candidates that stop the growth of B. burgdorferi in vitro. The four chemical libraries containing 4,366 compounds (80% Food and Drug Administration [FDA] approved) that were screened are Library of Pharmacologically Active Compounds (LOPAC1280), the National Institutes of Health Clinical Collection, the Microsource Spectrum, and the Biomol FDA. We subsequently identified 150 unique compounds, which inhibited >90% of B. burgdorferi growth at a concentration of <25 µM. These 150 unique compounds comprise many safe antibiotics, chemical compounds, and also small molecules from plant sources. Of the 150 unique compounds, 101 compounds are FDA approved. We selected the top 20 FDA-approved molecules based on safety and potency and studied their minimum inhibitory concentration and minimum bactericidal concentration. The promising safe FDA-approved candidates that show low minimum inhibitory concentration and minimum bactericidal concentration values can be chosen as lead molecules for further advanced studies.
Zeng, Yun; Liu, Gang; Zhou, Li-Ming
2009-01-01
AIM: To investigate the inhibitory effect of acetylshikonin on human gastric carcinoma cell line SGC-7901 and its mechanism. METHODS: MTT assay was used to assess the inhibitory effect of acetylshikonin on proliferation of SGC-7901 cells. Apoptosis-inducing effect was determined by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling with Hoechst staining. Expression of mRNA and protein in Bcl-2 and Bax was analyzed by reverse transcription-polymerase chain reaction and Western blot. Antitumor effect of acetylshikonin on a mouse SGC-7901 model was also determined. RESULTS: Forty-eight hours after treatment with acetylshikonin, MTT assay showed that acetylshikonin inhibited the proliferation of SGC-7901 cells in a dose-dependent manner. The half maximal inhibitory concentration of acetylshikonin to SGC-7901 cells was 0.428 ± 0.07 mg/L. Cell shrinkage, nuclear pyknosis and chromatin condensation, which are the characteristics of cell apoptosis, were observed in treated SGC-7901 cells and the percentage of apoptosis increased in a dose-dependent manner. Acetylshikonin down-regulated the expression of Bcl-2 and up-regulated the expression of Bax in the treated SGC-7901 cells compared with the controls. The experiment in vivo showed that 0.5, 1, and 2 mg/kg of acetylshikonin significantly inhibited the growth of tumor in the mouse SGC-7901 model, with an inhibitory rate of 25.00%-55.76%. CONCLUSION: Acetylshikonin inhibits the growth of SGC-7901 cells in vitro and in vivo by inducing cell apoptosis. PMID:19370777
Thapa, Dinesh; Lee, Jong Suk; Park, Min-A; Cho, Mi-Yeon; Park, Young-Joon; Choi, Han Gon; Jeong, Tae Cheon; Kim, Jung-Ae
2009-04-01
Cell adhesion molecules play a pivotal role in chronic inflammation and pathological angiogenesis. In the present study, we investigated the inhibitory effects of clotrimazole (CLT) on tumor necrosis factor (TNF)-alpha-induced changes in adhesion molecule expression. CLT dose-dependently inhibited monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expressions in TNF-alpha-stimulated HT29 colonic epithelial cells. This inhibitory action of CLT correlated with a significant reduction in TNF-alpha-induced adhesion of monocytes to HT29 cells, which was comparable to the inhibitory effects of anti-ICAM-1 and VCAM-1 monoclonal antibodies on monocyte-epithelial adhesion. These inhibitory actions of CLT were, at least in part, attributable to the inhibition of redox sensitive NF-kappaB activation, as CLT inhibited TNF-alpha-induced ROS generation as well as NF-kappaB nuclear translocation and activation in HT29 cells. Furthermore, the inhibition of TNF-alpha-induced monocyte adhesion was also mimicked by the specific NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). Inflammatory mediators including TNF-alpha have known to promote angiogenesis, which in turn further contributes to inflammatory pathology. Therefore, we additionally evaluated whether CLT modulates TNF-alpha-induced angiogenesis using in vivo chick chorioallantoic membrane (CAM) assay. The CAM assay showed that CLT dose-dependently attenuated TNF-alpha-induced angiogenesis, and the effect was correlated with decreased inflammation of the CAM tissue. In conclusion, our results suggest that CLT can inhibit TNF-alpha-triggered expression of adhesion molecules, ICAM-1 and VCAM-1, and angiogenesis during inflammation.
A step-up test procedure to find the minimum effective dose.
Wang, Weizhen; Peng, Jianan
2015-01-01
It is of great interest to find the minimum effective dose (MED) in dose-response studies. A sequence of decreasing null hypotheses to find the MED is formulated under the assumption of nondecreasing dose response means. A step-up multiple test procedure that controls the familywise error rate (FWER) is constructed based on the maximum likelihood estimators for the monotone normal means. When the MED is equal to one, the proposed test is uniformly more powerful than Hsu and Berger's test (1999). Also, a simulation study shows a substantial power improvement for the proposed test over four competitors. Three R-codes are provided in Supplemental Materials for this article. Go to the publishers online edition of Journal of Biopharmaceutical Statistics to view the files.
Kavruk, M; Celikbicak, O; Ozalp, V C; Borsa, B A; Hernandez, F J; Bayramoglu, G; Salih, B; Arica, M Y
2015-05-18
In this study, we designed aptamer-gated nanocapsules for the specific targeting of cargo to bacteria with controlled release of antibiotics based on aptamer-receptor interactions. Aptamer-gates caused a specific decrease in minimum inhibitory concentration (MIC) values of vancomycin for Staphylococcus aureus when mesoporous silica nanoparticles (MSNs) were used for bacteria-targeted delivery.
Mutations and Misconceptions: The Isolation and Study of Mutant Bacteria.
ERIC Educational Resources Information Center
Corner, Thomas R.
1992-01-01
Describes simple, inexpensive activities for teaching students about mutants and mutations in bacteria. Explains how to isolate bacteria from soil and leaves and how to grow bacteria on agar or in broth. Describes how to construct a gradient plate for finding the minimum inhibitory concentration of a substance and how to use this set up to find…
Gose, Severin; Kong, Carol J; Lee, Yer; Samuel, Michael C; Bauer, Heidi M; Dixon, Paula; Soge, Olusegun O; Lei, John; Pandori, Mark
2013-12-01
We evaluated Neisseria gonorrhoeae Etest minimum inhibitory concentrations (MICs) relative to agar dilution MICs for 664 urethral isolates for ceftriaxone (CRO) and azithromycin (AZM), 351 isolates for cefpodoxime (CPD) and 315 isolates for cefixime (CFM). Etest accurately determined CPD, CFM and AZM MICs, but resulted in higher CRO MICs.
Ganeshpurkar, Aditya; Diwedi, Varsha; Bhardwaj, Yash
2013-01-01
Trigonella foenum-graecum is one of the widely used herbs in food and medicine. The seeds of the plants are investigated for antidiabetic potential; however, no efforts have been done to explore the potential of leaves to modify carbohydrate metabolizing enzymes viz. α-amylase and α-glucosidase. The present work was designed to investigate the inhibitory potential of ethyl acetate and water extract of T. foenum-graecum on enzymes α-amylase and α-glucosidase. Different concentrations of extracts were used to study inhibition of enzymatic activity of α-amylase and α-glucosidase. A dose dependent inhibitory effect on enzymes was observed. The current study, for the first time, revealed α-amylase and α-glucosidase inhibitory potential of T. foenum-graecum and the study could be helpful to isolate and characterize compounds responsible for it. PMID:24049415
Sorafenib Dose Recommendation in Acute Myeloid Leukemia Based on Exposure-FLT3 Relationship.
Liu, Tao; Ivaturi, Vijay; Sabato, Philip; Gobburu, Jogarao V S; Greer, Jacqueline M; Wright, John J; Smith, B Douglas; Pratz, Keith W; Rudek, Michelle A
2018-04-27
Sorafenib administered at the approved dose continuously is not tolerated long-term in patients with acute myeloid leukemia (AML). The purpose of this study was to optimize the dosing regimen by characterizing the sorafenib exposure-response relationship in patients with AML. A one-compartment model with a transit absorption compartment and enterohepatic recirculation described the exposure. The relationship between sorafenib exposure and target modulation of kinase targets (FMS-like tyrosine kinase 3 (FLT3)-ITD and extracellular signal-regulated kinase (ERK)) were described by an inhibitory maximum effect (E max ) model. Sorafenib could inhibit FLT3-ITD activity by 100% with an IC 50 of 69.3 ng/mL and ERK activity by 84% with an IC 50 of 85.7 ng/mL (both adjusted for metabolite potency). Different dosing regimens utilizing 200 or 400 mg at varying frequencies were simulated based on the exposure-response relationship. Simulations demonstrate that a 200 mg twice daily (b.i.d.) dosing regimen showed similar FLT3-ITD and ERK inhibitory activity compared with 400 mg b.i.d. and is recommended in further clinical trials in patients with AML. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Ishnava, Kalpesh B.; Chauhan, Jenabhai B.; Garg, Akanksha A.; Thakkar, Arpit M.
2011-01-01
In vitro antibacterial potential of the chloroform, ethyl acetate, hexane, methanol and aqueous extracts of Calotropis gigantia (L.) R. Br. was evaluated by using five cariogenic bacteria, Actinomyces viscosus, Lactobacillus acidophilus, Lactobacillus casei, Streptococcus mitis and Streptococcus mutans. Agar well diffusion method and minimum inhibitory concentration (MIC) were used for this purpose. The chloroform extracted fraction of latex showed inhibitory effect against S. mutans and L. acidophilus with MIC value of 0.032 and 0.52 mg/mL, respectively. Qualitative investigation on structure elucidation of bioactive compound using IR, NMR and GC–MS techniques revealed the presence of methyl nonanoate, a saturated fatty acid. PMID:23961166
Takagi, A; Moriga, M; Narusawa, H; Uchino, H; Aono, M
1986-12-01
The effects of gastrin releasing peptide (GRP) on gastrin release and gastric secretion were studied in anesthetized rats. Intravenous infusion of GRP (1-16 micrograms/kg/hr) caused a dose-dependent increase in serum gastrin level, however, it had no effect on basal gastric secretion in the lumen-perfused stomach preparation. Furthermore, GRP inhibited gastric secretion stimulated by pentagastrin or histamine dose-dependently, but not by carbachol. Simultaneous infusion of GRP and a beta adrenergic blocking agent, propranolol, an inhibitor of somatostatin release, did not alter the inhibitory effect of GRP on pentagastrin-stimulated gastric secretion. These results suggest that the inhibitory effect of GRP on gastric secretion in a stimulated condition is mediated via peptide hormones coreleased by GRP, and not via beta-adrenergic pathways.
Ienaga, Kazuharu; Yokozawa, Takako
2010-01-01
For rats, glomerular filtration rate (GFR) and its relative GFR (ratio to normal GFR(0)) were estimated in order to classify their chronic kidney disease (CKD) into 5 stages like those in humans. The adenine-loaded rats, which were used to show the intrinsic antioxidant and creatinine (Cr) metabolite, NZ-419 (5-hydroxy-1- methylimidazolidine-2,4-dione), when taken orally, prevented the progression of chronic renal failure (CRF), were used as a model to reach the severest stage 5. In this report, we show that, by using both a tubular lesion and a glomerular lesion models (adenine-loaded and 5/6 nephrectomized rats, respectively), peroral NZ-419 might be a common tool to prevent the progression of CRF at CKD stages 3 and 4 under the condition that most rats in the control group still remained at stage 4 (0.15
Adkesson, Michael J; Fernandez-Varon, Emilio; Cox, Sherry; Martín-Jiménez, Tomás
2011-09-01
The objective of this study was to determine the pharmacokinetics of a long-acting formulation of ceftiofur crystalline-free acid (CCFA) following intramuscular injection in ball pythons (Python regius). Six adult ball pythons received an injection of CCFA (15 mg/kg) in the epaxial muscles. Blood samples were collected by cardiocentesis immediately prior to and at 0.5, 1, 2, 4, 8, 12, 18, 24, 48, 72, 96, 144, 192, 240, 288, 384, 480, 576, 720, and 864 hr after CCFA administration. Plasma ceftiofur concentrations were determined by high-performance liquid chromatography. A noncompartmental pharmacokinetic analysis was applied to the data. Maximum plasma concentration (Cmax) was 7.096 +/- 1.95 microg/ml and occurred at (Tmax) 2.17 +/- 0.98 hr. The area under the curve (0 to infinity) for ceftiofur was 74.59 +/- 13.05 microg x h/ml and the elimination half-life associated with the terminal slope of the concentration-time curve was 64.31 +/- 14.2 hr. Mean residence time (0 to infinity) was 46.85 +/- 13.53 hr. CCFA at 15 mg/kg was well tolerated in all the pythons. Minimum inhibitory concentration (MIC) data for bacterial isolates from snakes are not well established. For MIC values of < or =0.1 microg/ml, a single dose of CCFA (15 mg/kg) provides adequate plasma concentrations for at least 5 days in the ball python. For MICs > or =0.5 microg/ml, more frequent dosing or a higher dosage may be required.
Fang, X; Zhou, J; Liu, X
2018-02-01
The pharmacokinetic properties and tissue distribution of enrofloxacin (EF) were investigated after single intramuscular (i.m.) dose of 10 mg/kg body weight (b.w.) in Pacific white shrimp at 22 to 25°C. EF and its metabolite ciprofloxacin (CF) were determined by high-performance liquid chromatography. After i.m. administration, EF was absorbed quickly, and the peak of EF concentration (C max ) reached at first time point in hemolymph. The volume of distribution V d(area) of EF was 3.84 L/kg, indicating that the distribution of EF was good. The area under the concentration-time curve (AUC) of EF was 90.1 and 274.2 μg hr/ml in muscle and hepatopancreas, respectively, which was higher than 75.8 μg hr/ml in hemolymph. The EF elimination was slow in muscle and hepatopancreas with the half-life (T 1/2β ) of 52.3 and 75.8 hr, respectively. CF, the mainly metabolite of EF, was detected in hemolymph, muscle and hepatopancreas. The C max was 0.030, 0.013 and 0.218 μg/ml, respectively. Based on a minimum inhibitory concentration (MIC) of 0.006-0.032 μg/ml for susceptible strains, EF i.m. injected at a dose 10 mg/kg could be efficacious against common pathogenic bacteria of Pacific white shrimp. © 2017 John Wiley & Sons Ltd.
Leiberich, M; Krebber, R; Hewetson, M; Marais, J; Naidoo, V
2018-04-24
The alleviation of pain and prevention of suffering are key aspects of animal welfare. Unfortunately, analgesic drugs are not available for all species. White rhinoceros (Ceratotherium simum), representing one of such species, which survive poaching attempts inflicted with severe facial injuries and gunshot wounds, nonetheless require analgesic support. To improve treatment conditions, this study explored the use of carprofen for the treatment of pain and inflammation in white rhinoceros. The pharmacokinetics of 1 mg/kg intramuscular carprofen was evaluated in six healthy white rhinoceros. The half-life of λ z and mean residence time was 105.71 ± 15.67 and 155.01 ± 22.46 hr, respectively. The area under the curve and the maximum carprofen concentration were 904.61 ± 110.78 μg ml -1 hr -1 and 5.77 ± 0.63 μg/ml, respectively. Plasma TXB 2 inhibition demonstrated anti-inflammatory properties and indicated that carprofen may be effective for a minimum of 48 hr in most animals. With its long half-life further indicating that a single dose could be effective for several days, we suggest that carprofen may be a useful drug for the treatment of white rhinoceros. © 2018 John Wiley & Sons Ltd.
Single subcutaneous dosing of cefovecin in rhesus monkeys (Macaca mulatta): a pharmacokinetic study.
Bakker, J; Thuesen, L R; Braskamp, G; Skaanild, M T; Ouwerling, B; Langermans, J A M; Bertelsen, M F
2011-10-01
Cefovecin is a third-generation cephalosporin approved for antibacterial treatment with a 14-day dosing interval in dogs and cats. This antibiotic may also be useful for zoo and wildlife veterinary medicine, because of its broad spectrum and long duration of activity. The aim of the study was to determine whether cefovecin is a suitable antibiotic to prevent skin wound infection in rhesus monkeys. Therefore, the pharmacokinetics (PK) of cefovecin after a single subcutaneous injection at 8 mg/kg bodyweight in four rhesus monkeys (Macaca mulatta) and sensitivity of bacterial isolates from fresh skin wounds were determined. After administration, blood, urine, and feces were collected, and concentrations of cefovecin were determined. Further, the minimum inhibitory concentrations (MIC) for bacteria isolated from fresh skin wounds of monkeys during a health control program were determined. The mean maximum plasma concentration (C(max) ) of cefovecin was 78 μg/mL and was achieved after 57 min. The mean apparent long elimination half-life (t½) was 6.6 h and excretion occurred mainly via urine. The MIC for the majority of the bacteria examined was >100 μg/mL. The PK of cefovecin in rhesus monkeys is substantially different than for dogs and cats. Cefovecin rapidly reached C(max) which however was lower than most of the MIC levels and with a very short t½. Therefore, cefovecin is not recommended for treating skin wounds in rhesus monkeys. © 2011 Blackwell Publishing Ltd.
Udy, Andrew A; Lipman, Jeffrey; Jarrett, Paul; Klein, Kerenaftali; Wallis, Steven C; Patel, Kashyap; Kirkpatrick, Carl M J; Kruger, Peter S; Paterson, David L; Roberts, Michael S; Roberts, Jason A
2015-01-30
The aim of this study was to explore the impact of augmented creatinine clearance and differing minimum inhibitory concentrations (MIC) on piperacillin pharmacokinetic/pharmacodynamic (PK/PD) target attainment (time above MIC (fT>MIC)) in critically ill patients with sepsis receiving intermittent dosing. To be eligible for enrolment, critically ill patients with sepsis had to be receiving piperacillin-tazobactam 4.5 g intravenously (IV) by intermittent infusion every 6 hours for presumed or confirmed nosocomial infection without significant renal impairment (defined by a plasma creatinine concentration greater than 171 μmol/L or the need for renal replacement therapy). Over a single dosing interval, blood samples were drawn to determine unbound plasma piperacillin concentrations. Renal function was assessed by measuring creatinine clearance (CLCR). A population PK model was constructed, and the probability of target attainment (PTA) for 50% and 100% fT>MIC was calculated for varying MIC and CLCR values. In total, 48 patients provided data. Increasing CLCR values were associated with lower trough plasma piperacillin concentrations (P < 0.01), such that with an MIC of 16 mg/L, 100% fT>MIC would be achieved in only one-third (n = 16) of patients. Mean piperacillin clearance was approximately 1.5-fold higher than in healthy volunteers and correlated with CLCR (r = 0.58, P < 0.01). A reduced PTA for all MIC values, when targeting either 50% or 100% fT>MIC, was noted with increasing CLCR measures. Standard intermittent piperacillin-tazobactam dosing is unlikely to achieve optimal piperacillin exposures in a significant proportion of critically ill patients with sepsis, owing to elevated drug clearance. These data suggest that CLCR can be employed as a useful tool to determine whether piperacillin PK/PD target attainment is likely with a range of MIC values.
Hirano, Ryuichi; Sakamoto, Yuichi; Kitazawa, Junichi; Yamamoto, Shoji; Tachibana, Naoki
2016-01-01
Background Vancomycin (VCM) requires dose adjustment based on therapeutic drug monitoring. At Aomori Prefectural Central Hospital, physicians carried out VCM therapeutic drug monitoring based on their experience, because pharmacists did not participate in the dose adjustment. We evaluated the impact of an Antimicrobial Stewardship Program (ASP) on attaining target VCM trough concentrations and pharmacokinetics (PK)/pharmacodynamics (PD) parameters in patients with methicillin-resistant Staphylococcus aureus (MRSA) infections. Materials and methods The ASP was introduced in April 2012. We implemented a prospective audit of prescribed VCM dosages and provided feedback based on measured VCM trough concentrations. In a retrospective pre- and postcomparison study from April 2007 to December 2011 (preimplementation) and from April 2012 to December 2014 (postimplementation), 79 patients were treated for MRSA infection with VCM, and trough concentrations were monitored (pre, n=28; post, n=51). In 65 patients (pre, n=15; post, n=50), 24-hour area under the concentration–time curve (AUC 0–24 h)/minimum inhibitory concentration (MIC) ratios were calculated. Results Pharmacist feedback, which included recommendations for changing dose or using alternative anti-MRSA antibiotics, was highly accepted during postimplementation (88%, 29/33). The number of patients with serum VCM concentrations within the therapeutic range (10–20 μg/mL) was significantly higher during postimplementation (84%, 43/51) than during preimplementation (39%, 11/28) (P<0.01). The percentage of patients who attained target PK/PD parameters (AUC 0–24 h/MIC >400) was significantly higher during postimplementation (84%, 42/50) than during preimplementation (53%, 8/15; P=0.013). There were no significant differences in nephrotoxicity or mortality rate. Conclusion Our ASP increased the percentage of patients that attained optimal VCM trough concentrations and PK/PD parameters, which contributed to the appropriate use of VCM in patients with MRSA infections. PMID:27789965
Comparison of alcohol impairment of behavioral and attentional inhibition.
Weafer, Jessica; Fillmore, Mark T
2012-11-01
Despite the wealth of studies demonstrating the impairing effects of alcohol on behavioral inhibition, less is known regarding effects of the drug on attentional inhibition (i.e., the ability to ignore distracting stimuli in the environment in order to focus attention on relevant information). The current study examined alcohol impairment of both behavioral and attentional inhibition, as well as potential associations between the two mechanisms of inhibitory control. Men (n=27) and women (n=21) performed a measure of behavioral inhibition (cued go/no-go task) and a measure of attentional inhibition (delayed ocular return task) following three doses of alcohol: 0.65 g/kg, 0.45 g/kg, and 0.0 g/kg (placebo). Alcohol impaired both behavioral and attentional inhibition relative to placebo; however, correlational analyses revealed no associations between measures of behavioral and attentional inhibition following any dose. Additionally, men committed more inhibitory failures on the behavioral inhibition task, whereas women committed more inhibitory failures on the attentional inhibition task. These findings suggest that behavioral and attentional inhibition are equally sensitive to the impairing effects of alcohol, yet represent distinct components of inhibitory control. Additionally, the observed gender differences in control of behavior and attention could have important implications regarding negative consequences associated with alcohol-induced disinhibition in men and women. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Phytochemical analysis of Gymnema sylvestre and evaluation of its antimicrobial activity.
Chodisetti, Bhuvaneswari; Rao, Kiranmayee; Giri, Archana
2013-01-01
Gymnema sylvestre (CS 149), known to be a rich source of saponins and other valuable phytochemicals, has been analysed for antimicrobial activity. The chloroform extracts of aerial and root parts of G. sylvestre exhibited higher antimicrobial activity as compared to diethyl ether and acetone. The root extracts of chloroform have shown competitive minimum inhibitory concentration and minimum bactericidal concentration values in the range of 0.04-1.28 mg mL(-1) and 0.08-2.56 mg/mL, respectively, towards the pathogens. The GC-MS analysis of chloroform extracts has shown the presence of compounds like eicosane, oleic acid, stigmasterol and vitamin E.
Arimura, Kimiyoshi; Arimura, Yumiko; Takata, Yoshiharu; Nakamura, Tomonori; Kaji, Ryuji
2008-01-30
Ethnic differences in the muscle-relaxing effect of botulinum toxin type B (BTX-B) were examined by means of electrophysiological measurements in Japanese and Caucasian volunteers. This was a randomized, single-blinded, single-center study of 24 Japanese and 24 Caucasian healthy adult male subjects in Japan. BTX-B (20 U, 100 U, or 500 U/0.2 mL) or placebo was administered to the extensor digitorum brevis (EDB) muscle in the left lower limb as a single dose (in each dose group, 6 subjects received the test drug and two received placebo). The inhibitory effect of BTX-B on the M wave amplitude of EDB muscle generated by stimulation of the deep peroneal nerve was measured frequently during 2 weeks after administration, and then at weeks 4 (day 28) and 12 (day 84). The inhibitory effect of BTX-B on the M wave amplitude of EDB muscle was dose-dependent in both Japanese and Caucasian subjects, and the dose-response curves were similar. These findings demonstrate that the muscle-relaxing effect of BTX-B in Japanese subjects is electrophysiologically similar to that in Caucasians. 2007 Movement Disorder Society
Effect of Gamma Radiation on the Ripening of Bartlett Pears 1
Maxie, E. C.; Sommer, N. F.; Muller, Carlos J.; Rae, Henry L.
1966-01-01
Gamma radiation at doses of 300 Krad or more inhibits the ripening of Bartlett pears (Pyrus communis L.). Immediately after irradiation there is a transitory burst of C2H4, which subsequently declines in fruits subjected to inhibitory doses. Ethylene production associated with ripening begins at the same time in unirradiated fruits and those subjected to noninhibitory doses, but the latter produces much more C2H4 at the climacteric peak. Fruits subjected to inhibitory doses produce low levels of C2H4 unless subjected to exogenously applied C2H4, whereupon they produce enough of the gas to induce ripening in unirradiated fruits. Pears subjected to 300 and 400 Krad of gamma rays did not ripen even when held in a flowing atmosphere containing 1000 ppm of C2H4 for 8 days at 20°. It is concluded that the action of gamma rays on Bartlett pears involves both an inhibition of C2H4 production and a decreased sensitivity of the fruit to the ripening action of the gas. Ripening of Bartlett pears is inhibited by gamma radiation only when applied to preclimacteric fruit. PMID:16656274
Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting
Sung, Calvin T; Weng, Yi-Han; Fang, Jia-You
2017-01-01
Pathogens usually invade hair follicles when skin infection occurs. The accumulated bacteria in follicles are difficult to eradicate. The present study aimed to assess the cutaneous and follicular delivery of chloramphenicol (Cm)-loaded liposomes and the antibacterial activity of these liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Skin permeation was conducted by in vitro Franz diffusion cell. The anti-MRSA potential was checked using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), a well diffusion test, and intracellular MRSA killing. The classic, dimyristoylphosphatidylcholine (DMPC), and deoxycholic acid (DA) liposomes had a vesicle size of 98, 132, and 239 nm, respectively. The incorporation of DMPC or DA into the liposomes increased the bilayer fluidity. The malleable vesicles containing DMPC and DA showed increased follicular Cm uptake over the control solution by 1.5- and 2-fold, respectively. The MIC and MBC of DA liposomes loaded with Cm were 62.5 and 62.5–125 μg/mL, comparable to free Cm. An inhibition zone about 2-fold higher was achieved by DA liposomes as compared to the free control at a Cm dose of 0.5 mg/mL. DA liposomes also augmented antibacterial activity on keratinocyte-infected MRSA. The deformable liposomes had good biocompatibility against keratinocytes and neutrophils (viability >80%). In vivo administration demonstrated that DA liposomes caused negligible toxicity on the skin, based on physiological examination and histology. These data suggest the potential application of malleable liposomes for follicular targeting and the treatment of MRSA-infected dermatologic conditions. PMID:29184410
Pandey, Abhay K; Palni, Uma T; Tripathi, Nijendra N
2013-05-01
The present study aimed to evaluate the antifungal activity of 30 essential oils against four dominant fungi Aspergillus flavus Link., A. niger van Tieghem, A. ochraceus Wilhelm and A. terreus Thom of stored pigeon pea seeds at a concentration of 0.36 µL mL(-1). Various fungitoxic properties, such as minimum inhibitory concentration, minimum fungicidal concentration and fungitoxic spectrum, of the most potent oil were determined. The efficacy of the most potent oil in preservation of pigeon pea seeds for 6 months was also carried out by storing 1 kg of seeds in the oil vapour. Clausena pentaphylla and Citrus limon oils were more effective against all the fungi tested, which exhibited 100% per cent mycelial inhibition. The minimum inhibitory concentration of C. pentaphylla oil was determined as 0.07 µL mL(-1) against all the test fungi and was found to be more toxic than Citrus limon oil. C. pentaphylla oil exhibited a broad range of fungitoxicity against 16 other storage fungi of pigeon pea seeds. C. pentaphylla oil significantly protected 1 kg seeds of pigeon pea from fungal deterioration and was superior to synthetic fumigants. The oil did not show any phytotoxicity and the protein content of the seeds was significantly retained for up to 6 months of storage. Thus, C. pentaphylla oil may be used as an effective fumigant in the ecofriendly management of storage fungi of pigeon pea seeds. © 2012 Society of Chemical Industry.
Benchmarking the minimum Electron Beam (eBeam) dose required for the sterilization of space foods
NASA Astrophysics Data System (ADS)
Bhatia, Sohini S.; Wall, Kayley R.; Kerth, Chris R.; Pillai, Suresh D.
2018-02-01
As manned space missions extend in length, the safety, nutrition, acceptability, and shelf life of space foods are of paramount importance to NASA. Since food and mealtimes play a key role in reducing stress and boredom of prolonged missions, the quality of food in terms of appearance, flavor, texture, and aroma can have significant psychological ramifications on astronaut performance. The FDA, which oversees space foods, currently requires a minimum dose of 44 kGy for irradiated space foods. The underlying hypothesis was that commercial sterility of space foods could be achieved at a significantly lower dose, and this lowered dose would positively affect the shelf life of the product. Electron beam processed beef fajitas were used as an example NASA space food to benchmark the minimum eBeam dose required for sterility. A 15 kGy dose was able to achieve an approximately 10 log reduction in Shiga-toxin-producing Escherichia coli bacteria, and a 5 log reduction in Clostridium sporogenes spores. Furthermore, accelerated shelf life testing (ASLT) to determine sensory and quality characteristics under various conditions was conducted. Using Multidimensional gas-chromatography-olfactometry-mass spectrometry (MDGC-O-MS), numerous volatiles were shown to be dependent on the dose applied to the product. Furthermore, concentrations of off -flavor aroma compounds such as dimethyl sulfide were decreased at the reduced 15 kGy dose. The results suggest that the combination of conventional cooking combined with eBeam processing (15 kGy) can achieve the safety and shelf-life objectives needed for long duration space-foods.
Olivier, Jocelien D A; Esquivel Franco, Diana C; Oosting, Ronald; Waldinger, Marcel; Sarnyai, Zoltan; Olivier, Berend
2017-04-01
Tramadol is a well-known and effective analgesic. Recently it was shown that tramadol is also effective in human premature ejaculation. The inhibitory effect of tramadol on the ejaculation latency is probably due to its mechanism of action as a μ-opioid receptor agonist and noradrenaline/serotonin (5-HT) reuptake inhibitor. In order to test this speculation, we tested several doses of tramadol in a rat model of male sexual behavior and investigated two types of drugs interfering with the μ-opioid and the 5-HT system. First the μ-opioid receptor agonist properties of tramadol were tested with naloxone, a μ-opioid receptor antagonist. Second, the effects of WAY100,635, a 5-HT 1A receptor antagonist, were tested on the behavioral effects of tramadol. Finally the effects of paroxetine, a selective serotonin reuptake inhibitor, combined with naloxone or WAY100,635 treatment, were compared to the effects of tramadol combined with these drugs. Results showed that naloxone, at a sexually inactive dose, could only partially antagonize the inhibitory effect of tramadol. Moreover, low and behaviorally inactive doses of WAY100,635, strongly decreased sexual behavior when combined with a behaviorally inactive dose of tramadol. Finally we showed that the effects of paroxetine on sexual behavior resembled the effects of tramadol, indicating that tramadol's inhibitory effects on sexual behavior are primarily and mainly caused by its SSRI properties and that its μ-opioid receptor agonistic activity only contributes marginally. These findings support the hypothesis that tramadol exerts inhibition of premature ejaculations in men by its 5-HT reuptake inhibiting properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dose-dependent inhibition of gastric injury by hydrogen in alkaline electrolyzed drinking water
2014-01-01
Background Hydrogen has been reported to relieve damage in many disease models, and is a potential additive in drinking water to provide protective effects for patients as several clinical studies revealed. However, the absence of a dose–response relationship in the application of hydrogen is puzzling. We attempted to identify the dose–response relationship of hydrogen in alkaline electrolyzed drinking water through the aspirin induced gastric injury model. Methods In this study, hydrogen-rich alkaline water was obtained by adding H2 to electrolyzed water at one atmosphere pressure. After 2 weeks of drinking, we detected the gastric mucosal damage together with MPO, MDA and 8-OHdG in rat aspirin induced gastric injury model. Results Hydrogen-dose dependent inhibition was observed in stomach mucosal. Under pH 8.5, 0.07, 0.22 and 0.84 ppm hydrogen exhibited a high correlation with inhibitory effects showed by erosion area, MPO activity and MDA content in the stomach. Gastric histology also demonstrated the inhibition of damage by hydrogen-rich alkaline water. However, 8-OHdG level in serum did not have significant hydrogen-dose dependent effect. pH 9.5 showed higher but not significant inhibitory response compared with pH 8.5. Conclusions Hydrogen is effective in relieving the gastric injury induced by aspirin-HCl, and the inhibitory effect is dose-dependent. The reason behind this may be that hydrogen-rich water directly interacted with the target tissue, while the hydrogen concentration in blood was buffered by liver glycogen, evoking a suppressed dose–response effect. Drinking hydrogen-rich water may protect healthy individuals from gastric damage caused by oxidative stress. PMID:24589018
Kumarasamy, Barani; Manipal, Sunayana; Duraisamy, Prabu; Ahmed, Adil; Mohanaganesh, Sp; Jeevika, C
2014-11-01
Use of alternative medicine to control oral streptococci is a new topic worthy of further investigation. This study aimed to elucidate the dose-dependent anti-bacterial activity of crude aqueous extract of ripe Morinda citrifolia L. (Family: Rubiaceae) fruits against oral streptococci i.e. Streptococcus mutans and Streptococcus mitis, that cause dental caries in humans. Fresh ripe M. citrifolia fruits (750g) were ground in an electronic blender with sterile water (500ml). The crude aqueous extract was lyophilized to yield a brown colored powder. Various concentrations (1000-100μg/ ml) of the extract were tested for its antibacterial activity (Kirby and Bauer method) against whole cells of S. mutans and S. mitis. Minimum Inhibitory Concentration (MIC) was determined by micro-dilution method, using serially diluted (2 folds) fruit extract, according to the National Committee for Clinical Laboratory Standards (NCCLS). Crude aqueous extract (1000μg/ ml) of ripe M. citrifolia fruits effectively inhibited the growth of S. mutans (19±0.5 mm) and S. mitis (18.6±0.3 mm) compared to the streptomycin control (21.6±0.3 mm). The growth inhibition was clearly evident with "nil" bacteriostasis, even after 48 hours of incubation at 37°C. The MIC of the extract for S. mutans and S. mitis was 125 μg and 62.5 μg, respectively. Our results suggest that phytochemicals naturally synthesized by M. citrifolia have an inhibitory effect on oral streptococci. Furthermore, purification and molecular characterization of the "bioactive principle" would enable us to formulate a sustainable oral hygiene product.
Kumarasamy, Barani; Manipal, Sunayana; Duraisamy, Prabu; Ahmed, Adil; Mohanaganesh, SP; Jeevika, C
2014-01-01
Objectives: Use of alternative medicine to control oral streptococci is a new topic worthy of further investigation. This study aimed to elucidate the dose-dependent anti-bacterial activity of crude aqueous extract of ripe Morinda citrifolia L. (Family: Rubiaceae) fruits against oral streptococci i.e. Streptococcus mutans and Streptococcus mitis, that cause dental caries in humans. Methods: Fresh ripe M. citrifolia fruits (750g) were ground in an electronic blender with sterile water (500ml). The crude aqueous extract was lyophilized to yield a brown colored powder. Various concentrations (1000-100μg/ ml) of the extract were tested for its antibacterial activity (Kirby and Bauer method) against whole cells of S. mutans and S. mitis. Minimum Inhibitory Concentration (MIC) was determined by micro-dilution method, using serially diluted (2 folds) fruit extract, according to the National Committee for Clinical Laboratory Standards (NCCLS). Results: Crude aqueous extract (1000μg/ ml) of ripe M. citrifolia fruits effectively inhibited the growth of S. mutans (19±0.5 mm) and S. mitis (18.6±0.3 mm) compared to the streptomycin control (21.6±0.3 mm). The growth inhibition was clearly evident with “nil” bacteriostasis, even after 48 hours of incubation at 37°C. The MIC of the extract for S. mutans and S. mitis was 125 μg and 62.5 μg, respectively. Conclusion: Our results suggest that phytochemicals naturally synthesized by M. citrifolia have an inhibitory effect on oral streptococci. Furthermore, purification and molecular characterization of the “bioactive principle” would enable us to formulate a sustainable oral hygiene product. PMID:25628701
The frequency of U-shaped dose responses in the toxicological literature.
Calabrese, E J; Baldwin, L A
2001-08-01
Hormesis has been defined as a dose-response relationship in which there is a stimulatory response at low doses, but an inhibitory response at high doses, resulting in a U- or inverted U-shaped dose response. To assess the proportion of studies satisfying criteria for evidence of hormesis, a database was created from published toxicological literature using rigorous a priori entry and evaluative criteria. One percent (195 out of 20,285) of the published articles contained 668 dose-response relationships that met the entry criteria. Subsequent application of evaluative criteria revealed that 245 (37% of 668) dose-response relationships from 86 articles (0.4% of 20,285) satisfied requirements for evidence of hormesis. Quantitative evaluation of false-positive and false-negative responses indicated that the data were not very susceptible to such influences. A complementary analysis of all dose responses assessed by hypothesis testing or distributional analyses, where the units of comparison were treatment doses below the NOAEL, revealed that of 1089 doses below the NOAEL, 213 (19.5%) satisfied statistical significance or distributional data evaluative criteria for hormesis, 869 (80%) did not differ from the control, and 7 (0.6%) displayed evidence of false-positive values. The 32.5-fold (19.5% vs 0.6%) greater occurrence of hormetic responses than a response of similar magnitude in the opposite (negative) direction strongly supports the nonrandom nature of hormetic responses. This study, which provides the first documentation of a data-derived frequency of hormetic responses in the toxicologically oriented literature, indicates that when the study design satisfies a priori criteria (i.e., a well-defined NOAEL, > or = 2 doses below the NOAEL, and the end point measured has the capacity to display either stimulatory or inhibitory responses), hormesis is frequently encountered and is broadly represented according to agent, model, and end point. These findings have broad-based implications for study design, risk assessment methods, and the establishment of optimal drug doses and suggest important evolutionarily adaptive strategies for dose-response relationships.
Xue, Xiaonan; Shore, Roy E; Ye, Xiangyang; Kim, Mimi Y
2004-10-01
Occupational exposures are often recorded as zero when the exposure is below the minimum detection level (BMDL). This can lead to an underestimation of the doses received by individuals and can lead to biased estimates of risk in occupational epidemiologic studies. The extent of the exposure underestimation is increased with the magnitude of the minimum detection level (MDL) and the frequency of monitoring. This paper uses multiple imputation methods to impute values for the missing doses due to BMDL. A Gibbs sampling algorithm is developed to implement the method, which is applied to two distinct scenarios: when dose information is available for each measurement (but BMDL is recorded as zero or some other arbitrary value), or when the dose information available represents the summation of a series of measurements (e.g., only yearly cumulative exposure is available but based on, say, weekly measurements). Then the average of the multiple imputed exposure realizations for each individual is used to obtain an unbiased estimate of the relative risk associated with exposure. Simulation studies are used to evaluate the performance of the estimators. As an illustration, the method is applied to a sample of historical occupational radiation exposure data from the Oak Ridge National Laboratory.
Abrams, Thad E; Lund, Brian C; Alexander, Bruce; Bernardy, Nancy C; Friedman, Matthew J
2015-01-01
Posttraumatic stress disorder (PTSD) is a high-priority treatment area for the Veterans Health Administration (VHA), and dissemination patterns of innovative, efficacious therapies can inform areas for potential improvement of diffusion efforts and quality prescribing. In this study, we replicated a prior examination of the period prevalence of prazosin use as a function of distance from Puget Sound, Washington, where prazosin was first tested as an effective treatment for PTSD and where prazosin use was previously shown to be much greater than in other parts of the United States. We tested the following three hypotheses related to prazosin geographic diffusion: (1) a positive geographical correlation exists between the distance from Puget Sound and the proportion of users treated according to a guideline recommended minimum therapeutic target dose (>/=6 mg/d), (2) an inverse geographic correlation exists between prazosin and benzodiazepine use, and (3) no geographical correlation exists between prazosin use and serotonin reuptake inhibitor/serotonin norepinephrine reuptake inhibitor (SSRI/SNRI) use. Among a national sample of veterans with PTSD, overall prazosin utilization increased from 5.5 to 14.8% from 2006 to 2012. During this time period, rates at the Puget Sound VHA location declined from 34.4 to 29.9%, whereas utilization rates at locations a minimum of 2,500 miles away increased from 3.0 to 12.8%. Rates of minimum target dosing fell from 42.6 to 34.6% at the Puget Sound location. In contrast, at distances of at least 2,500 miles from Puget Sound, minimum threshold dosing rates remained stable (range, 18.6 to 17.7%). No discernible association was demonstrated between SSRI/SNRI or benzodiazepine utilization and the geographic distance from Puget Sound. Minimal threshold dosing of prazosin correlated positively with increased diffusion of prazosin use, but there was still a distance diffusion gradient. Although prazosin adoption has improved, geographic differences persist in both prescribing rates and minimum target dosing. Importantly, these regional disparities appear to be limited to prazosin prescribing and are not meaningfully correlated with SSRI/SNRI and benzodiazepine use as indicators of PTSD prescribing quality.
In vitro inhibitory activities of magnolol against Candida spp.
Zhou, Peiru; Fu, Jingya; Hua, Hong; Liu, Xiaosong
2017-01-01
Candida spp. cause various infections involving the skin, mucosa, deep tissues, and even life-threatening candidemia. They are regarded as an important pathogen of nosocomial bloodstream infection, with a high mortality rate. As a result of prolonged exposure to azoles, the therapeutic failure associated with azoles resistance has become a serious challenge in clinical situations. Therefore, novel, alternative antifungals are required urgently. In the present study, the CLSI M-27A broth microdilution method and the 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay were used to evaluate the antifungal effects of magnolol against various standard Candida strains in planktonic mode and biofilm formation, respectively. The antifungal activity of magnolol was demonstrated in planktonic C. albicans and non-albicans Candida species, especially fluconazole-resistant Candida krusei , with the minimum inhibitory concentrations ranging from 10 to 40 μg/mL. The BMIC 90 (minimum concentration with 90% Candida biofilm inhibited) values of magnolol ranged from 20 to 160 μg/mL, whereas the BMIC 90 values of fluconazole were more than 128 μg/mL. As an alternative and broad-spectrum antifungal agent, magnolol might be of benefit to the treatment of refractory Candida infection.
Antimicrobial activity of essential oils of Physalis angulata. L.
Osho, A; Adetunji, T; Fayemi, S O; Moronkola, D O
2010-01-01
The need for a reduction in drug resistance led to the investigation of Argemone Mexicana L. as an agent against Bacillus subtilis, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Candida stellatoidea and Candida torulopsis, using well diffusion and minimum inhibitory concentrations methods. The sensitivity of Bacillus Subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus to the essential oils of both the aerial and root parts were determined. Pseudomonas aeruginosa was resistant to the essential oil from both the aerial and root part of the plant. C. torulopsis, C. stellatoidea and C. albicans were susceptible to the essential oils from the aerial and root part of the plant. The minimum inhibitory concentrations ranging between 3.75 mg/ml and 4.0 mg/ml were recorded for Bacillus subtilis, Klebsiella pneumoniae by the aerial and the root extracts, but P. aeruginosa and S. aureus were not susceptible to the aerial and root extracts. The observed inhibition of selected bacteria and fungi by oils of Physalis angulata makes it a promising antimicrobial agent. This study justifies its uses for treatment of sores, cuts, intestinal and digestive problems and some skin-diseases often reported in folkloric medicine.
Zhang, Xiaofeng; Guo, Yanjun; Guo, Liying; Jiang, Hui
2018-01-01
The in vitro antioxidant and antimicrobial activity of the essential oil from Melaleuca alternifolia (M. alternifolia) was evaluated in this report. The antioxidant potential of the essential oil from M. alternifolia was evaluated by the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, thiobarbituric acid reactive species (TBARS) assay, and the hydroxyl radical scavenging activity method. The essential oil from M. alternifolia was able to reduce DPPH with an EC50 (concentration for 50% of maximal effect) of 48.35 μg/ml, inhibit the lipid peroxidation with an IC50 (50% inhibitory concentration) of 135.9 μg/ml, and eliminate hydroxyl radicals with an EC50 of 43.71 μg/ml. Antimicrobial screening, minimum inhibitory concentration, and minimum bactericidal concentration assays showed that the essential oil from M. alternifolia inhibited strongly the growth of different types of microorganisms, including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Penicillium italicum Wehmer, and Penicillium digitatum Sacc. Thus, the essential oil of M. alternifolia possesses antioxidant and antimicrobial activity and could be suitable for use as a natural preservative ingredient in food, agriculture, and pharmaceutical industries. PMID:29854733
Ng, Wen-Jie; Ken, Khai-Wei; Kumar, Roshani-Vijaya; Gunasagaran, Hemamalani; Chandramogan, Vanaysha; Lee, Ying-Yee
2014-01-01
Different researches on therapeutic effects of honey have been conducted in different regions; however the study on the potential antibacterial activity of Malaysian honey is still limited. In this study, antibacterial activities of different monofloral honey samples were tested against several common human pathogenic bacteria. The well-diffusion method, minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) techniques were employed to investigate the putative antibacterial activity of Malaysian monofloral honey from Koompassia excelsa (Becc.) Taub (Tualang), Melaleuca cajuputi Powell (Gelam) and Durio zibethinus Murr. (Durian). Honey samples were tested against Staphylococcus aureus ATCC6518 and ATCC25923, Staphylococcus epidermidis ATCC12228, Enterococcus faecium LMG16192, Enterococcus faecalis LMG16216 and ATCC29212, Escherichia coli ATCC25922, Salmonella enterica serovar Typhimurium ATCC14028 and Klebsiella pneumoniae ATCC13883. Marked variations were observed in the antibacterial activity of these honey samples. Durian honey failed to produce substantial antibacterial activity, whereas Tualang and Gelam honey showed a spectrum of antibacterial activity with their growth inhibitory effects against all of the tested bacterial species including vancomycin-resistant enterococci (VRE). Present findings suggested Gelam honey possesses highest antibacterial effect among the tested Malaysian honey samples.
Angioni, Alberto; Barra, Andrea; Russo, Maria T; Coroneo, Valentina; Dessi, Sandro; Cabras, Paolo
2003-05-07
The composition of the essential oil from ripe and unripe berries and leaves of Juniperus oxycedrus L. ssp. oxycedrus, Juniperus phoenicea ssp. turbinata and Juniperus communis ssp. communis was analyzed by GC-MS, and microbiological assays were carried out. Samples were collected in different localities (Sardinia, Italy) and hydro distilled. The yields ranged between 2.54% +/- 0.21 (v\\w dried weight) and 0.04% +/- 0.00. A total of 36 components were identified. The major compounds in the essential oils were alpha-pinene, beta-pinene, delta-3-carene, sabinene, myrcene, beta-phellandrene, limonene, and D-germacrene. Both qualitative and quantitative differences between species and between different parts of the plant were observed. The essential oils and their major compounds were tested against Candida albicans, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and the minimum inhibitory concentration and minimum bactericidal concentration were determined. The results obtained led to a nonsignificant inhibitory effect, although all the essential oils from Juniperus phoenicea ssp. turbinata and the essential oil from leaves of Juniperus oxycedrus ssp. oxycedrus exhibited rather good or weak activity against Candida albicans and Staphylococcus aureus.
Nagarajappa, Ramesh; Batra, Mehak; Sharda, Archana J; Asawa, Kailash; Sanadhya, Sudhanshu; Daryani, Hemasha; Ramesh, Gayathri
2015-01-01
To assess and compare the antimicrobial potential and determine the minimum inhibitory concentration (MIC) of Jasminum grandiflorum and Hibiscus rosa-sinensis extracts as potential anti-pathogenic agents in dental caries. Aqueous and ethanol (cold and hot) extracts prepared from leaves of Jasminum grandiflorum and Hibiscus rosa-sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus using the agar well diffusion method. The lowest concentration of every extract considered as the minimum inhibitory concentration (MIC) was determined for both test organisms. Statistical analysis was performed with one-way analysis of variance (ANOVA). At lower concentrations, hot ethanol Jasminum grandiflorum (10 μg/ml) and Hibiscus rosa-sinensis (25 μg/ml) extracts were found to have statistically significant (P≤0.05) antimicrobial activity against S. mutans and L. acidophilus with MIC values of 6.25 μg/ml and 25 μg/ml, respectively. A proportional increase in their antimicrobial activity (zone of inhibition) was observed. Both extracts were found to be antimicrobially active and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.
Abbaszadeh, S; Sharifzadeh, A; Shokri, H; Khosravi, A R; Abbaszadeh, A
2014-06-01
This work is an attempt to examine the antifungal activity of thymol, carvacrol, eugenol and menthol against 11 food-decaying fungi. The susceptibility test for the compounds was carried out in terms of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using microdilution method in 96 multi-well microtiter plates. Results indicated that all compounds were effective to varying extents against various fungal isolates, with the highest efficacy displayed by carvacrol (mean MIC value: 154.5 μg/mL) (P<0.05). The incorporation of increased concentrations of all compounds to the media led to progressive and significant reduction in growth for all fungi. The most potent inhibitory activity of thymol, carvacrol, eugenol and menthol was found for Cladosporium spp. (MIC: 100 μg/mL), Aspergillus spp. (MIC: 100 μg/mL), Cladosporium spp. (MIC: 350 μg/mL), and Aspergillus spp. and Cladosporium spp. (MIC: 125 μg/mL), respectively. Thus, the application of these herbal components could be considered as a good alternatives to inhibit fungal growth and to reduce the use of synthetic fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Babii, C; Bahrin, L G; Neagu, A-N; Gostin, I; Mihasan, M; Birsa, L M; Stefan, M
2016-03-01
This study reports on the inhibitory and bactericidal properties of a new synthetized flavonoid. Tricyclic flavonoid 1 has been synthesized through a two-step reaction sequence. The antimicrobial effects were tested using the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Also DNA fragmentation assay, fluorescence microscopy and SEM were used to study the mechanism of action. Our tested flavonoid displayed a strong antimicrobial activity with MIC and MBC values as low as 0·24 μg ml(-1) against Staphylococcus aureus and 3·9 μg ml(-1) against Escherichia coli. Flavonoid 1 displayed antimicrobial properties, causing not only the inhibition of bacterial growth, but also killing bacterial cells. The mechanism of action is related to the impairment of the cell membrane integrity and to cell agglutination. Tricyclic flavonoid 1 was found to have a stronger antibacterial effect at lower concentrations than those described in the earlier reports. Based on the strong antimicrobial activity observed, this new tricyclic flavonoid has a good potential for the design of new antimicrobial agents. © 2016 The Society for Applied Microbiology.
Herrera, Melina E; Mobilia, Liliana N; Posse, Graciela R
2011-01-01
The objective of this study is to perform a comparative evaluation of the prediffusion and minimum inhibitory concentration (MIC) methods for the detection of sensitivity to colistin, and to detect Acinetobacter baumanii-calcoaceticus complex (ABC) heteroresistant isolates to colistin. We studied 75 isolates of ABC recovered from clinically significant samples obtained from various centers. Sensitivity to colistin was determined by prediffusion as well as by MIC. All the isolates were sensitive to colistin, with MIC = 2µg/ml. The results were analyzed by dispersion graph and linear regression analysis, revealing that the prediffusion method did not correlate with the MIC values for isolates sensitive to colistin (r² = 0.2017). Detection of heteroresistance to colistin was determined by plaque efficiency of all the isolates with the same initial MICs of 2, 1, and 0.5 µg/ml, which resulted in 14 of them with a greater than 8-fold increase in the MIC in some cases. When the sensitivity of these resistant colonies was determined by prediffusion, the resulting dispersion graph and linear regression analysis yielded an r² = 0.604, which revealed a correlation between the methodologies used.
/sup 125/I interstitial implants in the RIF-1 murine flank tumor: an animal model for brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, M.; Gutin, P.H.; Weaver, D.A.
1982-09-01
The development of a model for interstitial brachytherapy that uses high-activity, removable /sup 125/I sources in the RIF-1 murine flank tumor is reported. Experimental end points are clonogenic cell and tumor regrowth delay assays. For the clonogenic cell assay, interestitial radiation is delivered at total doses of 500-10,000 rad at dose rates of 0.9-2.7 rad/min to cells in annuli of tissue in the tumor. Dose-survival curves are characterized by an initial shoulder followed by a straight (exponential) portion, with D/sub 0/ similar to that of the curve obtained by external irradiation of the RIF-1 tumor in a self-contained cesium irradiatormore » at similar dose rates. Tumor regrowth curves have been obtained for minimum tumor doses of 500-5000 rad; marked tumor regression has been observed with minimum tumor doses as low as 2000 rad, but results are not as reproducible as the results obtained with the clonogenic cell assay.« less
Zhou, Jiang-Tao; Li, Cai-Lan; Tan, Li-Hua; Xu, Yi-Fei; Liu, Yu-Hong; Mo, Zhi-Zhun; Dou, Yao-Xing; Su, Rui; Su, Zi-Ren; Huang, Ping; Xie, Jian-Hui
2017-01-01
In this paper, we evaluated the anti-Helicobacter pylori activity and the possible inhibitory effect on its associated urease by Palmatine (Pal) from Coptis chinensis, and explored the potential underlying mechanism. Results indicated that Pal exerted inhibitory effect on four tested H. pylori strains (ATCC 43504, NCTC 26695, SS1 and ICDC 111001) by the agar dilution test with minimum inhibitory concentration (MIC) values ranging from 100 to 200 μg/mL under neutral environment (pH 7.4), and from 75 to 100 μg/mL under acidic conditions (pH 5.3), respectively. Pal was observed to significantly inhibit both H. pylori urease (HPU) and jack bean urease (JBU) in a dose-dependent manner, with IC50 values of 0.53 ± 0.01 mM and 0.03 ± 0.00 mM, respectively, as compared with acetohydroxamic acid, a well-known urease inhibitor (0.07 ± 0.01 mM for HPU and 0.02 ± 0.00 mM for JBU, respectively). Kinetic analyses showed that the type of urease inhibition by Pal was noncompetitive for both HPU and JBU. Higher effectiveness of thiol protectors against urease inhibition than the competitive Ni2+ binding inhibitors was observed, indicating the essential role of the active-site sulfhydryl group in the urease inhibition by Pal. DTT reactivation assay indicated that the inhibition on the two ureases was reversible, further supporting that sulfhydryl group should be obligatory for urease inhibition by Pal. Furthermore, molecular docking study indicated that Pal interacted with the important sulfhydryl groups and inhibited the active enzymatic conformation through N-H ∙ π interaction, but did not interact with the active site Ni2+. Taken together, Pal was an effective inhibitor of H. pylori and its urease targeting the sulfhydryl groups, representing a promising candidate as novel urease inhibitor. This investigation also gave additional scientific support to the use of C. chinensis to treat H. pylori-related gastrointestinal diseases in traditional Chinese medicine. Pal might be a potentially beneficial therapy for gastritis and peptic ulcers induced by H. pylori infection and other urease-related diseases.
Tan, Li-Hua; Xu, Yi-Fei; Liu, Yu-Hong; Mo, Zhi-Zhun; Dou, Yao-Xing; Su, Rui; Su, Zi-Ren; Huang, Ping; Xie, Jian-Hui
2017-01-01
In this paper, we evaluated the anti-Helicobacter pylori activity and the possible inhibitory effect on its associated urease by Palmatine (Pal) from Coptis chinensis, and explored the potential underlying mechanism. Results indicated that Pal exerted inhibitory effect on four tested H. pylori strains (ATCC 43504, NCTC 26695, SS1 and ICDC 111001) by the agar dilution test with minimum inhibitory concentration (MIC) values ranging from 100 to 200 μg/mL under neutral environment (pH 7.4), and from 75 to 100 μg/mL under acidic conditions (pH 5.3), respectively. Pal was observed to significantly inhibit both H. pylori urease (HPU) and jack bean urease (JBU) in a dose-dependent manner, with IC50 values of 0.53 ± 0.01 mM and 0.03 ± 0.00 mM, respectively, as compared with acetohydroxamic acid, a well-known urease inhibitor (0.07 ± 0.01 mM for HPU and 0.02 ± 0.00 mM for JBU, respectively). Kinetic analyses showed that the type of urease inhibition by Pal was noncompetitive for both HPU and JBU. Higher effectiveness of thiol protectors against urease inhibition than the competitive Ni2+ binding inhibitors was observed, indicating the essential role of the active-site sulfhydryl group in the urease inhibition by Pal. DTT reactivation assay indicated that the inhibition on the two ureases was reversible, further supporting that sulfhydryl group should be obligatory for urease inhibition by Pal. Furthermore, molecular docking study indicated that Pal interacted with the important sulfhydryl groups and inhibited the active enzymatic conformation through N-H ∙ π interaction, but did not interact with the active site Ni2+. Taken together, Pal was an effective inhibitor of H. pylori and its urease targeting the sulfhydryl groups, representing a promising candidate as novel urease inhibitor. This investigation also gave additional scientific support to the use of C. chinensis to treat H. pylori-related gastrointestinal diseases in traditional Chinese medicine. Pal might be a potentially beneficial therapy for gastritis and peptic ulcers induced by H. pylori infection and other urease-related diseases. PMID:28045966
Konop, Christopher J; Knickelbine, Jennifer J; Sygulla, Molly S; Wruck, Colin D; Vestling, Martha M; Stretton, Antony O W
2015-12-01
Neuromodulators have become an increasingly important component of functional circuits, dramatically changing the properties of both neurons and synapses to affect behavior. To explore the role of neuropeptides in Ascaris suum behavior, we devised an improved method for cleanly dissecting single motorneuronal cell bodies from the many other cell processes and hypodermal tissue in the ventral nerve cord. We determined their peptide content using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The reduced complexity of the peptide mixture greatly aided the detection of peptides; peptide levels were sufficient to permit sequencing by tandem MS from single cells. Inhibitory motorneurons, known to be GABAergic, contain a novel neuropeptide, As-NLP-22 (SLASGRWGLRPamide). From this sequence and information from the A. suum expressed sequence tag (EST) database, we cloned the transcript (As-nlp-22) and synthesized a riboprobe for in situ hybridization, which labeled the inhibitory motorneurons; this validates the integrity of the dissection method, showing that the peptides detected originate from the cells themselves and not from adhering processes from other cells (e.g., synaptic terminals). Synthetic As-NLP-22 has potent inhibitory activity on acetylcholine-induced muscle contraction as well as on basal muscle tone. Both of these effects are dose-dependent: the inhibitory effect on ACh contraction has an IC50 of 8.3 × 10(-9) M. When injected into whole worms, As-NLP-22 produces a dose-dependent inhibition of locomotory movements and, at higher levels, complete paralysis. These experiments demonstrate the utility of MALDI TOF/TOF MS in identifying novel neuromodulators at the single-cell level. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Konop, Christopher J.; Knickelbine, Jennifer J.; Sygulla, Molly S.; Wruck, Colin D.; Vestling, Martha M.; Stretton, Antony O. W.
2015-12-01
Neuromodulators have become an increasingly important component of functional circuits, dramatically changing the properties of both neurons and synapses to affect behavior. To explore the role of neuropeptides in Ascaris suum behavior, we devised an improved method for cleanly dissecting single motorneuronal cell bodies from the many other cell processes and hypodermal tissue in the ventral nerve cord. We determined their peptide content using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The reduced complexity of the peptide mixture greatly aided the detection of peptides; peptide levels were sufficient to permit sequencing by tandem MS from single cells. Inhibitory motorneurons, known to be GABAergic, contain a novel neuropeptide, As-NLP-22 (SLASGRWGLRPamide). From this sequence and information from the A. suum expressed sequence tag (EST) database, we cloned the transcript ( As-nlp-22) and synthesized a riboprobe for in situ hybridization, which labeled the inhibitory motorneurons; this validates the integrity of the dissection method, showing that the peptides detected originate from the cells themselves and not from adhering processes from other cells (e.g., synaptic terminals). Synthetic As-NLP-22 has potent inhibitory activity on acetylcholine-induced muscle contraction as well as on basal muscle tone. Both of these effects are dose-dependent: the inhibitory effect on ACh contraction has an IC50 of 8.3 × 10-9 M. When injected into whole worms, As-NLP-22 produces a dose-dependent inhibition of locomotory movements and, at higher levels, complete paralysis. These experiments demonstrate the utility of MALDI TOF/TOF MS in identifying novel neuromodulators at the single-cell level.
Salve, Preeti S; Alegaon, Shankar G; Sriram, Dharmarajan
2017-04-15
An efficient three-component, one-pot protocol is described for the synthesis of biologically interesting 2-(benzylideneamino)-N-(7-chloroquinolin-4-yl)benzohydrazide derivatives from isatoic anhydride, 7-chloro-4-hydrazinylquinoline and aromatic and/or hetero aromatic aldehydes under catalyst free condensation by using water as reaction media. All synthesized compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis (MTB) and cytotoxicity activity against normal VERO cell lines. The synthesized compounds exhibited minimum inhibitory concentration (MIC) ranging from 0.78 to 25μM. Among the tested compounds 4c, 4o, 4r, and 4u exhibited promising inhibitory activity (MIC=3.12μM). Compounds 4h and 4i stand out, showing MIC values of 0.78 and 1.56μM respectively. Both compounds were further screened for their Mycobacterium tuberculosis DNA gyrase inhibitory assay which suggested that these compounds have a great potential for further optimization and development as antitubercular agents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Roberts, Darren M; Ranganathan, Dwarakanathan; Wallis, Steven C; Varghese, Julie M; Kark, Adrian; Lipman, Jeffrey; Roberts, Jason A
2016-01-01
♦ The standard treatment of peritoneal dialysis (PD)-associated peritonitis (PD-peritonitis) is intraperitoneal (IP) administration of antibiotics. Only limited data on the pharmacokinetics and appropriateness of contemporary dose recommendations of IP cefalothin and cefazolin exist. The aim of this study was to describe the pharmacokinetics of IP cefalothin and cefazolin in patients treated for PD-peritonitis. ♦ As per international guidelines, IP cefalothin or cefazolin 15 mg/kg once daily was dosed with gentamicin in a 6-hour dwell to patients with PD-peritonitis during routine care. Serial plasma and PD effluent samples were collected over the first 24 hours of therapy. Antibiotic concentrations were quantified using a validated chromatographic method with pharmacokinetic analysis performed using a non-compartmental approach. ♦ Nineteen patients were included (cefalothin n = 8, cefazolin n = 11). The median bioavailability for both antibiotics exceeded 92%, but other pharmacokinetic parameters varied markedly between antibiotics. Both antibiotics achieved high PD effluent concentrations throughout the antibiotic dwell. Cefazolin had a smaller volume of distribution compared with cefalothin (14 vs 40 L, p = 0.003). The median trough total plasma antibiotic concentration for cefazolin and cefalothin during the dwell differed (plasma 56 vs 13 mg/L, p < 0.0001) despite a similar concentration in PD effluent (37 vs 38 mg/L, p = 0.58). Lower antibiotic concentrations were noted during PD dwells not containing antibiotic, particularly cefalothin, which was frequently undetectable in plasma and PD effluent. The median duration that the unbound antibiotic concentration was above the minimum inhibitory concentration (MIC) was approximately 13% (plasma) and 25% (IP) for cefalothin, and 100% (plasma and IP) for cefazolin, of the dosing interval. ♦ When IP cefalothin or cefazolin is allowed to dwell for 6 hours, sufficient PD effluent concentrations are present for common pathogens during this time. However, with once-daily IP dosing, in contrast to cefazolin, there is a risk of subtherapeutic plasma and PD effluent cefalothin concentrations, so more frequent dosing may be required. Copyright © 2016 International Society for Peritoneal Dialysis.
Ruíz, Francisco O; Pascual, Liliana; Giordano, Walter; Barberis, Lucila
2015-04-01
In the search of new antimicrobial agents against Neisseria gonorrhoeae, the bacteriocins-producing probiotic lactobacilli deserve special attention. The inhibitory effects of biosubstances such as organic acids, hydrogen peroxide and each bacteriocin-like inhibitory substance (BLIS) L23 and L60 on the growth of different gonococcal strains were investigated. Different non-treated and treated cell-free supernatants of two probiotic lactobacilli containing these metabolites were used. The aims of this work were (i) to evaluate the antimicrobial activity of the biosubstances produced by two probiotic lactobacilli, estimating the proportion in which each of them is responsible for the inhibitory effect, (ii) to define their minimum inhibitory concentrations (MICs) and, (iii) to determine the potential interactions between these biosubstances against N. gonorrhoeae. The main antimicrobial metabolites were the BLIS-es L23 and L60 in comparison with other biosubstances. Proportionally, their contributions to the inhibition on the gonococcal growth were 87.28% and 80.66%, respectively. The MIC values of bacteriocins were promising since these substances, when diluted, showed considerable inhibitory activity for all gonococci. In the interaction between bacteriocins, 100% of synergism was found on the gonococcal growth. In summary, this study indicates that both L23 and L60 could potentially serve to design new bioproducts against N. gonorrhoeae. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Awaad, Amani S; Al-Mudhayyif, Hind A; Al-Othman, Monerah R; Zain, Mohamed E; El-Meligy, Reham M
2017-03-01
Bio-guided fractionation of Aspergillus terreus extract leads to isolation of a novel terpenoidal secondary metabolite. The isolated compound and the total alcoholic extract of Aspergillus terreus showed a remarkable activity against microbial mouth infections; namely, Candida albicans, Lactobacillus acidophilus, Streptococcus gordonii, and S. mutan. Moreover, the Minimum Inhibitory Concentration of the isolated compound was determined and showed low values. The combination of each of the alcoholic extract of A. terreus and the isolated compound Coe-Comfort tissue conditioner inhibited the growth of Candida albicans at concentrations of 500 and 7.81 µg/mL, respectively, Lactobacillus acidophilus at concentrations of 250 and 7.81 µg/mL, respectively, Streptococcus gordonii at concentrations of 1000 and 62.50 µg/mL, respectively, and S. mutans at concentrations of 1000 and 125 µg/mL, respectively. The oral dosing of the extract and the isolated compound did not show any significant effect on the activity of alanine aminotransferase, aspirate aminotransferase, and the levels of blood urea and serum creatinine. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Chairunnisa, Tamhid, Hady Anshory; Nugraha, Arde Toga
2017-03-01
Infectious diseases and antibiotic resistance becomes a problem that must be resolved. Plant based products are among the alternative agents examined in order to replace conventional antibiotics. Cinnamaldehyde is one of the compound in cinnamon oil that has antibacterial activity. But the other compounds in cinnamon oil has also the potential antibacterial activity. The purpose of this study to conduct GC-MS analysis of cinnamon oil and its antibacterial activity to Staphylococcus aureus and Escherichia coli by gaseous contact. Cinnamomum burmannii was distilled by water-steam distillation to obtain essential oil. Identification of compounds was analyzed by GC-MS. Antibacterial activity was observed by gaseous contact method in airtight boxes. The GC-MS analyzed showed that there are four major compounds of cinnamon oil, trans-cinnamaldehyde (56,10%), 1,8-cineole (16,53%), α-pinene (3,44%) and α -terpineol (3,05%). The Minimum Inhibitory Dose (MID) of cinnamon oil to E. coli and S. aureus was 12.5 µL/L and 6.26 µL/L respectively. Gas compounds of cinnamon oil has more effective to gram-positive bacteria than gram-negative bacteria.
Appropriate antibiotic therapy improves Ureaplasma sepsis outcome in the neonatal mouse.
Weisman, Leonard E; Leeming, Angela H; Kong, Lingkun
2012-11-01
Ureaplasma causes sepsis in human neonates. Although erythromycin has been the standard treatment, it is not always effective. No published reports have evaluated Ureaplasma sepsis in a neonatal model. We hypothesized that appropriate antibiotic treatment improves Ureaplasma sepsis in a neonatal mouse model. Two ATCC strains and two clinical strains of Ureaplasma were evaluated in vitro for antibiotic minimum inhibitory concentration (MIC). In addition, FVB albino mice pups infected with Ureaplasma were randomly assigned to saline, erythromycin, or azithromycin therapy and survival, quantitative blood culture, and growth were evaluated. MICs ranged from 0.125 to 62.5 µg/ml and 0.25 to 1.0 µg/ml for erythromycin and azithromycin, respectively. The infecting strain and antibiotic selected for treatment appeared to affect survival and bacteremia, but only the infecting strain affected growth. Azithromycin improved survival and bacteremia against each strain, whereas erythromycin was effective against only one of four strains. We have established a neonatal model of Ureaplasma sepsis and observed that treatment outcome is related to infecting strain and antibiotic treatment. We speculate that appropriate antibiotic selection and dosing are required for effective treatment of Ureaplasma sepsis in neonates, and this model could be used to further evaluate these relationships.
Elshafie, Hazem S; Sakr, Shimaa; Mang, Stefania M; Belviso, Sandra; De Feo, Vincenzo; Camele, Ippolito
2016-11-01
There is a growing interest in essential oils (EOs) as possible alternatives for traditional chemical pesticides. This study was carried out to characterize the chemical composition of the three EOs extracted from Verbena officinalis, Majorana hortensis, and Salvia officinalis using gas chromatography (GC) and GC-mass spectrometry (GC-MS) and to evaluate in vitro their efficacy against some phyto or human pathogens. The antifungal activity was investigated against Colletotrichum acutatum and Botrytis cinerea in comparison with Azoxystrobin as a large spectrum fungicide. Antibacterial activity was evaluated against Bacillus megaterium, Bacillus mojavensis, and Clavibacter michiganensis (G+ve) and Escherichia coli, Xanthomonas campestris, Pseudomonas savastanoi, and P. syringae pv. phaseolicola (G-ve) compared to a synthetic antibiotic tetracycline. Minimum inhibitory concentration was evaluated against the above tested fungi using 96-well microplate method. Results showed that the chemical structure of the three studied EOs was mainly composed of monoterpene compounds and all oils belong to the chemotype carvacrol/thymol. Results of GC analysis identified 64 compounds, which were identified based on their mass to charge ratio. Furthermore, the different concentrations of studied EOs inhibited the growth of tested microorganism in a dose-dependent manner.
Machado, Rachel R P; Dutra, Rafael C; Raposo, Nádia R B; Lesche, Bernhard; Gomes, Marlei S; Duarte, Rafael S; Soares, Geraldo Luiz G; Kaplan, Maria Auxiliadora C
2015-12-01
Interferometry was used together with the conventional microplate resazurin assay to evaluate the antimycobacterial properties of essential oil (EO) from fruits of Pterodon emarginatus and also of rifampicin against Mycobacterium bovis. The aim of this work is not only to investigate the potential antimycobacterial activity of this EO, but also to test the interferometric method in comparison with the conventional one. The Minimum Inhibitory Concentration (MIC) values of EO (625 μg/mL) and rifampicin (4 ng/mL) were firstly identified with the microplate method. These values were used as parameters in Drug Susceptibility Tests (DST) with interferometry. The interferometry confirmed the MIC value of EO identified with microplate and revealed a bacteriostatic behavior for this concentration. At 2500 μg/mL interferometry revealed bactericidal activity of the EO. Mycobacterial growth was detected with interferometry at 4 ng/mL of rifampicin and even at higher concentrations. One important difference is that the interferometric method preserves the sample, so that after weeks of quantitative observation, the sample can be used to evaluate the bactericidal activity of the tested drug. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ito, Akinobu; Tatsumi, Yumiko Matsuo; Wajima, Toshihiro; Nakamura, Rio; Tsuji, Masakatsu
2013-04-01
The growing number of infection caused by extended-spectrum beta-lactamase (ESBL) producing pathogens has prompted a more rational use of available antibiotics because of the paucity of new, effective agents. Flomoxef (FMOX) is one of the beta-lactam antibiotic which is stable against beta-lactamase. In this study, the antibacterial activity of FMOX was investigated, and Monte Carlo Simulation was conducted to determine the appropriate dosing regimens of FMOX based on the probability of target attainment (TA%) at the critical drug exposure metric of time that drug concentrations remain above 40% (showing bacteriostatic effect) or 70% (showing bactericidal effect) of time during which plasma concentration above minimum inhibitory concentration (MIC) of the drug (T(>MIC)) against the ESBL producing Enterobacteriaceae. The effective regimens to achieve 80% of TA% at 70% of T(>MIC) were 1 g every 8 hours with 2-4 hours infusion, and 1 g every 6 hours with 1-4 hours infusion. Moreover, all the tested regimens were effective to achieve 80% of TA% at 40% of T(>MIC). These results of pharmacokinetics/ pharmacodynamics (PK/PD) modeling showed the potential efficacy of FMOX against bacterial infections caused by ESBL producing Enterobacteriaceae.
Díaz Obregón, Daysi; Lloja Lozano, Luis; Carbajal Zúñiga, Victor
2004-01-01
Experimental research was carried out at the Parasitology and Chemistry laboratories of the Jorge Basadre Grohmann National University, in Tacna. The process involved two phases: (1) determination of the minimum inhibitory concentration (MIC) of Cucurbita Maxima as an antiparasitic agent using canine tapeworms with an intestinal isolation of 5 to 6 hours, and (2) determination of the side-effects of Curbita Maxima on exposed albino rats. It was found that the MIC of 23 gr. of pumpkin seed in 100 ml. of distilled water can produce an antihelminthic effect. This concentration is equivalent to +/- 73 pumpkin seeds (x2 = 5.6, p<0.01). Macroscopically, alterations in helminthic motility are present at a dose of > 23 gr. There is a protheolithic effect with an average survival time of 38.4 minutes. Microscopically the mature proglottids present a destruction of the tegument involving the basal membrane. In the gravid proglottids there is egg destruction. These findings are accentuated when experimenting with Cucurbita Maxima in a concentration of 30 and 32 gr. Superficial non-erosive gastritis was found in weys rats after 4 hours of administering 9 gr/kg.
Excitable Neurons, Firing Threshold Manifolds and Canards
2013-01-01
We investigate firing threshold manifolds in a mathematical model of an excitable neuron. The model analyzed investigates the phenomenon of post-inhibitory rebound spiking due to propofol anesthesia and is adapted from McCarthy et al. (SIAM J. Appl. Dyn. Syst. 11(4):1674–1697, [2012]). Propofol modulates the decay time-scale of an inhibitory GABAa synaptic current. Interestingly, this system gives rise to rebound spiking within a specific range of propofol doses. Using techniques from geometric singular perturbation theory, we identify geometric structures, known as canards of folded saddle-type, which form the firing threshold manifolds. We find that the position and orientation of the canard separatrix is propofol dependent. Thus, the speeds of relevant slow synaptic processes are encoded within this geometric structure. We show that this behavior cannot be understood using a static, inhibitory current step protocol, which can provide a single threshold for rebound spiking but cannot explain the observed cessation of spiking for higher propofol doses. We then compare the analyses of dynamic and static synaptic inhibition, showing how the firing threshold manifolds of each relate, and why a current step approach is unable to fully capture the behavior of this model. PMID:23945278
Chang, Yung-Chi; Olson, Joshua; Beasley, Federico C.; Tung, Christine; Zhang, Jiquan; Crocker, Paul R.; Varki, Ajit; Nizet, Victor
2014-01-01
Group B Streptococcus (GBS) is a common agent of bacterial sepsis and meningitis in newborns. The GBS surface capsule contains sialic acids (Sia) that engage Sia-binding immunoglobulin-like lectins (Siglecs) on leukocytes. Here we use mice lacking Siglec-E, an inhibitory Siglec of myelomonocytic cells, to study the significance of GBS Siglec engagement during in vivo infection. We found GBS bound to Siglec-E in a Sia-specific fashion to blunt NF-κB and MAPK activation. As a consequence, Siglec-E-deficient macrophages had enhanced pro-inflammatory cytokine secretion, phagocytosis and bactericidal activity against the pathogen. Following pulmonary or low-dose intravenous GBS challenge, Siglec-E KO mice produced more pro-inflammatory cytokines and exhibited reduced GBS invasion of the central nervous system. In contrast, upon high dose lethal challenges, cytokine storm in Siglec-E KO mice was associated with accelerated mortality. We conclude that GBS Sia mimicry influences host innate immune and inflammatory responses in vivo through engagement of an inhibitory Siglec, with the ultimate outcome of the host response varying depending upon the site, stage and magnitude of infection. PMID:24391502
32 CFR 218.4 - Dose estimate reporting standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) MISCELLANEOUS GUIDANCE FOR THE DETERMINATION AND REPORTING OF NUCLEAR RADIATION DOSE FOR DOD PARTICIPANTS IN THE ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum... of the radiation environment to which the veteran was exposed and shall include inhaled, ingested...
32 CFR 218.4 - Dose estimate reporting standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) MISCELLANEOUS GUIDANCE FOR THE DETERMINATION AND REPORTING OF NUCLEAR RADIATION DOSE FOR DOD PARTICIPANTS IN THE ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum... of the radiation environment to which the veteran was exposed and shall include inhaled, ingested...
32 CFR 218.4 - Dose estimate reporting standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) MISCELLANEOUS GUIDANCE FOR THE DETERMINATION AND REPORTING OF NUCLEAR RADIATION DOSE FOR DOD PARTICIPANTS IN THE ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum... of the radiation environment to which the veteran was exposed and shall include inhaled, ingested...
32 CFR 218.4 - Dose estimate reporting standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) MISCELLANEOUS GUIDANCE FOR THE DETERMINATION AND REPORTING OF NUCLEAR RADIATION DOSE FOR DOD PARTICIPANTS IN THE ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum... of the radiation environment to which the veteran was exposed and shall include inhaled, ingested...
32 CFR 218.4 - Dose estimate reporting standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) MISCELLANEOUS GUIDANCE FOR THE DETERMINATION AND REPORTING OF NUCLEAR RADIATION DOSE FOR DOD PARTICIPANTS IN THE ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum... of the radiation environment to which the veteran was exposed and shall include inhaled, ingested...
Hwang, Seung Hwan; Kang, Il-Jun
2017-01-01
The objective of the present study was to evaluate α-glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC50 values of 67.33 and 86.68 μg/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μg/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model (P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower (P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement. PMID:28303158
Hwang, Seung Hwan; Kang, Il-Jun; Lim, Soon Sung
2017-01-01
The objective of the present study was to evaluate α -glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC 50 values of 67.33 and 86.68 μ g/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μ g/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model ( P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower ( P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.
Developmental neurotoxic effects of a low dose of TCE on a 3-D neurosphere system.
Abdraboh, M E; Abdeen, S H; Salama, M; El-Husseiny, M; El-Sherbini, Y M; Eldeen, N M
2018-02-01
Trichloroethylene (TCE) is one of the industrial toxic byproducts that now persist in the air, soil, and water. Several studies have already illustrated the toxic effect of high doses of TCE on the biological functions of several organs. This study aims to highlight the toxic impact of a low dose of TCE (1 μmol/L) on the development of rat neural stem cells (NSCs). The subventricular zones (SVZ) of rat pup's brains were collected and minced, and the harvested cells were cultured in the presence of neural growth factors B27/N2 to develop neurospheres. The cells were then exposed to a dose of 1 μmol/L TCE for 1 or 2 weeks. The outcomes indicated a remarkable inhibitory effect of TCE on the differentiation capacity of NSCs, which was confirmed by down-regulation of the astrocyte marker GFAP The inhibitory effect of TCE on the proliferation of NSCs was identified by the reductions in neurosphere diameter, Ki67 expression, and cell cycle arrest at the G1/S phase. Immunolabelling with annexin V indicated the proapoptotic effect of TCE exposure. PCR results revealed a TCE-mediated suppression of the expression of the antioxidant enzyme SOD1. This paper illustrates, for the first time, a detailed examination of the toxic effects of an environmentally low dose of TCE on NCSs at the transcriptional, translational, and functional levels.
Cocaine improves inhibitory control in a human model of response conflict.
Fillmore, Mark T; Rush, Craig R; Hays, Lon
2005-11-01
The present study was designed to test the acute effects of cocaine on behavioral control in the presence and absence of motivational conflict. Adults (N = 14) with a history of stimulant use received oral cocaine hydrogen chloride (0, 100, 200, and 300 mg) and performed a cue-dependent go/no-go task to measure inhibitory and activational mechanisms of behavioral control either with or without motivated conflict between the inhibition and the activation of responses. Cocaine improved response inhibition in both conflict conditions, as evident by a decrease in inhibitory failures following active doses. The current study provides a useful model to investigate the effects of other drugs reported to have performance-enhancing effects. Copyright 2005 APA, all rights reserved.
Effect of Isoprinosine Against Influenza and Some Other Viruses Causing Respiratory Diseases
Muldoon, Robert L.; Mezny, Linda; Jackson, George G.
1972-01-01
The antiviral activity of isoprinosine was tested in tissue cultures and mice. In tissue cultures, concentrations of 25 to 100 μg/ml inhibited the infectivity of influenza and herpes hominis viruses but not parainfluenza virus, rhinovirus, or adenovirus. Among different strains of influenza A, there was considerable variability in the inhibitory concentration of isoprinosine. For influenza B, a zone effect was observed in the inhibitory drug concentration. Oral prophylactic administration of isoprinosine beginning 24 hr before infection with an intermediate challenge dose of influenza A and continued as treatment for 5 days produced a significant reduction in mortality. No protection was provided against a high dose challenge. Oral or intraperitoneal treatment of mice beginning 24 hr after infection with influenza A or B viruses significantly delayed or prevented death when the drug was administered for 10 days, but not when treatment was limited to 4 days. An increased fatality rate which occurred in treated mice given a virus dose of low lethality could not be attributed to drug toxicity. PMID:4790561
[Inhibition effects of black rice pericarp extracts on cell proliferation of PC-3 cells].
Jiang, Weiwei; Yu, Xudong; Ren, Guofeng
2013-05-01
To observe the inhibitive effects of black rice pericarp extracts on cell proliferation of human prostate cancer cell PC-3 and to explore its effecting mechanism. The black rice pericarp extract was used to treat the PC-3 cells. The inhibitory effect of black rice pericarp extract on cells proliferation of PC-3 was tested by MTT method. Cell apoptosis rates and cell cycle were measured by flow cytometric assay (FCM). Western blot was used to study the protein expression levels of p38, p-p38, JNK, p-JNK. A dose-dependent and time-dependent proliferation inhibition of black rice pericarp extract was demonstrated in PC-3. The most prominent experiment condition was inhibitory concentration with 300microg/ml and treated for 72 h. The experiment result of flow cytometry analysis demonstrates that the apoptosis rate of PC-3 cells increased along with the increasing of black rice pericarp extract concentration, and a G1-S cell cycle arrest was induced in a dose-dependent manner. After PC-3 cell was treated with black rice pericarp extract for 72 h, the expressions of p-p38, p-JNK protein increased. Black rice pericarp extract could inhibit proliferation, change the cell cycle distributions and induce apoptosis in human prostatic cancer cell PC-3. Its inhibitory effect may be through promoting activation of the JNK, p38 signaling pathway. These results suggest that black rice pericarp extract maybe has an inhibitory effect on prostatic cancer.
Guo, Feng-Xia; Zeng, Yang; Li, Jin-Ping; Chen, Zhen-Ning; Ma, Ji-Xiong
2013-04-01
The enzyme-inhibitor model and the sugar tolerance mouse model were used to evaluate the relationship between the inhibition rate of enzyme activity and concentration of Hippophae rhamnoides L. subsp. chinensis Rousi polysaccharide (HRP). The inhibitory patterns of enzyme and dose-dependent effects of HRP's effect on blood glucose using acarbose tablets as control were also examined. The mechanism underlying hypoglycemic effects of HRP was discussed. The results showed: in the enzyme-inhibitor model, the inhibitory activity of different concentrations of HRP (9.80, 19.60, 39.20, 78.40, 156.80 and 312.50 mg x L(-1)) on alpha-glucosaminidase (AG) inhibitory activity were 6.62%, 18.02%, 33.26%, 48.23%, 62.11%, 76.31%, 90.12%, IC50 was 31.59 mg x L(-1). The inhibitory rate of 25.00 x 10(3) mg x L(-1) acarbose tablets was only 64.87%, and IC50 was 10.75 x 10(3) mg x L(-1). In the sugar tolerance mouse model, different doses of HRP (240, 480, 960 mg x kg(-1)) tended to decrease levels of blood glucose compared with control group (acarbose tablets 375 mg x kg(-1)) at 15, 30, 60 and 120 min. It's further confirmed that HRP is a kind of competitive inhibitor of AG activity. Its inhibition rate increases with the increase of concentration in normal mice, and it subsequently improves the sugar tolerance showing the effect of reducing blood sugar.
Stein, Gary E; Schooley, Sharon; Tyrrell, Kerin L; Citron, Diane M; Goldstein, Ellie J C
2007-01-01
Telithromycin is a new ketolide antimicrobial with a good in vitro activity against both aerobic and anaerobic respiratory pathogens. In this study, we evaluated the antibacterial activity over time of telithromycin (800mg), azithromycin (500mg), and amoxicillin/clavulanate (875/125mg) in serum following single oral doses of these agents to 10 healthy subjects. Inhibitory and bactericidal titers were determined at 2, 6, 12, and 24h after each dose and the median titer was used to determine antibacterial activity. Against two azithromycin-resistant strains of Streptococcus pneumoniae, both telithromycin (MIC=0.25 and 0.5 microg/mL) and amoxicillin/clavulanate exhibited inhibitory and cidal activity for at least 6h. All three antibiotics provided prolonged (>or=12h) inhibitory activity against strains of Hemophilus influenzae (telithromycin MIC=4.0 microg/ml). Both telithromycin and amoxicillin/clavulanate exhibited rapid and prolonged inhibitory activity (>or=12h) against each of the anaerobes studied (Finegoldia [Peptostreptococcus] magna Peptostreptococcus micros, Prevotella bivia, and Prevotella melaninogenica). Moreover, both agents provided bactericidal activity against both Prevotella species. In this ex vivo pharmacodynamic study, we found that telithromycin provided rapid and prolonged antibacterial activity in serum against macrolide-resistant strains of S. pneumoniae, beta-lactamase-positive and -negative strains of H. influenzae, and common respiratory anaerobic pathogens. These findings suggest that telithromycin could have clinical utility in the treatment of community-acquired mixed aerobic-anaerobic respiratory tract infections, including chronic sinusitis and aspiration pneumonia.
Potency of a tau fibrillization inhibitor is influenced by its aggregation state
Congdon, Erin E.; Necula, Mihaela; Blackstone, Robert D.; Kuret, Jeff
2007-01-01
Tau fibrillization is a potential therapeutic target for Alzheimer’s and other neurodegenerative diseases. Several small molecule inhibitors of tau aggregation have been developed for this purpose. One of them, 3,3′-bis(β-hydroxyethyl)-9-ethyl-5,5′-dimethoxythiacarbocyanine iodide (N744), is a cationic thiacarbocyanine dye that inhibits recombinant tau filament formation when present at submicromolar concentrations. To prepare dosing regimens for testing N744 activity in biological models, its full concentration-effect relationship in the range 0.01 – 60 μM was examined in vitro by electron microscopy and laser light scattering methods. Results revealed that N744 concentration dependence was biphasic, with fibrillization inhibitory activity appearing at submicromolar concentration, but with relief of inhibition and increases in fibrillization apparent above 10 μM. Therefore, fibrillization was inhibited ≥50% only over a narrow concentration range, which was further reduced by filament stabilizing modifications such as tau pseudophosphorylation. N744 inhibitory activity also was paralleled by changes in its aggregation state, with dimer predominating at inhibitory concentrations and large dye aggregates appearing at high concentrations. Ligand dimerization was promoted by the presence of tau protein, which lowered the equilibrium dissociation constant for dimerization more than an order of magnitude relative to controls. The results suggest that ligand aggregation may play an important role in both inhibitory and disinhibitory phases of the concentration-effect curve, and may lead to complex dose response relationships in model systems. PMID:17559794
Susceptibility of Candida glabrata biofilms to echinocandins: alterations in the matrix composition.
Rodrigues, Célia F; Rodrigues, Maria Elisa; Henriques, Mariana
2018-05-25
Candidiases are the most recurrent fungal infections, especially among immunosuppressed patients. Although Candida albicans is still the most widespread isolated species, non-Candida albicans Candida species have been increasing. The goal of this work was to determine the susceptibility of C. glabrata biofilms to echinocandins and to evaluate their effect on the biofilm matrix composition, comparing the results with other Candida species. Drug susceptibilities were assessed through the determination of minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and minimum biofilm eradication concentration (MBEC) of caspofungin (Csf) and micafugin (Mcf). The β-1,3 glucans content of the matrices was assessed after contact with the drugs. The data suggest that, generally, after contact with echinocandins, the concentration of β-1,3 glucans increased. These adjustments in the matrix composition of C. glabrata biofilms and the chemical differences between Csf and Mcf, seem responsible and may determine the effectivity of the drug responses.
Xie, Jingli; Chen, Xujun; Wu, Junjie; Zhang, Yanyan; Zhou, Yan; Zhang, Lujia; Tang, Ya-Jie; Wei, Dongzhi
2018-02-14
The aim of this work is to explore angiotensin I-converting enzyme (ACE) inhibitory peptides from Chlorella vulgaris (C. vulgaris) and discover the inhibitory mechanism of the peptides. After C. vulgaris proteins were gastrointestinal digested in silico, several ACE inhibitory peptides with C-terminal tryptophan were screened. Among them, two novel noncompetitive ACE inhibitors, Thr-Thr-Trp (TTW) and Val-His-Trp (VHW), exhibited the highest inhibitory activity indicated by IC 50 values 0.61 ± 0.12 and 0.91 ± 0.31 μM, respectively. Both the peptides were demonstrated stable against gastrointestinal digestion and ACE hydrolysis. The peptides were administrated to spontaneously hypertensive rats (SHRs) in the dose 5 mg/kg body weight, and VHW could decrease 50 mmHg systolic blood pressure of SHRs (p < 0.05). Molecular docking displayed that both TTW and VHW formed six hydrogen bonds with active site pockets of ACE. Besides, isothermal titration calorimetry assay discovered that VHW could form more stable complex with ACE than TTW. Therefore, VHW was an excellent ACE inhibitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygaard, Gyrid; Department of Biomedicine, University of Bergen, Bergen; Herfindal, Lars
Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigatedmore » whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.« less
SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Y; Yu, J; Xiao, Y
Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematicalmore » model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.« less
Stratifying low level Isoniazid resistance using additional intermediate drug concentration.
Lakshmi, Rajagopalan; Ramachandran, Ranjani; Sundar, A Syam; Rahman, Fathima; Kumar, Vanaja
2014-06-01
Isoniazid (INH) susceptibility testing for 100 Mycobacterium tuberculosis performed by conventional minimum inhibitory concentration (MIC) method was stratified using additional drug concentrations. Introduction of additional drug concentrations did not greatly improve the discriminatory capacity, but can be used in specialized studies pertaining to cross resistance between structural analogues of INH. Copyright © 2014 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.
2013-05-21
minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished... molecular weight, was non-toxic, and abolished bacterial growth at 13 mM, with putative activity against pantetheine-phosphate adenylyltransferase, an...time period. Metabolic genome-scale models of bacteria have provided a computational framework for in silico simulations to evaluate how metabolic
Téllez, Nohemí; Téllez, Mayra; Perdomo, Margarita; Alvarado, Andrea; Gamboa, Fredy
2010-01-01
Dental caries is considered a multi-factorial, infectious, chronic, localized, post-eruptive, transmissible disease that leads to the destruction of dental hard tissue. The recognition of Streptococcus mutans as the major bacterial species involved in dental caries has led to the implementation of prevention and control measures for eliminating or reducing it in oral cavity. The main goal of research on medicinal plants is the search for substances or compounds with antimicrobial activity. The aim of this study was to evaluate the antimicrobial activity of fractions obtained by two methods from Isertia laevis against S. mutans and S. sobrinus. The plant material was collected in Medina (Colombia), at an elevation of 550 meters above sea level. From the ethanol extract of leaves of I. laevis, fractions were obtained by two methods: extraction by column vacuum chromatography (CVC) and extraction by continuous liquid/liquid partitioning (CLLP). The evaluation of the antimicrobial activity of fractions against S. mutans and S. sobrinus was performed by well diffusion and bioautography assays. From the CVC technique, only the methanol and methanol-dichloromethane fractions showed activity against S. mutans and S. sobrinus, with a minimum inhibitory concentration of 2 mg/well. From the CLLP technique, only the dichloromethane fraction showed activity against both microorganisms, with a minimum inhibitory concentration of 1 mg/well. Compounds C1 and C2 were isolated from the three active fractions, and showed a minimum inhibitory concentration of 0.4 mg/well for S. mutans and S. sobrinus, with zones of inhibition measuring 6.5 and 6.2 mm, respectively. 1) the three active fractions of I. laevis showed activity against S. mutans and S. sobrinus, 2) compounds C1 and C2 were presen equally in the three active fractions showing activity against the two bacteria, 3) compounds C1 and C2 may be triterpenoid and/or steroidal saponin structures, and 4) the two extraction methods lead equally to obtaining the active fractions.
Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by spirulina.
Kim, H M; Lee, E H; Cho, H H; Moon, Y H
1998-04-01
We investigated the effect of spirulina on mast cell-mediated immediate-type allergic reactions. Spirulina dose-dependently inhibited the systemic allergic reaction induced by compound 48/80 in rats. Spirulina inhibited compound 48/80-induced allergic reaction 100% with doses of 100-1000 microg/g body weight, i.p. Spirulina (10-1000 microg/g body weight, i.p.) also significantly inhibited local allergic reaction activated by anti-dinitrophenyl (DNP) IgE. When rats were pretreated with spirulina at a concentration ranging from 0.01 to 1000 microg/g body weight, i.p., the serum histamine levels were reduced in a dose-dependent manner. Spirulina (0.001 to 10 microg/mL) dose-dependently inhibited histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. The level of cyclic AMP in RPMC, when spirulina (10 microg/mL) was added, transiently and significantly increased about 70-fold at 10 sec compared with that of control cells. Moreover, spirulina (10 microg/mL) had a significant inhibitory effect on anti-DNP IgE-induced tumor necrosis factor-alpha production. These results indicate that spirulina inhibits mast cell-mediated immediate-type allergic reactions in vivo and in vitro.
Hypertension study in anaesthetized rabbits: protocol proposal for AT1 antagonists screening.
Politi, Aggeliki P; Zervou, Maria V; Triantafyllidi, Helen; Zoumpoulakis, Panagiotis G; Mavromoustakos, Thomas M; Zoga, Anastasia A; Moutevelis-Minakakis, Panagiota; Kokotos, George; Iliodromitis, Efstathios K; Kremastinos, Dimitris Th
2010-06-01
The aim of this study was to establish an optimized fast and safe protocol for the pharmacological screening of AT(1) antagonists. The pharmaceutical prototype AT(1) antagonist losartan, its active metabolite EXP3174 and the synthetic compound MMK1 were analysed in order to validate the protocol. Ang II was continuously infused while the animals received the drugs in two procedures. In the post-treatment procedure drugs were administered either in a single bolus dose or in a sequential manner. When losartan was administered in a single bolus dose, efficacy was evident until the 7th min (p=0.012) whilst EXP3174 infusion extended the efficiency up to the end of the study (p=0.006). In addition, the sequential injections of losartan prolonged the inhibitory time interval until the end of the study (p=0.045). In the pre-treatment procedure, results suggested a dose-dependent inhibitory effect for both antagonists. The pressor response to Ang II was unchanged after MMK1 administration either in the post- or in the pre-treatment mode. The proposed protocol appears to be safe, simple and fast for the pharmacological screening of AT(1) antagonists and enables the evaluation of new antagonists using lower doses than any other reported in the literature.
Lalitha, Cheepurupalli; Raman, Thiagarajan; Rathore, Sudarshan S.; Ramar, Manikandan; Munusamy, Arumugam; Ramakrishnan, Jayapradha
2017-01-01
The emergence and spread of pathogens harboring extended spectrum beta-lactamase (ESBL) like carbapenem resistant Gram negative bacteria are the major emerging threat to public health. Of particular concern Klebsiella pneumoniae carbapenamase- producing strains have been recorded worldwide. Catheter associated urinary tract infections (CAUTI) caused by K. pneumoniae are significantly associated with morbidity and mortality. Hence the present work was aimed to develop a strategy for addressing these issues through an innovative approach of antibiofilm and immunomodulation. These two independent activities were analyzed in a Streptomyces derived ASK2 bioactive compound. While analysing the effect of sub-minimum inhibitory concentrations (sub-MICs), 0.5x of Minimum Inhibitory Concentration (MIC) was found to be more effective in preventing biofilm formation on coverslip and silicone catheter. The minimum biofilm eradication concentration (MBEC) was found to be 15-fold higher MIC with eradication of 75% of 3 day old biofilm. Apart from its antibiofilm potential, ASK2 also acts as an opsonin and enhances phagocytic response of macrophages against multidrug resistant K. pneumoniae. In addition, ASK2 resulted in elevated levels of nitric oxide generation by the macrophages and has a stimulating effect on IL-12, IFN-γ, and TNF-α proinflammatory cytokines. The opsonic role of ASK2 and its potential in modulating proinflammatory cytokines secreted by macrophages implies the importance of ASK2 in modulating cellular immune response of macrophages against MDR K. pneumoniae. The present study proposes ASK2 as a promising candidate for treating MDR K. pneumoniae infections with its dual properties of antibiofilm and immunomodulatory activities. PMID:28824881
Dwivedy, Abhishek Kumar; Prakash, Bhanu; Chanotiya, Chandan Singh; Bisht, Deepa; Dubey, Nawal Kishore
2017-08-01
The study reports Mentha cardiaca essential oil (EO) as plant based preservative against fungal and aflatoxin contamination of stored dry fruits. Mycoflora analysis of the dry fruits revealed Aspergillus favus LHP-PV-1 as the most aflatoxigenic isolate with highest Aflatoxin B 1 content. M. cardiaca EO showed broad fungitoxic spectrum inhibiting the tested moulds contaminating dry fruits. It's minimum inhibitory concentration (MIC), minimum aflatoxin inhibitory concentration (MAIC) and minimum fungicidal concentration (MFC) against A. favus LHP-PV-1 were recorded to be 1.25, 1.0 and 2.25 µL/mL respectively. The EO caused decrease in ergosterol content and enhanced leakage of Ca 2+ , K + and Mg 2+ ions from treated fungal cells, depicting fungal plasma membrane as the site of antifungal action. The EO showed promising DPPH free radical scavenging activity (IC 50 value:15.89 µL/mL) and favourable safety profile with LD 50 value (7133.70 mg/kg body wt.) when estimated through acute oral toxicity on mice. Carvone (61.62%) was recorded as the major component of the oil during chemical characterisation through GC-MS. Based on strong antifungal, antiaflatoxigenic and antioxidant potential, the chemically characterised M. cardiaca EO may be recommended as safe plant based preservative and shelf life enhancer of food items. This is the first report on antifungal and antiaflatoxigenic activity of M. cardiaca EO. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, J.S.; Maxcy, R.B.
Inhibitory effects of radiolytic products were studied using Escherichia coli, Pediococcus cerevisiae, and two radiation-resistant microorganisms, an isolate of Moraxella-Acinetobacter and a Micrococcus sp. End Products of an irradiation dose of 300 Krads completely inhibited resistant organisms on an experimental medium with a very low concentration of nutrients. Plate count agar, with higher nutrient concentration, required 600 Krads to produce the same inhibition. On the same medium, radiation-sensitive organisms could tolerate products generated by a 1000 Krad dose. However, no inhibition could be detected when either Escherichia coli or Moraxella-Acinetobacter was incubated at 5/sup 0/C on the surface of freshmore » meat irradiated to 1500 Krad. The effects of inhibitory products in culture media could be mitigated by the addition of catalase or sodium pyruvate. 19 references, 2 figures, 4 tables.« less
Sato, W; Enzan, K; Masaki, Y; Kayaba, M; Suzuki, M
1995-07-01
The cytokines such as tumor necrosis factor and interleukin-1 secreted from macrophages/monocytes proved to play important roles in the pathogenesis of endotoxemia, severe pancreatitis and other surgical injuries. However, it is still unclear how inhalational anesthetic agents influence the secretion of these cytokines from macrophages/monocytes. We investigated the effects of isoflurane on TNF-alpha and IL-1 beta secretions from human peripheral blood monocytes stimulated by lipopolysaccharide. TNF-alpha and IL-1 beta secretions increased after LPS stimulation and this increase was inhibited by isoflurane in dose-dependent fashion. The inhibitory action of isoflurane disappeared between 1 and 3 hours after stopping isoflurane inhalation. We concluded that isoflurane could inhibit TNF-alpha and IL-1 beta secretions from peripheral blood monocytes stimulated by LPS in a dose-dependent fashion and that the inhibitory action of isoflurane was reversible.
Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N
2016-06-25
In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Xingang; Sun, Shusen; Wang, Qiang; Zhao, Zhigang
2018-02-01
For patients with intracranial infection, local intrathecal administration of meropenem may be a useful method to obtain a sufficient drug concentration in the cerebral spinal fluid (CSF). However, a large inter-individual variability may pose treatment efficacy at risk. This study aimed to identify factors affecting drug concentration in the CSF using population pharmacokinetics method. After craniotomy, aneurysm patients with an indwelling lumbar cistern drainage tube who received a combined intravenous and intrathecal administration of meropenem for the treatment of suspected intracranial infection were enrolled. Venous blood and CSF specimens were collected for determining meropenem concentrations. Nonlinear mixed-effects modeling method was used to fit blood and CSF concentrations simultaneously and to develop the population pharmacokinetic model. The proposed model was applied to simulate dosage regimens. A three-compartmental model was established to describe meropenem in vivo behavior. Lumbar CSF drainage resulted in a drug loss, and drug clearance in CSF (CL CSF ) was employed to describe this. The covariate analysis found that the drainage volume (mL/day) was strongly associated with CL CSF , and the effect of creatinine clearance was significant on the clearance of meropenem in blood (CL). Visual predictive check suggested that the proposed pharmacokinetic model agreed well with the observations. Simulation showed that both intravenous and intrathecal doses should be increased with the increases of minimum inhibitory concentration and daily CSF drainage volume. This model incorporates covariates of the creatinine clearance and the drainage volume, and a simple to use dosage regimen table was created to guide clinicians with meropenem dosing.
Aqueous and vitreous penetration of linezolid and levofloxacin after oral administration.
George, Jomy M; Fiscella, Richard; Blair, Michael; Rodvold, Keith; Ulanski, Lawrence; Stokes, John; Blair, Norman; Pontiggia, Laura
2010-12-01
To evaluate the time course of drug concentrations achieved in aqueous (AQ), vitreous (V), and serum (S) compartments after oral administration of linezolid and levofloxacin. Randomized, clinical trial. Clinical practice. Sixteen patients (16 eyes) undergoing vitrectomy who had not had a prior pars plana vitrectomy in the study eye were randomly assigned to one of 4 groups. AQ, V, and S samples were obtained from all subjects after single concomitant doses of linezolid 600 mg and levofloxacin 750 mg between 1 and 12 h before the procedure: group A = 1-3 h; group B = 3-6 h; group C = 6-9 h; group D = 9-12 h. AQ, V, and S concentrations of linezolid and levofloxacin. Overall mean concentrations ± standard deviation (μg/mL) achieved by linezolid in AQ, V, and S compartments were 3.32 ± 2.06, 2.98 ± 1.87, and 7.91 ± 3.94, respectively. Overall mean concentrations ±standard deviation (μg/mL) achieved by levofloxacin in AQ, V, and S compartments were 2.19 ± 1.92, 1.95 ± 1.27, and 7.38 ± 3.47, respectively. Single concomitant doses of linezolid and levofloxacin achieved AQ and V concentrations above the minimum inhibitory concentration for 90% of common ocular gram-positive and gram-negative pathogens up to 12 h after administration. The combination of linezolid and levofloxacin represents a viable option for the prophylaxis and management of endophthalmitis.
The Phage Lysin PlySs2 Decolonizes Streptococcus suis from Murine Intranasal Mucosa.
Gilmer, Daniel B; Schmitz, Jonathan E; Thandar, Mya; Euler, Chad W; Fischetti, Vincent A
2017-01-01
Streptococcus suis infects pigs worldwide and may be zoonotically transmitted to humans with a mortality rate of up to 20%. S. suis has been shown to develop in vitro resistance to the two leading drugs of choice, penicillin and gentamicin. Because of this, we have pursued an alternative therapy to treat these pathogens using bacteriophage lysins. The bacteriophage lysin PlySs2 is derived from an S. suis phage and displays potent lytic activity against most strains of that species including serotypes 2 and 9. At 64 μg/ml, PlySs2 reduced multiple serotypes of S. suis by 5 to 6-logs within 1 hour in vitro and exhibited a minimum inhibitory concentration (MIC) of 32 μg/ml for a S. suis serotype 2 strain and 64 μg/ml for a serotype 9 strain. Using a single 0.1-mg dose, the colonizing S. suis serotype 9 strain was reduced from the murine intranasal mucosa by >4 logs; a 0.1-mg dose of gentamicin reduced S. suis by <3-logs. A combination of 0.05 mg PlySs2 + 0.05 mg gentamicin reduced S. suis by >5-logs. While resistance to gentamicin was induced after systematically increasing levels of gentamicin in an S. suis culture, the same protocol resulted in no observable resistance to PlySs2. Thus, PlySs2 has both broad and high killing activity against multiple serotypes and strains of S. suis, making it a possible tool in the control and prevention of S. suis infections in pigs and humans.
The Phage Lysin PlySs2 Decolonizes Streptococcus suis from Murine Intranasal Mucosa
Gilmer, Daniel B.; Schmitz, Jonathan E.; Thandar, Mya; Euler, Chad W.; Fischetti, Vincent A.
2017-01-01
Streptococcus suis infects pigs worldwide and may be zoonotically transmitted to humans with a mortality rate of up to 20%. S. suis has been shown to develop in vitro resistance to the two leading drugs of choice, penicillin and gentamicin. Because of this, we have pursued an alternative therapy to treat these pathogens using bacteriophage lysins. The bacteriophage lysin PlySs2 is derived from an S. suis phage and displays potent lytic activity against most strains of that species including serotypes 2 and 9. At 64 μg/ml, PlySs2 reduced multiple serotypes of S. suis by 5 to 6-logs within 1 hour in vitro and exhibited a minimum inhibitory concentration (MIC) of 32 μg/ml for a S. suis serotype 2 strain and 64 μg/ml for a serotype 9 strain. Using a single 0.1-mg dose, the colonizing S. suis serotype 9 strain was reduced from the murine intranasal mucosa by >4 logs; a 0.1-mg dose of gentamicin reduced S. suis by <3-logs. A combination of 0.05 mg PlySs2 + 0.05 mg gentamicin reduced S. suis by >5-logs. While resistance to gentamicin was induced after systematically increasing levels of gentamicin in an S. suis culture, the same protocol resulted in no observable resistance to PlySs2. Thus, PlySs2 has both broad and high killing activity against multiple serotypes and strains of S. suis, making it a possible tool in the control and prevention of S. suis infections in pigs and humans. PMID:28046082
Giske, Anneli; Nymo, Linn Såve; Fuskevåg, Ole-Martin; Amundsen, Siri; Simonsen, Gunnar Skov; Lassen, Kristoffer
Antibiotic prophylaxis is recommended prior to a wide range of gastrointestinal operations to reduce the rate of surgical site infections (SSIs). Traditional intravenous (IV) drugs are costly and their preparation strains nursing resources at the wards. While oral administration may attenuate these limitations, its use remains limited. We aimed to assess whether a dual oral antibiotic prophylaxis regimen provides adequate serum concentrations throughout the surgical procedure. We measured serum concentrations of doxycycline and metronidazole following single oral doses of 400 mg doxycycline and 1200 mg metronidazole at first incision and repeated at wound closure in a cohort of patients undergoing elective gastrointestinal surgery. Both drugs were dispensed at least two hours before skin incision. Serum concentrations were compared to minimum inhibitory concentrations (MIC) and epidemiological cut-off values (ECOFFs) for relevant pathogens. Mean serum concentrations of doxycycline at first incision and at wound closure were 5.75 mg/L and 4.66 mg/L and of metronidazole 18.88 mg/L and 15.56 mg/L, respectively. Metronidazole concentrations were above ECOFF (2 mg/L) for relevant anaerobic species in 103/104 of patients in both samples. Doxycycline serum concentrations were above the ECOFF for common Enterobacteriaceae species (4 mg/L) in both samples in 58/104 patients (55.8%). A single dose of orally administered metronidazole provides adequate concentrations throughout surgery in a heterogeneous cohort of patients. Uncertainty persists regarding the adequacy of doxycycline concentrations, as the optimal serum level of doxycycline in a prophylactic setting has not been established.
KuKanich, Butch; Papich, Mark; Huff, David; Stoskopf, Michael
2004-06-01
Amikacin, an aminoglycoside antimicrobial, was administered to a killer whale (Orcinus orca) and a beluga whale (Delphinapterus leucas) for the treatment of clinical signs consistent with gram-negative aerobic bacterial infections. Dosage regimens were designed to target a maximal plasma concentration 8-10 times the minimum inhibitory concentrations of the pathogen and to reduce the risk of aminoglycoside toxicity. Allometric analysis of published pharmacokinetic parameters in mature animals yielded a relationship for amikacin's volume of distribution, in milliliters, given by the equation Vd = 151.058(BW)1.043. An initial dose for amikacin was estimated by calculating the volume of distribution and targeted maximal concentration. With this information, dosage regimens for i.m. administration were designed for a killer whale and a beluga whale. Therapeutic drug monitoring was performed on each whale to assess the individual pharmacokinetic parameters. The elimination half-life (5.99 hr), volume of distribution per bioavailability (319 ml/kg). and clearance per bioavailability (0.61 ml/min/kg) were calculated for the killer whale. The elimination half-life (5.03 hr), volume of distribution per bioavailability (229 ml/kg). and clearance per bioavailability (0.53 ml/min/kg) were calculated for the beluga whale. The volume of distribution predicted from the allometric equation for both whales was similar to the calculated pharmacokinetic parameter. Both whales exhibited a prolonged elimination half-life and decreased clearance when compared with other animal species despite normal renal parameters on biochemistry panels. Allometric principles and therapeutic drug monitoring were used to accurately determine the doses in these cases and to avoid toxicity.
Doses of Nearby Nature Simultaneously Associated with Multiple Health Benefits
Cox, Daniel T. C.; Shanahan, Danielle F.; Hudson, Hannah L.; Fuller, Richard A.; Anderson, Karen; Hancock, Steven; Gaston, Kevin J.
2017-01-01
Exposure to nature provides a wide range of health benefits. A significant proportion of these are delivered close to home, because this offers an immediate and easily accessible opportunity for people to experience nature. However, there is limited information to guide recommendations on its management and appropriate use. We apply a nature dose-response framework to quantify the simultaneous association between exposure to nearby nature and multiple health benefits. We surveyed ca. 1000 respondents in Southern England, UK, to determine relationships between (a) nature dose type, that is the frequency and duration (time spent in private green space) and intensity (quantity of neighbourhood vegetation cover) of nature exposure and (b) health outcomes, including mental, physical and social health, physical behaviour and nature orientation. We then modelled dose-response relationships between dose type and self-reported depression. We demonstrate positive relationships between nature dose and mental and social health, increased physical activity and nature orientation. Dose-response analysis showed that lower levels of depression were associated with minimum thresholds of weekly nature dose. Nearby nature is associated with quantifiable health benefits, with potential for lowering the human and financial costs of ill health. Dose-response analysis has the potential to guide minimum and optimum recommendations on the management and use of nearby nature for preventative healthcare. PMID:28208789
Doses of Nearby Nature Simultaneously Associated with Multiple Health Benefits.
Cox, Daniel T C; Shanahan, Danielle F; Hudson, Hannah L; Fuller, Richard A; Anderson, Karen; Hancock, Steven; Gaston, Kevin J
2017-02-09
Exposure to nature provides a wide range of health benefits. A significant proportion of these are delivered close to home, because this offers an immediate and easily accessible opportunity for people to experience nature. However, there is limited information to guide recommendations on its management and appropriate use. We apply a nature dose-response framework to quantify the simultaneous association between exposure to nearby nature and multiple health benefits. We surveyed ca. 1000 respondents in Southern England, UK, to determine relationships between (a) nature dose type, that is the frequency and duration (time spent in private green space) and intensity (quantity of neighbourhood vegetation cover) of nature exposure and (b) health outcomes, including mental, physical and social health, physical behaviour and nature orientation. We then modelled dose-response relationships between dose type and self-reported depression. We demonstrate positive relationships between nature dose and mental and social health, increased physical activity and nature orientation. Dose-response analysis showed that lower levels of depression were associated with minimum thresholds of weekly nature dose. Nearby nature is associated with quantifiable health benefits, with potential for lowering the human and financial costs of ill health. Dose-response analysis has the potential to guide minimum and optimum recommendations on the management and use of nearby nature for preventative healthcare.
Xu, Lijuan; Wang, Hao; Yang, Xianle; Lu, Liqun
2013-06-25
Antibiotic resistance has become a serious global problem and is steadily increasing worldwide in almost every bacterial species treated with antibiotics. In aquaculture, the therapeutic options for the treatment of A. hydrophila infection were only limited to several antibiotics, which contributed for the fast-speed emergence of drug tolerance. Accordingly, the aim of this study was to establish a medication regimen to prevent drug resistant bacteria. To determine a rational therapeutic guideline, integrated pharmacodynamics and pharmacokinetics parameters were based to predict dose and dosage interval of enrofloxacin in grass carp Ctenopharyngodon idella infected by a field-isolated A. hydrophila strain. The pathogenic A. hydrophila strain (AH10) in grass carp was identified and found to be sensitive to enrofloxacin. The mutant selection window (MSW) of enrofloxacin on isolate AH10 was determined to be 0.5-3 μg/mL based on the mutant prevention concentration (MPC) and minimum inhibitory concentration (MIC) value. By using high-performance liquid chromatography (HPLC) system, the Pharmacokinetic (PK) parameters of enrofloxacin and its metabolite ciprofloxacin in grass carp were monitored after a single oral gavage of 10, 20, 30 μg enrofloxacin per g body weight. Dosing of 30 μg/g resulted in serum maximum concentration (Cmax) of 7.151 μg/mL, and concentration in serum was above MPC till 24 h post the single dose. Once-daily dosing of 30 μg/g was determined to be the rational choice for controlling AH10 infection and preventing mutant selection in grass carp. Data of mean residue time (MRT) and body clearance (CLz) indicated that both enrofloxacin and its metabolite ciprofloxacin present similar eliminating rate and pattern in serum, muscle and liver. A withdraw time of more than 32 d was suggested based on the drug eliminating rate and pharmacokinetic model described by a polyexponential equation. Based on integrated PK/PD parameters (AUC/MIC, Cmax/MIC, and T>MPC), the results of this study established a principle, for the first time, on drawing accurate dosing guideline for pharmacotherapy against A. hydrophila strain (AH10) for prevention of drug-resistant mutants. Our approach in combining PK data with PD parameters (including MPC and MSW) was the new effort in aquaculture to face the challenge of drug resistance by drawing a specific dosage guideline of antibiotics.
Passive dosimetry aboard the Mir Orbital Station: internal measurements.
Benton, E R; Benton, E V; Frank, A L
2002-10-01
Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET infinity H2O > or = 5 keV/micrometers. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment secondaries, not primary galactic cosmic rays, were found to dominate the LET spectrum above 100 keV/micrometers. This indicates that in low earth orbit, trapped protons in the South Atlantic Anomaly are responsible for the major fraction of the total dose equivalent. c2002 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed
2018-03-01
Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.
Inhibitory actions of methionine-enkephalin and morphine on the cat carotid chemoreceptors.
McQueen, D S; Ribeiro, J A
1980-01-01
1 The effects of intracarotid injections of methionine-enkephalin (Met-enkephalin) and morphine on chemoreceptor activity recorded from the peripheral end of a sectioned carotid sinus nerve have been studied in cats anaesthetized with pentobarbitone. 2 Met-enkephalin caused a rapid, powerful, inhibition of spontaneous chemoreceptor discharge, the intensity and duration of which was dose-dependent. 3 Morphine was a less potent inhibitor of spontaneous chemoreceptor discharge, and the inhibition it evoked was rather variable and tended to be biphasic. Low doses of morphine caused a slight increase in discharge. 4 Naloxone (0.2 mg i.c.) slightly increased spontaneous discharge, greatly reduced the chemo-inhibition caused by morphine, and reduced the inhibitory effect of Met-enkephalin. A higher dose of naloxone (0.8 mg) caused a substantial reduction of the Met-enkephalin effect. 5 Chemo-excitation evoked by intracarotid injections of acetylcholine, CO2-saturated Locke solution, and sodium cyanide were only slightly and somewhat variably reduced following injections of Met-enkephalin, whereas the inhibitory effect of dopamine was potentiated. Following morphine administration, response to acetylcholine and sodium cyanide were reduced slightly, whereas those to CO2 and dopamine were potentiated. 6 Responses to acetylcholine and CO2 were slightly potentiated during infusion of Met-enkephalin (50 micrograms/min, i.c.) and the response to sodium cyanide was slightly reduced. 7 It is concluded that naloxone-sensitive opiate receptors are present in the cat carotid body; when activated they cause inhibition of spontaneous chemoreceptor discharge. The physiological role of these receptors and the identity of any endogenous ligand remains to be established.
Echeverría, Javier; Urzúa, Alejandro; Sanhueza, Loreto; Wilkens, Marcela
2017-06-23
In the present study, the antibacterial activity of several ent -labdane derivatives of salvic acid (7α-hydroxy-8(17)- ent -labden-15-oic acid) was evaluated in vitro against the Gram-negative bacterium Escherichia coli and the Gram-positive bacteria Staphylococcus aureus and Bacillus cereus . For all of the compounds, the antibacterial activity was expressed as the minimum inhibitory concentration (MIC) in liquid media and minimum inhibitory amount (MIA) in solid media. Structure activity relationships (SAR) were employed to correlate the effect of the calculated lipophilicity parameters (logP ow ) on the inhibitory activity. Employing a phospholipidic bilayer (POPG) as a bacterial membrane model, ent -labdane-membrane interactions were simulated utilizing docking studies. The results indicate that (i) the presence of a carboxylic acid in the C-15 position, which acted as a hydrogen-bond donor (HBD), was essential for the antibacterial activity of the ent -labdanes; (ii) an increase in the length of the acylated chain at the C-7 position improved the antibacterial activity until an optimum length of five carbon atoms was reached; (iii) an increase in the length of the acylated chain by more than five carbon atoms resulted in a dramatic decrease in activity, which completely disappeared in acyl chains of more than nine carbon atoms; and (iv) the structural factors described above, including one HBD at C-15 and a hexanoyloxi moiety at C-7, had a good fit to a specific lipophilic range and antibacterial activity. The lipophilicity parameter has a predictive characteristic feature on the antibacterial activity of this class of compounds, to be considered in the design of new biologically active molecules.
Death and rebirth of neural activity in sparse inhibitory networks
NASA Astrophysics Data System (ADS)
Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro
2017-05-01
Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.
In vitro anti-mycobacterial activities of three species of Cola plant extracts (Sterculiaceae).
Adeniyi, B A; Groves, M J; Gangadharam, P R J
2004-05-01
Extracts obtained from three Nigerian Sterculiaceae plants: Cola accuminata, C. nitida and C. milleni were screened for anti-mycobacterium properties using a slow growing Mycobacterium bovis ATCC 35738 (designated BCG Mexican and known to have some virulence in mouse and guinea pig) at 1000 microg/ml using the radiometric (BACTEC) method. The extracts were also tested against six fast growing ATCC strains of M. vaccae using the broth microdilution method. The methanol extracts from both leaves, stem bark and root bark of Cola accuminata and from the leaves and stem bark of C. nitida and C. milleni were not active at the highest concentration of 1000 microg/ml. Only the methanol extract of root bark for both C. nitida and C. milleni were found to be potent against both M. bovis and strains of M. vaccae. The minimum inhibitory concentration (MIC) of C. nitida against M. bovis is 125 microg/ml while the MIC of C. milleni against M. bovis is 62.5 microg/ml after at least 6 days of inhibition with growth index (GI) units lesser than or equal to the change in GI units inoculated with a 1/100 of the BACTEC inoculum for a control vial. The minimum inhibitory concentration of C. milleni against the six ATCC strain of M. vaccae ranged from 62.5 microg/ml to 250 microg/ml while for C. nitida ranged from 500 microg/ml to above 1000microg/ml. Evidently, C. milleni has the highest inhibitory activity against both M. bovis and strains of M. vaccae used. Rifampicin, the positive control used has strong activity against M. bovis at the tested concentration of 5 microg and 10 microg/ml and 4 to 8 microg/ml against the six strains of M. vaccae. Copyright 2004 John Wiley & Sons, Ltd.
Dahiya, Praveen; Purkayastha, Sharmishtha
2012-01-01
The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60%) inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%). The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml) were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus. PMID:23716873
Ajagannanavar, Sunil Lingaraj; Shamarao, Supreetha; Battur, Hemant; Tikare, Shreyas; Al-Kheraif, Abdulaziz Abdullah; Al Sayed, Mohammed Sayed Al Esawy
2014-01-01
Introduction: Stevia (S. rebaudiana) a herb which has medicinal value and was used in ancient times as a remedy for a great diversity of ailments and sweetener. Leaves of Stevia contain a high concentration of Stevioside and Rebaudioside which are supposed to be sweetening agents. Aim: To compare the efficacy of aqueous and alcoholic S. rebaudiana extract against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine. Materials and Methods: In the first part of the study, various concentrations of aqueous and ethanolic Stevia extract were prepared in the laboratory of Pharmacy College. It was then subjected to microbiological assay to determine its zone of inhibition using Agar disk diffusion test and minimum inhibitory concentration (MIC) using serial broth dilution method against Streptococcus mutans and Lactobacillus acidophilus. Chlorhexidine was used as a positive control. One way Analysis of Variance (ANOVA) test was used for multiple group comparisons followed by Tukey post hoc for group wise comparisons. Results: Minimum inhibitory concentration (MIC) of aqueous and ethnolic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus were 25% and 12.5% respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Streptococcus mutans at 48 hours were 22.8 mm and 26.7 mm respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Lactobacillus acidophilus at 48 hours were 14.4 mm and 15.1 mm respectively. Mean zone of inhibition of the chlorhexidine against Streptococcus mutans and Lactobacillus acidophilus at 48 hours was 20.5 and 13.2 respectively. Conclusion: The inhibitory effect shown by alcoholic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus was superior when compared with that of aqueous form and was inferior when compared with Chlorhexidine. PMID:25558451
Stepanov, I I; Losev, N A
1999-04-01
Acetylcholine, nicotine, a selective agonist of N-cholinoreceptors suberildicholine dibromide, as well as a selective agonist of M-cholinoreceptors 5-methylfurmethide inhibited spike discharges in a dose-dependent manner up to a complete ceasing of the firing in cholinoreceptors situated on the identified neurone TAN of African giant snail Achatina fulica. M-cholinoblocker metamizylum completely prevented the inhibitory effect of methylfurmethide. Central cholinoblocker aetherophen completely prevented the inhibitory effect of suberildicholine dibromide. Metamizylum or aetherophen used alone were only able to decrease the inhibitory effect of acetylcholine, whereas a mixture of these agents suppressed completely the acetylcholine-induced inhibition. The findings suggest that, on the TAN membrane, nicotinic and muscarinic cholinoreceptors co-exist and function in one and the same direction.
Guoping, Zhan; Lili, Ren; Ying, Shao; Qiaoling, Wang; Daojian, Yu; Yuejin, Wang; Tianxiu, Li
2015-02-01
The fruit fly Bactrocera tau (Walker) is an important quarantine pest that damages fruits and vegetables throughout Asian regions. Host commodities shipped from infested areas should undergo phytosanitary measures to reduce the risk of shipping viable flies. The dose-response tests with 1-d-old eggs and 3-, 5-, 7-, 8-d-old larvae were initiated to determine the most resistant stages in fruits, and the minimum dose for 99.9968% prevention of adult eclosion at 95% confidence level was validated in the confirmatory tests. The results showed that 1) the pupariation rate was not affected by gamma radiation except for eggs and first instars, while the percent of eclosion was reduced significantly in all instars at all radiation dose; 2) the tolerance to radiation increased with increasing age and developmental stage; 3) the estimated dose to 99.9968% preventing adult eclosion from late third instars was 70.9 Gy (95% CL: 65.6-78.2, probit model) and 71.8 Gy (95% CL: 63.0-87.3, logit model); and iv) in total, 107,135 late third instars cage infested in pumpkin fruits were irradiated at the target dose of 70 Gy (62.5-85.0, Gy measured), which resulted in no adult emergence in the two confirmatory tests. Therefore, a minimum dose of 85 and 72 Gy, which could prevent adult emergence at the efficacy of 99.9972 and 99.9938% at the 95% confidence level, respectively, can be recommended as a minimum dose for phytosanitary treatment of B. tau in any host fruits and vegetables under ambient atmospheres. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Potential of Piper betle extracts on inhibition of oral pathogens.
Phumat, Pimpak; Khongkhunthian, Sakornrat; Wanachantararak, Phenphichar; Okonogi, Siriporn
2017-01-01
In the present study, antimicrobial activity of Piper betle crude ethanol extract against 4 strains of oral pathogens; Candida albicans DMST 8684, C. albicans DMST 5815, Streptococcus gordonii DMST 38731 and Streptococcus mutans DMST 18777 was compared with other medicinal plants. P. betle showed the strongest antimicrobial activity against all tested strains. Fractionated extracts of P. betle using hexane, ethyl acetate, and ethanol, respectively, were subjected to antimicrobial assay. The result revealed that the fractionated extract from ethyl acetate (F-EtOAc) possessed the strongest antimicrobial activity against all tested strains. Its inhibition zones against those pathogens were 23.00 ± 0.00, 24.33 ± 0.58, 12.50 ± 0.70 and 11.00 ± 0.00 mm, respectively and its minimum inhibitory concentrations were 0.50, 1.00, 0.50 and 1.00 mg/mL, respectively. Interestingly, the minimum concentration to completely kill those pathogens was the same for all strains and found to be 2.00 mg/mL. Killing kinetic study revealed that the activity of F-EtOAc was dose dependent. HPLC chromatograms of P. betle extracts were compared with its antimicrobial activity. An obvious peak at a retention time of 4.11 min was found to be a major component of F-EtOAc whereas it was a minor compound in the other extracts. This peak was considered to be an active compound of P. betle as it was consistent with the antimicrobial activity of F-EtOAc, the most potential extract against the tested pathogens. It is suggested that F-EtOAc is a promising extract of P. betle for inhibition of oral pathogens. Separation and structure elucidation of the active compound of this extract will be further investigated.
Baghbani-Arani, Fahimeh; Movagharnia, Rabee; Sharifian, Alireza; Salehi, Soheil; Shandiz, Seyed Ataollah Sadat
2017-08-01
Metal nanoparticles have largely been investigated due to their potential medicinal activities. This study demonstrates the biological properties of green-synthesized silver nanoparticles (AgNPs) by using Artemisia tournefortiana Rchb ethanol extract. Instrumentations such as ultraviolet-visible spectra analysis, high-resolution transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and Fourier transform infrared spectroscopy were used to reveal the synthesized AgNPs. Microscopic results showed that the particles were mostly spherical in shape, having an average diameter of 22.89±14.82nm. The antibacterial activity of the phyto-fabricated AgNPs was investigated by the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The in vitro cytotoxicity effect was investigated against normal human embryonic kidney (HEK293) cells and human colon adenocarcinoma cancer (HT29) cells. The apoptotic cells were identified by annexin V/PI FITC staining, and morphological assessment. The expressions of Bax and Bcl2 were evaluated by quantitative real time PCR method. The phyto-synthesized AgNPs have shown increased cell apoptosis and demonstrated dose-dependent cytotoxicity in HT29 cancer cells. Moreover, the photocatalytic activity of the phyto-synthesized AgNPs was evaluated by degradation of Coomassie Brilliant Blue G-250 under UV light exposure and these fabricated Ag nanoparticles demonstrated efficacy in degrading the dye within 60min. Overall, the present results highlighted the antibacterial and anticancer properties of fabricated AgNPs, suggesting that phyto-synthesized silver nanoparticles could possess potent anti-pathogenic bacteria and anti-colon cancer activities. Copyright © 2017. Published by Elsevier B.V.
Meth math: modeling temperature responses to methamphetamine.
Molkov, Yaroslav I; Zaretskaia, Maria V; Zaretsky, Dmitry V
2014-04-15
Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants.
Meth math: modeling temperature responses to methamphetamine
Molkov, Yaroslav I.; Zaretskaia, Maria V.
2014-01-01
Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants. PMID:24500434
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deville, Curtiland, E-mail: deville@uphs.upenn.ed; Both, Stefan; Hwang, Wei-Ting
2010-11-01
Purpose: To assess whether whole-pelvis (WP) intensity-modulated radiation therapy (IMRT) is associated with increased toxicity compared with prostate-only (PO) IMRT. Methods and Materials: We retrospectively analyzed all patients with prostate cancer undergoing definitive IMRT to 79.2 Gy with concurrent androgen deprivation at our institution from November 2005 to May 2007 with a minimum follow-up of 12 months. Thirty patients received initial WP IMRT to 45 Gy in 1.8-Gy fractions, and thirty patients received PO IMRT. Study patients underwent computed tomography simulation and treatment planning by use of predefined dose constraints. Bladder and rectal dose-volume histograms, maximum genitourinary (GU) and gastrointestinalmore » (GI) Radiation Therapy Oncology Group toxicity grade, and late Grade 2 or greater toxicity-free survival curves were compared between the two groups by use of the Student t test, Fisher exact test, and Kaplan-Meier curve, respectively. Results: Bladder minimum dose, mean dose, median dose, volume receiving 5 Gy, volume receiving 20 Gy, volume receiving 40 Gy, and volume receiving 45 Gy and rectal minimum dose, median dose, and volume receiving 20 Gy were significantly increased in the WP group (all p values < 0.01). Maximum acute GI toxicity was limited to Grade 2 and was significantly increased in the WP group at 50% vs. 13% the PO group (p = 0.006). With a median follow-up of 24 months (range, 12-35 months), there was no difference in late GI toxicity (p = 0.884) or in acute or late GU toxicity. Conclusions: Despite dosimetric differences in the volume of bowel, bladder, and rectum irradiated in the low-dose and median-dose regions, WP IMRT results only in a clinically significant increase in acute GI toxicity, in comparison to PO IMRT, with no difference in GU or late GI toxicity.« less
Antimicrobial metabolites from the plant endophytic fungus Penicillium sp.
Yang, Ming-Hua; Li, Tian-Xiao; Wang, Ying; Liu, Rui-Huan; Luo, Jun; Kong, Ling-Yi
2017-01-01
Five rare dichloro aromatic polyketides (1-5) were obtained from an endophytic fungus Penicillium sp., along with five known metabolites (6-10). Their structures were elucidated by extensive spectroscopic analysis, Mosher methods, as well as [Rh 2 (OCOCF 3 ) 4 ]-induced electronic circular dichroism (ECD) experiments. Compounds 2-4 and 6 structurally involved acyclic 1.3-diols, the uneasy configuration determinations of which were well carried out by double-derivation NMR methods. Compounds 1-10 were evaluated for their antibacterial and antifungal activities against five strains of human pathogenic microorganisms. Helvolic acid (7) showed potent inhibitory effects against Staphylococcus aureus and Pseudomonas aeruginosa with MIC (minimum inhibitory concentration) values of 5.8 and 4.6μg/mL, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Lopez, Carlos E.; Standiford, Harold C.; Tatem, Beverly A.; Calia, Frank M.; Schimpff, Stephen C.; Snyder, Merrill J.; Hornick, Richard B.
1977-01-01
Minimum inhibitory concentrations (MIC) of pirbenicillin against 135 clinical isolates of Pseudomonas aeruginosa were one-fourth of those required for carbenicillin but two times higher than those for BL-P1654. Increasing the inoculum size produced an adverse effect on the bactericidal activity for all three antibiotics. This was more apparent for pirbenicillin than for carbenicillin, but less than the effect on BL-P1654. When concentrations of antibiotics likely to be achieved clinically were used, gentamicin increased the inhibitory and bactericidal effects of all three semisynthetic penicillins for the majority of isolates. Strains highly resistant to the aminoglycoside antibiotic, however, were inhibited no more by the penicillin-gentamicin combinations than by the most effective of the antibiotics alone. PMID:404963
Histamine release inhibitory activity of Piper nigrum leaf.
Hirata, Noriko; Naruto, Shunsuke; Inaba, Kazunori; Itoh, Kimihisa; Tokunaga, Masashi; Iinuma, Munekazu; Matsuda, Hideaki
2008-10-01
Oral administration of a methanolic extract of Piper nigrum leaf (PN-ext, 50, 200 and 500 mg/kg) showed a potent dose-dependent inhibition of dinitrofluorobenzene (DNFB)-induced cutaneous reaction at 1 h [immediate phase response (IPR)] after and 24 h [late phase response (LPR)] after DNFB challenge in mice which were passively sensitized with anti-dinitrophenyl (DNP) IgE antibody. Ear swelling inhibitory effect of PN-ext (50, 200 and 500 mg/kg, per os (p.o.)) on very late phase response (vLPR) in the model mice was significant but weaker than that on IPR. Oral administration of PN-ext (50, 200 and 500 mg/kg for 7 d) inhibited picryl chloride (PC)-induced ear swelling in PC sensitized mice. PN-ext exhibited in vitro inhibitory effect on compound 48/80-induced histamine release from rat peritoneal mast cells. Two lignans of PN-ext, (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2), were identified as major active principles having histamine release inhibitory activity.
Isolation of prolyl endopeptidase inhibitory peptides from a sodium caseinate hydrolysate.
Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Hsieh, You-Liang; Hsu, Kuo-Chiang
2016-01-01
Prolyl endopeptidase (PEP) has been associated with neurodegenerative disorders, and the PEP inhibitors can restore the memory loss caused by amnesic compounds. In this study, we investigated the PEP inhibitory activity of the enzymatic hydrolysates from various food protein sources, and isolated and identified the PEP inhibitory peptides. The hydrolysate obtained from sodium caseinate using bromelain (SC/BML) displayed the highest inhibitory activity of 86.8% at 5 mg mL(-1) in the present study, and its IC50 value against PEP was 0.77 mg mL(-1). The F-5 fraction by RP-HPLC (reversed-phase high performance liquid chromatography) from SC/BML showed the highest PEP inhibition rate of 88.4%, and 9 peptide sequences were identified. The synthetic peptides (1245.63-1787.94 Da) showed dose-dependent inhibition effects on PEP as competitive inhibitors with IC50 values between 29.8 and 650.5 μM. The results suggest that the peptides derived from sodium caseinate have the potential to be PEP inhibitors.
Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo
2011-04-01
It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.
Diniz-Silva, Helena Taina; Cirino, Isis Caroline da Silva; Falcão-Silva, Vivyanne Dos Santos; Magnani, Marciane; de Souza, Evandro Leite; Siqueira-Júnior, José P
2016-01-01
Tannins have shown inhibitory effects against pathogenic bacteria, and these properties make tannins potential modifying agents in bacterial resistance. The minimum inhibitory concentration (MIC) of tannic acid (TA), gallic acid (GA) and norfloxacin (Nor) against Staphylococcus aureus SA-1119 (NorA-effluxing strain) was determined using broth microdilution tests. To assess the modulation of antibiotic resistance, the MIC of Nor was determined in growth media with or without TA or GA at a subinhibitory concentration (1/4 MIC). The checkerboard method was performed to obtain the fractional inhibitory concentration index (FICI) for the combined application of TA and Nor. TA displayed a weak inhibitory effect (MIC 512 μg/ml) against S. aureus SA-1119, while no inhibitory effect was displayed by GA (MIC >512 μg/ml). However, when TA was tested at a subinhibitory concentration in combination with Nor, the MIC of Nor against S. aureus SA-1119 decreased from 128 to 4 μg/ml (32-fold); this effect was not observed for GA. In the checkerboard assay, the MIC of TA and Nor decreased from 512 to 128 μg/ml (4-fold) and from 128 to 8 μg/ml (16-fold), respectively. The combination of TA and Nor presented an FICI as low as 0.31, which indicates a synergistic interaction. TA is a potential agent for increasing the clinical efficacy of Nor to control resistant S. aureus. © 2016 S. Karger AG, Basel.
Ayling, R. D.; Bisgaard-Frantzen, S.; March, J. B.; Godinho, K.; Nicholas, R. A. J.
2005-01-01
In vitro minimum inhibitory concentrations were determined for 21 antimicrobials against 41 isolates of Mycoplasma mycoides subsp. mycoides small-colony type, the cause of contagious bovine pleuropneumonia. Of the antimicrobials used most widely in Africa, oxytetracycline and tilmicosin were effective, while the isolates were resistant to tylosin. These results provide a baseline for monitoring antimicrobial resistance. PMID:16304194
Silva, A B; Silva, T; Franco, E S; Rabelo, S A; Lima, E R; Mota, R A; da Câmara, C A G; Pontes-Filho, N T; Lima-Filho, J V
2010-01-01
The antibacterial potential of leaf's essential oil (EO) from Brazilian pepper tree (Schinus terebinthifolius Raddi) against staphylococcal isolates from dogs with otitis externa was evaluated. The minimum inhibitory concentration of EO ranged from 78.1 to 1,250 μg/mL. The oil was analyzed by GC and GC/MS and cytotoxicity tests were carried out with laboratory animals.
Gose, Severin; Kong, Carol J; Lee, Yer; Samuel, Michael C; Bauer, Heidi M; Dixon, Paula; Soge, Olusegun O; Lei, John; Pandori, Mark
2013-10-24
We evaluated Neisseria gonorrhoeae Etest minimum inhibitory concentrations (MICs) relative to agar dilution MICs for 664 urethral isolates for ceftriaxone (CRO) and azithromycin (AZM), 351 isolates for cefpodoxime (CPD) and 315 isolates for cefixime (CFM). Etest accurately determined CPD, CFM and AZM MICs, but resulted in higher CRO MICs. © 2013. Published by Elsevier B.V. All rights reserved.
Russo, Simonetta; Callegari, Donatella; Incerti, Matteo; Pala, Daniele; Giorgio, Carmine; Brunetti, Jlenia; Bracci, Luisa; Vicini, Paola; Barocelli, Elisabetta; Capoferri, Luigi; Rivara, Silvia; Tognolini, Massimiliano; Mor, Marco; Lodola, Alessio
2016-06-06
The free-energy surface (FES) of protein-ligand binding contains information useful for drug design. Here we show how to exploit a free-energy minimum of a protein-ligand complex identified by metadynamics simulations to design a new EphA2 antagonist with improved inhibitory potency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vazirian, Mahdi; Faramarzi, Mohammad Ali; Ebrahimi, Seyed Esmaeil Sadat; Esfahani, Hamid Reza Monsef; Samadi, Nasrin; Hosseini, Seyed Aboulfazl; Asghari, Ali; Manayi, Azadeh; Mousazadeh, Ali; Asef, Mohammad Reza; Habibi, Emran; Amanzadeh, Yaghoub
2014-01-01
Mushrooms are considered one of the richest sources of natural antibiotics, and various species of them inhibit the growth of a wide diversity of microorganisms. Ganoderma lucidum, a well-known medicinal mushroom. has many pharmacological and biological activities including an antimicrobial effect, although few studies have investigated the antibacterial and antifungal effects of its purified compounds. The chemical structure of the purified compounds from the hexane fraction was elucidated as ergosta-7,22-dien-3β-yl acetate, ergosta-5,7,22-trien-3β-yl acetate (isopyrocalciferol acetate), ergosta-7,22-dien-3-one, ergosta-7,22-dien-3β-ol, and ergosta-5,7,22-trien-3β-ol (ergostrol). In addition, the structure of ganodermadiol was demonstrated after purification from the chloroform fraction. The fractions inhibited Gram-positive bacteria and yeast, with minimum inhibitory concentration values of 6.25 mg/mL, but were ineffective against Gram-negative bacteria in the tested concentrations. The results were comparable for isolated compounds, whereas the mixture of ergosta-7,22-dien-3β-yl acetate and isopyrocalciferol acetate was weakly effective against Escherichia coli (minimum inhibitory concentration, 10 mg/mL). It could be assumed that the antimicrobial effect of crude fractions is the consequence of mixing triterpenoid and steroid compounds.
Parai, Debaprasad; Islam, Ekramul; Mitra, Jayati; Mukherjee, Samir Kumar
2017-02-01
The goal of this study was to evaluate the antibiofilm and antimicrobial activities of Bacoside A, a formulation of phytochemicals from Bacopa monnieri, against Staphylococcus aureus and Pseudomonas aeruginosa, which are known to form biofilms as one of their virulence traits. The antimicrobial effects of Bacoside A were tested using the minimum inhibitory concentration and minimum bactericidal concentration assays. A cell membrane disruption assay was performed to find its possible target site. MTT assay, crystal violet assay, and microscopic studies were performed to assess the antibiofilm activity. Bacoside A showed antimicrobial activity against both test organisms in their planktonic and biofilm states. At a subminimum inhibitory concentration of 200 μg·mL -1 , Bacoside A significantly removed ∼88%-93% of bacterial biofilm developed on microtiter plates. Biochemical and microscopic studies suggested that the eradication of biofilm might be due to the loss of extracellular polymeric substances and to a change in cell membrane integrity of the selected bacterial strains treated with Bacoside A. These results indicate that Bacoside A might be considered as an antimicrobial having the ability to disrupt biofilms. Thus, either alone or in combination with other therapeutics, Bacoside A could be useful to treat biofilm-related infections caused by opportunistic bacterial pathogens.
Antibiotic-loaded bone void filler accelerates healing in a femoral condylar rat model.
Shiels, S M; Cobb, R R; Bedigrew, K M; Ritter, G; Kirk, J F; Kimbler, A; Finger Baker, I; Wenke, J C
2016-08-01
Demineralised bone matrix (DBM) is rarely used for the local delivery of prophylactic antibiotics. Our aim, in this study, was to show that a graft with a bioactive glass and DBM combination, which is currently available for clinical use, can be loaded with tobramycin and release levels of antibiotic greater than the minimum inhibitory concentration for Staphylococcus aureus without interfering with the bone healing properties of the graft, thus protecting the graft and surrounding tissues from infection. Antibiotic was loaded into a graft and subsequently evaluated for drug elution kinetics and the inhibition of bacterial growth. A rat femoral condylar plug model was used to determine the effect of the graft, loaded with antibiotic, on bone healing. We found that tobramycin loaded into a graft composed of bioglass and DBM eluted antibiotic above the minimum inhibitory concentration for three days in vitro. It was also found that the antibiotic loaded into the graft produced no adverse effects on the bone healing properties of the DBM at a lower level of antibiotic. This antibiotic-loaded bone void filler may represent a promising option for the delivery of local antibiotics in orthopaedic surgery. Cite this article: Bone Joint J 2016;98-B:1126-31. ©2016 The British Editorial Society of Bone & Joint Surgery.
Tavares, Adassa Gama; do Monte, Daniel Farias Marinho; Albuquerque, Allan dos Reis; Sampaio, Fábio Correia; Magnani, Marciane; de Siqueira, José Pinto; de Souza, Evandro Leite
2015-01-01
Enterotoxigenic Staphylococcus aureus strains that were isolated from foods were investigated for their ability to develop direct-tolerance and cross-tolerance to sodium chloride (NaCl), potassium chloride (KCl), lactic acid (LA) and acetic acid (AA) after habituation in sublethal amounts (1/2 of the minimum inhibitory concentration - 1/2 MIC and 1/4 of the minimum inhibitory concentration - 1/4 MIC) of Origanum vulgare L. essential oil (OVEO). The habituation of S. aureus to 1/2 MIC and 1/4 MIC of OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by modulation of MIC values. Otherwise, exposing the strains to OVEO at sublethal concentrations maintained or increased the sensitivity of the cells to the tested stressing agents because the MIC values of OVEO, NaCl, KCl, LA and AA against the cells that were previously habituated to OVEO remained the same or decreased when compared with non-habituated cells. These data indicate that OVEO does not have an inductive effect on the acquisition of direct-tolerance or cross-tolerance in the tested enterotoxigenic strains of S. aureus to antimicrobial agents that are typically used in food preservation. PMID:26413067
Pilevar, Zahra; Hajimehdipoor, Homa; Shahraz, Farzaneh; Alizadeh, Leyla; Mahmoudzadeh, Maryam
2017-01-01
Summary In the current study, the antibacterial effect of Echinophora platyloba essential oil and common liquid smoke (individually and in combination) against Staphylococcus aureus in beef meat samples is investigated. Using an automated microbiological growth analyser and the turbidimetric technique, the minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC) of the essential oil and liquid smoke were determined. Anti-S. aureus activity of essential oil and liquid smoke (individually and in combination) was defined by disk diffusion assay, generation time and cell constituent release. Apart from that, the interactions between these two compounds were measured by the checkerboard assay and by calculating the fractional inhibitory concentration (FIC) indices. Related MIC values of essential oil and smoke were found to be 7200 and 5500 mg/L, and MBC values were 8500 and 8000 mg/L, respectively. The conducted organoleptic assay showed that the addition of 0.05 g of essential oil and 0.6 g of liquid smoke to 100 g of meat samples did not have adverse effect on the overall acceptance. Weaker antibacterial effect against Staphylococcus aureus was observed when only Echinophora platyloba essential oil was used than when it was used in combination with liquid smoke. PMID:28559740
Julianti, Elin; Rajah, Kasturi K.; Fidrianny, Irda
2017-01-01
Propionibacterium acnes and Staphylococcus epidermidis are the major skin bacteria that cause the formation of acne. The present study was conducted to investigate antibacterial activity of ethanolic extract of cinnamon bark, honey, and their combination against acne bacteria. The antibacterial activity of extract of cinnamon bark and honey were investigated against P. acnes and S. epidermidis using disc diffusion. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were attained using Clinical and Laboratory Standard Institute (CLSI) methods. The interaction between cinnamon bark extract and honey was determined using a checkerboards method. The results showed that the MICs of cinnamon bark extract and honey against P. acne were 256 µg/mL and 50% v/v, respectively, while those against S. epidermidis were 1024 µg/mL and 50% v/v, respectively. The MBC of cinnamon bark extract against P. acnes and S. epidermidis were more than 2048 µg/mL, whereas the MBC for honey against P. acnes and S. epidermidis were 100%. The combination of cinnamon bark extract and honey against P. acnes and S. epidermidis showed additive activity with a fractional inhibitory concentration index (FICI) value of 0.625. Therefore, the combination of cinnamon bark extract and honey has potential activity against acne-causing bacteria. PMID:28398231
Effects of oakmoss and its components on biofilm formation of Legionella pneumophila.
Nomura, Harue; Isshiki, Yasunori; Sakuda, Keisuke; Sakuma, Katsuya; Kondo, Seiichi
2013-01-01
Oakmoss and its components are known as antibacterial agents, specifically against Legionella pneumophila. In the present study, we investigated the effects of oakmoss and its components (phenol, didepside and isochromen derivatives) on L. pneumophila biofilm formation, with particular reference to the bactericidal activity (minimum bactericidal concentration; MBC) of these components against the bacterial cells in the biofilm. Of the 20 compounds tested, two didepside derivatives and four phenol derivatives reduced biofilm formation by more than 50% of that observed for the control at their respective minimum inhibitory concentrations (1/2×MIC). The inhibitory activities of these compounds were either equivalent to or greater than that of the clarithromycin reference. Isochromen derivatives had no effect on biofilm formation. Analysis of bactericidal activity of didepside and isochromen derivatives revealed that three of four didepside derivatives and one of four isochromen derivatives exhibited high bactericidal activity (MBC: 32.0-74.7 µg/mL) against the L. pneumophila in the biofilm after 24 h or 48 h of co-incubation; the antibacterial activities of these compounds were almost equivalent to clarithromycin and chlorhexidine gluconate (MBC: 42.7-64.0 µg/mL) that were used as references. Thus, based on their anti-biofilm forming and bactericidal activities, didepside derivatives are considered to be good candidates for disinfectants against L. pneumophila.
Pinto, Eugénia; Gonçalves, Maria-José; Cavaleiro, Carlos; Salgueiro, Lígia
2017-09-22
The composition of the essential oil (EO) of Thapsia villosa (Apiaceae), isolated by hydrodistillation from the plant's aerial parts, was analysed by GC and GC-MS. Antifungal activity of the EO and its main components, limonene (57.5%) and methyleugenol (35.9%), were evaluated against clinically relevant yeasts ( Candida spp., Cryptococcus neoformans and Malassezia furfur ) and moulds ( Aspergillus spp. and dermatophytes). Minimum inhibitory concentrations (MICs) were measured according to the broth macrodilution protocols by Clinical and Laboratory Standards Institute (CLSI). The EO, limonene and methyleugenol displayed low MIC and MFC (minimum fungicidal concentration) values against Candida spp., Cryptococcus neoformans , dermatophytes, and Aspergillus spp. Regarding Candida species, an inhibition of yeast-mycelium transition was demonstrated at sub-inhibitory concentrations of the EO (MIC/128; 0.01 μL/mL) and their major compounds in Candida albicans . Fluconazole does not show this activity, and the combination with low concentrations of EO could associate a supplementary target for the antifungal activity. The association of fluconazole with T. villosa oil does not show antagonism, but the combination limonene/fluconazole displays synergism. The fungistatic and fungicidal activities revealed by T. villosa EO and its main compounds, associated with their low haemolytic activity, confirm their potential antimicrobial interest against fungal species often associated with human mycoses.
Dayao, Denise Ann Estarez; Seddon, Jennifer M; Gibson, Justine S; Blackall, Patrick J; Turni, Conny
2016-10-01
Macrolides are often used to treat and control bacterial pathogens causing respiratory disease in pigs. This study analyzed the whole genome sequences of one clinical isolate of Actinobacillus pleuropneumoniae, Haemophilus parasuis, Pasteurella multocida, and Bordetella bronchiseptica, all isolated from Australian pigs to identify the mechanism underlying the elevated minimum inhibitory concentrations (MICs) for erythromycin, tilmicosin, or tulathromycin. The H. parasuis assembled genome had a nucleotide transition at position 2059 (A to G) in the six copies of the 23S rRNA gene. This mutation has previously been associated with macrolide resistance but this is the first reported mechanism associated with elevated macrolide MICs in H. parasuis. There was no known macrolide resistance mechanism identified in the other three bacterial genomes. However, strA and sul2, aminoglycoside and sulfonamide resistance genes, respectively, were detected in one contiguous sequence (contig 1) of A. pleuropneumoniae assembled genome. This contig was identical to plasmids previously identified in Pasteurellaceae. This study has provided one possible explanation of elevated MICs to macrolides in H. parasuis. Further studies are necessary to clarify the mechanism causing the unexplained macrolide resistance in other Australian pig respiratory pathogens including the role of efflux systems, which were detected in all analyzed genomes.
Wu, Xian-chuang; Du, Gang-jun; Song, Xiao-yong; Zhang, Yong-zhou; Liu, Yu-xin
2014-10-01
To study the protective effect of polysaccharides from corn silk (PCS) against cyclophosphamide (CTX) induced host damages in mice bearing H22 tumors. The ascitic and solid tumor bearing mice model were established to investigate the anti-tumor effects of different dose of PCS (100, 200 and 300 mg/kg). The effects of PCS alone and with combination of CTX on tumor weight, survival time, thymus and spleen index, white blood cell, nucleated cell of marrow, serum ALT and AST level were tested. The high-dose PCS (300 mg/kg) had significant inhibitory effects on tumor. After combination with CTX, the tumor inhibitory ratio was enhanced to 68.71%, the survival time of tumor-burdened ascites tumor mice was significantly prolonged to 72.07% compared with CTX group. The Q value of combination group was 0.997. Thymus and spleen index, white blood cell, nucleated cell of marrow decreased by CTX were ameliorated significantly. The level of ALT and AST increased by CTX were reduced by combination with PCS. PCS has a potent inhibitory effect on the growth of implanted H22 tumors in mice and has a synergetic effect and an attenuated toxic effect in combination with CTX.
Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Kim, Mi Yoon; Ma, Jin Yeul
2013-01-01
To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content. PMID:23781272
Bilbao, M G; Di Yorio, M P; Faletti, A G
2011-04-01
In this study, we investigated the effect of leptin on the ovarian metalloproteinase system in the rat during the ovulatory process. Ovulation was induced in immature rats primed with gonadotropins. In both in vitro and in vivo experiments, we measured i) the protein expression of the ovarian metalloproteinases (matrix metalloproteinases, MMPs) and their tissue inhibitors (TIMPs) by western blot; ii) the gelatinase activity of the ovarian MMPs by zymography; and iii) the inhibitory action of TIMPs by reverse zymography. Using cultures of ovarian explants, leptin increased the activity but not the protein expression of MMP-2 and MMP-9 in both culture medium and ovarian tissue, and the protein expression of TIMPs, without a higher inhibitory action of the gelatinase activity. These results suggest either that the increase in TIMP proteins was not sufficient or that the inhibitory actions of TIMPs were impaired to suppress the MMP activity when the ovaries were directly exposed to leptin. To study the in vivo effect, rats received an acute treatment with high doses of leptin to inhibit ovulation. This treatment increased the expression of both the latent and the active forms of MMP-2 but did not result in a greater activity of MMP-2. In addition, the inhibitory action of TIMP-2 was also increased by this treatment. These results suggest that the administration of high doses of leptin could be regulating the follicle wall degradation, at least in part, by increasing the action of the ovarian TIMP-2 as a result of an extraovarian mechanism or signaling pathway.
Kollins, Scott H; Schoenfelder, Erin; English, Joseph S; McClernon, F Joseph; Dew, Rachel E; Lane, Scott D
2013-10-01
Individuals with Attention Deficit Hyperactivity Disorder (ADHD) smoke cigarettes at rates higher than the general population and questions have been raised about how stimulant drugs-the frontline pharmacological treatment for ADHD-influence smoking risk and behavior in those with ADHD. In the present study adult regular smokers with (n = 16) and without (n = 17) ADHD participated in 3 experimental sessions in which they completed a Progressive Ratio (PR) task to measure the relative reinforcing effects of cigarette smoking and money after oral administration of placebo and 2 active doses of methylphenidate (10 mg and 40 mg). We also measured attention and inhibitory control via a Continuous Performance Test (CPT). Methylphenidate had no effect on smoking-reinforced responding, attention, or inhibitory control in either group. Attention and inhibitory control were associated with smoking-reinforced responding, but unsystematically and only in the non-ADHD group. Several design features, such as the value of the monetary response option, the PR schedule, and the potential effects of smoking on attention and inhibitory control, could have contributed to the negative findings and are discussed as such. Although inconsistent with some previous human laboratory studies of stimulant drugs and smoking, results are consistent with recent trials of stimulant drugs as adjuncts for smoking cessation in adult smokers with ADHD. In general, methylphenidate at mild and moderate doses did not influence the relative reinforcing effects of cigarette smoking in adults with and without ADHD. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Wang, Dongshi; Zhou, Chenglin; Zhao, Min; Wu, Xueping; Chang, Yu-Kai
2016-04-01
The present study integrated behavioral and neuroelectric approaches for determining the dose-response relationships between exercise intensity and methamphetamine (MA) craving and between exercise intensity and inhibitory control in individuals with MA dependence. Ninety-two individuals with MA dependence were randomly assigned to an exercise group (light, moderate, or vigorous intensity) or to a reading control group. The participants then completed a craving self-report at four time points: before exercise, during exercise, immediately after exercise, and 50 min after exercise. Event-related potentials were also recorded while the participants completed a standard Go/NoGo task and an MA-related Go/NoGo task approximately 20 min after exercise cessation. The reduction in self-reported MA craving scores of the moderate and vigorous intensity groups was greater than that of the light intensity and control groups during acute exercise as well as immediately and 50 min following exercise termination. Additionally, an inverted-U-shaped relationship between exercise intensity and inhibitory control was generally observed for the behavioral and neuroelectric indices, with the moderate intensity group exhibiting shorter Go reaction times, increased NoGo accuracy, and larger NoGo-N2 amplitudes. Acute exercise may provide benefits for MA-associated craving and inhibitory control in MA-dependent individuals, as revealed by behavioral and neuroelectric measures. Moderate-intensity exercise may be associated with more positive effects, providing preliminary evidence for the establishment of an exercise prescription regarding intensity for MA dependence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Oyanagui, Y
1984-02-01
Serotonin paw edema of mice and carrageenan paw edema of rats were inhibited by subcutaneously or orally administered certain polyamines. They must be given at least 2 h before serotonin challenge to get inhibitions which were blocked by the concomitant injections of cycloheximide. Thirty percent inhibitory dose (ID30) of polyamines (s.c.) 3 h before serotonin (s.c.) were: spermidine (8 mg/kg), spermine 28 mg/kg) and putrescine (55 mg/kg). Agmatine, cadaverine, ornithine, citrulline, lysine and arginine were not inhibitory even at 200 mg/kg. Three inhibitory polyamines were effective by oral administration but were not inhibitory by local administration into the paws. Intravenous injections of spermidine also required 2 h of lag period for inhibitions. Serotonin edema was inhibited by dexamethasone (1 mg/kg), prednisolone (1 mg/kg) or by superoxide dismutase (SOD, 5 mg/kg) in lag period requiring manner (s.c. and i.v.). High dose of cyclo-oxygenase inhibitors indomethacin and diclofenac sodium, lipo-oxygenase inhibitor BW755C (30 mg/kg s.c., respectively) and phospholipase A2 inhibitor quinacrine (100 mg/kg s.c.) failed to inhibit serotonin edema, suggesting that arachidonate metabolites are not participating in this model. ID30 of polyamines which were administered (s.c. and oral) to rats 3 h before carrageenan and determined at 3 h by paw weight were: spermidine (28 and 100 mg/kg), spermine (18 and 90 mg/kg) and putrescine (both greater than 200 mg/kg). Adrenalectomized rats responded to polyamines just as normal rats. Local vascular permeability, irritancy and acute toxicity were also tested in mice. Polyamines were proved to be glucocorticoid-type anti-inflammatory drugs. Polyamines may be mediators of glucocorticoids for the synthesis of the postulated vascular permeability inhibitory protein (called as 'vasoregulin' for convenience). Anti-inflammatory effect of glucocorticoid is recently explained by its capacity to induce phospholipase A2 inhibitory protein(s) (macrocortin or lipomodulin). However, this hypothesis has not yet been proved by in vivo experiment and our data suggest that there is induction by glucocorticoid of another kind of protein which does not inhibit phospholipase A2 activity.
Anti-inflammatory activities of Aller-7, a novel polyherbal formulation for allergic rhinitis.
Pratibha, N; Saxena, V S; Amit, A; D'Souza, P; Bagchi, M; Bagchi, D
2004-01-01
Allergic rhinitis is an immunological disorder and an inflammatory response of nasal mucosal membranes. Allergic rhinitis, a state of hypersensitivity, occurs when the body overreacts to a substance such as pollens or dust. A novel, safe polyherbal formulation (Aller-7/NR-A2) has been developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and Piper longum. Since inflammation is an integral mechanistic component of allergy, the present study aimed to determine the anti-inflammatory activity of Aller-7 in various in vivo models. The efficacy of Aller-7 was investigated in compound 48/80-induced paw edema both in Balb/c mice and Swiss Albino mice, carrageenan-induced paw edema in Wistar Albino rats and Freund's adjuvant-induced arthritis in Wistar Albino rats. The trypsin inhibitory activity of Aller-7 was also determined and compared with ovomucoid. At a dose of 250 mg/kg, Aller-7 demonstrated 62.55% inhibition against compound 48/80-induced paw edema in Balb/c mice, while under the same conditions prednisolone at an oral dose of 14 mg/kg exhibited 44.7% inhibition. Aller-7 significantly inhibited compound 48/80-induced paw edema at all three doses of 175, 225 or 275 mg/kg in Swiss Albino mice, while the most potent effect was observed at 225 mg/kg. Aller-7 (120 mg/kg, p.o.) demonstrated 31.3% inhibition against carrageenan-induced acute inflammation in Wistar Albino rats, while ibuprofen (50 mg/kg, p.o.) exerted 68.1% inhibition. Aller-7 also exhibited a dose-dependent (150-350 mg/kg) anti-inflammatory effect against Freund's adjuvant-induced arthritis in Wistar Albino rats and an approximately 63% inhibitory effect was observed at a dose of 350 mg/kg. The trypsin inhibitory activity of Aller-7 was determined, using ovomucoid as a positive control. Ovomucoid and Aller-7 demonstrated IC50 concentrations at 1.5 and 9.0 microg/ml, respectively. These results demonstrate that this novel polyherbal formulation is a potent anti-inflammatory agent that can ameliorate the symptoms of allergic rhinitis.
How do stimulant treatments for ADHD work? Evidence for mediation by improved cognition.
Hawk, Larry W; Fosco, Whitney D; Colder, Craig R; Waxmonsky, James G; Pelham, William E; Rosch, Keri S
2018-05-07
Stimulant medications such as methylphenidate (MPH) are the frontline treatment for Attention-Deficit/Hyperactivity Disorder (ADHD). Despite their well-documented efficacy, the mechanisms by which stimulants improve clinical outcomes are not clear. The current study evaluated whether MPH effects on classroom behavior were mediated by improved cognitive functioning. Children with ADHD (n = 82; 9-12 years old) participated in a week-long summer research camp, consisting of cognitive testing, classroom periods, and recreational activities. After a baseline day, participants completed a 3-day randomized, double-blind, placebo-controlled trial of MPH (at doses approximating 0.3 and 0.6 mg/kg of immediate-release MPH dosed TID). Cognitive domains included inhibitory control (Stop Signal Task and prepulse inhibition of startle), attention (Continuous Performance Task and reaction time variability), and working memory (forward and backward spatial span). Clinical outcomes included math seatwork productivity and teacher-rated classroom behavior. A within-subjects path-analytic approach was used to test mediation. MPH-placebo and dose-response contrasts were used to evaluate drug effects. Methylphenidate improved seatwork productivity and teacher ratings (ds = 1.4 and 1.1) and all domains of cognition (ds = 0.3-1.1). Inhibitory control (Stop Signal Task, SST) and working memory backward uniquely mediated the effect of MPH (vs. placebo) on productivity. Only working memory backward mediated the impact of MPH on teacher-rated behavior. The dose-response (0.6 vs. 0.3 mg/kg) effects were more modest for clinical outcomes (ds = 0.4 and 0.2) and cognition (ds = 0-0.3); there was no evidence of cognitive mediation of the clinical dose-response effects. These findings are novel in demonstrating that specific cognitive processes mediate clinical improvement with stimulant treatment for ADHD. They converge with work on ADHD theory, neurobiology, and treatment development in suggesting that inhibitory control and working memory may be mechanisms of stimulant treatment response in ADHD. More work is necessary to evaluate the degree to which these findings generalize to chronic treatment, a broader array of clinical outcomes, and nonstimulant treatments. © 2018 Association for Child and Adolescent Mental Health.
Costa, Danielle Cristina Machado; Vermelho, Alane Beatriz; Almeida, Catia Amancio; de Souza Dias, Edilma Paraguai; Cedrola, Sabrina Martins Lage; Arrigoni-Blank, Maria de Fátima; Blank, Arie Fitzgerald; Alviano, Celuta Sales; Alviano, Daniela Sales
2014-02-01
Abstract Lippia alba (Miller) N.E. Brown is an aromatic plant known locally as "Erva-cidreira-do-campo" that has great importance in Brazilian folk medicine. The aim of our study was to evaluate the antidermatophytic potential of linalool-rich essential oil (EO) from L. alba and analyze the ability of this EO to inhibit peptidase and keratinase activities, which are important virulence factors in dermatophytes. The minimum inhibitory concentrations (MICs) of L. alba EO were 39, 156 and 312 µg/mL against Trichophyton rubrum, Epidermophyton floccosum and Microsporum gypseum, respectively. To evaluate the influence of L. alba EO on the proteolytic and keratinolytic activities of these dermatophytes, specific inhibitory assays were performed. The results indicated that linalool-rich EO from L. alba inhibited the activity of proteases and keratinases secreted from dermatophytes, and this inhibition could be a possible mechanism of action against dermatophytes. Due to the effective antidermatophytic activity of L. alba EO, further experiments should be performed to explore the potential of this linalool-rich EO as an alternative antifungal therapy.
Kışla, Duygu; Karabıyıklı, Şeniz
2013-05-01
Pomegranate sauce is one of the most popular pomegranate products produced in Turkey. This study was conducted to determine the minimum inhibitory concentrations (MICs) of both traditional and commercial sour pomegranate sauce samples on Staphylococcus aureus (ATCC 25923) and Escherichia coli O157:H7 (ATCC 43895). The initial microflora of the pomegranate sauce samples was determined by performing the enumerations of total aerobic mesophilic bacteria, yeast and mold, S. aureus, E. coli, and the determination of Salmonella spp. MIC tests were applied to the neutralized and the original (unneutralized) sour pomegranate sauce samples in order to put forth the inhibition effect depending on low pH value. It was found that inhibitory effect of the traditional and the commercial samples, except one sample, on pathogens was not only due to the acidity of the products. The results of MIC tests indicated that although both traditional and commercial samples showed a considerable inhibitory effect on test microorganisms, the traditional pomegranate sauce samples were more effective than the commercial ones. © 2013 Institute of Food Technologists®
Novel FR-900493 Analogues That Inhibit the Outgrowth of Clostridium difficile Spores
2018-01-01
The spectrum of antibacterial activity for the nucleoside antibiotic FR-900493 (1) can be extended by chemical modifications. We have generated a small focused library based on the structure of 1 and identified UT-17415 (9), UT-17455 (10), UT-17460 (11), and UT-17465 (12), which exhibit anti-Clostridium difficile growth inhibitory activity. These analogues also inhibit the outgrowth of C. difficile spores at 2× minimum inhibitory concentration. One of these analogues, 11, relative to 1 exhibits over 180-fold and 15-fold greater activity against the enzymes, phospho-MurNAc-pentapeptide translocase (MraY) and polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA), respectively. The phosphotransferase inhibitor 11 displays antimicrobial activity against several tested bacteria including Bacillus subtilis, Clostridium spp., and Mycobacterium smegmatis, but no growth inhibitory activity is observed against the other Gram-positive and Gram-negative bacteria. The selectivity index (Vero cell cytotoxicity/C. difficileantimicrobial activity) of 11 is approximately 17, and 11 does not induce hemolysis even at a 100 μM concentration. PMID:29503973
Effective dose of salmon GnRha for induction of ovulation in channel catfish, Ictalurus punctatus
USDA-ARS?s Scientific Manuscript database
The present study was conducted to determine the minimum effective salmon Gonadotropin Releasing Hormone analog (sGnRHa) dose to stimulate ovulation in channel catfish. Four doses of sGnRHa (0, 5, 10 and 25 µg /Kg) were compared with commonly used 100 µg mammalian Luteinizing Hormone Releasing Hor...
Spear, Linda P.
2013-01-01
Rationale NMDA antagonists consistently produce social inhibition in adult animals, although effects of these manipulations on social behavior of adolescents are relatively unknown. Objectives The aim of this study was to assess potential age differences in the socially inhibitory effects of the non-competitive NMDA antagonist, MK-801, as well as NR2 subunit selective effects, given the regional and developmental differences that exist for the NR2 subunit during ontogeny. Methods In separate experiments, adolescent and adult male Sprague–Dawley rats were treated acutely with MK-801 (0, 0.05, 0.1, 0.2 mg/kg, i.p.), the NR2A antagonist, PEAQX (2.5, 5, 10, 20 mg/kg, s.c.), or the NR2B antagonist, ifenprodil (1.5, 3, 6, 12 mg/kg, i.p.), 10 min prior to a social interaction test. Results Adolescents required higher doses of MK-801 (0.1 and 0.2 mg/kg) to induce social suppression, whereas adults demonstrated reductions in social activity after all doses. Likewise, adolescents required higher doses of ifenprodil (6 and 12 mg/kg) to produce social inhibitory effects relative to adults (all doses). In contrast, adults were less sensitive to PEAQX than adolescents, with adults showing social inhibition after 20 mg/kg whereas adolescents showed this effect following 10 and 20 mg/kg. Although locomotor activity was generally reduced at both ages by all drugs tested, ANCOVAs using locomotor activity as a covariate revealed similar patterns of social inhibitory effects. Conclusions Adolescents are less sensitive than adults to the disruption of social behavior by NMDA and NR2B-selective receptor antagonism, but not by an NR2A antagonist—age differences that may be related to different subunit expression patterns during development. PMID:24043344
Disaanayake, D M B T; Faoagali, Joan; Laroo, Hans; Hancock, Gerald; Whitehouse, Michael
2014-04-01
There has been increased interest in the role of anti-Proteus antibodies in the aetiology of rheumatoid arthritis (RA) and whether chemotherapeutic agents active against Proteus species might reduce the risk and/or exacerbations of RA. We examined the in vitro antibacterial effects of ten different silver preparations which were either ionic silver [Ag(I)] solutions or nanoparticulate silver (NPS) (Ag(0)) suspensions against ATCC and two wild (clinical) strains of Proteus. The data establish the low minimum inhibitory concentration and minimum bactericidal concentration of all the silver formulations tested against these four Proteus strains. In a pilot study, a potent NPS preparation ex vivo showed long-lasting anti-Proteus activity in a normal human volunteer.
Ghanbari, Raheleh; Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid
2015-01-01
In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions. PMID:26690117
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, C.T.; Menton, R.G.; Kiser, R.C.
This task was conducted to determine the minimum dose of pyridostigmine (PYR), and the associated level of erythrocyte acetycholinesterase inhibition (AChE-I), that provides protection from 5 X 48-br GD LD50 of untreated monkeys. Monkeys were injected im with GD and treated with 0.4 mg atropine (ATR) free base and 25.7 mg pralidoxime (2-PAM) per kg BW.
NASA Astrophysics Data System (ADS)
Sutikno, Madnasri; Susilo; Arya Wijayanti, Riza
2016-08-01
A study about X-ray radiation impact on the white mice through radiation dose mapping in Medical Physic Laboratory is already done. The purpose of this research is to determine the minimum distance of radiologist to X-ray instrument through treatment on the white mice. The radiation exposure doses are measured on the some points in the distance from radiation source between 30 cm up to 80 with interval of 30 cm. The impact of radiation exposure on the white mice and the effects of radiation measurement in different directions are investigated. It is founded that minimum distance of radiation worker to radiation source is 180 cm and X-ray has decreased leukocyte number and haemoglobin and has increased thrombocyte number in the blood of white mice.
Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza
2015-01-01
Background: The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. Objectives: In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. Materials and Methods: A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. Results: The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Conclusions: Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the growth of P. aeruginosa PTCC 1430. The antimicrobial potency of this combination can be useful for designing and developing alternative therapeutic strategies against P. aeruginosa infections. PMID:26034539
Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza
2015-04-01
The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the growth of P. aeruginosa PTCC 1430. The antimicrobial potency of this combination can be useful for designing and developing alternative therapeutic strategies against P. aeruginosa infections.
Kataoka, Takahiro; Yamato, Keiko; Nishiyama, Yuichi; Morii, Yuji; Etani, Reo; Takata, Yuji; Hanamoto, Katsumi; Kawabe, Atsuishi; Sakoda, Akihiro; Ishimori, Yuu; Taguchi, Takehito; Yamaoka, Kiyonori
2012-01-01
Since the 2011 nuclear accident in Fukushima, the effects of low-dose irradiation, especially internal exposure, are at the forefront of everyone's attention. However, low-dose radiation induced various stimulating effects such as activation of antioxidative and immune functions. In this study, we attempted to evaluate the quantitative effects of the activation of antioxidative activities in kidney induced by radon inhalation on carbon tetrachloride (CCl4)-induced renal damage. Mice were subjected to intraperitoneal (i.p.) injection of CCl4 after inhaling approximately 1000 or 2000 Bq/m3 radon for 24 h, or immediately after i.p. injection of α-tocopherol (100, 300, or 500 mg/kg bodyweight). In case of renal function, radon inhalation at a concentration of 2000 Bq/m3 has the inhibitory effects similar to α-tocopherol treatment at a dose of 300-500 mg/kg bodyweight. The activities of superoxide dismutase and catalase in kidneys were significantly higher in mice exposed to radon as compared to mice treated with CCl4 alone. These findings suggest that radon inhalation has an antioxidative effect against CCl4-induced renal damage similar to the antioxidative effects of α-tocopherol due to induction of antioxidative functions.
The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.
Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong
2015-10-01
To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p < 0.01) in a dose dependent manner. These results suggest that vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.
Lister, Philip D
2008-09-01
In a previous study, levofloxacin 750 mg eradicated 4 ciprofloxacin-resistant isolates of Streptococcus pneumoniae from an in vitro pharmacodynamic model (IVPM). However, quinolone resistance-determining region (QRDR) mutations were not detected among those isolates. This study further evaluates levofloxacin 500 mg and 750 mg against S pneumoniae strains with characterized QRDR mutations. Six isolates with levofloxacin minimum inhibitory concentrations (MICs) of 2 to 4 microg/mL were selected for this study. Strains 5401, 5409, and 5437 contained only parC mutations. Three additional strains contained 2 mutations each: strain 5429 (parC and parE ), strain 5442 (parC and gyrA), and strain 5445 (parC and gyrB). Logarithmic-phase cultures (approximately 1 x 10(7) CFU/mL) were inoculated into the peripheral compartment of the IVPM and exposed to peak free-drug concentrations achieved with levofloxacin 500 mg and 750 mg (PO) and ciprofloxacin 750 mg (PO). Elimination pharmacokinetics were simulated and changes in viable counts were measured over 30 h. Ciprofloxacin exhibited very little antibacterial activity against the 6 strains, while levofloxacin 750 mg rapidly killed and eradicated the 3 parC mutant strains and the dual parC/parE mutant strains. Although levofloxacin 500 mg initially decreased viable counts by 4.5 to 6 logs, inoculum regrowth was observed between 12 and 24 h for the 6 strains. Regrowth was not due to the selection of mutant subpopulations. The pharmacodynamics of both levofloxacin doses were substantially diminished against the 2 strains with dual mutations in both parC and gyrA/B. The rapid eradication of single parC and dual parC/parE mutants with levofloxacin 750 mg demonstrates that this dose may slow the emergence of resistance due to these mutations. The decreased efficacy of both levofloxacin doses against the double parC and gyrA/B mutants highlights the importance of preventing the development and spread of double mutants.
Lorenzutti, A M; Litterio, N J; Himelfarb, M A; Zarazaga, M D P; San Andrés, M I; De Lucas, J J
2017-12-01
The main objectives of this study were (i) to evaluate the serum pharmacokinetic behaviour and milk penetration of marbofloxacin (MFX; 5 mg/kg), after intravenous (IV) and intramuscular (IM) administration in lactating goats and simulate a multidose regimen on steady-state conditions, (ii) to determine the minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of coagulase negative staphylococci (CNS) isolated from caprine mastitis in Córdoba, Argentina and (iii) to make a PK/PD analysis by Monte Carlo simulation from steady-state pharmacokinetic parameters of MFX by IV and IM routes to evaluate the efficacy and risk of the emergence of resistance. The study was carried out with six healthy, female, adult Anglo Nubian lactating goats. Marbofloxacin was administered at 5 mg/kg bw by IV and IM route. Serum and milk concentrations of MFX were determined with HPLC/uv. From 106 regional strains of CNS isolated from caprine mastitis in herds from Córdoba, Argentina, MICs and MPCs were determined. MIC 90 and MPC 90 were 0.4 and 6.4 μg/ml, respectively. MIC and MPC-based PK/PD analysis by Monte Carlo simulation indicates that IV and IM administration of MFX in lactating goats may not be adequate to recommend it as an empirical therapy against CNS, because the most exigent endpoints were not reached. Moreover, this dose regimen could increase the probability of selecting mutants and resulting in emergence of resistance. Based on the results of Monte Carlo simulation, the optimal dose of MFX to achieve an adequate antimicrobial efficacy should be 10 mg/kg, but it is important take into account that fluoroquinolones are substrates of efflux pumps, and this fact may determine that assumption of linear pharmacokinetics at high doses of MFX may be incorrect. © 2017 John Wiley & Sons Ltd.
Franchi, A M; Di Girolamo, G; Farina, M; de los Santos, A R; Martí, M L; Gimeno, M A
2001-04-01
Recent studies have shown that some nonsteroidal antiinflammatory drugs (NSAIDS) inhibited the inducible NO synthase (iNOS) without direct effect on the catalytic activity of this enzyme. This study was conducted to investigate the in vitro and in vivo effects of lysine clonixinate (LC) and indomethacin (INDO) on NOS activity in rat lung preparation. LC is a drug with antiinflammatory, antipyretic, and analgesic action. In the in vitro experiments, rats were injected with saline or lipopolysaccharide (LPS) and killed 6 h after treatment. Lung preparations were incubated with LC at 2.3 x 10(-5) M or 3.8 x 10(-5) M. The minimum concentration did not modify NOS activity in control or LPS-treated rats but the maximum dose inhibited increased NO production induced by LPS. Furthermore, INDO at 10(-6) M had no effect on enzymatic activity in control or LPS-treated rats. In the in vivo experiments, 40 mg/kg of LC were injected ip. Such a dose did not affect basal production of NO. When LC and LPS were injected simultaneously 6 h before sacrifice, a significant decrease in LPS-induced NOS activity was observed. INDO 10 mg/kg injected in control animals had no effect on NOS activity and did not block LPS induced stimulation of NO production when injected simultaneously. Finally, when LC (40 mg/kg) was injected 3 h after LPS, the enzymatic activity remained unchanged. Expression of iNOS was detected by Western blotting in rats treated with LPS plus 4, 10, 20, and 40 mg/kg of LC. The lowest dose was the only one showing no effect on LPS-induced increase of iNOS. In short, LC is a NSAID with inhibitory action on the expression of LPS-induced NOS, effect that was not seen with INDO in our experimental conditions. Copyright 2001 Academic Press.
Vancomycin AUC/MIC and Corresponding Troughs in a Pediatric Population
Lardieri, Allison B.; Heil, Emily L.; Morgan, Jill A.
2017-01-01
OBJECTIVES Adult guidelines suggest an area under the curve/minimum inhibitory concentration (AUC/MIC) > 400 corresponds to a vancomycin trough serum concentration of 15 to 20 mg/L for methicillin-resistant Staphylococcus aureus infections, but obtaining these troughs in children are difficult. The primary objective of this study was to assess the likelihood that 15 mg/kg of vancomycin every 6 hours in a child achieves an AUC/MIC > 400. METHODS This retrospective chart review included pediatric patients >2 months to <18 years with a positive S aureus blood culture and documented MIC who received at least two doses of vancomycin with corresponding trough. Patients were divided into two groups: group 1 initially receiving ≥15 mg/kg every 6 hours, and group 2 initially receiving any other dosing ranges or intervals. AUCs were calculated four times using three pharmacokinetic methods. RESULTS A total of 36 patients with 99 vancomycin trough serum concentrations were assessed. Baseline characteristics were similar between groups. For troughs in group 1 (n = 55), the probability of achieving an AUC/MIC > 400 ranged from 16.4% to 90.9% with a median trough concentration of 11.4 mg/L, while in group 2 (n = 44) the probability of achieving AUC/MIC > 400 ranged from 15.9% to 54.5% with mean trough concentration of 9.2 mg/L. The AUC/MICs were not similar between the different pharmacokinetic methods used; however, a trapezoidal equation (Method A) yielded the highest correlation coefficient (r2 = 0.59). When dosing every 6 hours, an AUC/MIC of 400 correlated to a trough serum concentration of 11 mg/L. CONCLUSIONS The probability of achieving an AUC/MIC > 400 using only a trough serum concentration and an MIC with patients receiving 15 mg/kg every 6 hours is variable based on the method used to calculate the AUC. An AUC/MIC of 400 in children correlated to a trough concentration of 11 mg/L using a trapezoidal Method to calculate AUC. PMID:28337080
Vancomycin AUC/MIC and Corresponding Troughs in a Pediatric Population.
Kishk, Omayma A; Lardieri, Allison B; Heil, Emily L; Morgan, Jill A
2017-01-01
Adult guidelines suggest an area under the curve/minimum inhibitory concentration (AUC/MIC) > 400 corresponds to a vancomycin trough serum concentration of 15 to 20 mg/L for methicillin-resistant Staphylococcus aureus infections, but obtaining these troughs in children are difficult. The primary objective of this study was to assess the likelihood that 15 mg/kg of vancomycin every 6 hours in a child achieves an AUC/MIC > 400. This retrospective chart review included pediatric patients >2 months to <18 years with a positive S aureus blood culture and documented MIC who received at least two doses of vancomycin with corresponding trough. Patients were divided into two groups: group 1 initially receiving ≥15 mg/kg every 6 hours, and group 2 initially receiving any other dosing ranges or intervals. AUCs were calculated four times using three pharmacokinetic methods. A total of 36 patients with 99 vancomycin trough serum concentrations were assessed. Baseline characteristics were similar between groups. For troughs in group 1 (n = 55), the probability of achieving an AUC/MIC > 400 ranged from 16.4% to 90.9% with a median trough concentration of 11.4 mg/L, while in group 2 (n = 44) the probability of achieving AUC/MIC > 400 ranged from 15.9% to 54.5% with mean trough concentration of 9.2 mg/L. The AUC/MICs were not similar between the different pharmacokinetic methods used; however, a trapezoidal equation (Method A) yielded the highest correlation coefficient (r 2 = 0.59). When dosing every 6 hours, an AUC/MIC of 400 correlated to a trough serum concentration of 11 mg/L. The probability of achieving an AUC/MIC > 400 using only a trough serum concentration and an MIC with patients receiving 15 mg/kg every 6 hours is variable based on the method used to calculate the AUC. An AUC/MIC of 400 in children correlated to a trough concentration of 11 mg/L using a trapezoidal Method to calculate AUC.
Gaikowski, Mark P.; Schleis, Susan M.; Leis, Eric; Lasee, Becky A.; Endris, Richard G.
2014-01-01
The efficacy of Aquaflor (florfenicol; FFC) to control mortality caused by Streptococcus iniae in tilapia was evaluated under field conditions. The trial was initiated following presumptive diagnosis of S. iniae infection in a mixed group of fingerling (mean, 4.5 g) Nile Tilapia Oreochromis niloticus and a hybrid of Nile Tilapia×Blue Tilapia O. aureus. Diagnoses included mortality in source tank; examination of clinical signs and presence or absence of gram-positive cocci in brain, and collection of samples for microbiological review and disease confirmation of 60 moribund fish. Following presumptive diagnosis, tilapia (83/tank) were randomly transferred to each of 20 test tanks receiving the same water as the source tank (test tank water was not reused). Tilapia were offered either nonmedicated control feed or FFC-medicated feed (FFC at 15 mg/kg body weight/d; 10 tanks per regimen) for 10 consecutive days followed by a 14-d observation period during which only the nonmedicated control feed was offered. Streptococcus iniae was presumptively identified during pretreatment necropsy and confirmed by polymerase chain reaction assay; S. iniae was confirmed in samples taken during the dosing period but was not detected during the postdosing period. The FFC disk diffusion zone of inhibition ranged from 29 to 32 mm, while the minimum inhibitory concentration of FFC ranged from 2 to 4 μg/mL for the S. iniae isolates collected. Survival of tilapia assigned to the FFC-dose group was significantly greater at 14 d posttreatment than that of the nonmedicated controls. The odds of tilapia assigned to the FFC-dose group surviving to the end of the postdosing period were 1.34 times the odds of survival of tilapia assigned to the nonmedicated control group. There were no clinically apparent adverse effects associated with the administration of FFC-medicated feed in this study.
Hassing, R-J; Goessens, W H F; Mevius, D J; van Pelt, W; Mouton, J W; Verbon, A; van Genderen, P J
2013-10-01
The emergence of decreased ciprofloxacin susceptibility (DCS) in Salmonella enterica serovar Typhi and serovar Paratyphi A, B or C limits treatment options. We studied the impact of DCS isolates on the fate of travellers returning with enteric fever and possible alternative treatment options. We evaluated the clinical features, susceptibility data and efficacy of empirical treatment in patients with positive blood cultures of a DCS isolate compared to patients infected with a ciprofloxacin-susceptible (CS) isolate in the period from January 2002 to August 2008. In addition, the pharmacokinetic and pharmacodynamic parameters of ciprofloxacin, levofloxacin and gatifloxacin were determined to assess if increasing the dose would result in adequate unbound fraction of the drug 24-h area under the concentration-time curve/minimum inhibitory concentration (ƒAUC(0-24)/MIC) ratio. Patients with DCS more often returned from the Indian subcontinent and had a longer fever clearance time and length of hospital stay compared to patients in whom the initial empirical therapy was adequate. The mean ƒAUC(0-24)/MIC was 41.3 ± 18.8 in the patients with DCS and 585.4 ± 219 in patients with a CS isolate. For DCS isolates, the mean ƒAUC0-24/MIC for levofloxacin was 60.5 ± 28.7 and for gatifloxacin, it was 97.9 ± 28.0. Increasing the dose to an adequate ƒAUC(0-24)/MIC ratio will lead to conceivably toxic drug levels in 50% of the patients treated with ciprofloxacin. Emerging DCS isolates has led to the failure of empirical treatment in ill-returned travellers. We demonstrated that, in some cases, an adequate ƒAUC(0-24)/MIC ratio could be achieved by increasing the dose of ciprofloxacin or by the use of alternative fluoroquinolones.
Protective effects of papaverine salicylate in mouse ear dermatitis and PAF-induced rat paw oedema.
de Bernardis, E; Leonardi, G; Caruso, A; Cutuli, V M; Amico-Roxas, M
1994-08-01
Papaverine salicylate (MR-800) has been tested as a topical antiinflammatory agent in several models of skin inflammation in rodents, such as mouse ear dermatitis induced by croton oil, cantharidin or zymosan, and rat paw oedema induced by PAF. MR-800 exerted a dose-dependent inhibitory activity in all assays, when equimolar doses of sodium salicylate or papaverine were less effective, suggesting the existence of a favourable synergism between salicylate and papaverine.
García-Arenas, Guadalupe; Ramírez-Amaya, Victor; Balderas, Israela; Sandoval, Jimena; Escobar, Martha L; Ríos, Camilo; Bermúdez-Rattoni, Federico
2004-02-04
It is well known that lead can affect several cognitive abilities in developing animals. In this work, we investigate the effects of different sub-chronic lead doses (0, 65, 125, 250 and 500 ppm of lead acetate in their drinking water for 14 days) in the performance of male adult rats in a water maze, cue maze and inhibitory avoidance tasks. We found that the acquisition of these tasks was not affected by lead, however, the highest dosage of lead (500 ppm) impaired memory consolidation in spatial and inhibitory avoidance tasks, but not in cue maze task while the 250 ppm dose only affected retrieval of spatial memory. Additionally, hippocampal long-term potentiation (LTP) induction in the perforant path after exposing adult rats to different doses of lead was studied. LTP induction was affected in a dose-dependent manner, and treatments of 250 and 500 ppm completely blocked LTP. We investigated the effects of lead intoxication on the activity of constitutive nitric oxide synthase (cNOS) in different brain regions of adult animals. The activity of cNOS was significantly inhibited in the hippocampus and cerebellum but not in the frontal cortex and brain stem, although lead had accumulated in all brain regions. These results suggest that lead intoxication can impair memory in adult animals and this impairment might be related with region-specific effects on cNOS activity.
Umemura, Kazuo; Ikeda, Yasuhiko; Matsushima, Nobuko; Kondo, Kazunao
2017-07-01
We evaluated the pharmacokinetics and pharmacodynamics of prasugrel used in combination with aspirin in healthy Japanese subjects. All subjects received aspirin 100 mg/day. Subsequently, in the single-administration study, 23 subjects also received prasugrel 20 or 30 mg, and in the multiple-administration study, 20 subjects received a loading dose of prasugrel 20 or 30 mg on day 1, followed by a maintenance dose of prasugrel 5 or 7.5 mg/day, respectively, on days 2-5. In both studies, the plasma concentration of the active metabolite of prasugrel, R-138727, reached a maximum 0.5 hours after administration and rapidly decreased within 4 hours. In the single-administration study, the inhibitory effect on adenosine diphosphate-induced platelet aggregation was significantly higher in the prasugrel 20- and 30-mg groups than in the placebo group at all times (1-144 hours) after administration. In the multiple-administration study, a similar antiplatelet effect was found after both the loading dose and the maintenance dose and was maintained for 3-6 days after the last administration. There were study drug-related adverse events; however, all were mild, and none was clinically significant. © 2016 The Authors. Clinical Pharmacology in Drug Development Published by Wiley Periodicals, Inc. on behalf of The American College of Clinical Pharmacology.
Kim, N Y; Pae, H O; Ko, Y S; Yoo, J C; Choi, B M; Jun, C D; Chung, H T; Inagaki, M; Higuchi, R; Kim, Y C
1999-10-01
Bioassay-guided fractionation of an H2O extract of the barks of Fraxinus rhynchophylla has furnished two inducible nitric oxide synthase (iNOS) inhibitory compounds, ferulaldehyde (1) and scopoletin (3) together with a coumarin, fraxidin (2). Compounds 1 and 3 showed inhibition of nitric oxide (NO) synthesis in a dose-dependent manner by murine macrophage-like RAW 264.7 cells stimulated with interferon-gamma (IFN-gamma) plus lipopolysaccharide (LPS). The inhibition of NO synthesis of 1 was reflected in the decreased amount of iNOS protein, as determined by Western blotting.
2014-01-01
Introduction The objective of this study was to describe the pharmacokinetics of vancomycin in ICU patients and to examine whether contemporary antibiotic dosing results in concentrations that have been associated with favourable response. Methods The Defining Antibiotic Levels in Intensive Care (DALI) study was a prospective, multicentre pharmacokinetic point-prevalence study. Antibiotic dosing was as per the treating clinician either by intermittent bolus or continuous infusion. Target trough concentration was defined as ≥15 mg/L and target pharmacodynamic index was defined as an area under the concentration-time curve over a 24-hour period divided by the minimum inhibitory concentration of the suspected bacteria (AUC0–24/MIC ratio) >400 (assuming MIC ≤1 mg/L). Results Data of 42 patients from 26 ICUs were eligible for analysis. A total of 24 patients received vancomycin by continuous infusion (57%). Daily dosage of vancomycin was 27 mg/kg (interquartile range (IQR) 18 to 32), and not different between patients receiving intermittent or continuous infusion. Trough concentrations were highly variable (median 27, IQR 8 to 23 mg/L). Target trough concentrations were achieved in 57% of patients, but more frequently in patients receiving continuous infusion (71% versus 39%; P = 0.038). Also the target AUC0–24/MIC ratio was reached more frequently in patients receiving continuous infusion (88% versus 50%; P = 0.008). Multivariable logistic regression analysis with adjustment by the propensity score could not confirm continuous infusion as an independent predictor of an AUC0–24/MIC >400 (odds ratio (OR) 1.65, 95% confidence interval (CI) 0.2 to 12.0) or a Cmin ≥15 mg/L (OR 1.8, 95% CI 0.4 to 8.5). Conclusions This study demonstrated large interindividual variability in vancomycin pharmacokinetic and pharmacodynamic target attainment in ICU patients. These data suggests that a re-evaluation of current vancomycin dosing recommendations in critically ill patients is needed to more rapidly and consistently achieve sufficient vancomycin exposure. PMID:24887569
Ehmann, Lisa; Zoller, Michael; Minichmayr, Iris K; Scharf, Christina; Maier, Barbara; Schmitt, Maximilian V; Hartung, Niklas; Huisinga, Wilhelm; Vogeser, Michael; Frey, Lorenz; Zander, Johannes; Kloft, Charlotte
2017-10-21
Severe bacterial infections remain a major challenge in intensive care units because of their high prevalence and mortality. Adequate antibiotic exposure has been associated with clinical success in critically ill patients. The objective of this study was to investigate the target attainment of standard meropenem dosing in a heterogeneous critically ill population, to quantify the impact of the full renal function spectrum on meropenem exposure and target attainment, and ultimately to translate the findings into a tool for practical application. A prospective observational single-centre study was performed with critically ill patients with severe infections receiving standard dosing of meropenem. Serial blood samples were drawn over 4 study days to determine meropenem serum concentrations. Renal function was assessed by creatinine clearance according to the Cockcroft and Gault equation (CLCR CG ). Variability in meropenem serum concentrations was quantified at the middle and end of each monitored dosing interval. The attainment of two pharmacokinetic/pharmacodynamic targets (100%T >MIC , 50%T >4×MIC ) was evaluated for minimum inhibitory concentration (MIC) values of 2 mg/L and 8 mg/L and standard meropenem dosing (1000 mg, 30-minute infusion, every 8 h). Furthermore, we assessed the impact of CLCR CG on meropenem concentrations and target attainment and developed a tool for risk assessment of target non-attainment. Large inter- and intra-patient variability in meropenem concentrations was observed in the critically ill population (n = 48). Attainment of the target 100%T >MIC was merely 48.4% and 20.6%, given MIC values of 2 mg/L and 8 mg/L, respectively, and similar for the target 50%T >4×MIC . A hyperbolic relationship between CLCR CG (25-255 ml/minute) and meropenem serum concentrations at the end of the dosing interval (C 8h ) was derived. For infections with pathogens of MIC 2 mg/L, mild renal impairment up to augmented renal function was identified as a risk factor for target non-attainment (for MIC 8 mg/L, additionally, moderate renal impairment). The investigated standard meropenem dosing regimen appeared to result in insufficient meropenem exposure in a considerable fraction of critically ill patients. An easy- and free-to-use tool (the MeroRisk Calculator) for assessing the risk of target non-attainment for a given renal function and MIC value was developed. Clinicaltrials.gov, NCT01793012 . Registered on 24 January 2013.
Carpenter, James W; Tully, Thomas N; Gehring, Ronette; Guzman, David Sanchez-Migallon
2017-06-01
To determine the pharmacokinetics of piperacillin/tazobactam in Hispaniolan Amazon parrots ( Amazona ventralis ), 8 healthy adult parrots of both sexes were used in a 2-part study. In a pilot study, piperacillin (87 mg/kg) in combination with tazobactam (11 mg/kg) was administered intramuscularly (IM) to 2 birds, and blood samples were obtained at 0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, and 10 hours after administration. Based on the results obtained, a main study was done in which piperacillin/tazobactam was administered at 2 different doses. In 3 birds, the initial dose of piperacillin (87 mg/kg)/tazobactam (11 mg/kg) IM was administered, and in 3 birds, the dose was doubled to piperacillin (174 mg/kg)/tazobactam (22 mg/kg) IM. In all 6 birds, blood samples were obtained at 0, 5, 15, and 30 minutes and at 1, 1.5, 2, 2.5, 3, and 4 hours after administration. Quantification of plasma piperacillin and tazobactam concentrations was determined by validated liquid chromatography-mass spectrometry assay. Pharmacokinetic parameters were determined by noncompartmental analysis. After intramuscular administration, the mean ± standard error values of T 1/2 (h) was 0.52 ± 0.05 and 0.32 ± 0.07, T max (h) was 0.28 ± 0.09 and 0.25 ± 0.10, C max (μg/mL) was 86.34 ± 20.62 and 9.03 ± 2.88, and C max /dose was 0.99 ± 0.24 and 0.83 ± 0.26 for piperacillin (87 mg/kg) and tazobactam (11 mg/kg), respectively. When the doses were doubled, the T 1/2 (h) was 0.65 ± 0.08 and 0.34 ± 0.02, T max (h) was 0.28 ± 0.12 and 0.14 ± 0.06, C max (μg/mL) was 233.0 ± 6.08 and 22.13 ± 2.35, and C max /dose was 1.34 ± 0.03 and 1.02 ± 0.11 for piperacillin and tazobactam, respectively. Results indicate that piperacillin is rapidly absorbed and reaches high initial concentrations; however, it is also rapidly eliminated in the Hispaniolan Amazon parrot, and tazobactam has similar pharmacokinetics as piperacillin. Administration of piperacillin at 87 mg/kg IM q3-4h is recommended for this species to control infections attributed to susceptible bacteria with a minimum inhibitory concentration of ≤4 μg/mL.
Karlsson, Kristin; Nyman, Jan; Baumann, Pia; Wersäll, Peter; Drugge, Ninni; Gagliardi, Giovanna; Johansson, Karl-Axel; Persson, Jan-Olov; Rutkowska, Eva; Tullgren, Owe; Lax, Ingmar
2013-11-01
To evaluate the dose-response relationship between radiation-induced atelectasis after stereotactic body radiation therapy (SBRT) and bronchial dose. Seventy-four patients treated with SBRT for tumors close to main, lobar, or segmental bronchi were selected. The association between incidence of atelectasis and bronchial dose parameters (maximum point-dose and minimum dose to the high-dose bronchial volume [ranging from 0.1 cm(3) up to 2.0 cm(3)]) was statistically evaluated with survival analysis models. Prescribed doses varied between 4 and 20 Gy per fraction in 2-5 fractions. Eighteen patients (24.3%) developed atelectasis considered to be radiation-induced. Statistical analysis showed a significant correlation between the incidence of radiation-induced atelectasis and minimum dose to the high-dose bronchial volumes, of which 0.1 cm(3) (D(0.1cm3)) was used for further analysis. The median value of D(0.1cm3) (α/β = 3 Gy) was EQD(2,LQ) = 147 Gy3 (range, 20-293 Gy3). For patients who developed atelectasis the median value was EQD(2,LQ) = 210 Gy3, and for patients who did not develop atelectasis, EQD(2,LQ) = 105 Gy3. Median time from treatment to development of atelectasis was 8.0 months (range, 1.1-30.1 months). In this retrospective study a significant dose-response relationship between the incidence of atelectasis and the dose to the high-dose volume of the bronchi is shown. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarmand, H; Winey, B; Craft, D
2014-06-15
Purpose: To efficiently find quality-guaranteed treatment plans with the minimum number of beams for stereotactic body radiation therapy using RayStation. Methods: For a pre-specified pool of candidate beams we use RayStation (a treatment planning software for clinical use) to identify the deliverable plan which uses all the beams with the minimum dose to organs at risk (OARs) and dose to the tumor and other structures in specified ranges. Then use the dose matrix information for the generated apertures from RayStation to solve a linear program to find the ideal plan with the same objective and constraints allowing use of allmore » beams. Finally we solve a mixed integer programming formulation of the beam angle optimization problem (BAO) with the objective of minimizing the number of beams while remaining in a predetermined epsilon-optimality of the ideal plan with respect to the dose to OARs. Since the treatment plan optimization is a multicriteria optimization problem, the planner can exploit the multicriteria optimization capability of RayStation to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing quality. For the numerical experiments two liver cases and one lung case with 33 non-coplanar beams are considered. Results: The ideal plan uses an impractically large number of beams. The proposed technique reduces the number of beams to the range of practical application (5 to 9 beams) while remaining in the epsilon-optimal range of 1% to 5% optimality gap. Conclusion: The proposed method can be integrated into a general algorithm for fast navigation of the ideal dose distribution Pareto surface and finding the treatment plan with the minimum number of beams, which corresponds to the delivery time, in epsilon-optimality range of the desired ideal plan. The project was supported by the Federal Share of program income earned by Massachusetts General Hospital on C06 CA059267, Proton Therapy Research and Treatment Center and partially by RaySearch Laboratories.« less
Prenylated flavonoids from Desmodium caudatum and evaluation of their anti-MRSA activity.
Sasaki, Hisako; Kashiwada, Yoshiki; Shibata, Hirofumi; Takaishi, Yoshihisa
2012-10-01
Seven prenylated flavonoids and a prenylated chromanochroman derivative, together with eight known flavonoids, were isolated from roots of Desmodium caudatum. The 15 structures were elucidated by extensive spectroscopic analyses. The antibacterial activity of many of other compounds was evaluated against methicillin-resistant Staphylococcus aureus (MRSA: COL and 5) by a disc diffusion method, and the minimum inhibitory concentrations (MICs) to MRSA were determined. Copyright © 2012 Elsevier Ltd. All rights reserved.
Silva, A.B.; Silva, T.; Franco, E.S.; Rabelo, S.A.; Lima, E.R.; Mota, R.A.; da Câmara, C.A.G.; Pontes-Filho, N.T.; Lima-Filho, J.V.
2010-01-01
The antibacterial potential of leaf’s essential oil (EO) from Brazilian pepper tree (Schinus terebinthifolius Raddi) against staphylococcal isolates from dogs with otitis externa was evaluated. The minimum inhibitory concentration of EO ranged from 78.1 to 1,250 μg/mL. The oil was analyzed by GC and GC/MS and cytotoxicity tests were carried out with laboratory animals. PMID:24031476
Simvastatin in the treatment of asthma: lack of steroid-sparing effect.
Cowan, Douglas C; Cowan, Jan O; Palmay, Rochelle; Williamson, Avis; Taylor, D Robin
2010-10-01
Statins have anti-inflammatory actions which in theory are potentially beneficial in asthma. Small trials have failed to show a significant benefit, but a systematic study to evaluate the steroid-sparing effect of statin treatment has not been carried out. A randomised, placebo-controlled, crossover trial was conducted of simvastatin 40 mg at night with simultaneous stepwise reduction of fluticasone propionate dose until loss of control occurred, followed by an increase until regain of control ('minimum' dose required) in 51 patients with asthma and sputum eosinophils (steroid-free) ≥ 2%. 43 patients completed the study. There was no significant difference in 'minimum' inhaled corticosteroid (ICS) dose requirement between simvastatin and placebo: (median (IQR) 50 μg daily (0-250) vs 100 μg daily (0-250), p=0.931). 'Minimum' dose distribution was similar (p=0.269). The fluticasone dose at which loss of control occurred did not differ significantly between simvastatin and placebo (p=0.404). In patients with loss of control in both treatment arms, fluticasone dose at loss of control was similar with simvastatin and placebo (median (IQR) 50 μg daily (0-100) for both, p=0.620). In those patients who reached 0 μg/day (n=18), Astma Control Questionnaire (ACQ) was lower (p=0.037), forced expiratory volume in 1 s (FEV(1)) higher (p<0.01) and sputum eosinophils lower with simvastatin compared with placebo (9.5% compared with 25.4%, p=0.033). Simvastatin does not have clinically important steroid-sparing effects in patients with eosinophilic asthma. In the absence of steroid, simvastatin is associated with minor improvements in symptoms and lung function, and a reduction in sputum eosinophils. Clinical trial number ACTRN12606000531516.
Kepka, Lucyna; Bujko, Krzysztof; Zolciak-Siwinska, Agnieszka; Garmol, Dariusz
2008-01-01
To estimate the doses of incidental irradiation in particular lymph node stations (LNS) in different extents of elective nodal irradiation (ENI) in 3D-conformal radiotherapy (3D-CRT) for non-small cell lung cancer (NSCLC). METHODS; Doses of radiotherapy were estimated for particular LNS delineated according to the recommendations of the University of Michigan in 220 patients treated using 3D-CRT with different (extended, limited and omitted) extents of ENI. Minimum doses and volumes of LNS receiving 40 Gy or more (V40) were compared for omitted vs. limited+ extended ENI and limited vs. extended ENI. For omission of the ENI the minimum doses and V40 for particular LNS were significantly lower than for patients treated with ENI. For the limited ENI group, the minimum doses for LNS 5, 6 lower parts of 3A and 3P (not included in the elective area) did not differ significantly from doses given to respective LNS for extended ENI group. When the V40 values for extended and limited ENI were compared, no significant differences were seen for any LNS, except for group 1/2R, 1/2L. Incidental irradiation of untreated LNS seems play a part in case of limited ENI, but not in cases without ENI. For subclinical disease the delineation of uninvolved LNS 5, 6, and lower parts of 3A, 3P may be not necessary, because these stations receive the substantial part of irradiation incidentally, if LNS 4R, 4L, 7, and ipsilateral hilum are included in the elective area while this is not case for stations 1 and 2.
Chen, Xiaole; Gong, Jianping; Xu, Faliang
2014-02-01
To investigate the changes in the functional activity of glycogen synthase kinase-3 (GSK-3) in the hepatic tissue after endotoxin (lipopolysaccharide, LPS) tolerance and explore the effects of LPS-induced GSK-3 inhibition on glycogen metabolism in the liver. Male SD rats were randomly divided into normal control, endotoxin pretreatment and GSK-3 inhibitor (lithium chloride) groups with corresponding pretreatments prior to a large dose of LPS challenge (10 mg/kg) to induce liver injury. Glycogen deposition and content in the hepatic tissue was detected using periodic acid-Schiff (PAS) staining and a glycogen quantification kit, respectively. Western blotting was performed for semi-quantitative analysis of protein level and inhibitory phosphorylation of GSK-3, and a Coomassie brilliant blue G-250-based colorimetric assay was used to detect calpain activity in the liver. Glycogen content in the liver decreased significantly after LPS challenge in all the 3 groups (P<0.05) but showed no significant difference among the groups (P>0.05). Both LPS and lithium chloride pretreatments caused a significant increase of liver glycogen content (P<0.05). LPS pretreatment induced inhibitory phosphorylation of GSK-3β (P<0.05) and partial cleavage of GSK-3α but did not affect the expression of GSK-3 protein (P>0.05). Large-dose LPS challenge significantly increased the activity of calpain in the liver tissue (P<0.05) to a comparable level in the 3 groups (P>0.05). Endotoxin pretreatment induces inhibitory phosphorylation of GSK-3β and partial cleavage of GSK-3α and promotes the deposition of liver glycogen but does not affect the activity of calpain, which may contribute to an increased glycogen reserve for energy supply in the event of large-dose LPS challenge.
Labedi, Adnan; Benali, Alia; Mix, Annika; Neubacher, Ute; Funke, Klaus
2014-01-01
Intermittent theta-burst stimulation (iTBS) applied via transcranial magnetic stimulation has been shown to increase cortical excitability in humans. In the rat brain it strongly reduced the number of neurons expressing the 67-kD isoform of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD67) and those expressing the calcium-binding proteins parvalbumin (PV) and calbindin (CB), specific markers of fast-spiking (FS) and non-FS inhibitory interneurons, respectively, an indication of modified cortical inhibition. Since iTBS effects in humans have been shown to be NMDA receptor sensitive, we wondered whether the iTBS-induced changes in the molecular phenotype of interneurons may be also sensitive to glutamatergic synaptic transmission mediated by NMDA receptors. In a sham-controlled fashion, five iTBS-blocks of 600 stimuli were applied to rats either lightly anesthetized by only urethane or by an additional low (subnarcotic) or high dose of the NMDA receptor antagonist ketamine before immunohistochemical analysis. iTBS reduced the number of neurons expressing GAD67, PV and CB. Except for CB, a low dose of ketamine partially prevented these effects while a higher dose almost completely abolished the iTBS effects. Our findings indicate that iTBS modulates the molecular, and likely also the electric, activity of cortical inhibitory interneurons and that the modulation of FS-type but less that of non-FS-type neurons is mediated by NMDA receptors. A combination of iTBS with pharmacological interventions affecting distinct receptor subtypes may thus offer options to enhance its selectivity in modulating the activity of distinct cell types and preventing others from being modulated. Copyright © 2014 Elsevier Inc. All rights reserved.
Honda, Masashi; Yoshimura, Naoki; Hikita, Katsuya; Hinata, Nobuyuki; Muraoka, Kuniyasu; Saito, Motoaki; Chancellor, Michael B; Takenaka, Atsushi
2013-09-01
Glutamate is a major excitatory transmitter in the central nervous system, controlling lower urinary tract function. Five types of glutamate transporters such as GLAST (EAAT1), GLT-1 (EAAT2), EAAC-1 (EAAT3), EAAT4, and EAAT5 have been cloned so far. In the current study we tested whether L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-PDC), a non-selective inhibitor of glutamate transporters that increases endogenous glutamate concentration, can affect the micturition reflex in urethane anesthetized rats. Continuous cystometrograms (CMG, 0.04 ml/min infusion rate) were performed in two groups of urethane-anesthetized rats. A group of 18 rats was used for intrathecal administration of 1-10 µg of L-trans-PDC via an intrathecal catheter. In the second group of 18 rats, 1-10 µg of L-trans-PDC were administered intracerebroventricularly via a catheter inserted into the lateral ventricle. Micturition parameters were recorded and compared before and after drug administration. Intrathecal administration of L-trans-PDC at 1, 3, and 10 µg (n = 6 per dose) increased intercontraction intervals in dose dependent fashion, but did not affect postvoid residual or basal pressure at any doses tested. Intracerebroventricular administration of L-trans-PDC at 1, 3, and 10 µg (n = 6 per dose) also increased intercontraction intervals in dose dependent fashion, but did not affect postvoid residual or basal pressure at any doses tested. The current results show that, in urethane-anesthetized rats, suppression of glutamate transporters by L-trans-PDC has an inhibitory effect on the micturition reflex at supraspinal and spinal sites, possibly via activation of glutamate-mediated inhibitory pathways. Copyright © 2012 Wiley Periodicals, Inc.
2011-01-01
Background Guidelines recommend an early initiation of aspirin treatment in patients with acute cerebral ischemia. Comparative studies on the best starting dose for initiating aspirin therapy to achieve a rapid antiplatelet effect do not exist. This study evaluated the platelet inhibitory effect in healthy volunteers by using three different aspirin loading doses to gain a model for initiating antiplatelet treatment in acute strokes patients. Methods Using whole blood aggregometry, this study with a prospective, uncontrolled, open, crossover design examined 12 healthy volunteers treated with three different aspirin loading doses: intravenous 500 mg aspirin, oral 500 mg aspirin, and a course of 200 mg aspirin on two subsequent days followed by a five-day course of 100 mg aspirin. Aspirin low response was defined as change of impedance exceeding 0 Ω after stimulation with arachidonic acid. Results Sufficient antiplatelet effectiveness was gained within 30 seconds when intravenous 500 mg aspirin was used. The mean time until antiplatelet effect was 74 minutes for 500 mg aspirin taken orally and 662 minutes (11.2 hours) for the dose scheme with 200 mg aspirin with a high inter- and intraindividual variability in those two regimes. Platelet aggregation returned to the baseline range during the wash-out phase within 4 days. Conclusion Our study reveals that the antiplatelet effect differs significantly between the three different aspirin starting dosages with a high inter- and intraindividual variability of antiplatelet response in our healthy volunteers. To ensure an early platelet inhibitory effect in acute stroke patients, it could be advantageous to initiate the therapy with an intravenous loading dose of 500 mg aspirin. However, clinical outcome studies must still define the best way to initiate antiplatelet treatment with aspirin. PMID:21466682
Interactive effects of N-acetylcysteine and antidepressants.
Costa-Campos, Luciane; Herrmann, Ana P; Pilz, Luísa K; Michels, Marcus; Noetzold, Guilherme; Elisabetsky, Elaine
2013-07-01
N-acetylcysteine (NAC), a glutathione precursor and glutamate modulator, has been shown to possess various clinically relevant psychopharmacological properties. Considering the role of glutamate and oxidative stress in depressive states, the poor effectiveness of antidepressant drugs (ADs) and the benefits of drug combination for treating depression, the aim of this study was to explore the possible benefit of NAC as an add on drug to treat major depression. For that matter we investigated the combination of subeffective and effective doses of NAC with subeffective and effective doses of several ADs in the mice tail suspension test. The key finding of this study is that a subeffective dose of NAC reduced the minimum effective doses of imipramine and escitalopram, but not those of desipramine and bupropion. Moreover, the same subeffective dose of NAC increased the minimum effective dose of fluoxetine in the same model. In view of the advantages associated with using the lowest effective dose of antidepressant, the results of this study suggest the potential of a clinically useful interaction of NAC with imipramine and escitalopram. Further studies are necessary to better characterize the molecular basis of such interactions, as well as to typify the particular drug combinations that would optimize NAC as an alternative for treating depression. Copyright © 2013 Elsevier Inc. All rights reserved.
Tabari, M A; Youssefi, M R; Moghadamnia, A A
2017-06-01
1. This study was designed to evaluate the antitrichomonal effects of P. harmala alkaloid extract against T. gallinae, both in vitro and in vivo, as well as comparing it to that of metronidazole, conventional antitrichomonal medication and harmine and harmaline, the two alkaloids present in P. harmala. 2. T. gallinae were collected by the wet mount method from infected free-living pigeons. The in vitro assay was performed using multi-well plates containing test compounds in final concentrations of 5, 10, 15, 20, 30, 50 or 100 μg/ml. The in vivo assay was done on 60 experimentally infected pigeons dosed with metronidazole at 50 mg/kg body weight (BW) or alkaloids at 25 mg/kg BW. 3. The 24 h minimum inhibitory concentration (MIC) of alkaloid extract was 15 µg/ml while that of metronidazole was 50 µg/ml. Harmine and harmaline revealed 24 h MIC of 30 and 100 µg/ml, respectively. Treatment of infected pigeons with alkaloids led to a full recovery after 3 d but with metronidazole total eradication of trophozoites was not achieved. 4. In conclusion, data of the present study suggested P. harmala is a potent natural anti-trichomonal agent, effective against T. gallinae.
Li, Guanghui; Qiao, Mingyu; Guo, Yan; Wang, Xin; Xu, Yunfeng; Xia, Xiaodong
2014-09-01
Chlorogenic acid (CA) has been reported to inhibit several pathogens, but the influence of subinhibitory concentrations of CA on virulence expression of pathogens has not been fully elucidated. The aim of this study was to explore the effect of CA on the virulence factor production of Staphylococcus aureus. The minimum inhibitory concentration (MIC) of CA against S. aureus was determined using a broth microdilution method. Hemolysin assays, coagulase titer assays, adherence to solid-phase fibrinogen assays, Western blot, and real-time reverse transcriptase-polymerase chain reaction were performed to evaluate the effect of subinhibitory concentrations of CA on the virulence factors of S. aureus. MIC of CA against S. aureus ATCC29213 was found to be 2.56 mg/mL. At subinhibitory concentrations, CA significantly inhibited the hemolysis and dose-dependently decreased coagulase titer. Reduced binding to fibrinogen and decreased production of SEA were observed with treatment of CA at concentrations ranging from 1/16MIC to 1/2MIC. CA markedly inhibited the expression of hla, sea, and agr genes in S. aureus. These data demonstrate that the virulence expression of S. aureus could be reduced by CA and suggest that CA could be potentially developed as a supplemental strategy to control S. aureus infection and to prevent staphylococcal food poisoning.
Potential of bisbenzimidazole-analogs toward metronidazole-resistant Trichomonas vaginalis isolates.
Korosh, Travis; Bujans, Emmanuel; Morada, Mary; Karaalioglu, Canan; Vanden Eynde, Jean Jacques; Mayence, Annie; Huang, Tien L; Yarlett, Nigel
2017-10-01
A bisoxyphenylene-bisbenzimidazole series with increasing aliphatic chain length (CH 2 to C 10 H 20 ) containing a meta- (m) or para (p)-benzimidazole linkage to the phenylene ring was tested for ability to inhibit the growth of metronidazole-susceptible (C1) and metronidazole-refractory (085) Trichomonas vaginalis isolates under aerobic and anaerobic conditions. Compound 3m, 2,2'-[α,ω-propanediylbis(oxy-1,3-phenylene)]bis-1H-benzimidazole, displayed a 5.5-fold lower minimum inhibitory concentration (MIC) toward T. vaginalis isolate 085 than metronidazole under aerobic growth conditions, (26 μm compared to 145 μm). A dose of 25 mg/kg per day for four days of compound 3m cured a subcutaneous mouse model infection using T. vaginalis isolates 286 (metronidazole susceptible) and 085 (metronidazole refractory). Compound 3m was weakly reduced by pyruvate:ferredoxin oxidoreductase, but unlike metronidazole was not dependent upon added ferredoxin. It is concluded from structure-activity relationships that there was no obvious trend based on the length of the central aliphatic chain, or the steric position of the bisbenzimidazole enabling prediction of biological activity. The compounds generally fulfill Lipinski's rile of five, indicating their potential as drug leads. © 2017 John Wiley & Sons A/S.
Photo-activated porphyrin in combination with antibiotics: therapies against Staphylococci
Dastgheyb, Sana S.; Eckmann, David M.; Composto, Russell J.
2013-01-01
Staphylococcal infections have become difficult to treat due to antibiotic insensitivity and resistance. Antimicrobial combination therapies may minimize acquisition of resistance and photodynamic therapy is an attractive candidate for these combinations. In this manuscript, we explore combined use of antibiotics and meso-tetra (4-aminophenyl) porphine (TAPP), a cationic porphyrin, for treatment of Staphylococcus aureus contamination. We characterize the antimicrobial activity of photoactivated TAPP and show that activity is largely lost in the presence of a radical scavenger. Importantly, TAPP can be reactivated with continued, albeit attenuated, antibacterial activity. We then show that the antimicrobial activity of illuminated TAPP is additive with chloramphenicol and tobramycin for Staphylococcus aureus and Escherichia coli, and synergistic for MRSA and Staphylococcus epidermidis. Chloramphenicol + methylene blue, another photosensitizer, also show additivity against Staphylococcus aureus. In contrast, ceftriaxone and vancomycin do not strongly augment the low level effects of TAPP against S. aureus. Eukaryotic cells exhibit a dose-dependent toxicity with illuminated TAPP. Our results suggest that even sub-minimum inhibitory concentration levels of photo-activated TAPP could be used to boost the activity of waning antibiotics. This may play an important role in treatments reliant on antibiotic controlled release systems where augmentation with photo-active agents could extend their efficacy. PMID:24148969
Synergistic combination dry powders for inhaled antimicrobial therapy
NASA Astrophysics Data System (ADS)
Heng, Desmond; Lee, Sie Huey; Teo, Jeanette; Ng, Wai Kiong; Chan, Hak-Kim; Tan, Reginald B. H.
2013-06-01
Combination products play an important role in medicine as they offer improved clinical effectiveness, enhanced patient adherence, and reduced administrative costs. In combination antimicrobial therapy, the desired outcome is to extend the antimicrobial spectrum and to achieve a possible synergistic effect. However, adverse antagonistic species may sometimes emerge from such combinations, leading to treatment failure. Therefore, it is crucial to screen the drug candidates for compatibility and possible antagonistic interactions. This work aims to develop a novel synergistic dry powder inhaler (DPI) formulation for antimicrobial combination therapy via the pulmonary route. Binary and ternary combinations were prepared via spray drying on a BUCHI® Nano Spray Dryer B-90. All powders were within the respirable size range, and were consisted of spherical particles that were slightly corrugated. The powers yielded fine particle fractions (of the loaded dose) of over 40% when dispersed using an Aerolizer® DPI at 60 L/min. Time-kill studies carried out against common respiratory tract pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia and Acinetobacter baumannii at 1x the minimum inhibitory concentration (MIC) over 24 hours revealed no antagonistic behavior for both combinations. While the interactions were generally found to be indifferent, a favorable synergistic effect was detected in the binary combination when it was tested against Pseudomonas aeruginosa bacteria.
Birteksöz-Tan, Ayşe Seher; Zeybek, Zuhal
2012-11-01
The postantibiotic effects (PAE) of azithromycin, clarithromycin, ciprofloxacin, and levofloxacin were investigated against Legionella pneumophila (L. pneumophila) strains isolated from several hot water systems of different buildings in Istanbul. Each strain in logarithmic phase of growth was exposed to concentrations of antibiotics equal to minimum inhibitory concentration (MIC) and 4× MIC for 1 h. Recovery periods of test cultures were evaluated after centrifugation using the viable counting method. The mean values of PAEs for the strains of L. pneumophila, azithromycin at a concentration equal to and 4 times of MIC values were found 1.75 ± 0.28 h and 4.06 ± 0.44 h, for clarithromycin 2.98 ± 0.70 h and 4.18 ± 0.95 h, for ciprofloxacin 2.97 ± 0.63 h and 4.70 ± 0.63 h, for levofloxacin 2.05 ± 0.33 h and 3.78 ± 0.46 h, respectively. All of the antibiotics showed increased PAE values in a concentration-dependent manner. The findings of our study may play useful role in selecting the appropriate timing of doses during therapy with antimicrobials to treat patients infected with L. pneumophila.
de Souza, Nicolli Bellotti; de Andrade, Isabel M; Carneiro, Paula F; Jardim, Guilherme AM; de Melo, Isadora MM; da Silva, Eufrânio N; Krettli, Antoniana Ursine
2014-01-01
Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study. PMID:25099332
Lau, Kit-Man; Wong, Jack Ho; Wu, Yu-On; Cheng, Ling; Wong, Chun-Wai; To, Ming-Ho; Lau, Ching-Po; Yew, David Tai-Wai; Leung, Ping-Chung; Fung, Kwok-Pui; Hui, Mamie; Ng, Tzi-Bun; Lau, Clara Bik-San
2014-06-15
Bakuchiol was an active antifungal compound isolated from Psoraleae Fructus by means of bioassay-guided fractionation in our previous study. The present work aimed to investigate the underlying mechanisms and the therapeutic effect of bakuchiol in Trichophyton mentagrophytes-induced tinea pedis. After exposure to bakuchiol at 0.25-fold, 0.5-fold and 1-fold of minimum inhibitory concentration (MIC) (3.91 μg/ml) for 24h, the fungal conidia of T. mentagrophytes demonstrated a significant dose-dependent increase in membrane permeability. Moreover, bakuchiol at 1-fold MIC elicited a 187% elevation in reactive oxygen species (ROS) level in fungal cells after a 3-h incubation. However, bakuchiol did not induce DNA fragmentation. In a guinea pig model of tinea pedis, bakuchiol at 1%, 5% or 10% (w/w) concentration in aqueous cream could significantly reduce the fungal burden of infected feet (p<0.01-0.05). In conclusion, this is the first report to demonstrate that bakuchiol is effective in relieving tinea pedis and in inhibiting the growth of the dermatophyte T. mentagrophytes by increasing fungal membrane permeability and ROS generation, but not via induction of DNA fragmentation. Copyright © 2014 Elsevier GmbH. All rights reserved.
Antibiotic therapy of fulminant E. coli K1 sepsis in infant rabbits.
Law, B J; Rettig, P J; Marks, M I
1984-04-01
A model of overwhelming E. coli K1 sepsis and early meningitis was developed in infant rabbits and used to compare clinical and bacteriologic efficacy of ampicillin, moxalactam, cephalothin and chloramphenicol. Intraperitoneal injection of 10(7) E. coli K1 into 1- or 2-wk-old rabbits produced a rapidly progressive infection which, if left untreated, produced bacteremia in 100% of animals, meningitis in 78%, and mortality in 100%. Therapy was initiated 4 h after ip infection at which time mean bacterial concentration (log10 CFU/ml) ranged from 4.4-4.8 in the blood and from 1.8-2.3 in the cerebral spinal fluid (CSF). Pre-treatment frequency of bacteremia (100%) and meningitis (17-23%) was similar for all experimental groups. Antibiotic concentrations in blood and CSF 2 h after a dose exceeded the E. coli minimum inhibitory concentration with the exception of CSF cephalothin, which was undetectable. Moxalactam, ampicillin, and chloramphenicol significantly reduced the incidence of bacteremia and meningitis relative to cephalothin or saline controls (P less than 0.02). Mortality rates among the former three groups were high (64-82%) but significantly less than in saline or cephalothin-treated rabbits (100%). In this neonatal model of fulminant sepsis with early meningitis, moxalactam provided no therapeutic advantage over ampicillin or chloramphenicol.
Rivera Fernández, Norma; Mondragón Castelán, Mónica; González Pozos, Sirenia; Ramírez Flores, Carlos J; Mondragón González, Ricardo; Gómez de León, Carmen T; Castro Elizalde, Kitzia N; Marrero Ponce, Yovani; Arán, Vicente J; Martins Alho, Miriam A; Mondragón Flores, Ricardo
2016-05-01
Quinoxalinone derivatives, identified as VAM2 compounds (7-nitroquinoxalin-2-ones), were evaluated against Toxoplasma gondii tachyzoites of the RH strain. The VAM2 compounds were previously synthesized based on the design obtained from an in silico prediction with the software TOMOCOMD-CARDD. From the ten VAM2 drugs tested, several showed a deleterious effect on tachyzoites. However, VAM2-2 showed the highest toxoplasmicidal activity generating a remarkable decrease in tachyzoite viability (in about 91 %) and a minimal alteration in the host cell. An evident inhibition of host cell invasion by tachyzoites previously treated with VAM2-2 was observed in a dose-dependent manner. In addition, remarkable alterations were observed in the pellicle parasite, such as swelling, roughness, and blebbing. Toxoplasma motility was inhibited, and subpellicular cytoskeleton integrity was altered, inducing a release of its components to the soluble fraction. VAM2-2 showed a clear and specific deleterious effect on tachyzoites viability, structural integrity, and invasive capabilities with limited effects in host cells morphology and viability. VAM2-2 minimum inhibitory concentration (MIC50) was determined as 3.3 μM ± 1.8. Effects of quinoxalinone derivatives on T. gondii provide the basis for a future therapeutical alternative in the treatment of toxoplasmosis.
Avachat, Amelia M; Bhise, Satish B
2011-04-01
The front line antitubercular drugs rifampicin (RMP) and isoniazid (INH), when co-administered, face the problem of reduced bioavailability of RMP. Stabilization of RMP in the presence of INH under acidic environment may improve the bioavailability of RMP. In vitro degradation studies showed around 15-25% degradation of RMP under the aforesaid conditions if the ratio of RMP: INH is above 1:0.5.This degradation is reduced to less than 10% when the ratio of RMP: INH is below 1:0.25. Based on these findings, an innovative drug delivery system was designed with the immediate release of RMP and tailored prolonged release of INH. The bilayer tablets prepared with this concept were subjected to relative bioavailability studies in healthy human volunteers in an open label, balanced, randomized, single-dose, cross-over study under fasted state. A validated LC-MS/MS bioanalytical method was employed for estimation of RMP and INH in plasma. Bioavailability studies revealed that C(max) and AUC for RMP increased by 18 and 20%, respectively, confirming the above innovative concept. Even in the case of INH, AUC increased significantly by around 30% and thus time above minimum inhibitory concentration (MIC) would also increase, which may result in further improved clinical outcome.
Pharmacokinetics of linezolid during continuous hemodiafiltration: A case report.
Yamashina, Takuya; Tsuruyama, Moeko; Odawara, Miki; Tsuruta, Minako; Miyata, Hirochika; Kozono, Aki; Tsuji, Yasuhiro; Miyoshi, Takanori; Kawamata, Yosei; Hiraki, Yoichi
2017-10-01
The pharmacokinetics of linezolid clearance (CL LZD ) during continuous hemodiafiltration (CHDF) has not been comprehensively analyzed. Here, we examined CL LZD by CHDF in a patient with septic shock and disseminated intravascular coagulation due to methicillin-resistant Staphylococcus aureus. The extraction ratio of LZD by CHDF was 22.6%, and the protein-binding rate was 17.9% ± 7.7%. In addition, it was determined that the calculated total body clearance of LZD was 30.2 mL/min, plasma elimination half-life was 8.66 h, and the CL LZD by the dialyzer used for CHDF was 23.0 mL/min. From the obtained pharmacokinetics, the CL LZD of patients continuing CHDF was estimated to be approximately half of the reported CL LZD for healthy subjects. In addition, the LZD concentration of the sepsis patient who underwent CHDF remained higher than the minimum inhibitory concentration and was similar to the LZD concentrations reported in normal renal function patients. Although further studies are warranted, when LZD is administered to patients treated with CHDF, the present findings suggest that dose regulation is not required. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Zmantar, Tarek; Ben Slama, Rihab; Fdhila, Kais; Kouidhi, Bochra; Bakhrouf, Amina; Chaieb, Kamel
This study aims to investigate the antimicrobial and the anti-biofilm activities of Lactobacillus plantarum extract (LPE) against a panel of oral Staphylococcus aureus (n=9) and S. aureus ATCC 25923. The in vitro ability of LPE to modulate bacterial resistance to tetracycline, benzalchonium chloride, and chlorhexidine were tested also. The minimum inhibitory concentrations (MICs) and the minimal bactericidal concentrations of Lactobacillus plantarum extract, tetracycline, benzalchonium chloride and clohrhexidine were determined in absence and in presence of a sub-MIC doses of LPE (1/2 MIC). In addition, the LPE potential to inhibit biofilm formation was assessed by microtiter plate and atomic force microscopy assays. Statistical analysis was performed on SPSS v. 17.0 software using Friedman test and Wilcoxon signed ranks test. These tests were used to assess inter-group difference (p<0.05). Our results revealed that LPE exhibited a significant antimicrobial and anti-biofilm activities against the tested strains. A synergistic effect of LPEs and drug susceptibility was observed with a 2-8-fold reduction. LPE may be considered to have resistance-modifying activity. A more detailed investigation is necessary to determine the active compound responsible for therapeutic and disinfectant modulation. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Pasternack, Jordan B.; Howell, Roger W.
2012-01-01
The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy are generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Methods Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. Results The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/hr and a minimum dose rate of 0.01 cGy/hr. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/hr. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. Conclusion The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. PMID:23265668
Pasternack, Jordan B; Howell, Roger W
2013-02-01
The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy is generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/h and a minimum dose rate of 0.01 cGy/h. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/h. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. Copyright © 2013 Elsevier Inc. All rights reserved.
Karlsson, Kristin; Lax, Ingmar; Lindbäck, Elias; Poludniowski, Gavin
2017-09-01
Geometrical uncertainties can result in a delivered dose to the tumor different from that estimated in the static treatment plan. The purpose of this project was to investigate the accuracy of the dose calculated to the clinical target volume (CTV) with the dose-shift approximation, in stereotactic body radiation therapy (SBRT) of lung tumors considering setup errors and breathing motion. The dose-shift method was compared with a beam-shift method with dose recalculation. Included were 10 patients (10 tumors) selected to represent a variety of SBRT-treated lung tumors in terms of tumor location, CTV volume, and tumor density. An in-house developed toolkit within a treatment planning system allowed the shift of either the dose matrix or a shift of the beam isocenter with dose recalculation, to simulate setup errors and breathing motion. Setup shifts of different magnitudes (up to 10 mm) and directions as well as breathing with different peak-to-peak amplitudes (up to 10:5:5 mm) were modeled. The resulting dose-volume histograms (DVHs) were recorded and dose statistics were extracted. Generally, both the dose-shift and beam-shift methods resulted in calculated doses lower than the static planned dose, although the minimum (D 98% ) dose exceeded the prescribed dose in all cases, for setup shifts up to 5 mm. The dose-shift method also generally underestimated the dose compared with the beam-shift method. For clinically realistic systematic displacements of less than 5 mm, the results demonstrated that in the minimum dose region within the CTV, the dose-shift method was accurate to 2% (root-mean-square error). Breathing motion only marginally degraded the dose distributions. Averaged over the patients and shift directions, the dose-shift approximation was determined to be accurate to approximately 2% (RMS) within the CTV, for clinically relevant geometrical uncertainties for SBRT of lung tumors.
Snoeck, R; Sakuma, T; De Clercq, E; Rosenberg, I; Holy, A
1988-01-01
From a series of phosphonylmethoxyalkylpurine and -pyrimidine derivatives, (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC] emerged as a particularly potent and selective inhibitor of the replication of human cytomegalovirus (CMV). Its potency against CMV was similar to that of the structurally related adenine derivative (S)-HPMPA but higher than that of the reference compounds phosphonoformate and 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG). The minimum concentrations of phosphonoformate, DHPG, (S)-HPMPA, and (S)-HPMPC required to inhibit CMV plaque formation by 50% were 15, 0.7, 0.1, and 0.07 microgram/ml, respectively. The selectivity indices of phosphonoformate, DHPG, (S)-HPMPA, and (S)-HPMPC, as determined by the ratio of the 50% inhibitory concentration for cell growth to the 50% inhibitory concentration for plaque formation for CMV (AD-169 strain), were 14, 150, 200 and 1,500, respectively. Corresponding values for the CMV Davis strain were 20, 200, 100, and 1,000, respectively. (S)-HPMPC was inhibitory to CMV plaque formation even when added to the cells at 24 or 48 h postinfection. When (S)-HPMPC was added immediately postinfection, a 24- or 48-h incubation time sufficed to obtain a marked inhibitory effect on CMV replication. Such limited incubation time was insufficient for DHPG to achieve any protection against CMV. PMID:2854454
Miller, Andrew B; Cates, Rex G; Lawrence, Michael; Soria, J Alfonso Fuentes; Espinoza, Luis V; Martinez, Jose Vicente; Arbizú, Dany A
2015-04-01
Essential oils are prevalent in many medicinal plants used for oral hygiene and treatment of diseases. Medicinal plant species were extracted to determine the essential oil content. Those producing sufficient oil were screened for activity against Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Plant samples were collected, frozen, and essential oils were extracted by steam distillation. Minimum inhibitory concentrations (MIC) were determined using a tube dilution assay for those species yielding sufficient oil. Fifty-nine of the 141 plant species produced sufficient oil for collection and 12 species not previously reported to produce essential oils were identified. Essential oil extracts from 32 species exhibited activity against one or more microbes. Oils from eight species were highly inhibitory to S. mutans, four species were highly inhibitory to C. albicans, and 19 species yielded MIC values less than the reference drugs. RESULTS suggest that 11 species were highly inhibitory to the microbes tested and merit further investigation. Oils from Cinnamomum zeylanicum Blume (Lauraceae), Citrus aurantiifolia (Christm.) Swingle (Rutaceae), Lippia graveolens Kunth (Verbenaceae), and Origanum vulgare L. (Lamiaceae) yielded highly significant or moderate activity against all microbes and have potential as antimicrobial agents. Teas prepared by decoction or infusion are known methods for extracting essential oils. Oils from 11 species were highly active against the microbes tested and merit investigation as to their potential for addressing health-related issues and in oral hygiene.
Effect of fatty acids on endothelium-dependent relaxation in the rabbit aorta.
Edirisinghe, Indika; McCormick Hallam, Kellie; Kappagoda, C Tissa
2006-08-01
The metabolic syndrome, Type II (non-insulin-dependent) diabetes and obesity are associated with endothelial dysfunction and increased plasma concentrations of NEFAs (non-esterified fatty acids; free fatty acids). The present study was undertaken to define the inhibitory effects of saturated NEFAs on EDR (endothelium-dependent relaxation). Experiments were performed in rings of rabbit aorta to establish (i) dose-response relationships, (ii) the effect of chain length, (iii) the effect of the presence of double bonds, (iv) reversibility and time course of inhibition, and (v) the effect on nitric oxide production. Aortic rings were incubated (1 h) with NEFA-albumin complexes derived from lauric (C(12:0)), myristic (C(14:0)), palmitic (C(16:0)), stearic (C(18:0)) and linolenic (C(18:3)) acids. EDR induced by acetylcholine (0.1-10 mumol/l) was measured after pre-contraction with noradrenaline. Inhibition of EDR was dose-dependent (0.5-2 mmol/l NEFA), and the greatest inhibition (51%) was observed with stearic acid (2 mmol/l). Lauric acid had the smallest inhibitory effect. The inhibitory effects were always reversible and were evident after 15 min of incubation. Linolenic acid caused a significantly lower inhibition of EDR than stearic acid. SOD (superoxide dismutase) restored the inhibitory effect caused by NEFAs, suggesting the involvement of ROS (reactive oxygen species) in removing nitric oxide. The nitric oxide concentration measured after exposure of the rings to acetylcholine was lower after incubation with NEFAs than with Krebs buffer alone. This finding is consistent with removal of nitric oxide by ROS. This claim was supported by the demonstration of increased concentrations of nitrated tyrosine in the rings incubated with NEFAs.
Groman, S.M.; Lee, B.; Seu, E.; James, A.S.; Feiler, K.; Mandelkern, M.A.; London, E.D.; Jentsch, J.D.
2012-01-01
Compulsive drug-seeking and drug-taking are important substance-abuse behaviors that have been linked to alterations in dopaminergic neurotransmission and to impaired inhibitory control. Evidence supports the notions that abnormal D2 receptor-mediated dopamine transmission and inhibitory control may be heritable risk factors for addictions, and that they also reflect drug-induced neuroadaptations. To provide a mechanistic explanation for the drug-induced emergence of inhibitory-control deficits, this study examined how a chronic, escalating-dose regimen of methamphetamine administration affected dopaminergic neurochemistry and cognition in monkeys. Dopamine D2-like receptor and dopamine transporter (DAT) availability and reversal-learning performance were measured before and after exposure to methamphetamine (or saline), and brain dopamine levels were assayed at the conclusion of the study. Exposure to methamphetamine reduced dopamine D2-like receptor and DAT availability, and produced transient, selective impairments in the reversal of a stimulus-outcome association. Furthermore, individual differences in the change in D2-like receptor availability in the striatum were related to the change in response to positive feedback. These data provide evidence that chronic, escalating-dose methamphetamine administration alters the dopamine system in a manner similar to that observed in methamphetamine-dependent humans. They also implicate alterations in positive-feedback sensitivity associated with D2-like receptor dysfunction as the mechanism by which inhibitory control deficits emerge in stimulant-dependent individuals. Finally, a significant degree of neurochemical and behavioral variation in response to methamphetamine was detected, indicating that individual differences affect the degree to which drugs of abuse alter these processes. Identification of these factors ultimately may assist in the development of individualized treatments for substance dependence. PMID:22539846
Groman, Stephanie M; Lee, Buyean; Seu, Emanuele; James, Alex S; Feiler, Karen; Mandelkern, Mark A; London, Edythe D; Jentsch, J David
2012-04-25
Compulsive drug-seeking and drug-taking are important substance-abuse behaviors that have been linked to alterations in dopaminergic neurotransmission and to impaired inhibitory control. Evidence supports the notions that abnormal D₂ receptor-mediated dopamine transmission and inhibitory control may be heritable risk factors for addictions, and that they also reflect drug-induced neuroadaptations. To provide a mechanistic explanation for the drug-induced emergence of inhibitory-control deficits, this study examined how a chronic, escalating-dose regimen of methamphetamine administration affected dopaminergic neurochemistry and cognition in monkeys. Dopamine D₂-like receptor and dopamine transporter (DAT) availability and reversal-learning performance were measured before and after exposure to methamphetamine (or saline), and brain dopamine levels were assayed at the conclusion of the study. Exposure to methamphetamine reduced dopamine D₂-like receptor and DAT availability and produced transient, selective impairments in the reversal of a stimulus-outcome association. Furthermore, individual differences in the change in D₂-like receptor availability in the striatum were related to the change in response to positive feedback. These data provide evidence that chronic, escalating-dose methamphetamine administration alters the dopamine system in a manner similar to that observed in methamphetamine-dependent humans. They also implicate alterations in positive-feedback sensitivity associated with D₂-like receptor dysfunction as the mechanism by which inhibitory control deficits emerge in stimulant-dependent individuals. Finally, a significant degree of neurochemical and behavioral variation in response to methamphetamine was detected, indicating that individual differences affect the degree to which drugs of abuse alter these processes. Identification of these factors ultimately may assist in the development of individualized treatments for substance dependence.
Bararunyeretse, Prudence; Ji, Hongbing; Yao, Jun
2017-06-01
The toxicity of nickel and three of its main collectors, sodium isopropyl xanthate (SIPX), sodium ethyl xanthate (SEX), and potassium ethyl xanthate (PEX) to soil microbial activity, was analyzed, individually and as a binary combination of nickel and each of the collectors. The investigation was performed through the microcalorimetric analysis method. For the single chemicals, all power-time curves exhibited lag, exponential, stationary, and death phases of microbial growth. Different parameters exhibited a significant adverse effect of the analyzed chemicals on soil microbial activity, with a positive relationship between the inhibitory ratio and the chemical dose (p < 0.05 or p < 0.01). A peak power reduction level of 24.23% was noted for 50 μg g -1 soil in the case of Ni while for the mineral collectors, only 5 μg g -1 soil and 50 μg g -1 soil induced a peak power reduction level of over 35 and 50%, respectively, in general. The inhibitory ratio ranged in the following order: PEX > SEX > SIPX > Ni. Similar behavior was observed with the mixture toxicity whose inhibitory ratio substantially decreased (maximum decrease of 38.35%) and slightly increased (maximum increase of 15.34%), in comparison with the single toxicity of mineral collectors and nickel, respectively. The inhibitory ratio of the mixture toxicity was positively correlated (p < 0.05 or p < 0.01) with the total dose of the mixture. In general, the lesser and higher toxic effects are those of mixtures containing SIPX and PEX, respectively.
Lucena, Greice M R S; Matheus, Filipe C; Ferreira, Vania M; Tessele, Priscila B; Azevedo, Mariangela S; Cechinel-Filho, Valdir; Prediger, Rui D
2013-04-01
Previous studies from our group have indicated important biological properties of the ethanolic extract and isolated compounds from the bulbs of Cipura paludosa (Iridaceae), a native plant widely distributed in northern Brazil, including antioxidant, neuroprotective and anti-nociceptive activities. In the present study, the effects of the ethanolic extract and its two naphthoquinones (eleutherine and isoeleutherine) on the short- and long-term memory of adult rodents were assessed in social recognition and inhibitory avoidance tasks. Acute pre-training oral administration of the ethanolic extract improved the short-term social memory in rats as well as facilitated the step-down inhibitory avoidance short- and long-term memory in mice. Moreover, the co-administration of 'non-effective' doses of the extract of Cipura paludosa and the adenosine receptor antagonists caffeine (non-selective), DPCPX (adenosine A1 receptor antagonist) and ZM241385 (adenosine A2A receptor antagonist) improved the social recognition memory of rats. In the inhibitory avoidance task, the co-administration of sub-effective doses of the extract with caffeine or ZM241385, but not with DPCPX, improved the short- and long-term memory of mice. Finally, the acute oral administration of eleutherine and isoeleutherine facilitated the inhibitory avoidance short- and long-term memory in mice. These results demonstrate for the first time the cognitive-enhancing properties of the extract and isolated compounds from the bulbs of Cipura paludosa in rodents and suggest a possible involvement of adenosine A1 and A2A receptors in these effects. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.
Wang, Chang-lin; Diao, Yu-xiang; Xiang, Qiong; Ren, Yu-kun; Gu, Ning
2014-09-05
Diabetes affects the entire gastrointestinal tract from the esophagus to the anus. In the present study, the charcoal meal test was undertaken to evaluate and compare the effects of intracerebroventricular (i.c.v.) administration of endomorphins (EMs) on gastrointestinal transit in non-diabetic and diabetic mice. Significantly delayed gastrointestinal transit was found in both 4 and 8 weeks alloxan-induced diabetes compared to non-diabetes. Moreover, i.c.v. EM-1 and EM-2 dose-dependently delayed gastrointestinal transit in non-diabetes and diabetes. The EM-1-induced inhibitory effects of gastrointestinal transit in 4 weeks diabetes were qualitatively similar to those of non-diabetes. However, at higher doses, the EM-1-induced effects in 8 weeks diabetes were largely enhanced. Different to EM-1, the EM-2-induced inhibition of gastrointestinal transit in diabetic mice was significantly attenuated compared to non-diabetic mice. Moreover, these effects were further decreased in 8 weeks diabetes. The delayed gastrointestinal transit effects caused by EM-1 may be primarily mediated by μ2-opioid receptor in both non-diabetes and 4 weeks diabetes. Interestingly, in 8 weeks diabetes, these effects were mediated by μ2- and δ-receptors. However, the inhibitory effects of EM-2 were mediated by μ1-opioid receptor, which exerted a reduced function in diabetes. Also, poor blood glucose control might result in the attenuated effects of EM-2. Our present results demonstrated that diabetes attenuates the inhibitory effects of EM-2, but not EM-1 on gastrointestinal transit in mice. The different effects of EM-1 and EM-2 on gastrointestinal transit in diabetes may be due to changes of opioid receptor subtypes and their functional responses. Copyright © 2014 Elsevier B.V. All rights reserved.
Gomes, Carmen; Moreira, Rosana G; Castell-Perez, Elena
2011-08-01
Recent outbreaks associated to the consumption of raw or minimally processed vegetable products that have resulted in several illnesses and a few deaths call for urgent actions aimed at improving the safety of those products. Electron beam irradiation can extend shelf-life and assure safety of fresh produce. However, undesirable effects on the organoleptic quality at doses required to achieve pathogen inactivation limit irradiation. Ways to increase pathogen radiation sensitivity could reduce the dose required for a certain level of microbial kill. The objective of this study was to evaluate the effectiveness of using natural antimicrobials when irradiating fresh produce. The minimum inhibitory concentration of 5 natural compounds and extracts (trans-cinnamaldehyde, eugenol, garlic extract, propolis extract, and lysozyme with ethylenediaminetetraacetate acid (disodium salt dihydrate) was determined against Salmonella spp. and Listeria spp. In order to mask odor and off-flavor inherent of several compounds, and to increase their solubility, complexes of these compounds and extracts with β-cyclodextrin were prepared by the freeze-drying method. All compounds showed bacteriostatic effect at different levels for both bacteria. The effectiveness of the microencapsulated compounds was tested by spraying them on the surface of baby spinach inoculated with Salmonella spp. The dose (D₁₀ value) required to reduce the bacterial population by 1 log was 0.190 kGy without antimicrobial addition. The increase in radiation sensitivity (up to 40%) varied with the antimicrobial compound. These results confirm that the combination of spraying microencapsulated antimicrobials with electron beam irradiation was effective in increasing the killing effect of irradiation. Foodborne illness outbreaks attributed to fresh produce consumption have increased and present new challenges to food safety. Current technologies (water washing or treating with 200 ppm chlorine) cannot eliminate internalized pathogens. Ionizing radiation is a viable alternative for eliminating pathogens; however, the dose required to inactivate these pathogens is often too high to be tolerated by the fresh produce without undesirable quality changes. This study uses natural antimicrobial ingredients as radiosensitizers. These ingredients were encapsulated and applied to fresh produce that was subsequently irradiated. The process results in high level of microorganism inactivation using lower doses than the conventional irradiation treatments. © 2011 Institute of Food Technologists®
Antimicrobial Dose in Obese Patient
Kassab, Sawsan; Syed Sulaiman, Syed Azhar; Abdul Aziz, Noorizan
2007-01-01
Introduction Obesity is a chronic disease that has become one of major public health issue in Malaysia because of its association with other disease states including cardiovascular disease and diabetes. Despite continuous efforts to educate the public about the health risks associated with obesity, prevalence of the disease continues to increase. Dosing of many medications are based on weight, limited data are available on how antimicrobial agents should be dosed in obesity. The aim of this case presentation is to discuss dose of antibiotic in obese patient. Case report: Patient: GMN, Malay, Female, 45 year old, 150kg, transferred from medical ward to ICU with problems of fever, orthopnea, sepsis secondary to nosocomial pneumonia. She was admitted to hospital a week ago for SOB on exertion, cyanosis, mildly dyspneic, somasthenia, bilateral ankle swelling. There was no fever, cough, chest pain, clubbing, flapping tremor. Her grand father has pre-morbid history of obesity, HPT, DM and asthma. She was non alcoholic, smoker, and not on diet control. The diagnosis Pickwickian syndrome was made. Patient was treated with IV Dopamine 11mcg/kg/min, IV Morphine 4mg/h. IV GTN 15mcg/min, IV Ca gluconate 10g/24h for 3/7, IV Zantac 50mg tds, IV Augmentin 1.2g tds, IV Lasix 40mg od, IV Plasil 10mg tds, S.c heparin 5000IU bd. patient become stable and moved to medical ward to continue her treatment. Discussion: The altered physiologic function seen in obese patients is a concern in patients receiving antimicrobial agents because therapeutic outcomes depend on achieving a minimum inhibitory concentration (MIC). The therapeutic effect of any drug can be altered when any of the 4 pharmacokinetic processes (absorption, distribution, metabolism, or elimination) are altered. Decreased blood flow rates and increased renal clearance in obese patients can affect drug distribution and elimination. Changes in serum protein levels can change the metabolism and distribution of drugs that are highly protein bound; the effects of these physiologic differences should be considered when administrating antimicrobial agents in obese patients. Conclusion: Generally this patient was moderately well managed in view of inappropriate combination of antibiotic, duplication or unnecessary use of antibiotic for treatment of sepsis, more clinical studies are needed to determine antibiotic dose in obese patient.
Basic PK/PD principles of drug effects in circular/proliferative systems for disease modelling.
Jacqmin, Philippe; McFadyen, Lynn; Wade, Janet R
2010-04-01
Disease progression modelling can provide information about the time course and outcome of pharmacological intervention on the disease. The basic PK/PD principles of proliferative and circular systems within the context of modelling disease progression and the effect of treatment thereupon are illustrated with the goal to better understand/predict eventual clinical outcome. Circular/proliferative systems can be very complex. To facilitate the understanding of how a dosing regimen can be defined in such systems we have shown the derivation of a system parameter named the Reproduction Minimum Inhibitory Concentration (RMIC) which represents the critical concentration at which the system switches from growth to extinction. The RMIC depends on two parameters (RMIC = (R(0) - 1) x IC(50)): the basic reproductive ratio (R(0)) a fundamental parameter of the circular/proliferative system that represents the number of offspring produced by one replicating species during its lifespan, and the IC(50), the potency of the drug to inhibit the proliferation of the system. The RMIC is constant for a given system and a given drug and represents the lowest concentration that needs to be achieved for eradication of the system. When exposure is higher than the RMIC, success can be expected in the long term. Time varying inhibition of replicating species proliferation is a natural consequence of the time varying inhibitor drug concentrations and when combined with the dynamics of the circular/proliferative system makes it difficult to predict the eventual outcome. Time varying inhibition of proliferative/circular systems can be handled by calculating the equivalent effective constant concentration (ECC), the constant plasma concentration that would give rise to the average inhibition at steady state. When ECC is higher than the RMIC, eradication of the system can be expected. In addition, it is shown that scenarios that have the same steady state ECC whatever the dose, dosage schedule or PK parameters have also the same average R (0) in the presence of the inhibitor (i.e. R (0-INH)) and therefore lead to the same outcome. This allows predicting equivalent active doses and dosing schedules in circular and proliferative systems when the IC(50) and pharmacokinetic characteristics of the drugs are known. The results from the simulations performed demonstrate that, for a given system (defined by its RMIC), treatment success depends mainly on the pharmacokinetic characteristics of the drug and the dosing schedule.
Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer
NASA Astrophysics Data System (ADS)
Yang, J.; Li, J.; Chen, L.; Price, R.; McNeeley, S.; Qin, L.; Wang, L.; Xiong, W.; Ma, C.-M.
2005-03-01
The purpose of this work is to investigate the accuracy of dose calculation of a commercial treatment planning system (Corvus, Normos Corp., Sewickley, PA). In this study, 30 prostate intensity-modulated radiotherapy (IMRT) treatment plans from the commercial treatment planning system were recalculated using the Monte Carlo method. Dose-volume histograms and isodose distributions were compared. Other quantities such as minimum dose to the target (Dmin), the dose received by 98% of the target volume (D98), dose at the isocentre (Diso), mean target dose (Dmean) and the maximum critical structure dose (Dmax) were also evaluated based on our clinical criteria. For coplanar plans, the dose differences between Monte Carlo and the commercial treatment planning system with and without heterogeneity correction were not significant. The differences in the isocentre dose between the commercial treatment planning system and Monte Carlo simulations were less than 3% for all coplanar cases. The differences on D98 were less than 2% on average. The differences in the mean dose to the target between the commercial system and Monte Carlo results were within 3%. The differences in the maximum bladder dose were within 3% for most cases. The maximum dose differences for the rectum were less than 4% for all the cases. For non-coplanar plans, the difference in the minimum target dose between the treatment planning system and Monte Carlo calculations was up to 9% if the heterogeneity correction was not applied in Corvus. This was caused by the excessive attenuation of the non-coplanar beams by the femurs. When the heterogeneity correction was applied in Corvus, the differences were reduced significantly. These results suggest that heterogeneity correction should be used in dose calculation for prostate cancer with non-coplanar beam arrangements.
Evaluation of human D-amino acid oxidase inhibition by anti-psychotic drugs in vitro.
Shishikura, Miho; Hakariya, Hitomi; Iwasa, Sumiko; Yoshio, Takashi; Ichiba, Hideaki; Yorita, Kazuko; Fukui, Kiyoshi; Fukushima, Takeshi
2014-06-01
It is of importance to determine whether antipsychotic drugs currently prescribed for schizophrenia exert D-amino acid oxidase (DAO)-inhibitory effects. We first investigated whether human (h)DAO can metabolize D-kynurenine (D-KYN) to produce the fluorescent compound kynurenic acid (KYNA) by using high-performance liquid chromatography with mass spectrometry, and fluorescence spectrometry. After confirmation of KYNA production from D-KYN by hDAO, 8 first- and second-generation antipsychotic drugs, and 6 drugs often prescribed concomitantly, were assayed for hDAO-inhibitory effects by using in vitro fluorometric methods with D-KYN as the substrate. DAO inhibitors 3-methylpyrazole-5-carboxylic acid and 4H-thieno[3,2-b]pyrrole-5-carboxylic acid inhibited KYNA production in a dose-dependent manner. Similarly, the second-generation antipsychotics blonanserin and risperidone were found to possess relatively strong hDAO-inhibitory effects in vitro (5.29 ± 0.47 μM and 4.70 ± 0.17 μM, respectively). With regard to blonanserin and risperidone, DAO-inhibitory effects should be taken into consideration in the context of their in vivo pharmacotherapeutic efficacy.
Muniyan, Sakthivel; Chou, Yu-Wei; Ingersoll, Matthew A; Devine, Alexus; Morris, Marisha; Odero-Marah, Valerie A; Khan, Shafiq A; Chaney, William G; Bu, Xiu R; Lin, Ming-Fong
2014-10-10
Metastatic prostate cancer (mPCa) relapses after a short period of androgen deprivation therapy and becomes the castration-resistant prostate cancer (CR PCa); to which the treatment is limited. Hence, it is imperative to identify novel therapeutic agents towards this patient population. In the present study, antiproliferative activities of novel imidazopyridines were compared. Among three derivatives, PHE, AMD and AMN, examined, AMD showed the highest inhibitory activity on LNCaP C-81 cell proliferation, following dose- and time-dependent manner. Additionally, AMD exhibited significant antiproliferative effect against a panel of PCa cells, but not normal prostate epithelial cells. Further, when compared to AMD, its derivative DME showed higher inhibitory activities on PCa cell proliferation, clonogenic potential and in vitro tumorigenicity. The inhibitory activity was apparently in part due to the induction of apoptosis. Mechanistic studies indicate that AMD and DME treatments inhibited both AR and PI3K/Akt signaling. The results suggest that better understanding of inhibitory mechanisms of AMD and DME could help design novel therapeutic agents for improving the treatment of CR PCa. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Muniyan, Sakthivel; Chou, Yu-Wei; Ingersoll, Matthew A.; Devine, Alexus; Morris, Marisha; Odero-Marah, Valerie A.; Khan, Shafiq A.; Chaney, William G.; Bu, Xiu R.; Lin, Ming-Fong
2014-01-01
Metastatic prostate cancer (mPCa) relapses after a short period of androgen deprivation therapy and becomes the castration-resistant prostate cancer (CR PCa); to which the treatment is limited. Hence, it is imperative to identify novel therapeutic agents towards this patient population. In the present study, antiproliferative activities of novel imidazopyridines were compared. Among three derivatives, PHE, AMD and AMN, examined, AMD showed the highest inhibitory activity on LNCaP C-81 cell proliferation, following dose- and time-dependent manner. Additionally, AMD exhibited significant antiproliferative effect against a panel of PCa cells, but not normal prostate epithelial cells. Further, when compared to AMD, its derivative DME showed higher inhibitory activities on PCa cell proliferation, clonogenic potential and in vitro tumorigenicity. The inhibitory activity was apparently in part due to the induction of apoptosis. Mechanistic studies indicate that AMD and DME treatments inhibited both AR and PI3K/Akt signaling. The results suggest that better understanding of inhibitory mechanisms of AMD and DME could help design novel therapeutic agents for improving the treatment of CR PCa. PMID:25050738
Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Jao, Chia-Ling; Hsieh, You-Liang; Wu, Si-Xian; Hsu, Kuo-Chiang
2016-02-01
The frequency (A), a novel in silico parameter, was developed by calculating the ratio of the number of truncated peptides with Xaa-proline and Xaa-alanine to all peptide fragments from a protein hydrolyzed with a specific protease. The highest in vitro DPP-IV inhibitory activity (72.7%) was observed in the hydrolysate of sodium caseinate by bromelain (Cas/BRO), and the constituent proteins of bovine casein also had relatively high A values (0.10-0.17) with BRO hydrolysis. 1CBR (the <1 kDa fraction of Cas/BRO) showed the greatest in vitro DPP-IV inhibitory activity of 77.5% and was used for in vivo test by high-fat diet-fed and low-dose streptozotocin-induced diabetic rats. The daily administration of 1CBR for 6 weeks was effective to improve glycaemic control in diabetic rats. The results indicate that the novel in silico method has the potential as a screening tool to predict dietary proteins to generate DPP-IV inhibitory and antidiabetic peptides.
Cytochrome P450-inhibitory activity of parabens and phthalates used in consumer products.
Ozaki, Hitomi; Sugihara, Kazumi; Watanabe, Yoko; Ohta, Shigeru; Kitamura, Shigeyuki
2016-01-01
The in vitro cytochrome P450 (CYP)-inhibitory effects of 11 parabens and 7 phthalates used in consumer products, as well as their hydrolytic metabolites, were investigated, using rat liver microsomes as an enzyme source. The effects on individual CYP isozymes were evaluated by assaying inhibition of activities towards specific substrates, i.e., ethoxyresorufin O-dealkylase (EROD), methoxyresorufin O-dealkylase (MROD), pentoxyresorufin O-dealkylase (PROD), 7-benzyloxy-4-trifluoromethylcoumarin dealkylase (BFCD), 7-methoxy-4-trifluoromethylcoumarin dealkylase (MFCD) and 7-ethoxy-4-trifluoromethylcoumarin dealkylase (EFCD) activities. These activities were dose-dependently inhibited, most potently by medium-side-chain parabens (C6-9) and phthalates (C4-6), and less potently by shorter- and longer-side-chain esters. The hydrolytic product of parabens, 4-hydroxybenzoic acid, was not inhibitory, while those of phthalates, phthalic acid monoesters, showed lower inhibitory activity than the parent phthalates. Parabens showed relatively potent inhibition of MFCD activity, considered to be mainly due to CYP2C, and phthalates showed relatively potent inhibition of PROD activity, considered to be mainly due to CYP2B.
Crain, Stanley M; Shen, Ke-Fei
2008-09-22
Systemic (s.c.) injection in naïve mice of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors, e.g. 3-isobutyl-1-methylxanthine [(IBMX) or caffeine, 10 mg/kg] or the more specific cAMP-PDE inhibitor, rolipram (1 mug/kg), rapidly evokes thermal hyperalgesia (lasting >5 h). These effects appear to be mediated by enhanced excitatory opioid receptor signaling, as occurs during withdrawal in opioid-dependent mice. Cotreatment of these mice with ultra-low-dose naltrexone (NTX, 0.1 ng/kg-1 pg/kg, s.c.) results in prominent opioid analgesia (lasting >4 h) even when the dose of rolipram is reduced to 1 pg/kg. Cotreatment of these cAMP-PDE inhibitors in naïve mice with an ultra-low-dose (0.1 ng/kg) of the kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI) or the mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA) also results in opioid analgesia. These excitatory effects of cAMP-PDE inhibitors in naïve mice may be mediated by enhanced release of small amounts of endogenous bimodally-acting (excitatory/inhibitory) opioid agonists by neurons in nociceptive networks. Ultra-low-dose NTX, nor-BNI or beta-FNA selectively antagonizes high-efficacy excitatory (hyperalgesic) Gs-coupled opioid receptor-mediated signaling in naïve mice and results in rapid conversion to inhibitory (analgesic) Gi/Go-coupled opioid receptor-mediated signaling which normally requires activation by much higher doses of opioid agonists. Cotreatment with a low subanalgesic dose of kelatorphan, an inhibitor of multiple endogenous opioid peptide-degrading enzymes, stabilizes endogenous opioid agonists released by cAMP-PDE inhibitors, resulting in conversion of the hyperalgesia to analgesia without requiring selective blockade of excitatory opioid receptor signaling. The present study provides a novel pharmacologic paradigm that may facilitate development of valuable non-narcotic clinical analgesics utilizing cotreatment with ultra-low-dose rolipram plus ultra-low-dose NTX or related agents.
In vitro antimicrobial activity of Pistacia lentiscus L. edible oil and phenolic extract.
Mezni, F; Aouadhi, C; Khouja, M L; Khaldi, A; Maaroufi, A
2015-01-01
Pistacia lentiscus L. is known in some Tunisian forest area by its fixed oil used in traditional medicine as an antiseptic product. This investigation is the first to study the antimicrobial activity of P.lentiscus edible oil and its phenolic extract. Oil was extracted from fruits harvested from six provenances located in Tunisia. The antimicrobial activity was tested using disc diffusion assay and the broth dilution method. Kbouch and Sidi Zid oils were most efficient (p < 0.003) against, respectively, Staphylococcus aureus and Aspergillus niger with an inhibition zone of 9.33 mm. The phenolic extract had the largest spectrum of sensitive microorganisms. The minimum inhibitory concentration and minimum bactericidal concentration results showed that all strains were inhibited by both oil and extract.
Chen, Pei-Ju; Liang, Keng-Chen; Lin, Hui-Chen; Hsieh, Ching-Liang; Su, Kuan-Pin; Hung, Mei-Chu; Sheen, Lee-Yan
2011-06-01
This study adopted the forced-swimming paradigm to induce depressive symptoms in rats and evaluated the effects on learning and memory processing. Furthermore, the effects of the water extract of Gastrodia elata Bl., a well-known Chinese traditional medicine, on amnesia in rats subjected to the forced-swimming procedure were studied. Rats were subjected to the forced-swimming procedure, and the inhibitory avoidance task and Morris water maze were used to assess learning and memory performance. The acquisition of the two tasks was mostly impaired after the 15-minute forced-swimming procedure. Administration of the water extract of G. elata Bl. for 21 consecutive days at a dosage of 0.5 or 1.0 g/kg of body weight significantly improved retention in the inhibitory avoidance test, and the lower dose showed a better effect than the higher one and the antidepressant fluoxetine (18 mg/kg of body weight). In the Morris water maze, the lower dose of the water extract of G. elata Bl. significantly improved retention by shortening escape latency in the first test session and increasing the time in searching the target zone during the probe test. These findings suggest that water extracts of G. elata Bl. ameliorate the learning and memory deficits induced by forced swimming.
Anticholinesterase activities of cold and hot aqueous extracts of F. racemosa stem bark.
Ahmed, Faiyaz; Urooj, Asna
2010-04-01
The present study evaluated the anticholinesterase activity of cold and hot aqueous extracts of Ficus racemosa stem bark against rat brain acetylcholinesterase in vitro. Both the cold aqueous extract (FRC) and the hot aqueous extract (FRH) exhibited a dose dependent inhibition of rat brain acetylcholinesterase. FRH showed significantly higher (P = 0.001) cholinesterase inhibitory activity compared to FRC; however, both the extracts did not show 50% inhibition of AChE at the doses tested (200-1000 mug ml(-1)). The IC(50) values of 1813 and 1331 mug ml(-1) were deduced for FRC and FRH, respectively (calculated by extrapolation using Boltzmann's dose response analysis).