Sample records for minimum output power

  1. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    DOEpatents

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  2. Method and system for managing an electrical output of a turbogenerator

    DOEpatents

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2009-06-02

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  3. Method and system for managing an electrical output of a turbogenerator

    DOEpatents

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2010-08-24

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  4. The minimum control authority of a system of actuators with applications to Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Wiktor, Peter; Debra, Dan

    1991-01-01

    The forcing capabilities of systems composed of many actuators are analyzed in this paper. Multiactuator systems can generate higher forces in some directions than in others. Techniques are developed to find the force in the weakest direction. This corresponds to the worst-case output and is defined as the 'minimum control authority'. The minimum control authority is a function of three things: the actuator configuration, the actuator controller and the way in which the output of the system is limited. Three output limits are studied: (1) fuel-flow rate, (2) power, and (3) actuator output. The three corresponding actuator controllers are derived. These controllers generate the desired force while minimizing either fuel flow rate, power or actuator output. It is shown that using the optimal controller can substantially increase the minimum control authority. The techniques for calculating the minimum control authority are applied to the Gravity Probe-B spacecraft thruster system. This example shows that the minimum control authority can be used to design the individual actuators, choose actuator configuration, actuator controller, and study redundancy.

  5. Nonlinear distortion analysis for single heterojunction GaAs HEMT with frequency and temperature

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Ali, Mayahsa M.; Rezazadeh, Ali A.

    2018-07-01

    Nonlinearity analysis using two-tone intermodulation distortion (IMD) technique for 0.5 μm gate-length AlGaAs/GaAs based high electron mobility transistor have been investigated based on biasing conditions, input power, frequency and temperature. The outcomes indicate a significant modification on the output IMD power and as well as the minimum distortion level. The input IMD power effects the output current and subsequently the threshold voltage reduces, resulting to an increment in the output IMD power. Both frequency and temperature reduces the magnitude of the output IMDs. In addition, the threshold voltage response with temperature alters the notch point of the nonlinear output IMD’s accordingly. The aforementioned investigation will help the circuit designers to evaluate the best biasing option in terms of minimum distortion, maximum gain for future design optimizations.

  6. Validation of a hybrid electromagnetic-piezoelectric vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Edwards, Bryn; Hu, Patrick A.; Aw, Kean C.

    2016-05-01

    This paper presents a low frequency vibration energy harvester with contact based frequency up-conversion and hybrid electromagnetic-piezoelectric transduction. An electromagnetic generator is proposed as a power source for low power wearable electronic devices, while a second piezoelectric generator is investigated as a potential power source for a power conditioning circuit for the electromagnetic transducer output. Simulations and experiments are conducted in order to verify the behaviour of the device under harmonic as well as wide-band excitations across two key design parameters—the length of the piezoelectric beam and the excitation frequency. Experimental results demonstrated that the device achieved a power output between 25.5 and 34 μW at an root mean squared (rms) voltage level between 16 and 18.5 mV for the electromagnetic transducer in the excitation frequency range of 3-7 Hz, while the output power of the piezoelectric transducer ranged from 5 to 10.5 μW with a minimum peak-to-peak output voltage of 6 V. A multivariate model validation was performed between experimental and simulation results under wide-band excitation in terms of the rms voltage outputs of the electromagnetic and piezoelectric transducers, as well as the peak-to-peak voltage output of the piezoelectric transducer, and it is found that the experimental data fit the model predictions with a minimum probability of 63.4% across the parameter space.

  7. Inertial effects on mechanically braked Wingate power calculations.

    PubMed

    Reiser, R F; Broker, J P; Peterson, M L

    2000-09-01

    The standard procedure for determining subject power output from a 30-s Wingate test on a mechanically braked (friction-loaded) ergometer includes only the braking resistance and flywheel velocity in the computations. However, the inertial effects associated with accelerating and decelerating the crank and flywheel also require energy and, therefore, represent a component of the subject's power output. The present study was designed to determine the effects of drive-system inertia on power output calculations. Twenty-eight male recreational cyclists completed Wingate tests on a Monark 324E mechanically braked ergometer (resistance: 8.5% body mass (BM), starting cadence: 60 rpm). Power outputs were then compared using both standard (without inertial contribution) and corrected methods (with inertial contribution) of calculating power output. Relative 5-s peak power and 30-s average power for the corrected method (14.8 +/- 1.2 W x kg(-1) BM; 9.9 +/- 0.7 W x kg(-1) BM) were 20.3% and 3.1% greater than that of the standard method (12.3 +/- 0.7 W x kg(-1) BM; 9.6 +/- 0.7 W x kg(-1) BM), respectively. Relative 5-s minimum power for the corrected method (6.8 +/- 0.7 W x kg(-1) BM) was 6.8% less than that of the standard method (7.3 +/- 0.8 W x kg(-1) BM). The combined differences in the peak power and minimum power produced a fatigue index for the corrected method (54 +/- 5%) that was 31.7% greater than that of the standard method (41 +/- 6%). All parameter differences were significant (P < 0.01). The inertial contribution to power output was dominated by the flywheel; however, the contribution from the crank was evident. These results indicate that the inertial components of the ergometer drive system influence the power output characteristics, requiring care when computing, interpreting, and comparing Wingate results, particularly among different ergometer designs and test protocols.

  8. Solid state Ku-band spacecraft transmitters

    NASA Technical Reports Server (NTRS)

    Wisseman, W. R.; Tserng, H. Q.; Coleman, D. J.; Doerbeck, F. H.

    1977-01-01

    A transmitter is considered that consists of GaAs IMPATT and Read diodes operating in a microstrip circuit environment to provide amplification with a minimum of 63 db small signal gain and a minimum compressed gain at 5 W output of 57 db. Reported are Schottky-Read diode design and fabrication, microstrip and circulator optimization, preamplifier development, power amplifier development, dc-to-dc converter design, and integration of the breadboard transmitter modules. A four-stage power amplifier in cascade with a three-stage preamplifier had an overall gain of 56.5 db at 13.5 GHz with a power output of 4.5 W. A single-stage Read amplifier delivered 5.9 W with 4 db gain at 22% efficiency.

  9. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.

    PubMed

    Haseli, Y

    2016-05-01

    The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.

  10. A reduction of the saddle vertical force triggers the sit-stand transition in cycling.

    PubMed

    Costes, Antony; Turpin, Nicolas A; Villeger, David; Moretto, Pierre; Watier, Bruno

    2015-09-18

    The purpose of the study was to establish the link between the saddle vertical force and its determinants in order to establish the strategies that could trigger the sit-stand transition. We hypothesized that the minimum saddle vertical force would be a critical parameter influencing the sit-stand transition during cycling. Twenty-five non-cyclists were asked to pedal at six different power outputs from 20% (1.6 ± 0.3 W kg(-1)) to 120% (9.6 ± 1.6 W kg(-1)) of their spontaneous sit-stand transition power obtained at 90 rpm. Five 6-component sensors (saddle tube, pedals and handlebars) and a full-body kinematic reconstruction were used to provide the saddle vertical force and other force components (trunk inertial force, hips and shoulders reaction forces, and trunk weight) linked to the saddle vertical force. Minimum saddle vertical force linearly decreased with power output by 87% from a static position on the bicycle (5.30 ± 0.50 N kg(-1)) to power output=120% of the sit-stand transition power (0.68 ± 0.49 N kg(-1)). This decrease was mainly explained by the increase in instantaneous pedal forces from 2.84 ± 0.58 N kg(-1) to 6.57 ± 1.02 N kg(-1) from 20% to 120% of the power output corresponding to the sit-stand transition, causing an increase in hip vertical forces from -0.17 N kg(-1) to 3.29 N kg(-1). The emergence of strategies aiming at counteracting the elevation of the trunk (handlebars and pedals pulling) coincided with the spontaneous sit-stand transition power. The present data suggest that the large decrease in minimum saddle vertical force observed at high pedal reaction forces might trigger the sit-stand transition in cycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. High-power linearly polarized diode-side-pumped a-cut Nd:GdVO4 rod laser

    NASA Astrophysics Data System (ADS)

    Li, Xiaowen; Qian, Jianqiang; Zhang, Baitao

    2017-03-01

    An efficiently high-power diode-side-pumped Nd:GdVO4 rod laser system was successfully demonstrated, operating in continuous wave (CW) and acousto-optically (AO) Q-switched regime. With a 65 mm-long a-cut Nd:GdVO4 crystal, a maximum linearly polarized CW output power of 60 W at 1063.2 nm was obtained under an absorbed pump power of 180 W, corresponding to a slope efficiency of 50.6%. The output laser beam was linearly polarized with a degree of polarization of 98%. In AO Q-switched operation, the highest output power, minimum pulse width, and highest peak power were achieved to be 42 W, 36 ns, and 58 kW at the pulse repetition frequency of 20 kHz.

  12. High Power Microwave (HPM) and Ionizing Radiation Effects on CMOS Devices

    DTIC Science & Technology

    2010-03-01

    24 xviii Symbol Page VIH minimum input voltage for proper high voltage output...38 VOH output voltage corresponding to VIH ...design. The high level at the input, VIH , along with VDD, define the maximum permitted “Logic 1” region, which allows for proper state change for a

  13. Ku-band field-effect power transistors

    NASA Technical Reports Server (NTRS)

    Taylor, G. C.; Huang, H. C.

    1979-01-01

    A single stage amplifier was developed using an 8 gate, 1200 micrometer width device to give a gain of 3.3 + or - 0.1 dB over the 14.4 to 15.4 GHz band with an output power of 0.48 W and 15% minimum efficiency with 0.255 W of input power. With two 8 gate devices combined and matched on the device carrier, using a lumped element format, a gain of 3 dB was attained over the 14.5 to 15.5 GHz band with a maximum efficiency of 9.9% for an output power of 0.8 W.

  14. Static inverter with synchronous output waveform synthesized by time-optimal-response feedback

    NASA Technical Reports Server (NTRS)

    Kernick, A.; Stechschulte, D. L.; Shireman, D. W.

    1976-01-01

    Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.

  15. Bifacial PV cell with reflector for stand-alone mast for sensor powering purposes

    NASA Astrophysics Data System (ADS)

    Jakobsen, Michael L.; Thorsteinsson, Sune; Poulsen, Peter B.; Riedel, N.; Rødder, Peter M.; Rødder, Kristin

    2017-09-01

    Reflectors to bifacial PV-cells are simulated and prototyped in this work. The aim is to optimize the reflector to specific latitudes, and particularly northern latitudes. Specifically, by using minimum semiconductor area the reflector must be able to deliver the electrical power required at the condition of minimum solar travel above the horizon, worst weather condition etc. We will test a bifacial PV-module with a retroreflector, and compare the output with simulations combined with local solar data.

  16. Dependence of injection locking of a TEA CO2 laser on intensity of injected radiation

    NASA Technical Reports Server (NTRS)

    Oppenheim, U. P.; Menzies, R. T.; Kavaya, M. J.

    1982-01-01

    The results of an experimental study to determine the minimum required injected power to control the output frequency of a TEA CO2 laser are reported. A CW CO2 waveguide laser was used as the injection oscillator. Both the power and the frequency of the injected radiation were varied, while the TEA resonator cavity length was adjusted to match the frequency of the injected signal. Single-longitudinal mode (SLM) TEA laser radiation was produced for injected power levels which are several orders of magnitude below those previously reported. The ratio of SLM output power to injection power exceeded 10 to the 12th at the lowest levels of injected intensity.

  17. Device for adapting continuously variable transmissions to infinitely variable transmissions with forward-neutral-reverse capabilities

    DOEpatents

    Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith

    1997-01-01

    An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.

  18. Determinants of mobile phone output power in a multinational study: implications for exposure assessment.

    PubMed

    Vrijheid, M; Mann, S; Vecchia, P; Wiart, J; Taki, M; Ardoino, L; Armstrong, B K; Auvinen, A; Bédard, D; Berg-Beckhoff, G; Brown, J; Chetrit, A; Collatz-Christensen, H; Combalot, E; Cook, A; Deltour, I; Feychting, M; Giles, G G; Hepworth, S J; Hours, M; Iavarone, I; Johansen, C; Krewski, D; Kurttio, P; Lagorio, S; Lönn, S; McBride, M; Montestrucq, L; Parslow, R C; Sadetzki, S; Schüz, J; Tynes, T; Woodward, A; Cardis, E

    2009-10-01

    The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure for epidemiological studies, we assessed determinants of mobile phone output power in a multinational study. More than 500 volunteers in 12 countries used Global System for Mobile communications software-modified phones (GSM SMPs) for approximately 1 month each. The SMPs recorded date, time, and duration of each call, and the frequency band and output power at fixed sampling intervals throughout each call. Questionnaires provided information on the typical circumstances of an individual's phone use. Linear regression models were used to analyse the influence of possible explanatory variables on the average output power and the percentage call time at maximum power for each call. Measurements of over 60,000 phone calls showed that the average output power was approximately 50% of the maximum, and that output power varied by a factor of up to 2 to 3 between study centres and network operators. Maximum power was used during a considerable proportion of call time (39% on average). Output power decreased with increasing call duration, but showed little variation in relation to reported frequency of use while in a moving vehicle or inside buildings. Higher output powers for rural compared with urban use of the SMP were observed principally in Sweden where the study covered very sparsely populated areas. Average power levels are substantially higher than the minimum levels theoretically achievable in GSM networks. Exposure indices could be improved by accounting for average power levels of different telecommunications systems. There appears to be little value in gathering information on circumstances of phone use other than use in very sparsely populated regions.

  19. On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.

    2013-01-01

    A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.

  20. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario

    2018-06-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  1. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario

    2018-01-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  2. Comparative study of electrical and switch-skipping mechanical switch for self-powered SSHI in medium coupled piezoelectric vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Sakamoto, K.; Komatsuzaki, T.; Iwata, Y.

    2018-07-01

    To increase output power for piezoelectric vibration energy harvesters, considerable attention has recently been focused on a self-powered synchronized switch harvesting on inductor (SSHI) technique employing an electrical and mechanical switch. However, there are two technical issues: in a medium or highly coupled harvester, the piezoelectric coupling force, which increases as the SSHI’s voltage increases, will reduce the harvester’s displacement and the resulting output power, and there are few reports comparing the performance of electrical switch SSHI (ESS) and mechanical switch SSHI (MSS) that include consideration of the piezoelectric coupling force. We developed a simulation technique that allows us to evaluate the output power considering the piezoelectric coupling force, and investigated the performance of stopper-based MSS and ESS, both numerically and experimentally. The numerical investigation predicted the following: (1) the output power for the ESS is lower than that for the MSS at acceleration lower than 3.5 m s‑2 and (2) intriguingly, the output power for the MSS continues to increase, whereas the peak–peak displacement remains constant. The experimental results showed behaviour similar to that of the numerical predictions. The results are attributed to the different switching strategies: the MSS turns on only when the harvester’s displacement exceeds the gap distance, while the ESS turns on at every maximum/minimum displacement.

  3. End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal

    NASA Astrophysics Data System (ADS)

    Yang, F. G.; You, Z. Y.; Zhu, Z. J.; Wang, Y.; Li, J. F.; Tu, C. Y.

    2010-01-01

    We present an end-pumped continuous-wave intra-cavity yellow Raman laser at 590 nm with a 60 mm long pure crystal SrWO4 and an intra-cavity LiB3O5 frequency doubling crystal. The highest output power of yellow laser at 590 nm was 230 mW and the output power and threshold were found to be correlative with the polarized directions of pure single crystal SrWO4 deeply. Along different directions, the minimum and maximum thresholds of yellow Raman laser at 590 nm were measured to be 2.8 W and 14.3 W with respect to 808 nm LD pump power, respectively.

  4. Clarks Hill Lake Water Quality Study.

    DTIC Science & Technology

    1982-06-01

    multipurpose project designed to reduce flooding on the Savannah River, generate electric power and increase the depth of the Savannah River for... power plant at the dam has seven generators, each with a capacity of 40,000 kilowatts. The average annual energy output of Clarks Hill Power Plant is 700...feet) from the top of power pool elevation of 100.6 meters (330 feet msl) to a minimum pool elevation of 95.1 meters (312 feet msl). Because of below

  5. A class of systolizable IIR digital filters and its design for proper scaling and minimum output roundoff noise

    NASA Technical Reports Server (NTRS)

    Lei, Shaw-Min; Yao, Kung

    1990-01-01

    A class of infinite impulse response (IIR) digital filters with a systolizable structure is proposed and its synthesis is investigated. The systolizable structure consists of pipelineable regular modules with local connections and is suitable for VLSI implementation. It is capable of achieving high performance as well as high throughput. This class of filter structure provides certain degrees of freedom that can be used to obtain some desirable properties for the filter. Techniques of evaluating the internal signal powers and the output roundoff noise of the proposed filter structure are developed. Based upon these techniques, a well-scaled IIR digital filter with minimum output roundoff noise is designed using a local optimization approach. The internal signals of all the modes of this filter are scaled to unity in the l2-norm sense. Compared to the Rao-Kailath (1984) orthogonal digital filter and the Gray-Markel (1973) normalized-lattice digital filter, this filter has better scaling properties and lower output roundoff noise.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidfaraji, Hamide, E-mail: hsfaraji@unm.edu; Fuks, Mikhail I.; Christodoulou, Christos

    Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting highmore » output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC)-made power combiner were achieved in simulations. Also, it is shown that the TE{sub 01} output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.« less

  7. A robust low quiescent current power receiver for inductive power transmission in bio implants

    NASA Astrophysics Data System (ADS)

    Helalian, Hamid; Pasandi, Ghasem; Jafarabadi Ashtiani, Shahin

    2017-05-01

    In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC-DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC-DC converter has variable conversion ratios and synchronous controller that lets the DC-DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0-10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.

  8. Improved power control using optimal adjustable coefficients for three-phase photovoltaic inverter under unbalanced grid voltage.

    PubMed

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.

  9. Improved Power Control Using Optimal Adjustable Coefficients for Three-Phase Photovoltaic Inverter under Unbalanced Grid Voltage

    PubMed Central

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215

  10. High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabaan, Rakan

    The objective of this project is to develop, implement, and demonstrate a wireless power transfer (WPT) system that is capable of the following metrics: Total system efficiencies of more than 85 percent with minimum 20 cm coil-to-coil gap; System output power at least 6.6 kW; but design system up to 19.2 kW for future higher power study; Maximum lateral positioning tolerance achievable while meeting regulatory emission guidelines.

  11. Model for the techno-economic analysis of common work of wind power and CCGT power plant to offer constant level of power in the electricity market

    NASA Astrophysics Data System (ADS)

    Tomsic, Z.; Rajsl, I.; Filipovic, M.

    2017-11-01

    Wind power varies over time, mainly under the influence of meteorological fluctuations. The variations occur on all time scales. Understanding these variations and their predictability is of key importance for the integration and optimal utilization of wind in the power system. There are two major attributes of variable generation that notably impact the participation on power exchanges: Variability (the output of variable generation changes and resulting in fluctuations in the plant output on all time scales) and Uncertainty (the magnitude and timing of variable generation output is less predictable, wind power output has low levels of predictability). Because of these variability and uncertainty wind plants cannot participate to electricity market, especially to power exchanges. For this purpose, the paper presents techno-economic analysis of work of wind plants together with combined cycle gas turbine (CCGT) plant as support for offering continues power to electricity market. A model of wind farms and CCGT plant was developed in program PLEXOS based on real hourly input data and all characteristics of CCGT with especial analysis of techno-economic characteristics of different types of starts and stops of the plant. The Model analyzes the followings: costs of different start-stop characteristics (hot, warm, cold start-ups and shutdowns) and part load performance of CCGT. Besides the costs, the technical restrictions were considered such as start-up time depending on outage duration, minimum operation time, and minimum load or peaking capability. For calculation purposes, the following parameters are necessary to know in order to be able to economically evaluate changes in the start-up process: ramp up and down rate, time of start time reduction, fuel mass flow during start, electricity production during start, variable cost of start-up process, cost and charges for life time consumption for each start and start type, remuneration during start up time regarding expected or unexpected starts, the cost and revenues for balancing energy (important when participating in electricity market), and the cost or revenues for CO2-certificates. Main motivation for this analysis is to investigate possibilities to participate on power exchanges by offering continues guarantied power from wind plants by backing-up them with CCGT power plant.

  12. Parametric study of minimum reactor mass in energy-storage dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.

    1981-01-01

    Closed-form analytical solutions for the design equations of a minimum-mass reactor for a two-winding voltage-or-current step-up converter are derived. A quantitative relationship between the three parameters - minimum total reactor mass, maximum output power, and switching frequency - is extracted from these analytical solutions. The validity of the closed-form solution is verified by a numerical minimization procedure. A computer-aided design procedure using commercially available toroidal cores and magnet wires is also used to examine how the results from practical designs follow the predictions of the analytical solutions.

  13. Study on the optimization allocation of wind-solar in power system based on multi-region production simulation

    NASA Astrophysics Data System (ADS)

    Xu, Zhicheng; Yuan, Bo; Zhang, Fuqiang

    2018-06-01

    In this paper, a power supply optimization model is proposed. The model takes the minimum fossil energy consumption as the target, considering the output characteristics of the conventional power supply and the renewable power supply. The optimal capacity ratio of wind-solar in the power supply under various constraints is calculated, and the interrelation between conventional power supply and renewable energy is analyzed in the system of high proportion renewable energy integration. Using the model, we can provide scientific guidance for the coordinated and orderly development of renewable energy and conventional power sources.

  14. Balancing Europe's wind power output through spatial deployment informed by weather regimes.

    PubMed

    Grams, Christian M; Beerli, Remo; Pfenninger, Stefan; Staffell, Iain; Wernli, Heini

    2017-08-01

    As wind and solar power provide a growing share of Europe's electricity1, understanding and accommodating their variability on multiple timescales remains a critical problem. On weekly timescales, variability is related to long-lasting weather conditions, called weather regimes2-5, which can cause lulls with a loss of wind power across neighbouring countries6. Here we show that weather regimes provide a meteorological explanation for multi-day fluctuations in Europe's wind power and can help guide new deployment pathways which minimise this variability. Mean generation during different regimes currently ranges from 22 GW to 44 GW and is expected to triple by 2030 with current planning strategies. However, balancing future wind capacity across regions with contrasting inter-regime behaviour - specifically deploying in the Balkans instead of the North Sea - would almost eliminate these output variations, maintain mean generation, and increase fleet-wide minimum output. Solar photovoltaics could balance low-wind regimes locally, but only by expanding current capacity tenfold. New deployment strategies based on an understanding of continent-scale wind patterns and pan-European collaboration could enable a high share of wind energy whilst minimising the negative impacts of output variability.

  15. Single mode low-NA step index Yb-doped fiber design for output powers beyond 4kW (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Beier, Franz; Proske, Fritz; Hupel, Christian; Kuhn, Stefan; Hein, Sigrun; Sattler, Bettina; Nold, Johannes; Haarlammert, Nicoletta; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2017-03-01

    Fiber amplifiers are representing one of the most promising solid state laser concepts, due to the compact setup size, a simple thermal management and furthermore excellent beam quality. In this contribution, we report on the latest results from a low-NA, large mode area single mode fiber with a single mode output power beyond 4 kW without any indication of mode instabilities or nonlinear effects and high slope efficiency. Furthermore, we quantify the influence of the bending diameter of our manufactured low NA fiber on the average core loss by an OFDR measurement and determine the optimal bending diameter in comparison to a second fiber with a slightly changed NA. The fibers used in the experiments were fabricated by MCVD technology combined with the solution doping technique. The investigation indicates the limitation of the step index fiber design and its influence on the use in high power fiber amplifiers. We demonstrate, that even a slightly change in the core NA crucially influences the minimum bending diameter of the fiber and has to be taken into account in applications. The measured output power represents to the best of our knowledge the highest single mode output power of an amplifier fiber ever reported on.

  16. Test and evaluation of the Navy half-watt RTG. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Rosell, F. E., Jr.; Lane, S. D.; Eggers, P. E.; Gawthrop, W. E.; Rouklove, P. G.; Truscello, V. C.

    1976-01-01

    The radioisotope thermoelectric generator (RTG) considered is to provide a continuous minimum power output of 0.5 watt at 6.0 to 8.5 volts for a minimum period of 15 years. The mechanical-electrical evaluation phase discussed involved the conduction of shock and vibration tests. The thermochemical-physical evaluation phase consisted of an analysis of the materials and the development of a thermal model. The thermoelectric evaluation phase included the accelerated testing of the thermoelectric modules.

  17. Statistical properties of radiation power levels from a high-gain free-electron laser at and beyond saturation

    NASA Astrophysics Data System (ADS)

    Schroeder, C. B.; Fawley, W. M.; Esarey, E.

    2003-07-01

    We investigate the statistical properties (e.g., shot-to-shot power fluctuations) of the radiation from a high-gain free-electron laser (FEL) operating in the nonlinear regime. We consider the case of an FEL amplifier reaching saturation whose shot-to-shot fluctuations in input radiation power follow a gamma distribution. We analyze the corresponding output power fluctuations at and beyond saturation, including beam energy spread effects, and find that there are well-characterized values of undulator length for which the fluctuations reach a minimum.

  18. Passively Q-switched Nd:YAG/Cr(4+):YAG bonded crystal microchip laser operating at 1112  nm and its application for second-harmonic generation.

    PubMed

    Fu, S G; Ouyang, X Y; Liu, X J

    2015-10-10

    A passively Q-switched Nd:YAG/Cr4+:YAG microchip laser operating at 1112 nm is demonstrated. Under a pump power of 5.5 W, a maximum average output power of 623 mW was obtained with T=6% output coupler, corresponding to an optical-to-optical conversion efficiency of 11.3% and a slope efficiency of 19.5%. The minimum pulse width was 2.8 ns, the pulse energy and peak power were 39.3 μJ and 14 kW, respectively. Additionally, based on the 1112 nm laser, a 230 mW 556 nm green-yellow laser was achieved within an LBO crystal.

  19. Numerical study of low-current steady arcs

    NASA Technical Reports Server (NTRS)

    Kim, S. C.; Nagamatsu, H. T.

    1992-01-01

    The development of a high-efficiency CW YLF laser doped with Er,Tm,Ho: and featuring a strongly focusing resonator that collects a high density of pump power on the active crystal is described. The emission is investigated at 2.06 microns and a tuning range both at liquid-nitrogen (77 K) and at dry-ice (210 K) temperature. The noise characteristics and the long-term power stability of the laser is studied with an eye to employing this source for high-resolution spectroscopy in the 2-micron wavelength region. The detection of several absorption lines of NH3 at low pressure is described. The output power of the laser as a function of the power impinging on the crystal for different transmission of the output mirror is illustrated. The best result obtained is 1.46 W output for 3.2 W of argon pump. The minimum threshold achieved is 3.5 mW with a 1-percent transmission mirror. It is concluded that it is possible to develop a highly efficient Ho:YLF laser featuring low noise and sufficient tunability for high-resolution spectroscopy in the 2-micron region.

  20. Numerical analysis of 2.7 μm lasing in Er3+-doped tellurite fiber lasers

    PubMed Central

    Wang, Weichao; Li, Lixiu; Chen, Dongdan; Zhang, Qinyuan

    2016-01-01

    The laser performance of Er3+-doped tellurite fiber lasers operating at 2.7 μm due to 4I11/2 → 4I13/2 transition has been theoretically studied by using rate equations and propagation equations. The effects of pumping configuration and fiber length on the output power, slope efficiency, threshold, and intracavity pump and laser power distributions have been systematically investigated to optimize the performance of fiber lasers. When the pump power is 20 W, the maximum slope efficiency (27.62%), maximum output power (5.219 W), and minimum threshold (278.90 mW) are predicted with different fiber lengths (0.05–5 m) under three pumping configurations. It is also found that reasonable output power is expected for fiber loss below 2 dB/ m. The numerical modeling on the two- and three-dimensional laser field distributions are further analyzed to reveal the characteristics of this multimode step-index tellurite fiber. Preliminary simulation results show that this Er3+-doped tellurite fiber is an excellent alternative to conventional fluoride fiber for developing efficient 2.7 μm fiber lasers. PMID:27545663

  1. Analyzing Power Supply and Demand on the ISS

    NASA Technical Reports Server (NTRS)

    Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve

    2006-01-01

    Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.

  2. Reverse matrix converter control method for PMSM drives using DPC

    NASA Astrophysics Data System (ADS)

    Bak, Yeongsu; Lee, Kyo-Beum

    2018-05-01

    This paper proposes a control method for a reverse matrix converter (RMC) that drives a three-phase permanent magnet synchronous motor (PMSM). In this proposed method, direct power control (DPC) is used to control the voltage source rectifier of the RMC. The RMC is an indirect matrix converter operating in the boost mode, in which the power-flow directions of the input and output are switched. It has a minimum voltage transfer ratio of 1/0.866 in a linear-modulation region. In this paper, a control method that uses DPC as an additional control method is proposed in order to control the RMC driving a PMSM in the output stage. Simulations and experimental results verify the effectiveness of the proposed control method.

  3. The Design of Operational Amplifier for Low Voltage and Low Current Sound Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Fang, Liew Hui; Rahim, Rosemizi Bin Abd; Isa, Muzamir; Idris Syed Hassan, Syed; Ismail, Baharuddin Bin

    2018-03-01

    The objective of this paper is to design a combination of an operational amplifier (op-amp) with a rectifier used in an alternate current (ac) to direct current (dc) power conversion. The op-amp was designed to specifically work at low voltage and low current for a sound energy harvesting system. The goal of the op-amp design with adjustable gain was to control output voltage based on the objectives of the experiment conducted. The op-amp was designed for minimum power dissipation performance, with the means of increasing the output current when receiving a large amount of load. The harvesting circuits which designed further improved the power output efficiency by shortening the fully charged time needed by a supercapacitor bank. It can fulfil the long-time power demands for low power device. Typically, a small amount of energy sources were converted to electricity and stored in the supercapacitor bank, which was built by 10 pieces of capacitors with 0.22 F each, arranged in parallel connection. The highest capacitance was chosen based on the characteristic that have the longest discharging time to support the applications of a supercapacitor bank. Testing results show that the op-amp can boost the low input ac voltage (∼3.89 V) to high output dc voltage (5.0 V) with output current of 30 mA and stored the electrical energy in a big supercapacitor bank having a total of 2.2 F, effectively. The measured results agree well with the calculated results.

  4. First-order irreversible thermodynamic approach to a simple energy converter

    NASA Astrophysics Data System (ADS)

    Arias-Hernandez, L. A.; Angulo-Brown, F.; Paez-Hernandez, R. T.

    2008-01-01

    Several authors have shown that dissipative thermal cycle models based on finite-time thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of first-order irreversible thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function versus efficiency. In a previous work Stucki [J. W. Stucki, Eur. J. Biochem. 109, 269 (1980)] used a FOIT approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in adenosine triphosphate (ATP) synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state at both minimum entropy production and maximum efficiency simultaneously, by means of a conductance matching condition between extreme states of zero and infinite conductances, respectively. In the present work we show that all Stucki’s results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting of the simultaneous maximization of both the so-called ecological function and the efficiency.

  5. New design for a microwave discharge lamp.

    PubMed

    Glangetas, A

    1980-03-01

    A simple discharge lamp with a microwave cavity fitting inside provides an intense source of VUV resonance radiation for photochemical work inside a vacuum chamber. Good coupling and minimum reabsorption result in better efficiency ( greater, similar1%) and more intense output power (up to 2.5x10(16) quanta s(-1)) than have been achieved previously.

  6. How Low Can You Go? The Importance of Quantifying Minimum Generation Levels for Renewable Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul L; Brinkman, Gregory L; Mai, Trieu T

    One of the significant limitations of solar and wind deployment is declining value caused by the limited correlation of renewable energy supply and electricity demand as well as limited flexibility of the power system. Limited flexibility can result from thermal and hydro plants that cannot turn off or reduce output due to technical or economic limits. These limits include the operating range of conventional thermal power plants, the need for process heat from combined heat and power plants, and restrictions on hydro unit operation. To appropriately analyze regional and national energy policies related to renewable deployment, these limits must bemore » accurately captured in grid planning models. In this work, we summarize data sources and methods for U.S. power plants that can be used to capture minimum generation levels in grid planning tools, such as production cost models. We also provide case studies for two locations in the U.S. (California and Texas) that demonstrate the sensitivity of variable generation (VG) curtailment to grid flexibility assumptions which shows the importance of analyzing (and documenting) minimum generation levels in studies of increased VG penetration.« less

  7. Coordinated distribution network control of tap changer transformers, capacitors and PV inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceylan, Oğuzhan; Liu, Guodong; Tomsovic, Kevin

    A power distribution system operates most efficiently with voltage deviations along a feeder kept to a minimum and must ensure all voltages remain within specified limits. Recently with the increased integration of photovoltaics, the variable power output has led to increased voltage fluctuations and violation of operating limits. This study proposes an optimization model based on a recently developed heuristic search method, grey wolf optimization, to coordinate the various distribution controllers. Several different case studies on IEEE 33 and 69 bus test systems modified by including tap changing transformers, capacitors and photovoltaic solar panels are performed. Simulation results are comparedmore » to two other heuristic-based optimization methods: harmony search and differential evolution. Finally, the simulation results show the effectiveness of the method and indicate the usage of reactive power outputs of PVs facilitates better voltage magnitude profile.« less

  8. Coordinated distribution network control of tap changer transformers, capacitors and PV inverters

    DOE PAGES

    Ceylan, Oğuzhan; Liu, Guodong; Tomsovic, Kevin

    2017-06-08

    A power distribution system operates most efficiently with voltage deviations along a feeder kept to a minimum and must ensure all voltages remain within specified limits. Recently with the increased integration of photovoltaics, the variable power output has led to increased voltage fluctuations and violation of operating limits. This study proposes an optimization model based on a recently developed heuristic search method, grey wolf optimization, to coordinate the various distribution controllers. Several different case studies on IEEE 33 and 69 bus test systems modified by including tap changing transformers, capacitors and photovoltaic solar panels are performed. Simulation results are comparedmore » to two other heuristic-based optimization methods: harmony search and differential evolution. Finally, the simulation results show the effectiveness of the method and indicate the usage of reactive power outputs of PVs facilitates better voltage magnitude profile.« less

  9. Quality factor concept in piezoceramic transformer performance description.

    PubMed

    Mezheritsky, Alex V

    2006-02-01

    A new general approach based on the quality factor concept to piezoceramic transformer (PT) performance description is proposed. The system's quality factor, material elastic anisotropy, and coupling factors of the input and output sections of an electrically excited and electrically loaded PT fully characterize its resonance and near-resonance behavior. The PT efficiency, transformation ratio, and input and output power were analytically analyzed and simulated as functions of the load and frequency for the simplest classical Langevin-type and Rosen-type PT designs. A new formulation of the electrical input impedance allows one to separate the power consumed by PT from the power transferred into the load. The system's PT quality factor takes into account losses in each PT "input-output-load" functional components. The loading process is changing PT input electrical impedance on the way that under loading the minimum series impedance is increasing and the maximum parallel impedance is decreasing coincidentally. The quality-factors ratio, between the states of fully loaded and nonloaded PT, is one of the best measures of PTs dynamic performance--practically, the lower the ratio is, the better PT efficiency. A simple and effective method for the loaded PT quality factor determination is proposed. As was found, a piezoceramic with low piezoelectric anisotropy is required to provide maximum PT efficiency and higher corresponding voltage gain. Limitations on the PT output voltage and power, caused by nonlinear effects in piezoceramics, were established.

  10. Heat engine development for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The technical status of three heat engines (Stirling, high-temperature Brayton, and Combined cycle) for use in solar thermal power systems is presented. Performance goals necessary to develop a system competitive with conventional power requirements include an external heated engine output less than 40 kW, and efficiency power conversion subsystem at least 40% at rated output, and a half-power efficiency of at least 37%. Results show that the Stirling engine can offer a 39% efficiency with 100 hours of life, and a 20% efficiency with 10,000 hours of life, but problems with seals and heater heads exist. With a demonstrated efficiency near 31% at 1500 F and a minimum lifetime of 100,000 hours, the Brayton engine does not offer sufficient engine lifetime, efficiency, and maintenance for solar thermal power systems. Examination of the Rankine bottoming cycle of the Combined cycle engine reveals a 30 year lifetime, but a low efficiency. Additional development of engines for solar use is primarily in the areas of components to provide a long lifetime, high reliability, and low maintenance (no more than $0.001/kW-hr).

  11. Economic optimization of the energy transport component of a large distributed solar power plant

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1976-01-01

    A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.

  12. Diode-pumped continuous-wave and passively Q-switched 1066 nm Nd:GYNbO4 laser

    NASA Astrophysics Data System (ADS)

    Ma, Yufei; Peng, Zhenfang; He, Ying; Li, Xudong; Yan, Renpeng; Yu, Xin; Zhang, Qingli; Ding, Shoujun; Sun, Dunlu

    2017-08-01

    A diode-pumped passively Q-switched 1066 nm laser with a novel Nd:Gd0.69Y0.3NbO4 mixed crystal was demonstrated for the first time to the best of our knowledge. In the continuous-wave (CW) operation, optimization selection of output couplers was carried out, and a maximum output power of 2.13 W was obtained when the plane mirror with transmission of 25% was chosen and the absorbed pump power was 10.5 W. The Cr4+:YAG passively Q-switched Nd:Gd0.69Y0.3NbO4 laser performance was investigated. At an absorbed pump power of 10.5 W, using Cr4+:YAG with initial transmission of 80%, the obtained minimum pulse width was 7.2 ns with the pulse repetition rate of 19 kHz. The single pulse energy and peak power were estimated to be 26.7 µJ and 3.7 kW, respectively.

  13. A 190 mV start-up and 59.2% efficiency CMOS gate boosting voltage doubler charge pump in 0.18 µm standard CMOS process for energy harvesting

    NASA Astrophysics Data System (ADS)

    Yoshida, Minori; Miyaji, Kousuke

    2018-04-01

    A start-up charge pump circuit for an extremely low input voltage (V IN) is proposed and demonstrated. The proposed circuit uses an inverter level shifter to generate a 2V IN voltage swing to the gate of both main NMOS and PMOS power transistors in a charge pump to reduce the channel resistance. The proposed circuit is fully implemented in a standard 0.18 µm CMOS process, and the measurement result shows that a minimum input voltage of 190 mV is achieved and output power increases by 181% compared with the conventional forward-body-bias scheme at a 300 mV input voltage. The proposed scheme achieves a maximum efficiency of 59.2% when the input voltage is 390 mV and the output current is 320 nA. The proposed circuit is suitable as a start-up circuit in ultralow power energy harvesting power management applications to boost-up from below threshold voltage.

  14. Use of a supercontinuum white light in evaluating the spectral sensitivity of the pupil light reflex

    NASA Astrophysics Data System (ADS)

    Chin, Catherine; Leick, Lasse; Podoleanu, Adrian; Lall, Gurprit S.

    2018-03-01

    We assessed the spectral sensitivity of the pupillary light reflex in mice using a high power super continuum white light (SCWL) source in a dual wavelength configuration. This novel approach was compared to data collected from a more traditional setup using a Xenon arc lamp fitted with monochromatic interference filters. Irradiance response curves were constructed using both systems, with the added benefit of a two-wavelength, equivocal power, output using the SCWL. The variables applied to the light source were intensity, wavelength and stimulus duration through which the physiological output measured was the minimum pupil size attained under such conditions. We show that by implementing the SCWL as our novel stimulus we were able to dramatically increase the physiological usefulness of our pupillometry system.

  15. The Snow Data System at NASA JPL

    NASA Astrophysics Data System (ADS)

    Horn, J.; Painter, T. H.; Bormann, K. J.; Rittger, K.; Brodzik, M. J.; Skiles, M.; Burgess, A. B.; Mattmann, C. A.; Ramirez, P.; Joyce, M.; Goodale, C. E.; McGibbney, L. J.; Zimdars, P.; Yaghoobi, R.

    2017-12-01

    The Snow Data System at NASA JPL includes data processing pipelines built with open source software, Apache 'Object Oriented Data Technology' (OODT). Processing is carried out in parallel across a high-powered computing cluster. The pipelines use input data from satellites such as MODIS, VIIRS and Landsat. They apply algorithms to the input data to produce a variety of outputs in GeoTIFF format. These outputs include daily data for SCAG (Snow Cover And Grain size) and DRFS (Dust Radiative Forcing in Snow), along with 8-day composites and MODICE annual minimum snow and ice calculations. This poster will describe the Snow Data System, its outputs and their uses and applications. It will also highlight recent advancements to the system and plans for the future.

  16. The Snow Data System at NASA JPL

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Laidlaw, R.; Painter, T. H.; Bormann, K. J.; Rittger, K.; Brodzik, M. J.; Skiles, M.; Burgess, A. B.; Mattmann, C. A.; Ramirez, P.; Goodale, C. E.; McGibbney, L. J.; Zimdars, P.; Yaghoobi, R.

    2016-12-01

    The Snow Data System at NASA JPL includes data processing pipelines built with open source software, Apache 'Object Oriented Data Technology' (OODT). Processing is carried out in parallel across a high-powered computing cluster. The pipelines use input data from satellites such as MODIS, VIIRS and Landsat. They apply algorithms to the input data to produce a variety of outputs in GeoTIFF format. These outputs include daily data for SCAG (Snow Cover And Grain size) and DRFS (Dust Radiative Forcing in Snow), along with 8-day composites and MODICE annual minimum snow and ice calculations. This poster will describe the Snow Data System, its outputs and their uses and applications. It will also highlight recent advancements to the system and plans for the future.

  17. Power and Efficiency Optimized in Traveling-Wave Tubes Over a Broad Frequency Bandwidth

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2001-01-01

    A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT's are critical components in deep space probes, communication satellites, and high-power radar systems. Power conversion efficiency is of paramount importance for TWT's employed in deep space probes and communication satellites. A previous effort was very successful in increasing efficiency and power at a single frequency (ref. 1). Such an algorithm is sufficient for narrow bandwidth designs, but for optimal designs in applications that require high radiofrequency power over a wide bandwidth, such as high-density communications or high-resolution radar, the variation of the circuit response with respect to frequency must be considered. This work at the NASA Glenn Research Center is the first to develop techniques for optimizing TWT efficiency and output power over a broad frequency bandwidth (ref. 2). The techniques are based on simulated annealing, which has the advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 3). Two new broadband simulated annealing algorithms were developed that optimize (1) minimum saturated power efficiency over a frequency bandwidth and (2) simultaneous bandwidth and minimum power efficiency over the frequency band with constant input power. The algorithms were incorporated into the NASA coupled-cavity TWT computer model (ref. 4) and used to design optimal phase velocity tapers using the 59- to 64-GHz Hughes 961HA coupled-cavity TWT as a baseline model. In comparison to the baseline design, the computational results of the first broad-band design algorithm show an improvement of 73.9 percent in minimum saturated efficiency (see the top graph). The second broadband design algorithm (see the bottom graph) improves minimum radiofrequency efficiency with constant input power drive by a factor of 2.7 at the high band edge (64 GHz) and increases simultaneous bandwidth by 500 MHz.

  18. High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode.

    PubMed

    Ji, Encai; Liu, Qiang; Nie, Mingming; Cao, Xuezhe; Fu, Xing; Gong, Mali

    2016-03-15

    We first demonstrate the laser performance of a compact 2.06 μm Ho: YLF laser resonantly pumped by a broadband fiber-coupled diode. In continuous-wave (CW) operation, maximum output power of 1.63 W, corresponding to a slope efficiency of 89.2%, was obtained with a near diffraction-limited beam quality. In actively Q-switched operation, maximum pulse energy of 1.1 mJ was achieved at the repetition frequency of 100 Hz. The minimum pulse duration was 43 ns. The performance in both the CW and Q-switched regimes indicates that the current fiber-coupled diode in-band pumped Ho: YLF laser has great potential in certain conditions that require several watts of output power or several millijoules of short pulse energy.

  19. System and method for design and optimization of grid connected photovoltaic power plant with multiple photovoltaic module technologies

    DOEpatents

    Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich

    2016-03-29

    A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.

  20. Ultra-wideband microwave photonic phase shifter with configurable amplitude response.

    PubMed

    Pagani, M; Marpaung, D; Eggleton, B J

    2014-10-15

    We introduce a new principle that enables separate control of the amplitude and phase of an optical carrier, simply by controlling the power of two stimulated Brillouin scattering (SBS) pumps. This technique is used to implement a microwave photonic phase shifter with record performance, which solves the bandwidth limitation of previous gain-transparent SBS-based phase shifters, while achieving unprecedented minimum power fluctuations, as a function of phase shift. We demonstrate 360° continuously tunable phase shift, with less than 0.25 dB output power fluctuations, over a frequency band from 1.5 to 31 GHz, limited only by the measurement equipment.

  1. Wide-area Power System Damping Control Coordination Based on Particle Swarm Optimization with Time Delay Considered

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Jiang, Y.

    2017-10-01

    To ensure satisfactory dynamic performance of controllers in time-delayed power systems, a WAMS-based control strategy is investigated in the presence of output feedback delay. An integrated approach based on Pade approximation and particle swarm optimization (PSO) is employed for parameter configuration of PSS. The coordination configuration scheme of power system controllers is achieved by a series of stability constraints at the aim of maximizing the minimum damping ratio of inter-area mode of power system. The validity of this derived PSS is verified on a prototype power system. The findings demonstrate that the proposed approach for control design could damp the inter-area oscillation and enhance the small-signal stability.

  2. Integrated topology for an aircraft electric power distribution system using MATLAB and ILP optimization technique and its implementation

    NASA Astrophysics Data System (ADS)

    Madhikar, Pratik Ravindra

    The most important and crucial design feature while designing an Aircraft Electric Power Distribution System (EPDS) is reliability. In EPDS, the distribution of power is from top level generators to bottom level loads through various sensors, actuators and rectifiers with the help of AC & DC buses and control switches. As the demands of the consumer is never ending and the safety is utmost important, there is an increase in loads and as a result increase in power management. Therefore, the design of an EPDS should be optimized to have maximum efficiency. This thesis discusses an integrated tool that is based on a Need Based Design method and Fault Tree Analysis (FTA) to achieve the optimum design of an EPDS to provide maximum reliability in terms of continuous connectivity, power management and minimum cost. If an EPDS is formulated as an optimization problem then it can be solved with the help of connectivity, cost and power constraints by using a linear solver to get the desired output of maximum reliability at minimum cost. Furthermore, the thesis also discusses the viability and implementation of the resulted topology on typical large aircraft specifications.

  3. A new approach for minimum phase output definition

    NASA Astrophysics Data System (ADS)

    Jahangiri, Fatemeh; Talebi, Heidar Ali; Menhaj, Mohammad Bagher; Ebenbauer, Christian

    2017-01-01

    This paper presents a novel method for output redefinition for linear systems. The approach also determines possible relative degrees for the systems corresponding to any new output vector. To guarantee the minimum phase property with a prescribed relative degree, a set of new conditions is introduced. A key feature of these conditions is that there is no need to any form of transformations which make the scheme suitable for optimisation problems in control to ensure the minimum phase property. Moreover, the results are useful for sensor placement problems and for obtaining minimum phase approximations of non-minimum phase systems. Numerical examples including an example of unmanned aerial vehicle systems are given to demonstrate the effectiveness of the methodology.

  4. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG.

    PubMed

    Dolasinski, Brian; Powers, Peter E; Haus, Joseph W; Cooney, Adam

    2015-02-09

    We report a widely tunable narrowband terahertz (THz) source via difference frequency generation (DFG). A narrowband THz source uses the output of dual seeded periodically poled lithium niobate (PPLN) optical parametric generators (OPG) combined in the nonlinear crystal 4-dimthylamino-N-methyl-4-stilbazolium-tosylate (DAST). We demonstrate a seamlessly tunable THZ output that tunes from 1.5 THz to 27 THz with a minimum bandwidth of 3.1 GHz. The effects of dispersive phase matching, two-photon absorption, and polarization were examined and compared to a power emission model that consisted of the current accepted parameters of DAST.

  5. Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal

    NASA Astrophysics Data System (ADS)

    Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan

    2018-02-01

    Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.

  6. CW laser pumped emerald laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  7. Possibilities of using pulsed lasers and copper-vapour laser system (CVL and CVLS) in modern technological equipment

    NASA Astrophysics Data System (ADS)

    Labin, N. A.; Bulychev, N. A.; Kazaryan, M. A.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.

    2015-12-01

    Research on CVL installations with an average power of 20-25 W of cutting and drilling has shown wide range of applications of these lasers for micromachining of metals and a wide range of non-metallic materials up to 1-2 mm. From the analysis indicated that peak power density in the focused light spot of 10-30 μm diameter must be 109 -1012 W/cm2 the productivity and quality micromachining, when the treatment material is preferably in the evaporative mode micro explosions, followed by the expansion of the superheated vapor and the liquid. To achieve such levels of power density, a minimum heat affected zone (5- 10 μm) and a minimum surface roughness of the cut (1-2 μm), the quality of the output beam of radiation should be as high. Ideally, to ensure the quality of the radiation, the structure of CVL output beam must be single-beam, diffraction divergence and have at duration pulses τi = 20-40 ns. The pulse energy should have low values of 0.1-1 mJ at pulse repetition rates of 10-20 kHz. Axis of the radiation beam instability of the pattern to be three orders of magnitude smaller than the diffraction limit of the divergence. The spot of the focused radiation beam must have a circular shape with clear boundary, and a Gaussian intensity distribution.

  8. Design and test of SX-FEL cavity BPM

    NASA Astrophysics Data System (ADS)

    Yuan, Ren-Xian; Zhou, Wei-Min; Chen, Zhi-Chu; Yu, Lu-Yang; Wang, Bao-Pen; Leng, Yong-Bin

    2013-11-01

    This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1 μm, even 0.1 μm. The CBPM was optimized by using a coupling slot to damp the TM010 mode in the output signal. The isolation of TM010 mode is about 117 dB, and the shunt impedance is about 200 Ω@4.65 GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM110 mode was about 90 mV/mm when the source was 6 dBm, and the accomplishable minimum voltage was about 200 μV. The resolution of the CBPM was about 0.1 μm from the linear fitting result based on the cold test.

  9. Broadband tunable integrated CMOS pulser with 80-ps minimum pulse width for gain-switched semiconductor lasers.

    PubMed

    Chen, Shaoqiang; Diao, Shengxi; Li, Pengtao; Nakamura, Takahiro; Yoshita, Masahiro; Weng, Guoen; Hu, Xiaobo; Shi, Yanling; Liu, Yiqing; Akiyama, Hidefumi

    2017-07-31

    High power pulsed lasers with tunable pulse widths are highly favored in many applications. When combined with power amplification, gain-switched semiconductor lasers driven by broadband tunable electric pulsers can meet such requirements. For this reason, we designed and produced a low-cost integrated CMOS pulse generator with a minimum pulse width of 80 ps and a wide tuning range of up to 270 ns using a 40-nm microelectronic process technique. We used this pulser to drive a 1.3-µm semiconductor laser diode directly, and thereafter investigated the gain-switching properties of the laser system. The optical pulses consist of a spike followed by a steady state region. Tuning the width of the electrical pulse down to approximately 1.5 ns produces optical pulses consisting only of the spike, which has a minimum pulse-width of 100 ps. Moreover, the duration of the steady state can be tuned continuously by tuning the electrical pulse width, with a peak power of approximately 5 mW. The output voltage of the electric pulser has a tuning range of 0.8-1.5 V that can be used to directly drive semiconductor laser diodes with wavelengths in the near-infrared spectrum, which are suitable for power amplification with rare-earth doped fiber amplifiers.

  10. Comparing short-term complex and compound training programs on vertical jump height and power output.

    PubMed

    Mihalik, Jason P; Libby, Jeremiah J; Battaglini, Claudio L; McMurray, Robert G

    2008-01-01

    The purpose of this study was to determine whether there were differences in vertical jump height and lower body power production gains between complex and compound training programs. A secondary purpose was to determine whether differences in gains were observed at a faster rate between complex and compound training programs. Thirty-one college-aged club volleyball players (11 men and 20 women) were assigned into either a complex training group or a compound training group based on gender and pre-training performance measures. Both groups trained twice per week for 4 weeks. Work was equated between the 2 groups. Complex training alternated between resistance and plyometric exercises on each training day; whereas, compound training consisted of resistance training on one day and plyometric training on the other. Our analyses showed significant improvements in vertical jump height in both training groups after only 3 weeks of training (P < 0.0001); vertical jump height increased by approximately 5% and 9% in the complex and compound training groups, respectively. However, neither group improved significantly better than the other, nor did either group experience faster gains in vertical leap or power output. The results of this study suggest that performing a minimum of 3 weeks of either complex or compound training is effective for improving vertical jump height and power output; thus, coaches should choose the program which best suits their training schedules.

  11. Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm.

    PubMed

    Coluccelli, Nicola; Lagatsky, Alexander; Di Lieto, Alberto; Tonelli, Mauro; Galzerano, Gianluca; Sibbett, Wilson; Laporta, Paolo

    2011-08-15

    We demonstrate the passive mode-locking operation of an in-band-pumped Ho:YLiF(4) laser at 2.06 μm using a semiconductor saturable absorber mirror based on InGaAsSb quantum wells. A transform-limited pulse train with minimum duration of 1.1 ps and average power of 0.58 W has been obtained at a repetition frequency of 122 MHz. A maximum output power of 1.7 W has been generated with a corresponding pulse duration of 1.9 ps. © 2011 Optical Society of America

  12. Rotor dynamic considerations for large wind power generator systems

    NASA Technical Reports Server (NTRS)

    Ormiston, R. A.

    1973-01-01

    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  13. Rolling scheduling of electric power system with wind power based on improved NNIA algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Q. S.; Luo, C. J.; Yang, D. J.; Fan, Y. H.; Sang, Z. X.; Lei, H.

    2017-11-01

    This paper puts forth a rolling modification strategy for day-ahead scheduling of electric power system with wind power, which takes the operation cost increment of unit and curtailed wind power of power grid as double modification functions. Additionally, an improved Nondominated Neighbor Immune Algorithm (NNIA) is proposed for solution. The proposed rolling scheduling model has further improved the operation cost of system in the intra-day generation process, enhanced the system’s accommodation capacity of wind power, and modified the key transmission section power flow in a rolling manner to satisfy the security constraint of power grid. The improved NNIA algorithm has defined an antibody preference relation model based on equal incremental rate, regulation deviation constraints and maximum & minimum technical outputs of units. The model can noticeably guide the direction of antibody evolution, and significantly speed up the process of algorithm convergence to final solution, and enhance the local search capability.

  14. Multi-directional electromagnetic vibration energy harvester using circular Halbach array

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Liu, Xin; Hu, Zhenwen; Chang, Qijie; Gao, Yuan; Yang, Jin; Wen, Jing; Tang, Xiaosheng; Hu, Wei

    2017-05-01

    In this paper, a multi-directional electromagnetic vibration energy harvester (EVEH) using the circular Halbach array (HA) is presented based on the Faraday's law of electromagnetic induction. The circular HA is a specific arrangement of permanent magnets which could concentrate the magnetic field inside the circular array by a certain rule, while reduce the magnetic field outside the circular array to almost zero at the same time. The HA could break through the limitation of the related published vibration energy harvesters that could work in only one single direction. Thus, it could optimize the collecting efficiency. The experimental results show that the presented harvester could generate considerable electric output power in all vibrating directions. An optimal output power is 9.32 mW at a resonant frequency of 15.40 Hz with an acceleration of 0.5 g (with g=9.8 m/s2) across a 700-turn coil in the vibrating direction of 90°, which is 1.53 times than the minimum optimal one in the direction of 45°. The EVEH using the circular HA could work in all directions and generate considerable electric output power, which validates the feasibility of the EVEH that works in all directions and is beneficial for improving the practical application.

  15. System for computer controlled shifting of an automatic transmission

    DOEpatents

    Patil, Prabhakar B.

    1989-01-01

    In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determine from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.

  16. Closed loop computer control for an automatic transmission

    DOEpatents

    Patil, Prabhakar B.

    1989-01-01

    In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determined from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.

  17. Area/latency optimized early output asynchronous full adders and relative-timed ripple carry adders.

    PubMed

    Balasubramanian, P; Yamashita, S

    2016-01-01

    This article presents two area/latency optimized gate level asynchronous full adder designs which correspond to early output logic. The proposed full adders are constructed using the delay-insensitive dual-rail code and adhere to the four-phase return-to-zero handshaking. For an asynchronous ripple carry adder (RCA) constructed using the proposed early output full adders, the relative-timing assumption becomes necessary and the inherent advantages of the relative-timed RCA are: (1) computation with valid inputs, i.e., forward latency is data-dependent, and (2) computation with spacer inputs involves a bare minimum constant reverse latency of just one full adder delay, thus resulting in the optimal cycle time. With respect to different 32-bit RCA implementations, and in comparison with the optimized strong-indication, weak-indication, and early output full adder designs, one of the proposed early output full adders achieves respective reductions in latency by 67.8, 12.3 and 6.1 %, while the other proposed early output full adder achieves corresponding reductions in area by 32.6, 24.6 and 6.9 %, with practically no power penalty. Further, the proposed early output full adders based asynchronous RCAs enable minimum reductions in cycle time by 83.4, 15, and 8.8 % when considering carry-propagation over the entire RCA width of 32-bits, and maximum reductions in cycle time by 97.5, 27.4, and 22.4 % for the consideration of a typical carry chain length of 4 full adder stages, when compared to the least of the cycle time estimates of various strong-indication, weak-indication, and early output asynchronous RCAs of similar size. All the asynchronous full adders and RCAs were realized using standard cells in a semi-custom design fashion based on a 32/28 nm CMOS process technology.

  18. Performance of a Dynamically Controlled Inverter in a Photovoltaic System Interconnected with a Secondary Network Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coddington, M. H.; Kroposki, B. D.; Basso, T.

    In 2008, a 300 kW{sub peak} photovoltaic (PV) system was installed on the rooftop of the Colorado Convention Center (CCC). The installation was unique for the electric utility, Xcel Energy, as it had not previously permitted a PV system to be interconnected on a building served by the local secondary network distribution system (network). The PV system was installed with several provisions; one to prevent reverse power flow, another called a dynamically controlled inverter (DCI), that curtails the output of the PV inverters to maintain an amount of load supplied by Xcel Energy at the CCC. The DCI system utilizesmore » current transformers (CTs) to sense power flow to insure that a minimum threshold is maintained from Xcel Energy through the network transformers. The inverters are set to track the load on each of the three phases and curtail power from the PV system when the generated PV system current reaches 95% of the current on any phase. This is achieved by the DCI, which gathers inputs from current transformers measuring the current from the PV array, Xcel, and the spot network load. Preventing reverse power flow is a critical technical requirement for the spot network which serve this part of the CCC. The PV system was designed with the expectation that the DCI system would not curtail the PV system, as the expected minimum load consumption was historically higher than the designed PV system size. However, the DCI system has operated many days during the course of a year, and the performance has been excellent. The DCI system at the CCC was installed as a secondary measure to insure that a minimum level of power flows to the CCC from the Xcel Energy network. While this DCI system was intended for localized control, the system could also reduce output percent if an external smart grid control signal was employed. This paper specifically focuses on the performance of the innovative design at this installation; however, the DCI system could also be used for new s- art grid-enabled distribution systems where renewables power contributions at certain conditions or times may need to be curtailed.« less

  19. Satellite power system concept development and evaluation program. Volume 2: System definition

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.

  20. Initial test results with a single-cylinder rhombic-drive Stirling engine. [to be applied to automobile engine design to conserve energy

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.; Thieme, L. G.; Walter, R. J.

    1978-01-01

    A 6 kW (8 hp), single-cylinder, rhombic-drive Stirling engine was restored to operating condition, and preliminary characterization tests run with hydrogen and helium as the working gases. Initial tests show the engine brake specific fuel consumption (BSFC) with hydrogen working gas to be within the range of BSFC observed by the Army at Fort Belvoir, Virginia, in 1966. The minimum system specific fuel consumption (SFC) observed during the initial tests with hydrogen was 669 g/kW hr (1.1 lb/hpx hr), compared with 620 g/kWx hr (1.02 lb/hpx hr) for the Army tests. However, the engine output power for a given mean compression-space pressure was lower than for the Army tests. The observed output power at a working-space pressure of 5 MPa (725 psig) was 3.27 kW (4.39 hp) for the initial tests and 3.80 kW (5.09 hp) for the Army tests. As expected, the engine power with helium was substantially lower than with hydrogen.

  1. Automated array assembly task, phase 1

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1977-01-01

    State-of-the-art technologies applicable to silicon solar cell and solar cell module fabrication were assessed. The assessment consisted of a technical feasibility evaluation and a cost projection for high volume production of solar cell modules. Design equations based on minimum power loss were used as a tool in the evaluation of metallization technologies. A solar cell process sensitivity study using models, computer calculations, and experimental data was used to identify process step variation and cell output variation correlations.

  2. Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Button, Robert M.

    1999-01-01

    A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak power point through various load transients, including sunlight discharge transients when the total load exceeded the maximum solar array output power.

  3. Flyback CCM inverter for AC module applications: iterative learning control and convergence analysis

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Ho; Kim, Minsung

    2017-12-01

    This paper presents an iterative learning controller (ILC) for an interleaved flyback inverter operating in continuous conduction mode (CCM). The flyback CCM inverter features small output ripple current, high efficiency, and low cost, and hence it is well suited for photovoltaic power applications. However, it exhibits the non-minimum phase behaviour, because its transfer function from control duty to output current has the right-half-plane (RHP) zero. Moreover, the flyback CCM inverter suffers from the time-varying grid voltage disturbance. Thus, conventional control scheme results in inaccurate output tracking. To overcome these problems, the ILC is first developed and applied to the flyback inverter operating in CCM. The ILC makes use of both predictive and current learning terms which help the system output to converge to the reference trajectory. We take into account the nonlinear averaged model and use it to construct the proposed controller. It is proven that the system output globally converges to the reference trajectory in the absence of state disturbances, output noises, or initial state errors. Numerical simulations are performed to validate the proposed control scheme, and experiments using 400-W AC module prototype are carried out to demonstrate its practical feasibility.

  4. CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.

    PubMed

    Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P

    2010-03-15

    We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.

  5. Generation of ultrashort pulses with minimum duration of 90\\ {\\text{fs}} in a hybrid mode-locked erbium-doped all-fibre ring laser

    NASA Astrophysics Data System (ADS)

    Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.

    2016-11-01

    Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.

  6. Performance of chemical vapor deposition fabricated graphene absorber mirror in Yb3+ : Sc2SiO5 mode-locked laser

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Li, Yaqi; Zhu, Hongtong; Jiang, Shouzhen; Xu, Shicai; Liu, Jie; Zheng, Lihe; Su, Liangbi; Xu, Jun

    2014-12-01

    A reflective graphene saturable absorber mirror (SAM) was successfully fabricated by chemical vapor deposition technology. A stable diode-pumped passively mode-locked Yb3+:Sc2SiO5 laser using a graphene SAM as a saturable absorber was accomplished for the first time. The measured average output power amounts to 351 mW under the absorbed pump power of 12.5 W. Without prisms compensating for dispersion, the minimum pulse duration of 7 ps with a repetition rate of 97 MHz has been obtained at the central wavelength of 1063 nm. The corresponding peak power and the maximum pulse energy were 516 W and 3.6 nJ, respectively.

  7. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.

    PubMed

    Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli

    2012-08-01

    We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys. A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy E(h) and a low constant energy E(c), respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size L(A)) for given L(A) (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η = 1 - E(c)/E(h) of the engine cycle is bounded from above the Carnot value η(c) =1 - T(c)/T(h).

  8. Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2018-01-01

    This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.

  9. Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Huang, Shouyuan; Xu, Xianfan

    2016-10-01

    This paper presents a methodology for design optimization of thermoelectric-based waste heat recovery systems called thermoelectric generators (TEGs). The aim is to maximize the power output from thermoelectrics which are used as add-on modules to an existing gas-phase heat exchanger, without negative impacts, e.g., maintaining a minimum heat dissipation rate from the hot side. A numerical model is proposed for TEG coupled heat transfer and electrical power output. This finite-volume-based model simulates different types of heat exchangers, i.e., counter-flow and cross-flow, for TEGs. Multiple-filled skutterudites and bismuth-telluride-based thermoelectric modules (TEMs) are applied, respectively, in higher and lower temperature regions. The response surface methodology is implemented to determine the optimized TEG size along and across the flow direction and the height of thermoelectric couple legs, and to analyze their covariance and relative sensitivity. A genetic algorithm is employed to verify the globality of the optimum. The presented method will be generally useful for optimizing heat-exchanger-based TEG performance.

  10. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  11. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

    2011-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  12. Reliability Investigation of Low Noise GaAs FETs.

    DTIC Science & Technology

    1981-07-01

    measured by switching its input to the 10 GHz sweep oscillator signal and its output to the microwave power meter. The measured noise figure Fmeas and...associated gain Ga are then used to calculate the minimum noise figure Fmin of the FET: F -IF. zF o Frmin = Fmeas a where F is the measured noise figure...stayed within specification longer. As a matter of interest, Table 5-2 shows that the vast majority of temperature induced failures, that is, ( 60 + 33

  13. Experimental Investigation and Computer Modeling of Optical Switching in Distributed Bragg Reflector and Vertical Cavity Surface Emitting Laser Structures.

    DTIC Science & Technology

    1995-12-01

    of a Molecular Beam Epitaxy (MBE) system prior to growing a Vertical Cavity Surface Emitting Laser ( VCSEL ). VCSEL bistability is discussed later in...addition, optical bistability 1 in the reflectivity of a DBR, as well as in the lasing power, wavelength, and beam divergence of a lasing VCSEL are...Spectral Reflectivity of AlGaAs/AlAs VCSEL Top DBR Mirror Cavity Bottom DBR Mirror Substrate Output Beam Resonance Pump Minimum Stop Band Figure 2. VCSEL

  14. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.

    PubMed

    Jones, Andrew M; Vanhatalo, Anni

    2017-03-01

    The curvilinear relationship between power output and the time for which it can be sustained is a fundamental and well-known feature of high-intensity exercise performance. This relationship 'levels off' at a 'critical power' (CP) that separates power outputs that can be sustained with stable values of, for example, muscle phosphocreatine, blood lactate, and pulmonary oxygen uptake ([Formula: see text]), from power outputs where these variables change continuously with time until their respective minimum and maximum values are reached and exercise intolerance occurs. The amount of work that can be done during exercise above CP (the so-called W') is constant but may be utilized at different rates depending on the proximity of the exercise power output to CP. Traditionally, this two-parameter CP model has been employed to provide insights into physiological responses, fatigue mechanisms, and performance capacity during continuous constant power output exercise in discrete exercise intensity domains. However, many team sports (e.g., basketball, football, hockey, rugby) involve frequent changes in exercise intensity and, even in endurance sports (e.g., cycling, running), intensity may vary considerably with environmental/course conditions and pacing strategy. In recent years, the appeal of the CP concept has been broadened through its application to intermittent high-intensity exercise. With the assumptions that W' is utilized during work intervals above CP and reconstituted during recovery intervals below CP, it can be shown that performance during intermittent exercise is related to four factors: the intensity and duration of the work intervals and the intensity and duration of the recovery intervals. However, while the utilization of W' may be assumed to be linear, studies indicate that the reconstitution of W' may be curvilinear with kinetics that are highly variable between individuals. This has led to the development of a new CP model for intermittent exercise in which the balance of W' remaining ([Formula: see text]) may be calculated with greater accuracy. Field trials of athletes performing stochastic exercise indicate that this [Formula: see text] model can accurately predict the time at which W' tends to zero and exhaustion is imminent. The [Formula: see text] model potentially has important applications in the real-time monitoring of athlete fatigue progression in endurance and team sports, which may inform tactics and influence pacing strategy.

  15. Potential of Micro Hydroelectric Generator Embedded at 30,000 PE Effluent Discharge of Sewerage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Che Munaaim, M. A.; Razali, N.; Ayob, A.; Hamidin, N.; Othuman Mydin, M. A.

    2018-03-01

    A micro hydroelectric generator is an energy conversion approach to generate electricity from potential (motion) energy to an electrical energy. In this research, it is desired to be implemented by using a micro hydroelectric generator which is desired to be embedded at the continuous flow of effluent discharge point of domestic sewerage treatment plant (STP). This research evaluates the potential of electricity generation from micro hydroelectric generator attached to 30,000 PE sewerage treatment plant. The power output obtained from calculation of electrical power conversion is used to identify the possibility of this system and its ability to provide electrical energy, which can minimize the cost of electric bill especially for the pumping system. The overview of this system on the practical application with the consideration of payback period is summarized. The ultimate aim of the whole application is to have a self-ecosystem electrical power generated for the internal use of STP by using its own flowing water in supporting the sustainable engineering towards renewable energy and energy efficient approach. The results shows that the output power obtained is lower than expected output power (12 kW) and fall beyond of the range of a micro hydro power (5kW - 100kW) since it is only generating 1.58 kW energy by calculation. It is also observed that the estimated payback period is longer which i.e 7 years to recoup the return of investment. A range of head from 4.5 m and above for the case where the flow shall at least have maintained at 0.05 m3/s in the selected plant in order to achieved a feasible power output. In conclusion, wastewater treatment process involves the flowing water (potential energy) especially at the effluent discharge point of STP is possibly harvested for electricity generation by embedding the micro hydroelectric generator. However, the selection of STP needs to have minimum 4.5 meter head with 0.05 m3/s of continuously flowing water to make it feasible to harvest.

  16. Continuous-wave and acousto-optically Q-switched 1066 nm laser performance of a novel Nd:GdTaO4 crystal

    NASA Astrophysics Data System (ADS)

    Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun

    2018-05-01

    A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.

  17. Robot Electronics Architecture

    NASA Technical Reports Server (NTRS)

    Garrett, Michael; Magnone, Lee; Aghazarian, Hrand; Baumgartner, Eric; Kennedy, Brett

    2008-01-01

    An electronics architecture has been developed to enable the rapid construction and testing of prototypes of robotic systems. This architecture is designed to be a research vehicle of great stability, reliability, and versatility. A system according to this architecture can easily be reconfigured (including expanded or contracted) to satisfy a variety of needs with respect to input, output, processing of data, sensing, actuation, and power. The architecture affords a variety of expandable input/output options that enable ready integration of instruments, actuators, sensors, and other devices as independent modular units. The separation of different electrical functions onto independent circuit boards facilitates the development of corresponding simple and modular software interfaces. As a result, both hardware and software can be made to expand or contract in modular fashion while expending a minimum of time and effort.

  18. Community wind electrical power case study: Muir Beach. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bluhm, R.; Freebairn-Smith, R.

    1979-10-01

    Muir Beach experiences relatively steady northwest coastal winds. Recordings at anemometer stations have indicated wind speeds averaging 10 to 12 mph over the year. This compares favorably with the minimum of 8 to 9 mph generally considered necessary for feasible wind-electric generation. Given the town's wind environment, a 100 kW wind turbine of the kind planned could provide an annual output of about 150,000 kWh, or about one-eighth of Muir Beach's projected need. Especially promising for Muir Beach are other potential sites at higher elevations on neighboring Mt. Tamalpais, where federal records indicate annual average speeds of 18 mph. Eachmore » 100 kW wind turbine sited there could conservatively yield at least double and perhaps triple the output of the first system.« less

  19. Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging

    NASA Astrophysics Data System (ADS)

    Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas

    In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.

  20. Tunable output-frequency filter algorithm for imaging through scattering media under LED illumination

    NASA Astrophysics Data System (ADS)

    Zhou, Meiling; Singh, Alok Kumar; Pedrini, Giancarlo; Osten, Wolfgang; Min, Junwei; Yao, Baoli

    2018-03-01

    We present a tunable output-frequency filter (TOF) algorithm to reconstruct the object from noisy experimental data under low-power partially coherent illumination, such as LED, when imaging through scattering media. In the iterative algorithm, we employ Gaussian functions with different filter windows at different stages of iteration process to reduce corruption from experimental noise to search for a global minimum in the reconstruction. In comparison with the conventional iterative phase retrieval algorithm, we demonstrate that the proposed TOF algorithm achieves consistent and reliable reconstruction in the presence of experimental noise. Moreover, the spatial resolution and distinctive features are retained in the reconstruction since the filter is applied only to the region outside the object. The feasibility of the proposed method is proved by experimental results.

  1. Influence of temperature on Yb:YAG/Cr:YAG microchip laser operation

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Eisenschreiber, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2017-02-01

    The goal of this work was an investigation of the temperature influence (in range from 80 up to 320 K) on the laser properties of Yb:YAG/Cr:YAG Q-switched diode-pumped microchip laser. This laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The laser resonator pump mirror (HT for pump radiation, HR for generated radiation) was directly deposited on the Yb:YAG monolith part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr:YAG part. The microchip laser was placed in the temperature controlled cupreous holder inside vacuum chamber of the liquid nitrogen cryostat. For Yb:YAG part longitudinal pulsed pumping (pumping pulse length 2.5 ms, rep-rate 20 Hz, power amplitude 21W) a fibre coupled (core diameter 400 μm, NA= 0:22) laser diode, operating at wavelength 933 nm, was used. The microchip laser mean output power, pulse duration, repetition rate, emission wavelength, and laser beam profile were measured in dependence on temperature. The generated pulse length was in range from 2.2 ns to 1.1 ns (FWHM) with the minimum at 230 K. The single pulse energy was peaking (0.4 mJ) at 180 K. The highest peak power (325 kW) was obtained at 220 K. The highest pulse repetition rate (38 kHz) and output mean power (370mW) was reached for temperature 80 K.

  2. Design, fabrication and performance evaluation of an integrated reformed methanol fuel cell for portable use

    NASA Astrophysics Data System (ADS)

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Yin, Congwen; Liu, Xiaowei

    2018-06-01

    In this paper, an integrated reformed methanol fuel cell (RMFC) as a portable power source is designed, fabricated and tested. The RMFC consists of a methanol steam reformer (MSR), a high temperature proton exchange membrane fuel cell (HT-PEMFC) stack, a microcontroller unit (MCU) and other auxiliaries. First, a system model based on Matlab/Simulink is established to investigate the mass and energy transport characteristics within the whole system. The simulation results suggest a hydrogen flow rate of at least 670 sccm is needed for the system to output 30 W and simultaneously maintain thermal equilibrium. Second, a metallic MSR and an HT-PEMFC stack with 12 cells are fabricated and tested. The tests show that the RMFC system is able to function normally when the performances of all the components meet the minimum requirements. At last, in the experiment of successfully powering a laptop, the RMFC system exhibits a stable performance during the complete work flow of all the phases, namely start-up, output and shutdown. Moreover, with a conservative design of 20 W power rating, maximum energy conversion efficiency of the RMFC system can be achieved (36%), and good stability in long-term operation is shown.

  3. Advanced Power Conditioning System

    NASA Technical Reports Server (NTRS)

    Johnson, N. L.

    1971-01-01

    The second portion of the advanced power conditioning system development program is reported. Five 100-watt parallel power stages with majority-vote-logic feedback-regulator were breadboarded and tested to the design goals. The input voltage range was 22.1 to 57.4 volts at loads from zero to 500 watts. The maximum input ripple current was 200 mA pk-pk (not including spikes) at 511 watts load; the output voltage was 56V dc with a maximum change of 0.89 volts for all variations of line, load, and temperature; the maximum output ripple was 320 mV pk-pk at 512 watts load (dependent on filter capacitance value); the maximum efficiency was 93.9% at 212 watts and 50V dc input; the minimum efficiency was 87.2% at 80-watt load and 50V dc input; the efficiency was above 90% from 102 watts to 372 watts; the maximum excursion for an 80-watt load change was 2.1 volts with a recovery time of 7 milliseconds; and the unit performed within regulation limits from -20 C to +85 C. During the test sequence, margin tests and failure mode tests were run with no resulting degradation in performance.

  4. CMOS Optoelectronic Lock-In Amplifier With Integrated Phototransistor Array.

    PubMed

    An Hu; Chodavarapu, Vamsy P

    2010-10-01

    We describe the design and development of an optoelectronic lock-in amplifier (LIA) for optical sensing and spectroscopy applications. The prototype amplifier is fabricated using Taiwan Semiconductor Manufacturing Co. complementary metal-oxide semiconductor 0.35-μm technology and uses a phototransistor array (total active area is 400 μm × 640μm) to convert the incident optical signals into electrical currents. The photocurrents are then converted into voltage signals using a transimpedance amplifier for subsequent convenient signal processing by the LIA circuitry. The LIA is optimized to be operational at 20-kHz modulation frequency but is operational in the frequency range from 13 kHz to 25 kHz. The system is tested with a light-emitting diode (LED) as the light source. The noise and signal distortions are suppressed with filters and a phase-locked loop (PLL) implemented in the LIA. The output dc voltage of the LIA is proportional to the incident optical power. The minimum measured dynamic reserve and sensitivity are 1.31 dB and 34 mV/μW, respectively. The output versus input relationship has shown good linearity. The LIA consumes an average power of 12.79 mW with a 3.3-V dc power supply.

  5. Eigenspace-based minimum variance beamformer combined with Wiener postfilter for medical ultrasound imaging.

    PubMed

    Zeng, Xing; Chen, Cheng; Wang, Yuanyuan

    2012-12-01

    In this paper, a new beamformer which combines the eigenspace-based minimum variance (ESBMV) beamformer with the Wiener postfilter is proposed for medical ultrasound imaging. The primary goal of this work is to further improve the medical ultrasound imaging quality on the basis of the ESBMV beamformer. In this method, we optimize the ESBMV weights with a Wiener postfilter. With the optimization of the Wiener postfilter, the output power of the new beamformer becomes closer to the actual signal power at the imaging point than the ESBMV beamformer. Different from the ordinary Wiener postfilter, the output signal and noise power needed in calculating the Wiener postfilter are estimated respectively by the orthogonal signal subspace and noise subspace constructed from the eigenstructure of the sample covariance matrix. We demonstrate the performance of the new beamformer when resolving point scatterers and cyst phantom using both simulated data and experimental data and compare it with the delay-and-sum (DAS), the minimum variance (MV) and the ESBMV beamformer. We use the full width at half maximum (FWHM) and the peak-side-lobe level (PSL) to quantify the performance of imaging resolution and the contrast ratio (CR) to quantify the performance of imaging contrast. The FWHM of the new beamformer is only 15%, 50% and 50% of those of the DAS, MV and ESBMV beamformer, while the PSL is 127.2dB, 115dB and 60dB lower. What is more, an improvement of 239.8%, 232.5% and 32.9% in CR using simulated data and an improvement of 814%, 1410.7% and 86.7% in CR using experimental data are achieved compared to the DAS, MV and ESBMV beamformer respectively. In addition, the effect of the sound speed error is investigated by artificially overestimating the speed used in calculating the propagation delay and the results show that the new beamformer provides better robustness against the sound speed errors. Therefore, the proposed beamformer offers a better performance than the DAS, MV and ESBMV beamformer, showing its potential in medical ultrasound imaging. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Eudragit RS PO nanoparticles for sustained release of pyridostigmine bromide

    NASA Astrophysics Data System (ADS)

    Hoobakht, Fatemeh; Ganji, Fariba; Vasheghani-Farahani, Ebrahim; Mousavi, Seyyed Mohammad

    2013-09-01

    Pyridostigmine bromide (PB) is an inhibitor of cholinesterase, which is used in the treatment of myasthenia gravis and administered for protection against exposure to toxic nerve agents. Tests were done to investigate prolonging the half-life of PB and improving its release behavior. PB was loaded in nanoparticles (NPs) of Eudragit RS PO (Eu-RS) prepared using the technique of quasi emulsion solvent diffusion. Variables of output power of the sonicator, bath temperature and mixing time, were chosen as the optimization factors to obtain the minimum sized NPs. In addition, emulsions were tested at different ratios of drug-to-polymer by dynamic light scattering to determine size and zeta potential of NPs. UV-spectroscopy was used to determine PB content of the NPs. Drug-loaded NPs were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectra. Results determined that mixing time had a significant impact on the size of Eu-RS NPs, but power output of sonicator and bath temperature had no significant effect. The particle size obtained at the optimum condition (power output of 70 W, bath temperature of 33 °C, and mixing time of 7 min) was less than 200 nm (optimum sizes were 138.9 and 179.5 nm for Eu-RS and PB-loaded Eu-RS NPs, respectively). The optimum PB-loaded Eu-RS NPs at the PB to Eu-RS weight ratio of 1-4 and 20 % of loaded PB released from the nanocarriers within 100 h.

  7. Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, Michael P.; Poplawski, Michael E.; Brown, Charles C.

    2014-12-01

    To date, all three reports in the retail lamps series have focused on basic performance parameters, such as lumen output, efficacy, and color quality. This report goes a step further, examining the photoelectric characteristics (i.e., dimming and flicker) of a subset of lamps from CALiPER Retails Lamps Study 3. Specifically, this report focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers. The results demonstrate notable variation across the various lamps, but little variation between the four dimmers. Overall, the LED lamps: ~tended to have higher relative light outputmore » compared to the incandescent and halogen benchmark at the same dimmer output signal (RMS voltage). The lamps’ dimming curves (i.e., the relationship between control signal and relative light output) ranged from linear to very similar to the square-law curve typical of an incandescent lamp. ~generally exhibited symmetrical behavior—the same dimming curve—when measured proceeding from maximum to minimum or minimum to maximum control signal. ~mostly dimmed below 10% of full light output, with some exceptions for specific lamp and dimmer combinations ~exhibited a range of flicker characteristics, with many comparing favorably to the level typical of a magnetically-ballasted fluorescent lamp through at least a majority of the dimming range. ~ always exceeded the relative (normalized) efficacy over the dimming range of the benchmark lamps, which rapidly decline in efficacy when they are dimmed. This report generally does not attempt to rank the performance of one product compared to another, but instead focuses on the collective performance of the group versus conventional incandescent or halogen lamps, the performance of which is likely to be the baseline for a majority of consumers. Undoubtedly, some LED lamps perform better—or more similar to conventional lamps—than others. Some perform desirably for one characteristic, but not others. Consumers (and specifiers) may have a hard time distinguishing better-performing lamps from one another; at this time, physical experimentation is likely the best evaluation tool.« less

  8. Investigation on Multiple Algorithms for Multi-Objective Optimization of Gear Box

    NASA Astrophysics Data System (ADS)

    Ananthapadmanabhan, R.; Babu, S. Arun; Hareendranath, KR; Krishnamohan, C.; Krishnapillai, S.; A, Krishnan

    2016-09-01

    The field of gear design is an extremely important area in engineering. In this work a spur gear reduction unit is considered. A review of relevant literatures in the area of gear design indicates that compact design of gearbox involves a complicated engineering analysis. This work deals with the simultaneous optimization of the power and dimensions of a gearbox, which are of conflicting nature. The focus is on developing a design space which is based on module, pinion teeth and face-width by using MATLAB. The feasible points are obtained through different multi-objective algorithms using various constraints obtained from different novel literatures. Attention has been devoted in various novel constraints like critical scoring criterion number, flash temperature, minimum film thickness, involute interference and contact ratio. The output from various algorithms like genetic algorithm, fmincon (constrained nonlinear minimization), NSGA-II etc. are compared to generate the best result. Hence, this is a much more precise approach for obtaining practical values of the module, pinion teeth and face-width for a minimum centre distance and a maximum power transmission for any given material.

  9. A Novel Approach of Battery Energy Storage for Improving Value of Wind Power in Deregulated Markets

    NASA Astrophysics Data System (ADS)

    Nguyen, Y. Minh; Yoon, Yong Tae

    2013-06-01

    Wind power producers face many regulation costs in deregulated environment, which remarkably lowers the value of wind power in comparison with the conventional sources. One of these costs is associated with the real-time variation of power output and being paid in frequency control market according to the variation band. In this regard, this paper presents a new approach to the scheduling and operation of battery energy storage installed in wind generation system. This approach depends on the statistic data of wind generation and the prediction of frequency control market prices to determine the optimal charging and discharging of batteries in real-time, which ultimately gives the minimum cost of frequency regulation for wind power producers. The optimization problem is formulated as the trade-off between the decrease in regulation payment and the increase in the cost of using battery energy storage. The approach is illustrated in the case study and the results of simulation show its effectiveness.

  10. Organic Rankine Kilowatt Isotope Power System. Final phase I report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-07-15

    On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a /sup 238/PuO/sub 2/ fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight systemmore » in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented.« less

  11. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance.

    PubMed

    Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin; Tittel, Frank K

    2018-01-04

    A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10 -5 cm -1 W/√Hz were obtained for the reported CO-QEPAS sensor.

  12. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance

    PubMed Central

    Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin

    2018-01-01

    A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10−5 cm−1W/√Hz were obtained for the reported CO-QEPAS sensor. PMID:29300310

  13. Passively Q-switched, intracavity frequency-doubled YVO{sub 4}/Nd : YVO{sub 4}/KTP green laser with a GaAs saturable absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang Gao

    2015-11-30

    A diode-pumped, passively Q-switched, intracavity frequency-doubled YVO{sub 4}/Nd : YVO{sub 4}/KTP green laser is realised using a GaAs saturable absorber. Two pieces of GaAs wafers are employed in the experiment. In using a 400-μm-thick GaAs wafer and an incident pump power of 10.5 W, the maximum output power of the passively Q-switched green laser is 362 mW at a pulse repetition rate of 84 kHz and a pulse duration of 2.5 ns. When use is made of a 700-mm-thick GaAs wafer, the minimum pulse duration is 1.5 ns at a repetition rate of 67 kHz, pulse energy of 4.18 μJmore » and peak power of 2.8 kW. (control of laser radiation parameters)« less

  14. Prediction and Characterization of NaGaS2, A High Thermal Conductivity Mid-Infrared Nonlinear Optical Material for High-Power Laser Frequency Conversion.

    PubMed

    Hou, Dianwei; Nissimagoudar, Arun S; Bian, Qiang; Wu, Kui; Pan, Shilie; Li, Wu; Yang, Zhihua

    2018-06-15

    Infrared nonlinear optical (IR NLO) crystals are the major materials to widen the output range of solid-state lasers to mid- or far-infrared regions. The IR NLO crystals used in the middle IR region are still inadequate for high-power laser applications because of deleterious thermal effects (lensing and expansion), low laser-induced damage threshold, and two-photon absorption. Herein, the unbiased global minimum search method was used for the first time to search for IR NLO optical materials and ultimately found a new IR NLO material NaGaS 2 . It meets the stringent demands for IR NLO materials pumped by high-power laser with the highest thermal conductivity among common IR NLO materials able to avoid two-photon absorption, a classic nonlinear coefficient, and wide infrared transparency.

  15. Exercise efficiency of low power output cycling.

    PubMed

    Reger, M; Peterman, J E; Kram, R; Byrnes, W C

    2013-12-01

    Exercise efficiency at low power outputs, energetically comparable to daily living activities, can be influenced by homeostatic perturbations (e.g., weight gain/loss). However, an appropriate efficiency calculation for low power outputs used in these studies has not been determined. Fifteen active subjects (seven females, eight males) performed 14, 5-min cycling trials: two types of seated rest (cranks vertical and horizontal), passive (motor-driven) cycling, no-chain cycling, no-load cycling, cycling at low (10, 20, 30, 40 W), and moderate (50, 60, 80, 100, 120 W) power outputs. Mean delta efficiency was 57% for low power outputs compared to 41.3% for moderate power outputs. Means for gross (3.6%) and net (5.7%) efficiencies were low at the lowest power output. At low power outputs, delta and work efficiency values exceeded theoretical values. In conclusion, at low power outputs, none of the common exercise efficiency calculations gave values comparable to theoretical muscle efficiency. However, gross efficiency and the slope and intercept of the metabolic power vs mechanical power output regression provide insights that are still valuable when studying homeostatic perturbations. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Design of a modified endoscope illuminator for spectral imaging of colorectal tissues

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    The gold standard for locating colonic polyps is a white light endoscope in a colonoscopy, however, polyps smaller than 5 mm can be easily missed. Modified procedures such as narrow band imaging have shown only marginal increases in detection rates. Spectral imaging is a potential solution to improve the sensitivity and specificity of colonoscopies by providing the ability to distinguish molecular fluorescence differences in tissues. The goal of this work is to implement a spectral endoscopic light source to acquire spectral image data of colorectal tissues. A beta-version endoscope light source was developed, by retrofitting a white light endoscope light source (Olympus, CLK-4) with 16 narrow band LEDs. This redesigned, beta-prototype uses high-power LEDs with a minimum output of 500 mW to provide sufficient spectral output (0.5 mW) through the endoscope. A mounting apparatus was designed to provide sufficient heat dissipation. Here, we report recent results of our tests to characterize the intensity output through the light source and endoscope to determine the flat spectral output for imaging and intensity losses through the endoscope. We also report preliminary spectral imaging data from transverse pig colon that demonstrates the ability to result in working practical spectral data. Preliminary results of this revised prototype spectral endoscope system demonstrate that there is sufficient power to allow the imaging process to continue and potentially determine spectral differences in cancerous and normal tissue from imaging ex vivo pairs. Future work will focus on building a spectral library for the colorectal region and refining the user interface the system for in vivo use.

  17. DC to DC power converters and methods of controlling the same

    DOEpatents

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  18. Effect of nonideal square-law detection on static calibration in noise-injection radiometers

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.

    1984-01-01

    The effect of nonideal square-law detection on the static calibration for a class of Dicke radiometers is examined. It is shown that fourth-order curvature in the detection characteristic adds a nonlinear term to the linear calibration relationship normally ascribed to noise-injection, balanced Dicke radiometers. The minimum error, based on an optimum straight-line fit to the calibration curve, is derived in terms of the power series coefficients describing the input-output characteristics of the detector. These coefficients can be determined by simple measurements, and detection nonlinearity is, therefore, quantitatively related to radiometric measurement error.

  19. Numerical Design of Megawatt Gyrotron with 120 GHz Frequency and 50% Efficiency for Plasma Fusion Application

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Kumar, Anil; Bhattacharya, Ranajoy; Singh, T. P.; Sinha, A. K.

    2013-02-01

    The design of 120 GHz, 1 MW gyrotron for plasma fusion application is presented in this paper. The mode selection is carried out considering the aim of minimum mode competition, minimum cavity wall heating, etc. On the basis of the selected operating mode, the interaction cavity design and beam-wave interaction computation are carried out by using the PIC code. The design of triode type Magnetron Injection Gun (MIG) is also presented. Trajectory code EGUN, synthesis code MIGSYN and data analysis code MIGANS are used in the MIG designing. Further, the design of MIG is also validated by using the another trajectory code TRAK. The design results of beam dumping system (collector) and RF window are also presented. Depressed collector is designed to enhance the overall tube efficiency. The design study confirms >1 MW output power with tube efficiency around 50% (with collector efficiency).

  20. Exploiting Identical Generators in Unit Commitment

    DOE PAGES

    Knueven, Ben; Ostrowski, Jim; Watson, Jean -Paul

    2017-12-14

    Here, we present sufficient conditions under which thermal generators can be aggregated in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem, while maintaining feasibility and optimality for the original disaggregated problem. Aggregating thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum up/down-time, and cost curves) into a single unit reduces redundancy in the search space induced by both exact symmetry (permutations of generator schedules) and certain classes of mutually non-dominated solutions. We study the impact of aggregation on two large-scale UC instances, one from the academic literature and another based on real-world operator data. Our computationalmore » tests demonstrate that when present, identical generators can negatively affect the performance of modern MILP solvers on UC formulations. Further, we show that our reformation of the UC MILP through aggregation is an effective method for mitigating this source of computational difficulty.« less

  1. Exploiting Identical Generators in Unit Commitment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knueven, Ben; Ostrowski, Jim; Watson, Jean -Paul

    Here, we present sufficient conditions under which thermal generators can be aggregated in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem, while maintaining feasibility and optimality for the original disaggregated problem. Aggregating thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum up/down-time, and cost curves) into a single unit reduces redundancy in the search space induced by both exact symmetry (permutations of generator schedules) and certain classes of mutually non-dominated solutions. We study the impact of aggregation on two large-scale UC instances, one from the academic literature and another based on real-world operator data. Our computationalmore » tests demonstrate that when present, identical generators can negatively affect the performance of modern MILP solvers on UC formulations. Further, we show that our reformation of the UC MILP through aggregation is an effective method for mitigating this source of computational difficulty.« less

  2. Optimization of joint energy micro-grid with cold storage

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Luo, Simin; Tian, Yan; Chen, Xianda; Xiong, Botao; Zhou, Bowen

    2018-02-01

    To accommodate distributed photovoltaic (PV) curtailment, to make full use of the joint energy micro-grid with cold storage, and to reduce the high operating costs, the economic dispatch of joint energy micro-grid load is particularly important. Considering the different prices during the peak and valley durations, an optimization model is established, which takes the minimum production costs and PV curtailment fluctuations as the objectives. Linear weighted sum method and genetic-taboo Particle Swarm Optimization (PSO) algorithm are used to solve the optimization model, to obtain optimal power supply output. Taking the garlic market in Henan as an example, the simulation results show that considering distributed PV and different prices in different time durations, the optimization strategies are able to reduce the operating costs and accommodate PV power efficiently.

  3. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei

    2015-09-01

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm2, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  4. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiangyu, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn; Jiang, Tao; Sun, Zhuo

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current.more » The minimum contact area for the TENG to generate field emission is about 9 cm{sup 2}, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.« less

  5. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption.

    PubMed

    Vurgaftman, I; Bewley, W W; Canedy, C L; Kim, C S; Kim, M; Merritt, C D; Abell, J; Lindle, J R; Meyer, J R

    2011-12-13

    The interband cascade laser differs from any other class of semiconductor laser, conventional or cascaded, in that most of the carriers producing population inversion are generated internally, at semimetallic interfaces within each stage of the active region. Here we present simulations demonstrating that all previous interband cascade laser performance has suffered from a significant imbalance of electron and hole densities in the active wells. We further confirm experimentally that correcting this imbalance with relatively heavy n-type doping in the electron injectors substantially reduces the threshold current and power densities relative to all earlier devices. At room temperature, the redesigned devices require nearly two orders of magnitude less input power to operate in continuous-wave mode than the quantum cascade laser. The interband cascade laser is consequently the most attractive option for gas sensing and other spectroscopic applications requiring low output power and minimum heat dissipation at wavelengths extending from 3 μm to beyond 6 μm.

  6. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.

    2013-12-01

    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.

  7. SAD5 Stereo Correlation Line-Striping in an FPGA

    NASA Technical Reports Server (NTRS)

    Villalpando, Carlos Y.; Morfopoulos, Arin C.

    2011-01-01

    High precision SAD5 stereo computations can be performed in an FPGA (field-programmable gate array) at much higher speeds than possible in a conventional CPU (central processing unit), but this uses large amounts of FPGA resources that scale with image size. Of the two key resources in an FPGA, Slices and BRAM (block RAM), Slices scale linearly in the new algorithm with image size, and BRAM scales quadratically with image size. An approach was developed to trade latency for BRAM by sub-windowing the image vertically into overlapping strips and stitching the outputs together to create a single continuous disparity output. In stereo, the general rule of thumb is that the disparity search range must be 1/10 the image size. In the new algorithm, BRAM usage scales linearly with disparity search range and scales again linearly with line width. So a doubling of image size, say from 640 to 1,280, would in the previous design be an effective 4 of BRAM usage: 2 for line width, 2 again for disparity search range. The minimum strip size is twice the search range, and will produce an output strip width equal to the disparity search range. So assuming a disparity search range of 1/10 image width, 10 sequential runs of the minimum strip size would produce a full output image. This approach allowed the innovators to fit 1280 960 wide SAD5 stereo disparity in less than 80 BRAM, 52k Slices on a Virtex 5LX330T, 25% and 24% of resources, respectively. Using a 100-MHz clock, this build would perform stereo at 39 Hz. Of particular interest to JPL is that there is a flight qualified version of the Virtex 5: this could produce stereo results even for very large image sizes at 3 orders of magnitude faster than could be computed on the PowerPC 750 flight computer. The work covered in the report allows the stereo algorithm to run on much larger images than before, and using much less BRAM. This opens up choices for a smaller flight FPGA (which saves power and space), or for other algorithms in addition to SAD5 to be run on the same FPGA.

  8. The Impact of Harness Impedance on Hall Thruster Discharge Oscillations

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.

    2017-01-01

    Hall thrusters exhibit characteristic discharge voltage and current oscillations during steady-state operation. The lower frequency breathing-mode current oscillations are inherent to each thruster and could impact thruster operation and power processing unit (PPU) design. The design of the discharge output filter, in particular, the output capacitor is important because it supplies the high peak current oscillations that the thruster demands. However, space-rated, high-voltage capacitors are not readily available and can have significant mass and volume. So, it is important for a PPU designer to know what is the minimum amount of capacitance required to operate a thruster. Through Simulation Program with Integrated Circuit Emphasis modeling and electrical measurements on the Hall Effect Rocket with Magnetic Shielding thruster, it was shown that the harness impedance between the power supply and the thruster is the main contributor towards generating voltage ripple at the thruster. Also, increasing the size of the discharge filter capacitor, as previously implemented during thruster tests, does not reduce the voltage oscillations. The electrical characteristics of the electrical harness between the discharge supply and the thruster is crucial to system performance and could have a negative impact on performance, life and operation.

  9. Quantitative Comparison of Minimum Inductance and Minimum Power Algorithms for the Design of Shim Coils for Small Animal Imaging

    PubMed Central

    HUDSON, PARISA; HUDSON, STEPHEN D.; HANDLER, WILLIAM B.; SCHOLL, TIMOTHY J.; CHRONIK, BLAINE A.

    2010-01-01

    High-performance shim coils are required for high-field magnetic resonance imaging and spectroscopy. Complete sets of high-power and high-performance shim coils were designed using two different methods: the minimum inductance and the minimum power target field methods. A quantitative comparison of shim performance in terms of merit of inductance (ML) and merit of resistance (MR) was made for shim coils designed using the minimum inductance and the minimum power design algorithms. In each design case, the difference in ML and the difference in MR given by the two design methods was <15%. Comparison of wire patterns obtained using the two design algorithms show that minimum inductance designs tend to feature oscillations within the current density; while minimum power designs tend to feature less rapidly varying current densities and lower power dissipation. Overall, the differences in coil performance obtained by the two methods are relatively small. For the specific case of shim systems customized for small animal imaging, the reduced power dissipation obtained when using the minimum power method is judged to be more significant than the improvements in switching speed obtained from the minimum inductance method. PMID:20411157

  10. Design and evaluation of an intelligent artificial anal sphincter system powered by an adaptive transcutaneous energy transfer system.

    PubMed

    Ke, Lei; Yan, Guozheng; Wang, Yongbing; Wang, Zhiwu; Liu, Dasheng

    2015-03-01

    The aim of this study was to optimize an intelligent artificial anal sphincter system (AASS) II for patients with severe fecal incontinence. Redesigning and integrating a pressure sensor into the sphincter prosthesis allows us to reduce the sensor volume and makes it suitable for a chronic, ambulatory application. Furthermore, a close-loop frequency control method was designed for the transcutaneous energy transfer system. Finally, a longer working time of the implanted device was obtained by the low-power design of the hardware and software. The new model was implanted in 2 dogs and studied for periods of up to 5 weeks. The output voltage induced on the load of 30 Ω, for a variation range in k of 0.12 ~ 0.42, was maintained at approximately 6.8 V with a frequency control range of the 270 ~ 320 kHz. The minimum and maximum output voltages of the pressure sensor were found to be 1.7 V and 2.34 V, respectively, which corresponded to a pressure range of 90 ~ 120 kPa with maximum change rate of approximately 3.7% caused by the temperature variations. Moreover, compared with AASS I, the low-power design resulting in 94% reduction in power consumption. The efficacy of the device in achieving continence and sensing the need to defecate was assessed in an animal model. The technical concept and the design of the AASS II turned out to be capable of fulfilling the medical requirements.

  11. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  12. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  13. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  14. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  15. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  16. Real options valuation and optimization of energy assets

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew

    In this thesis we present algorithms for the valuation and optimal operation of natural gas storage facilities, hydro-electric power plants and thermal power generators in competitive markets. Real options theory is used to derive nonlinear partial-integro-differential equations (PIDEs) for the valuation and optimal operating strategies of all types of facilities. The equations are designed to incorporate a wide class of spot price models that can exhibit the same time-dependent, mean-reverting dynamics and price spikes as those observed in most energy markets. Particular attention is paid to the operational characteristics of real energy assets. For natural gas storage facilities these characteristics include: working gas capacities, variable deliverability and injection rates and cycling limitations. For thermal power plants relevant operational characteristics include variable start-up times and costs, control response time lags, minimum generating levels, nonlinear output functions, structural limitations on ramp rates, and minimum up/down time restrictions. For hydro-electric units, head effects and environmental constraints are addressed. We illustrate the models with numerical examples of a gas storage facility, a hydro-electric pump storage facility and a thermal power plant. This PIDE framework is the first in the literature to achieve second order accuracy in characterizing the operating states of hydro-electric and hydro-thermal power plants. The continuous state space representation derived in this thesis can therefore achieve far greater realism in terms of operating state specification than any other method in the literature to date. This thesis is also the first and only to allow for any continuous time jump diffusion processes in order to account for price spikes.

  17. Ka-band Ga-As FET noise receiver/device development

    NASA Technical Reports Server (NTRS)

    Schellenberg, J. M.; Feng, M.; Hackett, L. H.; Watkins, E. T.; Yamasaki, H.

    1982-01-01

    The development of technology for a 30 GHz low noise receiver utilizing GaAs FET devices exclusively is discussed. This program required single and dual-gate FET devices, low noise FET amplifiers, dual-gate FET mixers, and FET oscillators operating at Ka-band frequencies. A 0.25 micrometer gate FET device, developed with a minimum noise figure of 3.3 dB at 29 GHz and an associated gain of 7.4 dB, was used to fabricate a 3-stage amplifier with a minimum noise figure and associated gain of 4.4 dB and 17 dB, respectively. The 1-dB gain bandwidth of this amplifier extended from below 26.5 GHz to 30.5 GHz. A dual-gate mixer with a 2 dB conversion loss and a minimum noise figure of 10 dB at 29 GHz as well as a dielectric resonator stabilized FET oscillator at 25 GHz for the receiver L0. From these components, a hybrid microwave integrated circuit receiver was constructed which demonstrates a minimum single-side band noise figure of 4.6 dB at 29 GHz with a conversion gain of 17 dB. The output power at the 1-dB gain compression point was -5 dBm.

  18. Simulation of Distributed PV Power Output in Oahu Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lave, Matthew Samuel

    2016-08-01

    Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presentedmore » by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.« less

  19. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser.

    PubMed

    Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Jing, Chen; Weidong, Chen; Zhenqiang, Chen

    2007-01-20

    A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.

  20. Modeling and Optimization of Coordinative Operation of Hydro-wind-photovoltaic Considering Power Generation and Output Fluctuation

    NASA Astrophysics Data System (ADS)

    Wang, Xianxun; Mei, Yadong

    2017-04-01

    Coordinative operation of hydro-wind-photovoltaic is the solution of mitigating the conflict of power generation and output fluctuation of new energy and conquering the bottleneck of new energy development. Due to the deficiencies of characterizing output fluctuation, depicting grid construction and disposal of power abandon, the research of coordinative mechanism is influenced. In this paper, the multi-object and multi-hierarchy model of coordinative operation of hydro-wind-photovoltaic is built with the aim of maximizing power generation and minimizing output fluctuation and the constraints of topotaxy of power grid and balanced disposal of power abandon. In the case study, the comparison of uncoordinative and coordinative operation is carried out with the perspectives of power generation, power abandon and output fluctuation. By comparison from power generation, power abandon and output fluctuation between separate operation and coordinative operation of multi-power, the coordinative mechanism is studied. Compared with running solely, coordinative operation of hydro-wind-photovoltaic can gain the compensation benefits. Peak-alternation operation reduces the power abandon significantly and maximizes resource utilization effectively by compensating regulation of hydropower. The Pareto frontier of power generation and output fluctuation is obtained through multiple-objective optimization. It clarifies the relationship of mutual influence between these two objects. When coordinative operation is taken, output fluctuation can be markedly reduced at the cost of a slight decline of power generation. The power abandon also drops sharply compared with operating separately. Applying multi-objective optimization method to optimize the coordinate operation, Pareto optimal solution set of power generation and output fluctuation is achieved.

  1. An MILP-based cross-layer optimization for a multi-reader arbitration in the UHF RFID system.

    PubMed

    Choi, Jinchul; Lee, Chaewoo

    2011-01-01

    In RFID systems, the performance of each reader such as interrogation range and tag recognition rate may suffer from interferences from other readers. Since the reader interference can be mitigated by output signal power control, spectral and/or temporal separation among readers, the system performance depends on how to adapt the various reader arbitration metrics such as time, frequency, and output power to the system environment. However, complexity and difficulty of the optimization problem increase with respect to the variety of the arbitration metrics. Thus, most proposals in previous study have been suggested to primarily prevent the reader collision with consideration of one or two arbitration metrics. In this paper, we propose a novel cross-layer optimization design based on the concept of combining time division, frequency division, and power control not only to solve the reader interference problem, but also to achieve the multiple objectives such as minimum interrogation delay, maximum reader utilization, and energy efficiency. Based on the priority of the multiple objectives, our cross-layer design optimizes the system sequentially by means of the mixed-integer linear programming. In spite of the multi-stage optimization, the optimization design is formulated as a concise single mathematical form by properly assigning a weight to each objective. Numerical results demonstrate the effectiveness of the proposed optimization design.

  2. An MILP-Based Cross-Layer Optimization for a Multi-Reader Arbitration in the UHF RFID System

    PubMed Central

    Choi, Jinchul; Lee, Chaewoo

    2011-01-01

    In RFID systems, the performance of each reader such as interrogation range and tag recognition rate may suffer from interferences from other readers. Since the reader interference can be mitigated by output signal power control, spectral and/or temporal separation among readers, the system performance depends on how to adapt the various reader arbitration metrics such as time, frequency, and output power to the system environment. However, complexity and difficulty of the optimization problem increase with respect to the variety of the arbitration metrics. Thus, most proposals in previous study have been suggested to primarily prevent the reader collision with consideration of one or two arbitration metrics. In this paper, we propose a novel cross-layer optimization design based on the concept of combining time division, frequency division, and power control not only to solve the reader interference problem, but also to achieve the multiple objectives such as minimum interrogation delay, maximum reader utilization, and energy efficiency. Based on the priority of the multiple objectives, our cross-layer design optimizes the system sequentially by means of the mixed-integer linear programming. In spite of the multi-stage optimization, the optimization design is formulated as a concise single mathematical form by properly assigning a weight to each objective. Numerical results demonstrate the effectiveness of the proposed optimization design. PMID:22163743

  3. Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration

    NASA Technical Reports Server (NTRS)

    DeGregorio, Kelly; Wilson, Dale G.

    2009-01-01

    Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand-alone ReBiLS chip will allow system designers to provide efficient bi-directional communication between components operating at different voltages. Embedding the ReBiLS cells into the proven Reed-Solomon encoder will demonstrate the ability to support new product development in a commercially viable, rad-hard, scalable 180-nm SOI CMOS process.

  4. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, C.E.; Klee, P.M.

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, mass properties (weight and c.g.) and thermal vacuum test. This paper presents the thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is the backup RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at the Mound Laboratory facility metmore » all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on these tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also shown. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over 5% are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.« less

  5. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, C.E.; Klee, P.M.

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is tile back-up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met allmore » specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.« less

  6. Cassini RTG Acceptance Test Results and RTG Performance on Galileo and Ulysses

    DOE R&D Accomplishments Database

    Kelly, C. E.; Klee, P. M.

    1997-06-01

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F 2, F 6, and F 7. F 5 is tile back up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  7. Effects of inertia correction and resistive load on fatigue during repeated sprints on a friction-loaded cycle ergometer.

    PubMed

    Bogdanis, Gregory; Papaspyrou, Aggeliki; Lakomy, Henryk; Nevill, Mary

    2008-11-01

    Seven 6 s sprints with 30 s recovery between sprints were performed against two resistive loads: 50 (L50) and 100 (L100) g x kg(-1) body mass. Inertia-corrected and -uncorrected peak and mean power output were calculated. Corrected peak power output in corresponding sprints and the drop in peak power output relative to sprint 1 were not different in the two conditions, despite the fact that mean power output was 15-20% higher in L100 (P < 0.01). The effect of inertia correction on power output was more pronounced for the lighter load (L50), with uncorrected peak power output in sprint 1 being 42% lower than the corresponding corrected peak power output, while this was only 16% in L100. Fatigue assessed by the drop in uncorrected peak and mean power output in sprint 7 relative to sprint 1 was less compared with that obtained by corrected power values, especially in L50 (drop in uncorrected vs. corrected peak power output: 13.3 +/- 2.2% vs. 23.1 +/- 4.1%, P < 0.01). However, in L100, the difference between the drop in corrected and uncorrected mean power output in sprint 7 was much smaller (24.2 +/- 3.1% and 21.2 +/- 2.7%, P < 0.01), indicating that fatigue may be safely assessed even without inertia correction when a heavy load is used. In conclusion, when inertia correction is performed, fatigue during repeated sprints is unaffected by resistive load. When inertia correction is omitted, both power output and the fatigue profile are underestimated by an amount dependent on resistive load. In cases where inertia correction is not possible during a repeated sprints test, a heavy load may be preferable.

  8. Experimental Lithium-Ion Battery Developed for Demonstration at the 2007 NASA Desert Research and Technology Studies (D-RATS) Program

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2010-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and built five lithium-ion battery packs for demonstration in spacesuit simulators as a part of the 2007 Desert Research and Technology Studies (D-RATS) activity at Cinder Lake, Arizona. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, overdischarge and over-temperature. The 500-g experimental batteries were designed to deliver a constant power of 22 W for 2.5 hr with a minimum voltage of 13 V. When discharged at the maximum expected power output of 38.5 W, the batteries operated for 103 min of discharge time, achieving a specific energy of 130 Wh/kg. This report summarizes design details and safety considerations. Results for field trials and laboratory testing are summarized.

  9. 200 TO 300 KVA Conditioned Power System - Development

    DTIC Science & Technology

    1985-03-01

    converts generator output powet to 13.2 kv dc power . The system includes an output filter that assures that the ripple amplitude will be within the...output filter and the neutral forming transformer. These elements convert the inverter pole outputs into quality four-wire output power . 2-72 2.4.2.6... power converted directly from the variable speed generator, and only that power required to be 400-Hz will be converted by the V.S.C.F. unit. Redundency

  10. Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser

    NASA Astrophysics Data System (ADS)

    Cornacchia, F.; Parisi, D.; Bernardini, C.; Toncelli, A.; Tonelli, M.

    2004-05-01

    In this work we report the spectroscopy and laser results of several Thulium doped BaY2F8 single crystals grown using the Czochralski technique. The doping concentration is between 2at.% and 18at.%. We performed room temperature laser experiments pumping the samples with a laser diode at 789 nm obtaining 61% as maximum optical-to-optical efficiency with a maximum output power of 290 mW and a minimum lasing threshold of 26 mW. The lasing wavelength changed with the dopant concentration from 1927 nm up to 2030 nm and the nature of the transition changed from purely electronic to vibronic, accordingly.

  11. Low Power, High Voltage Power Supply with Fast Rise/Fall Time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  12. Low power, high voltage power supply with fast rise/fall time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  13. Multi-Fluid Geothermal Energy Systems: Using CO2 for Dispatchable Renewable Power Generation and Grid Stabilization

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Bielicki, J. M.; Randolph, J.; Chen, M.; Hao, Y.; Sun, Y.

    2013-12-01

    Abstract We present an approach to use CO2 to (1) generate dispatchable renewable power that can quickly respond to grid fluctuations and be cost-competitive with natural gas, (2) stabilize the grid by efficiently storing large quantities of energy, (3) enable seasonal storage of solar thermal energy for grid integration, (4) produce brine for power-plant cooling, all which (5) increase CO2 value, rendering CO2 capture to be commerically viable, while (6) sequestering huge quantities of CO2. These attributes reduce carbon intensity of electric power, and enable cost-competitive, dispatchable power from major sources of renewable energy: wind, solar, and geothermal. Conventional geothermal power systems circulate brine as the working fluid to extract heat, but the parasitic power load for this circulation can consume a large portion of gross power output. Recently, CO2 has been considered as a working fluid because its advantageous properties reduce this parasitic loss. We expand on this idea by using multiple working fluids: brine, CO2, and N2. N2 can be separated from air at lower cost than captured CO2, it is not corrosive, and it will not react with the formation. N2 also can improve the economics of energy production and enable energy storage, while reducing operational risk. Extracting heat from geothermal reservoirs often requires submersible pumps to lift brine, but these pumps consume much of the generated electricity. In contrast, our approach drives fluid circulation by injecting supplemental, compressible fluids (CO2, and N2) with high coefficients of thermal expansion. These fluids augment reservoir pressure, produce artesian flow at the producers, and reduce the parasitic load. Pressure augmentation is improved by the thermosiphon effect that results from injecting cold/dense CO2 and N2. These fluids are heated to reservoir temperature, greatly expand, and increase the artesian flow of brine and supplemental fluid at the producers. Rather than using pumps, the thermosiphon directly converts reservoir thermal energy into mechanical energy for fluid circulation. Because stored pressure drives fluid production, the response time is faster than that of conventional geothermal power, already considered to be dispatchable. For conventional geothermal, the parasitic power load is in phase with gross power output. In contrast, our approach can time-shift much of the parasitic power load, which is dominated by the power required to separate N2 from air and compress it for injection. Because N2 is readily available, it can be injected intermittently. Thus, most of the parasitic power load can be shifted to coincide with minimum power demand or when there is a surplus of renewable power. Such a time-shift also allows net power output to be nearly equal to gross power output during peak demand. Energy storage can be almost 100 percent efficient because it is achieved by shifting the parasitic load, which is more efficient than other methods used to store energy and stabilize the grid. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Power output measurement during treadmill cycling.

    PubMed

    Coleman, D A; Wiles, J D; Davison, R C R; Smith, M F; Swaine, I L

    2007-06-01

    The study aim was to consider the use of a motorised treadmill as a cycling ergometry system by assessing predicted and recorded power output values during treadmill cycling. Fourteen male cyclists completed repeated cycling trials on a motorised treadmill whilst riding their own bicycle fitted with a mobile ergometer. The speed, gradient and loading via an external pulley system were recorded during 20-s constant speed trials and used to estimate power output with an assumption about the contribution of rolling resistance. These values were then compared with mobile ergometer measurements. To assess the reliability of measured power output values, four repeated trials were conducted on each cyclist. During level cycling, the recorded power output was 257.2 +/- 99.3 W compared to the predicted power output of 258.2 +/- 99.9 W (p > 0.05). For graded cycling, there was no significant difference between measured and predicted power output, 268.8 +/- 109.8 W vs. 270.1 +/- 111.7 W, p > 0.05, SEE 1.2 %. The coefficient of variation for mobile ergometer power output measurements during repeated trials ranged from 1.5 % (95 % CI 1.2 - 2.0 %) to 1.8 % (95 % CI 1.5 - 2.4 %). These results indicate that treadmill cycling can be used as an ergometry system to assess power output in cyclists with acceptable accuracy.

  15. Output power distributions of terminals in a 3G mobile communication network.

    PubMed

    Persson, Tomas; Törnevik, Christer; Larsson, Lars-Eric; Lovén, Jan

    2012-05-01

    The objective of this study was to examine the distribution of the output power of mobile phones and other terminals connected to a 3G network in Sweden. It is well known that 3G terminals can operate with very low output power, particularly for voice calls. Measurements of terminal output power were conducted in the Swedish TeliaSonera 3G network in November 2008 by recording network statistics. In the analysis, discrimination was made between rural, suburban, urban, and dedicated indoor networks. In addition, information about terminal output power was possible to collect separately for voice and data traffic. Information from six different Radio Network Controllers (RNCs) was collected during at least 1 week. In total, more than 800000 h of voice calls were collected and in addition to that a substantial amount of data traffic. The average terminal output power for 3G voice calls was below 1 mW for any environment including rural, urban, and dedicated indoor networks. This is <1% of the maximum available output power. For data applications the average output power was about 6-8 dB higher than for voice calls. For rural areas the output power was about 2 dB higher, on average, than in urban areas. Copyright © 2011 Wiley Periodicals, Inc.

  16. Reactive Power Compensation Method Considering Minimum Effective Reactive Power Reserve

    NASA Astrophysics Data System (ADS)

    Gong, Yiyu; Zhang, Kai; Pu, Zhang; Li, Xuenan; Zuo, Xianghong; Zhen, Jiao; Sudan, Teng

    2017-05-01

    According to the calculation model of minimum generator reactive power reserve of power system voltage stability under the premise of the guarantee, the reactive power management system with reactive power compensation combined generator, the formation of a multi-objective optimization problem, propose a reactive power reserve is considered the minimum generator reactive power compensation optimization method. This method through the improvement of the objective function and constraint conditions, when the system load growth, relying solely on reactive power generation system can not meet the requirement of safe operation, increase the reactive power reserve to solve the problem of minimum generator reactive power compensation in the case of load node.

  17. Power output and carrier dynamics studies of perovskite solar cells under working conditions.

    PubMed

    Yu, Man; Wang, Hao-Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Zhang, Jian-Ping; Ai, Xi-Cheng

    2017-08-02

    Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.

  18. Online Optimization Method for Operation of Generators in a Micro Grid

    NASA Astrophysics Data System (ADS)

    Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi

    Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.

  19. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  20. High power RF solid state power amplifier system

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  1. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    NASA Technical Reports Server (NTRS)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  2. Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.

    PubMed

    Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan

    2013-03-25

    We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.

  3. Ku-band high efficiency GaAs MMIC power amplifiers

    NASA Technical Reports Server (NTRS)

    Tserng, H. Q.; Witkowski, L. C.; Wurtele, M.; Saunier, Paul

    1988-01-01

    The development of Ku-band high efficiency GaAs MMIC power amplifiers is examined. Three amplifier modules operating over the 13 to 15 GHz frequency range are to be developed. The first MMIC is a 1 W variable power amplifier (VPA) with 35 percent efficiency. On-chip digital gain control is to be provided. The second MMIC is a medium power amplifier (MPA) with an output power goal of 1 W and 40 percent power-added efficiency. The third MMIC is a high power amplifier (HPA) with 4 W output power goal and 40 percent power-added efficiency. An output power of 0.36 W/mm with 49 percent efficiency was obtained on an ion implanted single gate MESFET at 15 GHz. On a dual gate MESFET, an output power of 0.42 W/mm with 27 percent efficiency was obtained. A mask set was designed that includes single stage, two stage, and three stage single gate amplifiers. A single stage 600 micron amplifier produced 0.4 W/mm output power with 40 percent efficiency at 14 GHz. A four stage dual gate amplifier generated 500 mW of output power with 20 dB gain at 17 GHz. A four-bit digital-to-analog converter was designed and fabricated which has an output swing of -3 V to +/- 1 V.

  4. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    PubMed

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  5. Heat engine generator control system

    DOEpatents

    Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

    1998-05-12

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

  6. Heat engine generator control system

    DOEpatents

    Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph

    1998-01-01

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

  7. TrackCC: A Practical Wireless Indoor Localization System Based on Less-Expensive Chips

    PubMed Central

    Li, Xiaolong; Zheng, Yan; Cai, Jun; Yi, Yunfei

    2017-01-01

    This paper aims at proposing a new wireless indoor localization system (ILS), called TrackCC, based on a commercial type of low-power system-on-chip (SoC), nRF24LE1. This type of chip has only l output power levels and acute fluctuation for a received minimum power level in operation, which give rise to many practical challenges for designing localization algorithms. In order to address these challenges, we exploit the Markov theory to construct a (l+1)×(l+1) -sized state transition matrix to remove the fluctuation, and then propose a priority-based pattern matching algorithm to search for the most similar match in the signal map to estimate the real position of unknown nodes. The experimental results show that, compared to two existing wireless ILSs, LANDMARC and SAIL, which have meter level positioning accuracy, the proposed TrackCC can achieve the decimeter level accuracy on average in both line-of-sight (LOS) and non-line-of-sight (NLOS) senarios. PMID:28617313

  8. Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Haidry, Azhar Ali; Wang, Tao; Yao, Zheng Jun

    2017-07-01

    The development of cost-effective gas sensors with improved sensing properties and minimum power consumption for room temperature hydrogen leakage monitoring is in increasing demand. In this context, this report focus on the facile fabrication of ordered mesoporous TiO2 via evaporation-induced self-assembly route. With the controlled doping threshold (3%Co-TiO2), the output resistance change to 1000 ppm H2 is ˜4.1 × 103 with the response time of 66 s. The sensor response exhibits power law dependence with an increase in the hydrogen concentration, where the power law coefficient was found not only specific to the kind of target gas but also related to temperature. Further, the effect of structure integrity with doping level and humidity on sensing characteristics is interpreted in terms of variation in surface potential eVS and depletion region w caused by the adsorption of molecular oxygen O2-.

  9. Factors affecting the work productivity of Oraon agricultural laborers of Jalpaiguri district, West Bengal.

    PubMed

    Roy, Subrata K

    2002-03-01

    In developing countries like India, where the incidence of protein-calorie malnutrition is high and mechanization is at a minimum, human labor provides much of the power for physical activity. This study presents anthropometric measurements, somatotypes, food intakes, energy expenditures, and work outputs of Oraon agricultural laborers of the Jalpaiguri district, West Bengal, in an attempt to identify the factors that predict high work productivity. Specifically, this study investigates 1) the relationship between morphological variation (anthropometric measurements and somatotype) and work productivity, 2) the nature and extent of the relationship between nutritional status and work productivity, and 3) the best predictor variables of work output. Classification of groups on the basis of median values of work output show that in the aggregate, the high productive groups are significantly younger than low-productive groups in both sexes. Before age-adjustment, the high productive groups show higher mean values of a few body dimensions, though these differ by sex, and both males and females exhibit a normal range of blood pressure and pulse rate values. Mean values of grip strength and back strength are higher in high-output men and women. Mean values of both food intake and energy expenditure are also higher among men in high-output groups, with only food intake higher in high-output women. However, after eliminating the effects of age, the differences between low-productive groups and high-productive groups in most of the variables are not significant. Productivity predictors in males consist of age, food intake and chest girth (inhalation). Females, on the other hand, show age and grip strength (left) as work output predictors. Copyright 2002 Wiley-Liss, Inc.

  10. The effect of low-level laser irradiation on dog spermatozoa motility is dependent on laser output power.

    PubMed

    Corral-Baqués, M I; Rivera, M M; Rigau, T; Rodríguez-Gil, J E; Rigau, J

    2009-09-01

    Biological tissues respond to low-level laser irradiation and so do dog spermatozoa. Among the main parameters to be considered when a biological tissue is irradiated is the output power. We have studied the effects on sperm motility of 655 nm continuous wave diode laser irradiation at different output powers with 3.34 J (5.97 J/cm(2)). The second fraction of fresh dog sperm was divided into five groups: control, and four to be irradiated with an average output power of 6.8 mW, 15.4 mW, 33.1 mW and 49.7 mW, respectively. At 0 min and 45 min after irradiation, pictures were taken and a computer aided sperm analysis (CASA) performed to analyse different motility parameters. The results showed that different output powers affected dog semen motility parameters differently. The highest output power showed the most intense effects. Significant changes in the structure of the motile sperm subpopulation were linked to the different output powers used.

  11. Sensitivity of a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    Alekseev, A. E.; Tezadov, Ya A.; Potapov, V. T.

    2018-06-01

    In the present paper we perform, for the first time, an analysis of the average sensitivity of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source to external actions. The sensitivity of this OTDR can be defined in a conventional manner via average SNR at its output, which in turn is defined by the average useful signal power and the average intensity noise power in the OTDR spatial channels in the bandwidth defined by the OTDR sampling frequency. The average intensity noise power is considered in detail in a previous paper. In the current paper we examine the average useful signal power at the output of a phase-OTDR. The analysis of the average useful signal power of a phase-OTDR is based on the study of a fiber scattered-light interferometer (FSLI) which is treated as a constituent part of a phase- OTDR. In the analysis, one of the conventional phase-OTDR schemes with a rectangular dual-pulse probe signal is considered. The FSLI which corresponds to this OTDR scheme has two scattering fiber segments with additional time delay, introduced between backscattered fields. The average useful signal power and the resulting average SNR at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments, and by the additional time delay between the scattering fiber segments. The average useful signal power characteristic of the corresponding phase-OTDR is determined by analogous parameters: the source coherence, the time durations of the parts constituting the dual-pulse, and the time interval which separates these parts. In the paper an expression for the average useful signal power of a phase-OTDR is theoretically derived and experimentally verified. Based on the found average useful signal power of a phase-OTDR and the average intensity noise power, derived in the previous paper, the average SNR of a phase-OTDR is defined. Setting the average signal SNR to 1, at a defined spectral band the minimum detectable external action amplitude for our particular phase-OTDR setup is determined. We also derive a simple relation for the average useful signal power and the average SNR which results when making the assumption that the laser source coherence is high. The results of the paper can serve as the basis for further development of the concept of phase-OTDR sensitivity.

  12. The left ventricle as a mechanical engine: from Leonardo da Vinci to the echocardiographic assessment of peak power output-to-left ventricular mass.

    PubMed

    Dini, Frank L; Guarini, Giacinta; Ballo, Piercarlo; Carluccio, Erberto; Maiello, Maria; Capozza, Paola; Innelli, Pasquale; Rosa, Gian M; Palmiero, Pasquale; Galderisi, Maurizio; Razzolini, Renato; Nodari, Savina

    2013-03-01

    The interpretation of the heart as a mechanical engine dates back to the teachings of Leonardo da Vinci, who was the first to apply the laws of mechanics to the function of the heart. Similar to any mechanical engine, whose performance is proportional to the power generated with respect to weight, the left ventricle can be viewed as a power generator whose performance can be related to left ventricular mass. Stress echocardiography may provide valuable information on the relationship between cardiac performance and recruited left ventricular mass that may be used in distinguishing between adaptive and maladaptive left ventricular remodeling. Peak power output-to-mass, obtained during exercise or pharmacological stress echocardiography, is a measure that reflects the number of watts that are developed by 100 g of left ventricular mass under maximal stimulation. Power output-to-mass may be calculated as left ventricular power output per 100 g of left ventricular mass: 100× left ventricular power output divided by left ventricular mass (W/100 g). A simplified formula to calculate power output-to-mass is as follows: 0.222 × cardiac output (l/min) × mean blood pressure (mmHg)/left ventricular mass (g). When the integrity of myocardial structure is compromised, a mismatch becomes apparent between maximal cardiac power output and left ventricular mass; when this occurs, a reduction of the peak power output-to-mass index is observed.

  13. Secondary electric power generation with minimum engine bleed

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.

    1983-01-01

    Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.

  14. Thermodynamic analysis of steam-injected advanced gas turbine cycles

    NASA Astrophysics Data System (ADS)

    Pandey, Devendra; Bade, Mukund H.

    2017-12-01

    This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.

  15. Energy-efficient constellations design and fast decoding for space-collaborative MIMO visible light communications

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Jun; Liang, Wang-Feng; Wang, Chao; Wang, Wen-Ya

    2017-01-01

    In this paper, space-collaborative constellations (SCCs) for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems are considered. Compared with traditional VLC MIMO techniques, such as repetition coding (RC), spatial modulation (SM) and spatial multiplexing (SMP), SCC achieves the minimum average optical power for a fixed minimum Euclidean distance. We have presented a unified SCC structure for 2×2 MIMO VLC systems and extended it to larger MIMO VLC systems with more transceivers. Specifically for 2×2 MIMO VLC, a fast decoding algorithm is developed with decoding complexity almost linear in terms of the square root of the cardinality of SCC, and the expressions of symbol error rate of SCC are presented. In addition, bit mappings similar to Gray mapping are proposed for SCC. Computer simulations are performed to verify the fast decoding algorithm and the performance of SCC, and the results demonstrate that the performance of SCC is better than those of RC, SM and SMP for indoor channels in general.

  16. Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization

    NASA Astrophysics Data System (ADS)

    Al-Hayali, S. K. M.; Al-Janabi, A. H.

    2018-03-01

    We have experimentally demonstrated the operation of a dual-wavelength passively Q-switched ytterbium-doped fiber laser by using a saturable absorber (SA) based on Fe3O4 nanoparticles in a magnetic fluid. The SA was fabricated by depositing magnetic fluid at the end of an optical fiber ferrule. By performing adjustments to the pump power and polarization controller state in the cavity, a stable dual-wavelength lasing operation was generated without intracavity spectral filters or modulation elements. The Q-switched laser output was achieved at a pump threshold of 80 mW with a maximum output pulse energy of 38.8 nJ, a repetition rate of 73.4 kHz and a minimum pulse width of 3.4 µs. To the best of the authors’ knowledge, this is the first demonstration of a dual-wavelength passively Q-switched fiber laser using Fe3O4 nanoparticles as the SA in the 1.0 µm operation region.

  17. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows.

    PubMed

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-10-16

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m(2) mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems.

  18. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows

    PubMed Central

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-01-01

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m2 mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems. PMID:25321890

  19. Matched Bearing Processing for Airborne Source Localization by an Underwater Horizontal Line Array

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Li, Zheng-Lin; Wang, Guang-Xu

    2010-11-01

    Location of an airborne source is estimated from signals measured by a horizontal line array (HLA), based on the fact that a signal transmitted by an airborne source will reach a underwater hydrophone in different ways: via a direct refracted path, via one or more bottom and surface reflections, via the so-called lateral wave. As a result, when an HLA near the airborne source is used for beamforming, several peaks at different bearing angles will appear. By matching the experimental beamforming outputs with the predicted outputs for all source locations, the most likely location is the one which gives minimum difference. An experiment is conducted for airborne source localization in the Yellow Sea in October 2008. An HLA was laid on the sea bottom at the depth of 30m. A high-power loudspeaker was hung on a research ship floating near the HLA and sent out LFM pulses. The estimated location of the loudspeaker is in agreement well with the GPS measurements.

  20. Improving electrofishing catch consistency by standardizing power

    USGS Publications Warehouse

    Burkhardt, Randy W.; Gutreuter, Steve

    1995-01-01

    The electrical output of electrofishing equipment is commonly standardized by using either constant voltage or constant amperage, However, simplified circuit and wave theories of electricity suggest that standardization of power (wattage) available for transfer from water to fish may be critical for effective standardization of electrofishing. Electrofishing with standardized power ensures that constant power is transferable to fish regardless of water conditions. The in situ performance of standardized power output is poorly known. We used data collected by the interagency Long Term Resource Monitoring Program (LTRMP) in the upper Mississippi River system to assess the effectiveness of standardizing power output. The data consisted of 278 electrofishing collections, comprising 9,282 fishes in eight species groups, obtained during 1990 from main channel border, backwater, and tailwater aquatic areas in four reaches of the upper Mississippi River and one reach of the Illinois River. Variation in power output explained an average of 14.9% of catch variance for night electrofishing and 12.1 % for day electrofishing. Three patterns in catch per unit effort were observed for different species: increasing catch with increasing power, decreasing catch with increasing power, and no power-related pattern. Therefore, in addition to reducing catch variation, controlling power output may provide some capability to select particular species. The LTRMP adopted standardized power output beginning in 1991; standardized power output is adjusted for variation in water conductivity and water temperature by reference to a simple chart. Our data suggest that by standardizing electrofishing power output, the LTRMP has eliminated substantial amounts of catch variation at virtually no additional cost.

  1. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  2. An optimal tuning strategy for tidal turbines

    PubMed Central

    2016-01-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870

  3. An optimal tuning strategy for tidal turbines

    NASA Astrophysics Data System (ADS)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  4. An optimal tuning strategy for tidal turbines.

    PubMed

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  5. Power and efficiency of insect flight muscle.

    PubMed

    Ellington, C P

    1985-03-01

    The efficiency and mechanical power output of insect flight muscle have been estimated from a study of hovering flight. The maximum power output, calculated from the muscle properties, is adequate for the aerodynamic power requirements. However, the power output is insufficient to oscillate the wing mass as well unless there is good elastic storage of the inertial energy, and this is consistent with reports of elastic components in the flight system. A comparison of the mechanical power output with the metabolic power input to the flight muscles suggests that the muscle efficiency is quite low: less than 10%.

  6. Thermal anomalies of the transmitter experiment package on the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Alexovich, R. E.; Curren, A. N.

    1979-01-01

    The causes of four temporary thermal-control-system malfunctions that gave rise to unexpected temperature excursions in the 12-gigahertz, 200-watt transmitter experiment package (TEP) on the Communications Technology Satellite were investigated. The TEP consists of a nominal 200-watt output stage tube (OST), a supporting power-processing system (PPS), and a variable-conductance heat-pipe system (VCHPS). The VCHPS, which uses three heat pipes to conduct heat from the body of the OST to a radiator fin, was designed to maintain the TEP at safe operating temperatures at all operating conditions. On four occasions during 1977, all near the spring and fall equinoxes, the OST body temperature and related temperatures displayed sudden, rapid, and unexpected rises above normal levels while the TEP was operating at essentially constant, normal conditions. The temperature excursions were terminated without TEP damage by reducing the radio frequency (RF) output power of the OST. Between the anomalies and since the fourth, the thermal control system has apparently functioned as designed. The results indicate the most probable cause of the temperature anomalies is depriming of the arteries in the variable-conductance heat pipes. A mode was identified in which the TEP, as presently configured, may operate with stable temperatures and with minimum change in performance level.

  7. A novel high-performance high-frequency SOI MESFET by the damped electric field

    NASA Astrophysics Data System (ADS)

    Orouji, Ali A.; Khayatian, Ahmad; Keshavarzi, Parviz

    2016-06-01

    In this paper, we introduce a novel silicon-on-insulator (SOI) metal-semiconductor field-effect-transistor (MESFET) using the damped electric field (DEF). The proposed structure is geometrically symmetric and compatible with common SOI CMOS fabrication processes. It has two additional oxide regions under the side gates in order to improve DC and RF characteristics of the DEF structure due to changes in the electrical potential, the electrical field distributions, and rearrangement of the charge carriers. Improvement of device performance is investigated by two-dimensional and two-carrier simulation of fundamental parameters such as breakdown voltage (VBR), drain current (ID), output power density (Pmax), transconductance (gm), gate-drain and gate-source capacitances, cut-off frequency (fT), unilateral power gain (U), current gain (h21), maximum available gain (MAG), and minimum noise figure (Fmin). The results show that proposed structure operates with higher performances in comparison with the similar conventional SOI structure.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovannetti, Vittorio; Maccone, Lorenzo; Shapiro, Jeffrey H.

    The minimum Renyi and Wehrl output entropies are found for bosonic channels in which the signal photons are either randomly displaced by a Gaussian distribution (classical-noise channel), or coupled to a thermal environment through lossy propagation (thermal-noise channel). It is shown that the Renyi output entropies of integer orders z{>=}2 and the Wehrl output entropy are minimized when the channel input is a coherent state.

  9. Grain-size considerations for optoelectronic multistage interconnection networks.

    PubMed

    Krishnamoorthy, A V; Marchand, P J; Kiamilev, F E; Esener, S C

    1992-09-10

    This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost functions mentioned above. As VLSI minimum feature sizes decrease, the optimum grain size increases, whereas, if optical interconnect performance in terms of the detector power or modulator driving voltage requirements improves, the optimum grain size may be reduced. Finally, several architectural modifications to the system, such as K x K contention-free switches and sorting networks, are investigated and optimized for grain size. Results indicate that system bandwidth can be increased, but at the price of reduced performance/cost. The optoelectronic MIN architectures considered thus provide a broad range of performance/cost alternatives and offer a superior performance over purely electronic MIN's.

  10. X-Band, 17-Watt Solid-State Power Amplifier

    NASA Technical Reports Server (NTRS)

    Mittskus, Anthony; Stone, Ernest; Boger, William; Burgess, David; Honda, Richard; Nuckolls, Carl

    2005-01-01

    An advanced solid-state power amplifier that can generate an output power of as much as 17 W at a design operating frequency of 8.4 GHz has been designed and constructed as a smaller, lighter, less expensive alternative to traveling-wave-tube X-band amplifiers and to prior solid-state X-band power amplifiers of equivalent output power. This amplifier comprises a monolithic microwave integrated circuit (MMIC) amplifier module and a power-converter module integrated into a compact package (see Figure 1). The amplifier module contains an input variable-gain amplifier (VGA), an intermediate driver stage, a final power stage, and input and output power monitors (see Figure 2). The VGA and the driver amplifier are 0.5-m GaAs-based metal semiconductor field-effect transistors (MESFETs). The final power stage contains four parallel high-efficiency, GaAs-based pseudomorphic high-electron-mobility transistors (PHEMTs). The gain of the VGA is voltage-variable over a range of 10 to 24 dB. To provide for temperature compensation of the overall amplifier gain, the gain-control voltage is generated by an operational-amplifier circuit that includes a resistor/thermistor temperature-sensing network. The driver amplifier provides a gain of 14 dB to an output power of 27 dBm to drive the four parallel output PHEMTs, each of which is nominally capable of putting out as much as 5 W. The driver output is sent to the input terminals of the four parallel PHEMTs through microstrip power dividers; the outputs of these PHEMTs are combined by microstrip power combiners (which are similar to the microstrip power dividers) to obtain the final output power of 17 W.

  11. Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.

    2015-03-01

    We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat engines and refrigerators with finite power outputs. This paper gives detailed derivations of the results summarized in a previous paper [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601]. It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analog in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.

  12. An optimal design of magnetostrictive material (MsM) based energy harvester

    NASA Astrophysics Data System (ADS)

    Hu, Jingzhen; Yuan, Fuh-Gwo; Xu, Fujun; Huang, Alex Q.

    2010-04-01

    In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) has been designed to power the Wireless Intelligent Sensor Platform (WISP), developed at North Carolina State University. A linear MsM energy harvesting device has been modeled and optimized to maximize the power output. The effects of number of MsM layers and glue layers, and load matching on the output power of the MsM energy harvester have been analyzed. From the measurement, the open circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the 2nd natural frequency 324 Hz. The AC output power is 0.97 mW, giving power density 279 μW/cm3. Since the MsM device has low open circuit output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device has been implemented using a discontinuous conduction mode (DCM) buck-boost converter. The maximum output power after the voltage quadrupler is now 705 μW and power density reduces to 202.4 μW/cm3, which is comparable to the piezoelectric energy harvesters given in the literature. The output power delivered to a lithium rechargeable battery is around 630 μW, independent of the load resistance.

  13. All-dielectric fiber-optic passive millimeter-wave antenna

    NASA Astrophysics Data System (ADS)

    Wang, Wen C.; Lin, Weiping; Marshall, Hank; Schaafsma, David T.; Chaung, Richard

    2003-07-01

    An integrated Mach-Zehnder interferometer made of electro-optic polymer, which has excellent broadband (>100 GHz) response, was fabricated as a mm-wave receive antenna. When an electric field is applied to the interferometer arm(s) made of EO material, a phase delay is generated which results in a net imbalance in the interferometer and thus a change in the output intensity. This output intensity change, which contains electric field strength and temporal profile information, is then read by a photodetector and processed. To test this antenna in free space, a micro-strip travelling electromagnetic cell, which has uniform electric field distribution in the 1 GHz range, was constructed. The test results show the antenna had good linear response over a 40 dB power range, at 1 GHz center frequency. The measured minimum detectable E-field strength was about 0.22 V/m (or 6.7 nW/cm2) at 1 kHz bandwidth with a laser power of 7.9 μWatt (-21dBm) measured after the sensor, which agrees with our theoretical calculations. The measured E-field signal increases with increasing laser power, which indicates that significant sensitivity improvement, can be easily obtained by lowering passive losses. The antenna was found to be thermally stable over a temperature range from -30 to 50 C. The antenna sensitivity can be further improved by lowering the device insertion loss, optimizing the photodetector and detection circuitry, and using EO polymers with higher electro-optic coefficients.

  14. Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example.

    PubMed

    Nemitz, Markus P; Mihaylov, Pavel; Barraclough, Thomas W; Ross, Dylan; Stokes, Adam A

    2016-12-01

    In this study, we present a modular worm-like robot, which utilizes voice coils as a new paradigm in soft robot actuation. Drive electronics are incorporated into the actuators, providing a significant improvement in self-sufficiency when compared with existing soft robot actuation modes such as pneumatics or hydraulics. The body plan of this robot is inspired by the phylum Annelida and consists of three-dimensional printed voice coil actuators, which are connected by flexible silicone membranes. Each electromagnetic actuator engages with its neighbor to compress or extend the membrane of each segment, and the sequence in which they are actuated results in an earthworm-inspired peristaltic motion. We find that a minimum of three segments is required for locomotion, but due to our modular design, robots of any length can be quickly and easily assembled. In addition to actuation, voice coils provide audio input and output capabilities. We demonstrate transmission of data between segments by high-frequency carrier waves and, using a similar mechanism, we note that the passing of power between coupled coils in neighboring modules-or from an external power source-is also possible. Voice coils are a convenient multifunctional alternative to existing soft robot actuators. Their self-contained nature and ability to communicate with each other are ideal for modular robotics, and the additional functionality of sound input/output and power transfer will become increasingly useful as soft robots begin the transition from early proof-of-concept systems toward fully functional and highly integrated robotic systems.

  15. Precipitation Cluster Distributions: Current Climate Storm Statistics and Projected Changes Under Global Warming

    NASA Astrophysics Data System (ADS)

    Quinn, Kevin Martin

    The total amount of precipitation integrated across a precipitation cluster (contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as the rate of water mass lost or latent heat released, i.e. the power of the disturbance. Probability distributions of cluster power are examined during boreal summer (May-September) and winter (January-March) using satellite-retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) 3B42 and Special Sensor Microwave Imager and Sounder (SSM/I and SSMIS) programs, model output from the High Resolution Atmospheric Model (HIRAM, roughly 0.25-0.5 0 resolution), seven 1-2° resolution members of the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiment, and National Center for Atmospheric Research Large Ensemble (NCAR LENS). Spatial distributions of precipitation-weighted centroids are also investigated in observations (TRMM-3B42) and climate models during winter as a metric for changes in mid-latitude storm tracks. Observed probability distributions for both seasons are scale-free from the smallest clusters up to a cutoff scale at high cluster power, after which the probability density drops rapidly. When low rain rates are excluded by choosing a minimum rain rate threshold in defining clusters, the models accurately reproduce observed cluster power statistics and winter storm tracks. Changes in behavior in the tail of the distribution, above the cutoff, are important for impacts since these quantify the frequency of the most powerful storms. End-of-century cluster power distributions and storm track locations are investigated in these models under a "business as usual" global warming scenario. The probability of high cluster power events increases by end-of-century across all models, by up to an order of magnitude for the highest-power events for which statistics can be computed. For the three models in the suite with continuous time series of high resolution output, there is substantial variability on when these probability increases for the most powerful precipitation clusters become detectable, ranging from detectable within the observational period to statistically significant trends emerging only after 2050. A similar analysis of National Centers for Environmental Prediction (NCEP) Reanalysis 2 and SSM/I-SSMIS rain rate retrievals in the recent observational record does not yield reliable evidence of trends in high-power cluster probabilities at this time. Large impacts to mid-latitude storm tracks are projected over the West Coast and eastern North America, with no less than 8 of the 9 models examined showing large increases by end-of-century in the probability density of the most powerful storms, ranging up to a factor of 6.5 in the highest range bin for which historical statistics are computed. However, within these regional domains, there is considerable variation among models in pinpointing exactly where the largest increases will occur.

  16. Dynamic Modeling and Very Short-term Prediction of Wind Power Output Using Box-Cox Transformation

    NASA Astrophysics Data System (ADS)

    Urata, Kengo; Inoue, Masaki; Murayama, Dai; Adachi, Shuichi

    2016-09-01

    We propose a statistical modeling method of wind power output for very short-term prediction. The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for output distribution matching: we shape the distribution of the model output to match with that of the wind power output. The constructed model is utilized for one-step ahead prediction of the wind power output. Furthermore, we study the relation between the prediction accuracy and the prediction horizon.

  17. A comparison of GaAs and Si hybrid solar power systems

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Roberts, A. S., Jr.

    1977-01-01

    Five different hybrid solar power systems using silicon solar cells to produce thermal and electric power are modeled and compared with a hybrid system using a GaAs cell. Among the indices determined are capital cost per unit electric power plus mechanical power, annual cost per unit electric energy, and annual cost per unit electric plus mechanical work. Current costs are taken to be $35,000/sq m for GaAs cells with an efficiency of 15% and $1000/sq m for Si cells with an efficiency of 10%. It is shown that hybrid systems can be competitive with existing methods of practical energy conversion. Limiting values for annual costs of Si and GaAs cells are calculated to be 10.3 cents/kWh and 6.8 cents/kWh, respectively. Results for both systems indicate that for a given flow rate there is an optimal operating condition for minimum cost photovoltaic output. For Si cell costs of $50/sq m optimal performance can be achieved at concentrations of about 10; for GaAs cells costing 1000/sq m, optimal performance can be obtained at concentrations of around 100. High concentration hybrid systems offer a distinct cost advantage over flat systems.

  18. Impact Factors Analysis of the Hot Side Temperature of Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Tan, Gangfeng; Yang, Bo

    2018-03-01

    The thermoelectric generator (TEG) plays a crucial role in converting the waste energy of exhaust into electricity, which ensures energy saving and increased fuel utilization efficiency. In the urban driving cycle, frequent vehicle operation, like deceleration or acceleration, results in continuous variation of the exhaust temperature. In order to make the operating performance stable, and to weaken the adverse effects of the frequent variation of the exhaust temperature on the lifetime and work efficiency of the electronic components of TEG systems, the output voltage of the thermoelectric (TE) module should stay more stable. This article provides an improved method for the temperature stability of the TE material hot side based on sandwiching material. From the view of the TEG system's average output power and the hot side temperature stability of the TE material, the analyzing factors, including the fluctuation frequency of the exhaust temperature and the physical properties and thickness of the sandwiching material are evaluated, respectively, in the sine and new European driving cycle (NEDC) fluctuation condition of the exhaust temperature. The results show few effects of sandwiching material thickness with excellent thermal conductivity on the average output power. During the 150-170 s of the NEDC test condition, the minimum hot side temperatures with a BeO ceramic thickness of 2 mm and 6 mm are, respectively, 537.19 K and 685.70 K, which shows the obvious effect on the hot side temperature stability of the BeO ceramic thickness in the process of acceleration and deceleration of vehicle driving.

  19. Impact Factors Analysis of the Hot Side Temperature of Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Tan, Gangfeng; Yang, Bo

    2017-12-01

    The thermoelectric generator (TEG) plays a crucial role in converting the waste energy of exhaust into electricity, which ensures energy saving and increased fuel utilization efficiency. In the urban driving cycle, frequent vehicle operation, like deceleration or acceleration, results in continuous variation of the exhaust temperature. In order to make the operating performance stable, and to weaken the adverse effects of the frequent variation of the exhaust temperature on the lifetime and work efficiency of the electronic components of TEG systems, the output voltage of the thermoelectric (TE) module should stay more stable. This article provides an improved method for the temperature stability of the TE material hot side based on sandwiching material. From the view of the TEG system's average output power and the hot side temperature stability of the TE material, the analyzing factors, including the fluctuation frequency of the exhaust temperature and the physical properties and thickness of the sandwiching material are evaluated, respectively, in the sine and new European driving cycle (NEDC) fluctuation condition of the exhaust temperature. The results show few effects of sandwiching material thickness with excellent thermal conductivity on the average output power. During the 150-170 s of the NEDC test condition, the minimum hot side temperatures with a BeO ceramic thickness of 2 mm and 6 mm are, respectively, 537.19 K and 685.70 K, which shows the obvious effect on the hot side temperature stability of the BeO ceramic thickness in the process of acceleration and deceleration of vehicle driving.

  20. 980-nm diode laser and fiber optic resectoscope in endourological surgery

    NASA Astrophysics Data System (ADS)

    Cecchetti, Walter; Guazzieri, Stefano; Tasca, Andrea; Dal Bianco, M.; Zattoni, Filiberto; Pagano, Francesco

    1996-12-01

    The 980 nm Ceralas D50 diode laser, produces homogeneous lesions on tissues of different nature. In our endourological tests we used the Ceralas D50 coupled with Comeg 24 ch laser resectoscope, and we treated 22 patients: n.5 bladder cancers, n.3 uretero pelvic junction obstructions, with hydronephrosis, n.3 urethra stenosis, n1 ureter stenosis, n.4 multiple upper tract transitional cell carcinomas, n.6 BPH treatments with VLAP modalities. Using the 1000 micrometers delivery fibers with different shaped tips, we obtained a bloodless sharp cut and easily vaporizations with minimum carbonizations, with power output in the range of 8-12 W, and 18-24W for VLAP.

  1. Room-temperature Q-switched Tm:BaY2F8 laser pumped by CW diode laser

    NASA Astrophysics Data System (ADS)

    Coluccelli, Nicola; Galzerano, Gianluca; Laporta, Paolo; Parisi, Daniela; Toncelli, Alessandra; Tonelli, Mauro

    2006-02-01

    We report on the realization of CW diode-pumped Tm:BaY2F8 Q-switched laser at 1.93 µm. Active Q-switching was obtained by means of an intracavity Pockels cell. A functional characterization of the laser performance is presented with particular attention to output energy, pulse duration, pulse stability, and wavelength tunability. Pulses with time duration as short as 170 ns were demonstrated at the minimum repetition rate of 5 Hz with an energy of 3.2 mJ (corresponding to a peak power of 19 kW). A wavelength tunability range from 1905 nm to 1990 nm has been observed.

  2. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    NASA Astrophysics Data System (ADS)

    Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman

    2017-10-01

    Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  3. Study of electrode slice forming of bicycle dynamo hub power connector

    NASA Astrophysics Data System (ADS)

    Chen, Dyi-Cheng; Jao, Chih-Hsuan

    2013-12-01

    Taiwan's bicycle industry has been an international reputation as bicycle kingdom, but the problem in the world makes global warming green energy rise, the development of electrode slice of hub dynamo and power output connector to bring new hope to bike industry. In this study connector power output to gather public opinion related to patent, basis of collected documents as basis for design, structural components in least drawn to power output with simple connector. Power output of this study objectives connector hope at least cost, structure strongest, highest efficiency in output performance characteristics such as use of computer-aided drawing software Solid works to establish power output connector parts of 3D model, the overall portfolio should be considered part types including assembly ideas, weather resistance, water resistance, corrosion resistance to vibration and power flow stability. Moreover the 3D model import computer-aided finite element analysis software simulation of expected the power output of the connector parts manufacturing process. A series of simulation analyses, in which the variables relied on first stage and second stage forming, were run to examine the effective stress, effective strain, press speed, and die radial load distribution when forming electrode slice of bicycle dynamo hub.

  4. Engineering Sedimentary Geothermal Resources for Large-Scale Dispatchable Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Buscheck, Thomas; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Saar, Martin; Randolph, Jimmy

    2014-05-01

    Mitigating climate change requires substantial penetration of renewable energy and economically viable options for CO2 capture and storage (CCS). We present an approach using CO2 and N2 in sedimentary basin geothermal resources that (1) generates baseload and dispatchable power, (2) efficiently stores large amounts of energy, and (3) enables seasonal storage of solar energy, all which (5) increase the value of CO2 and render CCS commercially viable. Unlike the variability of solar and wind resources, geothermal heat is a constant source of renewable energy. Using CO2 as a supplemental geothermal working fluid, in addition to brine, reduces the parasitic load necessary to recirculate fluids. Adding N2 is beneficial because it is cheaper, will not react with materials and subsurface formations, and enables bulk energy storage. The high coefficients of thermal expansion of CO2 and N2 (a) augment reservoir pressure, (b) generate artesian flow at the production wells, and (c) produce self-convecting thermosiphons that directly convert reservoir heat to mechanical energy for fluid recirculation. Stored pressure drives fluid production and responds faster than conventional brine-based geothermal systems. Our design uses concentric rings of horizontal wells to create a hydraulic divide that stores supplemental fluids and pressure. Production and injection wells are controlled to schedule power delivery and time-shift the parasitic power necessary to separate N2 from air and compress it for injection. The parasitic load can be scheduled during minimum power demand or when there is excess electricity from wind or solar. Net power output can nearly equal gross power output during peak demand, and energy storage is almost 100% efficient because it is achieved by the time-shift. Further, per-well production rates can take advantage of the large productivity of horizontal wells, with greater leveraging of well costs, which often constitute a major portion of capital costs for geothermal power systems.

  5. Method for leveling the power output of an electromechanical battery as a function of speed

    DOEpatents

    Post, R.F.

    1999-03-16

    The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range. 3 figs.

  6. A programmable power processor for high power space applications

    NASA Technical Reports Server (NTRS)

    Lanier, J. R., Jr.; Graves, J. R.; Kapustka, R. E.; Bush, J. R., Jr.

    1982-01-01

    A Programmable Power Processor (P3) has been developed for application in future large space power systems. The P3 is capable of operation over a wide range of input voltage (26 to 375 Vdc) and output voltage (24 to 180 Vdc). The peak output power capability is 18 kW (180 V at 100 A). The output characteristics of the P3 can be programmed to any voltage and/or current level within the limits of the processor and may be controlled as a function of internal or external parameters. Seven breadboard P3s and one 'flight-type' engineering model P3 have been built and tested both individually and in electrical power systems. The programmable feature allows the P3 to be used in a variety of applications by changing the output characteristics. Test results, including efficiency at various input/output combinations, transient response, and output impedance, are presented.

  7. Output power distributions of mobile radio base stations based on network measurements

    NASA Astrophysics Data System (ADS)

    Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.

    2013-04-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  8. Method for leveling the power output of an electromechanical battery as a function of speed

    DOEpatents

    Post, Richard F.

    1999-01-01

    The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range.

  9. High-power, multioutput piezoelectric transformers operating at the thickness-shear vibration mode.

    PubMed

    Du, Jinlong; Hu, Junhui; Tseng, King Jet

    2004-05-01

    In this study, a piezoelectric transformer operating at the thickness shear vibration mode and with dual or triple outputs is proposed. It consists of a lead zirconate titanate (PZT) ceramic plate with a high mechanical quality factor Qm and a size of 120 x 20 x 4 mm3. The PZT ceramic plate is poled along the width direction. The electrodes of input and output parts are on the top and bottom surfaces of the ceramic plate and separated by narrow gaps. A new construction of support and lead wire connection is used for the transformer. At a temperature rise less than 20 degrees C and efficiency of 90%, the piezoelectric transformer with dual outputs has a maximum total output power of 169.8 W, with a power of 129.5 W in one output and 40.3 W in another. The one with triple outputs has a maximum total output power of 163.1 W, with a power of 36.9 W in the first output, 13.0 W in the second output and 113.2 W in the third output. The maximum efficiency of the piezoelectric transformer with dual outputs and triple outputs is 98% and 95.7%, respectively. The voltage gains of the transformers are less than one, and different outputs have different gains. Also, there is a driving frequency range in which the load resistance of one output has little effect on the voltage gain of another output.

  10. Potential health risks due to telecommunications radiofrequency radiation exposures in Lagos State Nigeria.

    PubMed

    Aweda, M A; Ajekigbe, A T; Ibitoye, A Z; Evwhierhurhoma, B O; Eletu, O B

    2009-01-01

    The global system mobile telecommunications system (GSM) which was recently introduced in Nigeria is now being used by over 40 million people in Nigeria. The use of GSM is accompanied with exposure of the users to radiofrequency radiation (RFR), which if significant, may produce health hazards. This is the reason why many relevant national and international organizations recommended exposure limits to RFR and why it is made compulsory for GSM handsets to indicate the maximum power output as a guide to potential consumers. This study was conducted to measure the RFR output power densities (S) from the most commonly used GSM handsets used in Lagos State and compare with the limit recommended for safety assessment. Over 1100 most commonly used handsets of different makes and models as well as wireless phones were sampled and studied in all over the local government areas of the State. An RFR meter, Electrosmog from LESSEMF USA was used for the measurements. The handsets were assessed for health risks using the reference value of 9 Wm(-2) as recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The range of the S-values obtained varied from a minimum of 1.294 0.101 Wm(-2) with Siemens model R228 to a maximum of 16.813 +/- 0.094 Wm(-2) with Samsung model C140*. The results from wireless telephones showed very low S-values ranging from a minimum of 0.024 +/- 0.001 Wm(-2) with HUAWEI and ST CDMA 1 to a maximum of 0.093 +/- 0.002 Wm(-2) with HISENSE. The results showed that the population in Lagos State may be at risk due to significant RFR exposures resulting principally from the use of GSM. Quite a number of handsets emit power above the ICNIRP recommended value. Measured RFR power close to Radio and Television masts and transmitters are within tolerable limits in most cases, only that the public should not reside or work close to RFR installations. Phone calls with GSM should be restricted to essential ones while youths and children that are more susceptible to RFR hazards should be supervised in their use of GSM. Wireless phones are quite safe.

  11. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  12. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  13. Predicting High-Power Performance in Professional Cyclists.

    PubMed

    Sanders, Dajo; Heijboer, Mathieu; Akubat, Ibrahim; Meijer, Kenneth; Hesselink, Matthijs K

    2017-03-01

    To assess if short-duration (5 to ~300 s) high-power performance can accurately be predicted using the anaerobic power reserve (APR) model in professional cyclists. Data from 4 professional cyclists from a World Tour cycling team were used. Using the maximal aerobic power, sprint peak power output, and an exponential constant describing the decrement in power over time, a power-duration relationship was established for each participant. To test the predictive accuracy of the model, several all-out field trials of different durations were performed by each cyclist. The power output achieved during the all-out trials was compared with the predicted power output by the APR model. The power output predicted by the model showed very large to nearly perfect correlations to the actual power output obtained during the all-out trials for each cyclist (r = .88 ± .21, .92 ± .17, .95 ± .13, and .97 ± .09). Power output during the all-out trials remained within an average of 6.6% (53 W) of the predicted power output by the model. This preliminary pilot study presents 4 case studies on the applicability of the APR model in professional cyclists using a field-based approach. The decrement in all-out performance during high-intensity exercise seems to conform to a general relationship with a single exponential-decay model describing the decrement in power vs increasing duration. These results are in line with previous studies using the APR model to predict performance during brief all-out trials. Future research should evaluate the APR model with a larger sample size of elite cyclists.

  14. Design and analysis of optically pumped submillimeter waveguide maser amplifiers and oscillators

    NASA Technical Reports Server (NTRS)

    Galantowicz, T. A.

    1975-01-01

    The design and experimental measurements are described of an optically pumped far-infrared (FIR) waveguide maser; preliminary measurements on a FIR waveguide amplifier are presented. The FIR maser was found to operate satisfactorily in a chopped CW mode using either methanol (CH3OH) or acetonitrile (CH3CN) as the active molecule. Two other gases, difluoroethane and difluoroethylene, produced an unstable output with high threshold and low output power when operated in the chopped CW mode. Experimental measurements include FIR output versus cavity length, output beam pattern, output power versus pressure, and input power. The FIR output was the input to an amplifier which was constructed similar to the oscillator. An increase of 10% in output power was noted on the 118.8 microns line of methanol.

  15. Efficient Switching Arrangement for (N + 1)/N Redundancy

    NASA Technical Reports Server (NTRS)

    Lux, James; McMaster, Robert

    2007-01-01

    An efficient arrangement of four switches has been conceived for coupling, to four output ports, the output powers of any subset of four devices that are members of a redundant set of five devices. In normal operation, the output power of each of four of the devices would be coupled to one of the four output ports. The remaining device would be kept as a spare: normally, its output power would be coupled to a load, wherein that power would be dissipated. In the event of failure of one of the four normally used devices, that device would be disconnected from its output port and connected to the load, and the spare device would be connected to the output from which the failed device was disconnected. Alternatively or in addition, the outputs of one or more devices could be sent to ports other than the ones originally assigned to them.

  16. Direct current ballast circuit for metal halide lamp

    NASA Technical Reports Server (NTRS)

    Lutus, P. (Inventor)

    1981-01-01

    A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.

  17. Energy storage connection system

    DOEpatents

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  18. A generalised optimal linear quadratic tracker with universal applications. Part 2: discrete-time systems

    NASA Astrophysics Data System (ADS)

    Ebrahimzadeh, Faezeh; Tsai, Jason Sheng-Hong; Chung, Min-Ching; Liao, Ying Ting; Guo, Shu-Mei; Shieh, Leang-San; Wang, Li

    2017-01-01

    Contrastive to Part 1, Part 2 presents a generalised optimal linear quadratic digital tracker (LQDT) with universal applications for the discrete-time (DT) systems. This includes (1) a generalised optimal LQDT design for the system with the pre-specified trajectories of the output and the control input and additionally with both the input-to-output direct-feedthrough term and known/estimated system disturbances or extra input/output signals; (2) a new optimal filter-shaped proportional plus integral state-feedback LQDT design for non-square non-minimum phase DT systems to achieve a minimum-phase-like tracking performance; (3) a new approach for computing the control zeros of the given non-square DT systems; and (4) a one-learning-epoch input-constrained iterative learning LQDT design for the repetitive DT systems.

  19. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  20. Indium gallium arsenide microwave power transistors

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory A.; Kapoor, Vik J.; Shokrani, Mohsen; Messick, Louis J.; Nguyen, Richard

    1991-01-01

    Depletion-mode InGaAs microwave power MISFETs with 1-micron gate lengths and up to 1-mm gate widths have been fabricated using an ion-implantation process. The devices employed a plasma-deposited silicon/silicon dioxide gate insulator. The dc I-V characteristics and RF power performance at 9.7 GHz are presented. The output power, power-added efficiency, and power gain as a function of input power are reported. An output power of 1.07 W with a corresponding power gain and power-added efficiency of 4.3 dB and 38 percent, respectively, was obtained. The large-gate-width devices provided over twice the previously reported output power for InGaAs MISFETs at X-band. In addition, output power stability within 1.2 percent over 24 h of continuous operation was achieved. In addition, a drain current drift of 4 percent over 10,000 sec was obtained.

  1. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current.

    PubMed

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  2. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current

    NASA Astrophysics Data System (ADS)

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  3. Third order intermodulation distortion in HTS Josephson Junction downconverter at 12GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Katsumi; Hayashi, Kunihiko; Fujimoto, Manabu

    1994-12-31

    Here the authors first report on the microwave characteristics of the third order intermodulation distortion(IMD3) in High-Tc Superconductor (HTS) Josephson Junction (JJ) Downconverter at 12GHz. They have successfully developed high quality nonlinear YBCO microbridge Josephson junctions for such an active MMIC as a mixer with RF, LO, IF and bias filters, which have been fabricated on (100) MgO substrates with 20mm x 20mm x 0.5mm dimensions. The minimum conversion loss of the JJ mixer is 11 dB at very small local microwave input power LO= {minus}20dBm which is two order less than Schottky diode mixer. Consequently, this small optimum LOmore » power gives the small RF input power at which the output IF power of the YBCO mixer saturates. Two-tone third-order intercept point(IP3) performance is a significantly important figure of merit typically used to define linearity of devices and circuits. The RF input power = {minus}15dBm at the IP3 point is obtained for the YBCO mixer at 15K and LO = 10.935GHz with {minus}22dBm. The have successfully measured the dependence of IMD3 on temperature, bias current and LO power.« less

  4. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier

    NASA Astrophysics Data System (ADS)

    Liu, Lianxi; Pang, Yanbo; Yuan, Wenzhi; Zhu, Zhangming; Yang, Yintang

    2018-04-01

    The key to self-powered technique is initiative to harvest energy from the surrounding environment. Harvesting energy from an ambient vibration source utilizing piezoelectrics emerged as a popular method. Efficient interface circuits become the main limitations of existing energy harvesting techniques. In this paper, an interface circuit for piezoelectric energy harvesting is presented. An active full bridge rectifier is adopted to improve the power efficiency by reducing the conduction loss on the rectifying path. A parallel synchronized switch harvesting on inductor (P-SSHI) technique is used to improve the power extraction capability from piezoelectric harvester, thereby trying to reach the theoretical maximum output power. An intermittent power management unit (IPMU) and an output capacitor-less low drop regulator (LDO) are also introduced. Active diodes (AD) instead of traditional passive ones are used to reduce the voltage loss over the rectifier, which results in a good power efficiency. The IPMU with hysteresis comparator ensures the interface circuit has a large transient output power by limiting the output voltage ranges from 2.2 to 2 V. The design is fabricated in a SMIC 0.18 μm CMOS technology. Simulation results show that the flipping efficiency of the P-SSHI circuit is over 80% with an off-chip inductor value of 820 μH. The output power the proposed rectifier can obtain is 44.4 μW, which is 6.7× improvement compared to the maximum output power of a traditional rectifier. Both the active diodes and the P-SSHI help to improve the output power of the proposed rectifier. LDO outputs a voltage of 1.8 V with the maximum 90% power efficiency. The proposed P-SSHI rectifier interface circuit can be self-powered without the need for additional power supply. Project supported by the National Natural Science Foundation of China (Nos. 61574103, U1709218) and the Key Research and Development Program of Shaanxi Province (No. 2017ZDXM-GY-006).

  5. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    PubMed

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-04

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.

  6. ASDTIC: A feedback control innovation

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (Analog Signal to Discrete Time Interval Converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  7. ASDTIC - A feedback control innovation.

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (analog signal to discrete time interval converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  8. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  9. Compact waveguide power divider with multiple isolated outputs

    DOEpatents

    Moeller, Charles P.

    1987-01-01

    A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).

  10. Method and apparatus to provide power conversion with high power factor

    DOEpatents

    Perreault, David J.; Lim, Seungbum; Otten, David M.

    2017-05-23

    A power converter circuit rectifies a line voltage and applies the rectified voltage to a stack of capacitors. Voltages on the capacitors are coupled to a plurality of regulating converters to be converted to regulated output signals. The regulated output signals are combined and converted to a desired DC output voltage of the power converter. Input currents of the regulating converters are modulated in a manner that enhances the power factor of the power converter.

  11. Integrated control system and method

    DOEpatents

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  12. CONTROL AND FAULT DETECTOR CIRCUIT

    DOEpatents

    Winningstad, C.N.

    1958-04-01

    A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

  13. The effects of load on system and lower-body joint kinetics during jump squats.

    PubMed

    Moir, Gavin L; Gollie, Jared M; Davis, Shala E; Guers, John J; Witmer, Chad A

    2012-11-01

    To investigate the effects of different loads on system and lower-body kinetics during jump squats, 12 resistance-trained men performed jumps under different loading conditions: 0%, 12%, 27%, 42%, 56%, 71%, and 85% of 1-repetition maximum (1-RM). System power output was calculated as the product of the vertical component of the ground reaction force and the vertical velocity of the bar during its ascent. Joint power output was calculated during bar ascent for the hip, knee, and ankle joints, and was also summed across the joints. System power output and joint power at knee and ankle joints were maximized at 0% 1-RM (p < 0.001) and followed the linear trends (p < 0.001) caused by power output decreasing as the load increased. Power output at the hip was maximized at 42% 1-RM (p = 0.016) and followed a quadratic trend (p = 0.030). Summed joint power could be predicted from system power (p < 0.05), while system power could predict power at the knee and ankle joints under some of the loading conditions. Power at the hip could not be predicted from system power. System power during loaded jumps reflects the power at the knee and ankle, while power at the hip does not correspond to system power.

  14. LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm

    NASA Astrophysics Data System (ADS)

    Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan

    2017-12-01

    A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.

  15. Research on design feasibility of high-power light-weight dc-to-dc converters for space power application

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1980-01-01

    The development of 5 kW converters with 100 kHz switching frequencies, consisting of two submodules each capable of 2.5 kW of output power, is discussed. Two semiconductor advances allowed increased power levels. Field effect transistors with ratings of 11 A and 400 V were operated in parallel to provide a converter output power of approximately 2000 W. Secondly, bipolar power switching transistor was operated in conjunction with a turn-off snubber circuit to provide converter output power levels approaching 1000 W. The interrelationships between mass, switching frequency, and efficiency were investigated. Converters were constructed for operation at a maximum output power level of 200 W, and a comparison was made for operation under similar input/output conditions for conversion frequencies of 20 kilohertz and 100 kilohertz. The effects of nondissipative turn-off snubber circuitry were also examined. Finally, a computerized instrumentation system allowing the measurement of pertinent converter operating conditions as well as the recording of converter waveforms is described.

  16. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  17. An ultra-low-power RF transceiver for WBANs in medical applications

    NASA Astrophysics Data System (ADS)

    Qi, Zhang; Xiaofei, Kuang; Nanjian, Wu

    2011-06-01

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 μm CMOS process. Its core area is 1.6 mm2. The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 μA current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%.

  18. Power output during women's World Cup road cycle racing.

    PubMed

    Ebert, Tammie R; Martin, David T; McDonald, Warren; Victor, James; Plummer, John; Withers, Robert T

    2005-12-01

    Little information exists on the power output demands of competitive women's road cycle racing. The purpose of our investigation was to document the power output generated by elite female road cyclists who achieved success in FLAT and HILLY World Cup races. Power output data were collected from 27 top-20 World Cup finishes (19 FLAT and 8 HILLY) achieved by 15 nationally ranked cyclists (mean +/- SD; age: 24.1+/-4.0 years; body mass: 57.9+/-3.6 kg; height: 168.7+/-5.6 cm; VO2max 63.6+/-2.4 mL kg(-1) min(-1); peak power during graded exercise test (GXT(peak power)): 310+/-25 W). The GXT determined GXT(peak power), VO2peak lactate threshold (LT) and anaerobic threshold (AT). Bicycles were fitted with SRM powermeters, which recorded power (W), cadence (rpm), distance (km) and speed (km h(-1)). Racing data were analysed to establish time in power output and metabolic threshold bands and maximal mean power (MMP) over different durations. When compared to HILLY, FLAT were raced at a similar cadence (75+/-8 vs. 75+/-4 rpm, P=0.93) but higher speed (37.6+/-2.6 vs. 33.9+/-2.7 km h(-1), P=0.008) and power output (192+/-21 vs. 169+/-17 W, P=0.04; 3.3+/-0.3 vs. 3.0+/-0.4 W kg(-1), P=0.04). During FLAT races, riders spent significantly more time above 500 W, while greater race time was spent between 100 and 300 W (LT-AT) for HILLY races, with higher MMPs for 180-300 s. Racing terrain influenced the power output profiles of our internationally competitive female road cyclists. These data are the first to define the unique power output requirements associated with placing well in both flat and hilly women's World Cup cycling events.

  19. Measured radiofrequency exposure during various mobile-phone use scenarios.

    PubMed

    Kelsh, Michael A; Shum, Mona; Sheppard, Asher R; McNeely, Mark; Kuster, Niels; Lau, Edmund; Weidling, Ryan; Fordyce, Tiffani; Kühn, Sven; Sulser, Christof

    2011-01-01

    Epidemiologic studies of mobile phone users have relied on self reporting or billing records to assess exposure. Herein, we report quantitative measurements of mobile-phone power output as a function of phone technology, environmental terrain, and handset design. Radiofrequency (RF) output data were collected using software-modified phones that recorded power control settings, coupled with a mobile system that recorded and analyzed RF fields measured in a phantom head placed in a vehicle. Data collected from three distinct routes (urban, suburban, and rural) were summarized as averages of peak levels and overall averages of RF power output, and were analyzed using analysis of variance methods. Technology was the strongest predictor of RF power output. The older analog technology produced the highest RF levels, whereas CDMA had the lowest, with GSM and TDMA showing similar intermediate levels. We observed generally higher RF power output in rural areas. There was good correlation between average power control settings in the software-modified phones and power measurements in the phantoms. Our findings suggest that phone technology, and to a lesser extent, degree of urbanization, are the two stronger influences on RF power output. Software-modified phones should be useful for improving epidemiologic exposure assessment.

  20. Design of a quasi-flat linear permanent magnet generator for pico-scale wave energy converter in south coast of Yogyakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Azhari, Budi; Prawinnetou, Wassy; Hutama, Dewangga Adhyaksa

    2017-03-01

    Indonesia has several potential ocean energies to utilize. One of them is tidal wave energy, which the potential is about 49 GW. To convert the tidal wave energy to electricity, linear permanent magnet generator (LPMG) is considered as the best appliance. In this paper, a pico-scale tidal wave power converter was designed using quasi-flat LPMG. The generator was meant to be applied in southern coast of Yogyakarta, Indonesia and was expected to generate 1 kW output. First, a quasi-flat LPMG was designed based on the expected output power and the wave characteristic at the placement site. The design was then simulated using finite element software of FEMM. Finally, the output values were calculated and the output characteristics were analyzed. The results showed that the designed power plant was able to produce output power of 725.78 Wp for each phase, with electrical efficiency of 64.5%. The output characteristics of the LPMG: output power would increase as the average wave height or wave period increases. Besides, the efficiency would increase if the external load resistance increases. Meanwhile the output power of the generator would be maximum at load resistance equals 11 Ω.

  1. Wideband Communications Equipment, Ground Radio Communication, Space Comm Systems Equipment. 304X0/X4/X6. Appendix A - Task Analysis

    DTIC Science & Technology

    1990-05-01

    ALARM LAMPS A CHECK TWT POWER SUPPLY VOLTAGE AND CURRENT A ADJUST POWER ALARM THRESHOLD AND TRANSMITTER OUTPUT A CHECK HELIX MONITOR K INTERPRET AN/FRC...POWER SUPPLY A CHECK TRAVELING WAVE TUBE ( TWT ) POWER SUPPLY HELIX CURRENT AND BEAM CURRENT A CHECK TWT RF POWER OUTPUT A CHECK TRANSMITTER POWER...A ADJUST TRANSMITTER LINEARITY A CALIBRATE TRANSMIT DEVIATION AND ADJUST MODULATION AMPLIFIER A ADJUST TWT PERFORMANCE MONITOR A ADJUST TWT OUTPUT

  2. Loss of power output and laser fibre degradation during 120 watt lithium-triborate HPS laser vaporisation of the prostate

    NASA Astrophysics Data System (ADS)

    Hermanns, Thomas; Sulser, Tullio; Hefermehl, Lukas J.; Strebel, Daniel; Michel, Maurice-Stephan; Müntener, Michael; Meier, Alexander H.; Seifert, Hans-Helge

    2009-02-01

    It has recently been shown that laser fibre deterioration leads to a significant decrease of power output during 80 W potassium titanyl phosphate (KTP) laser vaporisation (LV) of the prostate. This decrease results in inefficient vaporisation especially towards the end of the procedure. For the new 120 W lithium-triborate (LBO) High Performance System (HPS) laser not only higher power but also changes in beam characteristics and improved fibre quality have been advertised. However, high laser power has been identified as a risk factor for laser fibre degradation. Between July and September 2008 25 laser fibres were investigated during routine 120 W LBO-LV in 20 consecutive patients. Laser beam power was measured at baseline and after the application of every 25 kJ during the LV procedure. Postoperatively, the surgeon subjectively rated the performance of the respective fibre on a scale from 1 to 4 (1 indicating perfect and 4 insufficient performance). Additionally, microscopic examination of the fibre tip was performed. Median energy applied was 212 kJ. Changes of power output were similar for all fibres. Typically, a steep decrease of power output within the first 50 kJ was followed by a continuous mild decrease until the end of the procedure. After the application of 50 kJ the median power output was 63% (58-73% interquartile range) of the baseline value. The median power output at the end of the 275 kJ-lifespan of the fibres was 42% (40-47%). The median surgeons' rating of the overall performance of the laser fibres was 2 and the median estimated final decrease of power output 60%. Some degree of degradation at the emission window was microscopically detectable in all cases after the procedure. However, even after the application of 275 kJ, these structural changes were only moderate. Minor degradation of the laser fibre was associated with a significant decrease of power output during 120 W LBO-LV. However, following an early, steep decrease, power output remained relatively constant on a medium level for the rest of the fibre's lifespan. The subjective rating by the surgeons is in accordance with these findings. Improved properties of the LBO laser and enhanced fibre quality resulted in an only moderate decrease of power output which allowed for a consistently effective performance.

  3. Influence of the helium-pressure on diode-pumped alkali-vapor laser

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Chen, Fei; Xie, Ji-jiang; Zhang, Lai-ming; Li, Dian-jun; Yang, Gui-long; Guo, Jing

    2013-05-01

    Diode-pumped alkali-vapor laser (DPAL) is a kind of laser attracted much attention for its merits, such as high quantum efficiency, excellent beam quality, favorable thermal management, and potential scalability to high power and so on. Based on the rate-equation theory of end-pumped DPAL, the performances of DPAL using Cs-vapor collisionally broadened by helium are simulated and studied. With the increase of helium pressure, the numerical results show that: 1) the absorption line-width increases and the stimulated absorption cross-section decreases contrarily; 2) the threshold pumping power decreases to minimum and then rolls over to increase linearly; 3) the absorption efficiency rises to maximum initially due to enough large stimulated absorption cross-section in the far wings of collisionally broadened D2 transition (absorption transition), and then begins to reduce; 4) an optimal value of helium pressure exists to obtain the highest output power, leading to an optimal optical-optical efficiency. Furthermore, to generate the self-oscillation of laser, a critical value of helium pressure occurs when small-signal gain equals to the threshold gain.

  4. The design and performance of a 2.5-GHz telecommand link for wireless biomedical monitoring.

    PubMed

    Crumley, G C; Evans, N E; Scanlon, W G; Burns, J B; Trouton, T G

    2000-12-01

    This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active, duplex RF biomedical transponder. A 50-ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a (CMOS baseband amplifier consuming 20 microA from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit. For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guha, Saikat; Shapiro, Jeffrey H.; Erkmen, Baris I.

    Previous work on the classical information capacities of bosonic channels has established the capacity of the single-user pure-loss channel, bounded the capacity of the single-user thermal-noise channel, and bounded the capacity region of the multiple-access channel. The latter is a multiple-user scenario in which several transmitters seek to simultaneously and independently communicate to a single receiver. We study the capacity region of the bosonic broadcast channel, in which a single transmitter seeks to simultaneously and independently communicate to two different receivers. It is known that the tightest available lower bound on the capacity of the single-user thermal-noise channel is thatmore » channel's capacity if, as conjectured, the minimum von Neumann entropy at the output of a bosonic channel with additive thermal noise occurs for coherent-state inputs. Evidence in support of this minimum output entropy conjecture has been accumulated, but a rigorous proof has not been obtained. We propose a minimum output entropy conjecture that, if proved to be correct, will establish that the capacity region of the bosonic broadcast channel equals the inner bound achieved using a coherent-state encoding and optimum detection. We provide some evidence that supports this conjecture, but again a full proof is not available.« less

  6. Theoretical modeling, simulation and experimental study of hybrid piezoelectric and electromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Li, Ping; Gao, Shiqiao; Cong, Binglong

    2018-03-01

    In this paper, performances of vibration energy harvester combined piezoelectric (PE) and electromagnetic (EM) mechanism are studied by theoretical analysis, simulation and experimental test. For the designed harvester, electromechanical coupling modeling is established, and expressions of vibration response, output voltage, current and power are derived. Then, performances of the harvester are simulated and tested; moreover, the power charging rechargeable battery is realized through designed energy storage circuit. By the results, it's found that compared with piezoelectric-only and electromagnetic-only energy harvester, the hybrid energy harvester can enhance the output power and harvesting efficiency; furthermore, at the harmonic excitation, output power of harvester linearly increases with acceleration amplitude increasing; while it enhances with acceleration spectral density increasing at the random excitation. In addition, the bigger coupling strength, the bigger output power is, and there is the optimal load resistance to make the harvester output the maximal power.

  7. Self-seeded injection-locked FEL amplifer

    DOEpatents

    Sheffield, Richard L.

    1999-01-01

    A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.

  8. High Power SiGe X-Band (8-10 GHz) Heterojunction Bipolar Transistors and Amplifiers

    NASA Technical Reports Server (NTRS)

    Ma, Zhenqiang; Jiang, Ningyue; Ponchak, George E.; Alterovitz, Samuel A.

    2005-01-01

    Limited by increased parasitics and thermal effects as the device size becomes large, current commercial SiGe power HBTs are difficult to operate at X-band (8-12 GHz) with adequate power added efficiencies at high power levels. We found that, by changing the heterostructure and doping profile of SiGe HBTs, their power gain can be significantly improved without resorting to substantial lateral scaling. Furthermore, employing a common-base configuration with proper doping profile instead of a common-emitter configuration improves the power gain characteristics of SiGe HBTs, which thus permits these devices to be efficiently operated at X-band. In this paper, we report the results of SiGe power HBTs and MMIC power amplifiers operating at 8-10 GHz. At 10 GHz, 22.5 dBm (178 mW) RF output power with concurrent gain of 7.32 dB is measured at the peak power-added efficiency of 20.0% and the maximum RF output power of 24.0 dBm (250 mW) is achieved from a 20 emitter finger SiGe power HBT. Demonstration of single-stage X-band medium-power linear MMIC power amplifier is also realized at 8 GHz. Employing a 10-emitter finger SiGe HBT and on-chip input and output matching passive components, a linear gain of 9.7 dB, a maximum output power of 23.4 dBm and peak power added efficiency of 16% is achieved from the power amplifier. The MMIC exhibits very low distortion with third order intermodulation (IM) suppression C/I of -13 dBc at output power of 21.2 dBm and over 20dBm third order output intercept point (OIP3).

  9. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    NASA Astrophysics Data System (ADS)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  10. LOOP- SIMULATION OF THE AUTOMATIC FREQUENCY CONTROL SUBSYSTEM OF A DIFFERENTIAL MINIMUM SHIFT KEYING RECEIVER

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1994-01-01

    The LOOP computer program was written to simulate the Automatic Frequency Control (AFC) subsystem of a Differential Minimum Shift Keying (DMSK) receiver with a bit rate of 2400 baud. The AFC simulated by LOOP is a first order loop configuration with a first order R-C filter. NASA has been investigating the concept of mobile communications based on low-cost, low-power terminals linked via geostationary satellites. Studies have indicated that low bit rate transmission is suitable for this application, particularly from the frequency and power conservation point of view. A bit rate of 2400 BPS is attractive due to its applicability to the linear predictive coding of speech. Input to LOOP includes the following: 1) the initial frequency error; 2) the double-sided loop noise bandwidth; 3) the filter time constants; 4) the amount of intersymbol interference; and 5) the bit energy to noise spectral density. LOOP output includes: 1) the bit number and the frequency error of that bit; 2) the computed mean of the frequency error; and 3) the standard deviation of the frequency error. LOOP is written in MS SuperSoft FORTRAN 77 for interactive execution and has been implemented on an IBM PC operating under PC DOS with a memory requirement of approximately 40K of 8 bit bytes. This program was developed in 1986.

  11. 10 CFR Appendix Z to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of External Power Supplies

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operation when the external power supply is connected to the main electricity supply and the output is (or... external power supply is connected to the main electricity supply and the output is (or “all outputs are... switches, in which the external power supply is (1) connected to the main electricity supply; (2) the...

  12. 10 CFR Appendix Z to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of External Power Supplies

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operation when the external power supply is connected to the main electricity supply and the output is (or... external power supply is connected to the main electricity supply and the output is (or “all outputs are... switches, in which the external power supply is (1) connected to the main electricity supply; (2) the...

  13. 10 CFR Appendix Z to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of External Power Supplies

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operation when the external power supply is connected to the main electricity supply and the output is (or... external power supply is connected to the main electricity supply and the output is (or “all outputs are... switches, in which the external power supply is (1) connected to the main electricity supply; (2) the...

  14. Nuclear thermionic converter. [tungsten-thorium oxide rods

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Mondt, J. F. (Inventor)

    1977-01-01

    Efficient nuclear reactor thermionic converter units are described which can be constructed at low cost and assembled in a reactor which requires a minimum of fuel. Each converter unit utilizes an emitter rod with a fluted exterior, several fuel passages located in the bulges that are formed in the rod between the flutes, and a collector receiving passage formed through the center of the rod. An array of rods is closely packed in an interfitting arrangement, with the bulges of the rods received in the recesses formed between the bulges of other rods, thereby closely packing the nuclear fuel. The rods are constructed of a mixture of tungsten and thorium oxide to provide high power output, high efficiency, high strength, and good machinability.

  15. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials

    NASA Astrophysics Data System (ADS)

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng

    2017-04-01

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation.

  16. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials.

    PubMed

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Hao, Xiaotao; Chen, Feng

    2017-04-06

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO 4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO 2 ). The unique feature of VO 2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO 4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO 2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS 2 ) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO 2 as low-cost saturable absorber for subnanosecond laser generation.

  17. Particle-in-cell simulations for virtual cathode oscillator including foil ablation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gursharn; Chaturvedi, S.

    2011-06-15

    We have performed two- and three-dimensional, relativistic, electromagnetic, particle-in-cell simulations of an axially extracted virtual cathode oscillator (vircator). The simulations include, for the first time, self-consistent dynamics of the anode foil under the influence of the intense electron beam. This yields the variation of microwave output power as a function of time, including the role of anode ablation and anode-cathode gap closure. These simulations have been done using locally developed particle-in-cell (PIC) codes. The codes have been validated using two vircator designs available from the literature. The simulations reported in the present paper take account of foil ablation due tomore » the intense electron flux, the resulting plasma expansion and shorting of the anode-cathode gap. The variation in anode transparency due to plasma formation is automatically taken into account. We find that damage is generally higher near the axis. Also, at all radial positions, there is little damage in the early stages, followed by a period of rapid erosion, followed in turn by low damage rates. A physical explanation has been given for these trends. As a result of gap closure due to plasma formation from the foil, the output microwave power initially increases, reaches a near-flat-top and then decreases steadily, reaching a minimum around 230 ns. This is consistent with a typical plasma expansion velocity of {approx}2 cm/{mu}s reported in the literature. We also find a significant variation in the dominant output frequency, from 6.3 to 7.6 GHz. This variation is small as long as the plasma density is small, up to {approx}40 ns. As the AK gap starts filling with plasma, there is a steady increase in this frequency.« less

  18. Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example

    PubMed Central

    Nemitz, Markus P.; Mihaylov, Pavel; Barraclough, Thomas W.; Ross, Dylan

    2016-01-01

    Abstract In this study, we present a modular worm-like robot, which utilizes voice coils as a new paradigm in soft robot actuation. Drive electronics are incorporated into the actuators, providing a significant improvement in self-sufficiency when compared with existing soft robot actuation modes such as pneumatics or hydraulics. The body plan of this robot is inspired by the phylum Annelida and consists of three-dimensional printed voice coil actuators, which are connected by flexible silicone membranes. Each electromagnetic actuator engages with its neighbor to compress or extend the membrane of each segment, and the sequence in which they are actuated results in an earthworm-inspired peristaltic motion. We find that a minimum of three segments is required for locomotion, but due to our modular design, robots of any length can be quickly and easily assembled. In addition to actuation, voice coils provide audio input and output capabilities. We demonstrate transmission of data between segments by high-frequency carrier waves and, using a similar mechanism, we note that the passing of power between coupled coils in neighboring modules—or from an external power source—is also possible. Voice coils are a convenient multifunctional alternative to existing soft robot actuators. Their self-contained nature and ability to communicate with each other are ideal for modular robotics, and the additional functionality of sound input/output and power transfer will become increasingly useful as soft robots begin the transition from early proof-of-concept systems toward fully functional and highly integrated robotic systems. PMID:28078195

  19. Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands

    PubMed Central

    Wakeling, James M.

    2015-01-01

    This study investigated the influence of cycle frequency and workload on muscle coordination and the ensuing relationship with mechanical efficiency and power output of human limb movement. Eleven trained cyclists completed an array of cycle frequency (cadence)-power output conditions while excitation from 10 leg muscles and power output were recorded. Mechanical efficiency was maximized at increasing cadences for increasing power outputs and corresponded to muscle coordination and muscle fiber type recruitment that minimized both the total muscle excitation across all muscles and the ineffective pedal forces. Also, maximum efficiency was characterized by muscle coordination at the top and bottom of the pedal cycle and progressive excitation through the uniarticulate knee, hip, and ankle muscles. Inefficiencies were characterized by excessive excitation of biarticulate muscles and larger duty cycles. Power output and efficiency were limited by the duration of muscle excitation beyond a critical cadence (120–140 rpm), with larger duty cycles and disproportionate increases in muscle excitation suggesting deteriorating muscle coordination and limitations of the activation-deactivation capabilities. Most muscles displayed systematic phase shifts of the muscle excitation relative to the pedal cycle that were dependent on cadence and, to a lesser extent, power output. Phase shifts were different for each muscle, thereby altering their mechanical contribution to the pedaling action. This study shows that muscle coordination is a key determinant of mechanical efficiency and power output of limb movement across a wide range of mechanical demands and that the excitation and coordination of the muscles is limited at very high cycle frequencies. PMID:26445873

  20. The effect of the oxygen uptake-power output relationship on the prediction of supramaximal oxygen demands.

    PubMed

    Muniz-Pumares, Daniel; Pedlar, Charles; Godfrey, Richard; Glaister, Mark

    2017-01-01

    The aim of this study was to investigate the relationship between oxygen uptake (V̇O2) and power output at intensities below and above the lactate threshold (LT) in cyclists; and to determine the reliability of supramaximal power outputs linearly projected from these relationships. Nine male cyclists (mean±standard deviation age: 41±8 years; mass: 77±6 kg, height: 1.79±0.05 m and V̇O2max: 54±7 mL∙kg-1∙min-1) completed two cycling trials each consisting of a step test (10×3 min stages at submaximal incremental intensities) followed by a maximal test to exhaustion. The lines of best fit for V̇O2 and power output were determined for: the entire step test; stages below and above the LT, and from rolling clusters of five consecutive stages. Lines were projected to determine a power output predicted to elicit 110% peak V̇O2. There were strong linear correlations (r≥0.953; P<0.01) between V̇O2 and power output using the three approaches; with the slope, intercept, and projected values of these lines unaffected (P≥0.05) by intensity. The coefficient of variation of the predicted power output at 110% V̇O2max was 6.7% when using all ten submaximal stages. Cyclists exhibit a linear V̇O2 and power output relationship when determined using 3 min stages, which allows for prediction of a supramaximal intensity with acceptable reliability.

  1. Stochastic response analysis, order reduction, and output feedback controllers for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Hablani, H. B.

    1985-01-01

    Real disturbances and real sensors have finite bandwidths. The first objective of this paper is to incorporate this finiteness in the 'open-loop modal cost analysis' as applied to a flexible spacecraft. Analysis based on residue calculus shows that among other factors, significance of a mode depends on the power spectral density of disturbances and the response spectral density of sensors at the modal frequency. The second objective of this article is to compare performances of an optimal and a suboptimal output feedback controller, the latter based on 'minimum error excitation' of Kosut. Both the performances are found to be nearly the same, leading us to favor the latter technique because it entails only linear computations. Our final objective is to detect an instability due to truncated modes by representing them as a multiplicative and an additive perturbation in a nominal transfer function. In an example problem it is found that this procedure leads to a narrow range of permissible controller gains, and that it labels a wrong mode as a cause of instability. A free beam is used to illustrate the analysis in this work.

  2. Backward pumping kilowatt Yb3+-doped double-clad fiber laser

    NASA Astrophysics Data System (ADS)

    Han, Z. H.; Lin, X. C.; Hou, W.; Yu, H. J.; Zhou, S. Z.; Li, J. M.

    2011-09-01

    A ytterbium-doped double-clad fiber laser generating up to 1026 W of continuous-wave output power at 1085 nm with a slope efficiency of 74% by single-ended backward pumping configuration is reported. The core diameter was 20 μm with a low numerical aperture of 0.06, and a good beam quality (BPP < 1.8 mm mrad) is achieved without special mode selection methods. No undesirable roll-over was observed in output power with increasing pump power, and the maximum output power was limited by the available pump power. The instability of maximum output power was better than ±0.6%. Different pumping configurations were also compared in experiment, which shows good agreements with theoretical analyses.

  3. Power inverter with optical isolation

    DOEpatents

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  4. The aerodynamic cost of flight in the short-tailed fruit bat (Carollia perspicillata): comparing theory with measurement

    PubMed Central

    von Busse, Rhea; Waldman, Rye M.; Swartz, Sharon M.; Voigt, Christian C.; Breuer, Kenneth S.

    2014-01-01

    Aerodynamic theory has long been used to predict the power required for animal flight, but widely used models contain many simplifications. It has been difficult to ascertain how closely biological reality matches model predictions, largely because of the technical challenges of accurately measuring the power expended when an animal flies. We designed a study to measure flight speed-dependent aerodynamic power directly from the kinetic energy contained in the wake of bats flying in a wind tunnel. We compared these measurements with two theoretical predictions that have been used for several decades in diverse fields of vertebrate biology and to metabolic measurements from a previous study using the same individuals. A high-accuracy displaced laser sheet stereo particle image velocimetry experimental design measured the wake velocities in the Trefftz plane behind four bats flying over a range of speeds (3–7 m s−1). We computed the aerodynamic power contained in the wake using a novel interpolation method and compared these results with the power predicted by Pennycuick's and Rayner's models. The measured aerodynamic power falls between the two theoretical predictions, demonstrating that the models effectively predict the appropriate range of flight power, but the models do not accurately predict minimum power or maximum range speeds. Mechanical efficiency—the ratio of aerodynamic power output to metabolic power input—varied from 5.9% to 9.8% for the same individuals, changing with flight speed. PMID:24718450

  5. Stirling Convertor Control for a Concept Rover at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Blaze-Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for potential use as an electric power system for space science missions. This generator would make use of the free-piston Stirling cycle to achieve higher conversion efficiency than currently used alternatives. NASA GRC initiated an experiment with an ASRG simulator to demonstrate the functionality of a Stirling convertor on a mobile application, such as a rover. The ASRG simulator made use of two Advanced Stirling Convertors to convert thermal energy from a heat source to electricity. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto a rover powered directly by the convertors. Support equipment to provide control was designed including a linear AC regulator controller, constant power controller, and Li-ion battery charger controller. The ASRG simulator is controlled by a linear AC regulator controller. The rover is powered by both a Stirling convertor and Li-ion batteries. A constant power controller enables the Stirling convertor to maintain a constant power output when additional power is supplied by the Li-ion batteries. A Li-ion battery charger controller limits the charging current and cut off current of the batteries. This paper discusses the design, fabrication, and implementation of these three controllers.

  6. A Thermally Powered ISFET Array for On-Body pH Measurement.

    PubMed

    Douthwaite, Matthew; Koutsos, Ermis; Yates, David C; Mitcheson, Paul D; Georgiou, Pantelis

    2017-12-01

    Recent advances in electronics and electrochemical sensors have led to an emerging class of next generation wearables, detecting analytes in biofluids such as perspiration. Most of these devices utilize ion-selective electrodes (ISEs) as a detection method; however, ion-sensitive field-effect transistors (ISFETs) offer a solution with improved integration and a low power consumption. This work presents a wearable, thermoelectrically powered system composed of an application-specific integrated circuit (ASIC), two commercial power management integrated circuits and a network of commercial thermoelectric generators (TEGs). The ASIC is fabricated in 0.35 m CMOS and contains an ISFET array designed to read pH as a current, a processing module which averages the signal to reduce noise and encodes it into a frequency, and a transmitter. The output frequency has a measured sensitivity of 6 to 8 kHz/pH for a pH range of 7-5. It is shown that the sensing array and processing module has a power consumption 6 W and, therefore, can be entirely powered by body heat using a TEG. Array averaging is shown to reduce noise at these low power levels to 104 V (input referred integrated noise), reducing the minimum detectable limit of the ASIC to 0.008 pH units. The work forms the foundation and proves the feasibility of battery-less, on-body electrochemical for perspiration analysis in sports science and healthcare applications.

  7. Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.

    2013-03-01

    Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.

  8. Generation of OH Radical by Ultrasonic Irradiation in Batch and Circulatory Reactor

    NASA Astrophysics Data System (ADS)

    Fang, Yu; Shimizu, Sayaka; Yamamoto, Takuya; Komarov, Sergey

    2018-03-01

    Ultrasonic technology has been widely investigated in the past as one of the advance oxidation processes to treat wastewater, in this process acoustic cavitation causes generation of OH radical, which play a vital role in improving the treatment efficiency. In this study, OH radical formation rate was measured in batch and circulatory reactor by using Weissler reaction at various ultrasound output power. It is found that the generation rate in batch reactor is higher than that in circulatory reactor at the same output power. The generation rate tended to be slower when output power exceeds 137W. The optimum condition for circulatory reactor was found to be 137W output and 4L/min flow rate. Results of aluminum foil erosion test revealed a strong dependence of cavitation zone length on the ultrasound output power. This is assumed to be one of the reasons why the generation rate of HO radicals becomes slower at higher output power in circulatory reactor.

  9. Mars Orbiter Sample Return Power Design

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Dawson, S.

    1999-01-01

    The NASA/JPL 2003/2005 Mars Sample Return (MSR) Missions will each have a sample return canister that will be filled with samples cored from the surface of MARS. These spherical canisters will be 14.8 cm in diameter and must be powered only by solar cells on the surface and must communicate using RF transmission with the recovery vehicle that will be coming in 2006 or 2009 to retrieve the canister. This paper considers the aspect and conclusion that went into the design of the power system that achieves the maximum power with the minimum risk. The power output for the spherical orbiting canister was modeled and plotted in various views of the orbit by the SOAP program developed by JPL. The requirements and geometry for a solar array on a sphere are unique and place special constraints on the design. These requirements include 1) accommodating a lid for sample loading into the canister, surface area was restricted from use on the Northern pole of the spherical canister. 2) minimal cell surface coverage (maximum cell efficiency), less than 40%, for recovery vehicle to locate the canister by optical techniques. 3) a RF transmission during 50% of MARS orbit time on any spin axis, which requires optimum circuit placement of the solar cell onto the spherical canister. The best configuration would have been a 4.5 volt round cell, but in the real world we compromised with six triangular silicon cells connected in series to form a hexagon. These hexagon circuits would be mounted onto a flat facet cut into the spherical canister. The surface flats are required in order to maximize power, the surface of the cells connected in series must be at the same angle relative to the sun. The flat facets intersect each other to allow twelve circuits evenly spaced just North and twelve circuits South of the equator of the spherical canister. Connecting these circuits in parallel allows sufficient power to operate the transmitter at minimum solar exposure, Northern pole of the canister facing the sun. Additional power, as much as 20%, is also generated by the circuits facing MARS due to albedo of MARS.

  10. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    NASA Astrophysics Data System (ADS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-06-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.

  11. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOEpatents

    Hawsey, Robert A.; Scudiere, Matthew B.

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  12. Influence of fundamental mode fill factor on disk laser output power and laser beam quality

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiyong; Yang, Zhuo; Shao, Xichun; Li, Wei; Zhu, Mengzhen

    2017-11-01

    An three-dimensional numerical model based on finite element method and Fox-Li method with angular spectrum diffraction theoy is developed to calculate the output power and power density distribution of Yb:YAG disk laser. We invest the influence of fundamental mode fill factor(the ratio of fundamental mode size and pump spot size) on the output power and laser beam quality. Due to aspherical aberration and soft aperture effect in laser disk, high beam quality can be achieve with relative lower efficiency. The highest output power of fundamental laser mode is influenced by the fundamental mode fill factor. Besides we find that optimal mode fill factor increase with pump spot size.

  13. Prognostic health monitoring in switch-mode power supplies with voltage regulation

    NASA Technical Reports Server (NTRS)

    Hofmeister, James P (Inventor); Judkins, Justin B (Inventor)

    2009-01-01

    The system includes a current injection device in electrical communication with the switch mode power supply. The current injection device is positioned to alter the initial, non-zero load current when activated. A prognostic control is in communication with the current injection device, controlling activation of the current injection device. A frequency detector is positioned to receive an output signal from the switch mode power supply and is able to count cycles in a sinusoidal wave within the output signal. An output device is in communication with the frequency detector. The output device outputs a result of the counted cycles, which are indicative of damage to an a remaining useful life of the switch mode power supply.

  14. Effect of pedal rate and power output on rating of perceived exertion during cycle ergometry exercise.

    PubMed

    Hamer, Mark; Boutcher, Yati N; Boutcher, Stephen H

    2005-12-01

    This study examined differentiated rating of perceived exertion (RPE), heart rate, and heart-rate variability during light cycle ergometry exercise at two different pedal rates. 30 healthy men (22.6 +/- 0.9 yr.) were recruited from a student population and completed a continuous 20-min. cycle ergometry exercise protocol, consisting of a 4-min. warm-up (60 rev./min., 30 Watts), followed by four bouts of 4 min. at different combinations of pedal rate (40 or 80 rev./min.) and power output (40 or 80 Watts). The order of the four combinations was counterbalanced across participants. Heart rate was measured using a polar heart-rate monitor, and parasympathetic balance was assessed through time series analysis of heart-rate variability. Measures were compared using a 2 (pedal rate) x 2 (power output) repeated-measures analysis of variance. RPE was significantly greater (p<.05) at 80 versus 40 rev./min. at 40 W. For both power outputs heart rate was significantly increased, and the high frequency component of heart-rate variability was significantly reduced at 80 compared with 40 rev./min. These findings indicate the RPE was greater at higher than at lower pedalling rates for a light absolute power output which contrasts with previous findings based on use of higher power output. Also, pedal rate had a significant effect on heart rate and heart-rate variability at constant power output.

  15. CPAP Devices for Emergency Prehospital Use: A Bench Study.

    PubMed

    Brusasco, Claudia; Corradi, Francesco; De Ferrari, Alessandra; Ball, Lorenzo; Kacmarek, Robert M; Pelosi, Paolo

    2015-12-01

    CPAP is frequently used in prehospital and emergency settings. An air-flow output minimum of 60 L/min and a constant positive pressure are 2 important features for a successful CPAP device. Unlike hospital CPAP devices, which require electricity, CPAP devices for ambulance use need only an oxygen source to function. The aim of the study was to evaluate and compare on a bench model the performance of 3 orofacial mask devices (Ventumask, EasyVent, and Boussignac CPAP system) and 2 helmets (Ventukit and EVE Coulisse) used to apply CPAP in the prehospital setting. A static test evaluated air-flow output, positive pressure applied, and FIO2 delivered by each device. A dynamic test assessed airway pressure stability during simulated ventilation. Efficiency of devices was compared based on oxygen flow needed to generate a minimum air flow of 60 L/min at each CPAP setting. The EasyVent and EVE Coulisse devices delivered significantly higher mean air-flow outputs compared with the Ventumask and Ventukit under all CPAP conditions tested. The Boussignac CPAP system never reached an air-flow output of 60 L/min. The EasyVent had significantly lower pressure excursion than the Ventumask at all CPAP levels, and the EVE Coulisse had lower pressure excursion than the Ventukit at 5, 15, and 20 cm H2O, whereas at 10 cm H2O, no significant difference was observed between the 2 devices. Estimated oxygen consumption was lower for the EasyVent and EVE Coulisse compared with the Ventumask and Ventukit. Air-flow output, pressure applied, FIO2 delivered, device oxygen consumption, and ability to maintain air flow at 60 L/min differed significantly among the CPAP devices tested. Only the EasyVent and EVE Coulisse achieved the required minimum level of air-flow output needed to ensure an effective therapy under all CPAP conditions. Copyright © 2015 by Daedalus Enterprises.

  16. Probabilistic Physics-Based Risk Tools Used to Analyze the International Space Station Electrical Power System Output

    NASA Technical Reports Server (NTRS)

    Patel, Bhogila M.; Hoge, Peter A.; Nagpal, Vinod K.; Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2004-01-01

    This paper describes the methods employed to apply probabilistic modeling techniques to the International Space Station (ISS) power system. These techniques were used to quantify the probabilistic variation in the power output, also called the response variable, due to variations (uncertainties) associated with knowledge of the influencing factors called the random variables. These uncertainties can be due to unknown environmental conditions, variation in the performance of electrical power system components or sensor tolerances. Uncertainties in these variables, cause corresponding variations in the power output, but the magnitude of that effect varies with the ISS operating conditions, e.g. whether or not the solar panels are actively tracking the sun. Therefore, it is important to quantify the influence of these uncertainties on the power output for optimizing the power available for experiments.

  17. Development Status of a Power Processing Unit for Low Power Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.; Lafontaine, Eric M.

    2000-01-01

    An advanced breadboard Power Processing Unit (PPU) for a low power ion propulsion system incorporating mass reduction techniques was designed and fabricated. As a result of similar output current requirements, the discharge supply was also used to provide the neutralizer heater and discharge heater functions by using three relays to switch the output connections. This multi-function supply reduces to four the number of power converters needed to produce the required six electrical outputs. Switching frequencies of 20 and 50 kHz were chosen as a compromise between the size of the magnetic components and switching losses. The advanced breadboard PPU is capable of a maximum total output power of 0.47 kW. Its component mass is 0.65 kg and its total mass 1.9 kg. The total efficiency at full power is 0.89.

  18. Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM)

    NASA Astrophysics Data System (ADS)

    Hu, J.; Xu, F.; Huang, A. Q.; Yuan, F. G.

    2011-01-01

    In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) was designed and tested to enable the powering of a wireless sensor. In particular, the conversion efficiency, converting from magnetic to electric energy, is approximately modeled from the magnetic field induced by the beam vibration. A number of factors that affect the output power such as the number of MsM layers, coil design and load matching are analyzed and explored in the design optimization. From the measurements, the open-circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the second natural frequency 324 Hz. The AC output power is 970 µW, giving a power density of 279 µW cm - 3. The attempt to use electrical reactive components (either inductors or capacitors) to resonate the system at any frequency has also been analyzed and tested experimentally. The results showed that this approach is not feasible to optimize the power. Since the MsM device has low output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device is implemented using a discontinuous conduction mode (DCM) buck-boost converter. The DC output power after the voltage quadrupler reaches 705 µW and the corresponding power density is 202 µW cm - 3. The output power delivered to a lithium rechargeable battery is around 630 µW, independent of the load resistance.

  19. Ka-Band TWT High-Efficiency Power Combiner for High-Rate Data Transmission

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee; Vaden, Karl R.; Lesny, Gary G.; Glass, Jeffrey L.

    2007-01-01

    A four-port magic-T hybrid waveguide junction serves as the central component of a high-efficiency two-way power combiner circuit for transmitting a high-rate phase-modulated digital signal at a carrier frequency in the Ka-band (between 27 and 40 GHz). This power combiner was developed to satisfy a specific requirement to efficiently combine the coherent outputs of two traveling-wavetube (TWT) amplifiers that are typically characterized by power levels on the order of 100 W or more. In this application, the use of a waveguide-based power combiner (instead of a coaxial-cable- or microstrip-based power combiner, for example) is dictated by requirements for low loss, high power-handling capability, and broadband response. Combiner efficiencies were typically 90 percent or more over both the linear and saturated output power regions of operation of the TWTs . Figure 1 depicts the basic configuration of the magic-T hybrid junction. The coherent outputs of the two TWTs enter through ports 1 and 4. As a result of the orientations of the electromagnetic fields, which also provides a needed high port-to-port isolation, of these two input signals and the interior design of the magic-T junction, the input powers are divided so as to add in phase at one output port (port 2), and to be opposite in phase and hence cancel each other at the opposite coplanar output port (port 3). The net result is that the output power at port 2 is essentially double that of the output of one TWT, minus the power lost in the magic-T hybrid junction. Optimum performance as a high-efficiency power combiner thus requires a balance of both power and phase at the input ports of the magic-T. Replicas of this two-way combiner can be arranged in a binary configuration to obtain a 2n-way (where n is an integer) combiner. For example, Figure 2 illustrates the use of three two-way combiners to combine the outputs of four TWTs.

  20. Thin disk laser with unstable resonator and reduced output coupler

    NASA Astrophysics Data System (ADS)

    Gavili, Anwar; Shayganmanesh, Mahdi

    2018-05-01

    In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, Kenneth L.; Sturcken, Noah Andrew

    Power controller includes an output terminal having an output voltage, at least one clock generator to generate a plurality of clock signals and a plurality of hardware phases. Each hardware phase is coupled to the at least one clock generator and the output terminal and includes a comparator. Each hardware phase is configured to receive a corresponding one of the plurality of clock signals and a reference voltage, combine the corresponding clock signal and the reference voltage to produce a reference input, generate a feedback voltage based on the output voltage, compare the reference input and the feedback voltage usingmore » the comparator and provide a comparator output to the output terminal, whereby the comparator output determines a duty cycle of the power controller. An integrated circuit including the power controller is also provided.« less

  2. Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser

    NASA Astrophysics Data System (ADS)

    Ning, Shougui; Feng, Guoying; Dai, Shenyu; Zhang, Hong; Zhang, Wei; Deng, Lijuan; Zhou, Shouhuan

    2018-02-01

    A mid-infrared (mid-IR) semiconductor saturable absorber mirror (SESAM) based on Fe2+:ZnSe for passively Q-switched Er3+-doped ZBLAN fiber laser has been demonstrated. Fe2+:ZnSe SESAM was fabricated by electron beam evaporation method. Fe2+ was innovatively doped into the reflective Bragg stack, in which ZnSe layer served as both doped matrix and high refractive layer during the fabricating process. By using the Fe2+:ZnSe SESAM, stable passively Q-switched pulses with the minimum pulse width of 0.43 μs under a repetition rate of 160.82 kHz were obtained. The recorded maximum average output power of 873 mW with a peak power of 12.59 W and pulse energy of 5.43 μJ were achieved. The results demonstrated a new method for fabricating Fe2+:ZnSe SESAM, which can be used in compact mid-IR Q-switched fiber laser.

  3. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  4. 0.5 V 5.8 GHz highly linear current-reuse voltage-controlled oscillator with back-gate tuning technique

    NASA Astrophysics Data System (ADS)

    Ikeda, Sho; Lee, Sang-Yeop; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this paper, we present a voltage-controlled oscillator (VCO), which achieves highly linear frequency tuning under a low supply voltage of 0.5 V. To obtain the linear frequency tuning of a VCO, the high linearity of the threshold voltage of a varactor versus its back-gate voltage is utilized. This enables the linear capacitance tuning of the varactor; thus, a highly linear VCO can be achieved. In addition, to decrease the power consumption of the VCO, a current-reuse structure is employed as a cross-coupled pair. The proposed VCO was fabricated using a 65 nm Si complementary metal oxide semiconductor (CMOS) process. It shows the ratio of the maximum VCO gain (KVCO) to the minimum one to be 1.28. The dc power consumption is 0.33 mW at a supply voltage of 0.5 V. The measured phase noise at 10 MHz offset is -123 dBc/Hz at an output frequency of 5.8 GHz.

  5. Peak power in the hexagonal barbell jump squat and its relationship to jump performance and acceleration in elite rugby union players.

    PubMed

    Turner, Thomas S; Tobin, Daniel P; Delahunt, Eamonn

    2015-05-01

    Recent research suggests that jump squats with a loaded hexagonal barbell are superior for peak power production to comparable loads in a traditional barbell loaded jump squat. The aim of this study was to investigate the relationship between relative peak power output during performance of the hexagonal barbell jump squat (HBJS), countermovement jump (CMJ) height, and linear acceleration speed in rugby union players. Seventeen professional rugby union players performed 10- and 20-m sprints, followed by a set of 3 unloaded CMJs and a set of 3 HBJS at a previously determined optimal load corresponding with peak power output. The relationship between HBJS relative peak power output, 10- and 20-m sprint time, and CMJ height was investigated using correlation analysis. The contribution of HBJS relative peak power output and CMJ height to 10- and 20-m sprint time was investigated using standard multiple regression. Strong, significant, inverse correlations were observed between HBJS relative peak power output, 10-m sprint time (r = -0.70, p < 0.01), and 20-m sprint time (r = -0.75, p < 0.01). A strong, significant, positive correlation was observed between HBJS relative peak power output and CMJ height (r = 0.80, p < 0.01). Together, HBJS relative peak power output and CMJ height explained 46% of the variance in 10-m sprint time while explaining 59% of the variance in 20-m sprint time. The findings of the current study demonstrate a significant relationship between relative peak power in the HBJS and athletic performance as quantified by CMJ height and 10- and 20-m sprint time.

  6. Inverter communications using output signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Patrick L.

    Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.

  7. Multiple feedback control apparatus for power conditioning equipment

    NASA Technical Reports Server (NTRS)

    Biess, John (Inventor); Yu, Yuan (Inventor)

    1977-01-01

    An improved feedback control system to govern the cyclic operation of the power switch of a non-dissipative power conditioning equipment. The apparatus includes two or three control loops working in unison. The first causes the output DC level to be compared with a reference, and the error amplified for control purposes. The second utilizes the AC component of the voltage across the output filter inductor or the current through the output filter capacitor, and the third loop senses the output transients.

  8. A 5.2/5.8 GHz Dual Band On-Off Keying Transmitter Design for Bio-Signal Transmission

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hsi; You, Hong-Cheng; Huang, Shun-Zhao

    2018-02-01

    An architecture of 5.2/5.8-GHz dual-band on-off keying (DBOOK) modulated transmitter is designed in a 0.18-μm CMOS technology. The proposed DBOOK transmitter is used in the biosignal transmission system with high power efficiency and small area. To reduce power consumption and enhance output swing, two pairs of center-tapped transformers are used as both LC tank and source grounding choke for the designed voltage controlled oscillator (VCO). Switching capacitances are used to achieve dual band operations, and a complemented power combiner is used to merge the differential output power of VCO to a single-ended output. Besides, the linearizer circuits are used in the proposed power amplifier with wideband output matching to improve the linearity both at 5.2/5.8-GHz bands. The designed DBOOK transmitter is implemented by dividing it into two chips. One chip implements the dual-band switching VCO and power combiner, and the other chip implements a linear power amplifier including dual-band operation. The first chip drives an output power of 2.2mW with consuming power of 5.13 mW from 1.1 V supply voltage. With the chip size including pad of 0.61 × 0.91 m2, the measured data rate and transmission efficiency attained are 100 Mb/s and 51 pJ/bit, respectively. The second chip, for power enhanced mode, exhibits P1 dB of -9 dBm, IIP3 of 1 dBm, the output power 1 dB compression point of 12.42 dBm, OIP3 of about 21 dBm, maximum output power of 17.02/16.18 dBm, and power added efficiency of 17.13/16.95% for 5.2/ 5.8 GHz. The chip size including pads is 0:693 × 1:084mm2.

  9. High Output Piezo/Triboelectric Hybrid Generator

    PubMed Central

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-01-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA·cm−2, and average power density of ~4.44 mW·cm−2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics. PMID:25791299

  10. Muscle power output properties using the stretch-shortening cycle of the upper limb and their relationships with a one-repetition maximum bench press.

    PubMed

    Miyaguchi, Kazuyoshi; Demura, Shinichi

    2006-05-01

    The purpose of this study was to examine the output properties of muscle power by the dominant upper limb using SSC, and the relationships between the power output by SSC and a one-repetition maximum bench press (1 RM BP) used as a strength indicator of the upper body. Sixteen male athletes (21.4+/-0.9 yr) participated in this study. They pulled a load of 40% of maximum voluntary contraction (MVC) at a stretch by elbow flexion of the dominant upper limb in the following three preliminary conditions: static relaxed muscle state (SR condition), isometric muscle contraction state (ISO condition), and using SSC (SSC condition). The velocity with a wire load via a pulley during elbow flexion was measured accurately using a power instrument with a rotary encoder, and the muscle power curve was drawn from the product of the velocity and load. Significant differences were found among all evaluation parameters of muscle power exerted from the above three conditions and the parameters regarding early power output during concentric contraction were larger in the SSC condition than the SR and ISO conditions. The parameters on initial muscle contraction velocity when only using SSC significantly correlated with 1 RM BP (r=0.60-0.62). The use of SSC before powerful elbow flexion may contribute largely to early explosive power output during concentric contraction. Bench press capacity relates to a development of the above early power output when using SSC.

  11. Overload protection circuit for output driver

    DOEpatents

    Stewart, Roger G.

    1982-05-11

    A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.

  12. Biopower generation from kitchen wastewater using a bioreactor.

    PubMed

    Khan, Abdul M; Naz, Shamsa

    2014-01-01

    This research provides a comparative study of the power output from mediator-less and mediator microbial fuel cells (MFCs) under aerobic and partially anaerobic conditions using kitchen wastewater (KWW) as a renewable energy source. The wastewater sample was subjected to different physical, chemical, biochemical, and microbial analysis. The chemical oxygen demand (COD), biochemical oxygen demand (BOD), and power output values were greater for the fermented samples than the non-fermented samples. The power output of samples was compared through the development of MFCs by using sand-salt bridge and agar-salt bridge. The H2 that was produced was converted to atomic hydrogen by using the nickel-coated zinc electrode. In addition, the power output was further enhanced by introducing air into the cathodic chamber, where oxygen reacts with the protons to form pure H2O. The study showed that the power output was increased with the increase in COD and BOD values.

  13. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    NASA Astrophysics Data System (ADS)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L.

    2014-05-01

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK-1, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

  14. Design considerations of 10 kW-scale extreme ultraviolet SASE FEL for lithography

    NASA Astrophysics Data System (ADS)

    Pagani, C.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2001-05-01

    The semiconductor industry growth is driven to a large extent by steady advancements in microlithography. According to the newly updated industry roadmap, the 70 nm generation is anticipated to be available in the year 2008. However, the path to get there is not obvious. The problem of construction of Extreme Ultraviolet (EUV) quantum laser for lithography is still unsolved: progress in this field is rather moderate and we cannot expect a significant break through in the near future. Nevertheless, there is clear path for optical lithography to take us to sub- 100 nm dimensions. Theoretical and experimental work in free electron laser (FEL) and accelerator physics and technology over the last 10 years has pointed to the possibility of generation of high-power optical beams with laser-like characteristics in the EUV spectral range. Recently, there have been important advances in demonstrating a high-gain self-amplified spontaneous emission (SASE) FEL at 100 nm wavelength (Andruszkov et al., Phys. Rev. Lett. 85 (2000), 3825). In the SASE FEL powerful, coherent radiation is produced by the electron beam during single-pass of the undulator, thus there are no apparent limitations which would prevent operation at very short wavelength range and to increase the average output power of this device up to 10 kW level. The use of superconducting energy-recovery linac could produce a major, cost-effective facility with wall plug power to output optical power efficiency of about 1%. A 10-kW-scale transversely coherent radiation source with narrow bandwidth (0.5%) and variable wavelength could be an excellent tool for manufacturing computer chips with the minimum feature size below 100 nm. All components of the proposed SASE FEL equipment (injector, driver accelerator structure, energy-recovery system, undulator, etc.) have been demonstrated in practice. This is guaranteed success in the time schedule requirement.

  15. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer

    PubMed Central

    Miao, Zhidong; Liu, Dake

    2017-01-01

    For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power. PMID:28763011

  16. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer.

    PubMed

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-08-01

    For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power.

  17. The interdependence of Ca2+ activation, sarcomere length, and power output in the heart.

    PubMed

    McDonald, Kerry S

    2011-07-01

    Myocardium generates power to perform external work on the circulation; yet, many questions regarding intermolecular mechanisms regulating power output remain unresolved. Power output equals force × shortening velocity, and some interesting new observations regarding control of these two factors have arisen. While it is well established that sarcomere length tightly controls myocyte force, sarcomere length-tension relationships also appear to be markedly modulated by PKA-mediated phosphorylation of myofibrillar proteins. Concerning loaded shortening, historical models predict independent cross-bridge mechanics; however, it seems that the mechanical state of one population of cross-bridges affects the activity of other cross-bridges by, for example, recruitment of cross-bridges from the non-cycling pool to the cycling force-generating pool during submaximal Ca(2+) activation. This is supported by the findings that Ca(2+) activation levels, myofilament phosphorylation, and sarcomere length are all modulators of loaded shortening and power output independent of their effects on force. This fine tuning of power output probably helps optimize myocardial energetics and to match ventricular supply with peripheral demand; yet, the discernment of the chemo-mechanical signals that modulate loaded shortening needs further clarification since power output may be a key convergent point and feedback regulator of cytoskeleton and cellular signals that control myocyte growth and survival.

  18. Analysis and model on space-time characteristics of wind power output based on the measured wind speed data

    NASA Astrophysics Data System (ADS)

    Shi, Wenhui; Feng, Changyou; Qu, Jixian; Zha, Hao; Ke, Dan

    2018-02-01

    Most of the existing studies on wind power output focus on the fluctuation of wind farms and the spatial self-complementary of wind power output time series was ignored. Therefore the existing probability models can’t reflect the features of power system incorporating wind farms. This paper analyzed the spatial self-complementary of wind power and proposed a probability model which can reflect temporal characteristics of wind power on seasonal and diurnal timescales based on sufficient measured data and improved clustering method. This model could provide important reference for power system simulation incorporating wind farms.

  19. Electric power distribution and load transfer system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)

    1987-01-01

    A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.

  20. Electric power distribution and load transfer system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)

    1989-01-01

    A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.

  1. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  2. Research on laser detonation pulse circuit with low-power based on super capacitor

    NASA Astrophysics Data System (ADS)

    Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong

    2018-03-01

    According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.

  3. Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation

    NASA Astrophysics Data System (ADS)

    Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai

    2018-03-01

    The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.

  4. Study of Contactless Power Supply for Spindle Ultrasonic Vibrator

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Lee, Y. L.; Liu, H. T.; Chen, S. M.; Chang, H. Z.

    2017-11-01

    In this study, a contactless power supply for the ultrasonic motor on the spindle is proposed. The proposed power supply is composed of a series-parallel resonant circuit and a cylindrical contactless transformer. Based on the study and rotation experiments, it can be seen that the proposed power supply can both provide a stable ac power with 25 kHz / 70 V to the ultrasonic motor. When the output power is 250 W, the efficiency of the proposed supply is 89.8 % in respectively rotation tests. When the output power is more than 150 W, the efficiency of the proposed supply is higher than 80 % within the rated output power range.

  5. 3.1 W narrowband blue external cavity diode laser

    NASA Astrophysics Data System (ADS)

    Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui

    2018-03-01

    We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.

  6. Lightweight multiple output converter development

    NASA Technical Reports Server (NTRS)

    Kisch, J. J.; Martinelli, R. M.

    1978-01-01

    A high frequency, multiple output power conditioner was developed and breadboarded using an eight-stage capacitor diode voltage multiplier to provide +1200 Vdc, and a three-stage for -350 Vdc. In addition, two rectifier bridges were capacitively coupled to the eight-stage multiplier to obtain 0.5 and 0.65 a dc constant current outputs referenced to +1200 Vdc. Total power was 120 watts, with an overall efficiency of 85 percent at the 80 kHz operating frequency. All outputs were regulated to three percent or better, with complete short circuit protection. The power conditioner component weight and efficiency were compared to the equivalent four outputs of the 10 kHz conditioner for the 8 cm ion engine. Weight reduction for the four outputs was 557 grams; extrapolated in the same ratio to all nine outputs, it would be 1100 to 1400 grams.

  7. Insights on correlation dimension from dynamics mapping of three experimental nonlinear laser systems.

    PubMed

    McMahon, Christopher J; Toomey, Joshua P; Kane, Deb M

    2017-01-01

    We have analysed large data sets consisting of tens of thousands of time series from three Type B laser systems: a semiconductor laser in a photonic integrated chip, a semiconductor laser subject to optical feedback from a long free-space-external-cavity, and a solid-state laser subject to optical injection from a master laser. The lasers can deliver either constant, periodic, pulsed, or chaotic outputs when parameters such as the injection current and the level of external perturbation are varied. The systems represent examples of experimental nonlinear systems more generally and cover a broad range of complexity including systematically varying complexity in some regions. In this work we have introduced a new procedure for semi-automatically interrogating experimental laser system output power time series to calculate the correlation dimension (CD) using the commonly adopted Grassberger-Proccacia algorithm. The new CD procedure is called the 'minimum gradient detection algorithm'. A value of minimum gradient is returned for all time series in a data set. In some cases this can be identified as a CD, with uncertainty. Applying the new 'minimum gradient detection algorithm' CD procedure, we obtained robust measurements of the correlation dimension for many of the time series measured from each laser system. By mapping the results across an extended parameter space for operation of each laser system, we were able to confidently identify regions of low CD (CD < 3) and assign these robust values for the correlation dimension. However, in all three laser systems, we were not able to measure the correlation dimension at all parts of the parameter space. Nevertheless, by mapping the staged progress of the algorithm, we were able to broadly classify the dynamical output of the lasers at all parts of their respective parameter spaces. For two of the laser systems this included displaying regions of high-complexity chaos and dynamic noise. These high-complexity regions are differentiated from regions where the time series are dominated by technical noise. This is the first time such differentiation has been achieved using a CD analysis approach. More can be known of the CD for a system when it is interrogated in a mapping context, than from calculations using isolated time series. This has been shown for three laser systems and the approach is expected to be useful in other areas of nonlinear science where large data sets are available and need to be semi-automatically analysed to provide real dimensional information about the complex dynamics. The CD/minimum gradient algorithm measure provides additional information that complements other measures of complexity and relative complexity, such as the permutation entropy; and conventional physical measurements.

  8. Insights on correlation dimension from dynamics mapping of three experimental nonlinear laser systems

    PubMed Central

    McMahon, Christopher J.; Toomey, Joshua P.

    2017-01-01

    Background We have analysed large data sets consisting of tens of thousands of time series from three Type B laser systems: a semiconductor laser in a photonic integrated chip, a semiconductor laser subject to optical feedback from a long free-space-external-cavity, and a solid-state laser subject to optical injection from a master laser. The lasers can deliver either constant, periodic, pulsed, or chaotic outputs when parameters such as the injection current and the level of external perturbation are varied. The systems represent examples of experimental nonlinear systems more generally and cover a broad range of complexity including systematically varying complexity in some regions. Methods In this work we have introduced a new procedure for semi-automatically interrogating experimental laser system output power time series to calculate the correlation dimension (CD) using the commonly adopted Grassberger-Proccacia algorithm. The new CD procedure is called the ‘minimum gradient detection algorithm’. A value of minimum gradient is returned for all time series in a data set. In some cases this can be identified as a CD, with uncertainty. Findings Applying the new ‘minimum gradient detection algorithm’ CD procedure, we obtained robust measurements of the correlation dimension for many of the time series measured from each laser system. By mapping the results across an extended parameter space for operation of each laser system, we were able to confidently identify regions of low CD (CD < 3) and assign these robust values for the correlation dimension. However, in all three laser systems, we were not able to measure the correlation dimension at all parts of the parameter space. Nevertheless, by mapping the staged progress of the algorithm, we were able to broadly classify the dynamical output of the lasers at all parts of their respective parameter spaces. For two of the laser systems this included displaying regions of high-complexity chaos and dynamic noise. These high-complexity regions are differentiated from regions where the time series are dominated by technical noise. This is the first time such differentiation has been achieved using a CD analysis approach. Conclusions More can be known of the CD for a system when it is interrogated in a mapping context, than from calculations using isolated time series. This has been shown for three laser systems and the approach is expected to be useful in other areas of nonlinear science where large data sets are available and need to be semi-automatically analysed to provide real dimensional information about the complex dynamics. The CD/minimum gradient algorithm measure provides additional information that complements other measures of complexity and relative complexity, such as the permutation entropy; and conventional physical measurements. PMID:28837602

  9. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    PubMed

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  10. Microwave ovens and food safety: preparation of Not-Ready-to-Eat products in standard and smart ovens.

    PubMed

    Schiffmann, Robert F

    2013-01-01

    The introduction of several Not-Ready-to-Eat (NRTE) products, beginning in 2007, has resulted in several recalls and has caused serious concerns about their safe-cooking in microwave ovens. These products are not fully-thermally processed prior to sale but depend upon the consumer to finish cooking them to the safe minimum temperatures, defined by the USDA, in order to destroy any sources of foodborne illnesses. While microwave ovens are a primary means of this finish-cooking step, they are known to cook foods unevenly in terms of temperature distribution, especially from a frozen state, and this may cause parts of the food to be below the required safe-temperature. Hence there are concerns regarding how reliably microwave ovens can provide the minimum required safe temperatures in order to avoid the possibility of foodborne illnesses. To determine this, temperature profiling tests were preformed upon three frozen NRTE entrées, heating them in eight new brand-name 1100-watt and 1200-watt microwave ovens in order to evaluate how well the minimum temperatures were reached throughout the products. By comparison, these same tests were repeated using three "smart" microwave ovens in which internal computer-control makes them user-independent. In addition, a comparison was also made of the microwave output power claimed by the manufacturers of these ovens to that determined using the IEC procedures.

  11. Treatment delivery software for a new clinical grade ultrasound system for thermoradiotherapy.

    PubMed

    Novák, Petr; Moros, Eduardo G; Straube, William L; Myerson, Robert J

    2005-11-01

    A detailed description of a clinical grade Scanning Ultrasound Reflector Linear Array System (SURLAS) applicator was given in a previous paper [Med. Phys. 32, 230-240 (2005)]. In this paper we concentrate on the design, development, and testing of the personal computer (PC) based treatment delivery software that runs the therapy system. The SURLAS requires the coordinated interaction between the therapy applicator and several peripheral devices for its proper and safe operation. One of the most important tasks was the coordination of the input power sequences for the elements of two parallel opposed ultrasound arrays (eight 1.5 cm x 2 cm elements/array, array 1 and 2 operate at 1.9 and 4.9 MHz, respectively) in coordination with the position of a dual-face scanning acoustic reflector. To achieve this, the treatment delivery software can divide the applicator's treatment window in up to 64 sectors (minimum size of 2 cm x 2 cm), and control the power to each sector independently by adjusting the power output levels from the channels of a 16-channel radio-frequency generator. The software coordinates the generator outputs with the position of the reflector as it scans back and forth between the arrays. Individual sector control and dual frequency operation allows the SURLAS to adjust power deposition in three dimensions to superficial targets coupled to its treatment window. The treatment delivery software also monitors and logs several parameters such as temperatures acquired using a 16-channel thermocouple thermometry unit. Safety (in particular to patients) was the paramount concern and design criterion. Failure mode and effects analysis (FMEA) was applied to the applicator as well as to the entire therapy system in order to identify safety issues and rank their relative importance. This analysis led to the implementation of several safety mechanisms and a software structure where each device communicates with the controlling PC independently of the others. In case of a malfunction in any part of the system or a violation of a user-defined safety criterion based on temperature readings, the software terminates treatment immediately and the user is notified. The software development process consisting of problem analysis, design, implementation, and testing is presented in this paper. Once the software was finished and integrated with the hardware, the therapy system was extensively tested. Results demonstrated that the software operates the SURLAS as intended with minimum risk to future patients.

  12. The 20 GHz GaAs monolithic power amplifier module development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of a 20 GHz GaAs FET monlithic power amplifier module for advanced communication applications is described. Four-way power combing of four 0.6 W amplifier modules is used as the baseline approach. For this purpose, a monolithic four-way traveling-wave power divider/combiner was developed. Over a 20 GHz bandwidth (10 to 30 GHz), an insertion loss of no more than 1.2 dB was measured for a pair of back-to-back connected divider/combiners. Isolation between output ports is better than 20 dB, and VSWRs are better than 21:1. A distributed amplifier with six 300 micron gate width FETs and gate and drain transmission line tapers has been designed, fabricated, and evaluated for use as an 0.6 W module. This amplifier has achieved state-of-the-art results of 0.5 W output power with at least 4 dB gain across the entire 2 to 21 GHz frequency range. An output power of 2 W was achieved at a measurement frequency of 18 GHz when four distributed amplifiers were power-combined using a pair of traveling-wave divider/combiners. Another approach is the direct common-source cascading of three power FET stages. An output power of up to 2W with 12 dB gain and 20% power-added efficiency has been achieved with this approach (at 17 GHz). The linear gain was 14 dB at 1 W output. The first two stages of the three-stage amplifier have achieved an output power of 1.6 W with 9 dB gain and 26% power-added efficiency at 16 GHz.

  13. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    NASA Astrophysics Data System (ADS)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on the grid power while supplying the battery storage and the DC loads inspired a novel dual switch control structure for the CBB AC/DC converter used in this dissertation. Thus, The CBB operates at a discontinuous capacitor voltage mode (DCVM) and the control structure enables for a non-distorted input current at overlapping output voltage levels. The PFC concept is validated and tested for a single phase rectifier and a 3 phase extension of the proposed concept is presented. Lastly, the PV source used in this study is required to supply power to both, the grid system, and to the DC loads, i.e the battery storage and the EVs. Thus, the PV panels used are connected in series to reach a desirable high voltage on the DC bus output of the PV system. Consequently, a novel differential power processing architecture is proposed in this dissertation. The proposed architecture enables each PV element to operate at its local maximum power point (MPP) while processing only a small portion of its total generated power through the distributed integrated converters. This leads to higher energy capture at an increased conversion efficiency while overcoming the difficulties associated with unmatched MPPs of the PV elements.

  14. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  15. Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment.

    PubMed

    Gutknecht, Norbert; Franzen, Rene; Meister, Jörg; Vanweersch, Leon; Mir, Maziar

    2005-09-01

    The thermal rise threshold of an 810-nm semi-conductor diode laser on the root surface when used in root canals in vitro for laser assisted root canal treatment is investigated in this study. A total of 50 human single-rooted extracted teeth were included. For this study, the canals were enlarged up to an apical size of ISO#50 file. Laser irradiation was performed with six different settings. Specimens were irradiated at 0.6-1 W output power at the distal end of the fiber and about 1-1.5 W output power in the continuous mode (CW) as two groups. In the third group, 0.6-1 W output power, 10 ms pulse length (PL) and 10 ms interval duration (ID) were selected. In three other groups 1-1.5 W output power were used with different PL and ID as following: PL 10 and ID 10 ms, PL 10 and ID 20 ms and PL 20 and ID 20 ms. The total irradiation time was from 5 to 20 s per canal with a 200 mum in diameter and 25 mm long tip. After laser treatment, the temperature changes at the outer root surface were registered by means of NiCr-Ni measuring sensors and a T 202 thermometer. The safe temperature threshold for applying this diode laser in root canal is considered as 7 degrees C increase. To avoid increasing the temperature changes at the outer root surface related to this threshold, following total irradiation times were found: 0.6-1 W output power (10 ms PL/10 ms ID): 20 s (s), 1-1.5 W output power (10 ms/10 ms and 20 ms/20 ms): 15 s, 0.6-1 W output power CW and 1-1.5 W output power (20 ms PL/10 ms ID): 10 s and 1-1.5 W output power CW: 5 s. In the first three groups, 5 s irradiation and 5 s rest period avoided a temperature increase above the threshold of 7 degrees C).

  16. Coherent combining of a 4 kW, eight-element fiber amplifier array.

    PubMed

    Yu, C X; Augst, S J; Redmond, S M; Goldizen, K C; Murphy, D V; Sanchez, A; Fan, T Y

    2011-07-15

    Commercial 0.5 kW Yb-doped fiber amplifiers have been characterized and found to be suitable for coherent beam combining. Eight such fiber amplifiers have been coherently combined in a tiled-aperture configuration with 78% combining efficiency and total output power of 4 kW. The power-in-the-bucket vertical beam quality of the combined output is 1.25 times diffraction limited at full power. The beam-combining performance is independent of output power. © 2011 Optical Society of America

  17. Piezoelectric transformer and modular connections for high power and high voltage power supplies

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.

  18. Temporal Aspects of the V[o.sub.2] Response at the Power Output Associated with V[o.sub.2]peak in Well Trained Cyclists-Implications for Interval Training Prescription

    ERIC Educational Resources Information Center

    Laursen, Paul B.; Shing, Cecilia M.; Jenkins, David G.

    2004-01-01

    The power output achieved at peak oxygen consumption (V[O.sub.2]peak) and the time this power can be maintained (i.e., Tmax) have been used in prescribing high-intensity interval training. In this context, the present study examined temporal aspects of the V[O.sub.2] response to exercise at the cycling power that output well trained cyclists…

  19. Think global, act local—a power generation case study

    NASA Astrophysics Data System (ADS)

    Dugdale, Pam

    2012-01-01

    This paper describes an exercise completed by sixth form college students to compare the power output from a local coal fired power station with the potential power output from renewable sources including wind farms, solar farms, and the proposed Mersey Tidal Barrage scheme.

  20. Change in power output across a high-repetition set of bench throws and jump squats in highly trained athletes.

    PubMed

    Baker, Daniel G; Newton, Robert U

    2007-11-01

    Athletes experienced in maximal-power and power-endurance training performed 1 set of 2 common power training exercises in an effort to determine the effects of moderately high repetitions upon power output levels throughout the set. Twenty-four and 15 athletes, respectively, performed a set of 10 repetitions in both the bench throw (BT P60) and jump squat exercise (JS P60) with a resistance of 60 kg. For both exercises, power output was highest on either the second (JS P60) or the third repetition (BT P60) and was then maintained until the fifth repetition. Significant declines in power output occurred from the sixth repetition onwards until the 10th repetition (11.2% for BT P60 and 5% for JS P60 by the 10th repetition). These findings suggest that athletes attempting to increase maximal power limit their repetitions to 2 to 5 when using resistances of 35 to 45% 1RM in these exercises.

  1. Electric power from offshore wind via synoptic-scale interconnection

    PubMed Central

    Kempton, Willett; Pimenta, Felipe M.; Veron, Dana E.; Colle, Brian A.

    2010-01-01

    World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here. PMID:20368464

  2. Multiloop Rapid-Rise/Rapid Fall High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas

    2007-01-01

    A proposed multiloop power supply would generate a potential as high as 1.25 kV with rise and fall times <100 s. This power supply would, moreover, be programmable to generate output potentials from 20 to 1,250 V and would be capable of supplying a current of at least 300 A at 1,250 V. This power supply is intended to be a means of electronic shuttering of a microchannel plate that would be used to intensify the output of a charge-coupled-device imager to obtain exposure times as short as 1 ms. The basic design of this power supply could also be adapted to other applications in which high voltages and high slew rates are needed. At the time of reporting the information for this article, there was no commercially available power supply capable of satisfying the stated combination of voltage, rise-time, and fall-time requirements. The power supply would include a preregulator that would be used to program a voltage 1/30 of the desired output voltage. By means of a circuit that would include a pulse-width modulator (PWM), two voltage doublers, and a transformer having two primary and two secondary windings, the preregulator output voltage would be amplified by a factor of 30. A resistor would limit the current by controlling a drive voltage applied to field-effect transistors (FETs) during turn-on of the PWM. Two feedback loops would be used to regulate the high output voltage. A pulse transformer would be used to turn on four FETs to short-circuit output capacitors when the outputs of the PWM were disabled. Application of a 0-to-5-V square to a PWM shut-down pin would cause a 20-to-1,250-V square wave to appear at the output.

  3. Design and optimization of G-band extended interaction klystron with high output power

    NASA Astrophysics Data System (ADS)

    Li, Renjie; Ruan, Cunjun; Zhang, Huafeng

    2018-03-01

    A ladder-type Extended Interaction Klystron (EIK) with unequal-length slots in the G-band is proposed and designed. The key parameters of resonance cavities working in the π mode are obtained based on the theoretical analysis and 3D simulation. The influence of the device fabrication tolerance on the high-frequency performance is analyzed in detail, and it is found that at least 5 μm of machining precision is required. Thus, the dynamic tuning is required to compensate for the frequency shift and increase the bandwidth. The input and output coupling hole dimensions are carefully designed to achieve high output power along with a broad bandwidth. The effect of surface roughness of the metallic material on the output power has been investigated, and it is proposed that lower surface roughness leads to higher output power. The focusing magnetic field is also optimized to 0.75 T in order to maintain the beam transportation and achieve high output power. With 16.5 kV operating voltage and 0.30 A beam current, the output power of 360 W, the efficiency of 7.27%, the gain of 38.6 dB, and the 3 dB bandwidth of 500 MHz are predicted. The output properties of the EIK show great stability with the effective suppression of oscillation and mode competition. Moreover, small-signal theory analysis and 1D code AJDISK calculations are carried out to verify the results of 3D PIC simulations. A close agreement among the three methods proves the relative validity and the reliability of the designed EIK. Thus, it is indicated that the EIK with unequal-length slots has potential for power improvement and bandwidth extension.

  4. High-Voltage Power Supply With Fast Rise and Fall Times

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B.; Acker, Richard M.; Kapuslka, Robert E.

    2007-01-01

    A special-purpose high-voltage power supply can be electronically switched on and off with fast rise and fall times, respectively. The output potential is programmable from 20 to 1,250 V. An output current of 50 A can be sustained at 1,250 V. The power supply was designed specifically for electronically shuttering a microchannel plate in an x-ray detector that must operate with exposure times as short as 1 ms. The basic design of the power supply is also adaptable to other applications in which there are requirements for rapid slewing of high voltages. The power-supply circuitry (see figure) includes a preregulator, which is used to program the output at 1/30 of the desired output potential. After the desired voltage has been set, the outputs of a pulse width modulator (PWM) are enabled and used to amplify the preregulator output potential by 30. The amplification is achieved by use of two voltage doublers with a transformer that has two primary and two secondary windings. A resistor is used to limit the current by controlling the drive voltage of two field-effect transistors (FETs) during turn-on of the PWM. A pulse transformer is used to turn on four FETs to short-circuit four output capacitors when the outputs of the PWM have been disabled. The most notable aspects of the performance of the power supply are a rise time of only 80 s and a fall time of only 60 s at a load current of 50 A or less. Another notable aspect is that the application of a 0-to-5-V square wave to a shutdown pin of the PWM causes the production of a 0-to-1,250-V square wave at the output terminals.

  5. On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)

    2015-01-01

    A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.

  6. Applications of active adaptive noise control to jet engines

    NASA Technical Reports Server (NTRS)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  7. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.

    2014-05-14

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK{sup −1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW permore » thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.« less

  8. Adaptive feedforward control of non-minimum phase structural systems

    NASA Astrophysics Data System (ADS)

    Vipperman, J. S.; Burdisso, R. A.

    1995-06-01

    Adaptive feedforward control algorithms have been effectively applied to stationary disturbance rejection. For structural systems, the ideal feedforward compensator is a recursive filter which is a function of the transfer functions between the disturbance and control inputs and the error sensor output. Unfortunately, most control configurations result in a non-minimum phase control path; even a collocated control actuator and error sensor will not necessarily produce a minimum phase control path in the discrete domain. Therefore, the common practice is to choose a suitable approximation of the ideal compensator. In particular, all-zero finite impulse response (FIR) filters are desirable because of their inherent stability for adaptive control approaches. However, for highly resonant systems, large order filters are required for broadband applications. In this work, a control configuration is investigated for controlling non-minimum phase lightly damped structural systems. The control approach uses low order FIR filters as feedforward compensators in a configuration that has one more control actuator than error sensors. The performance of the controller was experimentally evaluated on a simply supported plate under white noise excitation for a two-input, one-output (2I1O) system. The results show excellent error signal reduction, attesting to the effectiveness of the method.

  9. 18 CFR 420.42 - Contracts; minimum charge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Contracts; minimum charge. 420.42 Section 420.42 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.42 Contracts; minimum...

  10. Rate-Compatible LDPC Codes with Linear Minimum Distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel

    2009-01-01

    A recently developed method of constructing protograph-based low-density parity-check (LDPC) codes provides for low iterative decoding thresholds and minimum distances proportional to block sizes, and can be used for various code rates. A code constructed by this method can have either fixed input block size or fixed output block size and, in either case, provides rate compatibility. The method comprises two submethods: one for fixed input block size and one for fixed output block size. The first mentioned submethod is useful for applications in which there are requirements for rate-compatible codes that have fixed input block sizes. These are codes in which only the numbers of parity bits are allowed to vary. The fixed-output-blocksize submethod is useful for applications in which framing constraints are imposed on the physical layers of affected communication systems. An example of such a system is one that conforms to one of many new wireless-communication standards that involve the use of orthogonal frequency-division modulation

  11. Exact-Output Tracking Theory for Systems with Parameter Jumps

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Paden, Brad; Rossi, Carlo

    1997-01-01

    We consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to non-minimum-phase systems and it obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exosystem, then we develop an exact-tracking controller in a feed-back form. As in standard regulator theory, we obtain a linear map from the states of the exosystem to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.

  12. Noise tolerance in optical waveguide circuits for recognition of optical 16 quadrature amplitude modulation codes

    NASA Astrophysics Data System (ADS)

    Inoshita, Kensuke; Hama, Yoshimitsu; Kishikawa, Hiroki; Goto, Nobuo

    2016-12-01

    In photonic label routers, various optical signal processing functions are required; these include optical label extraction, recognition of the label, optical switching and buffering controlled by signals based on the label information and network routing tables, and label rewriting. Among these functions, we focus on photonic label recognition. We have proposed two kinds of optical waveguide circuits to recognize 16 quadrature amplitude modulation codes, i.e., recognition from the minimum output port and from the maximum output port. The recognition function was theoretically analyzed and numerically simulated by finite-difference beam-propagation method. We discuss noise tolerance in the circuit and show numerically simulated results to evaluate bit-error-rate (BER) characteristics against optical signal-to-noise ratio (OSNR). The OSNR required to obtain a BER less than 1.0×10-3 for the symbol rate of 2.5 GBaud was 14.5 and 27.0 dB for recognition from the minimum and maximum output, respectively.

  13. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    PubMed

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  14. 75 FR 3985 - Trade Regulation Rule Relating to Power Output Claims for Amplifiers Utilized in Home...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... purchasing decision, or, at worst, could be deceived by certain power output claims.'' More specifically... consumers who purchase power amplification equipment. The Rule standardized the measurement and disclosure...

  15. Output power fluctuations due to different weights of macro particles used in particle-in-cell simulations of Cerenkov devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Rong; Li, Yongdong; Liu, Chunliang

    2016-07-15

    The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified bymore » comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.« less

  16. Comparison for 1030nm DBR-tapered diode lasers with 10W central lobe output power and different grating layouts for wavelength stabilization and lateral spatial mode filtering

    NASA Astrophysics Data System (ADS)

    Müller, André; Zink, Christof; Fricke, Jörg; Bugge, Frank; Erbert, Götz; Sumpf, Bernd; Tränkle, Günther

    2018-02-01

    1030 nm DBR tapered diode lasers with different lateral layouts are presented. The layout comparison includes lasers with straight waveguide and grating, tapered waveguide and straight grating, and straight waveguide and tapered grating. The lasers provide narrowband emission and optical output powers up to 15 W. The highest diffraction-limited central lobe output power of 10.5 W is obtained for lasers with tapered gratings only. Small variations in central lobe output power with RW injection current density also indicate the robustness of that layout. For lasers with tapered waveguides, high RW injection current densities up to 150 A/mm2 have to be applied in order to obtain high central lobe output powers. Lasers with straight waveguide and grating operate best at low RW injection current densities, 50 A/mm2 applied in this study. Using the layout optimizations discussed in this study may help to increase the application potential of DBR tapered diode lasers.

  17. All-fiber high-power monolithic femtosecond laser at 1.59 µm with 63-fs pulse width

    NASA Astrophysics Data System (ADS)

    Hekmat, M. J.; Omoomi, M.; Gholami, A.; Yazdabadi, A. Bagheri; Abdollahi, M.; Hamidnejad, E.; Ebrahimi, A.; Normohamadi, H.

    2018-01-01

    In this research, by adopting an alternative novel approach to ultra-short giant pulse generation which basically originated from difficulties with traditional employed methods, an optimized Er/Yb co-doped double-clad fiber amplifier is applied to boost output average power of single-mode output pulses to a high level of 2-W at 1.59-µm central wavelength. Output pulses of approximately 63-fs pulse width at 52-MHz repetition rate are obtained in an all-fiber monolithic laser configuration. The idea of employing parabolic pulse amplification for stretching output pulses together with high-power pulse amplification using Er/Yb co-doped active fibers for compressing and boosting output average power plays crucial role in obtaining desired results. The proposed configuration enjoys massive advantages over previously reported literature which make it well-suited for high-power precision applications such as medical surgery. Detailed dynamics of pulse stretching and compressing in active fibers with different GVD parameters are numerically and experimentally investigated.

  18. Power enhanced frequency conversion system

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    A frequency conversion system includes at least one source providing a first near-IR wavelength output including a gain medium for providing high power amplification, such as double clad fiber amplifier, a double clad fiber laser or a semiconductor tapered amplifier to enhance the power output level of the near-IR wavelength output. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Ra-man/Brillouin amplifier or oscillator between the high power source and the NFM device.

  19. Structural Optimization for Wideband Flexoelectric Energy Harvester Using Bulk Paraelectric Ba0.6Sr0.4TiO3

    NASA Astrophysics Data System (ADS)

    Kumar, Anuruddh; Chauhan, Aditya; Vaish, Rahul; Kumar, Rajeev; Jain, Satish Chandra

    2018-01-01

    Flexoelectricity is a phenomenon which allows all crystalline dielectric materials to exhibit strain-induced polarization. With recent articles reporting giant flexoelectric coupling coefficients for various ferroelectric materials, this field must be duly investigated for its application merits. In this study, a wide-band linear energy harvesting device has been proposed using Ba0.6Sr0.4TiO3 ceramic. Both structural and material parameters were scrutinized for an optimized approach. Dynamic analysis was performed using finite element modeling to evaluate several important parameters including beam deflection, open circuit voltage and net power output. It was revealed that open circuit voltage and net power output lack correlation. Further, power output lacks a dependency on optimized width ratios, with the highest power output of 0.07 μW being observed for a width ratio of 0.33 closely followed by ratios of 0.2 and 0.5 (˜0.07 μW) each. The resulting power was generated at discrete (resonant) frequencies lacking a broadband structure. A compound design with integrated beams was proposed to overcome this drawback. The finalized design is capable of a maximum power output of >0.04 μW with an operational frequency of 90-110 Hz, thus allowing for a higher power output in a broader frequency range.

  20. THz polariton laser using an intracavity Mg:LiNbO3 crystal with protective Teflon coating.

    PubMed

    Ortega, Tiago A; Pask, Helen M; Spence, David J; Lee, Andrew J

    2017-02-20

    An enhancement in the performance of a THz polariton laser based on an intracavity magnesium-doped lithium niobate crystal (Mg:LiNbO3) in surface-emitted (SE) configuration is demonstrated resulting from the deposition of a protective Teflon coating on the total internal reflection surface of the crystal. In this cavity geometry the resonating fields undergo total internal reflection (TIR) inside the lithium niobate, and laser damage to that surface can be a limiting factor in performance. The protective layer prevents laser damage to the crystal surface, enabling higher pump power, yielding higher THz output power and wider frequency tuning range. With the unprotected crystal, narrow-band THz output tunable from 1.50 to 2.81 THz was produced, with maximum average output power of 20.1 µW at 1.76 THz for 4 W diode pump power (limited by laser damage to the crystal). With the Teflon coating, no laser damage to the crystal was observed, and the system produced narrow-band THz output tunable from 1.46 to 3.84 THz, with maximum average output power of 56.8 µW at 1.76 THz for 6.5 W diode pump power. This is the highest average output power and the highest diode-to-terahertz conversion efficiency ever reported for an intracavity terahertz polariton laser.

  1. Thermal behavior of heat-pipe-assisted alkali-metal thermoelectric converters

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Su; Lee, Wook-Hyun; Chi, Ri-Guang; Chung, Won-Sik; Lee, Kye-Bock; Rhi, Seok-Ho; Jeong, Seon-Yong; Park, Jong-Chan

    2017-11-01

    The alkali-metal thermal-to-electric converter (AMTEC) changes thermal energy directly into electrical energy using alkali metals, such as sodium and potassium, as the working fluid. The AMTEC system primarily consists of beta-alumina solid electrolyte (BASE) tubes, low and high-pressure chambers, an evaporator, and a condenser and work through continuous sodium circulation, similar to conventional heat pipes. When the sodium ions pass through the BASE tubes with ion conductivity, this ion transfer generates electricity. The efficiency of the AMTEC directly depends on the temperature difference between the top and bottom of the system. The optimum design of components of the AMTEC, including the condenser, evaporator, BASE tubes, and artery wick, can improve power output and efficiency. Here, a radiation shield was installed in the low-pressure chamber of the AMTEC and was investigated experimentally and numerically to determine an optimum design for preventing radiation heat loss through the condenser and the wall of AMTEC container. A computational fluid dynamics (CFD) simulation was carried out to decide the optimum size of the low-pressure chamber. The most suitable height and diameter of the chamber were 270 mm and 180 mm, respectively, with eight BASE tubes, which were 150 mm high, 25 mm in diameter, and 105 mm in concentric diameter. Increasing the temperature ratio ( T Cond /T B ) led to high power output. The minimum dimensionless value (0.4611) for temperature ( T Cond /T B ) appeared when the radiation shield was made of 500-mesh nickel. Simulation results for the best position and shape for the radiation shield, revealed that maximum power was generated when a stainless steel shield was installed in between the BASE tubes and condenser.

  2. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1986-01-01

    Free piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology Program. This five year program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable candidate. Under this program the research findings of the 25 kWe opposed piston Space Power Demonstrator Engine (SPDE) are presented. Included in the SPDE discussions are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators. Projections are made for future space power requirements over the next few decades. And a cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  3. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    NASA Astrophysics Data System (ADS)

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  4. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    NASA Technical Reports Server (NTRS)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  5. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  6. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  7. Power conditioning system for energy sources

    DOEpatents

    Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  8. From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager's Relations Revisited

    NASA Astrophysics Data System (ADS)

    Feidt, Michel; Costea, Monica

    2018-04-01

    Many works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager's theory were reported [4]. The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs. The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental. Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source. Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.

  9. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials

    PubMed Central

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng

    2017-01-01

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation. PMID:28383017

  10. The Effect of Deflector Angle in Savonius Water Turbine with Horizontal Axis on the Power Output of Water Flow in Pipe

    NASA Astrophysics Data System (ADS)

    Prasetyo, Ari; Kristiawan, Budi; Danardono, Dominicus; Hadi, Syamsul

    2018-03-01

    Savonius turbine is one type of turbines with simple design and low manufacture. However, this turbine has a relatively low efficiency. This condition can be solved by installing fluid deflectors in the system’s circuit. The deflector is used to direct the focus of the water flow, thus increasing the torque working moment. In this study, a single stage horizontal axis Savonius water turbine was installed on a 3 inch diameter pipeline. This experiment aims to obtain optimal deflector angle design on each water discharge level. The deflector performance is analyzed through power output, TSR, and power coefficient generated by the turbine. The deflector angles tested are without deflector, 20°, 30°, 40°, and 50° with a deflector ratio of 50%. The experimental results at 10.67x10-3m3/s discharge show that turbine equipped with 30° deflector has the most optimal performance of 18.04 Watt power output, TSR of 1.12 and power coefficient 0.127. While with the same discharge, turbine without deflector produces only 9.77 Watt power output, TSR of 0.93, and power coefficient of 0.09. Thus, it can be concluded that the deflector increases power output equal to 85%.

  11. Adaptive control system for pulsed megawatt klystrons

    DOEpatents

    Bolie, Victor W.

    1992-01-01

    The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.

  12. Laser rangefinders for autonomous intelligent cruise control systems

    NASA Astrophysics Data System (ADS)

    Journet, Bernard A.; Bazin, Gaelle

    1998-01-01

    THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.

  13. Wind farm electrical system

    DOEpatents

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  14. "PowerUp"!: A Tool for Calculating Minimum Detectable Effect Sizes and Minimum Required Sample Sizes for Experimental and Quasi-Experimental Design Studies

    ERIC Educational Resources Information Center

    Dong, Nianbo; Maynard, Rebecca

    2013-01-01

    This paper and the accompanying tool are intended to complement existing supports for conducting power analysis tools by offering a tool based on the framework of Minimum Detectable Effect Sizes (MDES) formulae that can be used in determining sample size requirements and in estimating minimum detectable effect sizes for a range of individual- and…

  15. Coordinated control strategy for improving the two drops of the wind storage combined system

    NASA Astrophysics Data System (ADS)

    Qian, Zhou; Chenggen, Wang; Jing, Bu

    2018-05-01

    In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.

  16. Tuneable powerful UV laser system with UV noise eater

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Radnatarov, Daba; Khripunov, Sergey; Zarudnev, Yurii

    2018-02-01

    The present work for the first time presents the study of a laser system delivering into the fibre up to 250 mW of CW radiation tuneable across the 275-310-nm range with the output line width less than 5 GHz and stability of UV output power within 1%. This system can automatically set the output radiation wavelength within the range of 275-310 nm to the precision of 2 pm. UV output power stabilisation is provided by a newly proposed by the authors noise eating technology. This paper discusses details of the developed technology and the results of its application.

  17. High level white noise generator

    DOEpatents

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  18. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator-High Frequency Piezoelectric Energy Harvester.

    PubMed

    Žižys, Darius; Gaidys, Rimvydas; Ostaševičius, Vytautas; Narijauskaitė, Birutė

    2017-04-27

    Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR) which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH) via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.

  19. Laser output power stabilization for direct laser writing system by using an acousto-optic modulator.

    PubMed

    Kim, Dong Ik; Rhee, Hyug-Gyo; Song, Jae-Bong; Lee, Yun-Woo

    2007-10-01

    We present experimental results on the output power stabilization of an Ar(+) laser for a direct laser writing system (LWS). Instability of the laser output power in the LWS cause resolution fluctuations of being fabricated diffractive optical elements or computer-generated holograms. For the purpose of reducing the power fluctuations, we have constituted a feedback loop with an acousto-optic modulator, a photodetector, and a servo controller. In this system, we have achieved the stability of +/-0.20% for 12 min and the relative intensity noise level of 2.1 x 10(-7) Hz(-12) at 100 Hz. In addition, we applied our system to a 2 mW internal mirror He-Ne laser. As a consequence, we achieved the output power stability of +/-0.12% for 25 min.

  20. High efficiency and output power from second- and third-harmonic millimeter-wave InP-TED oscillators at frequencies above 170 GHz

    NASA Astrophysics Data System (ADS)

    Rydberg, Anders

    1990-10-01

    InP TED (transferred electron device) oscillators have been experimentally investigated for frequencies between 170 and 279 GHz. It has been found that output powers of more than 7 and 0.2 mW are possible at 180 and 272 GHz using second- and third-harmonic mode operation, respectively. Conversion efficiencies of more than 13 percent and 0.3 percent between fundamental and second harmonic and fundamental and third harmonic, respectively, have been found. The conversion efficiencies are comparable to GaAs TEDs. The output powers, conversion efficiencies, and tuning ranges (more than 22 percent) are the largest reported for InP TEDs at these frequencies. The output power at third harmonic was sufficient for supplying a superconducting mixer with local oscillator power.

  1. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  2. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  3. Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yijian; Hong, Mingyi; Dall'Anese, Emiliano

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less

  5. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    NASA Astrophysics Data System (ADS)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  6. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    NASA Astrophysics Data System (ADS)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  7. Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb.

    PubMed

    He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng

    2016-11-29

    Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm -1 ⋅K -2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb 0.95 Ti 0.05 FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm -2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications.

  8. Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb

    PubMed Central

    He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng

    2016-01-01

    Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm−1⋅K−2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb0.95Ti0.05FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm−2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications. PMID:27856743

  9. A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage

    NASA Astrophysics Data System (ADS)

    Perez, Marc J. R.

    With extraordinary recent growth of the solar photovoltaic industry, it is paramount to address the biggest barrier to its high-penetration across global electrical grids: the inherent variability of the solar resource. This resource variability arises from largely unpredictable meteorological phenomena and from the predictable rotation of the earth around the sun and about its own axis. To achieve very high photovoltaic penetration, the imbalance between the variable supply of sunlight and demand must be alleviated. The research detailed herein consists of the development of a computational model which seeks to optimize the combination of 3 supply-side solutions to solar variability that minimizes the aggregate cost of electricity generated therefrom: Storage (where excess solar generation is stored when it exceeds demand for utilization when it does not meet demand), interconnection (where solar generation is spread across a large geographic area and electrically interconnected to smooth overall regional output) and smart curtailment (where solar capacity is oversized and excess generation is curtailed at key times to minimize the need for storage.). This model leverages a database created in the context of this doctoral work of satellite-derived photovoltaic output spanning 10 years at a daily interval for 64,000 unique geographic points across the globe. Underpinning the model's design and results, the database was used to further the understanding of solar resource variability at timescales greater than 1-day. It is shown that--as at shorter timescales--cloud/weather-induced solar variability decreases with geographic extent and that the geographic extent at which variability is mitigated increases with timescale and is modulated by the prevailing speed of clouds/weather systems. Unpredictable solar variability up to the timescale of 30 days is shown to be mitigated across a geographic extent of only 1500km if that geographic extent is oriented in a north/south bearing. Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis. In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used. The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than 0.19 per kilowatt-hour. If solar is preferentially clustered in the southwest instead of evenly spread throughout the United States, and we adopt future expected costs for solar generation of 1 per watt, optimal model results show that meeting a 100% predictable output target with solar will cost no more than $0.08 per kilowatt-hour.

  10. A phenomenological model of muscle fatigue and the power-endurance relationship.

    PubMed

    James, A; Green, S

    2012-11-01

    The relationship between power output and the time that it can be sustained during exercise (i.e., endurance) at high intensities is curvilinear. Although fatigue is implicit in this relationship, there is little evidence pertaining to it. To address this, we developed a phenomenological model that predicts the temporal response of muscle power during submaximal and maximal exercise and which was based on the type, contractile properties (e.g., fatiguability), and recruitment of motor units (MUs) during exercise. The model was first used to predict power outputs during all-out exercise when fatigue is clearly manifest and for several distributions of MU type. The model was then used to predict times that different submaximal power outputs could be sustained for several MU distributions, from which several power-endurance curves were obtained. The model was simultaneously fitted to two sets of human data pertaining to all-out exercise (power-time profile) and submaximal exercise (power-endurance relationship), yielding a high goodness of fit (R(2) = 0.96-0.97). This suggested that this simple model provides an accurate description of human power output during submaximal and maximal exercise and that fatigue-related processes inherent in it account for the curvilinearity of the power-endurance relationship.

  11. A negentropy minimization approach to adaptive equalization for digital communication systems.

    PubMed

    Choi, Sooyong; Lee, Te-Won

    2004-07-01

    In this paper, we introduce and investigate a new adaptive equalization method based on minimizing approximate negentropy of the estimation error for a finite-length equalizer. We consider an approximate negentropy using nonpolynomial expansions of the estimation error as a new performance criterion to improve performance of a linear equalizer based on minimizing minimum mean squared error (MMSE). Negentropy includes higher order statistical information and its minimization provides improved converge, performance and accuracy compared to traditional methods such as MMSE in terms of bit error rate (BER). The proposed negentropy minimization (NEGMIN) equalizer has two kinds of solutions, the MMSE solution and the other one, depending on the ratio of the normalization parameters. The NEGMIN equalizer has best BER performance when the ratio of the normalization parameters is properly adjusted to maximize the output power(variance) of the NEGMIN equalizer. Simulation experiments show that BER performance of the NEGMIN equalizer with the other solution than the MMSE one has similar characteristics to the adaptive minimum bit error rate (AMBER) equalizer. The main advantage of the proposed equalizer is that it needs significantly fewer training symbols than the AMBER equalizer. Furthermore, the proposed equalizer is more robust to nonlinear distortions than the MMSE equalizer.

  12. Think Global, Act Local--A Power Generation Case Study

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2012-01-01

    This paper describes an exercise completed by sixth form college students to compare the power output from a local coal fired power station with the potential power output from renewable sources including wind farms, solar farms, and the proposed Mersey Tidal Barrage scheme. (Contains 1 figure, 1 table, and 3 photos.)

  13. Effect of workload setting on propulsion technique in handrim wheelchair propulsion.

    PubMed

    van Drongelen, Stefan; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V

    2013-03-01

    To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Twelve able-bodied men participated in this study. External forces were measured during handrim wheelchair propulsion on a motor driven treadmill at different velocities and constant power output (to test the forced effect of speed) and at power outputs imposed by incline vs. pulley system (to test the effect of method to impose power). Outcome measures were the force and timing variables of the propulsion technique. FEF and timing variables showed significant differences between the speed conditions when propelling at the same power output (p < 0.01). Push time was reduced while push angle increased. The method to impose power only showed slight differences in the timing variables, however not in the force variables. Researchers and clinicians must be aware of testing and evaluation conditions that may differently affect propulsion technique parameters despite an overall constant power output. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. The Impact of Harness Impedance on Hall Thruster Discharge Oscillations

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.

    2017-01-01

    Hall thrusters exhibit characteristic discharge voltage and current oscillations during steady-state operation. The lower frequency breathing-mode current oscillations are inherent to each thruster and could impact thruster operation and PPU design. The design of the discharge output filter, in particular, the output capacitor is important because it supplies the high peak current oscillations that the thruster demands. However, space-rated, high-voltage capacitors are not readily available and can have significant mass and volume. So, it is important for a PPU designer to know what is the minimum amount of capacitance required to operate a thruster. Through SPICE modeling and electrical measurements on the Hall Effect Rocket with Magnetic Shielding (HERMeS) thruster, it was shown that the harness impedance between the power supply and the thruster is the main contributor towards generating voltage ripple at the thruster. Also, increasing the size of the discharge filter capacitor, as previously implemented during thruster tests, does not reduce the voltage oscillations. The electrical characteristics of the electrical harness between the discharge supply and the thruster is crucial to system performance and could have a negative impact on performance, life and operation.

  15. Development of advanced silicon solar cells for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lillington, David R.

    1990-01-01

    This report describes the development of large area high efficiency wrapthrough solar cells for Space Station Freedom. The goal of this contract was the development and fabrication of 8 x 8 cm coplanar back contact solar cells with a minimum output of 1.039 watts/cell. The first task in this program was a modeling study to determine the optimum configuration of the cell and to study the effects of surface passivation, substrate resistivity, and back surface field on the BOL and EOL performance. In addition, the optical stack, including the cell cover, AR coatings, and Kapton blanket, was modeled to optimize 'on orbit' operation. The second phase was a manufacturing development phase to develop high volume manufacturing processes for the reliable production of low recombination velocity boron back surface fields, techniques to produce smooth, low leakage wrapthrough holes, passivation, photoresist application methods, and metallization schemes. The final portion of this program was a pilot production phase. Seven hundred solar cells were delivered in this phase. At the end of the program, cells with average efficiencies over 13 percent were being produced with power output in excess of 1.139 watts/cell, thus substantially exceeding the program goal.

  16. Neural computing thermal comfort index PMV for the indoor environment intelligent control system

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Chen, Yifei

    2013-03-01

    Providing indoor thermal comfort and saving energy are two main goals of indoor environmental control system. An intelligent comfort control system by combining the intelligent control and minimum power control strategies for the indoor environment is presented in this paper. In the system, for realizing the comfort control, the predicted mean vote (PMV) is designed as the control goal, and with chastening formulas of PMV, it is controlled to optimize for improving indoor comfort lever by considering six comfort related variables. On the other hand, a RBF neural network based on genetic algorithm is designed to calculate PMV for better performance and overcoming the nonlinear feature of the PMV calculation better. The formulas given in the paper are presented for calculating the expected output values basing on the input samples, and the RBF network model is trained depending on input samples and the expected output values. The simulation result is proved that the design of the intelligent calculation method is valid. Moreover, this method has a lot of advancements such as high precision, fast dynamic response and good system performance are reached, it can be used in practice with requested calculating error.

  17. Computationally Efficient Adaptive Beamformer for Ultrasound Imaging Based on QR Decomposition.

    PubMed

    Park, Jongin; Wi, Seok-Min; Lee, Jin S

    2016-02-01

    Adaptive beamforming methods for ultrasound imaging have been studied to improve image resolution and contrast. The most common approach is the minimum variance (MV) beamformer which minimizes the power of the beamformed output while maintaining the response from the direction of interest constant. The method achieves higher resolution and better contrast than the delay-and-sum (DAS) beamformer, but it suffers from high computational cost. This cost is mainly due to the computation of the spatial covariance matrix and its inverse, which requires O(L(3)) computations, where L denotes the subarray size. In this study, we propose a computationally efficient MV beamformer based on QR decomposition. The idea behind our approach is to transform the spatial covariance matrix to be a scalar matrix σI and we subsequently obtain the apodization weights and the beamformed output without computing the matrix inverse. To do that, QR decomposition algorithm is used and also can be executed at low cost, and therefore, the computational complexity is reduced to O(L(2)). In addition, our approach is mathematically equivalent to the conventional MV beamformer, thereby showing the equivalent performances. The simulation and experimental results support the validity of our approach.

  18. Influence of thermal deformation in cavity mirrors on beam propagation characteristics of high-power slab lasers

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui

    2018-01-01

    Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.

  19. Laser fiber cleaving techniques: effects on tip morphology and power output.

    PubMed

    Vassantachart, Janna M; Lightfoot, Michelle; Yeo, Alexander; Maldonado, Jonathan; Li, Roger; Alsyouf, Muhannad; Martin, Jacob; Lee, Michael; Olgin, Gaudencio; Baldwin, D Duane

    2015-01-01

    Proper cleaving of reusable laser fibers is needed to maintain optimal functionality. This study quantifies the effect of different cleaving tools on power output of the holmium laser fiber and demonstrates morphologic changes using microscopy. The uncleaved tips of new 272 μm reusable laser fibers were used to obtain baseline power transmission values at 3 W (0.6 J, 5 Hz). Power output for each of four cleaving techniques-11-blade scalpel, scribe pen cleaving tool, diamond cleaving wheel, and suture scissors-was measured in a single-blinded fashion. Dispersion of light from the fibers was compared with manufacturer specifications and rated as "ideal," "acceptable," or "unacceptable" by blinded reviewers. The fiber tips were also imaged using confocal and scanning electron microscopy. Independent samples Kruskal-Wallis test and chi square were used for statistical analysis (α<0.05). New uncleaved fiber tips transmitted 3.04 W of power and were used as a reference (100%). The scribe pen cleaving tool produced the next highest output (97.1%), followed by the scalpel (83.4%), diamond cleaving wheel (77.1%), and suture scissors (61.7%), a trend that was highly significant (P<0.001). On pairwise comparison, no difference in power output was seen between the uncleaved fiber tips and those cleaved with the scribe pen (P=1.0). The rating of the light dispersion patterns from the different cleaving methods followed the same trend as the power output results (P<0.001). Microscopy showed that the scribe pen produced small defects along the fiber cladding but maintained a smooth, flat core surface. The other cleaving techniques produced defects on both the core and cladding. Cleaving techniques produce a significant effect on the initial power transmitted by reusable laser fibers. The scribe pen cleaving tool produced the most consistent and highest average power output.

  20. Utilizing Maximum Power Point Trackers in Parallel to Maximize the Power Output of a Solar (Photovoltaic) Array

    DTIC Science & Technology

    2012-12-01

    photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase... photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase the power output of the solar array. Currently, most military... MPPT ) is an optimizing circuit that is used in conjunction with photovoltaic (PV) arrays to achieve the maximum delivery of power from the array

  1. Design considerations of 10 kW-scale, extreme ultraviolet SASE FEL for lithography

    NASA Astrophysics Data System (ADS)

    Pagani, C.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2001-12-01

    The semiconductor industry growth is driven to a large extent by steady advancements in microlithography. According to the newly updated industry road map, the 70 nm generation is anticipated to be available in the year 2008. However, the path to get there is not clear. The problem of construction of extreme ultraviolet (EUV) quantum lasers for lithography is still unsolved: progress in this field is rather moderate and we cannot expect a significant breakthrough in the near future. Nevertheless, there is clear path for optical lithography to take us to sub-100 nm dimensions. Theoretical and experimental work in Self-Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) physics and the physics of superconducting linear accelerators over the last 10 years has pointed to the possibility of the generation of high-power optical beams with laser-like characteristics in the EUV spectral range. Recently, there have been important advances in demonstrating a high-gain SASE FEL at 100 nm wavelength (J. Andruszkov, et al., Phys. Rev. Lett. 85 (2000) 3821). The SASE FEL concept eliminates the need for an optical cavity. As a result, there are no apparent limitations which would prevent operating at very short wavelength range and increasing the average output power of this device up to 10-kW level. The use of super conducting energy-recovery linac could produce a major, cost-efficient facility with wall plug power to output optical power efficiency of about 1%. A 10-kW scale transversely coherent radiation source with narrow bandwidth (0.5%) and variable wavelength could be excellent tool for manufacturing computer chips with the minimum feature size below 100 nm. All components of the proposed SASE FEL equipment (injector, driver accelerator structure, energy recovery system, undulator, etc.) have been demonstrated in practice. This is guaranteed success in the time-schedule requirement.

  2. Experimental study of efficiency of solar panel by phase change material cooling

    NASA Astrophysics Data System (ADS)

    Wei, Nicholas Tan Jian; Nan, Wong Jian; Guiping, Cheng

    2017-07-01

    The dependence of efficiency of photovoltaic panels on their temperature during operation is a major concern for developers and users. In this paper, a phase change material (PCM) cooling system was designed for a 60W mono-crystalline solar panel. Tealights candle was selected as the cooling medium. The solar irradiance was recorded using Kipp & Zonen CMP3 pyranometer and Meteon data logger. Temperature distribution on the surface of solar panel, output voltage and output current of solar panel were measured. The average irradiance throughout data collection was found to be 705W/m2 and highest irradiance was 1100 W/m2. The average solar panel temperature was 43.6°C and a maximum temperature of 53°C was at the center of solar panel. Results showed that average power output and efficiency of the solar panel were 44.4W and 15%, respectively. It was found that the higher the solar irradiance, the lower the efficiency of solar panel and the higher the temperature and power output of solar panel. This is due to the fact that high irradiance results in high power input and high solar panel temperature. But high PV panel temperature reduces its power output. Therefore, the increase of power input outweighs that of power output, which leads to the decrease of efficiency of solar panel with the increase of solar irradiance. Compared with solar panel without cooling, the power output and efficiency of solar panel did not increase with PCM cooling. It indicates that Tealights candle as PCM cooling is not efficient in improving the efficiency of solar panel in this study.

  3. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction.

    PubMed

    Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  4. Investigation on the possibility of extracting wave energy from the Texas coast

    NASA Astrophysics Data System (ADS)

    Haces-Fernandez, Francisco

    Due to the great and growing demand of energy consumption in the Texas Coast area, the generation of electricity from ocean waves is considered very important. The combination of the wave energy with offshore wind power is explored as a way to increase power output, obtain synergies, maximize the utilization of assigned marine zones and reduce variability. Previously literature has assessed the wave energy generation, combined with wind in different geographic locations such as California, Ireland and the Azores Island. In this research project, the electric power generation from ocean waves on the Texas Coast was investigated, assessing its potential from the meteorological data provided by five buoys from National Data Buoy Center of the National Oceanic and Atmospheric Administration, considering the Pelamis 750 kW Wave Energy Converter (WEC) and the Vesta V90 3 MW Wind Turbine. The power output from wave energy was calculated for the year 2006 using Matlab, and the results in several locations were considered acceptable in terms of total power output, but with a high temporal variability. To reduce its variability, wave energy was combined with wind energy, obtaining a significant reduction on the coefficient of variation on the power output. A Matlab based interface was created to calculate power output and its variability considering data from longer periods of time.

  5. Should future wind speed changes be taken into account in wind farm development?

    NASA Astrophysics Data System (ADS)

    Devis, Annemarie; Van Lipzig, Nicole P. M.; Demuzere, Matthias

    2018-06-01

    Accurate wind resource assessments are crucial in the development of wind farm projects. However, it is common practice to estimate the wind yield over the next 20 years from short-term measurements and reanalysis data of the past 20 years, even though wind climatology is expected to change under the future climate. The present work examines future changes in wind power output over Europe using an ensemble of ESMs. The power output is calculated using the entire wind speed PDF and a non-constant power conversion coefficient. Based on this method, the ESM ensemble projects changes in near-future power outputs with a spatially varying magnitude between ‑12% and 8%. The most extreme changes occur over the Mediterranean region. For the first time, the sensitivity of these future change in power output to the type of wind turbine is also investigated. The analysis reveals that the projected wind power changes may vary in up to half of their magnitude, depending on the type of turbine and region of interest. As such, we recommend that wind industries fully account for projected near-future changes in wind power output by taking them into account as a well-defined loss/gain and uncertainty when estimating the yield of a future wind farm.

  6. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction

    PubMed Central

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization. PMID:28912803

  7. A combined compensation method for the output voltage of an insulated core transformer power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.

    2014-06-15

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from themore » primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.« less

  8. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, Ira J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

  9. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, I.J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

  10. Performance of continuous wave and acousto-optically Q-switched Tm, Ho: YAP laser pumped by diode laser

    NASA Astrophysics Data System (ADS)

    Li, Guoxing; Xie, Wenqiang; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang

    2018-02-01

    A two-end-pumped a-cut Tm(0.5%), Ho(0.5%):YAP laser output at 2119nm is reported under cryogenic temperature. The maximum output power reached to 7.76W with the incident pump power of 24.2W in CW mode. With the acousto-optically Q-switch, an average power of 7.3W can be obtained, when the pulse repetition frequency was 7.5 kHz. The corresponding optical-to-optical conversion efficiency was 30.2% and the slope efficiency was 31.4%. Then, the laser output characteristics in the repetition frequency of 7.5 kHz and 10kHz were researched. The output power, the optical-to-optical conversion efficiency and slope efficiency were increased with the increase of the repetition frequency. In the same repetition frequency, the pulse duration was decreasing with the growth of the incident pump power.

  11. Incoherent beam combining of fiber lasers by an all-fiber 7 × 1 signal combiner at a power level of 14 kW.

    PubMed

    Lei, Chengmin; Gu, Yanran; Chen, Zilun; Wang, Zengfeng; Zhou, Pu; Ma, Yanxing; Xiao, Hu; Leng, Jinyong; Wang, Xiaolin; Hou, Jing; Xu, Xiaojun; Chen, Jinbao; Liu, Zejin

    2018-04-16

    We demonstrate an all-fiber 7 × 1 signal combiner with an output core diameter of 50 μm for high power incoherent beam combining of seven self-made Yb-doped single-mode fiber lasers around a wavelength of 1080 nm and output power of 2 kW. 14.1 kW combined output power is achieved with a total transmission efficiency of higher than 98.5% and a beam quality of M 2 = 5.37, which is close to the theoretical results based on finite-difference beam propagation technique. To the best of our knowledge, this is the highest output power ever reported for all-fiber structure beam combining generation, which indicates the feasibility and potential of >10 kW high brightness incoherent beam combining based on an all-fiber signal combiner.

  12. High power passive mode-locked L-band fiber laser based on microfiber topological insulator saturable absorber

    NASA Astrophysics Data System (ADS)

    Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois

    2016-04-01

    In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.

  13. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

    PubMed Central

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-01-01

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results. PMID:28374856

  14. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns.

    PubMed

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-04-04

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

  15. Increasing power and amplified spontaneous emission suppression for weak signal amplification in pulsed fiber amplifier

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Zhang, Hanwei; Wang, Xiaolin; Su, Rongtao; Ma, Pengfei; Zhou, Pu; Jiang, Zongfu

    2017-10-01

    In the pulsed fiber amplifiers with repetition frequency of several tens kHz, amplified spontaneous emission (ASE) is easy to build up because of the low repetition frequency and weak pulse signal. The ASE rises the difficulty to amplify the weak pulse signal effectively. We have demonstrated an all-fiber preamplifier stage structure to amplify a 40 kHz, 10 ns bandwidth (FWHM) weak pulse signal (299 μW) with center wavelength of 1062 nm. Compared synchronous pulse pump with continuous wave(CW) pump, the results indicate that synchronous pulse pump shows the better capability of increasing the output power than CW pump. In the condition of the same pump power, the output power of synchronous pulse pump is twice as high as CW pump. In order to suppress ASE, a longer gain fiber is utilized to reabsorb the ASE in which the wavelength is shorter than 1062nm. We amplified weak pulse signal via 0.8 m and 2.1 m gain fiber in synchronous pulse pump experiments respectively, and more ASE in the output spectra are observed in the 0.8 m gain fiber system. Due to the weaker ASE and consequent capability of higher pump power, the 2.1 m gain fiber is capable to achieve higher output power than shorter fiber. The output power of 2.1 m gain fiber case is limited by pump power.

  16. Dual Q-switched laser outputs from a single lasing medium using an intracavity MEMS micromirror array.

    PubMed

    Bauer, Ralf; Lubeigt, Walter; Uttamchandani, Deepak

    2012-09-01

    An intracavity array of individually controlled microelectromechanical system scanning micromirrors was used to actively Q-switch a single side-pumped Nd:YAG gain medium. Two equal power independent laser outputs were simultaneously obtained by separate actuation of two adjacent micromirrors with a combined average output power of 125 mW. Pulse durations of 28 ns FWHM at 8.7 kHz repetition frequency and 34 ns FWHM at 7.9 kHz repetition frequency were observed for the two output beams with beam quality factors M2 of 1.2 and 1.1 and peak powers of 253 W and 232 W, respectively.

  17. Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output.

    PubMed

    Ortega, Tiago A; Pask, Helen M; Spence, David J; Lee, Andrew J

    2016-05-16

    A high power, frequency-tunable THz source based on intracavity stimulated polariton scattering (SPS) in RbTiOPO4 (RTP) is demonstrated for the first time. Frequency tunable THz output was obtained from 3.10 to 4.15 THz, with a gap at 3.17 to 3.49 THz, arising from the 104 cm-1 A1 mode in RTP. A maximum average output power of 16.2 µW was detected at 3.8 THz. This is the highest average output power ever reported for an intracavity polariton laser.

  18. Final report on testing of TOPAZ II unit Ya-21u: Output power characteristics and system capabilities

    NASA Astrophysics Data System (ADS)

    Luchau, David W.; Sinkevich, Valery G.; Wernsman, Bernard; Mulder, Daniel M.

    1996-03-01

    A final report on the output power characteristics and capabilities of the TOPAZ II Space Nuclear Power Unit Ya-21u is presented. Results showed that after a total of almost 8,000 hours of system testing in the U.S. and Russia, several emergency cooldowns, and three inadvertent air introductions to the interelectrode gap (IEG) that the TOPAZ II demonstrates the potential for providing reliable power in a space environment. Output power optimizations and system characteristics following a shock and vibration test are shown. These tests were performed using electrical heaters that simulate nuclear fuel heating. This paper will focus primarily on the changes in output power characteristics over the lifetime of Ya-21u. All U.S. testing was conducted at the Thermionic System Evaluation Test (TSET) Facility of the New Mexico Engineering Research Institute (NMERI) as a part of the TOPAZ International Program (TIP). TIP is managed by the Air Force Phillips Laboratory (PL) for the Ballistic Missile Defense Organization (BMDO).

  19. Power scaling of diode-pumped neodymium yttrium aluminum borate laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1991-01-01

    Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.

  20. Experimental study on high-power all-fiber superfluorescent source operating near 980 nm

    NASA Astrophysics Data System (ADS)

    Ren, Yankun; Cao, Jianqiu; Ying, Hanyuan; Chen, Heng; Pan, Zhiyong; Du, Shaojun; Chen, Jinbao

    2018-07-01

    A high-power all-fiber superfluorescent source operating near 980 nm is experimentally studied with the help of a large-core distributed side-coupled cladding-pumped Yb-doped fiber. By optimizing the active fiber length and the angle cleaving of the output fiber facet, a 10 W all-fiber superfluorescent source operating near 980 nm is demonstrated for the first time, to the best of our knowledge. An 11.4 W combined 980 nm ASE power is obtained with a 9.3% slope efficiency and an 18 dB suppression of the ASE around 1030 nm. The output spectrum spans 973 nm to 982 nm with the 3 dB bandwidth around 3.5 nm. A 10.5 W output power with 13.1% slope efficiency is also obtained by changing the length of the active fiber. The variations of the output power and spectrum with the active fiber length and pump power are also investigated in the experiment.

  1. Advanced insulated gate bipolar transistor gate drive

    DOEpatents

    Short, James Evans [Monongahela, PA; West, Shawn Michael [West Mifflin, PA; Fabean, Robert J [Donora, PA

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  2. The effects of TGG crystal length on output power and beam quality of a unidirectional ring Nd:YVO4 laser with and without second harmonic generation

    NASA Astrophysics Data System (ADS)

    Ahmadi, A.; Avazpour, A.; Nadgaran, H.; Mousavi, M.

    2018-04-01

    The effect of terbium gallium garnet (TGG ) crystal length on 1064 and 532 nm output powers and beam quality of a unidirectional ring Nd:YVO4 laser is investigated. In the case of 1064 nm (without nonlinear crystal), the laser output power without considerating the effect of TGG crystal was computed theoretically. Then three TGG crystals with different lengths were placed in the laser setup one by one. A systematic decrease in output power was observed by increasing the TGG crystal length. The experiment was repeated in the case of 532 nm. It was found that in a 532 nm laser, higher laser efficiency and small beam quality degradation can be achieved by increasing the TGG crystal length leading to a 5.7 W green laser with 27 W pump power. The power stability and beam quality were 0.8% for 30 min and less than 1.3, respectively.

  3. A smart repetitive-rate wideband high power microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Zhang, Jun; Qian, Bao-liang

    2016-01-15

    A smart repetitive-rate wideband High Power Microwave (HPM) source based on the A6 Magnetron with Diffraction Output is described in this paper. The length of the HPM source is 30 cm and its weight is 35 kg. Computer simulations show that the source can produce microwave with central frequency of 1.91 GHz and bandwidth of about 11%. Experimental measurements show that the output microwave power from the source reaches in maximum 110 MW when the input electric power from the pulsed driver is ∼500 MW, which gives the power conversion efficiency 22%. Central frequency of the output HPM in the experiment is 1.94 GHz withmore » the bandwidth ranging from 1.82 GHz to 2.02 GHz. The jitter of the output HPM power is lower than 3 dB when the source operates in the repetition mode with 50 Hz rate.« less

  4. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-06-19

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritiummore » allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.« less

  5. A 250 MHz, high power mode-locked Nd:GdVO4 oscillator with low timing jitter under 879 nm direct pumping

    NASA Astrophysics Data System (ADS)

    Zhang, F. F.; Zuo, J. W.; Wang, Z. M.; Yang, J.; Cheng, H. L.; Zong, N.; Yang, F.; Peng, Q. J.; Xu, Z. Y.

    2013-04-01

    We developed a high power mode-locked Nd:GdVO4 oscillator with low timing jitter directly pumped by an 879 nm diode. Under the absorbed pump power of 13.8 W, a maximum output power of 5.68 W at 1063 nm was obtained with a repetition rate of ˜250 MHz, corresponding to a slope efficiency of 78.7%. The measured pulse width and root mean square timing jitter at the output power of 5.35 W were 7.4 ps and 286 fs, respectively. To the best of our knowledge, this is the highest output power for a picosecond Nd:GdVO4 oscillator with low timing jitter.

  6. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  7. Thermal control of power supplies with electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The analysis, design, and development work to reduce the weight and size of a standard modular power supply with a 350 watt output was summarized. By integrating low cost commercial heat pipes in the redesign of this power supply, weight was reduced by 30% from that of the previous design. The temperature was also appreciably reduced, increasing the environmental capability of the unit. A demonstration unit with a 100 watt output and a 15 volt regulator module, plus simulated output modules, was built and tested to evaluate the thermal performance of the redesigned power supply.

  8. Ku and K band GaN High Power Amplifier MMICs

    DTIC Science & Technology

    2017-03-20

    end Ku-band HPA operates from 13 to 14.5 GHz and delivers 48 Watts of output power with 43% PAE. A high-end Ku-band HPA operates from 15.5 to 18 GHz and...delivers 25 Watts of output power with 45% PAE. A K-band HPA operates from 19.5 to 22 GHz and delivers 18 Watts of output power with 29% PAE...15.5 and 18 GHz. The circuit is a three-stage reactively-matched amplifier. A photograph of a fabricated high-end Ku-band GaN HPA is shown as an

  9. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  10. Assessment of power output in jump tests for applicants to a sports sciences degree.

    PubMed

    Lara, A J; Abián, J; Alegre, L M; Jiménez, L; Aguado, X

    2006-09-01

    Our study aimed: 1) to describe the jump performance in a population of male applicants to a Faculty of Sports Sciences, 2) to apply different power equations from the literature to assess their accuracy, and 3) to develop a new regression equation from this population. The push off phases of the counter-movement jumps (CMJ) on a force platform of 161 applicants (age: 19+/-2.9 years; weight: 70.4+/-8.3 kg) to a Spanish Faculty of Sports Sciences were recorded and subsequently analyzed. Their hands had to be placed on the hips and the knee angle during the counter movement was not controlled. Each subject had 2 trials to reach a minimum of 29 cm of jump height, and when 2 jumps were performed the best trial was analyzed. Multiple regression analysis was performed to develop a new regression equation. Mean jump height was 34.6+/-4.3 cm, peak vertical force 1 663.9+/-291.1 N and peak power 3524.4+/-562 W. All the equations underestimated power, from 74% (Lewis) to 8% (Sayers). However, there were high and significant correlations between peak power measured on the force platform, and those assessed by the equations. The results of the present study support the development of power equations for specific populations, to achieve more accurate assessments. The power equation from this study [Power = (62.5 x jump height (cm)) + (50.3 x body mass (kg)) 2184.7] can be used accurately in populations of male physical education students.

  11. Palm Power Free-Piston Stirling Engine Control Electronics

    NASA Astrophysics Data System (ADS)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  12. Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays

    NASA Technical Reports Server (NTRS)

    Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)

    1991-01-01

    A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.

  13. A tunable erbium-doped fiber ring laser with power-equalized output

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lin, Ming-Ching; Chi, Sien

    2006-12-01

    We propose and demonstrate a tunable erbium-based fiber ring laser with power-equalized output. When a mode-restricting intracavity fiber Fabry-Perot tunable filter (FFP-TF) is combined, the proposed resonator can guarantee a tunable laser oscillation. This proposed laser can obtain the flatter lasing wavelength in an effectively operating range of 1533.3 to 1574.6 nm without any other operating mechanism. Moreover, the performances of the output power, wavelength tuning range, and side-mode suppression ratio (SMSR) were studied.

  14. Alcohol sensor based on u-bent hetero-structured fiber optic

    NASA Astrophysics Data System (ADS)

    Patrialova, Sefi N.; Hatta, Agus M.; Sekartedjo, Sekartedjo

    2016-11-01

    A sensor based on a fiber optic hetero-structure to determine the concentration of alcohol has been proposed. The structure of the sensing probe in this research is a singlemode-multimode-singlemode (SMS) which bent into Ushaped and soon called as SMS u-bent. The SMS structure was chosen to get a higher sensitivity. This research utilizes the principle of multimode interference and evanescent field by modifying the cladding with various alcohol concentration. Testing of the sensor's performance has been done by measuring the sensor's power output response to the length of the SMS fiber optic, bending diameter, and alcohol concentration. Based on the experiment result, the ubent SMS fiber optic with 50 mm bending diameter and 63 mm MMF lenght has the highest sensitivity, 3.87 dB/% and the minimum resolution, 0.26 x 10-3 %.

  15. Digital transceiver design for two-way AF-MIMO relay systems with imperfect CSI

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Chang; Chou, Yu-Fei; Chen, Kui-He

    2013-09-01

    In the paper, combined optimization of the terminal precoders/equalizers and single-relay precoder is proposed for an amplify-and-forward (AF) multiple-input multiple-output (MIMO) two-way single-relay system with correlated channel uncertainties. Both terminal transceivers and relay precoding matrix are designed based on the minimum mean square error (MMSE) criterion when terminals are unable to erase completely self-interference due to imperfect correlated channel state information (CSI). This robust joint optimization problem of beamforming and precoding matrices under power constraints belongs to neither concave nor convex so that a nonlinear matrix-form conjugate gradient (MCG) algorithm is applied to explore local optimal solutions. Simulation results show that the robust transceiver design is able to overcome effectively the loss of bit-error-rate (BER) due to inclusion of correlated channel uncertainties and residual self-interference.

  16. New Techniques For The Improvement Of The ICRH System ELM Tolerance On JET

    NASA Astrophysics Data System (ADS)

    Monakhov, I.; Blackman, T.; Walden, A.; Nightingale, M.; Whitehurst, A.; Durodie, F.; Jet Efda Contributors

    2003-12-01

    Two complementary improvements to the ELM tolerance of the existing A2 antennas on JET are being assessed. The use of external conjugate-T matching of straps of adjacent antenna arrays could reduce the VSWR levels at RF amplifier output during fast load perturbations. The scheme under consideration uses coaxial line-stretchers (trombones) for tuning the conjugate-T to low resistive impedance (3-6 Ohm) with subsequent stub/trombone circuit impedance transformation to 30 Ohms. Another technique is to modify the RF plant protection system logic to reduce the high VSWR trip duration to an absolute minimum corresponding to a typical ELM response (˜1-2ms) without compromising the plant safety. Both projects are presently being tested and could increase the average power delivered by RF plant into ELMy plasmas at JET.

  17. Optimal modified tracking performance for MIMO networked control systems with communication constraints.

    PubMed

    Wu, Jie; Zhou, Zhu-Jun; Zhan, Xi-Sheng; Yan, Huai-Cheng; Ge, Ming-Feng

    2017-05-01

    This paper investigates the optimal modified tracking performance of multi-input multi-output (MIMO) networked control systems (NCSs) with packet dropouts and bandwidth constraints. Some explicit expressions are obtained by using co-prime factorization and the spectral decomposition technique. The obtained results show that the optimal modified tracking performance is related to the intrinsic properties of a given plant such as non-minimum phase (NMP) zeros, unstable poles, and their directions. Furthermore, the modified factor, packet dropouts probability and bandwidth also impact the optimal modified tracking performance of the NCSs. The optimal modified tracking performance with channel input power constraint is obtained by searching through all stabilizing two-parameter compensator. Finally, some typical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Power enhancement of heat engines via correlated thermalization in a three-level "working fluid".

    PubMed

    Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon

    2015-09-23

    We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose "working fluid" is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement.

  19. ARL Eye Safer Fiber Laser Testbed Lab View Automation and Control

    DTIC Science & Technology

    2013-09-01

    output voltage value in volts. gpc n Program the output current value in amperes. grst Reset and bring the power supplies to safe state. gout n...Turn the output on/off: gout 1 = turn on, gout 0 = turn off Figure 4 shows the front panel of power supplies and back panel RS 485 link. 4

  20. Status of experiments at LLNL on high-power X-band microwave generators

    NASA Astrophysics Data System (ADS)

    Houck, Timothy L.; Westenskow, Glen A.

    1994-05-01

    The Microwave Source Facility at the Lawrence Livermore National Laboratory (LLNL) is studying the application of induction accelerator technology to high-power microwave generators suitable for linear collider power sources. We report on the results of two experiments, both using the Choppertron's 11.4 GHz modulator and a 5-MeV, 1-kA induction beam. The first experimental configuration has a single traveling-wave output structure designed to produce in excess of 300 MW in a single fundamental waveguide. This output structure consists of 12 individual cells, the first two incorporating de-Q-ing circuits to dampen higher order resonant modes. The second experiment studies the feasibility of enhancing beam to microwave power conversion by accelerating a modulated beam with induction cells. Referred to as the `reacceleration experiment,' this experiment consists of three traveling-wave output structures designed to produce about 125 MW per output and two induction cells located between the outputs. Status of current and planned experiments are presented.

  1. Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO3/Polydimethylsiloxane Composite Film.

    PubMed

    Suo, Guoquan; Yu, Yanhao; Zhang, Zhiyi; Wang, Shifa; Zhao, Ping; Li, Jianye; Wang, Xudong

    2016-12-21

    Piezoelectric and triboelectric nanogenerators have been developed as rising energy-harvesting devices in the past few years to effectively convert mechanical energy into electricity. Here, a novel hybrid piezo/triboelectric nanogenerator based on BaTiO 3 NP/PDMS composite film was developed in a simple and low-cost way. The effects of the BTO content and polarization degree on the output performance were systematically studied. The device with 20 wt % BTO in PDMS and a 100-μm-thick film showed the highest output power. We also designed three measurement modes to record hybrid, triboelectric, and piezoelectric outputs separately with a simple structure that has only two electrodes. The hybrid output performance is higher than the tribo- and piezoelectric performances. This work will provide not only a new way to enhance the output power of nanogenerators, but also new opportunities for developing built-in power sources in self-powered electronics.

  2. Load power device, system and method of load control and management employing load identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.

    A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.

  3. Study of a High Voltage Ion Engine Power Supply

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested without failure. The finished converter has been packaged suitable for use as a laboratory prototype for further testing. The finished converter is readily transportable. An article on design issues for high voltage converters for ion engines is included as an attachement.

  4. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  5. Mid-IR lasers based on transition metal and rare-earth ion doped crystals

    NASA Astrophysics Data System (ADS)

    Mirov, S.; Fedorov, V.; Martyshkin, D.; Moskalev, I.; Mirov, M.; Vasilyev, S.

    2015-05-01

    We report a novel design of CW Cr2+:ZnS/ZnSe laser systems and demonstrate record output powers of 27.5 W at 2.45 μm and 13.9 W at 2.94 μm with slope efficiencies of 63.7% and 37.4%, respectively. Power scaling of ultra-fast Cr2+:ZnS/ZnSe Kerr mode-locked lasers beyond 2 W level, as well as the shortest pulse duration of 29 fs, are also reported. New development of Fe:ZnSe laser with average output power > 35 W at 4.1 μm output wavelength and 100 Hz pulse repetition rate (PRR) was achieved in a nonselective cavity. With intracavity prim selector, wavelength tunability of 3.88-4.17 μm was obtained with maximum average output power of 23 W. We also report new results on Tm-fiber pumped passively and actively Q-switched Ho:YAG laser systems. High peak power actively Q-switched Ho:YAG laser demonstrates stable operation with pulse energy > 50 mJ, 12 ns pulse duration, and 100-1000 Hz PRR which correspondents to more than 4 MW peak power. The actively Q-switched Ho:YAG laser system optimized for high repetition rate delivers 40 W average output power at 10-100 kHz PRR. The Ho:YAG laser with passive Q-switcher demonstrates constant 5 mJ output energy from 200 Hz to 2.23 kHz PRR with optical slope efficiency with respect to Tm-fiber laser of ~43%.

  6. Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.

    PubMed

    Fintelman, D M; Sterling, M; Hemida, H; Li, F-X

    2014-06-03

    The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Chaotic LIDAR for Naval Applications

    DTIC Science & Technology

    2012-09-30

    experimental output power is shown in the following figure. Fabry-Perot Fiber Laser PD ^^ /--"^ —► -(YDF\\ {SMFV X FBG 1 0 r utput FBG 70 60 3...Right: Output power versus pump power. (PD: Pump Diode; FBG : Fiber Braggs Grating; YDF: Ytterbium Doped Fiber; SMF: Single Mode Fiber.) Preamplifier

  8. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  9. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  10. 47 CFR 95.135 - Maximum authorized transmitting power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transmitting power. (a) No station may transmit with more than 50 watts output power. (b) [Reserved] (c) A small control station at a point north of Line A or east of Line C must transmit with no more than 5 watts ERP. (d) A fixed station must transmit with no more than 15 watts output power. (e) A small base...

  11. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangmei; Zhang, Xiaoping, E-mail: plinafly@163.com; Zhang, Jiande

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675 kV and the guiding magnetic field is 0.8 T, a combined microwave with an average power of about 4.0 GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diodemore » voltage range from 675 kV to 755 kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720 kV/cm, which is relatively low corresponding to an output power of 4.0 GW. The stable combined output suggests the probability of long-pulse operation for the combined source.« less

  12. Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output.

    PubMed

    Bereuter, L; Williner, S; Pianezzi, F; Bissig, B; Buecheler, S; Burger, J; Vogel, R; Zurbuchen, A; Haeberlin, A

    2017-05-01

    Active electronic implants are powered by primary batteries, which induces the necessity of implant replacement after battery depletion. This causes repeated interventions in a patients' life, which bears the risk of complications and is costly. By using energy harvesting devices to power the implant, device replacements may be avoided and the device size may be reduced dramatically. Recently, several groups presented prototypes of implants powered by subcutaneous solar cells. However, data about the expected real-life power output of subcutaneously implanted solar cells was lacking so far. In this study, we report the first real-life validation data of energy harvesting by subcutaneous solar cells. Portable light measurement devices that feature solar cells (cell area = 3.6 cm 2 ) and continuously measure a subcutaneous solar cell's output power were built. The measurement devices were worn by volunteers in their daily routine in summer, autumn and winter. In addition to the measured output power, influences such as season, weather and human activity were analyzed. The obtained mean power over the whole study period was 67 µW (=19 µW cm -2 ), which is sufficient to power e.g. a cardiac pacemaker.

  13. Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Moghadam, Mohammad R. Vedady; Zhang, Rui

    2017-06-01

    In magnetic resonant coupling (MRC) enabled multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems, multiple transmitters (TXs) each with one single coil are used to enhance the efficiency of simultaneous power transfer to multiple single-coil receivers (RXs) by constructively combining their induced magnetic fields at the RXs, a technique termed "magnetic beamforming". In this paper, we study the optimal magnetic beamforming design in a multi-user MIMO MRC-WPT system. We introduce the multi-user power region that constitutes all the achievable power tuples for all RXs, subject to the given total power constraint over all TXs as well as their individual peak voltage and current constraints. We characterize each boundary point of the power region by maximizing the sum-power deliverable to all RXs subject to their minimum harvested power constraints. For the special case without the TX peak voltage and current constraints, we derive the optimal TX current allocation for the single-RX setup in closed-form as well as that for the multi-RX setup. In general, the problem is a non-convex quadratically constrained quadratic programming (QCQP), which is difficult to solve. For the case of one single RX, we show that the semidefinite relaxation (SDR) of the problem is tight. For the general case with multiple RXs, based on SDR we obtain two approximate solutions by applying time-sharing and randomization, respectively. Moreover, for practical implementation of magnetic beamforming, we propose a novel signal processing method to estimate the magnetic MIMO channel due to the mutual inductances between TXs and RXs. Numerical results show that our proposed magnetic channel estimation and adaptive beamforming schemes are practically effective, and can significantly improve the power transfer efficiency and multi-user performance trade-off in MIMO MRC-WPT systems.

  14. A Mechanism For Solar Forcing of Climate: Did the Maunder Minimum Cause the Little Ice Age?

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    2004-01-01

    The mechanism we wish to demonstrate exploits chemical, radiative, and dynamical sensitivities in the stratosphere to affect the climate of the troposphere. The sun, while its variability in total radiative output over the course of the solar cycle is on the order of 0.1%, exhibits variability in the UV output on the order of 5%. We expect to show that a substantially decreased solar UV output lessened the heating of the Earth's stratosphere during the Maunder Minimum, through decreased radiative absorption by ozone and oxygen. These changes in stratospheric heating would lead to major changes in the stratospheric zonal wind pattern which would in turn affect the propagation characteristics of planetary-scale waves launched in the winter hemisphere. Until recently, there was no quantitative data to relate the changes in the stratosphere to those at the surface. There is now empirical evidence from the NCEP Reanalysis data that a definitive effect of the solar cycle on climate in the troposphere exists. Our recent work is summarized as follows (see complete list of publications in later part of this report).

  15. High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures.

    PubMed

    Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana

    2014-09-22

    A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.

  16. Power management circuits for self-powered systems based on micro-scale solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Yoon, Eun-Jung; Yu, Chong-Gun

    2016-03-01

    In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.

  17. Operational design and pressure response of large-scale compressed air energy storage in porous formations

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Bauer, Sebastian

    2017-04-01

    With the rapid growth of energy production from intermittent renewable sources like wind and solar power plants, large-scale energy storage options are required to compensate for fluctuating power generation on different time scales. Compressed air energy storage (CAES) in porous formations is seen as a promising option for balancing short-term diurnal fluctuations. CAES is a power-to-power energy storage, which converts electricity to mechanical energy, i.e. highly pressurized air, and stores it in the subsurface. This study aims at designing the storage setup and quantifying the pressure response of a large-scale CAES operation in a porous sandstone formation, thus assessing the feasibility of this storage option. For this, numerical modelling of a synthetic site and a synthetic operational cycle is applied. A hypothetic CAES scenario using a typical anticline structure in northern Germany was investigated. The top of the storage formation is at 700 m depth and the thickness is 20 m. The porosity and permeability were assumed to have a homogenous distribution with a value of 0.35 and 500 mD, respectively. According to the specifications of the Huntorf CAES power plant, a gas turbine producing 321 MW power with a minimum inlet pressure of 43 bars at an air mass flowrate of 417 kg/s was assumed. Pressure loss in the gas wells was accounted for using an analytical solution, which defines a minimum bottom hole pressure of 47 bars. Two daily extraction cycles of 6 hours each were set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. A two-year initial filling of the reservoir with air and ten years of daily cyclic operation were numerically simulated using the Eclipse E300 reservoir simulator. The simulation results show that using 12 wells the storage formation with a permeability of 500 mD can support the required 6-hour continuous power output of 321MW, which corresponds an energy output of 3852 MWh per day. The average bottom hole pressure is 87 bars at the beginning of cyclic operation and reduces to 79 bars after 10 years. This pressure drop over time is caused by the open boundary conditions defined at the model edges and is not influenced by the cyclic operation. In the storage formation, the pressure response induced by the initial filling can be observed in the whole model domain, and a maximum pressure built-up of about 31 bars and 3 bars are observed near the wells and at a distance of 10 km from the wells, respectively. During the cyclic operation, however, pressure fluctuations of more than 1 bar can only be observed within the gas phase. Assuming formations with different permeabilities, a sensitivity analysis is carried out to find the number of wells required. Results show that the number of wells required does not linearly decrease with increasing permeability of the storage formation due to well interference during air extraction.

  18. All-solid-state continuous-wave frequency doubling Nd:LuVO4/LBO laser with 2.17 W output power at 543 nm

    NASA Astrophysics Data System (ADS)

    Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.

    2013-03-01

    Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.

  19. Measurements of temperature characteristics and estimation of terahertz negative differential conductance in resonant-tunneling-diode oscillators

    NASA Astrophysics Data System (ADS)

    Asada, M.; Suzuki, S.; Fukuma, T.

    2017-11-01

    The temperature dependences of output power, oscillation frequency, and current-voltage curve are measured for resonant-tunneling-diode terahertz (THz) oscillators. The output power largely changes with temperature owing to the change in Ohmic loss. In contrast to the output power, the oscillation frequency and current-voltage curve are almost insensitive to temperature. The measured temperature dependence of output power is compared with the theoretical calculation including the negative differential conductance (NDC) as a fitting parameter assumed to be independent of temperature. Very good agreement was obtained between the measurement and calculation, and the NDC in the THz frequency region is estimated. The results show that the absolute values of NDC in the THz region significantly decrease relative to that at DC, and increases with increasing frequency in the measured frequency range.

  20. Experimental studies of a prototype model of the multilevel 6KW-power inverter at supply by 12 accumulators

    NASA Astrophysics Data System (ADS)

    Taissariyeva, K.; Issembergenov, N.; Dzhobalaeva, G.; Usembaeva, S.

    2016-09-01

    The given paper considers the multilevel 6 kW-power transistor inverter at supply by 12 accumulators for transformation of solar battery energy to the electric power. At the output of the multilevel transistor inverter, it is possible to receive voltage close to a sinusoidal form. The main objective of this inverter is transformation of solar energy to the electric power of industrial frequency. The analysis of the received output curves of voltage on harmonicity has been carried out. In this paper it is set forth the developed scheme of the multilevel transistor inverter (DC-to-ac converter) which allows receiving at the output the voltage close to sinusoidal form, as well as to regulation of the output voltage level. In the paper, the results of computer modeling and experimental studies are presented.

  1. 980-nm, 15-W cw laser diodes on F-mount-type heat sinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A

    2015-12-31

    We have studied the key optical emission parameters of laser diodes (emission wavelength, 980 nm; stripe contact width, 95 μm) mounted directly on F- and C-mount-type copper heat sinks, without intermediate elements (submounts). When effectively cooled by a thermoelectric microcooler, the lasers on the F-mount operated stably at output powers up to 20 W. The lasers were tested for reliable operation at an output power of 15 W for 100 h, and no decrease in output power was detected to within measurement accuracy. The experimentally determined maximum total efficiency is 71.7% and the efficiency at a nominal output power ofmore » 15 W is 61%. We compare parameters of the laser diodes mounted on C- and F-mounts and discuss the advantages of the F-mounts. (lasers)« less

  2. A programmable, multichannel power supply for SIPMs with temperature compensation loop and Ethernet interface

    NASA Astrophysics Data System (ADS)

    Querol, M.; Rodríguez, J.; Toledo, J.; Esteve, R.; Álvarez, V.; Herrero, V.

    2016-12-01

    Among the different techniques available, the SiPM power supply described in this paper uses output voltage and sensor temperature feedback. A high-resolution ADC digitizes both the output voltage and an analog signal proportional to the SiPM temperature for each of its 16 independent outputs. The appropriate change in the bias voltage is computed in a micro-controller and this correction is applied via a high resolution DAC to the control input of a DC/DC module that produces the output voltage. This method allows a reduction in gain variations from typically 30% to only 0.5% in a 10 °C range. The power supply is housed in a 3U-height aluminum box. A 2.8'' touch screen on the front panel provides local access to the configuration and monitoring functions using a graphical interface. The unit has an Ethernet interface on its rear side to provide remote operation and integration in slow control systems using the encrypted and secure SSH protocol. A LabVIEW application with SSH interface has been designed to operate the power supply from a remote computer. The power supply has good characteristics, such as 85 V output range with 1 mV resolution and stability better than 2 mVP, excellent output load regulation and programmable rise and fall voltage ramps. Commercial power supplies from well-known manufacturers can show far better specifications though can also result in an over featured and over costly solution for typical applications.

  3. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  4. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    NASA Astrophysics Data System (ADS)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang

    2016-04-01

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM01. The existence of TM01 mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.

  5. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Zhen; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang

    2016-04-15

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM{sub 01}. The existence of TM{sub 01} mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension ofmore » coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.« less

  6. Diode-pumped continuous-wave Nd:Gd3Ga5O12 lasers at 1406, 1415 and 1423 nm

    NASA Astrophysics Data System (ADS)

    Lin, Haifeng; Zhu, Wenzhang; Xiong, Feibing; Ruan, Jianjian

    2018-05-01

    We report a diode-pumped continuous-wave Nd:Gd3Ga5O12 (GGG) laser operating at 1.4 μm spectral region. A dual-wavelength laser at 1423 and 1406 nm is achieved with output power of about 2.59 W at absorbed pump power of 13.4 W. Further increasing the pump power, simultaneous tri-wavelength laser at 1423, 1415 and 1406 nm is also obtained with a maximum output power of 3.96 W at absorbed pump power of 18.9 W. Single-wavelength lasing is also realized at the three emission lines using an intracavity etalon. The laser result is believed to be the highest output power achieved in Nd:GGG crystal, at present, to the best of our knowledge.

  7. Closed Loop solar array-ion thruster system with power control circuitry

    NASA Technical Reports Server (NTRS)

    Gruber, R. P. (Inventor)

    1979-01-01

    A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.

  8. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    NASA Astrophysics Data System (ADS)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  9. Somatotype-variables related to muscle torque and power output in female volleyball players.

    PubMed

    Buśko, Krzysztof; Lewandowska, Joanna; Lipińska, Monika; Michalski, Radosław; Pastuszak, Anna

    2013-01-01

    The purpose of this study was to investigate the relationship between somatotype, muscle torque, maximal power output and height of rise of the body mass centre measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), and power output measured in maximal cycle ergometer exercise bouts in female volleyball players. Fourteen players participated in the study. Somatotype was determined using the Heath-Carter method. Maximal muscle torque was measured under static conditions. Power output was measured in 5 maximal cycle ergometer exercise bouts, 10 s each, at increasing external loads equal to 2.5, 5.0, 7.5, 10.0 and 12.5% of body weight (BW). All jump trials (ACMJ, SPJ and CMJ) were performed on a force plate. The mean somatotype of volleyball players was: 4.9-3.5-2.5. The value of the sum of muscle torque of the left upper extremities was significantly correlated only with mesomorphic component. Mesomorphic and ectomorphic components correlated significantly with values of maximal power measured during ACMJ and CMJ. Power output measured in maximal cycle ergometer exercise bouts at increasing external loads equal to 2.5, 5.0 and 7.5% of BW was significantly correlated with endomorphy, mesomorphy and ectomorphy.

  10. Electric Vehicles Charging Scheduling Strategy Considering the Uncertainty of Photovoltaic Output

    NASA Astrophysics Data System (ADS)

    Wei, Xiangxiang; Su, Su; Yue, Yunli; Wang, Wei; He, Luobin; Li, Hao; Ota, Yutaka

    2017-05-01

    The rapid development of electric vehicles and distributed generation bring new challenges to security and economic operation of the power system, so the collaborative research of the EVs and the distributed generation have important significance in distribution network. Under this background, an EVs charging scheduling strategy considering the uncertainty of photovoltaic(PV) output is proposed. The characteristics of EVs charging are analysed first. A PV output prediction method is proposed with a PV database then. On this basis, an EVs charging scheduling strategy is proposed with the goal to satisfy EVs users’ charging willingness and decrease the power loss in distribution network. The case study proves that the proposed PV output prediction method can predict the PV output accurately and the EVs charging scheduling strategy can reduce the power loss and stabilize the fluctuation of the load in distributed network.

  11. Evaluation of concentrated space solar arrays using computer modeling. [for spacecraft propulsion and power supplies

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.

    1979-01-01

    A general approach is developed for predicting the power output of a concentrator enhanced photovoltaic space array. A ray trace routine determines the concentrator intensity arriving at each solar cell. An iterative calculation determines the cell's operating temperature since cell temperature and cell efficiency are functions of one another. The end result of the iterative calculation is that the individual cell's power output is determined as a function of temperature and intensity. Circuit output is predicted by combining the individual cell outputs using the single diode model of a solar cell. Concentrated array characteristics such as uniformity of intensity and operating temperature at various points across the array are examined using computer modeling techniques. An illustrative example is given showing how the output of an array can be enhanced using solar concentration techniques.

  12. Pacing Strategy in Short Cycling Time Trials.

    PubMed

    de Jong, Jelle; van der Meijden, Linda; Hamby, Simone; Suckow, Samantha; Dodge, Christopher; de Koning, Jos J; Foster, Carl

    2015-11-01

    To reach top performance in cycling, optimizing distribution of energy resources is crucial. The purpose of this study was to investigate power output during 250-m, 500-m, and 1000-m cycling time trials and the characteristics of the adopted pacing strategy. Nine trained cyclists completed an incremental test and 3 time trials that they were instructed to finish as quickly as possible. Preceding the trials, peak power during short sprints (PP sprint) and gross efficiency (GE) were measured. During the trials, power output and oxygen consumption were measured to calculate the contribution of the aerobic and anaerobic energy sources. After the trial GE was measured again. Peak power during all trials (PPTT) was lower than PP sprint. In the 250-m trial the PPTT was higher in the 1000-m trial (P = .008). The subjects performed a significantly longer time at high intensity in the 250-m than in the 1000-m (P = .029). GE declined significantly during all trials (P < .01). Total anaerobically attributable work was less in the 250-m than in the 500-m (P = .015) and 1000-m (P < .01) trials. The overall pacing pattern in the 250-m trial appears to follow an all-out strategy, although peak power is still lower than the potential maximal power output. This suggests that a true all-out pattern of power output may not be used in fixed-distance events. The 500-m and 1000-m had a more conservative pacing pattern and anaerobic power output reached a constant magnitude.

  13. Work and power outputs determined from pedalling and flywheel friction forces during brief maximal exertion on a cycle ergometer.

    PubMed

    Hibi, N; Fujinaga, H; Ishii, K

    1996-01-01

    Work and power outputs during short-term, maximal exertion on a friction loaded cycle ergometer are usually calculated from the friction force applied to the flywheel. The inertia of the flywheel is sometimes taken into consideration, but the effects of internal resistances and other factors have been ignored. The purpose of this study was to estimate their effects by comparing work or power output determined from the force exerted on the pedals (pedalling force) with work or power output determined from the friction force and the moment of inertia of the rotational parts. A group of 22 male college students accelerated a cycle ergometer as rapidly as possible for 3 s. The total work output determined from the pedalling force (TWp) was significantly greater than that calculated from the friction force and the moment of inertia (TWf). Power output determined from the pedalling force during each pedal stroke (SPp) was also significantly greater than that calculated from the friction force and the moment of inertia. Percentage difference (% diff), defined by % diff = ¿(TWp - TWf)/TWf¿ x 100, ranged from 16.8% to 49.3% with a mean value of 30.8 (SD 9.1)%. It was observed that % diff values were higher in subjects with greater TWp or greater maximal SPp. These results would indicate that internal resistances and other factors, such as the deformation of the chain and the vibrations of the entire system, may have significant effects on the measurements of work and power outputs. The effects appear to depend on the magnitudes of pedalling force and pedal velocity.

  14. Grid-connected wind and photovoltaic system

    NASA Astrophysics Data System (ADS)

    Devabakthuni, Sindhuja

    The objective of this thesis is to design a grid connected wind and photovoltaic system. A new model of converter control was designed which maintains the voltage of the bus to grid as constant when combined system of solar and wind is connected to AC bus. The model is designed to track maximum power at each point irrespective of changes in irradiance, temperature and wind speed which affects the power supplied to grid. Solar power from the sun is not constant as it is affected by changes in irradiances and temperature. Even the wind power is affected by wind speed. A MPPT controller was designed for both systems. A boost converter is designed which uses the pulses from MPPT controller to boost the output. Wind system consists of wind turbine block from the MATLAB with a pitch angle controller to maintain optimum pitch angle. The output from wind turbine is connected to a permanent magnet synchronous generator. The unregulated DC output from the photovoltaic system is directly given to boost converter. The AC output from the wind system is given to an uncontrolled rectifier to get a unregulated DC output. The unregulated DC output goes to the boost converter. A voltage source inverter was designed which converts the rectified DC output from the boost converter to AC power. The inverter is designed to maintain constant AC bus voltage irrespective of the disturbances in the power supply. Photovoltaic and wind systems are individually designed for 5KW each in MATLAB-Simulink environment. In this thesis, the models were subjected to changes in irradiance, temperature and wind speed and the results were interpreted. The model was successful in tracking maximum at every instant and the AC bus voltage was maintained constant throughout the simulation.

  15. Arcjet power supply and start circuit

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P. (Inventor)

    1988-01-01

    A dc power supply for spacecraft arcjet thrusters has an integral automatic starting circuit and an output averaging inductor. The output averaging inductor, in series with the load, provides instantaneous current control, and ignition pulse and an isolated signal proportional to the arc voltage. A pulse width modulated converter, close loop configured, is also incorporated to give fast response output current control.

  16. Method of operating a thermoelectric generator

    DOEpatents

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  17. Novel Driving Control of Power Assisted Wheelchair Based on Minimum Jerk Trajectory

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu

    This paper describes a novel trajectory control scheme for power assisted wheelchair. Human input torque patterns are always intermittent in power assisted wheelchairs, therefore, the suitable trajectories must be generated also after the human decreases his/her input torque. This paper tries to solve this significant problem based on minimum jerk model minimizing the changing rate of acceleration. The proposed control system based on minimum jerk trajectory is expected to improve the ride quality, stability and safety. Some experiments show the effectiveness of the proposed method.

  18. Load power device and system for real-time execution of hierarchical load identification algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Madane, Mayura Arun; Zambare, Prachi Suresh

    A load power device includes a power input; at least one power output for at least one load; and a plurality of sensors structured to sense voltage and current at the at least one power output. A processor is structured to provide real-time execution of: (a) a plurality of load identification algorithms, and (b) event detection and operating mode detection for the at least one load.

  19. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    NASA Astrophysics Data System (ADS)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2016-03-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the /W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of 1/W it is necessary to achieve heat exchanger costs of 1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various TE waste heat recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.

  20. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    PubMed Central

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905

  1. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    PubMed

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  2. Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale

    NASA Astrophysics Data System (ADS)

    Gao, Haiyong; Yan, Fawang; Zhang, Yang; Li, Jinmin; Zeng, Yiping; Wang, Guohong

    2008-01-01

    Sapphire substrates were patterned by a chemical wet etching technique in the micro- and nanoscale to enhance the light output power of InGaN/GaN light-emitting diodes (LEDs). InGaN/GaN LEDs on a pyramidal patterned sapphire substrate in the microscale (MPSS) and pyramidal patterned sapphire substrate in the nanoscale (NPSS) were grown by metalorganic chemical vapor deposition. The characteristics of the LEDs fabricated on the MPSS and NPSS prepared by wet etching were studied and the light output powers of the LEDs fabricated on the MPSS and NPSS increased compared with that of the conventional LEDs fabricated on planar sapphire substrates. In comparison with the planar sapphire substrate, an enhancement in output power of about 29% and 48% is achieved with the MPSS and NPSS at an injection current of 20 mA, respectively. This significant enhancement is attributable to the improvement of the epitaxial quality of GaN-based epilayers and the improvement of the light extraction efficiency by patterned sapphire substrates. Additionally, the NPSS is more effective to enhance the light output power than the MPSS.

  3. Dynamic impedance compensation for wireless power transfer using conjugate power

    NASA Astrophysics Data System (ADS)

    Liu, Suqi; Tan, Jianping; Wen, Xue

    2018-02-01

    Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.

  4. Sarcomere length dependence of rat skinned cardiac myocyte mechanical properties: dependence on myosin heavy chain

    PubMed Central

    Korte, F Steven; McDonald, Kerry S

    2007-01-01

    The effects of sarcomere length (SL) on sarcomeric loaded shortening velocity, power output and rates of force development were examined in rat skinned cardiac myocytes that contained either α-myosin heavy chain (α-MyHC) or β-MyHC at 12 ± 1°C. When SL was decreased from 2.3 μm to 2.0 μm submaximal isometric force decreased ∼40% in both α-MyHC and β-MyHC myocytes while peak absolute power output decreased 55% in α-MyHC myocytes and 70% in β-MyHC myocytes. After normalization for the fall in force, peak power output decreased about twice as much in β-MyHC as in α-MyHC myocytes (41%versus 20%). To determine whether the fall in normalized power was due to the lower force levels, [Ca2+] was increased at short SL to match force at long SL. Surprisingly, this led to a 32% greater peak normalized power output at short SL compared to long SL in α-MyHC myocytes, whereas in β-MyHC myocytes peak normalized power output remained depressed at short SL. The role that interfilament spacing plays in determining SL dependence of power was tested by myocyte compression at short SL. Addition of 2% dextran at short SL decreased myocyte width and increased force to levels obtained at long SL, and increased peak normalized power output to values greater than at long SL in both α-MyHC and β-MyHC myocytes. The rate constant of force development (ktr) was also measured and was not different between long and short SL at the same [Ca2+] in α-MyHC myocytes but was greater at short SL in β-MyHC myocytes. At short SL with matched force by either dextran or [Ca2+], ktr was greater than at long SL in both α-MyHC and β-MyHC myocytes. Overall, these results are consistent with the idea that an intrinsic length component increases loaded crossbridge cycling rates at short SL and β-MyHC myocytes exhibit a greater sarcomere length dependence of power output. PMID:17347271

  5. Power enhancement of heat engines via correlated thermalization in a three-level “working fluid”

    PubMed Central

    Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon

    2015-01-01

    We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose “working fluid” is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement. PMID:26394838

  6. High-Power Single- and Dual-Wavelength Nd:GdVO4 Lasers with Potential Application for the Treatment of Telangiectasia

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Wang, Zhengping; Yu, Haohai; Zhuang, Shidong; Han, Shuo; Zhao, Yongguang; Xu, Xinguang

    2012-11-01

    Diode-end-pumped high-power Nd:GdVO4 lasers at 1083 nm are presented. The maximum continuous-wave output power was 10.1 W with an optical conversion efficiency of 31.3%. For acoustooptic (AO) Q-switched operation, the largest pulse energy, shortest pulse width, and highest peak power were 111 µJ, 77 ns, and 1.44 kW, respectively. By decreasing the 1063 nm transmission of the output coupler, we also achieved efficient CW dual-wavelength operation at 1083 and 1063 nm. Their total output power reached 6.7 W, and the optical conversion efficiency reached 31.6%. These lasers have special requirements in the treatment of facial telangiectasia.

  7. Integrated 220 GHz Source Development

    DTIC Science & Technology

    2014-05-27

    placement of the anode far enough from the emitter to prevent the deposi- tion of sputtered anode particles. Fully-Integrated High Power Amplifier The...waveguide circuit dimensions and tolerances. We demonstrated high power and good transmission with a five-beam configuration during 2012. Peak output...circuit dimensions and tolerances. We demonstrated high power and good transmission with a five-beam configuration during 2012. Peak output powers up

  8. The effect of different calculation methods of flywheel parameters on the Wingate Anaerobic Test.

    PubMed

    Coleman, S G; Hale, T

    1998-08-01

    Researchers compared different methods of calculating kinetic parameters of friction-braked cycle ergometers, and the subsequent effects on calculating power outputs in the Wingate Anaerobic Test (WAnT). Three methods of determining flywheel moment of inertia and frictional torque were investigated, requiring "run-down" tests and segmental geometry. Parameters were used to calculate corrected power outputs from 10 males in a 30-s WAnT against a load related to body mass (0.075 kg.kg-1). Wingate Indices of maximum (5 s) power, work, and fatigue index were also compared. Significant differences were found between uncorrected and corrected power outputs and between correction methods (p < .05). The same finding was evident for all Wingate Indices (p < .05). Results suggest that WAnT must be corrected to give true power outputs and that choosing an appropriate correction calculation is important. Determining flywheel moment of inertia and frictional torque using unloaded run-down tests is recommended.

  9. Studies on output characteristics of stable dual-wavelength ytterbium-doped photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Tian, Hongchun; Zhang, Sa; Hou, Zhiyun; Xia, Changming; Zhou, Guiyao; Zhang, Wei; Liu, Jiantao; Wu, Jiale; Fu, Jian

    2016-06-01

    A stable dual-wavelength ytterbium-doped photonic crystal fiber laser pumped by a 976 nm laser diode has been demonstrated at room temperature. Single-wavelength, dual-wavelength laser oscillations are observed when the fiber laser operates under different pump power by using different length of fibers. Stable dual-wavelength radiation around 1045 nm and 1075 nm has been generated simultaneously at a high pump power directly from an ytterbium-doped fiber laser without using any spectral control mechanism. A small core ytterbium-doped PCF fabricated by the powder sinter direction drawn rod technology is used as gain medium. The pump power and fiber length which can affect the output characteristics of dual-wavelength fiber laser are analyzed in the experiment. Experiments confirm that higher pump power and longer fiber length favors 1075 nm output; lower pump power and shorter fiber length favors 1045 nm output. Those results have a good reference in multi-wavelength fiber laser.

  10. Chaotic LIDAR for Naval Applications

    DTIC Science & Technology

    2014-08-29

    Perot Fiber Laser PD ^^ /- x —► -(YDF\\ {SMFV X — FBG 1 0 r utput FBG 70 Fabry-Perot Laser Output Pump Power (mW) Fig 2. Fabry-Perot...chaotic fiber laser. Left: Block diagram of the laser. Right: Output power versus pump power. (PD: Pump Diode; FBG : Fiber Braggs Grating; YDF: Ytterbium

  11. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    NASA Astrophysics Data System (ADS)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  12. High-efficiency S-band harmonic tuning GaN amplifier

    NASA Astrophysics Data System (ADS)

    Cao, Meng-Yi; Zhang, Kai; Chen, Yong-He; Zhang, Jin-Cheng; Ma, Xiao-Hua; Hao, Yue

    2014-03-01

    In this paper, we present a high-efficiency S-band gallium nitride (GaN) power amplifier (PA). This amplifier is fabricated based on a self-developed GaN high-electron-mobility transistor (HEMT) with 10 mm gate width on SiC substrate. Harmonic manipulation circuits are presented in the amplifier. The matching networks consist of microstrip lines and discrete components. Open-circuited stub lines in both input and output are used to tune the 2nd harmonic wave and match the GaN HEMT to the highest efficiency condition. The developed amplifier delivers an output power of 48.5 dBm (~70 W) with a power-added efficiency (PAE) of 72.2% at 2 GHz in pulse condition. When operating at 1.8-2.2 GHz (20% relative bandwidth), the amplifier provides an output power higher than 48 dBm (~ 65 W), with a PAE over 70% and a power gain above 15 dB. When operating in continuous-wave (CW) operating conditions, the amplifier gives an output power over 46 dBm (40 W) with PAE beyond 60% over the whole operation frequency range.

  13. Binary power multiplier for electromagnetic energy

    DOEpatents

    Farkas, Zoltan D.

    1988-01-01

    A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

  14. Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level.

    PubMed

    Beirow, Frieder; Eckerle, Michael; Dannecker, Benjamin; Dietrich, Tom; Ahmed, Marwan Abdou; Graf, Thomas

    2018-02-19

    We report on a high-power passively mode-locked radially polarized Yb:YAG thin-disk oscillator providing 125 W of average output power. To the best of our knowledge, this is the highest average power ever reported from a mode-locked radially polarized oscillator without subsequent amplification stages. Mode-locking was achieved by implementing a SESAM as the cavity end mirror and the radial polarization of the LG* 01 mode was obtained by means of a circular Grating Waveguide Output Coupler. The repetition rate was 78 MHz. A pulse duration of 0.97 ps and a spectral bandwidth of 1.4 nm (FWHM) were measured at the maximum output power. This corresponds to a pulse energy of 1.6 µJ and a pulse peak power of 1.45 MW. A high degree of radial polarization of 97.3 ± 1% and an M 2 -value of 2.16 which is close to the theoretical value for the LG* 01 doughnut mode were measured.

  15. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor.

  16. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.

    PubMed

    Lewis, George K; Olbricht, William L

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 ohms) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 V(pp) (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  17. Canadian crop calendars in support of the early warning project

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H.; Hodges, T. (Principal Investigator)

    1980-01-01

    The Canadian crop calendars for LACIE are presented. Long term monthly averages of daily maximum and daily minimum temperatures for subregions of provinces were used to simulate normal daily maximum and minimum temperatures. The Robertson (1968) spring wheat and Williams (1974) spring barley phenology models were run using the simulated daily temperatures and daylengths for appropriate latitudes. Simulated daily temperatures and phenology model outputs for spring wheat and spring barley are given.

  18. 99 W mid-IR operation of a ZGP OPO at 25% duty cycle.

    PubMed

    Hemming, Alexander; Richards, Jim; Davidson, Alan; Carmody, Neil; Bennetts, Shayne; Simakov, Nikita; Haub, John

    2013-04-22

    We have demonstrated the highest reported output power from a mid-IR ZGP OPO. The laser is a cascaded hybrid system consisting of a thulium fibre laser, Ho:YAG solid state laser and a Zinc Germanium Phosphide parametric oscillator. The system produces 27 W of output power in the 3-5 μm wavelength range with an M(2) = 4.0 when operating in a repetitively q-switched mode, and a modulated peak output power of 99 W at a reduced duty cycle of 25%.

  19. Minimum-Time Consensus-Based Approach for Power System Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Wu, Di; Sun, Yannan

    2016-02-01

    This paper presents minimum-time consensus based distributed algorithms for power system applications, such as load shedding and economic dispatch. The proposed algorithms are capable of solving these problems in a minimum number of time steps instead of asymptotically as in most of existing studies. Moreover, these algorithms are applicable to both undirected and directed communication networks. Simulation results are used to validate the proposed algorithms.

  20. Performance and Feasibility Analysis of a Wind Turbine Power System for Use on Mars

    NASA Technical Reports Server (NTRS)

    Lichter, Matthew D.; Viterna, Larry

    1999-01-01

    A wind turbine power system for future missions to the Martian surface was studied for performance and feasibility. A C++ program was developed from existing FORTRAN code to analyze the power capabilities of wind turbines under different environments and design philosophies. Power output, efficiency, torque, thrust, and other performance criteria could be computed given design geometries, atmospheric conditions, and airfoil behavior. After reviewing performance of such a wind turbine, a conceptual system design was modeled to evaluate feasibility. More analysis code was developed to study and optimize the overall structural design. Findings of this preliminary study show that turbine power output on Mars could be as high as several hundred kilowatts. The optimized conceptual design examined here would have a power output of 104 kW, total mass of 1910 kg, and specific power of 54.6 W/kg.

  1. Powertrain with powersplit pump input and method of use thereof

    DOEpatents

    Johnson, Kris W.; Rose, Charles E.

    2009-04-28

    A powertrain includes an engine operatively connected to a primary power consuming device to transmit power thereto. The powertrain also includes a motor and a pump. The power output of the motor is independent of the power output of the engine. An epicyclic geartrain includes first, second and third members. The first member is operatively connected to the engine to receive power therefrom. The second member is operatively connected to the motor to receive power therefrom. The third member is operatively connected to the pump to transmit power thereto.

  2. Effects of improved process for CuO-doped NKN lead-free ceramics on high-power piezoelectric transformers.

    PubMed

    Yang, Song-Ling; Tsai, Cheng-Che; Liou, Yi-Cheng; Hong, Cheng-Shong; Li, Bing-Jing; Chu, Sheng-Yuan

    2011-12-01

    In this paper, the effects of the electrical proper- ties of CuO-doped (Na(0.5)K(0.5))NbO(3) (NKN) ceramics prepared separately using the B-site oxide precursor method (BO method) and conventional mixed-oxide method (MO method) on high-power piezoelectric transformers (PTs) were investigated. The performances of PTs made with these two substrates were compared. Experimental results showed that the output power and temperature stability of PTs could be enhanced because of the lower resonant impedance of the ceramics prepared using the BO method. In addition, the output power of PTs was more affected by the resonant impedance than by the mechanical quality factor (Q(m)) of the ceramics. The PTs fabricated with ceramics prepared using the BO method showed a high efficiency of more than 94% and a maximum output power of 8.98 W (power density: 18.3 W/cm(3)) with temperature increase of 3°C under the optimum load resistance (5 kΩ) and an input voltage of 150 V(pp). This output power of the lead-free disk-type PTs is the best reported so far.

  3. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    PubMed Central

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893

  4. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    PubMed

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-15

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  5. The Acute Effect of Upper-Body Complex Training on Power Output of Martial Art Athletes as Measured by the Bench Press Throw Exercise

    PubMed Central

    Liossis, Loudovikos Dimitrios; Forsyth, Jacky; Liossis, Ceorge; Tsolakis, Charilaos

    2013-01-01

    The purpose of this study was to examine the acute effect of upper body complex training on power output, as well as to determine the requisite preload intensity and intra-complex recovery interval needed to induce power output increases. Nine amateur-level combat/martial art athletes completed four distinct experimental protocols, which consisted of 5 bench press repetitions at either: 65% of one-repetition maximum (1RM) with a 4 min rest interval; 65% of 1RM with an 8 min rest; 85% of 1RM with a 4 min rest; or 85% of 1RM with an 8 min rest interval, performed on different days. Before (pre-conditioning) and after (post-conditioning) each experimental protocol, three bench press throws at 30% of 1RM were performed. Significant differences in power output pre-post conditioning were observed across all experimental protocols (F=26.489, partial eta2=0.768, p=0.001). Mean power output significantly increased when the preload stimulus of 65% 1RM was matched with 4 min of rest (p=0.001), and when the 85% 1RM preload stimulus was matched with 8 min of rest (p=0.001). Moreover, a statistically significant difference in power output was observed between the four conditioning protocols (F= 21.101, partial eta2=0.913, p=0.001). It was concluded that, in complex training, matching a heavy preload stimulus with a longer rest interval, and a lighter preload stimulus with a shorter rest interval is important for athletes wishing to increase their power production before training or competition. PMID:24511352

  6. Anomalous TWTA output power spikes and their effect on a digital satellite communications system

    NASA Technical Reports Server (NTRS)

    May, Brian D.; Kerczewski, Robert J.; Svoboda, James S.

    1992-01-01

    Several 30 GHz, 60 W traveling wave tube amplifiers (TWTA) were manufactured for the NASA Lewis Research Center's High Burst Rate Link Evaluation Terminal Project. An unusual operating problem characterized by anomalous nonperiodic output power spikes, common to all of the TWTAs proved during testing to significantly affect the performance of a digitally-modulated data transmission test system. Modifications made to the TWTAs significantly curtailed the problem and allowed acceptable system performance to be obtained. This paper presents a discussion of the TWTA output power spike problem, possible causes of the problem, and the solutions implemented by the manufacturer which improved the TWTA performance to an acceptable level. The results of the testing done at NASA Lewis on the TWTAs both before and after the improvement made by Hughes are presented, and the effects of the output power spikes on the performance of the test system are discussed.

  7. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers.

    PubMed

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-01-17

    Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2-values of the laser with lowest spatial coherence. The principle of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future.

  8. Effect of material constants on power output in piezoelectric vibration-based generators.

    PubMed

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  9. Silicon Carbide Radioisotope Batteries

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.

    2005-01-01

    The substantial radiation resistance and large bandgap of SiC semiconductor materials makes them an attractive candidate for application in a high efficiency, long life radioisotope battery. To evaluate their potential in this application, simulated batteries were constructed using SiC diodes and the alpha particle emitter Americium Am-241 or the beta particle emitter Promethium Pm-147. The Am-241 based battery showed high initial power output and an initial conversion efficiency of approximately 16%, but the power output decayed 52% in 500 hours due to radiation damage. In contrast the Pm-147 based battery showed a similar power output level and an initial conversion efficiency of approximately 0.6%, but no degradation was observed in 500 hours. However, the Pm-147 battery required approximately 1000 times the particle fluence as the Am-242 battery to achieve a similar power output. The advantages and disadvantages of each type of battery and suggestions for future improvements will be discussed.

  10. Power supply

    DOEpatents

    Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.

    1976-01-01

    An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

  11. High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser.

    PubMed

    Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria

    2010-11-22

    We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.

  12. Hybrid zero-voltage switching (ZVS) control for power inverters

    DOEpatents

    Amirahmadi, Ahmadreza; Hu, Haibing; Batarseh, Issa

    2016-11-01

    A power inverter combination includes a half-bridge power inverter including first and second semiconductor power switches receiving input power having an intermediate node therebetween providing an inductor current through an inductor. A controller includes input comparison circuitry receiving the inductor current having outputs coupled to first inputs of pulse width modulation (PWM) generation circuitry, and a predictive control block having an output coupled to second inputs of the PWM generation circuitry. The predictive control block is coupled to receive a measure of Vin and an output voltage at a grid connection point. A memory stores a current control algorithm configured for resetting a PWM period for a switching signal applied to control nodes of the first and second power switch whenever the inductor current reaches a predetermined upper limit or a predetermined lower limit.

  13. Exploring high power, extreme wavelength operating potential of rare-earth-doped silica fiber

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Li, Ruixian; Xiao, Hu; Huang, Long; Zhang, Hanwei; Leng, Jinyong; Chen, Zilun; Xu, Jiangmin; Wu, Jian; Wang, Xiong

    2017-08-01

    Ytterbium-doped fiber laser (YDFL) and Thulium doped fiber laser (TDFL) have been two kinds of the most widely studied fiber laser in recent years. Although both silica-based Ytterbium-doped fiber and Thulium doped fiber have wide emission spectrum band (more than 200 nm and 400 nm, respectively), the operation spectrum region of previously demonstrated high power YDFL and TDFL fall into 1060-1100 nm and 1900-2050nm. Power scaling of YDFL and TDFL operates at short-wavelength or long-wavelength band, especially for extreme wavelength operation, although is highly required in a large variety of application fields, is quite challenging due to small net gain and strong amplified spontaneous emission (ASE). In this paper, we will present study on extreme wavelength operation of high power YDFL and TDFL in our group. Comprehensive mathematical models are built to investigate the feasibility of high power operation and propose effective technical methods to achieve high power operation. We have achieved (1) Diodepumped 1150nm long wavelength YDFL with 120-watt level output power (2) Diode-pumped 1178nm long wavelength YDFL operates at high temperature with 30-watt level output power (3) Random laser pumped 2153nm long wavelength TDFL with 20-watt level output power (4) Diode-pumped 1018nm short wavelength YDFL with a record 2 kilowatt output power is achieved by using home-made fiber combiner.

  14. Method and device for remotely monitoring an area using a low peak power optical pump

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.

    2014-07-22

    A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.

  15. Microfabricated microengine for use as a mechanical drive and power source in the microdomain and fabrication process

    DOEpatents

    Garcia, Ernest J.; Sniegowski, Jeffry J.

    1997-01-01

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism. The microengine can be operated at varying speeds and its motion can be reversed. Linear actuators are synchronized in order to provide linear oscillatory motion to the linkage means in the X and Y directions according to a desired position, rotational direction and speed of said mechanical output means. The output gear has gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  16. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    NASA Astrophysics Data System (ADS)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  17. Optimal Sizing of Hybrid Renewable Energy Systems: An Application for Real Demand in Qatar Remote Area

    NASA Astrophysics Data System (ADS)

    Alyafei, Nora

    Renewable energy (RE) sources are becoming popular for power generations due to advances in renewable energy technologies and their ability to reduce the problem of global warming. However, their supply varies in availability (as sun and wind) and the required load demand fluctuates. Thus, to overcome the uncertainty issues of RE power sources, they can be combined with storage devices and conventional energy sources in a Hybrid Power Systems (HPS) to satisfy the demand load at any time. Recently, RE systems received high interest to take advantage of their positive benefits such as renewable availability and CO2 emissions reductions. The optimal design of a hybrid renewable energy system is mostly defined by economic criteria, but there are also technical and environmental criteria to be considered to improve decision making. In this study three main renewable sources of the system: photovoltaic arrays (PV), wind turbine generators (WG) and waste boilers (WB) are integrated with diesel generators and batteries to design a hybrid system that supplies the required demand of a remote area in Qatar using heuristic approach. The method utilizes typical year data to calculate hourly output power of PV, WG and WB throughout the year. Then, different combinations of renewable energy sources with battery storage are proposed to match hourly demand during the year. The design which satisfies the desired level of loss of power supply, CO 2 emissions and minimum costs is considered as best design.

  18. Large-Scale Multiantenna Multisine Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Clerckx, Bruno

    2017-11-01

    Wireless Power Transfer (WPT) is expected to be a technology reshaping the landscape of low-power applications such as the Internet of Things, Radio Frequency identification (RFID) networks, etc. Although there has been some progress towards multi-antenna multi-sine WPT design, the large-scale design of WPT, reminiscent of massive MIMO in communications, remains an open challenge. In this paper, we derive efficient multiuser algorithms based on a generalizable optimization framework, in order to design transmit sinewaves that maximize the weighted-sum/minimum rectenna output DC voltage. The study highlights the significant effect of the nonlinearity introduced by the rectification process on the design of waveforms in multiuser systems. Interestingly, in the single-user case, the optimal spatial domain beamforming, obtained prior to the frequency domain power allocation optimization, turns out to be Maximum Ratio Transmission (MRT). In contrast, in the general weighted sum criterion maximization problem, the spatial domain beamforming optimization and the frequency domain power allocation optimization are coupled. Assuming channel hardening, low-complexity algorithms are proposed based on asymptotic analysis, to maximize the two criteria. The structure of the asymptotically optimal spatial domain precoder can be found prior to the optimization. The performance of the proposed algorithms is evaluated. Numerical results confirm the inefficiency of the linear model-based design for the single and multi-user scenarios. It is also shown that as nonlinear model-based designs, the proposed algorithms can benefit from an increasing number of sinewaves.

  19. Variable self-powered light detection CMOS chip with real-time adaptive tracking digital output based on a novel on-chip sensor.

    PubMed

    Wang, HongYi; Fan, Youyou; Lu, Zhijian; Luo, Tao; Fu, Houqiang; Song, Hongjiang; Zhao, Yuji; Christen, Jennifer Blain

    2017-10-02

    This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.

  20. Diode-pumped dual-wavelength Nd:LSO laser at 1059 and 1067  nm with nearly diffraction-limited beam quality.

    PubMed

    Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun

    2016-04-10

    We report a diode-pumped continuous-wave simultaneous dual-wavelength Nd:LSO laser at 1059 and 1067 nm. By employing a specially coated output coupler with relatively high transmissions at high-gain emission lines of 1075 and 1079 nm, the two low-gain emission lines, 1059 and 1067 nm, can be achieved, for the first time to our knowledge, with maximum output power of 1.27 W and slope efficiency of about 29.2%. The output power is only limited by the available pump power. Output beam quality is also measured to be about 1.19 and 1.21 of the beam propagation factors in the x and y directions, respectively.

Top