Sample records for minimum perceptual error

  1. Image Data Compression Having Minimum Perceptual Error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1997-01-01

    A method is presented for performing color or grayscale image compression that eliminates redundant and invisible image components. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The quantization matrix comprises visual masking by luminance and contrast technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  2. Image data compression having minimum perceptual error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1995-01-01

    A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  3. Image-adapted visually weighted quantization matrices for digital image compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1994-01-01

    A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  4. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  5. Model of human dynamic orientation. Ph.D. Thesis; [associated with vestibular stimuli

    NASA Technical Reports Server (NTRS)

    Ormsby, C. C.

    1974-01-01

    The dynamics associated with the perception of orientation were modelled for near-threshold and suprathreshold vestibular stimuli. A model of the information available at the peripheral sensors which was consistent with available neurophysiologic data was developed and served as the basis for the models of the perceptual responses. The central processor was assumed to utilize the information from the peripheral sensors in an optimal (minimum mean square error) manner to produce the perceptual estimates of dynamic orientation. This assumption, coupled with the models of sensory information, determined the form of the model for the central processor. The problem of integrating information from the semi-circular canals and the otoliths to predict the perceptual response to motions which stimulated both organs was studied. A model was developed which was shown to be useful in predicting the perceptual response to multi-sensory stimuli.

  6. Association between educational status and dual-task performance in young adults.

    PubMed

    Voos, Mariana Callil; Pimentel Piemonte, Maria Elisa; Castelli, Lilian Zanchetta; Andrade Machado, Mariane Silva; Dos Santos Teixeira, Patrícia Pereira; Caromano, Fátima Aparecida; Ribeiro Do Valle, Luiz Eduardo

    2015-04-01

    The influence of educational status on perceptual-motor performance has not been investigated. The single- and dual-task performances of 15 Low educated adults (9 men, 6 women; M age=24.1 yr.; 6-9 yr. of education) and 15 Higher educated adults (8 men, 7 women; M age=24.7 yr.; 10-13 yr. of education) were compared. The perceptual task consisted of verbally classifying two figures (equal or different). The motor task consisted of alternating steps from the floor to a stool. Tasks were assessed individually and simultaneously. Two analyses of variance (2 groups×4 blocks) compared the errors and steps. The Low education group committed more errors and had less improvement on the perceptual task than the High education group. During and after the perceptual-motor task performance, errors increased only in the Low education group. Education correlated to perceptual and motor performance. The Low education group showed more errors and less step alternations on the perceptual-motor task compared to the High education group. This difference on the number of errors was also observed after the dual-task, when the perceptual task was performed alone.

  7. Source misattributions and false recognition errors: examining the role of perceptual resemblance and imagery generation processes.

    PubMed

    Foley, Mary Ann; Bays, Rebecca Brooke; Foy, Jeffrey; Woodfield, Mila

    2015-01-01

    In three experiments, we examine the extent to which participants' memory errors are affected by the perceptual features of an encoding series and imagery generation processes. Perceptual features were examined by manipulating the features associated with individual items as well as the relationships among items. An encoding instruction manipulation was included to examine the effects of explicit requests to generate images. In all three experiments, participants falsely claimed to have seen pictures of items presented as words, committing picture misattribution errors. These misattribution errors were exaggerated when the perceptual resemblance between pictures and images was relatively high (Experiment 1) and when explicit requests to generate images were omitted from encoding instructions (Experiments 1 and 2). When perceptual cues made the thematic relationships among items salient, the level and pattern of misattribution errors were also affected (Experiments 2 and 3). Results address alternative views about the nature of internal representations resulting in misattribution errors and refute the idea that these errors reflect only participants' general impressions or beliefs about what was seen.

  8. Dual tasking negatively impacts obstacle avoidance abilities in post-stroke individuals with visuospatial neglect: Task complexity matters!

    PubMed

    Aravind, Gayatri; Lamontagne, Anouk

    2017-01-01

    Persons with perceptual-attentional deficits due to visuospatial neglect (VSN) after a stroke are at a risk of collisions while walking in the presence of moving obstacles. The attentional burden of performing a dual-task may further compromise their obstacle avoidance performance, putting them at a greater risk of collisions. The objective of this study was to compare the ability of persons with (VSN+) and without VSN (VSN-) to dual task while negotiating moving obstacles. Twenty-six stroke survivors (13 VSN+, 13 VSN-) were assessed on their ability to (a) negotiate moving obstacles while walking (locomotor single task); (b) perform a pitch-discrimination task (cognitive single task) and (c) simultaneously perform the walking and cognitive tasks (dual task). We compared the groups on locomotor (collision rates, minimum distance from obstacle and onset of strategies) and cognitive (error rates) outcomes. For both single and dual task walking, VSN+ individuals showed higher collision rates compared to VSN- individuals. Dual tasking caused deterioration of locomotor (more collisions, delayed onset and smaller minimum distances) and cognitive performances (higher error rate) in VSN+ individuals. Contrastingly, VSN- individuals maintained collision rates, increased minimum distance, but showed more cognitive errors, prioritizing their locomotor performance. Individuals with VSN demonstrate cognitive-locomotor interference under dual task conditions, which could severely compromise safety when ambulating in community environments and may explain the poor recovery of independent community ambulation in these individuals.

  9. Perceptual Color Characterization of Cameras

    PubMed Central

    Vazquez-Corral, Javier; Connah, David; Bertalmío, Marcelo

    2014-01-01

    Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as XY Z, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a 3 × 3 matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson et al., to perform a perceptual color characterization. In particular, we search for the 3 × 3 matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE ΔE error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3% for the ΔE error, 7% for the S-CIELAB error and 13% for the CID error measures. PMID:25490586

  10. Predictive Compensator Optimization for Head Tracking Lag in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Adelstein, Barnard D.; Jung, Jae Y.; Ellis, Stephen R.

    2001-01-01

    We examined the perceptual impact of plant noise parameterization for Kalman Filter predictive compensation of time delays intrinsic to head tracked virtual environments (VEs). Subjects were tested in their ability to discriminate between the VE system's minimum latency and conditions in which artificially added latency was then predictively compensated back to the system minimum. Two head tracking predictors were parameterized off-line according to cost functions that minimized prediction errors in (1) rotation, and (2) rotation projected into translational displacement with emphasis on higher frequency human operator noise. These predictors were compared with a parameterization obtained from the VE literature for cost function (1). Results from 12 subjects showed that both parameterization type and amount of compensated latency affected discrimination. Analysis of the head motion used in the parameterizations and the subsequent discriminability results suggest that higher frequency predictor artifacts are contributory cues for discriminating the presence of predictive compensation.

  11. [Improvement of vision through perceptual learning in the case of refractive errors and presbyopia : A critical valuation].

    PubMed

    Heinrich, S P

    2017-02-01

    The idea of compensating or even rectifying refractive errors and presbyopia with the help of vision training is not new. For most approaches, however, scientific evidence is insufficient. A currently promoted method is "perceptual learning", which is assumed to improve stimulus processing in the brain. The basic phenomena of perceptual learning have been demonstrated by a multitude of studies. Some of these specifically address the case of refractive errors and presbyopia. However, many open questions remain, in particular with respect to the transfer of practice effects to every-day vision. At present, the method should therefore be judged with caution.

  12. Perceptually-Based Adaptive JPEG Coding

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Rosenholtz, Ruth; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    An extension to the JPEG standard (ISO/IEC DIS 10918-3) allows spatial adaptive coding of still images. As with baseline JPEG coding, one quantization matrix applies to an entire image channel, but in addition the user may specify a multiplier for each 8 x 8 block, which multiplies the quantization matrix, yielding the new matrix for the block. MPEG 1 and 2 use much the same scheme, except there the multiplier changes only on macroblock boundaries. We propose a method for perceptual optimization of the set of multipliers. We compute the perceptual error for each block based upon DCT quantization error adjusted according to contrast sensitivity, light adaptation, and contrast masking, and pick the set of multipliers which yield maximally flat perceptual error over the blocks of the image. We investigate the bitrate savings due to this adaptive coding scheme and the relative importance of the different sorts of masking on adaptive coding.

  13. Handwriting Error Patterns of Children with Mild Motor Difficulties.

    ERIC Educational Resources Information Center

    Malloy-Miller, Theresa; And Others

    1995-01-01

    A test of handwriting legibility and 6 perceptual-motor tests were completed by 66 children ages 7-12. Among handwriting error patterns, execution was associated with visual-motor skill and sensory discrimination, aiming with visual-motor and fine-motor skills. The visual-spatial factor had no significant association with perceptual-motor…

  14. Investigating Perceptual Biases, Data Reliability, and Data Discovery in a Methodology for Collecting Speech Errors From Audio Recordings.

    PubMed

    Alderete, John; Davies, Monica

    2018-04-01

    This work describes a methodology of collecting speech errors from audio recordings and investigates how some of its assumptions affect data quality and composition. Speech errors of all types (sound, lexical, syntactic, etc.) were collected by eight data collectors from audio recordings of unscripted English speech. Analysis of these errors showed that: (i) different listeners find different errors in the same audio recordings, but (ii) the frequencies of error patterns are similar across listeners; (iii) errors collected "online" using on the spot observational techniques are more likely to be affected by perceptual biases than "offline" errors collected from audio recordings; and (iv) datasets built from audio recordings can be explored and extended in a number of ways that traditional corpus studies cannot be.

  15. Spatiotemporal dynamics of random stimuli account for trial-to-trial variability in perceptual decision making

    PubMed Central

    Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.

    2016-01-01

    Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272

  16. Speech Synthesis Using Perceptually Motivated Features

    DTIC Science & Technology

    2012-01-23

    with others a few years prior (with the concurrence of the project’s program manager. Willard Larkin). The Perceptual Flow of Phonetic Information and...34The Perceptual Flow of Phonetic Processing," consonant confusion matrices are analyzed for patterns of phonetic-feature decoding errors conditioned...decoding) is also observed. From these conditional probability patterns, it is proposed that they reflect a temporal flow of perceptual processing

  17. Remediating Common Math Errors.

    ERIC Educational Resources Information Center

    Wagner, Rudolph F.

    1981-01-01

    Explanations and remediation suggestions for five types of mathematics errors due either to perceptual or cognitive difficulties are given. Error types include directionality problems, mirror writing, visually misperceived signs, diagnosed directionality problems, and mixed process errors. (CL)

  18. Two wrongs make a right: linear increase of accuracy of visually-guided manual pointing, reaching, and height-matching with increase in hand-to-body distance.

    PubMed

    Li, Wenxun; Matin, Leonard

    2005-03-01

    Measurements were made of the accuracy of open-loop manual pointing and height-matching to a visual target whose elevation was perceptually mislocalized. Accuracy increased linearly with distance of the hand from the body, approaching complete accuracy at full extension; with the hand close to the body (within the midfrontal plane), the manual errors equaled the magnitude of the perceptual mislocalization. The visual inducing stimulus responsible for the perceptual errors was a single pitched-from-vertical line that was long (50 degrees), eccentrically-located (25 degrees horizontal), and viewed in otherwise total darkness. The line induced perceptual errors in the elevation of a small, circular visual target set to appear at eye level (VPEL), a setting that changed linearly with the change in the line's visual pitch as has been previously reported (pitch: -30 degrees topbackward to 30 degrees topforward); the elevation errors measured by VPEL settings varied systematically with pitch through an 18 degrees range. In a fourth experiment the visual inducing stimulus responsible for the perceptual errors was shown to induce separately-measured errors in the manual setting of the arm to feel horizontal that were also distance-dependent. The distance-dependence of the visually-induced changes in felt arm position accounts quantitatively for the distance-dependence of the manual errors in pointing/reaching and height matching to the visual target: The near equality of the changes in felt horizontal and changes in pointing/reaching with the finger at the end of the fully extended arm is responsible for the manual accuracy of the fully-extended point; with the finger in the midfrontal plane their large difference is responsible for the inaccuracies of the midfrontal-plane point. The results are inconsistent with the widely-held but controversial theory that visual spatial information employed for perception and action are dissociated and different with no illusory visual influence on action. A different two-system theory, the Proximal/Distal model, employing the same signals from vision and from the body-referenced mechanism with different weights for different hand-to-body distances, accounts for both the perceptual and the manual results in the present experiments.

  19. The effect of saccade metrics on the corollary discharge contribution to perceived eye location

    PubMed Central

    Bansal, Sonia; Jayet Bray, Laurence C.; Peterson, Matthew S.

    2015-01-01

    Corollary discharge (CD) is hypothesized to provide the movement information (direction and amplitude) required to compensate for the saccade-induced disruptions to visual input. Here, we investigated to what extent these conveyed metrics influence perceptual stability in human subjects with a target-displacement detection task. Subjects made saccades to targets located at different amplitudes (4°, 6°, or 8°) and directions (horizontal or vertical). During the saccade, the target disappeared and then reappeared at a shifted location either in the same direction or opposite to the movement vector. Subjects reported the target displacement direction, and from these reports we determined the perceptual threshold for shift detection and estimate of target location. Our results indicate that the thresholds for all amplitudes and directions generally scaled with saccade amplitude. Additionally, subjects on average produced hypometric saccades with an estimated CD gain <1. Finally, we examined the contribution of different error signals to perceptual performance, the saccade error (movement-to-movement variability in saccade amplitude) and visual error (distance between the fovea and the shifted target location). Perceptual judgment was not influenced by the fluctuations in movement amplitude, and performance was largely the same across movement directions for different magnitudes of visual error. Importantly, subjects reported the correct direction of target displacement above chance level for very small visual errors (<0.75°), even when these errors were opposite the target-shift direction. Collectively, these results suggest that the CD-based compensatory mechanisms for visual disruptions are highly accurate and comparable for saccades with different metrics. PMID:25761955

  20. Halting in Single Word Production: A Test of the Perceptual Loop Theory of Speech Monitoring

    ERIC Educational Resources Information Center

    Slevc, L. Robert; Ferreira, Victor S.

    2006-01-01

    The "perceptual loop theory" of speech monitoring (Levelt, 1983) claims that inner and overt speech are monitored by the comprehension system, which detects errors by comparing the comprehension of formulated utterances to originally intended utterances. To test the perceptual loop monitor, speakers named pictures and sometimes attempted to halt…

  1. How to minimize perceptual error and maximize expertise in medical imaging

    NASA Astrophysics Data System (ADS)

    Kundel, Harold L.

    2007-03-01

    Visual perception is such an intimate part of human experience that we assume that it is entirely accurate. Yet, perception accounts for about half of the errors made by radiologists using adequate imaging technology. The true incidence of errors that directly affect patient well being is not known but it is probably at the lower end of the reported values of 3 to 25%. Errors in screening for lung and breast cancer are somewhat better characterized than errors in routine diagnosis. About 25% of cancers actually recorded on the images are missed and cancer is falsely reported in about 5% of normal people. Radiologists must strive to decrease error not only because of the potential impact on patient care but also because substantial variation among observers undermines confidence in the reliability of imaging diagnosis. Observer variation also has a major impact on technology evaluation because the variation between observers is frequently greater than the difference in the technologies being evaluated. This has become particularly important in the evaluation of computer aided diagnosis (CAD). Understanding the basic principles that govern the perception of medical images can provide a rational basis for making recommendations for minimizing perceptual error. It is convenient to organize thinking about perceptual error into five steps. 1) The initial acquisition of the image by the eye-brain (contrast and detail perception). 2) The organization of the retinal image into logical components to produce a literal perception (bottom-up, global, holistic). 3) Conversion of the literal perception into a preferred perception by resolving ambiguities in the literal perception (top-down, simulation, synthesis). 4) Selective visual scanning to acquire details that update the preferred perception. 5) Apply decision criteria to the preferred perception. The five steps are illustrated with examples from radiology with suggestions for minimizing error. The role of perceptual learning in the development of expertise is also considered.

  2. Perceptual learning in children with visual impairment improves near visual acuity.

    PubMed

    Huurneman, Bianca; Boonstra, F Nienke; Cox, Ralf F A; van Rens, Ger; Cillessen, Antonius H N

    2013-09-17

    This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. Participants were 45 children with visual impairment and 29 children with normal vision. Children with visual impairment were divided into three groups: a magnifier group (n = 12), a crowded perceptual learning group (n = 18), and an uncrowded perceptual learning group (n = 15). Children with normal vision also were divided in three groups, but were measured only at baseline. Dependent variables were single near visual acuity (NVA), crowded NVA, LH line 50% crowding NVA, number of trials, accuracy, performance time, amount of small errors, and amount of large errors. Children with visual impairment trained during six weeks, two times per week, for 30 minutes (12 training sessions). After training, children showed significant improvement of NVA in addition to specific improvements on the training task. The crowded perceptual learning group showed the largest acuity improvements (1.7 logMAR lines on the crowded chart, P < 0.001). Only the children in the crowded perceptual learning group showed improvements on all NVA charts. Children with visual impairment benefit from perceptual training. While task-specific improvements were observed in all training groups, transfer to crowded NVA was largest in the crowded perceptual learning group. To our knowledge, this is the first study to provide evidence for the improvement of NVA by perceptual learning in children with visual impairment. (http://www.trialregister.nl number, NTR2537.).

  3. Why do we miss rare targets? Exploring the boundaries of the low prevalence effect

    PubMed Central

    Rich, Anina N.; Kunar, Melina A.; Van Wert, Michael J.; Hidalgo-Sotelo, Barbara; Horowitz, Todd S.; Wolfe, Jeremy M.

    2011-01-01

    Observers tend to miss a disproportionate number of targets in visual search tasks with rare targets. This ‘prevalence effect’ may have practical significance since many screening tasks (e.g., airport security, medical screening) are low prevalence searches. It may also shed light on the rules used to terminate search when a target is not found. Here, we use perceptually simple stimuli to explore the sources of this effect. Experiment 1 shows a prevalence effect in inefficient spatial configuration search. Experiment 2 demonstrates this effect occurs even in a highly efficient feature search. However, the two prevalence effects differ. In spatial configuration search, misses seem to result from ending the search prematurely, while in feature search, they seem due to response errors. In Experiment 3, a minimum delay before response eliminated the prevalence effect for feature but not spatial configuration search. In Experiment 4, a target was present on each trial in either two (2AFC) or four (4AFC) orientations. With only two response alternatives, low prevalence produced elevated errors. Providing four response alternatives eliminated this effect. Low target prevalence puts searchers under pressure that tends to increase miss errors. We conclude that the specific source of those errors depends on the nature of the search. PMID:19146299

  4. Probability shapes perceptual precision: A study in orientation estimation.

    PubMed

    Jabar, Syaheed B; Anderson, Britt

    2015-12-01

    Probability is known to affect perceptual estimations, but an understanding of mechanisms is lacking. Moving beyond binary classification tasks, we had naive participants report the orientation of briefly viewed gratings where we systematically manipulated contingent probability. Participants rapidly developed faster and more precise estimations for high-probability tilts. The shapes of their error distributions, as indexed by a kurtosis measure, also showed a distortion from Gaussian. This kurtosis metric was robust, capturing probability effects that were graded, contextual, and varying as a function of stimulus orientation. Our data can be understood as a probability-induced reduction in the variability or "shape" of estimation errors, as would be expected if probability affects the perceptual representations. As probability manipulations are an implicit component of many endogenous cuing paradigms, changes at the perceptual level could account for changes in performance that might have traditionally been ascribed to "attention." (c) 2015 APA, all rights reserved).

  5. Perceptual, durational and tongue displacement measures following articulation therapy for rhotic sound errors.

    PubMed

    Bressmann, Tim; Harper, Susan; Zhylich, Irina; Kulkarni, Gajanan V

    2016-01-01

    Outcomes of articulation therapy for rhotic errors are usually assessed perceptually. However, our understanding of associated changes of tongue movement is limited. This study described perceptual, durational and tongue displacement changes over 10 sessions of articulation therapy for /ɹ/ in six children. Four of the participants also received ultrasound biofeedback of their tongue shape. Speech and tongue movement were recorded pre-therapy, after 5 sessions, in the final session and at a one month follow-up. Perceptually, listeners perceived improvement and classified more productions as /ɹ/ in the final and follow-up assessments. The durations of VɹV syllables at the midway point of the therapy were longer. Cumulative tongue displacement increased in the final session. The average standard deviation was significantly higher in the middle and final assessments. The duration and tongue displacement measures illustrated how articulation therapy affected tongue movement and may be useful for outcomes research about articulation therapy.

  6. Perceptual distortion analysis of color image VQ-based coding

    NASA Astrophysics Data System (ADS)

    Charrier, Christophe; Knoblauch, Kenneth; Cherifi, Hocine

    1997-04-01

    It is generally accepted that a RGB color image can be easily encoded by using a gray-scale compression technique on each of the three color planes. Such an approach, however, fails to take into account correlations existing between color planes and perceptual factors. We evaluated several linear and non-linear color spaces, some introduced by the CIE, compressed with the vector quantization technique for minimum perceptual distortion. To study these distortions, we measured contrast and luminance of the video framebuffer, to precisely control color. We then obtained psychophysical judgements to measure how well these methods work to minimize perceptual distortion in a variety of color space.

  7. Conceptual and perceptual encoding instructions differently affect event recall.

    PubMed

    García-Bajos, Elvira; Migueles, Malen; Aizpurua, Alaitz

    2014-11-01

    When recalling an event, people usually retrieve the main facts and a reduced proportion of specific details. The objective of this experiment was to study the effects of conceptually and perceptually driven encoding in the recall of conceptual and perceptual information of an event. The materials selected for the experiment were two movie trailers. To enhance the encoding instructions, after watching the first trailer participants answered conceptual or perceptual questions about the event, while a control group answered general knowledge questions. After watching the second trailer, all of the participants completed a closed-ended recall task consisting of conceptual and perceptual items. Conceptual information was better recalled than perceptual details and participants made more perceptual than conceptual commission errors. Conceptually driven processing enhanced the recall of conceptual information, while perceptually driven processing not only did not improve the recall of descriptive details, but also damaged the standard conceptual/perceptual recall relationship.

  8. Is Comprehension Necessary for Error Detection? A Conflict-Based Account of Monitoring in Speech Production

    ERIC Educational Resources Information Center

    Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.

    2011-01-01

    Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the…

  9. Color filter array design based on a human visual model

    NASA Astrophysics Data System (ADS)

    Parmar, Manu; Reeves, Stanley J.

    2004-05-01

    To reduce cost and complexity associated with registering multiple color sensors, most consumer digital color cameras employ a single sensor. A mosaic of color filters is overlaid on a sensor array such that only one color channel is sampled per pixel location. The missing color values must be reconstructed from available data before the image is displayed. The quality of the reconstructed image depends fundamentally on the array pattern and the reconstruction technique. We present a design method for color filter array patterns that use red, green, and blue color channels in an RGB array. A model of the human visual response for luminance and opponent chrominance channels is used to characterize the perceptual error between a fully sampled and a reconstructed sparsely-sampled image. Demosaicking is accomplished using Wiener reconstruction. To ensure that the error criterion reflects perceptual effects, reconstruction is done in a perceptually uniform color space. A sequential backward selection algorithm is used to optimize the error criterion to obtain the sampling arrangement. Two different types of array patterns are designed: non-periodic and periodic arrays. The resulting array patterns outperform commonly used color filter arrays in terms of the error criterion.

  10. Audio steganography by amplitude or phase modification

    NASA Astrophysics Data System (ADS)

    Gopalan, Kaliappan; Wenndt, Stanley J.; Adams, Scott F.; Haddad, Darren M.

    2003-06-01

    This paper presents the results of embedding short covert message utterances on a host, or cover, utterance by modifying the phase or amplitude of perceptually masked or significant regions of the host. In the first method, the absolute phase at selected, perceptually masked frequency indices was changed to fixed, covert data-dependent values. Embedded bits were retrieved at the receiver from the phase at the selected frequency indices. Tests on embedding a GSM-coded covert utterance on clean and noisy host utterances showed no noticeable difference in the stego compared to the hosts in speech quality or spectrogram. A bit error rate of 2 out of 2800 was observed for a clean host utterance while no error occurred for a noisy host. In the second method, the absolute phase of 10 or fewer perceptually significant points in the host was set in accordance with covert data. This resulted in a stego with successful data retrieval and a slightly noticeable degradation in speech quality. Modifying the amplitude of perceptually significant points caused perceptible differences in the stego even with small changes of amplitude made at five points per frame. Finally, the stego obtained by altering the amplitude at perceptually masked points showed barely noticeable differences and excellent data recovery.

  11. Surprised at All the Entropy: Hippocampal, Caudate and Midbrain Contributions to Learning from Prediction Errors

    PubMed Central

    Schiffer, Anne-Marike; Ahlheim, Christiane; Wurm, Moritz F.; Schubotz, Ricarda I.

    2012-01-01

    Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts. PMID:22570715

  12. Perceptual Bias in Speech Error Data Collection: Insights from Spanish Speech Errors

    ERIC Educational Resources Information Center

    Perez, Elvira; Santiago, Julio; Palma, Alfonso; O'Seaghdha, Padraig G.

    2007-01-01

    This paper studies the reliability and validity of naturalistic speech errors as a tool for language production research. Possible biases when collecting naturalistic speech errors are identified and specific predictions derived. These patterns are then contrasted with published reports from Germanic languages (English, German and Dutch) and one…

  13. Reduced change blindness suggests enhanced attention to detail in individuals with autism.

    PubMed

    Smith, Hayley; Milne, Elizabeth

    2009-03-01

    The phenomenon of change blindness illustrates that a limited number of items within the visual scene are attended to at any one time. It has been suggested that individuals with autism focus attention on less contextually relevant aspects of the visual scene, show superior perceptual discrimination and notice details which are often ignored by typical observers. In this study we investigated change blindness in autism by asking participants to detect continuity errors deliberately introduced into a short film. Whether the continuity errors involved central/marginal or social/non-social aspects of the visual scene was varied. Thirty adolescent participants, 15 with autistic spectrum disorder (ASD) and 15 typically developing (TD) controls participated. The participants with ASD detected significantly more errors than the TD participants. Both groups identified more errors involving central rather than marginal aspects of the scene, although this effect was larger in the TD participants. There was no difference in the number of social or non-social errors detected by either group of participants. In line with previous data suggesting an abnormally broad attentional spotlight and enhanced perceptual function in individuals with ASD, the results of this study suggest enhanced awareness of the visual scene in ASD. The results of this study could reflect superior top-down control of visual search in autism, enhanced perceptual function, or inefficient filtering of visual information in ASD.

  14. Perceptually tuned low-bit-rate video codec for ATM networks

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien

    1996-02-01

    In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.

  15. JPEG2000 encoding with perceptual distortion control.

    PubMed

    Liu, Zhen; Karam, Lina J; Watson, Andrew B

    2006-07-01

    In this paper, a new encoding approach is proposed to control the JPEG2000 encoding in order to reach a desired perceptual quality. The new method is based on a vision model that incorporates various masking effects of human visual perception and a perceptual distortion metric that takes spatial and spectral summation of individual quantization errors into account. Compared with the conventional rate-based distortion minimization JPEG2000 encoding, the new method provides a way to generate consistent quality images at a lower bit rate.

  16. Perceptual learning of degraded speech by minimizing prediction error.

    PubMed

    Sohoglu, Ediz; Davis, Matthew H

    2016-03-22

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech.

  17. Perceptual learning of degraded speech by minimizing prediction error

    PubMed Central

    Sohoglu, Ediz

    2016-01-01

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech. PMID:26957596

  18. Prediction Error Associated with the Perceptual Segmentation of Naturalistic Events

    ERIC Educational Resources Information Center

    Zacks, Jeffrey M.; Kurby, Christopher A.; Eisenberg, Michelle L.; Haroutunian, Nayiri

    2011-01-01

    Predicting the near future is important for survival and plays a central role in theories of perception, language processing, and learning. Prediction failures may be particularly important for initiating the updating of perceptual and memory systems and, thus, for the subjective experience of events. Here, we asked observers to make predictions…

  19. Perceptual Confusions of the Manual Alphabet by Naive, Trained, and Familiar Users.

    ERIC Educational Resources Information Center

    Hawes, M. Dixie; Danhauer, Jeffrey L.

    1980-01-01

    An investigation of the confusion resulting from reliance on visual perceptual teachers in the identification of dactylemes (handshapes) in the American Manual Alphabet (MA) is reported. A hierarchy of errors varying with subjects' degree of expertness in the MA is established. This can help manual communication teachers develop techniques for…

  20. Why Today's Computers Don't Learn the Way People Do.

    ERIC Educational Resources Information Center

    Clancey, W. J.

    A major error in cognitive science has been to suppose that the meaning of a representation in the mind is known prior to its production. Representations are inherently perceptual--constructed by a perceptual process and given meaning by subsequent perception of them. The person perceiving the representation determines what it means. This premise…

  1. Effects of Perceptual Training on the Salience of Information in a Recall Problem.

    ERIC Educational Resources Information Center

    West, Robin L.; Odom, Richard D.

    1979-01-01

    Kindergarten children were given a salience-assessment task to determine each child's salience hierarchy for the dimensions of form, color, and position, and each was provided perceptual training with his/her least salient dimension. Training promoted fewer errors in recall in comparison to control group subjects. (RH)

  2. Association between unsafe driving performance and cognitive-perceptual dysfunction in older drivers.

    PubMed

    Park, Si-Woon; Choi, Eun Seok; Lim, Mun Hee; Kim, Eun Joo; Hwang, Sung Il; Choi, Kyung-In; Yoo, Hyun-Chul; Lee, Kuem Ju; Jung, Hi-Eun

    2011-03-01

    To find an association between cognitive-perceptual problems of older drivers and unsafe driving performance during simulated automobile driving in a virtual environment. Cross-sectional study. A driver evaluation clinic in a rehabilitation hospital. Fifty-five drivers aged 65 years or older and 48 drivers in their late twenties to early forties. All participants underwent evaluation of cognitive-perceptual function and driving performance, and the results were compared between older and younger drivers. The association between cognitive-perceptual function and driving performance was analyzed. Cognitive-perceptual function was evaluated with the Cognitive Perceptual Assessment for Driving (CPAD), a computer-based assessment tool consisting of depth perception, sustained attention, divided attention, the Stroop test, the digit span test, field dependency, and trail-making test A and B. Driving performance was evaluated with use of a virtual reality-based driving simulator. During simulated driving, car crashes were recorded, and an occupational therapist observed unsafe performances in controlling speed, braking, steering, vehicle positioning, making lane changes, and making turns. Thirty-five older drivers did not pass the CPAD test, whereas all of the younger drivers passed the test. When using the driving simulator, a significantly greater number of older drivers experienced car crashes and demonstrated unsafe performance in controlling speed, steering, and making lane changes. CPAD results were associated with car crashes, steering, vehicle positioning, and making lane changes. Older drivers who did not pass the CPAD test are 4 times more likely to experience a car crash, 3.5 times more likely to make errors in steering, 2.8 times more likely to make errors in vehicle positioning, and 6.5 times more likely to make errors in lane changes than are drivers who passed the CPAD test. Unsafe driving performance and car crashes during simulated driving were more prevalent in older drivers than in younger drivers. Unsafe performance in steering, vehicle positioning, making lane changes, and car crashes were associated with cognitive-perceptual dysfunction. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Predictive codes of familiarity and context during the perceptual learning of facial identities

    NASA Astrophysics Data System (ADS)

    Apps, Matthew A. J.; Tsakiris, Manos

    2013-11-01

    Face recognition is a key component of successful social behaviour. However, the computational processes that underpin perceptual learning and recognition as faces transition from unfamiliar to familiar are poorly understood. In predictive coding, learning occurs through prediction errors that update stimulus familiarity, but recognition is a function of both stimulus and contextual familiarity. Here we show that behavioural responses on a two-option face recognition task can be predicted by the level of contextual and facial familiarity in a computational model derived from predictive-coding principles. Using fMRI, we show that activity in the superior temporal sulcus varies with the contextual familiarity in the model, whereas activity in the fusiform face area covaries with the prediction error parameter that updated facial familiarity. Our results characterize the key computations underpinning the perceptual learning of faces, highlighting that the functional properties of face-processing areas conform to the principles of predictive coding.

  4. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson's disease?

    PubMed

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-03-01

    Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.

  5. Visual anticipation biases conscious decision making but not bottom-up visual processing.

    PubMed

    Mathews, Zenon; Cetnarski, Ryszard; Verschure, Paul F M J

    2014-01-01

    Prediction plays a key role in control of attention but it is not clear which aspects of prediction are most prominent in conscious experience. An evolving view on the brain is that it can be seen as a prediction machine that optimizes its ability to predict states of the world and the self through the top-down propagation of predictions and the bottom-up presentation of prediction errors. There are competing views though on whether prediction or prediction errors dominate the formation of conscious experience. Yet, the dynamic effects of prediction on perception, decision making and consciousness have been difficult to assess and to model. We propose a novel mathematical framework and a psychophysical paradigm that allows us to assess both the hierarchical structuring of perceptual consciousness, its content and the impact of predictions and/or errors on conscious experience, attention and decision-making. Using a displacement detection task combined with reverse correlation, we reveal signatures of the usage of prediction at three different levels of perceptual processing: bottom-up fast saccades, top-down driven slow saccades and consciousnes decisions. Our results suggest that the brain employs multiple parallel mechanism at different levels of perceptual processing in order to shape effective sensory consciousness within a predicted perceptual scene. We further observe that bottom-up sensory and top-down predictive processes can be dissociated through cognitive load. We propose a probabilistic data association model from dynamical systems theory to model the predictive multi-scale bias in perceptual processing that we observe and its role in the formation of conscious experience. We propose that these results support the hypothesis that consciousness provides a time-delayed description of a task that is used to prospectively optimize real time control structures, rather than being engaged in the real-time control of behavior itself.

  6. Perceptual Calibration for Immersive Display Environments

    PubMed Central

    Ponto, Kevin; Gleicher, Michael; Radwin, Robert G.; Shin, Hyun Joon

    2013-01-01

    The perception of objects, depth, and distance has been repeatedly shown to be divergent between virtual and physical environments. We hypothesize that many of these discrepancies stem from incorrect geometric viewing parameters, specifically that physical measurements of eye position are insufficiently precise to provide proper viewing parameters. In this paper, we introduce a perceptual calibration procedure derived from geometric models. While most research has used geometric models to predict perceptual errors, we instead use these models inversely to determine perceptually correct viewing parameters. We study the advantages of these new psychophysically determined viewing parameters compared to the commonly used measured viewing parameters in an experiment with 20 subjects. The perceptually calibrated viewing parameters for the subjects generally produced new virtual eye positions that were wider and deeper than standard practices would estimate. Our study shows that perceptually calibrated viewing parameters can significantly improve depth acuity, distance estimation, and the perception of shape. PMID:23428454

  7. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback.

    PubMed

    Cler, Gabriel J; Lee, Jackson C; Mittelman, Talia; Stepp, Cara E; Bohland, Jason W

    2017-06-22

    Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. https://doi.org/10.23641/asha.5103067.

  8. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback

    PubMed Central

    Lee, Jackson C.; Mittelman, Talia; Stepp, Cara E.; Bohland, Jason W.

    2017-01-01

    Purpose Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Method Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. Results New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. Conclusions This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. Supplemental Material https://doi.org/10.23641/asha.5103067 PMID:28655038

  9. Human Motion Perception and Smooth Eye Movements Show Similar Directional Biases for Elongated Apertures

    NASA Technical Reports Server (NTRS)

    Beutter, Brent R.; Stone, Leland S.

    1997-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  10. Human motion perception and smooth eye movements show similar directional biases for elongated apertures

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Stone, L. S.

    1998-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye-movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical, suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  11. Development of Countermeasures for Driver Maneuver Errors

    DOT National Transportation Integrated Search

    1999-12-01

    Drivers may make errors that result in a collision with another vehicle, even when they are aware of the presence of the conflicting vehicle. This is because perceptual judgments about time, space, and speed are imperfect, and can lead to misjudgment...

  12. Selective impairment of living things and musical instruments on a verbal 'Semantic Knowledge Questionnaire' in a case of apperceptive visual agnosia.

    PubMed

    Masullo, Carlo; Piccininni, Chiara; Quaranta, Davide; Vita, Maria Gabriella; Gaudino, Simona; Gainotti, Guido

    2012-10-01

    Semantic memory was investigated in a patient (MR) affected by a severe apperceptive visual agnosia, due to an ischemic cerebral lesion, bilaterally affecting the infero-mesial parts of the temporo-occipital cortices. The study was made by means of a Semantic Knowledge Questionnaire (Laiacona, Barbarotto, Trivelli, & Capitani, 1993), which takes separately into account four categories of living beings (animals, fruits, vegetables and body parts) and of artefacts (furniture, tools, vehicles and musical instruments), does not require a visual analysis and allows to distinguish errors concerning super-ordinate categorization, perceptual features and functional/encyclopedic knowledge. When the total number of errors obtained on all the categories of living and non-living beings was considered, a non-significant trend toward a higher number of errors in living stimuli was observed. This difference, however, became significant when body parts and musical instruments were excluded from the analysis. Furthermore, the number of errors obtained on the musical instruments was similar to that obtained on the living categories of animals, fruits and vegetables and significantly higher of that obtained in the other artefact categories. This difference was still significant when familiarity, frequency of use and prototypicality of each stimulus entered into a logistic regression analysis. On the other hand, a separate analysis of errors obtained on questions exploring super-ordinate categorization, perceptual features and functional/encyclopedic attributes showed that the differences between living and non-living stimuli and between musical instruments and other artefact categories were mainly due to errors obtained on questions exploring perceptual features. All these data are at variance with the 'domains of knowledge' hypothesis', which assumes that the breakdown of different categories of living and non-living things respects the distinction between biological entities and artefacts and support the models assuming that 'category-specific semantic disorders' are the by-product of the differential weighting that visual-perceptual and functional (or action-related) attributes have in the construction of different biological and artefacts categories. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The Interaction of Ambient Frequency and Feature Complexity in the Diphthong Errors of Children with Phonological Disorders.

    ERIC Educational Resources Information Center

    Stokes, Stephanie F.; Lau, Jessica Tse-Kay; Ciocca, Valter

    2002-01-01

    This study examined the interaction of ambient frequency and feature complexity in the diphthong errors produced by 13 Cantonese-speaking children with phonological disorders. Perceptual analysis of 611 diphthongs identified those most frequently and least frequently in error. Suggested treatment guidelines include consideration of three factors:…

  14. Error Monitoring in Speech Production: A Computational Test of the Perceptual Loop Theory.

    ERIC Educational Resources Information Center

    Hartsuiker, Robert J.; Kolk, Herman H. J.

    2001-01-01

    Tested whether an elaborated version of the perceptual loop theory (W. Levelt, 1983) and the main interruption rule was consistent with existing time course data (E. Blackmer and E. Mitton, 1991; C. Oomen and A. Postma, in press). The study suggests that including an inner loop through the speech comprehension system generates predictions that fit…

  15. Factors influencing individual variation in perceptual directional microphone benefit.

    PubMed

    Keidser, Gitte; Dillon, Harvey; Convery, Elizabeth; Mejia, Jorge

    2013-01-01

    Large variations in perceptual directional microphone benefit, which far exceed the variation expected from physical performance measures of directional microphones, have been reported in the literature. The cause for the individual variation has not been systematically investigated. To determine the factors that are responsible for the individual variation in reported perceptual directional benefit. A correlational study. Physical performance measures of the directional microphones obtained after they had been fitted to individuals, cognitive abilities of individuals, and measurement errors were related to perceptual directional benefit scores. Fifty-nine hearing-impaired adults with varied degrees of hearing loss participated in the study. All participants were bilaterally fitted with a Motion behind-the-ear device (500 M, 501 SX, or 501 P) from Siemens according to the National Acoustic Laboratories' non-linear prescription, version two (NAL-NL2). Using the Bamford-Kowal-Bench (BKB) sentences, the perceptual directional benefit was obtained as the difference in speech reception threshold measured in babble noise (SRTn) with the devices in directional (fixed hypercardioid) and in omnidirectional mode. The SRTn measurements were repeated three times with each microphone mode. Physical performance measures of the directional microphone included the angle of the microphone ports to loudspeaker axis, the frequency range dominated by amplified sound, the in situ signal-to-noise ratio (SNR), and the in situ three-dimensional, articulation-index weighted directivity index (3D AI-DI). The cognitive tests included auditory selective attention, speed of processing, and working memory. Intraparticipant variation on the repeated SRTn's and the interparticipant variation on the average SRTn were used to determine the effect of measurement error. A multiple regression analysis was used to determine the effect of other factors. Measurement errors explained 52% of the variation in perceptual directional microphone benefit (95% confidence interval [CI]: 34-78%), while another 37% of variation was explained primarily by the physical performance of the directional microphones after they were fitted to individuals. The most contributing factor was the in situ 3D AI-DI measured across the low frequencies. Repeated SRTn measurements are needed to obtain a reliable indication of the perceptual directional benefit in an individual. Further, to obtain optimum benefit from directional microphones, the effectiveness of the microphones should be maximized across the low frequencies. American Academy of Audiology.

  16. Perceptually lossless fractal image compression

    NASA Astrophysics Data System (ADS)

    Lin, Huawu; Venetsanopoulos, Anastasios N.

    1996-02-01

    According to the collage theorem, the encoding distortion for fractal image compression is directly related to the metric used in the encoding process. In this paper, we introduce a perceptually meaningful distortion measure based on the human visual system's nonlinear response to luminance and the visual masking effects. Blackwell's psychophysical raw data on contrast threshold are first interpolated as a function of background luminance and visual angle, and are then used as an error upper bound for perceptually lossless image compression. For a variety of images, experimental results show that the algorithm produces a compression ratio of 8:1 to 10:1 without introducing visual artifacts.

  17. Individual Differences at High Perceptual Load: The Relation between Trait Anxiety and Selective Attention

    PubMed Central

    Sadeh, Naomi; Bredemeier, Keith

    2010-01-01

    Attentional control theory (Eysenck et al., 2007) posits that taxing attentional resources impairs performance efficiency in anxious individuals. This theory, however, does not explicitly address if or how the relation between anxiety and attentional control depends upon the perceptual demands of the task at hand. Consequently, the present study examined the relation between trait anxiety and task performance using a perceptual load task (Maylor & Lavie, 1998). Sixty-eight male college students completed a visual search task that indexed processing of irrelevant distractors systematically across four levels of perceptual load. Results indicated that anxiety was related to difficulty suppressing the behavioral effects of irrelevant distractors (i.e., decreased reaction time efficiency) under high, but not low, perceptual loads. In contrast, anxiety was not associated with error rates on the task. These findings are consistent with the prediction that anxiety is associated with impairments in performance efficiency under conditions that tax attentional resources. PMID:21547776

  18. Individual differences at high perceptual load: the relation between trait anxiety and selective attention.

    PubMed

    Sadeh, Naomi; Bredemeier, Keith

    2011-06-01

    Attentional control theory (Eysenck et al., 2007) posits that taxing attentional resources impairs performance efficiency in anxious individuals. This theory, however, does not explicitly address if or how the relation between anxiety and attentional control depends upon the perceptual demands of the task at hand. Consequently, the present study examined the relation between trait anxiety and task performance using a perceptual load task (Maylor & Lavie, 1998). Sixty-eight male college students completed a visual search task that indexed processing of irrelevant distractors systematically across four levels of perceptual load. Results indicated that anxiety was related to difficulty suppressing the behavioural effects of irrelevant distractors (i.e., decreased reaction time efficiency) under high, but not low, perceptual loads. In contrast, anxiety was not associated with error rates on the task. These findings are consistent with the prediction that anxiety is associated with impairments in performance efficiency under conditions that tax attentional resources.

  19. DCTune Perceptual Optimization of Compressed Dental X-Rays

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)

    1997-01-01

    In current dental practice, x-rays of completed dental work are often sent to the insurer for verification. It is faster and cheaper to transmit instead digital scans of the x-rays. Further economies result if the images are sent in compressed form. DCtune is a technology for optimizing DCT quantization matrices to yield maximum perceptual quality for a given bit-rate, or minimum bit-rate for a given perceptual quality. In addition, the technology provides a means of setting the perceptual quality of compressed imagery in a systematic way. The purpose of this research was, with respect to dental x-rays: (1) to verify the advantage of DCTune over standard JPEG; (2) to verify the quality control feature of DCTune; and (3) to discover regularities in the optimized matrices of a set of images. Additional information is contained in the original extended abstract.

  20. Human Error and Commercial Aviation Accidents: A Comprehensive, Fine-Grained Analysis Using HFACS

    DTIC Science & Technology

    2006-07-01

    Factors Figure 2. The HFACS framework. 3 practiced and seemingly automatic behaviors is that they are particularly susceptible to attention and/or memory...been included in most error frameworks, the third and final error form, perceptual errors, has received comparatively less attention . No less...operate safely. After all, just as not everyone can play linebacker for their favorite professional football team or be a concert pianist , not

  1. Visual anticipation biases conscious decision making but not bottom-up visual processing

    PubMed Central

    Mathews, Zenon; Cetnarski, Ryszard; Verschure, Paul F. M. J.

    2015-01-01

    Prediction plays a key role in control of attention but it is not clear which aspects of prediction are most prominent in conscious experience. An evolving view on the brain is that it can be seen as a prediction machine that optimizes its ability to predict states of the world and the self through the top-down propagation of predictions and the bottom-up presentation of prediction errors. There are competing views though on whether prediction or prediction errors dominate the formation of conscious experience. Yet, the dynamic effects of prediction on perception, decision making and consciousness have been difficult to assess and to model. We propose a novel mathematical framework and a psychophysical paradigm that allows us to assess both the hierarchical structuring of perceptual consciousness, its content and the impact of predictions and/or errors on conscious experience, attention and decision-making. Using a displacement detection task combined with reverse correlation, we reveal signatures of the usage of prediction at three different levels of perceptual processing: bottom-up fast saccades, top-down driven slow saccades and consciousnes decisions. Our results suggest that the brain employs multiple parallel mechanism at different levels of perceptual processing in order to shape effective sensory consciousness within a predicted perceptual scene. We further observe that bottom-up sensory and top-down predictive processes can be dissociated through cognitive load. We propose a probabilistic data association model from dynamical systems theory to model the predictive multi-scale bias in perceptual processing that we observe and its role in the formation of conscious experience. We propose that these results support the hypothesis that consciousness provides a time-delayed description of a task that is used to prospectively optimize real time control structures, rather than being engaged in the real-time control of behavior itself. PMID:25741290

  2. Should learners reason one step at a time? A randomised trial of two diagnostic scheme designs.

    PubMed

    Blissett, Sarah; Morrison, Deric; McCarty, David; Sibbald, Matthew

    2017-04-01

    Making a diagnosis can be difficult for learners as they must integrate multiple clinical variables. Diagnostic schemes can help learners with this complex task. A diagnostic scheme is an algorithm that organises possible diagnoses by assigning signs or symptoms (e.g. systolic murmur) to groups of similar diagnoses (e.g. aortic stenosis and aortic sclerosis) and provides distinguishing features to help discriminate between similar diagnoses (e.g. carotid pulse). The current literature does not identify whether scheme layouts should guide learners to reason one step at a time in a terminally branching scheme or weigh multiple variables simultaneously in a hybrid scheme. We compared diagnostic accuracy, perceptual errors and cognitive load using two scheme layouts for cardiac auscultation. Focused on the task of identifying murmurs on Harvey, a cardiopulmonary simulator, 86 internal medicine residents used two scheme layouts. The terminally branching scheme organised the information into single variable decisions. The hybrid scheme combined single variable decisions with a chart integrating multiple distinguishing features. Using a crossover design, participants completed one set of murmurs (diastolic or systolic) with either the terminally branching or the hybrid scheme. The second set of murmurs was completed with the other scheme. A repeated measures manova was performed to compare diagnostic accuracy, perceptual errors and cognitive load between the scheme layouts. There was a main effect of the scheme layout (Wilks' λ = 0.841, F 3,80 = 5.1, p = 0.003). Use of a terminally branching scheme was associated with increased diagnostic accuracy (65 versus 53%, p = 0.02), fewer perceptual errors (0.61 versus 0.98 errors, p = 0.001) and lower cognitive load (3.1 versus 3.5/7, p = 0.023). The terminally branching scheme was associated with improved diagnostic accuracy, fewer perceptual errors and lower cognitive load, suggesting that terminally branching schemes are effective for improving diagnostic accuracy. These findings can inform the design of schemes and other clinical decision aids. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  3. Active inference, communication and hermeneutics☆

    PubMed Central

    Friston, Karl J.; Frith, Christopher D.

    2015-01-01

    Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others – during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions – both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then – in principle – they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa. PMID:25957007

  4. Active inference, communication and hermeneutics.

    PubMed

    Friston, Karl J; Frith, Christopher D

    2015-07-01

    Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others--during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions--both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then--in principle--they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Psychophysical evaluation of three-dimensional auditory displays

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.

    1991-01-01

    Work during this reporting period included the completion of our research on the use of principal components analysis (PCA) to model the acoustical head related transfer functions (HRTFs) that are used to synthesize virtual sources for three dimensional auditory displays. In addition, a series of studies was initiated on the perceptual errors made by listeners when localizing free-field and virtual sources. Previous research has revealed that under certain conditions these perceptual errors, often called 'confusions' or 'reversals', are both large and frequent, thus seriously comprising the utility of a 3-D virtual auditory display. The long-range goal of our work in this area is to elucidate the sources of the confusions and to develop signal-processing strategies to reduce or eliminate them.

  6. Linking Cognitive and Visual Perceptual Decline in Healthy Aging: The Information Degradation Hypothesis

    PubMed Central

    Monge, Zachary A.; Madden, David J.

    2016-01-01

    Several hypotheses attempt to explain the relation between cognitive and perceptual decline in aging (e.g., common-cause, sensory deprivation, cognitive load on perception, information degradation). Unfortunately, the majority of past studies examining this association have used correlational analyses, not allowing for these hypotheses to be tested sufficiently. This correlational issue is especially relevant for the information degradation hypothesis, which states that degraded perceptual signal inputs, resulting from either age-related neurobiological processes (e.g., retinal degeneration) or experimental manipulations (e.g., reduced visual contrast), lead to errors in perceptual processing, which in turn may affect non-perceptual, higher-order cognitive processes. Even though the majority of studies examining the relation between age-related cognitive and perceptual decline have been correlational, we reviewed several studies demonstrating that visual manipulations affect both younger and older adults’ cognitive performance, supporting the information degradation hypothesis and contradicting implications of other hypotheses (e.g., common-cause, sensory deprivation, cognitive load on perception). The reviewed evidence indicates the necessity to further examine the information degradation hypothesis in order to identify mechanisms underlying age-related cognitive decline. PMID:27484869

  7. Variability in Stepping Direction Explains the Veering Behavior of Blind Walkers

    ERIC Educational Resources Information Center

    Kallie, Christopher S.; Schrater, Paul R.; Legge, Gordon E.

    2007-01-01

    Walking without vision results in veering, an inability to maintain a straight path that has important consequences for blind pedestrians. In this study, the authors addressed whether the source of veering in the absence of visual and auditory feedback is better attributed to errors in perceptual encoding or undetected motor error. Three…

  8. Perceptual and response-dependent profiles of attention in children with ADHD.

    PubMed

    Caspersen, Ida Dyhr; Petersen, Anders; Vangkilde, Signe; Plessen, Kerstin Jessica; Habekost, Thomas

    2017-05-01

    Attention-deficit hyperactivity disorder (ADHD) is a complex developmental neuropsychiatric disorder, characterized by inattentiveness, impulsivity, and hyperactivity. Recent literature suggests a potential core deficit underlying these behaviors may involve inefficient processing when contextual stimulation is low. In order to specify this inefficiency, the aim of the present study was to disentangle perceptual and response-based deficits of attention by supplementing classic reaction time (RT) measures with an accuracy-only test. Moreover, it was explored whether ADHD symptom severity was systematically related to perceptual and response-based processes. We applied an RT-independent paradigm (Bundesen, 1990) and a sustained attention task (Dockree et al., 2006) to test visual attention in 24 recently diagnosed, medication-naïve children with ADHD, 14 clinical controls with pervasive developmental disorder, and 57 healthy controls. Outcome measures included perceptual processing speed, capacity of visual short-term memory, and errors of commission and omission. Children with ADHD processed information abnormally slow (d = 0.92), and performed poorly on RT variability and response stability (d's ranging from 0.60 to 1.08). In the ADHD group only, slowed visual processing speed was significantly related to response lapses (omission errors). This correlation was not explained by behavioral ratings of ADHD severity. Based on combined assessment of perceptual and response-dependent variables of attention, the present study demonstrates a specific cognitive profile in children with ADHD. This profile distinguishes the disorder at a basic level of attentional functioning, and may define subgroups of children with ADHD in a way that is more sensitive than clinical rating scales. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Tactile Cueing as a Gravitational Substitute for Spatial Navigation During Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Montgomery, K. L.; Beaton, K. H.; Barba, J. M.; Cackler, J. M.; Son, J. H.; Horsfield, S. P.; Wood, S. J.

    2010-01-01

    INTRODUCTION: Spatial navigation requires an accurate awareness of orientation in your environment. The purpose of this experiment was to examine how spatial awareness was impaired with changing gravitational cues during parabolic flight, and the extent to which vibrotactile feedback of orientation could be used to help improve performance. METHODS: Six subjects were restrained in a chair tilted relative to the plane floor, and placed at random positions during the start of the microgravity phase. Subjects reported their orientation using verbal reports, and used a hand-held controller to point to a desired target location presented using a virtual reality video mask. This task was repeated with and without constant tactile cueing of "down" direction using a belt of 8 tactors placed around the mid-torso. Control measures were obtained during ground testing using both upright and tilted conditions. RESULTS: Perceptual estimates of orientation and pointing accuracy were impaired during microgravity or during rotation about an upright axis in 1g. The amount of error was proportional to the amount of chair displacement. Perceptual errors were reduced during movement about a tilted axis on earth. CONCLUSIONS: Reduced perceptual errors during tilts in 1g indicate the importance of otolith and somatosensory cues for maintaining spatial awareness. Tactile cueing may improve navigation in operational environments or clinical populations, providing a non-visual non-auditory feedback of orientation or desired direction heading.

  10. Perceptual learning in sensorimotor adaptation.

    PubMed

    Darainy, Mohammad; Vahdat, Shahabeddin; Ostry, David J

    2013-11-01

    Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning.

  11. Digital visual communications using a Perceptual Components Architecture

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1991-01-01

    The next era of space exploration will generate extraordinary volumes of image data, and management of this image data is beyond current technical capabilities. We propose a strategy for coding visual information that exploits the known properties of early human vision. This Perceptual Components Architecture codes images and image sequences in terms of discrete samples from limited bands of color, spatial frequency, orientation, and temporal frequency. This spatiotemporal pyramid offers efficiency (low bit rate), variable resolution, device independence, error-tolerance, and extensibility.

  12. A global/local affinity graph for image segmentation.

    PubMed

    Xiaofang Wang; Yuxing Tang; Masnou, Simon; Liming Chen

    2015-04-01

    Construction of a reliable graph capturing perceptual grouping cues of an image is fundamental for graph-cut based image segmentation methods. In this paper, we propose a novel sparse global/local affinity graph over superpixels of an input image to capture both short- and long-range grouping cues, and thereby enabling perceptual grouping laws, including proximity, similarity, continuity, and to enter in action through a suitable graph-cut algorithm. Moreover, we also evaluate three major visual features, namely, color, texture, and shape, for their effectiveness in perceptual segmentation and propose a simple graph fusion scheme to implement some recent findings from psychophysics, which suggest combining these visual features with different emphases for perceptual grouping. In particular, an input image is first oversegmented into superpixels at different scales. We postulate a gravitation law based on empirical observations and divide superpixels adaptively into small-, medium-, and large-sized sets. Global grouping is achieved using medium-sized superpixels through a sparse representation of superpixels' features by solving a ℓ0-minimization problem, and thereby enabling continuity or propagation of local smoothness over long-range connections. Small- and large-sized superpixels are then used to achieve local smoothness through an adjacent graph in a given feature space, and thus implementing perceptual laws, for example, similarity and proximity. Finally, a bipartite graph is also introduced to enable propagation of grouping cues between superpixels of different scales. Extensive experiments are carried out on the Berkeley segmentation database in comparison with several state-of-the-art graph constructions. The results show the effectiveness of the proposed approach, which outperforms state-of-the-art graphs using four different objective criteria, namely, the probabilistic rand index, the variation of information, the global consistency error, and the boundary displacement error.

  13. Response Errors in Females' and Males' Sentence Lipreading Necessitate Structurally Different Models for Predicting Lipreading Accuracy

    ERIC Educational Resources Information Center

    Bernstein, Lynne E.

    2018-01-01

    Lipreaders recognize words with phonetically impoverished stimuli, an ability that varies widely in normal-hearing adults. Lipreading accuracy for sentence stimuli was modeled with data from 339 normal-hearing adults. Models used measures of phonemic perceptual errors, insertion of text that was not in the stimulus, gender, and auditory speech…

  14. Minimum-error quantum distinguishability bounds from matrix monotone functions: A comment on 'Two-sided estimates of minimum-error distinguishability of mixed quantum states via generalized Holevo-Curlander bounds' [J. Math. Phys. 50, 032106 (2009)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyson, Jon

    2009-06-15

    Matrix monotonicity is used to obtain upper bounds on minimum-error distinguishability of arbitrary ensembles of mixed quantum states. This generalizes one direction of a two-sided bound recently obtained by the author [J. Tyson, J. Math. Phys. 50, 032106 (2009)]. It is shown that the previously obtained special case has unique properties.

  15. A Tangent Bundle Theory for Visual Curve Completion.

    PubMed

    Ben-Yosef, Guy; Ben-Shahar, Ohad

    2012-07-01

    Visual curve completion is a fundamental perceptual mechanism that completes the missing parts (e.g., due to occlusion) between observed contour fragments. Previous research into the shape of completed curves has generally followed an "axiomatic" approach, where desired perceptual/geometrical properties are first defined as axioms, followed by mathematical investigation into curves that satisfy them. However, determining psychophysically such desired properties is difficult and researchers still debate what they should be in the first place. Instead, here we exploit the observation that curve completion is an early visual process to formalize the problem in the unit tangent bundle R(2) × S(1), which abstracts the primary visual cortex (V1) and facilitates exploration of basic principles from which perceptual properties are later derived rather than imposed. Exploring here the elementary principle of least action in V1, we show how the problem becomes one of finding minimum-length admissible curves in R(2) × S(1). We formalize the problem in variational terms, we analyze it theoretically, and we formulate practical algorithms for the reconstruction of these completed curves. We then explore their induced visual properties vis-à-vis popular perceptual axioms and show how our theory predicts many perceptual properties reported in the corresponding perceptual literature. Finally, we demonstrate a variety of curve completions and report comparisons to psychophysical data and other completion models.

  16. Relation between perception of vertical axis rotation and vestibulo-ocular reflex symmetry

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Benolken, Martha S.

    1991-01-01

    Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in the subject's perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function which could be of either central or peripheral origin. Deviations from perfect vestibulocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. Researchers looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflective and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests on the same subjects of both perceptual bias and VOR symmetry were well correlated.

  17. Perceived association between diagnostic and non-diagnostic cues of women's sexual interest: General Recognition Theory predictors of risk for sexual coercion.

    PubMed

    Farris, Coreen; Viken, Richard J; Treat, Teresa A

    2010-01-01

    Young men's errors in sexual perception have been linked to sexual coercion. The current investigation sought to explicate the perceptual and decisional sources of these social perception errors, as well as their link to risk for sexual violence. General Recognition Theory (GRT; [Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological Review, 93, 154-179]) was used to estimate participants' ability to discriminate between affective cues and clothing style cues and to measure illusory correlations between men's perception of women's clothing style and sexual interest. High-risk men were less sensitive to the distinction between women's friendly and sexual interest cues relative to other men. In addition, they were more likely to perceive an illusory correlation between women's diagnostic sexual interest cues (e.g., facial affect) and non-diagnostic cues (e.g., provocative clothing), which increases the probability that high-risk men will misperceive friendly women as intending to communicate sexual interest. The results provide information about the degree of risk conferred by individual differences in perceptual processing of women's interest cues, and also illustrate how translational scientists might adapt GRT to examine research questions about individual differences in social perception.

  18. Predictive Coding or Evidence Accumulation? False Inference and Neuronal Fluctuations

    PubMed Central

    Friston, Karl J.; Kleinschmidt, Andreas

    2010-01-01

    Perceptual decisions can be made when sensory input affords an inference about what generated that input. Here, we report findings from two independent perceptual experiments conducted during functional magnetic resonance imaging (fMRI) with a sparse event-related design. The first experiment, in the visual modality, involved forced-choice discrimination of coherence in random dot kinematograms that contained either subliminal or periliminal motion coherence. The second experiment, in the auditory domain, involved free response detection of (non-semantic) near-threshold acoustic stimuli. We analysed fluctuations in ongoing neural activity, as indexed by fMRI, and found that neuronal activity in sensory areas (extrastriate visual and early auditory cortex) biases perceptual decisions towards correct inference and not towards a specific percept. Hits (detection of near-threshold stimuli) were preceded by significantly higher activity than both misses of identical stimuli or false alarms, in which percepts arise in the absence of appropriate sensory input. In accord with predictive coding models and the free-energy principle, this observation suggests that cortical activity in sensory brain areas reflects the precision of prediction errors and not just the sensory evidence or prediction errors per se. PMID:20369004

  19. Perception of Self-Motion and Regulation of Walking Speed in Young-Old Adults.

    PubMed

    Lalonde-Parsi, Marie-Jasmine; Lamontagne, Anouk

    2015-07-01

    Whether a reduced perception of self-motion contributes to poor walking speed adaptations in older adults is unknown. In this study, speed discrimination thresholds (perceptual task) and walking speed adaptations (walking task) were compared between young (19-27 years) and young-old individuals (63-74 years), and the relationship between the performance on the two tasks was examined. Participants were evaluated while viewing a virtual corridor in a helmet-mounted display. Speed discrimination thresholds were determined using a staircase procedure. Walking speed modulation was assessed on a self-paced treadmill while exposed to different self-motion speeds ranging from 0.25 to 2 times the participants' comfortable speed. For each speed, participants were instructed to match the self-motion speed described by the moving corridor. On the walking task, participants displayed smaller walking speed errors at comfortable walking speeds compared with slower of faster speeds. The young-old adults presented larger speed discrimination thresholds (perceptual experiment) and larger walking speed errors (walking experiment) compared with young adults. Larger walking speed errors were associated with higher discrimination thresholds. The enhanced performance on the walking task at comfortable speed suggests that intersensory calibration processes are influenced by experience, hence optimized for frequently encountered conditions. The altered performance of the young-old adults on the perceptual and walking tasks, as well as the relationship observed between the two tasks, suggest that a poor perception of visual motion information may contribute to the poor walking speed adaptations that arise with aging.

  20. The elusive illusion: Do children (Homo sapiens) and capuchin monkeys (Cebus apella) see the Solitaire illusion?

    PubMed

    Parrish, Audrey E; Agrillo, Christian; Perdue, Bonnie M; Beran, Michael J

    2016-02-01

    One approach to gaining a better understanding of how we perceive the world is to assess the errors that human and nonhuman animals make in perceptual processing. Developmental and comparative perspectives can contribute to identifying the mechanisms that underlie systematic perceptual errors often referred to as perceptual illusions. In the visual domain, some illusions appear to remain constant across the lifespan, whereas others change with age. From a comparative perspective, many of the illusions observed in humans appear to be shared with nonhuman primates. Numerosity illusions are a subset of visual illusions and occur when the spatial arrangement of stimuli within a set influences the perception of quantity. Previous research has found one such illusion that readily occurs in human adults, the Solitaire illusion. This illusion appears to be less robust in two monkey species, rhesus macaques and capuchin monkeys. We attempted to clarify the ontogeny of this illusion from a developmental and comparative perspective by testing human children and task-naïve capuchin monkeys in a computerized quantity judgment task. The overall performance of the monkeys suggested that they perceived the numerosity illusion, although there were large differences among individuals. Younger children performed similarly to the monkeys, whereas older children more consistently perceived the illusion. These findings suggest that human-unique perceptual experiences with the world might play an important role in the emergence of the Solitaire illusion in human adults, although other factors also may contribute. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Distortions in memory for visual displays

    NASA Technical Reports Server (NTRS)

    Tversky, Barbara

    1989-01-01

    Systematic errors in perception and memory present a challenge to theories of perception and memory and to applied psychologists interested in overcoming them as well. A number of systematic errors in memory for maps and graphs are reviewed, and they are accounted for by an analysis of the perceptual processing presumed to occur in comprehension of maps and graphs. Visual stimuli, like verbal stimuli, are organized in comprehension and memory. For visual stimuli, the organization is a consequence of perceptual processing, which is bottom-up or data-driven in its earlier stages, but top-down and affected by conceptual knowledge later on. Segregation of figure from ground is an early process, and figure recognition later; for both, symmetry is a rapidly detected and ecologically valid cue. Once isolated, figures are organized relative to one another and relative to a frame of reference. Both perceptual (e.g., salience) and conceptual factors (e.g., significance) seem likely to affect selection of a reference frame. Consistent with the analysis, subjects perceived and remembered curves in graphs and rivers in maps as more symmetric than they actually were. Symmetry, useful for detecting and recognizing figures, distorts map and graph figures alike. Top-down processes also seem to operate in that calling attention to the symmetry vs. asymmetry of a slightly asymmetric curve yielded memory errors in the direction of the description. Conceptual frame of reference effects were demonstrated in memory for lines embedded in graphs. In earlier work, the orientation of map figures was distorted in memory toward horizontal or vertical. In recent work, graph lines, but not map lines, were remembered as closer to an imaginary 45 deg line than they had been. Reference frames are determined by both perceptual and conceptual factors, leading to selection of the canonical axes as a reference frame in maps, but selection of the imaginary 45 deg as a reference frame in graphs.

  2. Asymmetric vestibular stimulation reveals persistent disruption of motion perception in unilateral vestibular lesions.

    PubMed

    Panichi, R; Faralli, M; Bruni, R; Kiriakarely, A; Occhigrossi, C; Ferraresi, A; Bronstein, A M; Pettorossi, V E

    2017-11-01

    Self-motion perception was studied in patients with unilateral vestibular lesions (UVL) due to acute vestibular neuritis at 1 wk and 4, 8, and 12 mo after the acute episode. We assessed vestibularly mediated self-motion perception by measuring the error in reproducing the position of a remembered visual target at the end of four cycles of asymmetric whole-body rotation. The oscillatory stimulus consists of a slow (0.09 Hz) and a fast (0.38 Hz) half cycle. A large error was present in UVL patients when the slow half cycle was delivered toward the lesion side, but minimal toward the healthy side. This asymmetry diminished over time, but it remained abnormally large at 12 mo. In contrast, vestibulo-ocular reflex responses showed a large direction-dependent error only initially, then they normalized. Normalization also occurred for conventional reflex vestibular measures (caloric tests, subjective visual vertical, and head shaking nystagmus) and for perceptual function during symmetric rotation. Vestibular-related handicap, measured with the Dizziness Handicap Inventory (DHI) at 12 mo correlated with self-motion perception asymmetry but not with abnormalities in vestibulo-ocular function. We conclude that 1 ) a persistent self-motion perceptual bias is revealed by asymmetric rotation in UVLs despite vestibulo-ocular function becoming symmetric over time, 2 ) this dissociation is caused by differential perceptual-reflex adaptation to high- and low-frequency rotations when these are combined as with our asymmetric stimulus, 3 ) the findings imply differential central compensation for vestibuloperceptual and vestibulo-ocular reflex functions, and 4 ) self-motion perception disruption may mediate long-term vestibular-related handicap in UVL patients. NEW & NOTEWORTHY A novel vestibular stimulus, combining asymmetric slow and fast sinusoidal half cycles, revealed persistent vestibuloperceptual dysfunction in unilateral vestibular lesion (UVL) patients. The compensation of motion perception after UVL was slower than that of vestibulo-ocular reflex. Perceptual but not vestibulo-ocular reflex deficits correlated with dizziness-related handicap. Copyright © 2017 the American Physiological Society.

  3. Method and Apparatus for Powered Descent Guidance

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet (Inventor); Blackmore, James C. L. (Inventor); Scharf, Daniel P. (Inventor)

    2013-01-01

    A method and apparatus for landing a spacecraft having thrusters with non-convex constraints is described. The method first computes a solution to a minimum error landing problem for a convexified constraints, then applies that solution to a minimum fuel landing problem for convexified constraints. The result is a solution that is a minimum error and minimum fuel solution that is also a feasible solution to the analogous system with non-convex thruster constraints.

  4. Evaluation of speech errors in Putonghua speakers with cleft palate: a critical review of methodology issues.

    PubMed

    Jiang, Chenghui; Whitehill, Tara L

    2014-04-01

    Speech errors associated with cleft palate are well established for English and several other Indo-European languages. Few articles describing the speech of Putonghua (standard Mandarin Chinese) speakers with cleft palate have been published in English language journals. Although methodological guidelines have been published for the perceptual speech evaluation of individuals with cleft palate, there has been no critical review of methodological issues in studies of Putonghua speakers with cleft palate. A literature search was conducted to identify relevant studies published over the past 30 years in Chinese language journals. Only studies incorporating perceptual analysis of speech were included. Thirty-seven articles which met inclusion criteria were analyzed and coded on a number of methodological variables. Reliability was established by having all variables recoded for all studies. This critical review identified many methodological issues. These design flaws make it difficult to draw reliable conclusions about characteristic speech errors in this group of speakers. Specific recommendations are made to improve the reliability and validity of future studies, as well to facilitate cross-center comparisons.

  5. Spatial But Not Oculomotor Information Biases Perceptual Memory: Evidence From Face Perception and Cognitive Modeling.

    PubMed

    Wantz, Andrea L; Lobmaier, Janek S; Mast, Fred W; Senn, Walter

    2017-08-01

    Recent research put forward the hypothesis that eye movements are integrated in memory representations and are reactivated when later recalled. However, "looking back to nothing" during recall might be a consequence of spatial memory retrieval. Here, we aimed at distinguishing between the effect of spatial and oculomotor information on perceptual memory. Participants' task was to judge whether a morph looked rather like the first or second previously presented face. Crucially, faces and morphs were presented in a way that the morph reactivated oculomotor and/or spatial information associated with one of the previously encoded faces. Perceptual face memory was largely influenced by these manipulations. We considered a simple computational model with an excellent match (4.3% error) that expresses these biases as a linear combination of recency, saccade, and location. Surprisingly, saccades did not play a role. The results suggest that spatial and temporal rather than oculomotor information biases perceptual face memory. Copyright © 2016 Cognitive Science Society, Inc.

  6. An Introduction to 3-D Sound

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1997-01-01

    This talk will overview the basic technologies related to the creation of virtual acoustic images, and the potential of including spatial auditory displays in human-machine interfaces. Research into the perceptual error inherent in both natural and virtual spatial hearing is reviewed, since the formation of improved technologies is tied to psychoacoustic research. This includes a discussion of Head Related Transfer Function (HRTF) measurement techniques (the HRTF provides important perceptual cues within a virtual acoustic display). Many commercial applications of virtual acoustics have so far focused on games and entertainment ; in this review, other types of applications are examined, including aeronautic safety, voice communications, virtual reality, and room acoustic simulation. In particular, the notion that realistic simulation is optimized within a virtual acoustic display when head motion and reverberation cues are included within a perceptual model.

  7. Automatic Recognition of Phonemes Using a Syntactic Processor for Error Correction.

    DTIC Science & Technology

    1980-12-01

    OF PHONEMES USING A SYNTACTIC PROCESSOR FOR ERROR CORRECTION THESIS AFIT/GE/EE/8D-45 Robert B. ’Taylor 2Lt USAF Approved for public release...distribution unlimilted. AbP AFIT/GE/EE/ 80D-45 AUTOMATIC RECOGNITION OF PHONEMES USING A SYNTACTIC PROCESSOR FOR ERROR CORRECTION THESIS Presented to the...Testing ..................... 37 Bayes Decision Rule for Minimum Error ........... 37 Bayes Decision Rule for Minimum Risk ............ 39 Mini Max Test

  8. Transfer as a function of exploration and stabilization in original practice.

    PubMed

    Pacheco, Matheus M; Newell, Karl M

    2015-12-01

    The identification of practice conditions that provide flexibility to perform successfully in transfer is a long-standing issue in motor learning but is still not well understood. Here we investigated the hypothesis that a search strategy that encompasses both exploration and stabilization of the perceptual-motor workspace will enhance performance in transfer. Twenty-two participants practiced a virtual projection task (120 trials on each of 3 days) and subsequently performed two transfer conditions (20 trials/condition) with different constraints in the angle to project the object. The findings revealed a quadratic relation between exploration in practice (indexed by autocorrelation and distribution of error) and subsequent performance error in transfer. The integration of exploration and stabilization of the perceptual-motor workspace enhances transfer to tasks with different constraints on the scaling of motor output. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The perceptual shaping of anticipatory actions.

    PubMed

    Maffei, Giovanni; Herreros, Ivan; Sanchez-Fibla, Marti; Friston, Karl J; Verschure, Paul F M J

    2017-12-20

    Humans display anticipatory motor responses to minimize the adverse effects of predictable perturbations. A widely accepted explanation for this behaviour relies on the notion of an inverse model that, learning from motor errors, anticipates corrective responses. Here, we propose and validate the alternative hypothesis that anticipatory control can be realized through a cascade of purely sensory predictions that drive the motor system, reflecting the causal sequence of the perceptual events preceding the error. We compare both hypotheses in a simulated anticipatory postural adjustment task. We observe that adaptation in the sensory domain, but not in the motor one, supports the robust and generalizable anticipatory control characteristic of biological systems. Our proposal unites the neurobiology of the cerebellum with the theory of active inference and provides a concrete implementation of its core tenets with great relevance both to our understanding of biological control systems and, possibly, to their emulation in complex artefacts. © 2017 The Author(s).

  10. Acoustic evidence for phonologically mismatched speech errors.

    PubMed

    Gormley, Andrea

    2015-04-01

    Speech errors are generally said to accommodate to their new phonological context. This accommodation has been validated by several transcription studies. The transcription methodology is not the best choice for detecting errors at this level, however, as this type of error can be difficult to perceive. This paper presents an acoustic analysis of speech errors that uncovers non-accommodated or mismatch errors. A mismatch error is a sub-phonemic error that results in an incorrect surface phonology. This type of error could arise during the processing of phonological rules or they could be made at the motor level of implementation. The results of this work have important implications for both experimental and theoretical research. For experimentalists, it validates the tools used for error induction and the acoustic determination of errors free of the perceptual bias. For theorists, this methodology can be used to test the nature of the processes proposed in language production.

  11. Stereoscopic distance perception

    NASA Technical Reports Server (NTRS)

    Foley, John M.

    1989-01-01

    Limited cue, open-loop tasks in which a human observer indicates distances or relations among distances are discussed. By open-loop tasks, it is meant tasks in which the observer gets no feedback as to the accuracy of the responses. What happens when cues are added and when the loop is closed are considered. The implications of this research for the effectiveness of visual displays is discussed. Errors in visual distance tasks do not necessarily mean that the percept is in error. The error could arise in transformations that intervene between the percept and the response. It is argued that the percept is in error. It is also argued that there exist post-perceptual transformations that may contribute to the error or be modified by feedback to correct for the error.

  12. Assessing the validity of subjective reports in the auditory streaming paradigm.

    PubMed

    Farkas, Dávid; Denham, Susan L; Bendixen, Alexandra; Winkler, István

    2016-04-01

    While subjective reports provide a direct measure of perception, their validity is not self-evident. Here, the authors tested three possible biasing effects on perceptual reports in the auditory streaming paradigm: errors due to imperfect understanding of the instructions, voluntary perceptual biasing, and susceptibility to implicit expectations. (1) Analysis of the responses to catch trials separately promoting each of the possible percepts allowed the authors to exclude participants who likely have not fully understood the instructions. (2) Explicit biasing instructions led to markedly different behavior than the conventional neutral-instruction condition, suggesting that listeners did not voluntarily bias their perception in a systematic way under the neutral instructions. Comparison with a random response condition further supported this conclusion. (3) No significant relationship was found between social desirability, a scale-based measure of susceptibility to implicit social expectations, and any of the perceptual measures extracted from the subjective reports. This suggests that listeners did not significantly bias their perceptual reports due to possible implicit expectations present in the experimental context. In sum, these results suggest that valid perceptual data can be obtained from subjective reports in the auditory streaming paradigm.

  13. A perception theory in mind-body medicine: guided imagery and mindful meditation as cross-modal adaptation.

    PubMed

    Bedford, Felice L

    2012-02-01

    A new theory of mind-body interaction in healing is proposed based on considerations from the field of perception. It is suggested that the combined effect of visual imagery and mindful meditation on physical healing is simply another example of cross-modal adaptation in perception, much like adaptation to prism-displaced vision. It is argued that psychological interventions produce a conflict between the perceptual modalities of the immune system and vision (or touch), which leads to change in the immune system in order to realign the modalities. It is argued that mind-body interactions do not exist because of higher-order cognitive thoughts or beliefs influencing the body, but instead result from ordinary interactions between lower-level perceptual modalities that function to detect when sensory systems have made an error. The theory helps explain why certain illnesses may be more amenable to mind-body interaction, such as autoimmune conditions in which a sensory system (the immune system) has made an error. It also renders sensible erroneous changes, such as those brought about by "faith healers," as conflicts between modalities that are resolved in favor of the wrong modality. The present view provides one of very few psychological theories of how guided imagery and mindfulness meditation bring about positive physical change. Also discussed are issues of self versus non-self, pain, cancer, body schema, attention, consciousness, and, importantly, developing the concept that the immune system is a rightful perceptual modality. Recognizing mind-body healing as perceptual cross-modal adaptation implies that a century of cross-modal perception research is applicable to the immune system.

  14. MISTICA: Minimum Spanning Tree-based Coarse Image Alignment for Microscopy Image Sequences

    PubMed Central

    Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T.

    2016-01-01

    Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to re-order the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries. PMID:26415193

  15. MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences.

    PubMed

    Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T

    2016-11-01

    Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to reorder the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by the way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries.

  16. Perceptual asymmetry reveals neural substrates underlying stereoscopic transparency.

    PubMed

    Tsirlin, Inna; Allison, Robert S; Wilcox, Laurie M

    2012-02-01

    We describe a perceptual asymmetry found in stereoscopic perception of overlaid random-dot surfaces. Specifically, the minimum separation in depth needed to perceptually segregate two overlaid surfaces depended on the distribution of dots across the surfaces. With the total dot density fixed, significantly larger inter-plane disparities were required for perceptual segregation of the surfaces when the front surface had fewer dots than the back surface compared to when the back surface was the one with fewer dots. We propose that our results reflect an asymmetry in the signal strength of the front and back surfaces due to the assignment of the spaces between the dots to the back surface by disparity interpolation. This hypothesis was supported by the results of two experiments designed to reduce the imbalance in the neuronal response to the two surfaces. We modeled the psychophysical data with a network of inter-neural connections: excitatory within-disparity and inhibitory across disparity, where the spread of disparity was modulated according to figure-ground assignment. These psychophysical and computational findings suggest that stereoscopic transparency depends on both inter-neural interactions of disparity-tuned cells and higher-level processes governing figure ground segregation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Evaluation of color encodings for high dynamic range pixels

    NASA Astrophysics Data System (ADS)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  18. Design and Evaluation of Perceptual-based Object Group Selection Techniques

    NASA Astrophysics Data System (ADS)

    Dehmeshki, Hoda

    Selecting groups of objects is a frequent task in graphical user interfaces. It is required prior to many standard operations such as deletion, movement, or modification. Conventional selection techniques are lasso, rectangle selection, and the selection and de-selection of items through the use of modifier keys. These techniques may become time-consuming and error-prone when target objects are densely distributed or when the distances between target objects are large. Perceptual-based selection techniques can considerably improve selection tasks when targets have a perceptual structure, for example when arranged along a line. Current methods to detect such groups use ad hoc grouping algorithms that are not based on results from perception science. Moreover, these techniques do not allow selecting groups with arbitrary arrangements or permit modifying a selection. This dissertation presents two domain-independent perceptual-based systems that address these issues. Based on established group detection models from perception research, the proposed systems detect perceptual groups formed by the Gestalt principles of good continuation and proximity. The new systems provide gesture-based or click-based interaction techniques for selecting groups with curvilinear or arbitrary structures as well as clusters. Moreover, the gesture-based system is adapted for the graph domain to facilitate path selection. This dissertation includes several user studies that show the proposed systems outperform conventional selection techniques when targets form salient perceptual groups and are still competitive when targets are semi-structured.

  19. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian D.

    2009-01-01

    This paper establishes a relationship between the polishing process parameters and the generation of mid spatial-frequency error. The consideration of the polishing lap design to optimize the process in order to keep residual errors to a minimum and optimization of the process (speeds, stroke, etc.) and to keep the residual mid spatial-frequency error to a minimum, is also presented.

  20. Prediction of HDR quality by combining perceptually transformed display measurements with machine learning

    NASA Astrophysics Data System (ADS)

    Choudhury, Anustup; Farrell, Suzanne; Atkins, Robin; Daly, Scott

    2017-09-01

    We present an approach to predict overall HDR display quality as a function of key HDR display parameters. We first performed subjective experiments on a high quality HDR display that explored five key HDR display parameters: maximum luminance, minimum luminance, color gamut, bit-depth and local contrast. Subjects rated overall quality for different combinations of these display parameters. We explored two models | a physical model solely based on physically measured display characteristics and a perceptual model that transforms physical parameters using human vision system models. For the perceptual model, we use a family of metrics based on a recently published color volume model (ICT-CP), which consists of the PQ luminance non-linearity (ST2084) and LMS-based opponent color, as well as an estimate of the display point spread function. To predict overall visual quality, we apply linear regression and machine learning techniques such as Multilayer Perceptron, RBF and SVM networks. We use RMSE and Pearson/Spearman correlation coefficients to quantify performance. We found that the perceptual model is better at predicting subjective quality than the physical model and that SVM is better at prediction than linear regression. The significance and contribution of each display parameter was investigated. In addition, we found that combined parameters such as contrast do not improve prediction. Traditional perceptual models were also evaluated and we found that models based on the PQ non-linearity performed better.

  1. New paradigm for understanding in-flight decision making errors: a neurophysiological model leveraging human factors.

    PubMed

    Souvestre, P A; Landrock, C K; Blaber, A P

    2008-08-01

    Human factors centered aviation accident analyses report that skill based errors are known to be cause of 80% of all accidents, decision making related errors 30% and perceptual errors 6%1. In-flight decision making error is a long time recognized major avenue leading to incidents and accidents. Through the past three decades, tremendous and costly efforts have been developed to attempt to clarify causation, roles and responsibility as well as to elaborate various preventative and curative countermeasures blending state of the art biomedical, technological advances and psychophysiological training strategies. In-flight related statistics have not been shown significantly changed and a significant number of issues remain not yet resolved. Fine Postural System and its corollary, Postural Deficiency Syndrome (PDS), both defined in the 1980's, are respectively neurophysiological and medical diagnostic models that reflect central neural sensory-motor and cognitive controls regulatory status. They are successfully used in complex neurotraumatology and related rehabilitation for over two decades. Analysis of clinical data taken over a ten-year period from acute and chronic post-traumatic PDS patients shows a strong correlation between symptoms commonly exhibited before, along side, or even after error, and sensory-motor or PDS related symptoms. Examples are given on how PDS related central sensory-motor control dysfunction can be correctly identified and monitored via a neurophysiological ocular-vestibular-postural monitoring system. The data presented provides strong evidence that a specific biomedical assessment methodology can lead to a better understanding of in-flight adaptive neurophysiological, cognitive and perceptual dysfunctional status that could induce in flight-errors. How relevant human factors can be identified and leveraged to maintain optimal performance will be addressed.

  2. The effects of training on errors of perceived direction in perspective displays

    NASA Technical Reports Server (NTRS)

    Tharp, Gregory K.; Ellis, Stephen R.

    1990-01-01

    An experiment was conducted to determine the effects of training on the characteristic direction errors that are observed when subjects estimate exocentric directions on perspective displays. Changes in five subjects' perceptual errors were measured during a training procedure designed to eliminate the error. The training was provided by displaying to each subject both the sign and the direction of his judgment error. The feedback provided by the error display was found to decrease but not eliminate the error. A lookup table model of the source of the error was developed in which the judgement errors were attributed to overestimates of both the pitch and the yaw of the viewing direction used to produce the perspective projection. The model predicts the quantitative characteristics of the data somewhat better than previous models did. A mechanism is proposed for the observed learning, and further tests of the model are suggested.

  3. The soft constraints hypothesis: a rational analysis approach to resource allocation for interactive behavior.

    PubMed

    Gray, Wayne D; Sims, Chris R; Fu, Wai-Tat; Schoelles, Michael J

    2006-07-01

    Soft constraints hypothesis (SCH) is a rational analysis approach that holds that the mixture of perceptual-motor and cognitive resources allocated for interactive behavior is adjusted based on temporal cost-benefit tradeoffs. Alternative approaches maintain that cognitive resources are in some sense protected or conserved in that greater amounts of perceptual-motor effort will be expended to conserve lesser amounts of cognitive effort. One alternative, the minimum memory hypothesis (MMH), holds that people favor strategies that minimize the use of memory. SCH is compared with MMH across 3 experiments and with predictions of an Ideal Performer Model that uses ACT-R's memory system in a reinforcement learning approach that maximizes expected utility by minimizing time. Model and data support the SCH view of resource allocation; at the under 1000-ms level of analysis, mixtures of cognitive and perceptual-motor resources are adjusted based on their cost-benefit tradeoffs for interactive behavior. ((c) 2006 APA, all rights reserved).

  4. An Optical Flow-Based Full Reference Video Quality Assessment Algorithm.

    PubMed

    K, Manasa; Channappayya, Sumohana S

    2016-06-01

    We present a simple yet effective optical flow-based full-reference video quality assessment (FR-VQA) algorithm for assessing the perceptual quality of natural videos. Our algorithm is based on the premise that local optical flow statistics are affected by distortions and the deviation from pristine flow statistics is proportional to the amount of distortion. We characterize the local flow statistics using the mean, the standard deviation, the coefficient of variation (CV), and the minimum eigenvalue ( λ min ) of the local flow patches. Temporal distortion is estimated as the change in the CV of the distorted flow with respect to the reference flow, and the correlation between λ min of the reference and of the distorted patches. We rely on the robust multi-scale structural similarity index for spatial quality estimation. The computed temporal and spatial distortions, thus, are then pooled using a perceptually motivated heuristic to generate a spatio-temporal quality score. The proposed method is shown to be competitive with the state-of-the-art when evaluated on the LIVE SD database, the EPFL Polimi SD database, and the LIVE Mobile HD database. The distortions considered in these databases include those due to compression, packet-loss, wireless channel errors, and rate-adaptation. Our algorithm is flexible enough to allow for any robust FR spatial distortion metric for spatial distortion estimation. In addition, the proposed method is not only parameter-free but also independent of the choice of the optical flow algorithm. Finally, we show that the replacement of the optical flow vectors in our proposed method with the much coarser block motion vectors also results in an acceptable FR-VQA algorithm. Our algorithm is called the flow similarity index.

  5. Observational drawing biases are predicted by biases in perception: Empirical support of the misperception hypothesis of drawing accuracy with respect to two angle illusions.

    PubMed

    Ostrofsky, Justin; Kozbelt, Aaron; Cohen, Dale J

    2015-01-01

    We tested the misperception hypothesis of drawing errors, which states that drawing accuracy is strongly influenced by the perceptual encoding of a to-be-drawn stimulus. We used a highly controlled experimental paradigm in which nonartist participants made perceptual judgements and drawings of angles under identical stimulus exposure conditions. Experiment 1 examined the isosceles/scalene triangle angle illusion; congruent patterns of bias in the perception and drawing tasks were found for 40 and 60° angles, but not for 20 or 80° angles, providing mixed support for the misperception hypothesis. Experiment 2 examined shape constancy effects with respect to reproductions of single acute or obtuse angles; congruent patterns of bias in the perception and drawing tasks were found across a range of angles from 29 to 151°, providing strong support for the misperception hypothesis. In both experiments, perceptual and drawing biases were positively correlated. These results are largely consistent with the misperception hypothesis, suggesting that inaccurate perceptual encoding of angles is an important reason that nonartists err in drawing angles from observation.

  6. Forensic comparison and matching of fingerprints: using quantitative image measures for estimating error rates through understanding and predicting difficulty.

    PubMed

    Kellman, Philip J; Mnookin, Jennifer L; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E

    2014-01-01

    Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and subjective assessment of difficulty in fingerprint comparisons.

  7. Role of serial order in the impact of talker variability on short-term memory: testing a perceptual organization-based account.

    PubMed

    Hughes, Robert W; Marsh, John E; Jones, Dylan M

    2011-11-01

    In two experiments, we examined the impact of the degree of match between sequential auditory perceptual organization processes and the demands of a short-term memory task (memory for order vs. item information). When a spoken sequence of digits was presented so as to promote its perceptual partitioning into two distinct streams by conveying it in alternating female (F) and male (M) voices (FMFMFMFM)--thereby disturbing the perception of true temporal order--recall of item order was greatly impaired (as compared to recall of item identity). Moreover, an order error type consistent with the formation of voice-based streams was committed more quickly in the alternating-voice condition (Exp. 1). In contrast, when the perceptual organization of the sequence mapped well onto an optimal two-group serial rehearsal strategy--by presenting the two voices in discrete clusters (FFFFMMMM)--order, but not item, recall was enhanced (Exp. 2). The results are consistent with the view that the degree of compatibility between perceptual and deliberate sequencing processes is a key determinant of serial short-term memory performance. Alternative accounts of talker variability effects in short-term memory, based on the concept of a dedicated phonological short-term store and a capacity-limited focus of attention, are also reviewed.

  8. Different effects of dopaminergic medication on perceptual decision-making in Parkinson's disease as a function of task difficulty and speed-accuracy instructions.

    PubMed

    Huang, Yu-Ting; Georgiev, Dejan; Foltynie, Tom; Limousin, Patricia; Speekenbrink, Maarten; Jahanshahi, Marjan

    2015-08-01

    When choosing between two options, sufficient accumulation of information is required to favor one of the options over the other, before a decision is finally reached. To establish the effect of dopaminergic medication on the rate of accumulation of information, decision thresholds and speed-accuracy trade-offs, we tested 14 patients with Parkinson's disease (PD) on and off dopaminergic medication and 14 age-matched healthy controls on two versions of the moving-dots task. One version manipulated the level of task difficulty and hence effort required for decision-making and the other the urgency, requiring decision-making under speed vs. accuracy instructions. The drift diffusion model was fitted to the behavioral data. As expected, the reaction time data revealed an effect of task difficulty, such that the easier the perceptual decision-making task was, the faster the participants responded. PD patients not only made significantly more errors compared to healthy controls, but interestingly they also made significantly more errors ON than OFF medication. The drift diffusion model indicated that PD patients had lower drift rates when tested ON compared to OFF medication, indicating that dopamine levels influenced the quality of information derived from sensory information. On the speed-accuracy task, dopaminergic medication did not directly influence reaction times or error rates. PD patients OFF medication had slower RTs and made more errors with speed than accuracy instructions compared to the controls, whereas such differences were not observed ON medication. PD patients had lower drift rates and higher response thresholds than the healthy controls both with speed and accuracy instructions and ON and OFF medication. For the patients, only non-decision time was higher OFF than ON medication and higher with accuracy than speed instructions. The present results demonstrate that when task difficulty is manipulated, dopaminergic medication impairs perceptual decision-making and renders it more errorful in PD relative to when patients are tested OFF medication. In contrast, for the speed/accuracy task, being ON medication improved performance by eliminating the significantly higher errors and slower RTs observed for patients OFF medication compared to the HC group. There was no evidence of dopaminergic medication inducing impulsive decisions when patients were acting under speed pressure. For the speed-accuracy instructions, the sole effect of dopaminergic medication was on non-decision time, which suggests that medication primarily affected processes tightly coupled with the motor symptoms of PD. Interestingly, the current results suggest opposite effects of dopaminergic medication on the levels of difficulty and speed-accuracy versions of the moving dots task, possibly reflecting the differential effect of dopamine on modulating drift rate (levels of difficulty task) and non-decision time (speed-accuracy task) in the process of perceptual decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Efficient coding explains the universal law of generalization in human perception.

    PubMed

    Sims, Chris R

    2018-05-11

    Perceptual generalization and discrimination are fundamental cognitive abilities. For example, if a bird eats a poisonous butterfly, it will learn to avoid preying on that species again by generalizing its past experience to new perceptual stimuli. In cognitive science, the "universal law of generalization" seeks to explain this ability and states that generalization between stimuli will follow an exponential function of their distance in "psychological space." Here, I challenge existing theoretical explanations for the universal law and offer an alternative account based on the principle of efficient coding. I show that the universal law emerges inevitably from any information processing system (whether biological or artificial) that minimizes the cost of perceptual error subject to constraints on the ability to process or transmit information. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Training of perceptual-cognitive skills in offside decision making.

    PubMed

    Catteeuw, Peter; Gilis, Bart; Jaspers, Arne; Wagemans, Johan; Helsen, Werner

    2010-12-01

    This study investigates the effect of two off-field training formats to improve offside decision making. One group trained with video simulations and another with computer animations. Feedback after every offside situation allowed assistant referees to compensate for the consequences of the flash-lag effect and to improve their decision-making accuracy. First, response accuracy improved and flag errors decreased for both training groups implying that training interventions with feedback taught assistant referees to better deal with the flash-lag effect. Second, the results demonstrated no effect of format, although assistant referees rated video simulations higher for fidelity than computer animations. This implies that a cognitive correction to a perceptual effect can be learned also when the format does not correspond closely with the original perceptual situation. Off-field offside decision-making training should be considered as part of training because it is a considerable help to gain more experience and to improve overall decision-making performance.

  11. Human Decision Making Based on Variations in Internal Noise: An EEG Study

    PubMed Central

    Amitay, Sygal; Guiraud, Jeanne; Sohoglu, Ediz; Zobay, Oliver; Edmonds, Barrie A.; Zhang, Yu-Xuan; Moore, David R.

    2013-01-01

    Perceptual decision making is prone to errors, especially near threshold. Physiological, behavioural and modeling studies suggest this is due to the intrinsic or ‘internal’ noise in neural systems, which derives from a mixture of bottom-up and top-down sources. We show here that internal noise can form the basis of perceptual decision making when the external signal lacks the required information for the decision. We recorded electroencephalographic (EEG) activity in listeners attempting to discriminate between identical tones. Since the acoustic signal was constant, bottom-up and top-down influences were under experimental control. We found that early cortical responses to the identical stimuli varied in global field power and topography according to the perceptual decision made, and activity preceding stimulus presentation could predict both later activity and behavioural decision. Our results suggest that activity variations induced by internal noise of both sensory and cognitive origin are sufficient to drive discrimination judgments. PMID:23840904

  12. Effects of perceptual similarity but not semantic association on false recognition in aging

    PubMed Central

    Gill, Emma

    2017-01-01

    This study investigated semantic and perceptual influences on false recognition in older and young adults in a variant on the Deese-Roediger-McDermott paradigm. In two experiments, participants encoded intermixed sets of semantically associated words, and sets of unrelated words. Each set was presented in a shared distinctive font. Older adults were no more likely to falsely recognize semantically associated lure words compared to unrelated lures also presented in studied fonts. However, they showed an increase in false recognition of lures which were related to studied items only by a shared font. This increased false recognition was associated with recollective experience. The data show that older adults do not always rely more on prior knowledge in episodic memory tasks. They converge with other findings suggesting that older adults may also be more prone to perceptually-driven errors. PMID:29302398

  13. Mesolimbic confidence signals guide perceptual learning in the absence of external feedback

    PubMed Central

    Guggenmos, Matthias; Wilbertz, Gregor; Hebart, Martin N; Sterzer, Philipp

    2016-01-01

    It is well established that learning can occur without external feedback, yet normative reinforcement learning theories have difficulties explaining such instances of learning. Here, we propose that human observers are capable of generating their own feedback signals by monitoring internal decision variables. We investigated this hypothesis in a visual perceptual learning task using fMRI and confidence reports as a measure for this monitoring process. Employing a novel computational model in which learning is guided by confidence-based reinforcement signals, we found that mesolimbic brain areas encoded both anticipation and prediction error of confidence—in remarkable similarity to previous findings for external reward-based feedback. We demonstrate that the model accounts for choice and confidence reports and show that the mesolimbic confidence prediction error modulation derived through the model predicts individual learning success. These results provide a mechanistic neurobiological explanation for learning without external feedback by augmenting reinforcement models with confidence-based feedback. DOI: http://dx.doi.org/10.7554/eLife.13388.001 PMID:27021283

  14. Quantum-state comparison and discrimination

    NASA Astrophysics Data System (ADS)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    2018-05-01

    We investigate the performance of discrimination strategy in the comparison task of known quantum states. In the discrimination strategy, one infers whether or not two quantum systems are in the same state on the basis of the outcomes of separate discrimination measurements on each system. In some cases with more than two possible states, the optimal strategy in minimum-error comparison is that one should infer the two systems are in different states without any measurement, implying that the discrimination strategy performs worse than the trivial "no-measurement" strategy. We present a sufficient condition for this phenomenon to happen. For two pure states with equal prior probabilities, we determine the optimal comparison success probability with an error margin, which interpolates the minimum-error and unambiguous comparison. We find that the discrimination strategy is not optimal except for the minimum-error case.

  15. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  16. The Facespan-the perceptual span for face recognition.

    PubMed

    Papinutto, Michael; Lao, Junpeng; Ramon, Meike; Caldara, Roberto; Miellet, Sébastien

    2017-05-01

    In reading, the perceptual span is a well-established concept that refers to the amount of information that can be read in a single fixation. Surprisingly, despite extensive empirical interest in determining the perceptual strategies deployed to process faces and an ongoing debate regarding the factors or mechanism(s) underlying efficient face processing, the perceptual span for faces-the Facespan-remains undetermined. To address this issue, we applied the gaze-contingent Spotlight technique implemented in an old-new face recognition paradigm. This procedure allowed us to parametrically vary the amount of facial information available at a fixated location in order to determine the minimal aperture size at which face recognition performance plateaus. As expected, accuracy increased nonlinearly with spotlight size apertures. Analyses of Structural Similarity comparing the available information during spotlight and natural viewing conditions indicate that the Facespan-the minimum spatial extent of preserved facial information leading to comparable performance as in natural viewing-encompasses 7° of visual angle in our viewing conditions (size of the face stimulus: 15.6°; viewing distance: 70 cm), which represents 45% of the face. The present findings provide a benchmark for future investigations that will address if and how the Facespan is modulated by factors such as cultural, developmental, idiosyncratic, or task-related differences.

  17. Observer Biases in the Classroom.

    ERIC Educational Resources Information Center

    Kite, Mary E.

    1991-01-01

    Presents three student exercises that demonstrate common perceptual errors described in social psychological literature: actor-observer effect, false consensus bias, and priming effects. Describes methods to be followed and gives terms, sentences, and a story to be used in the exercises. Suggests discussion of the bases and impact of such…

  18. Training Dismounted Soldiers in Virtual Environments: Task and Research Requirements

    DTIC Science & Technology

    1994-10-01

    Experimental Psychology, 90, 287-299. Craske, B., & Crawshaw , M. (1974). Differential errors of kinesthesis produced by previous limb position. Journal of...Motor Behavior, 6, 273. 278. Craske, B., & Crawshaw , M. (1975). Shifts in kinethesis through time and after active and passive movements. Perceptual and

  19. Priors in perception: Top-down modulation, Bayesian perceptual learning rate, and prediction error minimization.

    PubMed

    Hohwy, Jakob

    2017-01-01

    I discuss top-down modulation of perception in terms of a variable Bayesian learning rate, revealing a wide range of prior hierarchical expectations that can modulate perception. I then switch to the prediction error minimization framework and seek to conceive cognitive penetration specifically as prediction error minimization deviations from a variable Bayesian learning rate. This approach retains cognitive penetration as a category somewhat distinct from other top-down effects, and carves a reasonable route between penetrability and impenetrability. It prevents rampant, relativistic cognitive penetration of perception and yet is consistent with the continuity of cognition and perception. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Sample Training Based Wildfire Segmentation by 2D Histogram θ-Division with Minimum Error

    PubMed Central

    Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong

    2013-01-01

    A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation. PMID:23878526

  1. Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and Research

    NASA Technical Reports Server (NTRS)

    Tanner, Trieve (Editor); Clearwater, Yvonne A. (Editor); Cohen, Marc M. (Editor)

    1988-01-01

    A variety of human factors studies related to space station design are presented. Subjects include proximity operations and window design, spatial perceptual issues regarding displays, image management, workload research, spatial cognition, virtual interface, fault diagnosis in orbital refueling, and error tolerance and procedure aids.

  2. Exocentric direction judgements in computer-generated displays and actual scenes

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Smith, Stephen; Mcgreevy, Michael W.; Grunwald, Arthur J.

    1989-01-01

    One of the most remarkable perceptual properties of common experience is that the perceived shapes of known objects are constant despite movements about them which transform their projections on the retina. This perceptual ability is one aspect of shape constancy (Thouless, 1931; Metzger, 1953; Borresen and Lichte, 1962). It requires that the viewer be able to sense and discount his or her relative position and orientation with respect to a viewed object. This discounting of relative position may be derived directly from the ranging information provided from stereopsis, from motion parallax, from vestibularly sensed rotation and translation, or from corollary information associated with voluntary movement. It is argued that: (1) errors in exocentric judgements of the azimuth of a target generated on an electronic perspective display are not viewpoint-independent, but are influenced by the specific geometry of their perspective projection; (2) elimination of binocular conflict by replacing electronic displays with actual scenes eliminates a previously reported equidistance tendency in azimuth error, but the viewpoint dependence remains; (3) the pattern of exocentrically judged azimuth error in real scenes viewed with a viewing direction depressed 22 deg and rotated + or - 22 deg with respect to a reference direction could not be explained by overestimation of the depression angle, i.e., a slant overestimation.

  3. The effects of warning cues and attention-capturing stimuli on the sustained attention to response task.

    PubMed

    Finkbeiner, Kristin M; Wilson, Kyle M; Russell, Paul N; Helton, William S

    2015-04-01

    Performance on the sustained attention to response task (SART) is often characterized by a speed-accuracy trade-off, and SART performance may be influenced by strategic factors (Head and Helton Conscious Cogn 22: 913-919, 2013). Previous research indicates a significant difference between reliable and unreliable warning cues on response times and errors (commission and omission), suggesting that SART tasks are influenced by strategic factors (Helton et al. Conscious Cogn 20: 1732-1737, 2011; Exp Brain Res 209: 401-407, 2011). With regards to warning stimuli, we chose to use cute images (exhibiting infantile features) during a SART, as previous literature indicates cute images cause participants to engage attention. If viewing cute things makes the viewer exert more attention than normal, then exposure to cute stimuli during the SART should improve performance if SART performance is a measure of perceptual coupling. Reliable warning cues were shown to reduce both response time and errors of commission, and increase errors of omission, relative to unreliable warning cues. Cuteness of the warning stimuli, however, had no significant effect on SART performance. These results suggest the importance of strategic factors in SART performance, not increased attention, and add to the growing literature which suggests the SART is not a good measure of sustained attention, vigilance or perceptual coupling.

  4. Navigator alignment using radar scan

    DOEpatents

    Doerry, Armin W.; Marquette, Brandeis

    2016-04-05

    The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.

  5. Synthetic Aperture Sonar Processing with MMSE Estimation of Image Sample Values

    DTIC Science & Technology

    2016-12-01

    UNCLASSIFIED/UNLIMITED 13. SUPPLEMENTARY NOTES 14. ABSTRACT MMSE (minimum mean- square error) target sample estimation using non-orthogonal basis...orthogonal, they can still be used in a minimum mean‐ square  error (MMSE)  estimator that models the object echo as a weighted sum of the multi‐aspect basis...problem.                     3    Introduction      Minimum mean‐ square  error (MMSE) estimation is applied to target imaging with synthetic aperture

  6. Does improved decision-making ability reduce the physiological demands of game-based activities in field sport athletes?

    PubMed

    Gabbett, Tim J; Carius, Josh; Mulvey, Mike

    2008-11-01

    This study investigated the effects of video-based perceptual training on pattern recognition and pattern prediction ability in elite field sport athletes and determined whether enhanced perceptual skills influenced the physiological demands of game-based activities. Sixteen elite women soccer players (mean +/- SD age, 18.3 +/- 2.8 years) were allocated to either a video-based perceptual training group (N = 8) or a control group (N = 8). The video-based perceptual training group watched video footage of international women's soccer matches. Twelve training sessions, each 15 minutes in duration, were conducted during a 4-week period. Players performed assessments of speed (5-, 10-, and 20-m sprint), repeated-sprint ability (6 x 20-m sprints, with active recovery on a 15-second cycle), estimated maximal aerobic power (V O2 max, multistage fitness test), and a game-specific video-based perceptual test of pattern recognition and pattern prediction before and after the 4 weeks of video-based perceptual training. The on-field assessments included time-motion analysis completed on all players during a standardized 45-minute small-sided training game, and assessments of passing, shooting, and dribbling decision-making ability. No significant changes were detected in speed, repeated-sprint ability, or estimated V O2 max during the training period. However, video-based perceptual training improved decision accuracy and reduced the number of recall errors, indicating improved game awareness and decision-making ability. Importantly, the improvements in pattern recognition and prediction ability transferred to on-field improvements in passing, shooting, and dribbling decision-making skills. No differences were detected between groups for the time spent standing, walking, jogging, striding, and sprinting during the small-sided training game. These findings demonstrate that video-based perceptual training can be used effectively to enhance the decision-making ability of field sport athletes; however, it has no effect on the physiological demands of game-based activities.

  7. New Directions in Resources for Special Needs Hearing Impaired Students: Outreach '88. Proceedings of the Annual Southeast Regional Summer Conference (8th, Cave Spring, Georgia, June 14-17, 1988).

    ERIC Educational Resources Information Center

    Kemp, Faye, Ed.; And Others

    The proceedings include, after the keynote address by E.M. Childers and the conference agenda, the following papers: "An Additional Handicap: Visual Perceptual Learning Disabilities of Deaf Children" (Vivienne Ratner); "Minimum Competency Testing" (Carl Williams); "Transitional Planning for Hearing Impaired Students in the Mainstream" (Helen…

  8. Effects of response bias and judgment framing on operator use of an automated aid in a target detection task.

    PubMed

    Rice, Stephen; McCarley, Jason S

    2011-12-01

    Automated diagnostic aids prone to false alarms often produce poorer human performance in signal detection tasks than equally reliable miss-prone aids. However, it is not yet clear whether this is attributable to differences in the perceptual salience of the automated aids' misses and false alarms or is the result of inherent differences in operators' cognitive responses to different forms of automation error. The present experiments therefore examined the effects of automation false alarms and misses on human performance under conditions in which the different forms of error were matched in their perceptual characteristics. Young adult participants performed a simulated baggage x-ray screening task while assisted by an automated diagnostic aid. Judgments from the aid were rendered as text messages presented at the onset of each trial, and every trial was followed by a second text message providing response feedback. Thus, misses and false alarms from the aid were matched for their perceptual salience. Experiment 1 found that even under these conditions, false alarms from the aid produced poorer human performance and engendered lower automation use than misses from the aid. Experiment 2, however, found that the asymmetry between misses and false alarms was reduced when the aid's false alarms were framed as neutral messages rather than explicit misjudgments. Results suggest that automation false alarms and misses differ in their inherent cognitive salience and imply that changes in diagnosis framing may allow designers to encourage better use of imperfectly reliable automated aids.

  9. Adaptive feedforward control of non-minimum phase structural systems

    NASA Astrophysics Data System (ADS)

    Vipperman, J. S.; Burdisso, R. A.

    1995-06-01

    Adaptive feedforward control algorithms have been effectively applied to stationary disturbance rejection. For structural systems, the ideal feedforward compensator is a recursive filter which is a function of the transfer functions between the disturbance and control inputs and the error sensor output. Unfortunately, most control configurations result in a non-minimum phase control path; even a collocated control actuator and error sensor will not necessarily produce a minimum phase control path in the discrete domain. Therefore, the common practice is to choose a suitable approximation of the ideal compensator. In particular, all-zero finite impulse response (FIR) filters are desirable because of their inherent stability for adaptive control approaches. However, for highly resonant systems, large order filters are required for broadband applications. In this work, a control configuration is investigated for controlling non-minimum phase lightly damped structural systems. The control approach uses low order FIR filters as feedforward compensators in a configuration that has one more control actuator than error sensors. The performance of the controller was experimentally evaluated on a simply supported plate under white noise excitation for a two-input, one-output (2I1O) system. The results show excellent error signal reduction, attesting to the effectiveness of the method.

  10. Computational models of spatial updating in peri-saccadic perception

    PubMed Central

    Hamker, Fred H.; Zirnsak, Marc; Ziesche, Arnold; Lappe, Markus

    2011-01-01

    Perceptual phenomena that occur around the time of a saccade, such as peri-saccadic mislocalization or saccadic suppression of displacement, have often been linked to mechanisms of spatial stability. These phenomena are usually regarded as errors in processes of trans-saccadic spatial transformations and they provide important tools to study these processes. However, a true understanding of the underlying brain processes that participate in the preparation for a saccade and in the transfer of information across it requires a closer, more quantitative approach that links different perceptual phenomena with each other and with the functional requirements of ensuring spatial stability. We review a number of computational models of peri-saccadic spatial perception that provide steps in that direction. Although most models are concerned with only specific phenomena, some generalization and interconnection between them can be obtained from a comparison. Our analysis shows how different perceptual effects can coherently be brought together and linked back to neuronal mechanisms on the way to explaining vision across saccades. PMID:21242143

  11. Electropalatographic and perceptual analysis of the speech of Cantonese children with cleft palate.

    PubMed

    Whitehill, T; Stokes, S; Hardcastle, B; Gibbon, F

    1995-01-01

    This study used electropalatographic and perceptual analysis to investigate the speech of two Cantonese children with repaired cleft palate. Some features of their speech, as identified from the perceptual analysis, have been previously reported as being typical of children with cleft palate. For example, fricatives and affricates were vulnerable to disruption, and obstruent sounds were judged by listeners to have posterior placement. However, some apparently language-specific characteristics were identified in the Cantonese-speaking children. First there was a relatively high incidence of initial consonant deletion, and for one subject /s/ and /f/ targets were produced as bilabial fricatives. EPG error patterns for target lingual obstruents were largely similar to those reported to occur in English- and Japanese-speaking children. In particular, broader and more posterior tongue-palate contact was observed, and intrasubject variability was noted. There was also evidence of simultaneous labial/velar and alveolar/velar constriction for labial and velar targets respectively. The clinical implications of the findings are discussed.

  12. Adaptive color halftoning for minimum perceived error using the blue noise mask

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Parker, Kevin J.

    1997-04-01

    Color halftoning using a conventional screen requires careful selection of screen angles to avoid Moire patterns. An obvious advantage of halftoning using a blue noise mask (BNM) is that there are no conventional screen angle or Moire patterns produced. However, a simple strategy of employing the same BNM on all color planes is unacceptable in case where a small registration error can cause objectionable color shifts. In a previous paper by Yao and Parker, strategies were presented for shifting or inverting the BNM as well as using mutually exclusive BNMs for different color planes. In this paper, the above schemes will be studied in CIE-LAB color space in terms of root mean square error and variance for luminance channel and chrominance channel respectively. We will demonstrate that the dot-on-dot scheme results in minimum chrominance error, but maximum luminance error and the 4-mask scheme results in minimum luminance error but maximum chrominance error, while the shift scheme falls in between. Based on this study, we proposed a new adaptive color halftoning algorithm that takes colorimetric color reproduction into account by applying 2-mutually exclusive BNMs on two different color planes and applying an adaptive scheme on other planes to reduce color error. We will show that by having one adaptive color channel, we obtain increased flexibility to manipulate the output so as to reduce colorimetric error while permitting customization to specific printing hardware.

  13. Investigating the Use of Traditional and Spectral Biofeedback Approaches to Intervention for /r/ Misarticulation

    ERIC Educational Resources Information Center

    Byun, Tara McAllister; Hitchcock, Elaine R.

    2012-01-01

    Purpose: Misarticulation of /r/ is among the most challenging developmental speech errors to remediate. Case studies suggest that visual biofeedback treatment can establish perceptually accurate /r/ in clients who have not responded to traditional treatments. This investigation studied the response of children with persistent /r/ misarticulation…

  14. Scaling of Perceptual Errors Can Predict the Shape of Neural Tuning Curves

    NASA Astrophysics Data System (ADS)

    Shouval, Harel Z.; Agarwal, Animesh; Gavornik, Jeffrey P.

    2013-04-01

    Weber’s law, first characterized in the 19th century, states that errors estimating the magnitude of perceptual stimuli scale linearly with stimulus intensity. This linear relationship is found in most sensory modalities, generalizes to temporal interval estimation, and even applies to some abstract variables. Despite its generality and long experimental history, the neural basis of Weber’s law remains unknown. This work presents a simple theory explaining the conditions under which Weber’s law can result from neural variability and predicts that the tuning curves of neural populations which adhere to Weber’s law will have a log-power form with parameters that depend on spike-count statistics. The prevalence of Weber’s law suggests that it might be optimal in some sense. We examine this possibility, using variational calculus, and show that Weber’s law is optimal only when observed real-world variables exhibit power-law statistics with a specific exponent. Our theory explains how physiology gives rise to the behaviorally characterized Weber’s law and may represent a general governing principle relating perception to neural activity.

  15. Development of an errorable car-following driver model

    NASA Astrophysics Data System (ADS)

    Yang, H.-H.; Peng, H.

    2010-06-01

    An errorable car-following driver model is presented in this paper. An errorable driver model is one that emulates human driver's functions and can generate both nominal (error-free), as well as devious (with error) behaviours. This model was developed for evaluation and design of active safety systems. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. The stochastic car-following behaviour was first analysed and modelled as a random process. Three error-inducing behaviours were then introduced. First, human perceptual limitation was studied and implemented. Distraction due to non-driving tasks was then identified based on the statistical analysis of the driving data. Finally, time delay of human drivers was estimated through a recursive least-square identification process. By including these three error-inducing behaviours, rear-end collisions with the lead vehicle could occur. The simulated crash rate was found to be similar but somewhat higher than that reported in traffic statistics.

  16. Decreased attention to object size information in scale errors performers.

    PubMed

    Grzyb, Beata J; Cangelosi, Angelo; Cattani, Allegra; Floccia, Caroline

    2017-05-01

    Young children sometimes make serious attempts to perform impossible actions on miniature objects as if they were full-size objects. The existing explanations of these curious action errors assume (but never explicitly tested) children's decreased attention to object size information. This study investigated the attention to object size information in scale errors performers. Two groups of children aged 18-25 months (N=52) and 48-60 months (N=23) were tested in two consecutive tasks: an action task that replicated the original scale errors elicitation situation, and a looking task that involved watching on a computer screen actions performed with adequate to inadequate size object. Our key finding - that children performing scale errors in the action task subsequently pay less attention to size changes than non-scale errors performers in the looking task - suggests that the origins of scale errors in childhood operate already at the perceptual level, and not at the action level. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Forensic Comparison and Matching of Fingerprints: Using Quantitative Image Measures for Estimating Error Rates through Understanding and Predicting Difficulty

    PubMed Central

    Kellman, Philip J.; Mnookin, Jennifer L.; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E.

    2014-01-01

    Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and subjective assessment of difficulty in fingerprint comparisons. PMID:24788812

  18. Monetary Incentives in Speeded Perceptual Decision: Effects of Penalizing Errors Versus Slow Responses

    PubMed Central

    Dambacher, Michael; Hübner, Ronald; Schlösser, Jan

    2011-01-01

    The influence of monetary incentives on performance has been widely investigated among various disciplines. While the results reveal positive incentive effects only under specific conditions, the exact nature, and the contribution of mediating factors are largely unexplored. The present study examined influences of payoff schemes as one of these factors. In particular, we manipulated penalties for errors and slow responses in a speeded categorization task. The data show improved performance for monetary over symbolic incentives when (a) penalties are higher for slow responses than for errors, and (b) neither slow responses nor errors are punished. Conversely, payoff schemes with stronger punishment for errors than for slow responses resulted in worse performance under monetary incentives. The findings suggest that an emphasis of speed is favorable for positive influences of monetary incentives, whereas an emphasis of accuracy under time pressure has the opposite effect. PMID:21980316

  19. Application of genetic algorithm in the evaluation of the profile error of archimedes helicoid surface

    NASA Astrophysics Data System (ADS)

    Zhu, Lianqing; Chen, Yunfang; Chen, Qingshan; Meng, Hao

    2011-05-01

    According to minimum zone condition, a method for evaluating the profile error of Archimedes helicoid surface based on Genetic Algorithm (GA) is proposed. The mathematic model of the surface is provided and the unknown parameters in the equation of surface are acquired through least square method. Principle of GA is explained. Then, the profile error of Archimedes Helicoid surface is obtained through GA optimization method. To validate the proposed method, the profile error of an Archimedes helicoid surface, Archimedes Cylindrical worm (ZA worm) surface, is evaluated. The results show that the proposed method is capable of correctly evaluating the profile error of Archimedes helicoid surface and satisfy the evaluation standard of the Minimum Zone Method. It can be applied to deal with the measured data of profile error of complex surface obtained by three coordinate measurement machines (CMM).

  20. Common angle plots as perception-true visualizations of categorical associations.

    PubMed

    Hofmann, Heike; Vendettuoli, Marie

    2013-12-01

    Visualizations are great tools of communications-they summarize findings and quickly convey main messages to our audience. As designers of charts we have to make sure that information is shown with a minimum of distortion. We have to also consider illusions and other perceptual limitations of our audience. In this paper we discuss the effect and strength of the line width illusion, a Muller-Lyer type illusion, on designs related to displaying associations between categorical variables. Parallel sets and hammock plots are both affected by line width illusions. We introduce the common-angle plot as an alternative method for displaying categorical data in a manner that minimizes the effect from perceptual illusions. Results from user studies both highlight the need for addressing line-width illusions in displays and provide evidence that common angle charts successfully resolve this issue.

  1. Cross-language Perception of Non-native Tonal Contrasts: Effects of Native Phonological and Phonetic Influences

    PubMed Central

    SO, CONNIE K.; BEST, CATHERINE T.

    2010-01-01

    This study examined the perception of the four Mandarin lexical tones by Mandarin-naïve Hong Kong Cantonese, Japanese, and Canadian English listener groups. Their performance on an identification task, following a brief familiarization task, was analyzed in terms of tonal sensitivities (A-prime scores on correct identifications) and tonal errors (confusions). The A-prime results revealed that the English listeners' sensitivity to Tone 4 identifications specifically was significantly lower than that of the other two groups. The analysis of tonal errors revealed that all listener groups showed perceptual confusion of tone pairs with similar phonetic features (T1–T2, T1–T4 and T2–T3 pairs), but not of those with completely dissimilar features (T1–T3, T2–T4, and T3–T4). Language specific errors were also observed in their performance, which may be explained within the framework of the Perceptual Assimilation Model (PAM: Best, 1995; Best & Tyler, 2007). The findings imply that linguistic experience with native tones does not necessarily facilitate non-native tone perception. Rather, the phonemic status and the phonetic features (similarities or dissimilarities) between the tonal systems of the target language and the listeners' native languages play critical roles in the perception of non-native tones. PMID:20583732

  2. Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.

    PubMed

    Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo

    2017-06-01

    Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.

  3. Blocking serotonin but not dopamine reuptake alters neural processing during perceptual decision making.

    PubMed

    Costa, Vincent D; Kakalios, Laura C; Averbeck, Bruno B

    2016-10-01

    Dopamine and serotonin have opponent interactions on aspects of impulsivity. Therefore we wanted to test the hypothesis that dopamine and serotonin would have opposing effects on speed-accuracy trade offs in a perceptual decision making task. Unlike other behavioral measures of impulsivity, perceptual decision making allows us to determine whether decreasing premature responses, often interpreted as decreased impulsivity, corresponds to increased behavioral performance. We administered GBR-12909 (a dopamine transporter blocker), escitalopram (a serotonin transporter blocker), or saline in separate sessions to 3 rhesus macaques. We found that animals had slower reaction times (RTs) on escitalopram than on GBR-12909 or saline. However, they were also least accurate on escitalopram. Animals were faster, although nonsignificantly, on GBR than saline and had equivalent accuracy. Administration of GBR-12909 did cause animals to be faster in error trials than correct trials. Therefore, from the point of view of RTs the animals were less impulsive on escitalopram. However, the decreased accuracy of the monkeys shows that they were not able to make use of their slower response times to make more accurate decisions. Therefore, impulsivity was reduced on escitalopram, but at the expense of a slower information-processing rate in the perceptual inference task. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Cost effectiveness of the U.S. Geological Survey's stream-gaging program in Wisconsin

    USGS Publications Warehouse

    Walker, J.F.; Osen, L.L.; Hughes, P.E.

    1987-01-01

    A minimum budget of $510,000 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gaging stations. At this minimum budget, the theoretical average standard error of instantaneous discharge is 14.4%. The maximum budget analyzed was $650,000 and resulted in an average standard of error of instantaneous discharge of 7.2%. 

  5. At the cross-roads: an on-road examination of driving errors at intersections.

    PubMed

    Young, Kristie L; Salmon, Paul M; Lenné, Michael G

    2013-09-01

    A significant proportion of road trauma occurs at intersections. Understanding the nature of driving errors at intersections therefore has the potential to lead to significant injury reductions. To further understand how the complexity of modern intersections shapes behaviour of these errors are compared to errors made mid-block, and the role of wider systems failures in intersection error causation is investigated in an on-road study. Twenty-five participants drove a pre-determined urban route incorporating 25 intersections. Two in-vehicle observers recorded the errors made while a range of other data was collected, including driver verbal protocols, video, driver eye glance behaviour and vehicle data (e.g., speed, braking and lane position). Participants also completed a post-trial cognitive task analysis interview. Participants were found to make 39 specific error types, with speeding violations the most common. Participants made significantly more errors at intersections compared to mid-block, with misjudgement, action and perceptual/observation errors more commonly observed at intersections. Traffic signal configuration was found to play a key role in intersection error causation, with drivers making more errors at partially signalised compared to fully signalised intersections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Implied motion language can influence visual spatial memory.

    PubMed

    Vinson, David W; Engelen, Jan; Zwaan, Rolf A; Matlock, Teenie; Dale, Rick

    2017-07-01

    How do language and vision interact? Specifically, what impact can language have on visual processing, especially related to spatial memory? What are typically considered errors in visual processing, such as remembering the location of an object to be farther along its motion trajectory than it actually is, can be explained as perceptual achievements that are driven by our ability to anticipate future events. In two experiments, we tested whether the prior presentation of motion language influences visual spatial memory in ways that afford greater perceptual prediction. Experiment 1 showed that motion language influenced judgments for the spatial memory of an object beyond the known effects of implied motion present in the image itself. Experiment 2 replicated this finding. Our findings support a theory of perception as prediction.

  7. How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error.

    PubMed

    Verduzco-Flores, Sergio O; O'Reilly, Randall C

    2015-01-01

    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.

  8. How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error

    PubMed Central

    Verduzco-Flores, Sergio O.; O'Reilly, Randall C.

    2015-01-01

    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations. PMID:25852535

  9. Minimalist approach to perceptual interactions.

    PubMed

    Lenay, Charles; Stewart, John

    2012-01-01

    WORK AIMED AT STUDYING SOCIAL COGNITION IN AN INTERACTIONIST PERSPECTIVE OFTEN ENCOUNTERS SUBSTANTIAL THEORETICAL AND METHODOLOGICAL DIFFICULTIES: identifying the significant behavioral variables; recording them without disturbing the interaction; and distinguishing between: (a) the necessary and sufficient contributions of each individual partner for a collective dynamics to emerge; (b) features which derive from this collective dynamics and escape from the control of the individual partners; and (c) the phenomena arising from this collective dynamics which are subsequently appropriated and used by the partners. We propose a minimalist experimental paradigm as a basis for this conceptual discussion: by reducing the sensory inputs to a strict minimum, we force a spatial and temporal deployment of the perceptual activities, which makes it possible to obtain a complete recording and control of the dynamics of interaction. After presenting the principles of this minimalist approach to perception, we describe a series of experiments on two major questions in social cognition: recognizing the presence of another intentional subject; and phenomena of imitation. In both cases, we propose explanatory schema which render an interactionist approach to social cognition clear and explicit. Starting from our earlier work on perceptual crossing we present a new experiment on the mechanisms of reciprocal recognition of the perceptual intentionality of the other subject: the emergent collective dynamics of the perceptual crossing can be appropriated by each subject. We then present an experimental study of opaque imitation (when the subjects cannot see what they themselves are doing). This study makes it possible to characterize what a properly interactionist approach to imitation might be. In conclusion, we draw on these results, to show how an interactionist approach can contribute to a fully social approach to social cognition.

  10. Minimalist Approach to Perceptual Interactions

    PubMed Central

    Lenay, Charles; Stewart, John

    2012-01-01

    Work aimed at studying social cognition in an interactionist perspective often encounters substantial theoretical and methodological difficulties: identifying the significant behavioral variables; recording them without disturbing the interaction; and distinguishing between: (a) the necessary and sufficient contributions of each individual partner for a collective dynamics to emerge; (b) features which derive from this collective dynamics and escape from the control of the individual partners; and (c) the phenomena arising from this collective dynamics which are subsequently appropriated and used by the partners. We propose a minimalist experimental paradigm as a basis for this conceptual discussion: by reducing the sensory inputs to a strict minimum, we force a spatial and temporal deployment of the perceptual activities, which makes it possible to obtain a complete recording and control of the dynamics of interaction. After presenting the principles of this minimalist approach to perception, we describe a series of experiments on two major questions in social cognition: recognizing the presence of another intentional subject; and phenomena of imitation. In both cases, we propose explanatory schema which render an interactionist approach to social cognition clear and explicit. Starting from our earlier work on perceptual crossing we present a new experiment on the mechanisms of reciprocal recognition of the perceptual intentionality of the other subject: the emergent collective dynamics of the perceptual crossing can be appropriated by each subject. We then present an experimental study of opaque imitation (when the subjects cannot see what they themselves are doing). This study makes it possible to characterize what a properly interactionist approach to imitation might be. In conclusion, we draw on these results, to show how an interactionist approach can contribute to a fully social approach to social cognition. PMID:22582041

  11. How Prediction Errors Shape Perception, Attention, and Motivation

    PubMed Central

    den Ouden, Hanneke E. M.; Kok, Peter; de Lange, Floris P.

    2012-01-01

    Prediction errors (PE) are a central notion in theoretical models of reinforcement learning, perceptual inference, decision-making and cognition, and prediction error signals have been reported across a wide range of brain regions and experimental paradigms. Here, we will make an attempt to see the forest for the trees and consider the commonalities and differences of reported PE signals in light of recent suggestions that the computation of PE forms a fundamental mode of brain function. We discuss where different types of PE are encoded, how they are generated, and the different functional roles they fulfill. We suggest that while encoding of PE is a common computation across brain regions, the content and function of these error signals can be very different and are determined by the afferent and efferent connections within the neural circuitry in which they arise. PMID:23248610

  12. Quality assessment of color images based on the measure of just noticeable color difference

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien; Hsu, Yun-Hsiang

    2014-01-01

    Accurate assessment on the quality of color images is an important step to many image processing systems that convey visual information of the reproduced images. An accurate objective image quality assessment (IQA) method is expected to give the assessment result highly agreeing with the subjective assessment. To assess the quality of color images, many approaches simply apply the metric for assessing the quality of gray scale images to each of three color channels of the color image, neglecting the correlation among three color channels. In this paper, a metric for assessing color images' quality is proposed, in which the model of variable just-noticeable color difference (VJNCD) is employed to estimate the visibility thresholds of distortion inherent in each color pixel. With the estimated visibility thresholds of distortion, the proposed metric measures the average perceptible distortion in terms of the quantized distortion according to the perceptual error map similar to that defined by National Bureau of Standards (NBS) for converting the color difference enumerated by CIEDE2000 to the objective score of perceptual quality assessment. The perceptual error map in this case is designed for each pixel according to the visibility threshold estimated by the VJNCD model. The performance of the proposed metric is verified by assessing the test images in the LIVE database, and is compared with those of many well-know IQA metrics. Experimental results indicate that the proposed metric is an effective IQA method that can accurately predict the image quality of color images in terms of the correlation between objective scores and subjective evaluation.

  13. Global distortion of GPS networks associated with satellite antenna model errors

    NASA Astrophysics Data System (ADS)

    Cardellach, E.; Elósegui, P.; Davis, J. L.

    2007-07-01

    Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by ˜1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PCO errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm yr-1 level, which will impact high-precision crustal deformation studies.

  14. Global Distortion of GPS Networks Associated with Satellite Antenna Model Errors

    NASA Technical Reports Server (NTRS)

    Cardellach, E.; Elosequi, P.; Davis, J. L.

    2007-01-01

    Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by approx.1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PC0 errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm/yr level, which will impact high-precision crustal deformation studies.

  15. Magnetic Nanoparticle Thermometer: An Investigation of Minimum Error Transmission Path and AC Bias Error

    PubMed Central

    Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing

    2015-01-01

    The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188

  16. LDPC Codes with Minimum Distance Proportional to Block Size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel; Thorpe, Jeremy

    2009-01-01

    Low-density parity-check (LDPC) codes characterized by minimum Hamming distances proportional to block sizes have been demonstrated. Like the codes mentioned in the immediately preceding article, the present codes are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. The previously mentioned codes have low decoding thresholds and reasonably low error floors. However, the minimum Hamming distances of those codes do not grow linearly with code-block sizes. Codes that have this minimum-distance property exhibit very low error floors. Examples of such codes include regular LDPC codes with variable degrees of at least 3. Unfortunately, the decoding thresholds of regular LDPC codes are high. Hence, there is a need for LDPC codes characterized by both low decoding thresholds and, in order to obtain acceptably low error floors, minimum Hamming distances that are proportional to code-block sizes. The present codes were developed to satisfy this need. The minimum Hamming distances of the present codes have been shown, through consideration of ensemble-average weight enumerators, to be proportional to code block sizes. As in the cases of irregular ensembles, the properties of these codes are sensitive to the proportion of degree-2 variable nodes. A code having too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code having too many such nodes tends not to exhibit a minimum distance that is proportional to block size. Results of computational simulations have shown that the decoding thresholds of codes of the present type are lower than those of regular LDPC codes. Included in the simulations were a few examples from a family of codes characterized by rates ranging from low to high and by thresholds that adhere closely to their respective channel capacity thresholds; the simulation results from these examples showed that the codes in question have low error floors as well as low decoding thresholds. As an example, the illustration shows the protograph (which represents the blueprint for overall construction) of one proposed code family for code rates greater than or equal to 1.2. Any size LDPC code can be obtained by copying the protograph structure N times, then permuting the edges. The illustration also provides Field Programmable Gate Array (FPGA) hardware performance simulations for this code family. In addition, the illustration provides minimum signal-to-noise ratios (Eb/No) in decibels (decoding thresholds) to achieve zero error rates as the code block size goes to infinity for various code rates. In comparison with the codes mentioned in the preceding article, these codes have slightly higher decoding thresholds.

  17. Perceptions as Hypotheses

    NASA Astrophysics Data System (ADS)

    Gregory, R. L.

    1980-07-01

    Perceptions may be compared with hypotheses in science. The methods of acquiring scientific knowledge provide a working paradigm for investigating processes of perception. Much as the information channels of instruments, such as radio telescopes, transmit signals which are processed according to various assumptions to give useful data, so neural signals are processed to give data for perception. To understand perception, the signal codes and the stored knowledge or assumptions used for deriving perceptual hypotheses must be discovered. Systematic perceptual errors are important clues for appreciating signal channel limitations, and for discovering hypothesis-generating procedures. Although this distinction between `physiological' and `cognitive' aspects of perception may be logically clear, it is in practice surprisingly difficult to establish which are responsible even for clearly established phenomena such as the classical distortion illusions. Experimental results are presented, aimed at distinguishing between and discovering what happens when there is mismatch with the neural signal channel, and when neural signals are processed inappropriately for the current situation. This leads us to make some distinctions between perceptual and scientific hypotheses, which raise in a new form the problem: What are `objects'?

  18. Involuntary attention with uncertainty: peripheral cues improve perception of masked letters, but may impair perception of low-contrast letters.

    PubMed

    Kerzel, Dirk; Gauch, Angélique; Buetti, Simona

    2010-10-01

    Improvements of perceptual performance following the presentation of peripheral cues have been ascribed to accelerated accrual of information, enhanced contrast perception, and decision bias. We investigated effects of peripheral cues on the perception of Gabor and letter stimuli. Non-predictive, peripheral cues improved perceptual accuracy when the stimuli were masked. In contrast, peripheral cues degraded perception of low-contrast letters and did not affect the perception of low-contrast Gabors. The results suggest that involuntary attention accelerates accrual of information but are not entirely consistent with the idea that involuntary attention enhances subjective contrast. Rather, peripheral cues may cause crowding with single letter targets of low contrast. Further, we investigated the effect of the amount of uncertainty on involuntary attention. Cueing effects were (initially) larger when there were more possible target locations. In addition, cueing effects were larger when error feedback was absent and observers had no knowledge of results. Despite these strategic factors, location uncertainty was not sufficient to produce cueing effects, showing that location uncertainty paired with non-predictive cues reveals perceptual and not (only) decisional processes.

  19. Accounting for speed-accuracy tradeoff in perceptual learning

    PubMed Central

    Liu, Charles C.; Watanabe, Takeo

    2011-01-01

    In the perceptual learning (PL) literature, researchers typically focus on improvements in accuracy, such as d’. In contrast, researchers who investigate the practice of cognitive skills focus on improvements in response times (RT). Here, we argue for the importance of accounting for both accuracy and RT in PL experiments, due to the phenomenon of speed-accuracy tradeoff (SAT): at a given level of discriminability, faster responses tend to produce more errors. A formal model of the decision process, such as the diffusion model, can explain the SAT. In this model, a parameter known as the drift rate represents the perceptual strength of the stimulus, where higher drift rates lead to more accurate and faster responses. We applied the diffusion model to analyze responses from a yes-no coherent motion detection task. The results indicate that observers do not use a fixed threshold for evidence accumulation, so changes in the observed accuracy may not provide the most appropriate estimate of learning. Instead, our results suggest that SAT can be accounted for by a modeling approach, and that drift rates offer a promising index of PL. PMID:21958757

  20. Testing alternative explanations for common responses to conceptual questions: An example in the context of center of mass

    NASA Astrophysics Data System (ADS)

    Heron, Paula R. L.

    2017-06-01

    In physics education research it has been common to interpret student errors on conceptual questions in topic-specific ways, rather than in terms of general perceptual or reasoning difficulties. This paper examines two alternative accounts for responses to questions related to the concept of center of mass. In one account, difficulties are said to be perceptual in nature; in the other, difficulties are said to be tightly linked to the concepts in question. Hypotheses derived from the former perspective are tested in studies conducted among university students in introductory physics courses. The results do not provide strong support for the perceptual hypothesis; in fact, there is evidence that performance on perception tasks may be influenced by subjects' ideas about the physical scenario. While the results do not provide general support for one perspective versus the other, the paper serves as an illustration of the type of investigation needed to develop the kind of rich representation of student thinking that will allow instructional resources to be most effectively targeted.

  1. A Perceptual and Electropalatographic Study of /Esh/ in Young People with Down's Syndrome

    ERIC Educational Resources Information Center

    Timmins, Claire; Cleland, Joanne; Wood, Sara E.; Hardcastle, William J.; Wishart, Jennifer G.

    2009-01-01

    Speech production in young people with Down's syndrome has been found to be variable and inconsistent. Errors tend to be more in the production of sounds that typically develop later, for example, fricatives and affricates, rather than stops and nasals. It has been suggested that inconsistency in production is a result of a motor speech deficit.…

  2. Distinct eye movement patterns enhance dynamic visual acuity.

    PubMed

    Palidis, Dimitrios J; Wyder-Hodge, Pearson A; Fooken, Jolande; Spering, Miriam

    2017-01-01

    Dynamic visual acuity (DVA) is the ability to resolve fine spatial detail in dynamic objects during head fixation, or in static objects during head or body rotation. This ability is important for many activities such as ball sports, and a close relation has been shown between DVA and sports expertise. DVA tasks involve eye movements, yet, it is unclear which aspects of eye movements contribute to successful performance. Here we examined the relation between DVA and the kinematics of smooth pursuit and saccadic eye movements in a cohort of 23 varsity baseball players. In a computerized dynamic-object DVA test, observers reported the location of the gap in a small Landolt-C ring moving at various speeds while eye movements were recorded. Smooth pursuit kinematics-eye latency, acceleration, velocity gain, position error-and the direction and amplitude of saccadic eye movements were linked to perceptual performance. Results reveal that distinct eye movement patterns-minimizing eye position error, tracking smoothly, and inhibiting reverse saccades-were related to dynamic visual acuity. The close link between eye movement quality and DVA performance has important implications for the development of perceptual training programs to improve DVA.

  3. Using a virtual world for robot planning

    NASA Astrophysics Data System (ADS)

    Benjamin, D. Paul; Monaco, John V.; Lin, Yixia; Funk, Christopher; Lyons, Damian

    2012-06-01

    We are building a robot cognitive architecture that constructs a real-time virtual copy of itself and its environment, including people, and uses the model to process perceptual information and to plan its movements. This paper describes the structure of this architecture. The software components of this architecture include PhysX for the virtual world, OpenCV and the Point Cloud Library for visual processing, and the Soar cognitive architecture that controls the perceptual processing and task planning. The RS (Robot Schemas) language is implemented in Soar, providing the ability to reason about concurrency and time. This Soar/RS component controls visual processing, deciding which objects and dynamics to render into PhysX, and the degree of detail required for the task. As the robot runs, its virtual model diverges from physical reality, and errors grow. The Match-Mediated Difference component monitors these errors by comparing the visual data with corresponding data from virtual cameras, and notifies Soar/RS of significant differences, e.g. a new object that appears, or an object that changes direction unexpectedly. Soar/RS can then run PhysX much faster than real-time and search among possible future world paths to plan the robot's actions. We report experimental results in indoor environments.

  4. Minimum Error Bounded Efficient L1 Tracker with Occlusion Detection (PREPRINT)

    DTIC Science & Technology

    2011-01-01

    Minimum Error Bounded Efficient `1 Tracker with Occlusion Detection Xue Mei\\ ∗ Haibin Ling† Yi Wu†[ Erik Blasch‡ Li Bai] \\Assembly Test Technology...proposed BPR-L1 tracker is tested on several challenging benchmark sequences involving chal- lenges such as occlusion and illumination changes. In all...point method de - pends on the value of the regularization parameter λ. In the experiments, we found that the total number of PCG is a few hundred. The

  5. Evaluation of alternative model selection criteria in the analysis of unimodal response curves using CART

    USGS Publications Warehouse

    Ribic, C.A.; Miller, T.W.

    1998-01-01

    We investigated CART performance with a unimodal response curve for one continuous response and four continuous explanatory variables, where two variables were important (ie directly related to the response) and the other two were not. We explored performance under three relationship strengths and two explanatory variable conditions: equal importance and one variable four times as important as the other. We compared CART variable selection performance using three tree-selection rules ('minimum risk', 'minimum risk complexity', 'one standard error') to stepwise polynomial ordinary least squares (OLS) under four sample size conditions. The one-standard-error and minimum-risk-complexity methods performed about as well as stepwise OLS with large sample sizes when the relationship was strong. With weaker relationships, equally important explanatory variables and larger sample sizes, the one-standard-error and minimum-risk-complexity rules performed better than stepwise OLS. With weaker relationships and explanatory variables of unequal importance, tree-structured methods did not perform as well as stepwise OLS. Comparing performance within tree-structured methods, with a strong relationship and equally important explanatory variables, the one-standard-error-rule was more likely to choose the correct model than were the other tree-selection rules 1) with weaker relationships and equally important explanatory variables; and 2) under all relationship strengths when explanatory variables were of unequal importance and sample sizes were lower.

  6. Blind Braille readers mislocate tactile stimuli.

    PubMed

    Sterr, Annette; Green, Lisa; Elbert, Thomas

    2003-05-01

    In a previous experiment, we observed that blind Braille readers produce errors when asked to identify on which finger of one hand a light tactile stimulus had occurred. With the present study, we aimed to specify the characteristics of this perceptual error in blind and sighted participants. The experiment confirmed that blind Braille readers mislocalised tactile stimuli more often than sighted controls, and that the localisation errors occurred significantly more often at the right reading hand than at the non-reading hand. Most importantly, we discovered that the reading fingers showed the smallest error frequency, but the highest rate of stimulus attribution. The dissociation of perceiving and locating tactile stimuli in the blind suggests altered tactile information processing. Neuroplasticity, changes in tactile attention mechanisms as well as the idea that blind persons may employ different strategies for tactile exploration and object localisation are discussed as possible explanations for the results obtained.

  7. Circuit mechanisms of sensorimotor learning

    PubMed Central

    Makino, Hiroshi; Hwang, Eun Jung; Hedrick, Nathan G.; Komiyama, Takaki

    2016-01-01

    SUMMARY The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process in three hierarchical levels with distinct goals: 1) sensory perceptual learning, 2) sensorimotor associative learning, and 3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior. PMID:27883902

  8. LCD motion blur reduction: a signal processing approach.

    PubMed

    Har-Noy, Shay; Nguyen, Truong Q

    2008-02-01

    Liquid crystal displays (LCDs) have shown great promise in the consumer market for their use as both computer and television displays. Despite their many advantages, the inherent sample-and-hold nature of LCD image formation results in a phenomenon known as motion blur. In this work, we develop a method for motion blur reduction using the Richardson-Lucy deconvolution algorithm in concert with motion vector information from the scene. We further refine our approach by introducing a perceptual significance metric that allows us to weight the amount of processing performed on different regions in the image. In addition, we analyze the role of motion vector errors in the quality of our resulting image. Perceptual tests indicate that our algorithm reduces the amount of perceivable motion blur in LCDs.

  9. Failures of Perception in the Low-Prevalence Effect: Evidence From Active and Passive Visual Search

    PubMed Central

    Hout, Michael C.; Walenchok, Stephen C.; Goldinger, Stephen D.; Wolfe, Jeremy M.

    2017-01-01

    In visual search, rare targets are missed disproportionately often. This low-prevalence effect (LPE) is a robust problem with demonstrable societal consequences. What is the source of the LPE? Is it a perceptual bias against rare targets or a later process, such as premature search termination or motor response errors? In 4 experiments, we examined the LPE using standard visual search (with eye tracking) and 2 variants of rapid serial visual presentation (RSVP) in which observers made present/absent decisions after sequences ended. In all experiments, observers looked for 2 target categories (teddy bear and butterfly) simultaneously. To minimize simple motor errors, caused by repetitive absent responses, we held overall target prevalence at 50%, with 1 low-prevalence and 1 high-prevalence target type. Across conditions, observers either searched for targets among other real-world objects or searched for specific bears or butterflies among within-category distractors. We report 4 main results: (a) In standard search, high-prevalence targets were found more quickly and accurately than low-prevalence targets. (b) The LPE persisted in RSVP search, even though observers never terminated search on their own. (c) Eye-tracking analyses showed that high-prevalence targets elicited better attentional guidance and faster perceptual decisions. And (d) even when observers looked directly at low-prevalence targets, they often (12%–34% of trials) failed to detect them. These results strongly argue that low-prevalence misses represent failures of perception when early search termination or motor errors are controlled. PMID:25915073

  10. Escaping the recent past: Which stimulus dimensions influence proactive interference?

    PubMed Central

    Craig, Kimberly S.; Berman, Marc G.; Jonides, John; Lustig, Cindy

    2013-01-01

    Proactive interference occurs when information from the past disrupts current processing and is a major source of confusion and errors in short-term memory (Wickens, Born & Allen, 1963). The present investigation examines potential boundary conditions for interference, testing the hypothesis that potential competitors must be similar along task-relevant dimensions to influence proactive interference effects. We manipulated both the type of task being completed (Experiments 1, 2 and 3) and dimensions of similarity irrelevant to the current task (Experiments 4 and 5) to determine how the recent presentation of a probe item would affect the speed with which participants could reject that item. Experiments 1, 2 and 3 contrasted short-term memory judgments, which require temporal information, with semantic and perceptual judgments, for which temporal information is irrelevant. In Experiments 4 and 5, task-irrelevant information (perceptual similarity) was manipulated within the recent probes task. We found that interference from past items affected short-term memory (STM) task performance but did not affect performance in semantic or perceptual judgment tasks. Conversely, similarity along a nominally-irrelevant perceptual dimension did not affect the magnitude of interference in STM tasks. Results are consistent with the view that items in STM are represented by noisy codes consisting of multiple dimensions, and that interference occurs when items are similar to each other and thus compete along the dimensions relevant to target selection. PMID:23297049

  11. Escaping the recent past: which stimulus dimensions influence proactive interference?

    PubMed

    Craig, Kimberly S; Berman, Marc G; Jonides, John; Lustig, Cindy

    2013-07-01

    Proactive interference occurs when information from the past disrupts current processing and is a major source of confusion and errors in short-term memory (STM; Wickens, Born, & Allen, Journal of Verbal Learning and Verbal Behavior, 2:440-445, 1963). The present investigation examines potential boundary conditions for interference, testing the hypothesis that potential competitors must be similar along task-relevant dimensions to influence proactive interference effects. We manipulated both the type of task being completed (Experiments 1, 2, and 3) and dimensions of similarity irrelevant to the current task (Experiments 4 and 5) to determine how the recent presentation of a probe item would affect the speed with which participants could reject that item. Experiments 1, 2, and 3 contrasted STM judgments, which require temporal information, with semantic and perceptual judgments, for which temporal information is irrelevant. In Experiments 4 and 5, task-irrelevant information (perceptual similarity) was manipulated within the recent probes task. We found that interference from past items affected STM task performance but did not affect performance in semantic or perceptual judgment tasks. Conversely, similarity along a nominally irrelevant perceptual dimension did not affect the magnitude of interference in STM tasks. Results are consistent with the view that items in STM are represented by noisy codes consisting of multiple dimensions and that interference occurs when items are similar to each other and, thus, compete along the dimensions relevant to target selection.

  12. Perceptual inference.

    PubMed

    Aggelopoulos, Nikolaos C

    2015-08-01

    Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Perceptual uncertainty and line-call challenges in professional tennis

    PubMed Central

    Mather, George

    2008-01-01

    Fast-moving sports such as tennis require both players and match officials to make rapid accurate perceptual decisions about dynamic events in the visual world. Disagreements arise regularly, leading to disputes about decisions such as line calls. A number of factors must contribute to these disputes, including lapses in concentration, bias and gamesmanship. Fundamental uncertainty or variability in the sensory information supporting decisions must also play a role. Modern technological innovations now provide detailed and accurate physical information that can be compared against the decisions of players and officials. The present paper uses this psychophysical data to assess the significance of perceptual limitations as a contributor to real-world decisions in professional tennis. A detailed analysis is presented of a large body of data on line-call challenges in professional tennis tournaments over the last 2 years. Results reveal that the vast majority of challenges can be explained in a direct highly predictable manner by a simple model of uncertainty in perceptual information processing. Both players and line judges are remarkably accurate at judging ball bounce position, with a positional uncertainty of less than 40 mm. Line judges are more reliable than players. Judgements are more difficult for balls bouncing near base and service lines than those bouncing near side and centre lines. There is no evidence for significant errors in localization due to image motion. PMID:18426755

  14. Perceptual uncertainty and line-call challenges in professional tennis.

    PubMed

    Mather, George

    2008-07-22

    Fast-moving sports such as tennis require both players and match officials to make rapid accurate perceptual decisions about dynamic events in the visual world. Disagreements arise regularly, leading to disputes about decisions such as line calls. A number of factors must contribute to these disputes, including lapses in concentration, bias and gamesmanship. Fundamental uncertainty or variability in the sensory information supporting decisions must also play a role. Modern technological innovations now provide detailed and accurate physical information that can be compared against the decisions of players and officials. The present paper uses this psychophysical data to assess the significance of perceptual limitations as a contributor to real-world decisions in professional tennis. A detailed analysis is presented of a large body of data on line-call challenges in professional tennis tournaments over the last 2 years. Results reveal that the vast majority of challenges can be explained in a direct highly predictable manner by a simple model of uncertainty in perceptual information processing. Both players and line judges are remarkably accurate at judging ball bounce position, with a positional uncertainty of less than 40mm. Line judges are more reliable than players. Judgements are more difficult for balls bouncing near base and service lines than those bouncing near side and centre lines. There is no evidence for significant errors in localization due to image motion.

  15. Is comprehension necessary for error detection? A conflict-based account of monitoring in speech production

    PubMed Central

    Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.

    2011-01-01

    Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the double dissociation between comprehension and error-detection ability observed in the aphasic patients. We propose a new theory of speech-error detection which is instead based on the production process itself. The theory borrows from studies of forced-choice-response tasks the notion that error detection is accomplished by monitoring response conflict via a frontal brain structure, such as the anterior cingulate cortex. We adapt this idea to the two-step model of word production, and test the model-derived predictions on a sample of aphasic patients. Our results show a strong correlation between patients’ error-detection ability and the model’s characterization of their production skills, and no significant correlation between error detection and comprehension measures, thus supporting a production-based monitor, generally, and the implemented conflict-based monitor in particular. The successful application of the conflict-based theory to error-detection in linguistic, as well as non-linguistic domains points to a domain-general monitoring system. PMID:21652015

  16. Spatial coding of eye movements relative to perceived earth and head orientations during static roll tilt

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Paloski, W. H.; Reschke, M. F.

    1998-01-01

    This purpose of this study was to examine the spatial coding of eye movements during static roll tilt (up to +/-45 degrees) relative to perceived earth and head orientations. Binocular videographic recordings obtained in darkness from eight subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the true earth and head orientations. We found that both variability and curvature of gaze trajectories increased with roll tilt. The trajectories of eye movements made along the perceived earth-horizontal (PEH) were more accurate than movements along the perceived head-horizontal (PHH). The trajectories of both PEH and PHH saccades tended to deviate in the same direction as the head tilt. The deviations in gaze trajectories along the perceived earth-vertical (PEV) and perceived head-vertical (PHV) were both similar to the PHH orientation, except that saccades along the PEV deviated in the opposite direction relative to the head tilt. The magnitude of deviations along the PEV, PHH, and PHV corresponded to perceptual overestimations of roll tilt obtained from verbal reports. Both PEV gaze trajectories and perceptual estimates of tilt orientation were different following clockwise rather than counterclockwise tilt rotation; however, the PEH gaze trajectories were less affected by the direction of tilt rotation. Our results suggest that errors in gaze trajectories along PEV and perceived head orientations increase during roll tilt in a similar way to perceptual errors of tilt orientation. Although PEH and PEV gaze trajectories became nonorthogonal during roll tilt, we conclude that the spatial coding of eye movements during roll tilt is overall more accurate for the perceived earth reference frame than for the perceived head reference frame.

  17. Al Hirschfeld's NINA as a prototype search task for studying perceptual error in radiology

    NASA Astrophysics Data System (ADS)

    Nodine, Calvin F.; Kundel, Harold L.

    1997-04-01

    Artist Al Hirschfeld has been hiding the word NINA (his daughter's name) in line drawings of theatrical scenes that have appeared in the New York Times for over 50 years. This paper shows how Hirschfeld's search task of finding the name NINA in his drawings illustrates basic perceptual principles of detection, discrimination and decision-making commonly encountered in radiology search tasks. Hirschfeld's hiding of NINA is typically accomplished by camouflaging the letters of the name and blending them into scenic background details such as wisps of hair and folds of clothing. In a similar way, pulmonary nodules and breast lesions are camouflaged by anatomic features of the chest or breast image. Hirschfeld's hidden NINAs are sometimes missed because they are integrated into a Gestalt overview rather than differentiated from background features during focal scanning. This may be similar to overlooking an obvious nodule behind the heart in a chest x-ray image. Because it is a search game, Hirschfeld assigns a number to each drawing to indicate how many NINAs he has hidden so as not to frustrate his viewers. In the radiologists' task, the number of targets detected in a medical image is determined by combining perceptual input with probabilities generated from clinical history and viewing experience. Thus, in the absence of truth, searching for abnormalities in x-ray images creates opportunities for recognition and decision errors (e.g. false positives and false negatives). We illustrate how camouflage decreases the conspicuity of both artistic and radiographic targets, compare detection performance of radiologists with lay persons searching for NINAs, and, show similarities and differences between scanning strategies of the two groups based on eye-position data.

  18. Stitching-error reduction in gratings by shot-shifted electron-beam lithography

    NASA Technical Reports Server (NTRS)

    Dougherty, D. J.; Muller, R. E.; Maker, P. D.; Forouhar, S.

    2001-01-01

    Calculations of the grating spatial-frequency spectrum and the filtering properties of multiple-pass electron-beam writing demonstrate a tradeoff between stitching-error suppression and minimum pitch separation. High-resolution measurements of optical-diffraction patterns show a 25-dB reduction in stitching-error side modes.

  19. Modeling Multiplicative Error Variance: An Example Predicting Tree Diameter from Stump Dimensions in Baldcypress

    Treesearch

    Bernard R. Parresol

    1993-01-01

    In the context of forest modeling, it is often reasonable to assume a multiplicative heteroscedastic error structure to the data. Under such circumstances ordinary least squares no longer provides minimum variance estimates of the model parameters. Through study of the error structure, a suitable error variance model can be specified and its parameters estimated. This...

  20. Invariance of the bit error rate in the ancilla-assisted homodyne detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Yuhsuke; Takeoka, Masahiro; Sasaki, Masahide

    2010-11-15

    We investigate the minimum achievable bit error rate of the discrimination of binary coherent states with the help of arbitrary ancillary states. We adopt homodyne measurement with a common phase of the local oscillator and classical feedforward control. After one ancillary state is measured, its outcome is referred to the preparation of the next ancillary state and the tuning of the next mixing with the signal. It is shown that the minimum bit error rate of the system is invariant under the following operations: feedforward control, deformations, and introduction of any ancillary state. We also discuss the possible generalization ofmore » the homodyne detection scheme.« less

  1. Children Induce an Enhanced Attentional Blink in Child Molesters

    ERIC Educational Resources Information Center

    Beech, Anthony R.; Kalmus, Ellis; Tipper, Steven P.; Baudouin, Jean-Yves; Flak, Vanja; Humphreys, Glyn W.

    2008-01-01

    The attentional blink (AB) is a robust phenomenon that has been consistently reported in the cognitive literature. The AB is found when two target images (T1, T2) are presented within 500 ms of each other and errors are induced on the perceptual report of T2. The AB may increase when T1 has some salience to the viewer. This study examined the…

  2. Increased Perceptual and Conceptual Processing Difficulty Makes the Immeasurable Measurable: Negative Priming in the Absence of Probe Distractors

    ERIC Educational Resources Information Center

    Frings, Christian; Spence, Charles

    2011-01-01

    Negative priming (NP) refers to the finding that people's responses to probe targets previously presented as prime distractors are usually slower and more error prone than to unrepeated stimuli. In a typical NP experiment, each probe target is accompanied by a distractor. It is an accepted, albeit puzzling, finding that the NP effect depends on…

  3. Articulatory Placement for /t/, /d/, /k/ and /g/ Targets in School Age Children with Speech Disorders Associated with Cleft Palate

    ERIC Educational Resources Information Center

    Gibbon, Fiona; Ellis, Lucy; Crampin, Lisa

    2004-01-01

    This study used electropalatography (EPG) to identify place of articulation for lingual plosive targets /t/, /d/, /k/ and /g/ in the speech of 15 school age children with repaired cleft palate. Perceptual judgements indicated that all children had correct velar placement for /k/, /g/ targets, but /t/, /d/ targets were produced as errors involving…

  4. Language Use, Language Ability, and Language Development: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," January through June 1979 (Vol. 39 Nos. 7 through 12).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 23 titles deal with the following topics: sex appropriate and sex inappropriate language; lexical retrieval and perceptual errors; naming deficits in anomia and aphasia; developmental discourse; pragmatic information and…

  5. Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging.

    PubMed

    Punwani, Shonit; Taylor, Stuart A; Bainbridge, Alan; Prakash, Vineet; Bandula, Steven; De Vita, Enrico; Olsen, Oystein E; Hain, Sharon F; Stevens, Nicola; Daw, Stephen; Shankar, Ananth; Bomanji, Jamshed B; Humphries, Paul D

    2010-04-01

    To compare the diagnostic performance of rapid whole-body anatomic magnetic resonance (MR) staging of pediatric and adolescent lymphoma to an enhanced positron emission tomographic (PET)/computed tomographic (CT) reference standard. Ethical permission was given by the University College London Hospital ethics committee, and informed written consent was obtained from all participants and/or parents or guardians. Thirty-one subjects (age range, 7.3-18.0 years; 18 male, 11 female) with histologically proved lymphoma were prospectively recruited. Pretreatment staging was performed with whole-body short inversion time inversion-recovery (STIR) half-Fourier rapid acquisition with relaxation enhancement (RARE) MR imaging, fluorine 18 fluorodeoxyglucose PET/CT, and contrast agent-enhanced chest CT. Twenty-six subjects had posttreatment PET/CT and compromised our final cohort. Eleven nodal and 11 extranodal sites per patient were assessed on MR imaging by two radiologists in consensus, with a nodal short-axis threshold of >1 cm and predefined extranodal positivity criteria. The same sites were independantly evaluated by two nuclear medicine physicians on PET/CT images. Disease positivity was defined as a maximum standardized uptake value >2.5 or nodal size >1 cm. An unblinded expert panel reevaluated the imaging findings, removing perceptual errors, and derived an enhanced PET/CT reference standard (taking into account chest CT and 3-month follow-up imaging) against which the reported and intrinsic performance of MR imaging was assessed by using the kappa statistic. There was very good agreement between MR imaging and the enhanced PET/CT reference standard for nodal and extranodal staging (kappa = 0.96 and 0.86, respectively) which improved following elimination of perceptual errors (kappa = 0.97 and 0.91, respectively). The sensitivity and specificity of MR imaging (following removal of perceptual error) were 98% and 99%, respectively, for nodal disease and 91% and 99%, respectively, for extranodal disease. Whole-body STIR half-Fourier RARE MR imaging of pediatric and adolescent lymphoma can accurately depict nodal and extranodal disease and may provide an alternative nonionizing imaging method for anatomic disease assessment at initial staging. RSNA, 2010

  6. Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I--Theory and simulations.

    PubMed

    Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D

    2002-07-01

    Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.

  7. Contextual Advantage for State Discrimination

    NASA Astrophysics Data System (ADS)

    Schmid, David; Spekkens, Robert W.

    2018-02-01

    Finding quantitative aspects of quantum phenomena which cannot be explained by any classical model has foundational importance for understanding the boundary between classical and quantum theory. It also has practical significance for identifying information processing tasks for which those phenomena provide a quantum advantage. Using the framework of generalized noncontextuality as our notion of classicality, we find one such nonclassical feature within the phenomenology of quantum minimum-error state discrimination. Namely, we identify quantitative limits on the success probability for minimum-error state discrimination in any experiment described by a noncontextual ontological model. These constraints constitute noncontextuality inequalities that are violated by quantum theory, and this violation implies a quantum advantage for state discrimination relative to noncontextual models. Furthermore, our noncontextuality inequalities are robust to noise and are operationally formulated, so that any experimental violation of the inequalities is a witness of contextuality, independently of the validity of quantum theory. Along the way, we introduce new methods for analyzing noncontextuality scenarios and demonstrate a tight connection between our minimum-error state discrimination scenario and a Bell scenario.

  8. Radial orbit error reduction and sea surface topography determination using satellite altimetry

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.

  9. Force and Directional Force Modulation Effects on Accuracy and Variability in Low-Level Pinch Force Tracking.

    PubMed

    Park, Sangsoo; Spirduso, Waneen; Eakin, Tim; Abraham, Lawrence

    2018-01-01

    The authors investigated how varying the required low-level forces and the direction of force change affect accuracy and variability of force production in a cyclic isometric pinch force tracking task. Eighteen healthy right-handed adult volunteers performed the tracking task over 3 different force ranges. Root mean square error and coefficient of variation were higher at lower force levels and during minimum reversals compared with maximum reversals. Overall, the thumb showed greater root mean square error and coefficient of variation scores than did the index finger during maximum reversals, but not during minimum reversals. The observed impaired performance during minimum reversals might originate from history-dependent mechanisms of force production and highly coupled 2-digit performance.

  10. Validation of the Kp Geomagnetic Index Forecast at CCMC

    NASA Astrophysics Data System (ADS)

    Frechette, B. P.; Mays, M. L.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) Space Weather Research Center (SWRC) sub-team provides space weather services to NASA robotic mission operators and science campaigns and prototypes new models, forecasting techniques, and procedures. The Kp index is a measure of geomagnetic disturbances for space weather in the magnetosphere such as geomagnetic storms and substorms. In this study, we performed validation on the Newell et al. (2007) Kp prediction equation from December 2010 to July 2017. The purpose of this research is to understand the Kp forecast performance because it's critical for NASA missions to have confidence in the space weather forecast. This research was done by computing the Kp error for each forecast (average, minimum, maximum) and each synoptic period. Then to quantify forecast performance we computed the mean error, mean absolute error, root mean square error, multiplicative bias and correlation coefficient. A contingency table was made for each forecast and skill scores were computed. The results are compared to the perfect score and reference forecast skill score. In conclusion, the skill score and error results show that the minimum of the predicted Kp over each synoptic period from the Newell et al. (2007) Kp prediction equation performed better than the maximum or average of the prediction. However, persistence (reference forecast) outperformed all of the Kp forecasts (minimum, maximum, and average). Overall, the Newell Kp prediction still predicts within a range of 1, even though persistence beats it.

  11. Stack Number Influence on the Accuracy of Aster Gdem (V2)

    NASA Astrophysics Data System (ADS)

    Mirzadeh, S. M. J.; Alizadeh Naeini, A.; Fatemi, S. B.

    2017-09-01

    In this research, the influence of stack number (STKN) on the accuracy of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM (GDEM) has been investigated. For this purpose, two data sets of ASTER and Reference DEMs from two study areas with various topography (Bomehen and Tazehabad) were used. The Results show that in both study areas, STKN of 19 results in minimum error so that this minimum error has small difference with other STKN. The analysis of slope, STKN, and error values shows that there is no strong correlation between these parameters in both study areas. For example, the value of mean absolute error increase by changing the topography and the increase of slope values and height on cells but, the changes in STKN has no important effect on error values. Furthermore, according to high values of STKN, effect of slope on elevation accuracy has practically decreased. Also, there is no great correlation between the residual and STKN in ASTER GDEM.

  12. Characterization of the International Linear Collider damping ring optics

    NASA Astrophysics Data System (ADS)

    Shanks, J.; Rubin, D. L.; Sagan, D.

    2014-10-01

    A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.

  13. Sensorimotor simulations underlie conceptual representations: modality-specific effects of prior activation.

    PubMed

    Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W

    2004-02-01

    According to the perceptual symbols theory (Barsalou, 1999), sensorimotor simulations underlie the representation of concepts. Simulations are componential in the sense that they vary with the context in which the concept is presented. In the present study, we investigated whether representations are affected by recent experiences with a concept. Concept names (e.g., APPLE) were presented twice in a property verification task with a different property on each occasion. The two properties were either from the same perceptual modality (e.g., green, shiny) or from different modalities (e.g., tart, shiny). All stimuli were words. There was a lag of several intervening trials between the first and second presentation. Verification times and error rates for the second presentation of the concept were higher if the properties were from different modalities than if they were from the same modality.

  14. Is There Evidence for a Mixture of Processes in Speed-Accuracy Trade-Off Behavior?

    PubMed

    van Maanen, Leendert

    2016-01-01

    The speed-accuracy trade-off (SAT) effect refers to the behavioral trade-off between fast yet error-prone respones and accurate but slow responses. Multiple theories on the cognitive mechanisms behind SAT exist. One theory assumes that SAT is a consequence of strategically adjusting the amount of evidence required for overt behaviors, such as perceptual choices. Another theory hypothesizes that SAT is the consequence of the mixture of multiple categorically different cognitive processes. In this paper, these theories are disambiguated by assessing whether the fixed-point property of mixture distributions holds, in both simulations and data. I conclude that, at least for perceptual decision making, there is no evidence for a mixture of different cognitive processes to trade off accuracy of responding for speed. Copyright © 2016 Cognitive Science Society, Inc.

  15. How dolphins see the world: a comparison with chimpanzees and humans.

    PubMed

    Tomonaga, Masaki; Uwano, Yuka; Saito, Toyoshi

    2014-01-16

    Bottlenose dolphins use auditory (or echoic) information to recognise their environments, and many studies have described their echolocation perception abilities. However, relatively few systematic studies have examined their visual perception. We tested dolphins on a visual-matching task using two-dimensional geometric forms including various features. Based on error patterns, we used multidimensional scaling to analyse perceptual similarities among stimuli. In addition to dolphins, we conducted comparable tests with terrestrial species: chimpanzees were tested on a computer-controlled matching task and humans were tested on a rating task. The overall perceptual similarities among stimuli in dolphins were similar to those in the two species of primates. These results clearly indicate that the visual world is perceived similarly by the three species of mammals, even though each has adapted to a different environment and has differing degrees of dependence on vision.

  16. Effects of Optical Combiner and IPD Change for Convergence on Near-Field Depth Perception in an Optical See-Through HMD.

    PubMed

    Lee, Sangyoon; Hu, Xinda; Hua, Hong

    2016-05-01

    Many error sources have been explored in regards to the depth perception problem in augmented reality environments using optical see-through head-mounted displays (OST-HMDs). Nonetheless, two error sources are commonly neglected: the ray-shift phenomenon and the change in interpupillary distance (IPD). The first source of error arises from the difference in refraction for virtual and see-through optical paths caused by an optical combiner, which is required of OST-HMDs. The second occurs from the change in the viewer's IPD due to eye convergence. In this paper, we analyze the effects of these two error sources on near-field depth perception and propose methods to compensate for these two types of errors. Furthermore, we investigate their effectiveness through an experiment comparing the conditions with and without our error compensation methods applied. In our experiment, participants estimated the egocentric depth of a virtual and a physical object located at seven different near-field distances (40∼200 cm) using a perceptual matching task. Although the experimental results showed different patterns depending on the target distance, the results demonstrated that the near-field depth perception error can be effectively reduced to a very small level (at most 1 percent error) by compensating for the two mentioned error sources.

  17. Factors that influence the generation of autobiographical memory conjunction errors

    PubMed Central

    Devitt, Aleea L.; Monk-Fromont, Edwin; Schacter, Daniel L.; Addis, Donna Rose

    2015-01-01

    The constructive nature of memory is generally adaptive, allowing us to efficiently store, process and learn from life events, and simulate future scenarios to prepare ourselves for what may come. However, the cost of a flexibly constructive memory system is the occasional conjunction error, whereby the components of an event are authentic, but the combination of those components is false. Using a novel recombination paradigm, it was demonstrated that details from one autobiographical memory may be incorrectly incorporated into another, forming autobiographical memory conjunction errors that elude typical reality monitoring checks. The factors that contribute to the creation of these conjunction errors were examined across two experiments. Conjunction errors were more likely to occur when the corresponding details were partially rather than fully recombined, likely due to increased plausibility and ease of simulation of partially recombined scenarios. Brief periods of imagination increased conjunction error rates, in line with the imagination inflation effect. Subjective ratings suggest that this inflation is due to similarity of phenomenological experience between conjunction and authentic memories, consistent with a source monitoring perspective. Moreover, objective scoring of memory content indicates that increased perceptual detail may be particularly important for the formation of autobiographical memory conjunction errors. PMID:25611492

  18. Factors that influence the generation of autobiographical memory conjunction errors.

    PubMed

    Devitt, Aleea L; Monk-Fromont, Edwin; Schacter, Daniel L; Addis, Donna Rose

    2016-01-01

    The constructive nature of memory is generally adaptive, allowing us to efficiently store, process and learn from life events, and simulate future scenarios to prepare ourselves for what may come. However, the cost of a flexibly constructive memory system is the occasional conjunction error, whereby the components of an event are authentic, but the combination of those components is false. Using a novel recombination paradigm, it was demonstrated that details from one autobiographical memory (AM) may be incorrectly incorporated into another, forming AM conjunction errors that elude typical reality monitoring checks. The factors that contribute to the creation of these conjunction errors were examined across two experiments. Conjunction errors were more likely to occur when the corresponding details were partially rather than fully recombined, likely due to increased plausibility and ease of simulation of partially recombined scenarios. Brief periods of imagination increased conjunction error rates, in line with the imagination inflation effect. Subjective ratings suggest that this inflation is due to similarity of phenomenological experience between conjunction and authentic memories, consistent with a source monitoring perspective. Moreover, objective scoring of memory content indicates that increased perceptual detail may be particularly important for the formation of AM conjunction errors.

  19. Do Standard Instrumental Acoustic, Perceptual, and Subjective Voice Outcomes Indicate Therapy Success in Patients With Functional Dysphonia?

    PubMed

    Reetz, Stephanie; Bohlender, Joerg E; Brockmann-Bauser, Meike

    2018-01-29

    The validity and sensitivity to change of instrumental acoustic measurements in patients with functional dysphonia have been controversially discussed. This work examines combined voice therapy effects on standard acoustic measurements, and if these agree with perceptual and subjective voice outcomes. Retrospective study. Thirty-nine patients (26 women, 13 men) aged 20-70 years (mean: 46.3, standard deviation 12.8) with functional dysphonia were investigated before and after combined voice therapy. Instrumental parameters included mean and range of speaking fundamental frequency (f o ) and intensity (SPL (dBA)); maximum SPL and mean f o of calling voice; minimum, maximum, range of singing voice f o and SPL, jitter (%), and the Dysphonia Severity Index. Voice Handicap Index-9 international was used for subjective and Grading-Roughness-Breathiness-Asthenia-Strain scale for perceptual assessment. Differences were investigated by Wilcoxon signed ranks test and coherences by Spearman rank correlation coefficient. After treatment, the speaking voice f o range (7-8.13 semitones) and SPL range (12.9-14.85 dB(A)) were significantly larger (P < 0.05). Both parameters were highly correlated (P < 0.001). Subjective symptoms were significantly reduced from a mean Voice Handicap Index-9 international of 15.6-8.6, and all perceptual Grading-Roughness-Breathiness-Asthenia-Strain scale parameters were significantly improved (G: 1.05-0.51) after therapy (P < 0.05). These findings were not associated with any acoustic parameter (P > 0.05). Significantly improved subjective and perceptual findings verify positive combined voice therapy effects in patients with functional dysphonia. The larger f o and SPL speaking voice range after treatment indicate an altered voice technique. These instrumental measures may be clinical indicators of therapy success and transfer effects. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  20. Gaze-contingent perceptually enabled interactions in the operating theatre.

    PubMed

    Kogkas, Alexandros A; Darzi, Ara; Mylonas, George P

    2017-07-01

    Improved surgical outcome and patient safety in the operating theatre are constant challenges. We hypothesise that a framework that collects and utilises information -especially perceptually enabled ones-from multiple sources, could help to meet the above goals. This paper presents some core functionalities of a wider low-cost framework under development that allows perceptually enabled interaction within the surgical environment. The synergy of wearable eye-tracking and advanced computer vision methodologies, such as SLAM, is exploited. As a demonstration of one of the framework's possible functionalities, an articulated collaborative robotic arm and laser pointer is integrated and the set-up is used to project the surgeon's fixation point in 3D space. The implementation is evaluated over 60 fixations on predefined targets, with distances between the subject and the targets of 92-212 cm and between the robot and the targets of 42-193 cm. The median overall system error is currently 3.98 cm. Its real-time potential is also highlighted. The work presented here represents an introduction and preliminary experimental validation of core functionalities of a larger framework under development. The proposed framework is geared towards a safer and more efficient surgical theatre.

  1. Accounting for speed-accuracy tradeoff in perceptual learning.

    PubMed

    Liu, Charles C; Watanabe, Takeo

    2012-05-15

    In the perceptual learning (PL) literature, researchers typically focus on improvements in accuracy, such as d'. In contrast, researchers who investigate the practice of cognitive skills focus on improvements in response times (RT). Here, we argue for the importance of accounting for both accuracy and RT in PL experiments, due to the phenomenon of speed-accuracy tradeoff (SAT): at a given level of discriminability, faster responses tend to produce more errors. A formal model of the decision process, such as the diffusion model, can explain the SAT. In this model, a parameter known as the drift rate represents the perceptual strength of the stimulus, where higher drift rates lead to more accurate and faster responses. We applied the diffusion model to analyze responses from a yes-no coherent motion detection task. The results indicate that observers do not use a fixed threshold for evidence accumulation, so changes in the observed accuracy may not provide the most appropriate estimate of learning. Instead, our results suggest that SAT can be accounted for by a modeling approach, and that drift rates offer a promising index of PL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Free classification of regional dialects of American English.

    PubMed

    Clopper, Cynthia G; Pisoni, David B

    2007-07-01

    Recent studies have found that naïve listeners perform poorly in forced-choice dialect categorization tasks. However, the listeners' error patterns in these tasks reveal systematic confusions between phonologically similar dialects. In the present study, a free classification procedure was used to measure the perceptual similarity structure of regional dialect variation in the United States. In two experiments, participants listened to a set of short English sentences produced by male talkers only (Experiment 1) and by male and female talkers (Experiment 2). The listeners were instructed to group the talkers by regional dialect into as many groups as they wanted with as many talkers in each group as they wished. Multidimensional scaling analyses of the data revealed three primary dimensions of perceptual similarity (linguistic markedness, geography, and gender). In addition, a comparison of the results obtained from the free classification task to previous results using the same stimulus materials in six-alternative forced-choice categorization tasks revealed that response biases in the six-alternative task were reduced or eliminated in the free classification task. Thus, the results obtained with the free classification task in the current study provided further evidence that the underlying structure of perceptual dialect category representations reflects important linguistic and sociolinguistic factors.

  3. Simplified Approach Charts Improve Data Retrieval Performance

    PubMed Central

    Stewart, Michael; Laraway, Sean; Jordan, Kevin; Feary, Michael S.

    2016-01-01

    The effectiveness of different instrument approach charts to deliver minimum visibility and altitude information during airport equipment outages was investigated. Eighteen pilots flew simulated instrument approaches in three conditions: (a) normal operations using a standard approach chart (standard-normal), (b) equipment outage conditions using a standard approach chart (standard-outage), and (c) equipment outage conditions using a prototype decluttered approach chart (prototype-outage). Errors and retrieval times in identifying minimum altitudes and visibilities were measured. The standard-outage condition produced significantly more errors and longer retrieval times versus the standard-normal condition. The prototype-outage condition had significantly fewer errors and shorter retrieval times than did the standard-outage condition. The prototype-outage condition produced significantly fewer errors but similar retrieval times when compared with the standard-normal condition. Thus, changing the presentation of minima may reduce risk and increase safety in instrument approaches, specifically with airport equipment outages. PMID:28491009

  4. Optimal plane search method in blood flow measurements by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bargiel, Pawel; Orkisz, Maciej; Przelaskowski, Artur; Piatkowska-Janko, Ewa; Bogorodzki, Piotr; Wolak, Tomasz

    2004-07-01

    This paper offers an algorithm for determining the blood flow parameters in the neck vessel segments using a single (optimal) measurement plane instead of the usual approach involving four planes orthogonal to the artery axis. This new approach aims at significantly shortening the time required to complete measurements using Nuclear Magnetic Resonance techniques. Based on a defined error function, the algorithm scans the solution space to find the minimum of the error function, and thus to determine a single plane characterized by a minimum measurement error, which allows for an accurate measurement of blood flow in the four carotid arteries. The paper also comprises a practical implementation of this method (as a module of a larger imaging-measuring system), including preliminary research results.

  5. Route Learning Impairment in Temporal Lobe Epilepsy

    PubMed Central

    Bell, Brian D.

    2012-01-01

    Memory impairment on neuropsychological tests is relatively common in temporal lobe epilepsy (TLE) patients. But memory rarely has been evaluated in more naturalistic settings. This study assessed TLE (n = 19) and control (n = 32) groups on a real-world route learning (RL) test. Compared to the controls, the TLE group committed significantly more total errors across the three RL test trials. RL errors correlated significantly with standardized auditory and visual memory and visual-perceptual test scores in the TLE group. In the TLE subset for whom hippocampal data were available (n = 14), RL errors also correlated significantly with left hippocampal volume. This is one of the first studies to demonstrate real-world memory impairment in TLE patients and its association with both mesial temporal lobe integrity and standardized memory test performance. The results support the ecological validity of clinical neuropsychological assessment. PMID:23041173

  6. Psychophysics of Complex Auditory and Speech Stimuli

    DTIC Science & Technology

    1993-10-31

    unexpected, and does not seem to l:a ý a dice-ct counterpart in the extensive research on pitch perception. Experiment 2 was designed to quantify our...project is to use of different procedures to provide converging evidence on the natuge of perceptual spaces for speech categories. Completed research ...prior speech research on classification procedures may have led to errors. Thus, the opposite (falling F2 & F3) transitions lead somewhat ambiguous

  7. Automated Intelligibility Assessment of Pathological Speech Using Phonological Features

    NASA Astrophysics Data System (ADS)

    Middag, Catherine; Martens, Jean-Pierre; Van Nuffelen, Gwen; De Bodt, Marc

    2009-12-01

    It is commonly acknowledged that word or phoneme intelligibility is an important criterion in the assessment of the communication efficiency of a pathological speaker. People have therefore put a lot of effort in the design of perceptual intelligibility rating tests. These tests usually have the drawback that they employ unnatural speech material (e.g., nonsense words) and that they cannot fully exclude errors due to listener bias. Therefore, there is a growing interest in the application of objective automatic speech recognition technology to automate the intelligibility assessment. Current research is headed towards the design of automated methods which can be shown to produce ratings that correspond well with those emerging from a well-designed and well-performed perceptual test. In this paper, a novel methodology that is built on previous work (Middag et al., 2008) is presented. It utilizes phonological features, automatic speech alignment based on acoustic models that were trained on normal speech, context-dependent speaker feature extraction, and intelligibility prediction based on a small model that can be trained on pathological speech samples. The experimental evaluation of the new system reveals that the root mean squared error of the discrepancies between perceived and computed intelligibilities can be as low as 8 on a scale of 0 to 100.

  8. In-Flight Study of Helmet-Mounted Symbology System Concepts in Degraded Visual Environments.

    PubMed

    Cheung, Bob; Craig, Gregory; Steels, Brad; Sceviour, Robert; Cosman, Vaughn; Jennings, Sion; Holst, Peter

    2015-08-01

    During approach and departure in rotary wing aircraft, a sudden loss of external visual reference precipitates spatial disorientation. There were 10 Royal Canadian Air Force (RCAF) Griffon pilots who participated in an in-flight investigation of a 3-dimensional conformal Helmet Display Tracking System (HDTS) and the BrownOut Symbology System (BOSS) aboard an Advanced System Research Aircraft. For each symbology system, pilots performed a two-stage departure followed by a single-stage approach. The presentation order of the two symbology systems was randomized across the pilots. Subjective measurements included situation awareness, mental effort, perceived performance, perceptual cue rating, NASA Task Load Index, and physiological response. Objective performance included aircraft speed, altitude, attitude, and distance from the landing point, control position, and control activity. Repeated measures analysis of variance and planned comparison tests for the subjective and objective responses were performed. For both maneuvers, the HDTS system afforded better situation awareness, lower workload, better perceptual cueing in attitude, horizontal and vertical translation, and lower overall workload index. During the two-stage departure, HDTS achieved less lateral drift from initial takeoff and hover, lower root mean square error (RMSE) in altitude during hover, and lower track error during the acceleration to forward flight. During the single-stage approach, HDTS achieved less error in lateral and longitudinal position offset from the landing point and lower RMSE in heading. In both maneuvers, pilots exhibited higher control activity when using HDTS, which suggested that more pertinent information was available to the pilots. Pilots preferred the HDTS system.

  9. Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces.

    PubMed

    Gurari, Netta; Baud-Bovy, Gabriel

    2014-09-30

    The emergence of commercial haptic devices offers new research opportunities to enhance our understanding of the human sensory-motor system. Yet, commercial device capabilities have limitations which need to be addressed. This paper describes the customization of a commercial force feedback device for displaying forces with a precision that exceeds the human force perception threshold. The device was outfitted with a multi-axis force sensor and closed-loop controlled to improve its transparency. Additionally, two force sensing resistors were attached to the device to measure grip force. Force errors were modeled in the frequency- and time-domain to identify contributions from the mass, viscous friction, and Coulomb friction during open- and closed-loop control. The effect of user interaction on system stability was assessed in the context of a user study which aimed to measure force perceptual thresholds. Findings based on 15 participants demonstrate that the system maintains stability when rendering forces ranging from 0-0.20 N, with an average maximum absolute force error of 0.041 ± 0.013 N. Modeling the force errors revealed that Coulomb friction and inertia were the main contributors to force distortions during respectively slow and fast motions. Existing commercial force feedback devices cannot render forces with the required precision for certain testing scenarios. Building on existing robotics work, this paper shows how a device can be customized to make it reliable for studying the perception of weak forces. The customized and closed-loop controlled device is suitable for measuring force perceptual thresholds. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. 45 CFR 286.205 - How will we determine if a Tribe fails to meet the minimum work participation rate(s)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., financial records, and automated data systems; (ii) The data are free from computational errors and are... records, financial records, and automated data systems; (ii) The data are free from computational errors... records, and automated data systems; (ii) The data are free from computational errors and are internally...

  11. Evaluating the prevalence and impact of examiner errors on the Wechsler scales of intelligence: A meta-analysis.

    PubMed

    Styck, Kara M; Walsh, Shana M

    2016-01-01

    The purpose of the present investigation was to conduct a meta-analysis of the literature on examiner errors for the Wechsler scales of intelligence. Results indicate that a mean of 99.7% of protocols contained at least 1 examiner error when studies that included a failure to record examinee responses as an error were combined and a mean of 41.2% of protocols contained at least 1 examiner error when studies that ignored errors of omission were combined. Furthermore, graduate student examiners were significantly more likely to make at least 1 error on Wechsler intelligence test protocols than psychologists. However, psychologists made significantly more errors per protocol than graduate student examiners regardless of the inclusion or exclusion of failure to record examinee responses as errors. On average, 73.1% of Full-Scale IQ (FSIQ) scores changed as a result of examiner errors, whereas 15.8%-77.3% of scores on the Verbal Comprehension Index (VCI), Perceptual Reasoning Index (PRI), Working Memory Index (WMI), and Processing Speed Index changed as a result of examiner errors. In addition, results suggest that examiners tend to overestimate FSIQ scores and underestimate VCI scores. However, no strong pattern emerged for the PRI and WMI. It can be concluded that examiner errors occur frequently and impact index and FSIQ scores. Consequently, current estimates for the standard error of measurement of popular IQ tests may not adequately capture the variance due to the examiner. (c) 2016 APA, all rights reserved).

  12. Enhancing interferometer phase estimation, sensing sensitivity, and resolution using robust entangled states

    NASA Astrophysics Data System (ADS)

    Smith, James F.

    2017-11-01

    With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.

  13. The Differences in Error Rate and Type between IELTS Writing Bands and Their Impact on Academic Workload

    ERIC Educational Resources Information Center

    Müller, Amanda

    2015-01-01

    This paper attempts to demonstrate the differences in writing between International English Language Testing System (IELTS) bands 6.0, 6.5 and 7.0. An analysis of exemplars provided from the IELTS test makers reveals that IELTS 6.0, 6.5 and 7.0 writers can make a minimum of 206 errors, 96 errors and 35 errors per 1000 words. The following section…

  14. The representational dynamics of remembered projectile locations.

    PubMed

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Oliveira, Armando Mónica

    2013-12-01

    When people are instructed to locate the vanishing location of a moving target, systematic errors forward in the direction of motion (M-displacement) and downward in the direction of gravity (O-displacement) are found. These phenomena came to be linked with the notion that physical invariants are embedded in the dynamic representations generated by the perceptual system. We explore the nature of these invariants that determine the representational mechanics of projectiles. By manipulating the retention intervals between the target's disappearance and the participant's responses, while measuring both M- and O-displacements, we were able to uncover a representational analogue of the trajectory of a projectile. The outcomes of three experiments revealed that the shape of this trajectory is discontinuous. Although the horizontal component of such trajectory can be accounted for by perceptual and oculomotor factors, its vertical component cannot. Taken together, the outcomes support an internalization of gravity in the visual representation of projectiles.

  15. Evaluation of a visual layering methodology for colour coding control room displays.

    PubMed

    Van Laar, Darren; Deshe, Ofer

    2002-07-01

    Eighteen people participated in an experiment in which they were asked to search for targets on control room like displays which had been produced using three different coding methods. The monochrome coding method displayed the information in black and white only, the maximally discriminable method contained colours chosen for their high perceptual discriminability, the visual layers method contained colours developed from psychological and cartographic principles which grouped information into a perceptual hierarchy. The visual layers method produced significantly faster search times than the other two coding methods which did not differ significantly from each other. Search time also differed significantly for presentation order and for the method x order interaction. There was no significant difference between the methods in the number of errors made. Participants clearly preferred the visual layers coding method. Proposals are made for the design of experiments to further test and develop the visual layers colour coding methodology.

  16. How dolphins see the world: A comparison with chimpanzees and humans

    PubMed Central

    Tomonaga, Masaki; Uwano, Yuka; Saito, Toyoshi

    2014-01-01

    Bottlenose dolphins use auditory (or echoic) information to recognise their environments, and many studies have described their echolocation perception abilities. However, relatively few systematic studies have examined their visual perception. We tested dolphins on a visual-matching task using two-dimensional geometric forms including various features. Based on error patterns, we used multidimensional scaling to analyse perceptual similarities among stimuli. In addition to dolphins, we conducted comparable tests with terrestrial species: chimpanzees were tested on a computer-controlled matching task and humans were tested on a rating task. The overall perceptual similarities among stimuli in dolphins were similar to those in the two species of primates. These results clearly indicate that the visual world is perceived similarly by the three species of mammals, even though each has adapted to a different environment and has differing degrees of dependence on vision. PMID:24435017

  17. Speech research: A report on the status and progress of studies on the nature of speech, instrumentation for its investigation, and practical applications

    NASA Astrophysics Data System (ADS)

    Liberman, A. M.

    1980-06-01

    This report (1 April - 30 June) is one of a regular series on the status and progress of studies on the nature of speech, instrumentation for its investigation, and practical applications. Manuscripts cover the following topics: The perceptual equivalance of two acoustic cues for a speech contrast is specific to phonetic perception; Duplex perception of acoustic patterns as speech and nonspeech; Evidence for phonetic processing of cues to place of articulation: Perceived manner affects perceived place; Some articulatory correlates of perceptual isochrony; Effects of utterance continuity on phonetic judgments; Laryngeal adjustments in stuttering: A glottographic observation using a modified reaction paradigm; Missing -ing in reading: Letter detection errors on word endings; Speaking rate; syllable stress, and vowel identity; Sonority and syllabicity: Acoustic correlates of perception, Influence of vocalic context on perception of the (S)-(s) distinction.

  18. Fricative-stop coarticulation: acoustic and perceptual evidence.

    PubMed

    Repp, B H; Mann, V A

    1982-06-01

    Eight native speakers of American English each produced ten tokens of all possible CV, FCV, and VFCV utterances with V = [a] or [u], F = [s] or [integral of], and C = [t] or [k]. Acoustic analysis showed that the formant transition onsets following the stop consonant release were systematically influenced by the preceding fricative, although there were large individual differences. In particular, F3 and F4 tended to be higher following [s] than following [integral of]. The coarticulatory effects were equally large in FCV (e.g.,/sta/) and VFCV (e.g.,/asda/) utterances; that is, they were not reduced when a syllable boundary intervened between fricative and stop. In a parallel perceptual study, the CV portions of these utterances (with release bursts removed to provoke errors) were presented to listeners for identification of the stop consonant. The pattern of place-of-articulation confusions, too, revealed coarticulatory effects due to the excised fricative context.

  19. The dependence of crowding on flanker complexity and target-flanker similarity

    PubMed Central

    Bernard, Jean-Baptiste; Chung, Susana T.L.

    2013-01-01

    We examined the effects of the spatial complexity of flankers and target-flanker similarity on the performance of identifying crowded letters. On each trial, observers identified the middle character of random strings of three characters (“trigrams”) briefly presented at 10° below fixation. We tested the 26 lowercase letters of the Times-Roman and Courier fonts, a set of 79 characters (letters and non-letters) of the Times-Roman font, and the uppercase letters of two highly complex ornamental fonts, Edwardian and Aristocrat. Spatial complexity of characters was quantified by the length of the morphological skeleton of each character, and target-flanker similarity was defined based on a psychometric similarity matrix. Our results showed that (1) letter identification error rate increases with flanker complexity up to a certain value, beyond which error rate becomes independent of flanker complexity; (2) the increase of error rate is slower for high-complexity target letters; (3) error rate increases with target-flanker similarity; and (4) mislocation error rate increases with target-flanker similarity. These findings, combined with the current understanding of the faulty feature integration account of crowding, provide some constraints of how the feature integration process could cause perceptual errors. PMID:21730225

  20. Feature-binding errors after eye movements and shifts of attention.

    PubMed

    Golomb, Julie D; L'heureux, Zara E; Kanwisher, Nancy

    2014-05-01

    When people move their eyes, the eye-centered (retinotopic) locations of objects must be updated to maintain world-centered (spatiotopic) stability. Here, we demonstrated that the attentional-updating process temporarily distorts the fundamental ability to bind object locations with their features. Subjects were simultaneously presented with four colors after a saccade-one in a precued spatiotopic target location-and were instructed to report the target's color using a color wheel. Subjects' reports were systematically shifted in color space toward the color of the distractor in the retinotopic location of the cue. Probabilistic modeling exposed both crude swapping errors and subtler feature mixing (as if the retinotopic color had blended into the spatiotopic percept). Additional experiments conducted without saccades revealed that the two types of errors stemmed from different attentional mechanisms (attention shifting vs. splitting). Feature mixing not only reflects a new perceptual phenomenon, but also provides novel insight into how attention is remapped across saccades.

  1. Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: linking cognition, brain activity, and psychosis.

    PubMed

    Corlett, Philip R; Honey, Garry D; Aitken, Michael R F; Dickinson, Anthony; Shanks, David R; Absalom, Anthony R; Lee, Michael; Pomarol-Clotet, Edith; Murray, Graham K; McKenna, Peter J; Robbins, Trevor W; Bullmore, Edward T; Fletcher, Paul C

    2006-06-01

    Establishing a neurobiological account of delusion formation that links cognitive processes, brain activity, and symptoms is important to furthering our understanding of psychosis. To explore a theoretical model of delusion formation that implicates prediction error-dependent associative learning processes in a pharmacological functional magnetic resonance imaging study using the psychotomimetic drug ketamine. Within-subject, randomized, placebo-controlled study. Hospital-based clinical research facility, Addenbrooke's Hospital, Cambridge, England. The work was completed within the Wellcome Trust and Medical Research Council Behavioral and Clinical Neuroscience Institute, Cambridge. Fifteen healthy, right-handed volunteers (8 of whom were male) with a mean +/- SD age of 29 +/- 7 years and a mean +/- SD predicted full-scale IQ of 113 +/- 4 were recruited from within the local community by advertisement. Subjects were given low-dose ketamine (100 ng/mL of plasma) or placebo while performing a causal associative learning task during functional magnetic resonance imaging. In a separate session outside the scanner, the dose was increased (to 200 ng/mL of plasma) and subjects underwent a structured clinical interview. Brain activation, blood plasma levels of ketamine, and scores from psychiatric ratings scales (Brief Psychiatric Ratings Scale, Present State Examination, and Clinician-Administered Dissociative States Scale). Low-dose ketamine perturbs error-dependent learning activity in the right frontal cortex (P = .03). High-dose ketamine produces perceptual aberrations (P = .01) and delusion-like beliefs (P = .007). Critically, subjects showing the highest degree of frontal activation with placebo show the greatest occurrence of drug-induced perceptual aberrations (P = .03) and ideas or delusions of reference (P = .04). These findings relate aberrant prediction error-dependent associative learning to referential ideas and delusions via a perturbation of frontal cortical function. They are consistent with a model of delusion formation positing disruptions in error-dependent learning.

  2. Using Covert Response Activation to Test Latent Assumptions of Formal Decision-Making Models in Humans.

    PubMed

    Servant, Mathieu; White, Corey; Montagnini, Anna; Burle, Borís

    2015-07-15

    Most decisions that we make build upon multiple streams of sensory evidence and control mechanisms are needed to filter out irrelevant information. Sequential sampling models of perceptual decision making have recently been enriched by attentional mechanisms that weight sensory evidence in a dynamic and goal-directed way. However, the framework retains the longstanding hypothesis that motor activity is engaged only once a decision threshold is reached. To probe latent assumptions of these models, neurophysiological indices are needed. Therefore, we collected behavioral and EMG data in the flanker task, a standard paradigm to investigate decisions about relevance. Although the models captured response time distributions and accuracy data, EMG analyses of response agonist muscles challenged the assumption of independence between decision and motor processes. Those analyses revealed covert incorrect EMG activity ("partial error") in a fraction of trials in which the correct response was finally given, providing intermediate states of evidence accumulation and response activation at the single-trial level. We extended the models by allowing motor activity to occur before a commitment to a choice and demonstrated that the proposed framework captured the rate, latency, and EMG surface of partial errors, along with the speed of the correction process. In return, EMG data provided strong constraints to discriminate between competing models that made similar behavioral predictions. Our study opens new theoretical and methodological avenues for understanding the links among decision making, cognitive control, and motor execution in humans. Sequential sampling models of perceptual decision making assume that sensory information is accumulated until a criterion quantity of evidence is obtained, from where the decision terminates in a choice and motor activity is engaged. The very existence of covert incorrect EMG activity ("partial error") during the evidence accumulation process challenges this longstanding assumption. In the present work, we use partial errors to better constrain sequential sampling models at the single-trial level. Copyright © 2015 the authors 0270-6474/15/3510371-15$15.00/0.

  3. Incorporating Auditory Models in Speech/Audio Applications

    NASA Astrophysics Data System (ADS)

    Krishnamoorthi, Harish

    2011-12-01

    Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.

  4. Evidence-based anatomical review areas derived from systematic analysis of cases from a radiological departmental discrepancy meeting.

    PubMed

    Chin, S C; Weir-McCall, J R; Yeap, P M; White, R D; Budak, M J; Duncan, G; Oliver, T B; Zealley, I A

    2017-10-01

    To produce short checklists of specific anatomical review sites for different regions of the body based on the frequency of radiological errors reviewed at radiology discrepancy meetings, thereby creating "evidence-based" review areas for radiology reporting. A single centre discrepancy database was retrospectively reviewed from a 5-year period. All errors were classified by type, modality, body system, and specific anatomical location. Errors were assigned to one of four body regions: chest, abdominopelvic, central nervous system (CNS), and musculoskeletal (MSK). Frequencies of errors in anatomical locations were then analysed. There were 561 errors in 477 examinations; 290 (46%) errors occurred in the abdomen/pelvis, 99 (15.7%) in the chest, 117 (18.5%) in the CNS, and 125 (19.9%) in the MSK system. In each body system, the five most common location were chest: lung bases on computed tomography (CT), apices on radiography, pulmonary vasculature, bones, and mediastinum; abdominopelvic: vasculature, colon, kidneys, liver, and pancreas; CNS: intracranial vasculature, peripheral cerebral grey matter, bone, parafalcine, and the frontotemporal lobes surrounding the Sylvian fissure; and MSK: calvarium, sacrum, pelvis, chest, and spine. The five listed locations accounted for >50% of all perceptual errors suggesting an avenue for focused review at the end of reporting. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. [Comparison study on sampling methods of Oncomelania hupensis snail survey in marshland schistosomiasis epidemic areas in China].

    PubMed

    An, Zhao; Wen-Xin, Zhang; Zhong, Yao; Yu-Kuan, Ma; Qing, Liu; Hou-Lang, Duan; Yi-di, Shang

    2016-06-29

    To optimize and simplify the survey method of Oncomelania hupensis snail in marshland endemic region of schistosomiasis and increase the precision, efficiency and economy of the snail survey. A quadrate experimental field was selected as the subject of 50 m×50 m size in Chayegang marshland near Henghu farm in the Poyang Lake region and a whole-covered method was adopted to survey the snails. The simple random sampling, systematic sampling and stratified random sampling methods were applied to calculate the minimum sample size, relative sampling error and absolute sampling error. The minimum sample sizes of the simple random sampling, systematic sampling and stratified random sampling methods were 300, 300 and 225, respectively. The relative sampling errors of three methods were all less than 15%. The absolute sampling errors were 0.221 7, 0.302 4 and 0.047 8, respectively. The spatial stratified sampling with altitude as the stratum variable is an efficient approach of lower cost and higher precision for the snail survey.

  6. The Gulliver Effect: The Impact of Error in an Elephantine Subpopulation on Estimates for Lilliputian Subpopulations

    ERIC Educational Resources Information Center

    Micceri, Theodore; Parasher, Pradnya; Waugh, Gordon W.; Herreid, Charlene

    2009-01-01

    An extensive review of the research literature and a study comparing over 36,000 survey responses with archival true scores indicated that one should expect a minimum of at least three percent random error for the least ambiguous of self-report measures. The Gulliver Effect occurs when a small proportion of error in a sizable subpopulation exerts…

  7. Free classification of regional dialects of American English

    PubMed Central

    Clopper, Cynthia G.; Pisoni, David B.

    2011-01-01

    Recent studies have found that naïve listeners perform poorly in forced-choice dialect categorization tasks. However, the listeners' error patterns in these tasks reveal systematic confusions between phonologically similar dialects. In the present study, a free classification procedure was used to measure the perceptual similarity structure of regional dialect variation in the United States. In two experiments, participants listened to a set of short English sentences produced by male talkers only (Experiment 1) and by male and female talkers (Experiment 2). The listeners were instructed to group the talkers by regional dialect into as many groups as they wanted with as many talkers in each group as they wished. Multidimensional scaling analyses of the data revealed three primary dimensions of perceptual similarity (linguistic markedness, geography, and gender). In addition, a comparison of the results obtained from the free classification task to previous results using the same stimulus materials in six-alternative forced-choice categorization tasks revealed that response biases in the six-alternative task were reduced or eliminated in the free classification task. Thus, the results obtained with the free classification task in the current study provided further evidence that the underlying structure of perceptual dialect category representations reflects important linguistic and sociolinguistic factors. PMID:21423862

  8. Rate-distortion theory and human perception.

    PubMed

    Sims, Chris R

    2016-07-01

    The fundamental goal of perception is to aid in the achievement of behavioral objectives. This requires extracting and communicating useful information from noisy and uncertain sensory signals. At the same time, given the complexity of sensory information and the limitations of biological information processing, it is necessary that some information must be lost or discarded in the act of perception. Under these circumstances, what constitutes an 'optimal' perceptual system? This paper describes the mathematical framework of rate-distortion theory as the optimal solution to the problem of minimizing the costs of perceptual error subject to strong constraints on the ability to communicate or transmit information. Rate-distortion theory offers a general and principled theoretical framework for developing computational-level models of human perception (Marr, 1982). Models developed in this framework are capable of producing quantitatively precise explanations for human perceptual performance, while yielding new insights regarding the nature and goals of perception. This paper demonstrates the application of rate-distortion theory to two benchmark domains where capacity limits are especially salient in human perception: discrete categorization of stimuli (also known as absolute identification) and visual working memory. A software package written for the R statistical programming language is described that aids in the development of models based on rate-distortion theory. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  9. Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics.

    PubMed

    Shao, Feng; Lin, Weisi; Gu, Shanbo; Jiang, Gangyi; Srikanthan, Thambipillai

    2013-05-01

    Perceptual quality assessment is a challenging issue in 3D signal processing research. It is important to study 3D signal directly instead of studying simple extension of the 2D metrics directly to the 3D case as in some previous studies. In this paper, we propose a new perceptual full-reference quality assessment metric of stereoscopic images by considering the binocular visual characteristics. The major technical contribution of this paper is that the binocular perception and combination properties are considered in quality assessment. To be more specific, we first perform left-right consistency checks and compare matching error between the corresponding pixels in binocular disparity calculation, and classify the stereoscopic images into non-corresponding, binocular fusion, and binocular suppression regions. Also, local phase and local amplitude maps are extracted from the original and distorted stereoscopic images as features in quality assessment. Then, each region is evaluated independently by considering its binocular perception property, and all evaluation results are integrated into an overall score. Besides, a binocular just noticeable difference model is used to reflect the visual sensitivity for the binocular fusion and suppression regions. Experimental results show that compared with the relevant existing metrics, the proposed metric can achieve higher consistency with subjective assessment of stereoscopic images.

  10. Cepstral domain modification of audio signals for data embedding: preliminary results

    NASA Astrophysics Data System (ADS)

    Gopalan, Kaliappan

    2004-06-01

    A method of embedding data in an audio signal using cepstral domain modification is described. Based on successful embedding in the spectral points of perceptually masked regions in each frame of speech, first the technique was extended to embedding in the log spectral domain. This extension resulted at approximately 62 bits /s of embedding with less than 2 percent of bit error rate (BER) for a clean cover speech (from the TIMIT database), and about 2.5 percent for a noisy speech (from an air traffic controller database), when all frames - including silence and transition between voiced and unvoiced segments - were used. Bit error rate increased significantly when the log spectrum in the vicinity of a formant was modified. In the next procedure, embedding by altering the mean cepstral values of two ranges of indices was studied. Tests on both a noisy utterance and a clean utterance indicated barely noticeable perceptual change in speech quality when lower range of cepstral indices - corresponding to vocal tract region - was modified in accordance with data. With an embedding capacity of approximately 62 bits/s - using one bit per each frame regardless of frame energy or type of speech - initial results showed a BER of less than 1.5 percent for a payload capacity of 208 embedded bits using the clean cover speech. BER of less than 1.3 percent resulted for the noisy host with a capacity was 316 bits. When the cepstrum was modified in the region of excitation, BER increased to over 10 percent. With quantization causing no significant problem, the technique warrants further studies with different cepstral ranges and sizes. Pitch-synchronous cepstrum modification, for example, may be more robust to attacks. In addition, cepstrum modification in regions of speech that are perceptually masked - analogous to embedding in frequency masked regions - may yield imperceptible stego audio with low BER.

  11. A study of image quality for radar image processing. [synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    King, R. W.; Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.

    1982-01-01

    Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics.

  12. Pulse Vector-Excitation Speech Encoder

    NASA Technical Reports Server (NTRS)

    Davidson, Grant; Gersho, Allen

    1989-01-01

    Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.

  13. 3-D Displays Perceptual Research and Applications to Military Systems

    DTIC Science & Technology

    1982-09-30

    physical button on the corresponding face of the response cube as fast as possible, while minimizing errors. Each observer served for six sessions...orientation, and this resulted in the fast flat reaction time function. The Rotat±nal Strategy: As can be seen from Figure 3, the 24 stimulus cube...instead of the TOP key, these two responses should show the fast , flat response time functions associated with use of the spatial strategy, whereas the

  14. Aviation accidents and the theory of the situation

    NASA Technical Reports Server (NTRS)

    Bolman, L.

    1980-01-01

    Social-psychological factors effecting the performance of flight crews are examined. In particular, a crew member's perceptual-psychological constructs of the flight situation (theories of the situation) are discussed. The skills and willingness of a flight crew to be alert to possible errors in the theory become critical to their effectiveness and their ability to ensure a safe flight. Several major factors that determine the likelihood that a faulty theory will be detected and revised are identified.

  15. JPEG 2000 Encoding with Perceptual Distortion Control

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Liu, Zhen; Karam, Lina J.

    2008-01-01

    An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the contribution of each coding block to the output compressed bit stream.

  16. Legal consequences of the moral duty to report errors.

    PubMed

    Hall, Jacqulyn Kay

    2003-09-01

    Increasingly, clinicians are under a moral duty to report errors to the patients who are injured by such errors. The sources of this duty are identified, and its probable impact on malpractice litigation and criminal law is discussed. The potential consequences of enforcing this new moral duty as a minimum in law are noted. One predicted consequence is that the trend will be accelerated toward government payment of compensation for errors. The effect of truth-telling on individuals is discussed.

  17. Minimum constitutive relation error based static identification of beams using force method

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Takewaki, Izuru

    2017-05-01

    A new static identification approach based on the minimum constitutive relation error (CRE) principle for beam structures is introduced. The exact stiffness and the exact bending moment are shown to make the CRE minimal for given displacements to beam damages. A two-step substitution algorithm—a force-method step for the bending moment and a constitutive-relation step for the stiffness—is developed and its convergence is rigorously derived. Identifiability is further discussed and the stiffness in the undeformed region is found to be unidentifiable. An extra set of static measurements is complemented to remedy the drawback. Convergence and robustness are finally verified through numerical examples.

  18. Relation between minimum-error discrimination and optimum unambiguous discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Daowen; SQIG-Instituto de Telecomunicacoes, Departamento de Matematica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Avenida Rovisco Pais PT-1049-001, Lisbon; Li Lvjun

    2010-09-15

    In this paper, we investigate the relationship between the minimum-error probability Q{sub E} of ambiguous discrimination and the optimal inconclusive probability Q{sub U} of unambiguous discrimination. It is known that for discriminating two states, the inequality Q{sub U{>=}}2Q{sub E} has been proved in the literature. The main technical results are as follows: (1) We show that, for discriminating more than two states, Q{sub U{>=}}2Q{sub E} may not hold again, but the infimum of Q{sub U}/Q{sub E} is 1, and there is no supremum of Q{sub U}/Q{sub E}, which implies that the failure probabilities of the two schemes for discriminating somemore » states may be narrowly or widely gapped. (2) We derive two concrete formulas of the minimum-error probability Q{sub E} and the optimal inconclusive probability Q{sub U}, respectively, for ambiguous discrimination and unambiguous discrimination among arbitrary m simultaneously diagonalizable mixed quantum states with given prior probabilities. In addition, we show that Q{sub E} and Q{sub U} satisfy the relationship that Q{sub U{>=}}(m/m-1)Q{sub E}.« less

  19. A negentropy minimization approach to adaptive equalization for digital communication systems.

    PubMed

    Choi, Sooyong; Lee, Te-Won

    2004-07-01

    In this paper, we introduce and investigate a new adaptive equalization method based on minimizing approximate negentropy of the estimation error for a finite-length equalizer. We consider an approximate negentropy using nonpolynomial expansions of the estimation error as a new performance criterion to improve performance of a linear equalizer based on minimizing minimum mean squared error (MMSE). Negentropy includes higher order statistical information and its minimization provides improved converge, performance and accuracy compared to traditional methods such as MMSE in terms of bit error rate (BER). The proposed negentropy minimization (NEGMIN) equalizer has two kinds of solutions, the MMSE solution and the other one, depending on the ratio of the normalization parameters. The NEGMIN equalizer has best BER performance when the ratio of the normalization parameters is properly adjusted to maximize the output power(variance) of the NEGMIN equalizer. Simulation experiments show that BER performance of the NEGMIN equalizer with the other solution than the MMSE one has similar characteristics to the adaptive minimum bit error rate (AMBER) equalizer. The main advantage of the proposed equalizer is that it needs significantly fewer training symbols than the AMBER equalizer. Furthermore, the proposed equalizer is more robust to nonlinear distortions than the MMSE equalizer.

  20. Movement trajectory smoothness is not associated with the endpoint accuracy of rapid multi-joint arm movements in young and older adults

    PubMed Central

    Poston, Brach; Van Gemmert, Arend W.A.; Sharma, Siddharth; Chakrabarti, Somesh; Zavaremi, Shahrzad H.; Stelmach, George

    2013-01-01

    The minimum variance theory proposes that motor commands are corrupted by signal-dependent noise and smooth trajectories with low noise levels are selected to minimize endpoint error and endpoint variability. The purpose of the study was to determine the contribution of trajectory smoothness to the endpoint accuracy and endpoint variability of rapid multi-joint arm movements. Young and older adults performed arm movements (4 blocks of 25 trials) as fast and as accurately as possible to a target with the right (dominant) arm. Endpoint accuracy and endpoint variability along with trajectory smoothness and error were quantified for each block of trials. Endpoint error and endpoint variance were greater in older adults compared with young adults, but decreased at a similar rate with practice for the two age groups. The greater endpoint error and endpoint variance exhibited by older adults were primarily due to impairments in movement extent control and not movement direction control. The normalized jerk was similar for the two age groups, but was not strongly associated with endpoint error or endpoint variance for either group. However, endpoint variance was strongly associated with endpoint error for both the young and older adults. Finally, trajectory error was similar for both groups and was weakly associated with endpoint error for the older adults. The findings are not consistent with the predictions of the minimum variance theory, but support and extend previous observations that movement trajectories and endpoints are planned independently. PMID:23584101

  1. A regret-induced status-quo bias

    PubMed Central

    Nicolle, A.; Fleming, S.M.; Bach, D.R.; Driver, J.; Dolan, R. J.

    2011-01-01

    A suboptimal bias towards accepting the ‘status-quo’ option in decision-making is well established behaviorally, but the underlying neural mechanisms are less clear. Behavioral evidence suggests the emotion of regret is higher when errors arise from rejection rather than acceptance of a status-quo option. Such asymmetry in the genesis of regret might drive the status-quo bias on subsequent decisions, if indeed erroneous status-quo rejections have a greater neuronal impact than erroneous status-quo acceptances. To test this, we acquired human fMRI data during a difficult perceptual decision task that incorporated a trial-to-trial intrinsic status-quo option, with explicit signaling of outcomes (error or correct). Behaviorally, experienced regret was higher after an erroneous status-quo rejection compared to acceptance. Anterior insula and medial prefrontal cortex showed increased BOLD signal after such status-quo rejection errors. In line with our hypothesis, a similar pattern of signal change predicted acceptance of the status-quo on a subsequent trial. Thus, our data link a regret-induced status-quo bias to error-related activity on the preceding trial. PMID:21368043

  2. Measurement error: Implications for diagnosis and discrepancy models of developmental dyslexia.

    PubMed

    Cotton, Sue M; Crewther, David P; Crewther, Sheila G

    2005-08-01

    The diagnosis of developmental dyslexia (DD) is reliant on a discrepancy between intellectual functioning and reading achievement. Discrepancy-based formulae have frequently been employed to establish the significance of the difference between 'intelligence' and 'actual' reading achievement. These formulae, however, often fail to take into consideration test reliability and the error associated with a single test score. This paper provides an illustration of the potential effects that test reliability and measurement error can have on the diagnosis of dyslexia, with particular reference to discrepancy models. The roles of reliability and standard error of measurement (SEM) in classic test theory are also briefly reviewed. This is followed by illustrations of how SEM and test reliability can aid with the interpretation of a simple discrepancy-based formula of DD. It is proposed that a lack of consideration of test theory in the use of discrepancy-based models of DD can lead to misdiagnosis (both false positives and false negatives). Further, misdiagnosis in research samples affects reproducibility and generalizability of findings. This in turn, may explain current inconsistencies in research on the perceptual, sensory, and motor correlates of dyslexia.

  3. The nature of articulation errors in Egyptian Arabic-speaking children with velopharyngeal insufficiency due to cleft palate.

    PubMed

    Abou-Elsaad, Tamer; Baz, Hemmat; Afsah, Omayma; Mansy, Alzahraa

    2015-09-01

    Even with early surgical repair, the majority of cleft palate children demonstrate articulation errors and have typical cleft palate speech. Was to determine the nature of articulation errors of Arabic consonants in Egyptian Arabic-speaking children with velopharyngeal insufficiency (VPI). Thirty Egyptian Arabic-speaking children with VPI due to cleft palate (whether primary repaired or secondary repaired) were studied. Auditory perceptual assessment (APA) of children speech was conducted. Nasopharyngoscopy was done to assess the velopharyngeal port (VPP) movements while the child was repeating speech tasks. Mansoura Arabic Articulation test (MAAT) was performed to analyze the consonants articulation of these children. The most frequent type of articulatory errors observed was substitution, more specifically, backing. Pharyngealization of anterior fricatives was the most frequent substitution, especially for the /s/ sound. The most frequent substituting sounds for other sounds were /ʔ/ followed by /k/ and /n/ sounds. Significant correlations were found between the degrees of the open nasality and VPP closure and the articulation errors. On the other hand, the sounds (/ʔ/,/ħ/,/ʕ/,/n/,/w/,/j/) were normally articulated in all studied group. The determination of articulation errors in VPI children could guide the therapists for designing appropriate speech therapy programs for these cases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Investigating the Link Between Radiologists Gaze, Diagnostic Decision, and Image Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent C

    2013-01-01

    Objective: To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods: Gaze data and diagnostic decisions were collected from six radiologists who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Texture analysis was performed in mammographic regions that attracted radiologists attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results: By poolingmore » the data from all radiologists machine learning produced highly accurate predictive models linking image content, gaze, cognition, and error. Merging radiologists gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the radiologists diagnostic errors while confirming 96.2% of their correct diagnoses. The radiologists individual errors could be adequately predicted by modeling the behavior of their peers. However, personalized tuning appears to be beneficial in many cases to capture more accurately individual behavior. Conclusions: Machine learning algorithms combining image features with radiologists gaze data and diagnostic decisions can be effectively developed to recognize cognitive and perceptual errors associated with the diagnostic interpretation of mammograms.« less

  5. Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid

    NASA Technical Reports Server (NTRS)

    VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)

    1997-01-01

    The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).

  6. An investigation of reports of Controlled Flight Toward Terrain (CFTT)

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Loomis, J. P.

    1981-01-01

    Some 258 reports from more than 23,000 documents in the files of the Aviation Safety Reporting System (ASRS) were found to be to the hazard of flight into terrain with no prior awareness by the crew of impending disaster. Examination of the reports indicate that human error was a casual factor in 64% of the incidents in which some threat of terrain conflict was experienced. Approximately two-thirds of the human errors were attributed to controllers, the most common discrepancy being a radar vector below the Minimum Vector Altitude (MVA). Errors by pilots were of a much diverse nature and include a few instances of gross deviations from their assigned altitudes. The ground proximity warning system and the minimum safe altitude warning equipment were the initial recovery factor in some 18 serious incidents and were apparently the sole warning in six reported instances which otherwise would most probably have ended in disaster.

  7. A programmable display layer for virtual reality system architectures.

    PubMed

    Smit, Ferdi Alexander; van Liere, Robert; Froehlich, Bernd

    2010-01-01

    Display systems typically operate at a minimum rate of 60 Hz. However, existing VR-architectures generally produce application updates at a lower rate. Consequently, the display is not updated by the application every display frame. This causes a number of undesirable perceptual artifacts. We describe an architecture that provides a programmable display layer (PDL) in order to generate updated display frames. This replaces the default display behavior of repeating application frames until an update is available. We will show three benefits of the architecture typical to VR. First, smooth motion is provided by generating intermediate display frames by per-pixel depth-image warping using 3D motion fields. Smooth motion eliminates various perceptual artifacts due to judder. Second, we implement fine-grained latency reduction at the display frame level using a synchronized prediction of simulation objects and the viewpoint. This improves the average quality and consistency of latency reduction. Third, a crosstalk reduction algorithm for consecutive display frames is implemented, which improves the quality of stereoscopic images. To evaluate the architecture, we compare image quality and latency to that of a classic level-of-detail approach.

  8. Subjective Straight Ahead Orientation in Microgravity

    NASA Technical Reports Server (NTRS)

    Clement, G.; Reschke, M. F.; Wood, S. J.

    2015-01-01

    This joint ESA NASA study will address adaptive changes in spatial orientation related to the subjective straight ahead and the use of a vibrotactile sensory aid to reduce perceptual errors. The study will be conducted before and after long-duration expeditions to the International Space Station (ISS) to examine how spatial processing of target location is altered following exposure to microgravity. This study addresses the sensorimotor research gap to "determine the changes in sensorimotor function over the course of a mission and during recovery after landing."

  9. Concepts and algorithms in digital photogrammetry

    NASA Technical Reports Server (NTRS)

    Schenk, T.

    1994-01-01

    Despite much progress in digital photogrammetry, there is still a considerable lack of understanding of theories and methods which would allow a substantial increase in the automation of photogrammetric processes. The purpose of this paper is to raise awareness that the automation problem is one that cannot be solved in a bottom-up fashion by a trial-and-error approach. We present a short overview of concepts and algorithms used in digital photogrammetry. This is followed by a more detailed presentation of perceptual organization, a typical middle-level task.

  10. Status Report on Speech Research. A Report on the Status and Progress of Studies on the Nature of Speech, Instrumentation for Its Investigation, and Practical Applications.

    DTIC Science & Technology

    1985-10-01

    speech errors. References Anderson, V. A. (1942). Training the speaking voice. New York: Oxford University Press. 50...is only about speech perception , in contrast to some t.at deal with other perceptual processes (e.g., Berkeley, 1709; Fest- inger, Burnham, Ono...there a process of learned equivalence. An example is the claim that the 66 * ° - . . Liberman & Mattingly: The Motor Theory of Speech Perception Revised

  11. Minimum risk wavelet shrinkage operator for Poisson image denoising.

    PubMed

    Cheng, Wu; Hirakawa, Keigo

    2015-05-01

    The pixel values of images taken by an image sensor are said to be corrupted by Poisson noise. To date, multiscale Poisson image denoising techniques have processed Haar frame and wavelet coefficients--the modeling of coefficients is enabled by the Skellam distribution analysis. We extend these results by solving for shrinkage operators for Skellam that minimizes the risk functional in the multiscale Poisson image denoising setting. The minimum risk shrinkage operator of this kind effectively produces denoised wavelet coefficients with minimum attainable L2 error.

  12. Computer search for binary cyclic UEP codes of odd length up to 65

    NASA Technical Reports Server (NTRS)

    Lin, Mao-Chao; Lin, Chi-Chang; Lin, Shu

    1990-01-01

    Using an exhaustive computation, the unequal error protection capabilities of all binary cyclic codes of odd length up to 65 that have minimum distances at least 3 are found. For those codes that can only have upper bounds on their unequal error protection capabilities computed, an analytic method developed by Dynkin and Togonidze (1976) is used to show that the upper bounds meet the exact unequal error protection capabilities.

  13. Continuous slope-area discharge records in Maricopa County, Arizona, 2004–2012

    USGS Publications Warehouse

    Wiele, Stephen M.; Heaton, John W.; Bunch, Claire E.; Gardner, David E.; Smith, Christopher F.

    2015-12-29

    Analyses of sources of errors and the impact stage data errors have on calculated discharge time series are considered, along with issues in data reduction. Steeper, longer stream reaches are generally less sensitive to measurement error. Other issues considered are pressure transducer drawdown, capture of flood peaks with discrete stage data, selection of stage record for development of rating curves, and minimum stages for the calculation of discharge.

  14. Perception of Biological Motion in Schizophrenia and Healthy Individuals: A Behavioral and fMRI Study

    PubMed Central

    Kim, Jejoong; Park, Sohee; Blake, Randolph

    2011-01-01

    Background Anomalous visual perception is a common feature of schizophrenia plausibly associated with impaired social cognition that, in turn, could affect social behavior. Past research suggests impairment in biological motion perception in schizophrenia. Behavioral and functional magnetic resonance imaging (fMRI) experiments were conducted to verify the existence of this impairment, to clarify its perceptual basis, and to identify accompanying neural concomitants of those deficits. Methodology/Findings In Experiment 1, we measured ability to detect biological motion portrayed by point-light animations embedded within masking noise. Experiment 2 measured discrimination accuracy for pairs of point-light biological motion sequences differing in the degree of perturbation of the kinematics portrayed in those sequences. Experiment 3 measured BOLD signals using event-related fMRI during a biological motion categorization task. Compared to healthy individuals, schizophrenia patients performed significantly worse on both the detection (Experiment 1) and discrimination (Experiment 2) tasks. Consistent with the behavioral results, the fMRI study revealed that healthy individuals exhibited strong activation to biological motion, but not to scrambled motion in the posterior portion of the superior temporal sulcus (STSp). Interestingly, strong STSp activation was also observed for scrambled or partially scrambled motion when the healthy participants perceived it as normal biological motion. On the other hand, STSp activation in schizophrenia patients was not selective to biological or scrambled motion. Conclusion Schizophrenia is accompanied by difficulties discriminating biological from non-biological motion, and associated with those difficulties are altered patterns of neural responses within brain area STSp. The perceptual deficits exhibited by schizophrenia patients may be an exaggerated manifestation of neural events within STSp associated with perceptual errors made by healthy observers on these same tasks. The present findings fit within the context of theories of delusion involving perceptual and cognitive processes. PMID:21625492

  15. Monte Carlo simulation of errors in the anisotropy of magnetic susceptibility - A second-rank symmetric tensor. [for grains in sedimentary and volcanic rocks

    NASA Technical Reports Server (NTRS)

    Lienert, Barry R.

    1991-01-01

    Monte Carlo perturbations of synthetic tensors to evaluate the Hext/Jelinek elliptical confidence regions for anisotropy of magnetic susceptibility (AMS) eigenvectors are used. When the perturbations are 33 percent of the minimum anisotropy, both the shapes and probability densities of the resulting eigenvector distributions agree with the elliptical distributions predicted by the Hext/Jelinek equations. When the perturbation size is increased to 100 percent of the minimum eigenvalue difference, the major axis of the 95 percent confidence ellipse underestimates the observed eigenvector dispersion by about 10 deg. The observed distributions of the principal susceptibilities (eigenvalues) are close to being normal, with standard errors that agree well with the calculated Hext/Jelinek errors. The Hext/Jelinek ellipses are also able to describe the AMS dispersions due to instrumental noise and provide reasonable limits for the AMS dispersions observed in two Hawaiian basaltic dikes. It is concluded that the Hext/Jelinek method provides a satisfactory description of the errors in AMS data and should be a standard part of any AMS data analysis.

  16. Weighted-MSE based on saliency map for assessing video quality of H.264 video streams

    NASA Astrophysics Data System (ADS)

    Boujut, H.; Benois-Pineau, J.; Hadar, O.; Ahmed, T.; Bonnet, P.

    2011-01-01

    Human vision system is very complex and has been studied for many years specifically for purposes of efficient encoding of visual, e.g. video content from digital TV. There have been physiological and psychological evidences which indicate that viewers do not pay equal attention to all exposed visual information, but only focus on certain areas known as focus of attention (FOA) or saliency regions. In this work, we propose a novel based objective quality assessment metric, for assessing the perceptual quality of decoded video sequences affected by transmission errors and packed loses. The proposed method weights the Mean Square Error (MSE), Weighted-MSE (WMSE), according to the calculated saliency map at each pixel. Our method was validated trough subjective quality experiments.

  17. Attenuating illusory binding with TMS of the right parietal cortex

    PubMed Central

    Esterman, Michael; Verstynen, Timothy; Robertson, Lynn C.

    2007-01-01

    A number of neuroimaging and neuropsychology studies have implicated various regions of parietal cortex as playing a critical role in the binding of color and form into conjunctions. The current study investigates the role of two such regions by examining how parietal transcranial magnetic stimulation (TMS) influences binding errors known as ‘illusory conjunctions.’ Participants made fewer binding errors after 1 Hz rTMS of the right intraparietal sulcus (IPS), while basic perception of features (colors and shape) was unaffected. No perceptual effects were found following left IPS stimulation, or stimulation of the right angular gyrus at the junction of the transverse occipital sulcus (IPS/TOS). These results support a role for the parietal cortex in feature binding but in ways that may require rethinking. PMID:17336097

  18. Reactive navigation for autonomous guided vehicle using neuro-fuzzy techniques

    NASA Astrophysics Data System (ADS)

    Cao, Jin; Liao, Xiaoqun; Hall, Ernest L.

    1999-08-01

    A Neuro-fuzzy control method for navigation of an Autonomous Guided Vehicle robot is described. Robot navigation is defined as the guiding of a mobile robot to a desired destination or along a desired path in an environment characterized by as terrain and a set of distinct objects, such as obstacles and landmarks. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Neural network and fuzzy logic control techniques can improve real-time control performance for mobile robot due to its high robustness and error-tolerance ability. For a mobile robot to navigate automatically and rapidly, an important factor is to identify and classify mobile robots' currently perceptual environment. In this paper, a new approach of the current perceptual environment feature identification and classification, which are based on the analysis of the classifying neural network and the Neuro- fuzzy algorithm, is presented. The significance of this work lies in the development of a new method for mobile robot navigation.

  19. Imitation of contrastive lexical stress in children with speech delay

    NASA Astrophysics Data System (ADS)

    Vick, Jennell C.; Moore, Christopher A.

    2005-09-01

    This study examined the relationship between acoustic correlates of stress in trochaic (strong-weak), spondaic (strong-strong), and iambic (weak-strong) nonword bisyllables produced by children (30-50) with normal speech acquisition and children with speech delay. Ratios comparing the acoustic measures (vowel duration, rms, and f0) of the first syllable to the second syllable were calculated to evaluate the extent to which each phonetic parameter was used to mark stress. In addition, a calculation of the variability of jaw movement in each bisyllable was made. Finally, perceptual judgments of accuracy of stress production were made. Analysis of perceptual judgments indicated a robust difference between groups: While both groups of children produced errors in imitating the contrastive lexical stress models (~40%), the children with normal speech acquisition tended to produce trochaic forms in substitution for other stress types, whereas children with speech delay showed no preference for trochees. The relationship between segmental acoustic parameters, kinematic variability, and the ratings of stress by trained listeners will be presented.

  20. Original and Mirror Face Images and Minimum Squared Error Classification for Visible Light Face Recognition.

    PubMed

    Wang, Rong

    2015-01-01

    In real-world applications, the image of faces varies with illumination, facial expression, and poses. It seems that more training samples are able to reveal possible images of the faces. Though minimum squared error classification (MSEC) is a widely used method, its applications on face recognition usually suffer from the problem of a limited number of training samples. In this paper, we improve MSEC by using the mirror faces as virtual training samples. We obtained the mirror faces generated from original training samples and put these two kinds of samples into a new set. The face recognition experiments show that our method does obtain high accuracy performance in classification.

  1. Empirical Evaluation of Visual Fatigue from Display Alignment Errors Using Cerebral Hemodynamic Responses

    PubMed Central

    Wiyor, Hanniebey D.; Ntuen, Celestine A.

    2013-01-01

    The purpose of this study was to investigate the effect of stereoscopic display alignment errors on visual fatigue and prefrontal cortical tissue hemodynamic responses. We collected hemodynamic data and perceptual ratings of visual fatigue while participants performed visual display tasks on 8 ft × 6 ft NEC LT silver screen with NEC LT 245 DLP projectors. There was statistical significant difference between subjective measures of visual fatigue before air traffic control task (BATC) and after air traffic control task (ATC 3), (P < 0.05). Statistical significance was observed between left dorsolateral prefrontal cortex oxygenated hemoglobin (l DLPFC-HbO2), left dorsolateral prefrontal cortex deoxygenated hemoglobin (l DLPFC-Hbb), and right dorsolateral prefrontal cortex deoxygenated hemoglobin (r DLPFC-Hbb) on stereoscopic alignment errors (P < 0.05). Thus, cortical tissue oxygenation requirement in the left hemisphere indicates that the effect of visual fatigue is more pronounced in the left dorsolateral prefrontal cortex. PMID:27006917

  2. On the limits of Kagan's impulsive reflective distinction.

    PubMed

    Jones, B; McIntyre, L

    1976-05-01

    A logical analysis is made of the Matching Familiar Figures (MFF) Test on the basis of which children have been classified as "impulsive" or "reflective." The reflective strategy is implicitly preferred to the impulsive because the reflective child makes fewer errors though generally taking longer to make his first response. We show that the test allows the choice of a number of "game plans" and speed-accuracy tradeoffs which in practice may not be very different. Error rates may not indicate perceptual sensitivity, in any case, since sensitivity and response factors may be confounded in the error rate. Using a visual running-memory-span task to avoid the inherent difficulties of the MFF test, we found that children previously classified on the basis of that test as impulsive or reflective did not differ in recognition accuracy but did differ in response bias and response latency. Accuracy and bias are estimated by way of Luce's choice theory (Luce, 1963), and the results are discussed in those terms.

  3. The Whole Warps the Sum of Its Parts.

    PubMed

    Corbett, Jennifer E

    2017-01-01

    The efficiency of averaging properties of sets without encoding redundant details is analogous to gestalt proposals that perception is parsimoniously organized as a function of recurrent order in the world. This similarity suggests that grouping and averaging are part of a broader set of strategies allowing the visual system to circumvent capacity limitations. To examine how gestalt grouping affects the manner in which information is averaged and remembered, I compared the error in observers' adjustments of remembered sizes of individual circles in two different mean-size sets defined by similarity, proximity, connectedness, or a common region. Overall, errors were more similar within the same gestalt-defined groups than between different gestalt-defined groups, such that the remembered sizes of individual circles were biased toward the mean size of their respective gestalt-defined groups. These results imply that gestalt grouping facilitates perceptual averaging to minimize the error with which individual items are encoded, thereby optimizing the efficiency of visual short-term memory.

  4. Postural adjustment errors during lateral step initiation in older and younger adults

    PubMed Central

    Sparto, Patrick J.; Fuhrman, Susan I.; Redfern, Mark S.; Perera, Subashan; Jennings, J. Richard; Furman, Joseph M.

    2016-01-01

    The purpose was to examine age differences and varying levels of step response inhibition on the performance of a voluntary lateral step initiation task. Seventy older adults (70 – 94 y) and twenty younger adults (21 – 58 y) performed visually-cued step initiation conditions based on direction and spatial location of arrows, ranging from a simple choice reaction time task to a perceptual inhibition task that included incongruous cues about which direction to step (e.g. a left pointing arrow appearing on the right side of a monitor). Evidence of postural adjustment errors and step latencies were recorded from vertical ground reaction forces exerted by the stepping leg. Compared with younger adults, older adults demonstrated greater variability in step behavior, generated more postural adjustment errors during conditions requiring inhibition, and had greater step initiation latencies that increased more than younger adults as the inhibition requirements of the condition became greater. Step task performance was related to clinical balance test performance more than executive function task performance. PMID:25595953

  5. Postural adjustment errors during lateral step initiation in older and younger adults

    PubMed Central

    Sparto, Patrick J.; Fuhrman, Susan I.; Redfern, Mark S.; Perera, Subashan; Jennings, J. Richard; Furman, Joseph M.

    2014-01-01

    The purpose was to examine age differences and varying levels of step response inhibition on the performance of a voluntary lateral step initiation task. Seventy older adults (70 – 94 y) and twenty younger adults (21 – 58 y) performed visually-cued step initiation conditions based on direction and spatial location of arrows, ranging from a simple choice reaction time task to a perceptual inhibition task that included incongruous cues about which direction to step (e.g. a left pointing arrow appearing on the right side of a monitor). Evidence of postural adjustment errors and step latencies were recorded from vertical ground reaction forces exerted by the stepping leg. Compared with younger adults, older adults demonstrated greater variability in step behavior, generated more postural adjustment errors during conditions requiring inhibition, and had greater step initiation latencies that increased more than younger adults as the inhibition requirements of the condition became greater. Step task performance was related to clinical balance test performance more than executive function task performance. PMID:25183162

  6. Disrupted Executive Function and Aggression in Individuals With a History of Adverse Childhood Experiences: An Event-Related Potential Study.

    PubMed

    Xue, Jiao-Mei; Lin, Ping-Zhen; Sun, Ji-Wei; Cao, Feng-Lin

    2017-12-01

    Here, we explored the functional and neural mechanisms underlying aggression related to adverse childhood experiences. We assessed behavioral performance and event-related potentials during a go/no-go and N-back paradigm. The participants were 15 individuals with adverse childhood experiences and high aggression (ACE + HA), 13 individuals with high aggression (HA), and 14 individuals with low aggression and no adverse childhood experiences (control group). The P2 latency (initial perceptual processing) was longer in the ACE + HA group for the go trials. The HA group had a larger N2 (response inhibition) than controls for the no-go trials. Error-related negativity (error processing) in the ACE + HA and HA groups was smaller than that of controls for false alarm go trials. Lastly, the ACE + HA group had shorter error-related negativity latencies than controls for false alarm trials. Overall, our results reveal the neural correlates of executive function in aggressive individuals with ACEs.

  7. Target Uncertainty Mediates Sensorimotor Error Correction

    PubMed Central

    Vijayakumar, Sethu; Wolpert, Daniel M.

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated. PMID:28129323

  8. Target Uncertainty Mediates Sensorimotor Error Correction.

    PubMed

    Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects' scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one's response. By suggesting that subjects' decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.

  9. Short version of the Depression Anxiety Stress Scale-21: is it valid for Brazilian adolescents?

    PubMed Central

    da Silva, Hítalo Andrade; dos Passos, Muana Hiandra Pereira; de Oliveira, Valéria Mayaly Alves; Palmeira, Aline Cabral; Pitangui, Ana Carolina Rodarti; de Araújo, Rodrigo Cappato

    2016-01-01

    ABSTRACT Objective To evaluate the interday reproducibility, agreement and validity of the construct of short version of the Depression Anxiety Stress Scale-21 applied to adolescents. Methods The sample consisted of adolescents of both sexes, aged between 10 and 19 years, who were recruited from schools and sports centers. The validity of the construct was performed by exploratory factor analysis, and reliability was calculated for each construct using the intraclass correlation coefficient, standard error of measurement and the minimum detectable change. Results The factor analysis combining the items corresponding to anxiety and stress in a single factor, and depression in a second factor, showed a better match of all 21 items, with higher factor loadings in their respective constructs. The reproducibility values for depression were intraclass correlation coefficient with 0.86, standard error of measurement with 0.80, and minimum detectable change with 2.22; and, for anxiety/stress: intraclass correlation coefficient with 0.82, standard error of measurement with 1.80, and minimum detectable change with 4.99. Conclusion The short version of the Depression Anxiety Stress Scale-21 showed excellent values of reliability, and strong internal consistency. The two-factor model with condensation of the constructs anxiety and stress in a single factor was the most acceptable for the adolescent population. PMID:28076595

  10. An intersecting chord method for minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Xu, Guanghua; Zhang, Qing; Liang, Lin; Liu, Dan

    2015-11-01

    As one of the Geometrical Product Specifications that are widely applied in industrial manufacturing and measurement, sphericity error can synthetically scale a 3D structure and reflects the machining quality of a spherical workpiece. Following increasing demands in the high motion performance of spherical parts, sphericity error is becoming an indispensable component in the evaluation of form error. However, the evaluation of sphericity error is still considered to be a complex mathematical issue, and the related research studies on the development of available models are lacking. In this paper, an intersecting chord method is first proposed to solve the minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error. This new modelling method leverages chord relationships to replace the characteristic points, thereby significantly reducing the computational complexity and improving the computational efficiency. Using the intersecting chords to generate a virtual centre, the reference sphere in two concentric spheres is simplified as a space intersecting structure. The position of the virtual centre on the space intersecting structure is determined by characteristic chords, which may reduce the deviation between the virtual centre and the centre of the reference sphere. In addition,two experiments are used to verify the effectiveness of the proposed method with real datasets from the Cartesian coordinates. The results indicate that the estimated errors are in perfect agreement with those of the published methods. Meanwhile, the computational efficiency is improved. For the evaluation of the sphericity error, the use of high performance computing is a remarkable change.

  11. Specific cognitive-neurophysiological processes predict impulsivity in the childhood attention-deficit/hyperactivity disorder combined subtype.

    PubMed

    Bluschke, A; Roessner, V; Beste, C

    2016-04-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatric disorders in childhood. Besides inattention and hyperactivity, impulsivity is the third core symptom leading to diverse and serious problems. However, the neuronal mechanisms underlying impulsivity in ADHD are still not fully understood. This is all the more the case when patients with the ADHD combined subtype (ADHD-C) are considered who are characterized by both symptoms of inattention and hyperactivity/impulsivity. Combining high-density electroencephalography (EEG) recordings with source localization analyses, we examined what information processing stages are dysfunctional in ADHD-C (n = 20) compared with controls (n = 18). Patients with ADHD-C made more impulsive errors in a Go/No-go task than healthy controls. Neurophysiologically, different subprocesses from perceptual gating to attentional selection, resource allocation and response selection processes are altered in this patient group. Perceptual gating, stimulus-driven attention selection and resource allocation processes were more pronounced in ADHD-C, are related to activation differences in parieto-occipital networks and suggest attentional filtering deficits. However, only response selection processes, associated with medial prefrontal networks, predicted impulsive errors in ADHD-C. Although the clinical picture of ADHD-C is complex and a multitude of processing steps are altered, only a subset of processes seems to directly modulate impulsive behaviour. The present findings improve the understanding of mechanisms underlying impulsivity in patients with ADHD-C and might help to refine treatment algorithms focusing on impulsivity.

  12. Brief Report: Investigating Uncertainty in the Minimum Mortality Temperature: Methods and Application to 52 Spanish Cities.

    PubMed

    Tobías, Aurelio; Armstrong, Ben; Gasparrini, Antonio

    2017-01-01

    The minimum mortality temperature from J- or U-shaped curves varies across cities with different climates. This variation conveys information on adaptation, but ability to characterize is limited by the absence of a method to describe uncertainty in estimated minimum mortality temperatures. We propose an approximate parametric bootstrap estimator of confidence interval (CI) and standard error (SE) for the minimum mortality temperature from a temperature-mortality shape estimated by splines. The coverage of the estimated CIs was close to nominal value (95%) in the datasets simulated, although SEs were slightly high. Applying the method to 52 Spanish provincial capital cities showed larger minimum mortality temperatures in hotter cities, rising almost exactly at the same rate as annual mean temperature. The method proposed for computing CIs and SEs for minimums from spline curves allows comparing minimum mortality temperatures in different cities and investigating their associations with climate properly, allowing for estimation uncertainty.

  13. Protograph based LDPC codes with minimum distance linearly growing with block size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.

  14. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI

    PubMed Central

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km2. The lake area decreased by -9.3% at an annual rate of -53.7 km2 yr-1 during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability. PMID:27007233

  15. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI.

    PubMed

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km(2). The lake area decreased by -9.3% at an annual rate of -53.7 km(2) yr(-1) during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability.

  16. Neural Correlates of User-initiated Motor Success and Failure - A Brain-Computer Interface Perspective.

    PubMed

    Yazmir, Boris; Reiner, Miriam

    2018-05-15

    Any motor action is, by nature, potentially accompanied by human errors. In order to facilitate development of error-tailored Brain-Computer Interface (BCI) correction systems, we focused on internal, human-initiated errors, and investigated EEG correlates of user outcome successes and errors during a continuous 3D virtual tennis game against a computer player. We used a multisensory, 3D, highly immersive environment. Missing and repelling the tennis ball were considered, as 'error' (miss) and 'success' (repel). Unlike most previous studies, where the environment "encouraged" the participant to perform a mistake, here errors happened naturally, resulting from motor-perceptual-cognitive processes of incorrect estimation of the ball kinematics, and can be regarded as user internal, self-initiated errors. Results show distinct and well-defined Event-Related Potentials (ERPs), embedded in the ongoing EEG, that differ across conditions by waveforms, scalp signal distribution maps, source estimation results (sLORETA) and time-frequency patterns, establishing a series of typical features that allow valid discrimination between user internal outcome success and error. The significant delay in latency between positive peaks of error- and success-related ERPs, suggests a cross-talk between top-down and bottom-up processing, represented by an outcome recognition process, in the context of the game world. Success-related ERPs had a central scalp distribution, while error-related ERPs were centro-parietal. The unique characteristics and sharp differences between EEG correlates of error/success provide the crucial components for an improved BCI system. The features of the EEG waveform can be used to detect user action outcome, to be fed into the BCI correction system. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. On the assimilation-discrimination relationship in American English adults’ French vowel learning1

    PubMed Central

    Levy, Erika S.

    2009-01-01

    A quantitative “cross-language assimilation overlap” method for testing predictions of the Perceptual Assimilation Model (PAM) was implemented to compare results of a discrimination experiment with the listeners’ previously reported assimilation data. The experiment examined discrimination of Parisian French (PF) front rounded vowels ∕y∕ and ∕œ∕. Three groups of American English listeners differing in their French experience (no experience [NoExp], formal experience [ModExp], and extensive formal-plus-immersion experience [HiExp]) performed discrimination of PF ∕y-u∕, ∕y-o∕, ∕œ-o∕, ∕œ-u∕, ∕y-i∕, ∕y-ɛ∕, ∕œ-ɛ∕, ∕œ-i∕, ∕y-œ∕, ∕u-i∕, and ∕a-ɛ∕. Vowels were in bilabial ∕rabVp∕ and alveolar ∕radVt∕ contexts. More errors were found for PF front vs back rounded vowel pairs (16%) than for PF front unrounded vs rounded pairs (2%). Overall, ModExp listeners did not perform more accurately (11% errors) than NoExp listeners (13% errors). Extensive immersion experience, however, was associated with fewer errors (3%) than formal experience alone, although discrimination of PF ∕y-u∕ remained relatively poor (12% errors) for HiExp listeners. More errors occurred on pairs involving front vs back rounded vowels in alveolar context (20% errors) than in bilabial (11% errors). Significant correlations were revealed between listeners’ assimilation overlap scores and their discrimination errors, suggesting that the PAM may be extended to second-language (L2) vowel learning. PMID:19894844

  18. RFI in hybrid loops - Simulation and experimental results.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.

    1972-01-01

    A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.

  19. Constraining Distributed Catchment Models by Incorporating Perceptual Understanding of Spatial Hydrologic Behaviour

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei

    2016-04-01

    Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models tend to contain a large number of poorly defined and spatially varying model parameters which are therefore computationally expensive to calibrate. Insufficient data can result in model parameter and structural equifinality, particularly when calibration is reliant on catchment outlet discharge behaviour alone. Evaluating spatial patterns of internal hydrological behaviour has the potential to reveal simulations that, whilst consistent with measured outlet discharge, are qualitatively dissimilar to our perceptual understanding of how the system should behave. We argue that such understanding, which may be derived from stakeholder knowledge across different catchments for certain process dynamics, is a valuable source of information to help reject non-behavioural models, and therefore identify feasible model structures and parameters. The challenge, however, is to convert different sources of often qualitative and/or semi-qualitative information into robust quantitative constraints of model states and fluxes, and combine these sources of information together to reject models within an efficient calibration framework. Here we present the development of a framework to incorporate different sources of data to efficiently calibrate distributed catchment models. For each source of information, an interval or inequality is used to define the behaviour of the catchment system. These intervals are then combined to produce a hyper-volume in state space, which is used to identify behavioural models. We apply the methodology to calibrate the Penn State Integrated Hydrological Model (PIHM) at the Wye catchment, Plynlimon, UK. Outlet discharge behaviour is successfully simulated when perceptual understanding of relative groundwater levels between lowland peat, upland peat and valley slopes within the catchment are used to identify behavioural models. The process of converting qualitative information into quantitative constraints forces us to evaluate the assumptions behind our perceptual understanding in order to derive robust constraints, and therefore fairly reject models and avoid type II errors. Likewise, consideration needs to be given to the commensurability problem when mapping perceptual understanding to constrain model states.

  20. Probablilistic evaluation of earthquake detection and location capability for Illinois, Indiana, Kentucky, Ohio, and West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauk, F.J.; Christensen, D.H.

    1980-09-01

    Probabilistic estimations of earthquake detection and location capabilities for the states of Illinois, Indiana, Kentucky, Ohio and West Virginia are presented in this document. The algorithm used in these epicentrality and minimum-magnitude estimations is a version of the program NETWORTH by Wirth, Blandford, and Husted (DARPA Order No. 2551, 1978) which was modified for local array evaluation at the University of Michigan Seismological Observatory. Estimations of earthquake detection capability for the years 1970 and 1980 are presented in four regional minimum m/sub b/ magnitude contour maps. Regional 90% confidence error ellipsoids are included for m/sub b/ magnitude events from 2.0more » through 5.0 at 0.5 m/sub b/ unit increments. The close agreement between these predicted epicentral 90% confidence estimates and the calculated error ellipses associated with actual earthquakes within the studied region suggest that these error determinations can be used to estimate the reliability of epicenter location. 8 refs., 14 figs., 2 tabs.« less

  1. Information-Theoretic Assessment of Sample Imaging Systems

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Alter-Gartenberg, Rachel; Park, Stephen K.; Rahman, Zia-ur

    1999-01-01

    By rigorously extending modern communication theory to the assessment of sampled imaging systems, we develop the formulations that are required to optimize the performance of these systems within the critical constraints of image gathering, data transmission, and image display. The goal of this optimization is to produce images with the best possible visual quality for the wide range of statistical properties of the radiance field of natural scenes that one normally encounters. Extensive computational results are presented to assess the performance of sampled imaging systems in terms of information rate, theoretical minimum data rate, and fidelity. Comparisons of this assessment with perceptual and measurable performance demonstrate that (1) the information rate that a sampled imaging system conveys from the captured radiance field to the observer is closely correlated with the fidelity, sharpness and clarity with which the observed images can be restored and (2) the associated theoretical minimum data rate is closely correlated with the lowest data rate with which the acquired signal can be encoded for efficient transmission.

  2. A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2011-01-01

    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908

  3. The nature and outcomes of work: a replication and extension of interdisciplinary work-design research.

    PubMed

    Edwards, J R; Scully, J A; Brtek, M D

    2000-12-01

    Research into the changing nature of work requires comprehensive models of work design. One such model is the interdisciplinary framework (M. A. Campion, 1988), which integrates 4 work-design approaches (motivational, mechanistic, biological, perceptual-motor) and links each approach to specific outcomes. Unfortunately, studies of this framework have used methods that disregard measurement error, overlook dimensions within each work-design approach, and treat each approach and outcome separately. This study reanalyzes data from M. A. Campion (1988), using structural equation models that incorporate measurement error, specify multiple dimensions for each work-design approach, and examine the work-design approaches and outcomes jointly. Results show that previous studies underestimate relationships between work-design approaches and outcomes and that dimensions within each approach exhibit relationships with outcomes that differ in magnitude and direction.

  4. Evaluating the Subjective Straight Ahead Before and After Spaceflight

    NASA Technical Reports Server (NTRS)

    Campbell, D. J.; Wood, S. J.; Reschke, M. F.; Clement, G.

    2017-01-01

    This joint European Space Agency (ESA) - NASA study will address adaptive changes in spatial orientation related to the subjective straight ahead and the use of a vibrotactile sensory aid to reduce perceptual errors. The study will be conducted before and after long duration expeditions to the International Space Station (ISS) to examine how spatial processing of target location is altered following exposure to microgravity. This study addresses the sensorimotor research gap to "determine the changes in sensorimotor function over the course of a mission and during recovery after landing."

  5. In Search of Grid Converged Solutions

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2010-01-01

    Assessing solution error continues to be a formidable task when numerically solving practical flow problems. Currently, grid refinement is the primary method used for error assessment. The minimum grid spacing requirements to achieve design order accuracy for a structured-grid scheme are determined for several simple examples using truncation error evaluations on a sequence of meshes. For certain methods and classes of problems, obtaining design order may not be sufficient to guarantee low error. Furthermore, some schemes can require much finer meshes to obtain design order than would be needed to reduce the error to acceptable levels. Results are then presented from realistic problems that further demonstrate the challenges associated with using grid refinement studies to assess solution accuracy.

  6. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1973-01-01

    The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.

  7. A new enhanced index tracking model in portfolio optimization with sum weighted approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah; Hoe, Lam Weng

    2017-04-01

    Index tracking is a portfolio management which aims to construct the optimal portfolio to achieve similar return with the benchmark index return at minimum tracking error without purchasing all the stocks that make up the index. Enhanced index tracking is an improved portfolio management which aims to generate higher portfolio return than the benchmark index return besides minimizing the tracking error. The objective of this paper is to propose a new enhanced index tracking model with sum weighted approach to improve the existing index tracking model for tracking the benchmark Technology Index in Malaysia. The optimal portfolio composition and performance of both models are determined and compared in terms of portfolio mean return, tracking error and information ratio. The results of this study show that the optimal portfolio of the proposed model is able to generate higher mean return than the benchmark index at minimum tracking error. Besides that, the proposed model is able to outperform the existing model in tracking the benchmark index. The significance of this study is to propose a new enhanced index tracking model with sum weighted apporach which contributes 67% improvement on the portfolio mean return as compared to the existing model.

  8. Spatial Orientation from Motion-Produced Blur Patterns: Detection of Curvature Change.

    DTIC Science & Technology

    1978-08-01

    3.0 2.3 1.6 1.1 .8 16 3.8 3.0 2.3 1.4 1.1 300 Le f t Fixation Frequency (he r t z ) Veloci ty (°/sec) 1/4 1/2 1 2 4 4 2.8 2.4 1.8 1.3 1.2 8 4.0 3.0... principle of minimum object change which implies that the perceptual tendency in a case like this is to see a rigid object moving in translation, neither...stretching nor binding nor twisting as a helical pattern would be required to do. Johansson notes that the principle may not hold up for complex

  9. Measurement uncertainty evaluation of conicity error inspected on CMM

    NASA Astrophysics Data System (ADS)

    Wang, Dongxia; Song, Aiguo; Wen, Xiulan; Xu, Youxiong; Qiao, Guifang

    2016-01-01

    The cone is widely used in mechanical design for rotation, centering and fixing. Whether the conicity error can be measured and evaluated accurately will directly influence its assembly accuracy and working performance. According to the new generation geometrical product specification(GPS), the error and its measurement uncertainty should be evaluated together. The mathematical model of the minimum zone conicity error is established and an improved immune evolutionary algorithm(IIEA) is proposed to search for the conicity error. In the IIEA, initial antibodies are firstly generated by using quasi-random sequences and two kinds of affinities are calculated. Then, each antibody clone is generated and they are self-adaptively mutated so as to maintain diversity. Similar antibody is suppressed and new random antibody is generated. Because the mathematical model of conicity error is strongly nonlinear and the input quantities are not independent, it is difficult to use Guide to the expression of uncertainty in the measurement(GUM) method to evaluate measurement uncertainty. Adaptive Monte Carlo method(AMCM) is proposed to estimate measurement uncertainty in which the number of Monte Carlo trials is selected adaptively and the quality of the numerical results is directly controlled. The cone parts was machined on lathe CK6140 and measured on Miracle NC 454 Coordinate Measuring Machine(CMM). The experiment results confirm that the proposed method not only can search for the approximate solution of the minimum zone conicity error(MZCE) rapidly and precisely, but also can evaluate measurement uncertainty and give control variables with an expected numerical tolerance. The conicity errors computed by the proposed method are 20%-40% less than those computed by NC454 CMM software and the evaluation accuracy improves significantly.

  10. Experimental study on an FBG strain sensor

    NASA Astrophysics Data System (ADS)

    Liu, Hong-lin; Zhu, Zheng-wei; Zheng, Yong; Liu, Bang; Xiao, Feng

    2018-01-01

    Landslides and other geological disasters occur frequently and often cause high financial and humanitarian cost. The real-time, early-warning monitoring of landslides has important significance in reducing casualties and property losses. In this paper, by taking the high initial precision and high sensitivity advantage of FBG, an FBG strain sensor is designed combining FBGs with inclinometer. The sensor was regarded as a cantilever beam with one end fixed. According to the anisotropic material properties of the inclinometer, a theoretical formula between the FBG wavelength and the deflection of the sensor was established using the elastic mechanics principle. Accuracy of the formula established had been verified through laboratory calibration testing and model slope monitoring experiments. The displacement of landslide could be calculated by the established theoretical formula using the changing values of FBG central wavelength obtained by the demodulation instrument remotely. Results showed that the maximum error at different heights was 9.09%; the average of the maximum error was 6.35%, and its corresponding variance was 2.12; the minimum error was 4.18%; the average of the minimum error was 5.99%, and its corresponding variance was 0.50. The maximum error of the theoretical and the measured displacement decrease gradually, and the variance of the error also decreases gradually. This indicates that the theoretical results are more and more reliable. It also shows that the sensor and the theoretical formula established in this paper can be used for remote, real-time, high precision and early warning monitoring of the slope.

  11. Social vision: sustained perceptual enhancement of affective facial cues in social anxiety

    PubMed Central

    McTeague, Lisa M.; Shumen, Joshua R.; Wieser, Matthias J.; Lang, Peter J.; Keil, Andreas

    2010-01-01

    Heightened perception of facial cues is at the core of many theories of social behavior and its disorders. In the present study, we continuously measured electrocortical dynamics in human visual cortex, as evoked by happy, neutral, fearful, and angry faces. Thirty-seven participants endorsing high versus low generalized social anxiety (upper and lower tertiles of 2,104 screened undergraduates) viewed naturalistic faces flickering at 17.5 Hz to evoke steady-state visual evoked potentials (ssVEPs), recorded from 129 scalp electrodes. Electrophysiological data were evaluated in the time-frequency domain after linear source space projection using the minimum norm method. Source estimation indicated an early visual cortical origin of the face-evoked ssVEP, which showed sustained amplitude enhancement for emotional expressions specifically in individuals with pervasive social anxiety. Participants in the low symptom group showed no such sensitivity, and a correlational analysis across the entire sample revealed a strong relationship between self-reported interpersonal anxiety/avoidance and enhanced visual cortical response amplitude for emotional, versus neutral expressions. This pattern was maintained across the 3500 ms viewing epoch, suggesting that temporally sustained, heightened perceptual bias towards affective facial cues is associated with generalized social anxiety. PMID:20832490

  12. Just Noticeable Distortion Model and Its Application in Color Image Watermarking

    NASA Astrophysics Data System (ADS)

    Liu, Kuo-Cheng

    In this paper, a perceptually adaptive watermarking scheme for color images is proposed in order to achieve robustness and transparency. A new just noticeable distortion (JND) estimator for color images is first designed in the wavelet domain. The key issue of the JND model is to effectively integrate visual masking effects. The estimator is an extension to the perceptual model that is used in image coding for grayscale images. Except for the visual masking effects given coefficient by coefficient by taking into account the luminance content and the texture of grayscale images, the crossed masking effect given by the interaction between luminance and chrominance components and the effect given by the variance within the local region of the target coefficient are investigated such that the visibility threshold for the human visual system (HVS) can be evaluated. In a locally adaptive fashion based on the wavelet decomposition, the estimator applies to all subbands of luminance and chrominance components of color images and is used to measure the visibility of wavelet quantization errors. The subband JND profiles are then incorporated into the proposed color image watermarking scheme. Performance in terms of robustness and transparency of the watermarking scheme is obtained by means of the proposed approach to embed the maximum strength watermark while maintaining the perceptually lossless quality of the watermarked color image. Simulation results show that the proposed scheme with inserting watermarks into luminance and chrominance components is more robust than the existing scheme while retaining the watermark transparency.

  13. Perceptual Speech Assessment After Anterior Maxillary Distraction in Patients With Cleft Maxillary Hypoplasia.

    PubMed

    Richardson, Sunil; Seelan, Nikkie S; Selvaraj, Dhivakar; Khandeparker, Rakshit V; Gnanamony, Sangeetha

    2016-06-01

    To assess speech outcomes after anterior maxillary distraction (AMD) in patients with cleft-related maxillary hypoplasia. Fifty-eight patients at least 10 years old with cleft-related maxillary hypoplasia were included in this study irrespective of gender, type of cleft lip and palate, and amount of required advancement. AMD was carried out in all patients using a tooth-borne palatal distractor by a single oral and maxillofacial surgeon. Perceptual speech assessment was performed by 2 speech language pathologists preoperatively, before placement of the distractor device, and 6 months postoperatively using the scoring system of Perkins et al (Plast Reconstr Surg 116:72, 2005); the system evaluates velopharyngeal insufficiency (VPI), resonance, nasal air emission, articulation errors, and intelligibility. The data obtained were tabulated and subjected to statistical analysis using Wilcoxon signed rank test. A P value less than .05 was considered significant. Eight patients were lost to follow-up. At 6-month follow-up, improvements of 62% (n = 31), 64% (n = 32), 50% (n = 25), 68% (n = 34), and 70% (n = 35) in VPI, resonance, nasal air emission, articulation, and intelligibility, respectively, were observed, with worsening of all parameters in 1 patient (2%). The results for all tested parameters were highly significant (P ≤ .001). AMD offers a substantial improvement in speech for all 5 parameters of perceptual speech assessment. Copyright © 2016 The American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. A novel diagnosis method for a Hall plates-based rotary encoder with a magnetic concentrator.

    PubMed

    Meng, Bumin; Wang, Yaonan; Sun, Wei; Yuan, Xiaofang

    2014-07-31

    In the last few years, rotary encoders based on two-dimensional complementary metal oxide semiconductors (CMOS) Hall plates with a magnetic concentrator have been developed to measure contactless absolute angle. There are various error factors influencing the measuring accuracy, which are difficult to locate after the assembly of encoder. In this paper, a model-based rapid diagnosis method is presented. Based on an analysis of the error mechanism, an error model is built to compare minimum residual angle error and to quantify the error factors. Additionally, a modified particle swarm optimization (PSO) algorithm is used to reduce the calculated amount. The simulation and experimental results show that this diagnosis method is feasible to quantify the causes of the error and to reduce iteration significantly.

  15. A feasibility study in adapting Shamos Bickel and Hodges Lehman estimator into T-Method for normalization

    NASA Astrophysics Data System (ADS)

    Harudin, N.; Jamaludin, K. R.; Muhtazaruddin, M. Nabil; Ramlie, F.; Muhamad, Wan Zuki Azman Wan

    2018-03-01

    T-Method is one of the techniques governed under Mahalanobis Taguchi System that developed specifically for multivariate data predictions. Prediction using T-Method is always possible even with very limited sample size. The user of T-Method required to clearly understanding the population data trend since this method is not considering the effect of outliers within it. Outliers may cause apparent non-normality and the entire classical methods breakdown. There exist robust parameter estimate that provide satisfactory results when the data contain outliers, as well as when the data are free of them. The robust parameter estimates of location and scale measure called Shamos Bickel (SB) and Hodges Lehman (HL) which are used as a comparable method to calculate the mean and standard deviation of classical statistic is part of it. Embedding these into T-Method normalize stage feasibly help in enhancing the accuracy of the T-Method as well as analysing the robustness of T-method itself. However, the result of higher sample size case study shows that T-method is having lowest average error percentages (3.09%) on data with extreme outliers. HL and SB is having lowest error percentages (4.67%) for data without extreme outliers with minimum error differences compared to T-Method. The error percentages prediction trend is vice versa for lower sample size case study. The result shows that with minimum sample size, which outliers always be at low risk, T-Method is much better on that, while higher sample size with extreme outliers, T-Method as well show better prediction compared to others. For the case studies conducted in this research, it shows that normalization of T-Method is showing satisfactory results and it is not feasible to adapt HL and SB or normal mean and standard deviation into it since it’s only provide minimum effect of percentages errors. Normalization using T-method is still considered having lower risk towards outlier’s effect.

  16. Multiple-rule bias in the comparison of classification rules

    PubMed Central

    Yousefi, Mohammadmahdi R.; Hua, Jianping; Dougherty, Edward R.

    2011-01-01

    Motivation: There is growing discussion in the bioinformatics community concerning overoptimism of reported results. Two approaches contributing to overoptimism in classification are (i) the reporting of results on datasets for which a proposed classification rule performs well and (ii) the comparison of multiple classification rules on a single dataset that purports to show the advantage of a certain rule. Results: This article provides a careful probabilistic analysis of the second issue and the ‘multiple-rule bias’, resulting from choosing a classification rule having minimum estimated error on the dataset. It quantifies this bias corresponding to estimating the expected true error of the classification rule possessing minimum estimated error and it characterizes the bias from estimating the true comparative advantage of the chosen classification rule relative to the others by the estimated comparative advantage on the dataset. The analysis is applied to both synthetic and real data using a number of classification rules and error estimators. Availability: We have implemented in C code the synthetic data distribution model, classification rules, feature selection routines and error estimation methods. The code for multiple-rule analysis is implemented in MATLAB. The source code is available at http://gsp.tamu.edu/Publications/supplementary/yousefi11a/. Supplementary simulation results are also included. Contact: edward@ece.tamu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21546390

  17. Coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    Analysis of quantum error correcting (QEC) codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. We present analytic results for the logical error as a function of concatenation level and code distance for coherent errors under the repetition code. For data-only coherent errors, we find that the logical error is partially coherent and therefore non-Pauli. However, the coherent part of the error is negligible after two or more concatenation levels or at fewer than ɛ - (d - 1) error correction cycles. Here ɛ << 1 is the rotation angle error per cycle for a single physical qubit and d is the code distance. These results support the validity of modeling coherent errors using a Pauli channel under some minimum requirements for code distance and/or concatenation. We discuss extensions to imperfect syndrome extraction and implications for general QEC.

  18. Void Growth and Coalescence Simulations

    DTIC Science & Technology

    2013-08-01

    distortion and damage, minimum time step, and appropriate material model parameters. Further, a temporal and spatial convergence study was used to...estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we use a Gurson model with Johnson-Cook...spatial convergence study was used to estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we

  19. Neural self-tuning adaptive control of non-minimum phase system

    NASA Technical Reports Server (NTRS)

    Ho, Long T.; Bialasiewicz, Jan T.; Ho, Hai T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  20. Estimates of the absolute error and a scheme for an approximate solution to scheduling problems

    NASA Astrophysics Data System (ADS)

    Lazarev, A. A.

    2009-02-01

    An approach is proposed for estimating absolute errors and finding approximate solutions to classical NP-hard scheduling problems of minimizing the maximum lateness for one or many machines and makespan is minimized. The concept of a metric (distance) between instances of the problem is introduced. The idea behind the approach is, given the problem instance, to construct another instance for which an optimal or approximate solution can be found at the minimum distance from the initial instance in the metric introduced. Instead of solving the original problem (instance), a set of approximating polynomially/pseudopolynomially solvable problems (instances) are considered, an instance at the minimum distance from the given one is chosen, and the resulting schedule is then applied to the original instance.

  1. Expansion of visual space during optokinetic afternystagmus (OKAN).

    PubMed

    Kaminiarz, André; Krekelberg, Bart; Bremmer, Frank

    2008-05-01

    The mechanisms underlying visual perceptual stability are usually investigated using voluntary eye movements. In such studies, errors in perceptual stability during saccades and pursuit are commonly interpreted as mismatches between actual eye position and eye-position signals in the brain. The generality of this interpretation could in principle be tested by investigating spatial localization during reflexive eye movements whose kinematics are very similar to those of voluntary eye movements. Accordingly, in this study, we determined mislocalization of flashed visual targets during optokinetic afternystagmus (OKAN). These eye movements are quite unique in that they occur in complete darkness and are generated by subcortical control mechanisms. We found that during horizontal OKAN slow phases, subjects mislocalize targets away from the fovea in the horizontal direction. This corresponds to a perceived expansion of visual space and is unlike mislocalization found for any other voluntary or reflexive eye movement. Around the OKAN fast phases, we found a bias in the direction of the fast phase prior to its onset and opposite to the fast-phase direction thereafter. Such a biphasic modulation has also been reported in the temporal vicinity of saccades and during optokinetic nystagmus (OKN). A direct comparison, however, showed that the modulation during OKAN was much larger and occurred earlier relative to fast-phase onset than during OKN. A simple mismatch between the current eye position and the eye-position signal in the brain is unlikely to explain such disparate results across similar eye movements. Instead, these data support the view that mislocalization arises from errors in eye-centered position information.

  2. Examining perceptual and conceptual set biases in multiple-target visual search.

    PubMed

    Biggs, Adam T; Adamo, Stephen H; Dowd, Emma Wu; Mitroff, Stephen R

    2015-04-01

    Visual search is a common practice conducted countless times every day, and one important aspect of visual search is that multiple targets can appear in a single search array. For example, an X-ray image of airport luggage could contain both a water bottle and a gun. Searchers are more likely to miss additional targets after locating a first target in multiple-target searches, which presents a potential problem: If airport security officers were to find a water bottle, would they then be more likely to miss a gun? One hypothetical cause of multiple-target search errors is that searchers become biased to detect additional targets that are similar to a found target, and therefore become less likely to find additional targets that are dissimilar to the first target. This particular hypothesis has received theoretical, but little empirical, support. In the present study, we tested the bounds of this idea by utilizing "big data" obtained from the mobile application Airport Scanner. Multiple-target search errors were substantially reduced when the two targets were identical, suggesting that the first-found target did indeed create biases during subsequent search. Further analyses delineated the nature of the biases, revealing both a perceptual set bias (i.e., a bias to find additional targets with features similar to those of the first-found target) and a conceptual set bias (i.e., a bias to find additional targets with a conceptual relationship to the first-found target). These biases are discussed in terms of the implications for visual-search theories and applications for professional visual searchers.

  3. Fluency and belief bias in deductive reasoning: new indices for old effects

    PubMed Central

    Trippas, Dries; Handley, Simon J.; Verde, Michael F.

    2014-01-01

    Models based on signal detection theory (SDT) have occupied a prominent role in domains such as perception, categorization, and memory. Recent work by Dube et al. (2010) suggests that the framework may also offer important insights in the domain of deductive reasoning. Belief bias in reasoning has traditionally been examined using indices based on raw endorsement rates—indices that critics have claimed are highly problematic. We discuss a new set of SDT indices fit for the investigation belief bias and apply them to new data examining the effect of perceptual disfluency on belief bias in syllogisms. In contrast to the traditional approach, the SDT indices do not violate important statistical assumptions, resulting in a decreased Type 1 error rate. Based on analyses using these novel indices we demonstrate that perceptual disfluency leads to decreased reasoning accuracy, contrary to predictions. Disfluency also appears to eliminate the typical link found between cognitive ability and the effect of beliefs on accuracy. Finally, replicating previous work, we demonstrate that cognitive ability leads to an increase in reasoning accuracy and a decrease in the response bias component of belief bias. PMID:25009515

  4. Illusory conjunctions in simultanagnosia: coarse coding of visual feature location?

    PubMed

    McCrea, Simon M; Buxbaum, Laurel J; Coslett, H Branch

    2006-01-01

    Simultanagnosia is a disorder characterized by an inability to see more than one object at a time. We report a simultanagnosic patient (ED) with bilateral posterior infarctions who produced frequent illusory conjunctions on tasks involving form and surface features (e.g., a red T) and form alone. ED also produced "blend" errors in which features of one familiar perceptual unit appeared to migrate to another familiar perceptual unit (e.g., "RO" read as "PQ"). ED often misread scrambled letter strings as a familiar word (e.g., "hmoe" read as "home"). Finally, ED's success in reporting two letters in an array was inversely related to the distance between the letters. These findings are consistent with the hypothesis that ED's illusory reflect coarse coding of visual feature location that is ameliorated in part by top-down information from object and word recognition systems; the findings are also consistent, however, with Treisman's Feature Integration Theory. Finally, the data provide additional support for the claim that the dorsal parieto-occipital cortex is implicated in the binding of visual feature information.

  5. Usage of semantic representations in recognition memory.

    PubMed

    Nishiyama, Ryoji; Hirano, Tetsuji; Ukita, Jun

    2017-11-01

    Meanings of words facilitate false acceptance as well as correct rejection of lures in recognition memory tests, depending on the experimental context. This suggests that semantic representations are both directly and indirectly (i.e., mediated by perceptual representations) used in remembering. Studies using memory conjunction errors (MCEs) paradigms, in which the lures consist of component parts of studied words, have reported semantic facilitation of rejection of the lures. However, attending to components of the lures could potentially cause this. Therefore, we investigated whether semantic overlap of lures facilitates MCEs using Japanese Kanji words in which a whole-word image is more concerned in reading. Experiments demonstrated semantic facilitation of MCEs in a delayed recognition test (Experiment 1), and in immediate recognition tests in which participants were prevented from using phonological or orthographic representations (Experiment 2), and the salient effect on individuals with high semantic memory capacities (Experiment 3). Additionally, analysis of the receiver operating characteristic suggested that this effect is attributed to familiarity-based memory judgement and phantom recollection. These findings indicate that semantic representations can be directly used in remembering, even when perceptual representations of studied words are available.

  6. The impact of registration accuracy on imaging validation study design: A novel statistical power calculation.

    PubMed

    Gibson, Eli; Fenster, Aaron; Ward, Aaron D

    2013-10-01

    Novel imaging modalities are pushing the boundaries of what is possible in medical imaging, but their signal properties are not always well understood. The evaluation of these novel imaging modalities is critical to achieving their research and clinical potential. Image registration of novel modalities to accepted reference standard modalities is an important part of characterizing the modalities and elucidating the effect of underlying focal disease on the imaging signal. The strengths of the conclusions drawn from these analyses are limited by statistical power. Based on the observation that in this context, statistical power depends in part on uncertainty arising from registration error, we derive a power calculation formula relating registration error, number of subjects, and the minimum detectable difference between normal and pathologic regions on imaging, for an imaging validation study design that accommodates signal correlations within image regions. Monte Carlo simulations were used to evaluate the derived models and test the strength of their assumptions, showing that the model yielded predictions of the power, the number of subjects, and the minimum detectable difference of simulated experiments accurate to within a maximum error of 1% when the assumptions of the derivation were met, and characterizing sensitivities of the model to violations of the assumptions. The use of these formulae is illustrated through a calculation of the number of subjects required for a case study, modeled closely after a prostate cancer imaging validation study currently taking place at our institution. The power calculation formulae address three central questions in the design of imaging validation studies: (1) What is the maximum acceptable registration error? (2) How many subjects are needed? (3) What is the minimum detectable difference between normal and pathologic image regions? Copyright © 2013 Elsevier B.V. All rights reserved.

  7. On the use of inexact, pruned hardware in atmospheric modelling

    PubMed Central

    Düben, Peter D.; Joven, Jaume; Lingamneni, Avinash; McNamara, Hugh; De Micheli, Giovanni; Palem, Krishna V.; Palmer, T. N.

    2014-01-01

    Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz ‘96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models. PMID:24842031

  8. The effect of memory and context changes on color matches to real objects.

    PubMed

    Allred, Sarah R; Olkkonen, Maria

    2015-07-01

    Real-world color identification tasks often require matching the color of objects between contexts and after a temporal delay, thus placing demands on both perceptual and memory processes. Although the mechanisms of matching colors between different contexts have been widely studied under the rubric of color constancy, little research has investigated the role of long-term memory in such tasks or how memory interacts with color constancy. To investigate this relationship, observers made color matches to real study objects that spanned color space, and we independently manipulated the illumination impinging on the objects, the surfaces in which objects were embedded, and the delay between seeing the study object and selecting its color match. Adding a 10-min delay increased both the bias and variability of color matches compared to a baseline condition. These memory errors were well accounted for by modeling memory as a noisy but unbiased version of perception constrained by the matching methods. Surprisingly, we did not observe significant increases in errors when illumination and surround changes were added to the 10-minute delay, although the context changes alone did elicit significant errors.

  9. Optimization of multimagnetometer systems on a spacecraft

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.

    1975-01-01

    The problem of optimizing the position of magnetometers along a boom of given length to yield a minimized total error is investigated. The discussion is limited to at most four magnetometers, which seems to be a practical limit due to weight, power, and financial considerations. The outlined error analysis is applied to some illustrative cases. The optimal magnetometer locations, for which the total error is minimum, are computed for given boom length, instrument errors, and very conservative magnetic field models characteristic for spacecraft with only a restricted or ineffective magnetic cleanliness program. It is shown that the error contribution by the magnetometer inaccuracy is increased as the number of magnetometers is increased, whereas the spacecraft field uncertainty is diminished by an appreciably larger amount.

  10. Validation of the ICU-DaMa tool for automatically extracting variables for minimum dataset and quality indicators: The importance of data quality assessment.

    PubMed

    Sirgo, Gonzalo; Esteban, Federico; Gómez, Josep; Moreno, Gerard; Rodríguez, Alejandro; Blanch, Lluis; Guardiola, Juan José; Gracia, Rafael; De Haro, Lluis; Bodí, María

    2018-04-01

    Big data analytics promise insights into healthcare processes and management, improving outcomes while reducing costs. However, data quality is a major challenge for reliable results. Business process discovery techniques and an associated data model were used to develop data management tool, ICU-DaMa, for extracting variables essential for overseeing the quality of care in the intensive care unit (ICU). To determine the feasibility of using ICU-DaMa to automatically extract variables for the minimum dataset and ICU quality indicators from the clinical information system (CIS). The Wilcoxon signed-rank test and Fisher's exact test were used to compare the values extracted from the CIS with ICU-DaMa for 25 variables from all patients attended in a polyvalent ICU during a two-month period against the gold standard of values manually extracted by two trained physicians. Discrepancies with the gold standard were classified into plausibility, conformance, and completeness errors. Data from 149 patients were included. Although there were no significant differences between the automatic method and the manual method, we detected differences in values for five variables, including one plausibility error and two conformance and completeness errors. Plausibility: 1) Sex, ICU-DaMa incorrectly classified one male patient as female (error generated by the Hospital's Admissions Department). Conformance: 2) Reason for isolation, ICU-DaMa failed to detect a human error in which a professional misclassified a patient's isolation. 3) Brain death, ICU-DaMa failed to detect another human error in which a professional likely entered two mutually exclusive values related to the death of the patient (brain death and controlled donation after circulatory death). Completeness: 4) Destination at ICU discharge, ICU-DaMa incorrectly classified two patients due to a professional failing to fill out the patient discharge form when thepatients died. 5) Length of continuous renal replacement therapy, data were missing for one patient because the CRRT device was not connected to the CIS. Automatic generation of minimum dataset and ICU quality indicators using ICU-DaMa is feasible. The discrepancies were identified and can be corrected by improving CIS ergonomics, training healthcare professionals in the culture of the quality of information, and using tools for detecting and correcting data errors. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Frogs Exploit Statistical Regularities in Noisy Acoustic Scenes to Solve Cocktail-Party-like Problems.

    PubMed

    Lee, Norman; Ward, Jessica L; Vélez, Alejandro; Micheyl, Christophe; Bee, Mark A

    2017-03-06

    Noise is a ubiquitous source of errors in all forms of communication [1]. Noise-induced errors in speech communication, for example, make it difficult for humans to converse in noisy social settings, a challenge aptly named the "cocktail party problem" [2]. Many nonhuman animals also communicate acoustically in noisy social groups and thus face biologically analogous problems [3]. However, we know little about how the perceptual systems of receivers are evolutionarily adapted to avoid the costs of noise-induced errors in communication. In this study of Cope's gray treefrog (Hyla chrysoscelis; Hylidae), we investigated whether receivers exploit a potential statistical regularity present in noisy acoustic scenes to reduce errors in signal recognition and discrimination. We developed an anatomical/physiological model of the peripheral auditory system to show that temporal correlation in amplitude fluctuations across the frequency spectrum ("comodulation") [4-6] is a feature of the noise generated by large breeding choruses of sexually advertising males. In four psychophysical experiments, we investigated whether females exploit comodulation in background noise to mitigate noise-induced errors in evolutionarily critical mate-choice decisions. Subjects experienced fewer errors in recognizing conspecific calls and in selecting the calls of high-quality mates in the presence of simulated chorus noise that was comodulated. These data show unequivocally, and for the first time, that exploiting statistical regularities present in noisy acoustic scenes is an important biological strategy for solving cocktail-party-like problems in nonhuman animal communication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of head movement and proprioceptive feedback in training of sound localization

    PubMed Central

    Honda, Akio; Shibata, Hiroshi; Hidaka, Souta; Gyoba, Jiro; Iwaya, Yukio; Suzuki, Yôiti

    2013-01-01

    We investigated the effects of listeners' head movements and proprioceptive feedback during sound localization practice on the subsequent accuracy of sound localization performance. The effects were examined under both restricted and unrestricted head movement conditions in the practice stage. In both cases, the participants were divided into two groups: a feedback group performed a sound localization drill with accurate proprioceptive feedback; a control group conducted it without the feedback. Results showed that (1) sound localization practice, while allowing for free head movement, led to improvement in sound localization performance and decreased actual angular errors along the horizontal plane, and that (2) proprioceptive feedback during practice decreased actual angular errors in the vertical plane. Our findings suggest that unrestricted head movement and proprioceptive feedback during sound localization training enhance perceptual motor learning by enabling listeners to use variable auditory cues and proprioceptive information. PMID:24349686

  13. Optimized multiple linear mappings for single image super-resolution

    NASA Astrophysics Data System (ADS)

    Zhang, Kaibing; Li, Jie; Xiong, Zenggang; Liu, Xiuping; Gao, Xinbo

    2017-12-01

    Learning piecewise linear regression has been recognized as an effective way for example learning-based single image super-resolution (SR) in literature. In this paper, we employ an expectation-maximization (EM) algorithm to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough experimental results carried on six publicly available datasets demonstrate that the proposed SR method can yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual image quality assessments.

  14. Human performance in the modern cockpit

    NASA Technical Reports Server (NTRS)

    Dismukes, R. K.; Cohen, M. M.

    1992-01-01

    This panel was organized by the Aerospace Human Factors Committee to illustrate behavioral research on the perceptual, cognitive, and group processes that determine crew effectiveness in modern cockpits. Crew reactions to the introduction of highly automated systems in the cockpit will be reported on. Automation can improve operational capabilities and efficiency and can reduce some types of human error, but may also introduce entirely new opportunities for error. The problem solving and decision making strategies used by crews led by captains with various personality profiles will be discussed. Also presented will be computational approaches to modeling the cognitive demands of cockpit operations and the cognitive capabilities and limitations of crew members. Factors contributing to aircrew deviations from standard operating procedures and misuse of checklist, often leading to violations, incidents, or accidents will be examined. The mechanisms of visual perception pilots use in aircraft control and the implications of these mechanisms for effective design of visual displays will be discussed.

  15. Does target viewing time influence perceived reachability?

    PubMed

    Gabbard, Carl; Ammar, Diala

    2007-09-01

    This study examined the influence of target viewing time on perceived (estimates of) reachability. Right-handed participants were asked to judge the simulated reachability of midline targets using their dominant limb in viewing conditions of 150 ms, 500 ms, 1 s and 2 s. Responses were compared to actual maximum reach. In reference to percent error, interestingly, the 150 ms condition revealed the least error at peripersonal targets and the most inaccuracy with distal (extrapersonal) targets. This condition was also distinct with a significant overestimation bias -- a common observation in earlier studies. However, with increasing viewing time this bias was reduced. These data provide evidence that 150 ms is effective for estimating reach within one's general peripersonal workspace. However, with judgments distal from that point, more time enhanced accuracy, with 500 ms and 1 s being optimal. Overall results are discussed relative to perceptual effectiveness in programming reaching movements.

  16. Method and Apparatus for Evaluating the Visual Quality of Processed Digital Video Sequences

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    2002-01-01

    A Digital Video Quality (DVQ) apparatus and method that incorporate a model of human visual sensitivity to predict the visibility of artifacts. The DVQ method and apparatus are used for the evaluation of the visual quality of processed digital video sequences and for adaptively controlling the bit rate of the processed digital video sequences without compromising the visual quality. The DVQ apparatus minimizes the required amount of memory and computation. The input to the DVQ apparatus is a pair of color image sequences: an original (R) non-compressed sequence, and a processed (T) sequence. Both sequences (R) and (T) are sampled, cropped, and subjected to color transformations. The sequences are then subjected to blocking and discrete cosine transformation, and the results are transformed to local contrast. The next step is a time filtering operation which implements the human sensitivity to different time frequencies. The results are converted to threshold units by dividing each discrete cosine transform coefficient by its respective visual threshold. At the next stage the two sequences are subtracted to produce an error sequence. The error sequence is subjected to a contrast masking operation, which also depends upon the reference sequence (R). The masked errors can be pooled in various ways to illustrate the perceptual error over various dimensions, and the pooled error can be converted to a visual quality measure.

  17. Analysis of the PLL phase error in presence of simulated ionospheric scintillation events

    NASA Astrophysics Data System (ADS)

    Forte, B.

    2012-01-01

    The functioning of standard phase locked loops (PLL), including those used to track radio signals from Global Navigation Satellite Systems (GNSS), is based on a linear approximation which holds in presence of small phase errors. Such an approximation represents a reasonable assumption in most of the propagation channels. However, in presence of a fading channel the phase error may become large, making the linear approximation no longer valid. The PLL is then expected to operate in a non-linear regime. As PLLs are generally designed and expected to operate in their linear regime, whenever the non-linear regime comes into play, they will experience a serious limitation in their capability to track the corresponding signals. The phase error and the performance of a typical PLL embedded into a commercial multiconstellation GNSS receiver were analyzed in presence of simulated ionospheric scintillation. Large phase errors occurred during scintillation-induced signal fluctuations although cycle slips only occurred during the signal re-acquisition after a loss of lock. Losses of lock occurred whenever the signal faded below the minimumC/N0threshold allowed for tracking. The simulations were performed for different signals (GPS L1C/A, GPS L2C, GPS L5 and Galileo L1). L5 and L2C proved to be weaker than L1. It appeared evident that the conditions driving the PLL phase error in the specific case of GPS receivers in presence of scintillation-induced signal perturbations need to be evaluated in terms of the combination of the minimumC/N0 tracking threshold, lock detector thresholds, possible cycle slips in the tracking PLL and accuracy of the observables (i.e. the error propagation onto the observables stage).

  18. 14 CFR 29.1323 - Airspeed indicating system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... minimum practicable instrument calibration error when the corresponding pitot and static pressures are... pitot tube or an equivalent means of preventing malfunction due to icing. [Doc. No. 5084, 29 FR 16150...

  19. Robustification and Optimization in Repetitive Control For Minimum Phase and Non-Minimum Phase Systems

    NASA Astrophysics Data System (ADS)

    Prasitmeeboon, Pitcha

    Repetitive control (RC) is a control method that specifically aims to converge to zero tracking error of a control systems that execute a periodic command or have periodic disturbances of known period. It uses the error of one period back to adjust the command in the present period. In theory, RC can completely eliminate periodic disturbance effects. RC has applications in many fields such as high-precision manufacturing in robotics, computer disk drives, and active vibration isolation in spacecraft. The first topic treated in this dissertation develops several simple RC design methods that are somewhat analogous to PID controller design in classical control. From the early days of digital control, emulation methods were developed based on a Forward Rule, a Backward Rule, Tustin's Formula, a modification using prewarping, and a pole-zero mapping method. These allowed one to convert a candidate controller design to discrete time in a simple way. We investigate to what extent they can be used to simplify RC design. A particular design is developed from modification of the pole-zero mapping rules, which is simple and sheds light on the robustness of repetitive control designs. RC convergence requires less than 90 degree model phase error at all frequencies up to Nyquist. A zero-phase cutoff filter is normally used to robustify to high frequency model error when this limit is exceeded. The result is stabilization at the expense of failure to cancel errors above the cutoff. The second topic investigates a series of methods to use data to make real time updates of the frequency response model, allowing one to increase or eliminate the frequency cutoff. These include the use of a moving window employing a recursive discrete Fourier transform (DFT), and use of a real time projection algorithm from adaptive control for each frequency. The results can be used directly to make repetitive control corrections that cancel each error frequency, or they can be used to update a repetitive control FIR compensator. The aim is to reduce the final error level by using real time frequency response model updates to successively increase the cutoff frequency, each time creating the improved model needed to produce convergence zero error up to the higher cutoff. Non-minimum phase systems present a difficult design challenge to the sister field of Iterative Learning Control. The third topic investigates to what extent the same challenges appear in RC. One challenge is that the intrinsic non-minimum phase zero mapped from continuous time is close to the pole of repetitive controller at +1 creating behavior similar to pole-zero cancellation. The near pole-zero cancellation causes slow learning at DC and low frequencies. The Min-Max cost function over the learning rate is presented. The Min-Max can be reformulated as a Quadratically Constrained Linear Programming problem. This approach is shown to be an RC design approach that addresses the main challenge of non-minimum phase systems to have a reasonable learning rate at DC. Although it was illustrated that using the Min-Max objective improves learning at DC and low frequencies compared to other designs, the method requires model accuracy at high frequencies. In the real world, models usually have error at high frequencies. The fourth topic addresses how one can merge the quadratic penalty to the Min-Max cost function to increase robustness at high frequencies. The topic also considers limiting the Min-Max optimization to some frequencies interval and applying an FIR zero-phase low-pass filter to cutoff the learning for frequencies above that interval.

  20. Bolus-dependent dosimetric effect of positioning errors for tangential scalp radiotherapy with helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobb, Eric, E-mail: eclobb2@gmail.com

    2014-04-01

    The dosimetric effect of errors in patient position is studied on-phantom as a function of simulated bolus thickness to assess the need for bolus utilization in scalp radiotherapy with tomotherapy. A treatment plan is generated on a cylindrical phantom, mimicking a radiotherapy technique for the scalp utilizing primarily tangential beamlets. A planning target volume with embedded scalplike clinical target volumes (CTVs) is planned to a uniform dose of 200 cGy. Translational errors in phantom position are introduced in 1-mm increments and dose is recomputed from the original sinogram. For each error the maximum dose, minimum dose, clinical target dose homogeneitymore » index (HI), and dose-volume histogram (DVH) are presented for simulated bolus thicknesses from 0 to 10 mm. Baseline HI values for all bolus thicknesses were in the 5.5 to 7.0 range, increasing to a maximum of 18.0 to 30.5 for the largest positioning errors when 0 to 2 mm of bolus is used. Utilizing 5 mm of bolus resulted in a maximum HI value of 9.5 for the largest positioning errors. Using 0 to 2 mm of bolus resulted in minimum and maximum dose values of 85% to 94% and 118% to 125% of the prescription dose, respectively. When using 5 mm of bolus these values were 98.5% and 109.5%. DVHs showed minimal changes in CTV dose coverage when using 5 mm of bolus, even for the largest positioning errors. CTV dose homogeneity becomes increasingly sensitive to errors in patient position as bolus thickness decreases when treating the scalp with primarily tangential beamlets. Performing a radial expansion of the scalp CTV into 5 mm of bolus material minimizes dosimetric sensitivity to errors in patient position as large as 5 mm and is therefore recommended.« less

  1. The effect of covariate mean differences on the standard error and confidence interval for the comparison of treatment means.

    PubMed

    Liu, Xiaofeng Steven

    2011-05-01

    The use of covariates is commonly believed to reduce the unexplained error variance and the standard error for the comparison of treatment means, but the reduction in the standard error is neither guaranteed nor uniform over different sample sizes. The covariate mean differences between the treatment conditions can inflate the standard error of the covariate-adjusted mean difference and can actually produce a larger standard error for the adjusted mean difference than that for the unadjusted mean difference. When the covariate observations are conceived of as randomly varying from one study to another, the covariate mean differences can be related to a Hotelling's T(2) . Using this Hotelling's T(2) statistic, one can always find a minimum sample size to achieve a high probability of reducing the standard error and confidence interval width for the adjusted mean difference. ©2010 The British Psychological Society.

  2. Computer program to minimize prediction error in models from experiments with 16 hypercube points and 0 to 6 center points

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1982-01-01

    A previous report described a backward deletion procedure of model selection that was optimized for minimum prediction error and which used a multiparameter combination of the F - distribution and an order statistics distribution of Cochran's. A computer program is described that applies the previously optimized procedure to real data. The use of the program is illustrated by examples.

  3. Predictive momentum management for a space station measurement and computation requirements

    NASA Technical Reports Server (NTRS)

    Adams, John Carl

    1986-01-01

    An analysis is made of the effects of errors and uncertainties in the predicting of disturbance torques on the peak momentum buildup on a space station. Models of the disturbance torques acting on a space station in low Earth orbit are presented, to estimate how accurately they can be predicted. An analysis of the torque and momentum buildup about the pitch axis of the Dual Keel space station configuration is formulated, and a derivation of the Average Torque Equilibrium Attitude (ATEA) is presented, for the case of no MRMS (Mobile Remote Manipulation System) motion, Y vehicle axis MRMS motion, and Z vehicle axis MRMS motion. Results showed the peak momentum buildup to be approximately 20000 N-m-s and to be relatively insensitive to errors in the predicting torque models, for Z axis motion of the MRMS was found to vary significantly with model errors, but not exceed a value of approximately 15000 N-m-s for the Y axis MRMS motion with 1 deg attitude hold error. Minimum peak disturbance momentum was found not to occur at the ATEA angle, but at a slightly smaller angle. However, this minimum peak momentum attitude was found to produce significant disturbance momentum at the end of the predicting time interval.

  4. Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets

    NASA Astrophysics Data System (ADS)

    Li, Ling-xiang; Li, Hai-bing; Li, Ji-bi; Jiang, Hua

    2017-09-01

    In view of the problems that the encoding complexity of quasi-cyclic low-density parity-check (QC-LDPC) codes is high and the minimum distance is not large enough which leads to the degradation of the error-correction performance, the new irregular type-II QC-LDPC codes based on perfect cyclic difference sets (CDSs) are constructed. The parity check matrices of these type-II QC-LDPC codes consist of the zero matrices with weight of 0, the circulant permutation matrices (CPMs) with weight of 1 and the circulant matrices with weight of 2 (W2CMs). The introduction of W2CMs in parity check matrices makes it possible to achieve the larger minimum distance which can improve the error- correction performance of the codes. The Tanner graphs of these codes have no girth-4, thus they have the excellent decoding convergence characteristics. In addition, because the parity check matrices have the quasi-dual diagonal structure, the fast encoding algorithm can reduce the encoding complexity effectively. Simulation results show that the new type-II QC-LDPC codes can achieve a more excellent error-correction performance and have no error floor phenomenon over the additive white Gaussian noise (AWGN) channel with sum-product algorithm (SPA) iterative decoding.

  5. Cost-effectiveness of the stream-gaging program in North Carolina

    USGS Publications Warehouse

    Mason, R.R.; Jackson, N.M.

    1985-01-01

    This report documents the results of a study of the cost-effectiveness of the stream-gaging program in North Carolina. Data uses and funding sources are identified for the 146 gaging stations currently operated in North Carolina with a budget of $777,600 (1984). As a result of the study, eleven stations are nominated for discontinuance and five for conversion from recording to partial-record status. Large parts of North Carolina 's Coastal Plain are identified as having sparse streamflow data. This sparsity should be remedied as funds become available. Efforts should also be directed toward defining the efforts of drainage improvements on local hydrology and streamflow characteristics. The average standard error of streamflow records in North Carolina is 18.6 percent. This level of accuracy could be improved without increasing cost by increasing the frequency of field visits and streamflow measurements at stations with high standard errors and reducing the frequency at stations with low standard errors. A minimum budget of $762,000 is required to operate the 146-gage program. A budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, and with the optimum allocation of field visits, the average standard error is 17.6 percent.

  6. Cost effectiveness of the US Geological Survey's stream-gaging programs in New Hampshire and Vermont

    USGS Publications Warehouse

    Smath, J.A.; Blackey, F.E.

    1986-01-01

    Data uses and funding sources were identified for the 73 continuous stream gages currently (1984) being operated. Eight stream gages were identified as having insufficient reason to continue their operation. Parts of New Hampshire and Vermont were identified as needing additional hydrologic data. New gages should be established in these regions as funds become available. Alternative methods for providing hydrologic data at the stream gaging stations currently being operated were found to lack the accuracy that is required for their intended use. The current policy for operation of the stream gages requires a net budget of $297,000/yr. The average standard error of estimation of the streamflow records is 17.9%. This overall level of accuracy could be maintained with a budget of $285,000 if resources were redistributed among gages. Cost-effective analysis indicates that with the present budget, the average standard error could be reduced to 16.6%. A minimum budget of $278,000 is required to operate the present stream gaging program. Below this level, the gages and recorders would not receive the proper service and maintenance. At the minimum budget, the average standard error would be 20.4%. The loss of correlative data is a significant component of the error in streamflow records, especially at lower budgetary levels. (Author 's abstract)

  7. Fast adaptive diamond search algorithm for block-matching motion estimation using spatial correlation

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gon; Jeong, Dong-Seok

    2000-12-01

    In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.

  8. Force-Time Entropy of Isometric Impulse.

    PubMed

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  9. Geological Carbon Sequestration: A New Approach for Near-Surface Assurance Monitoring

    PubMed Central

    Wielopolski, Lucian

    2011-01-01

    There are two distinct objectives in monitoring geological carbon sequestration (GCS): Deep monitoring of the reservoir’s integrity and plume movement and near-surface monitoring (NSM) to ensure public health and the safety of the environment. However, the minimum detection limits of the current instrumentation for NSM is too high for detecting weak signals that are embedded in the background levels of the natural variations, and the data obtained represents point measurements in space and time. A new approach for NSM, based on gamma-ray spectroscopy induced by inelastic neutron scatterings (INS), offers novel and unique characteristics providing the following: (1) High sensitivity with a reducible error of measurement and detection limits, and, (2) temporal- and spatial-integration of carbon in soil that results from underground CO2 seepage. Preliminary field results validated this approach showing carbon suppression of 14% in the first year and 7% in the second year. In addition the temporal behavior of the error propagation is presented and it is shown that for a signal at the level of the minimum detection level the error asymptotically approaches 47%. PMID:21556180

  10. Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2004-01-01

    The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.

  11. Virtually-induced threat in Parkinson's: Dopaminergic interactions between anxiety and sensory-perceptual processing while walking.

    PubMed

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-12-01

    Research evidence has suggested that anxiety influences gait in PD, with an identified dopa-sensitive gait response in highly anxious PD. It has been well-established that accurate perception of the environment and sensory feedback is essential for gait. Arguably since sensory and perceptual deficits have been noted in PD, anxiety has the potential to exacerbate movement impairments, since one might expect that reducing resources needed to overcome or compensate for sensory-perceptual deficits may lead to even more severe gait impairments. It is possible that anxiety in threatening situations might consume more processing resources, limiting the ability to process information about the environment or one's own movement (sensory feedback) especially in highly anxious PD. Therefore, the current study aimed to (i) evaluate whether processing of threat-related aspects of the environment was influenced by anxiety, (ii) evaluate whether anxiety influences the ability to utilize sensory feedback in PD while walking in threatening situations, and (iii) further understand the role of dopaminergic medication on these processes in threatening situations in PD. Forty-eight participants (24 HC; 12 Low Anxious [LA-PD], 12 Highly Anxious [HA-PD]) completed 20 walking trials in virtual reality across a plank that was (i) located on the ground (GROUND) (ii) located above a deep pit (ELEVATED); while provided with or without visual feedback about their lower limbs (+VF; -VF). After walking across the plank, participants were asked to judge the width of the plank they had just walked across. The plank varied in size from 60-100 cm. Both ON and OFF dopaminergic medication states were evaluated in PD. Gait parameters, judgment error and self-reported anxiety levels were measured. Results showed that HA-PD reported greater levels of anxiety overall (p<0.001) compared to HC and LA-PD, and all participants reported greater anxiety during the ELEVATED condition compared to GROUND (p=0.01). PD had similar judgment error as HC. Additionally, medication state did not significantly influence judgment error in PD. More importantly, HA-PD were the only group that did not adjust their step width when feedback was provided during the GROUND condition. However, medication facilitated a reduction in ST-CV when visual feedback was available only in the HA-PD group. Therefore, the current study provides evidence that anxiety may interfere with information processing, especially utilizing sensory feedback while walking. Dopaminergic medication appears to improve utilization of sensory feedback in stressful situations by reducing anxiety and/or improving resource allocation especially in those with PD who are highly anxious. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. General linear codes for fault-tolerant matrix operations on processor arrays

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Abraham, J. A.

    1988-01-01

    Various checksum codes have been suggested for fault-tolerant matrix computations on processor arrays. Use of these codes is limited due to potential roundoff and overflow errors. Numerical errors may also be misconstrued as errors due to physical faults in the system. In this a set of linear codes is identified which can be used for fault-tolerant matrix operations such as matrix addition, multiplication, transposition, and LU-decomposition, with minimum numerical error. Encoding schemes are given for some of the example codes which fall under the general set of codes. With the help of experiments, a rule of thumb for the selection of a particular code for a given application is derived.

  13. Response Errors Explain the Failure of Independent-Channels Models of Perception of Temporal Order

    PubMed Central

    García-Pérez, Miguel A.; Alcalá-Quintana, Rocío

    2012-01-01

    Independent-channels models of perception of temporal order (also referred to as threshold models or perceptual latency models) have been ruled out because two formal properties of these models (monotonicity and parallelism) are not borne out by data from ternary tasks in which observers must judge whether stimulus A was presented before, after, or simultaneously with stimulus B. These models generally assume that observed responses are authentic indicators of unobservable judgments, but blinks, lapses of attention, or errors in pressing the response keys (maybe, but not only, motivated by time pressure when reaction times are being recorded) may make observers misreport their judgments or simply guess a response. We present an extension of independent-channels models that considers response errors and we show that the model produces psychometric functions that do not satisfy monotonicity and parallelism. The model is illustrated by fitting it to data from a published study in which the ternary task was used. The fitted functions describe very accurately the absence of monotonicity and parallelism shown by the data. These characteristics of empirical data are thus consistent with independent-channels models when response errors are taken into consideration. The implications of these results for the analysis and interpretation of temporal order judgment data are discussed. PMID:22493586

  14. Understanding native Russian listeners' errors on an English word recognition test: model-based analysis of phoneme confusion.

    PubMed

    Shi, Lu-Feng; Morozova, Natalia

    2012-08-01

    Word recognition is a basic component in a comprehensive hearing evaluation, but data are lacking for listeners speaking two languages. This study obtained such data for Russian natives in the US and analysed the data using the perceptual assimilation model (PAM) and speech learning model (SLM). Listeners were randomly presented 200 NU-6 words in quiet. Listeners responded verbally and in writing. Performance was scored on words and phonemes (word-initial consonants, vowels, and word-final consonants). Seven normal-hearing, adult monolingual English natives (NM), 16 English-dominant (ED), and 15 Russian-dominant (RD) Russian natives participated. ED and RD listeners differed significantly in their language background. Consistent with the SLM, NM outperformed ED listeners and ED outperformed RD listeners, whether responses were scored on words or phonemes. NM and ED listeners shared similar phoneme error patterns, whereas RD listeners' errors had unique patterns that could be largely understood via the PAM. RD listeners had particular difficulty differentiating vowel contrasts /i-I/, /æ-ε/, and /ɑ-Λ/, word-initial consonant contrasts /p-h/ and /b-f/, and word-final contrasts /f-v/. Both first-language phonology and second-language learning history affect word and phoneme recognition. Current findings may help clinicians differentiate word recognition errors due to language background from hearing pathologies.

  15. Videopanorama Frame Rate Requirements Derived from Visual Discrimination of Deceleration During Simulated Aircraft Landing

    NASA Technical Reports Server (NTRS)

    Furnstenau, Norbert; Ellis, Stephen R.

    2015-01-01

    In order to determine the required visual frame rate (FR) for minimizing prediction errors with out-the-window video displays at remote/virtual airport towers, thirteen active air traffic controllers viewed high dynamic fidelity simulations of landing aircraft and decided whether aircraft would stop as if to be able to make a turnoff or whether a runway excursion would be expected. The viewing conditions and simulation dynamics replicated visual rates and environments of transport aircraft landing at small commercial airports. The required frame rate was estimated using Bayes inference on prediction errors by linear FRextrapolation of event probabilities conditional on predictions (stop, no-stop). Furthermore estimates were obtained from exponential model fits to the parametric and non-parametric perceptual discriminabilities d' and A (average area under ROC-curves) as dependent on FR. Decision errors are biased towards preference of overshoot and appear due to illusionary increase in speed at low frames rates. Both Bayes and A - extrapolations yield a framerate requirement of 35 < FRmin < 40 Hz. When comparing with published results [12] on shooter game scores the model based d'(FR)-extrapolation exhibits the best agreement and indicates even higher FRmin > 40 Hz for minimizing decision errors. Definitive recommendations require further experiments with FR > 30 Hz.

  16. Laws of attraction: from perceptual forces to conceptual similarity.

    PubMed

    Ziemkiewicz, Caroline; Kosara, Robert

    2010-01-01

    Many of the pressing questions in information visualization deal with how exactly a user reads a collection of visual marks as information about relationships between entities. Previous research has suggested that people see parts of a visualization as objects, and may metaphorically interpret apparent physical relationships between these objects as suggestive of data relationships. We explored this hypothesis in detail in a series of user experiments. Inspired by the concept of implied dynamics in psychology, we first studied whether perceived gravity acting on a mark in a scatterplot can lead to errors in a participant's recall of the mark's position. The results of this study suggested that such position errors exist, but may be more strongly influenced by attraction between marks. We hypothesized that such apparent attraction may be influenced by elements used to suggest relationship between objects, such as connecting lines, grouping elements, and visual similarity. We further studied what visual elements are most likely to cause this attraction effect, and whether the elements that best predicted attraction errors were also those which suggested conceptual relationships most strongly. Our findings show a correlation between attraction errors and intuitions about relatedness, pointing towards a possible mechanism by which the perception of visual marks becomes an interpretation of data relationships.

  17. Palm Reversal Errors in Native-Signing Children with Autism

    PubMed Central

    Shield, Aaron; Meier, Richard P.

    2012-01-01

    Children with autism spectrum disorder (ASD) who have native exposure to a sign language such as American Sign Language (ASL) have received almost no scientific attention. This paper reports the first studies on a sample of five native-signing children (four deaf children of deaf parents and one hearing child of deaf parents; ages 4;6 to 7;5) diagnosed with ASD. A domain-general deficit in the ability of children with ASD to replicate the gestures of others is hypothesized to be a source of palm orientation reversal errors in sign. In Study 1, naturalistic language samples were collected from three native-signing children with ASD and were analyzed for errors in handshape, location, movement and palm orientation. In Study 2, four native-signing children with ASD were compared to 12 typically-developing deaf children (ages 3;7 to 6;9, all born to deaf parents) on a fingerspelling task. In both studies children with ASD showed a tendency to reverse palm orientation on signs specified for inward/outward orientation. Typically-developing deaf children did not produce any such errors in palm orientation. We conclude that this kind of palm reversal has a perceptual rather than a motoric source, and is further evidence of a “self-other mapping” deficit in ASD. PMID:22981637

  18. Determination of vigabatrin in plasma by reversed-phase high-performance liquid chromatography.

    PubMed

    Tsanaclis, L M; Wicks, J; Williams, J; Richens, A

    1991-05-01

    A method is described for the determination of vigabatrin in 50 microliters of plasma by isocratic high-performance liquid chromatography using fluorescence detection. The procedure involves protein precipitation with methanol followed by precolumn derivatisation with o-phthaldialdehyde reagent. Separation of the derivatised vigabatrin was achieved on a Microsorb C18 column using a mobile phase of 10 mM orthophosphoric acid:acetonitrile:methanol (6:3:1) at a flow rate of 2.0 ml/min. Assay time is 15 min and chromatograms show no interference from commonly coadministered anticonvulsant drugs. The total analytical error within the range of 0.85-85 micrograms/ml was found to be 7.6% with the within-replicates error of 2.76%. The minimum detection limit was 0.08 micrograms/ml and the minimum quantitation limit was 0.54 micrograms/ml.

  19. Metameric MIMO-OOK transmission scheme using multiple RGB LEDs.

    PubMed

    Bui, Thai-Chien; Cusani, Roberto; Scarano, Gaetano; Biagi, Mauro

    2018-05-28

    In this work, we propose a novel visible light communication (VLC) scheme utilizing multiple different red green and blue triplets each with a different emission spectrum of red, green and blue for mitigating the effect of interference due to different colors using spatial multiplexing. On-off keying modulation is considered and its effect on light emission in terms of flickering, dimming and color rendering is discussed so as to demonstrate how metameric properties have been considered. At the receiver, multiple photodiodes with color filter-tuned on each transmit light emitting diode (LED) are employed. Three different detection mechanisms of color zero forcing, minimum mean square error estimation and minimum mean square error equalization are then proposed. The system performance of the proposed scheme is evaluated both with computer simulations and tests with an Arduino board implementation.

  20. A Minimum Variance Algorithm for Overdetermined TOA Equations with an Altitude Constraint.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Louis A; Mason, John J.

    We present a direct (non-iterative) method for solving for the location of a radio frequency (RF) emitter, or an RF navigation receiver, using four or more time of arrival (TOA) measurements and an assumed altitude above an ellipsoidal earth. Both the emitter tracking problem and the navigation application are governed by the same equations, but with slightly different interpreta- tions of several variables. We treat the assumed altitude as a soft constraint, with a specified noise level, just as the TOA measurements are handled, with their respective noise levels. With 4 or more TOA measurements and the assumed altitude, themore » problem is overdetermined and is solved in the weighted least squares sense for the 4 unknowns, the 3-dimensional position and time. We call the new technique the TAQMV (TOA Altitude Quartic Minimum Variance) algorithm, and it achieves the minimum possible error variance for given levels of TOA and altitude estimate noise. The method algebraically produces four solutions, the least-squares solution, and potentially three other low residual solutions, if they exist. In the lightly overdermined cases where multiple local minima in the residual error surface are more likely to occur, this algebraic approach can produce all of the minima even when an iterative approach fails to converge. Algorithm performance in terms of solution error variance and divergence rate for bas eline (iterative) and proposed approach are given in tables.« less

  1. Cost effectiveness of the stream-gaging program in South Carolina

    USGS Publications Warehouse

    Barker, A.C.; Wright, B.C.; Bennett, C.S.

    1985-01-01

    The cost effectiveness of the stream-gaging program in South Carolina was documented for the 1983 water yr. Data uses and funding sources were identified for the 76 continuous stream gages currently being operated in South Carolina. The budget of $422,200 for collecting and analyzing streamflow data also includes the cost of operating stage-only and crest-stage stations. The streamflow records for one stream gage can be determined by alternate, less costly methods, and should be discontinued. The remaining 75 stations should be maintained in the program for the foreseeable future. The current policy for the operation of the 75 stations including the crest-stage and stage-only stations would require a budget of $417,200/yr. The average standard error of estimation of streamflow records is 16.9% for the present budget with missing record included. However, the standard error of estimation would decrease to 8.5% if complete streamflow records could be obtained. It was shown that the average standard error of estimation of 16.9% could be obtained at the 75 sites with a budget of approximately $395,000 if the gaging resources were redistributed among the gages. A minimum budget of $383,500 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 18.6%. The maximum budget analyzed was $850,000, which resulted in an average standard error of 7.6 %. (Author 's abstract)

  2. Effect of grid transparency and finite collector size on determining ion temperature and density by the retarding potential analyzer

    NASA Technical Reports Server (NTRS)

    Troy, B. E., Jr.; Maier, E. J.

    1975-01-01

    The effects of the grid transparency and finite collector size on the values of thermal ion density and temperature determined by the standard RPA (retarding potential analyzer) analysis method are investigated. The current-voltage curves calculated for varying RPA parameters and a given ion mass, temperature, and density are analyzed by the standard RPA method. It is found that only small errors in temperature and density are introduced for an RPA with typical dimensions, and that even when the density error is substantial for nontypical dimensions, the temperature error remains minimum.

  3. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1990-01-01

    An expurgated upper bound on the event error probability of trellis coded modulation is presented. This bound is used to derive a lower bound on the minimum achievable free Euclidean distance d sub (free) of trellis codes. It is shown that the dominant parameters for both bounds, the expurgated error exponent and the asymptotic d sub (free) growth rate, respectively, can be obtained from the cutoff-rate R sub O of the transmission channel by a simple geometric construction, making R sub O the central parameter for finding good trellis codes. Several constellations are optimized with respect to the bounds.

  4. New Syndrome Decoding Techniques for the (n, K) Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    This paper presents a new syndrome decoding algorithm for the (n,k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3,1)CC.

  5. Simplified Syndrome Decoding of (n, 1) Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    A new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck is presented. The new algorithm uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to find the minimum weight error vector cirumflex E(D) in this error coset. An example illustrating the new decoding algorithm is given for the binary nonsymmetric (2,1)CC.

  6. Rapid decrement in the effects of the Ponzo display dissociates action and perception.

    PubMed

    Whitwell, Robert L; Buckingham, Gavin; Enns, James T; Chouinard, Philippe A; Goodale, Melvyn A

    2016-08-01

    It has been demonstrated that pictorial illusions have a smaller influence on grasping than they do on perceptual judgments. Yet to date this work has not considered the reduced influence of an illusion as it is measured repeatedly. Here we studied this decrement in the context of a Ponzo illusion to further characterize the dissociation between vision for perception and for action. Participants first manually estimated the lengths of single targets in a Ponzo display with their thumb and index finger, then actually grasped these targets in another series of trials, and then manually estimated the target lengths again in a final set of trials. The results showed that although the perceptual estimates and grasp apertures were equally sensitive to real differences in target length on the initial trials, only the perceptual estimates remained biased by the illusion over repeated measurements. In contrast, the illusion's effect on the grasps decreased rapidly, vanishing entirely after only a few trials. Interestingly, a closer examination of the grasp data revealed that this initial effect was driven largely by undersizing the grip aperture for the display configuration in which the target was positioned between the diverging background lines (i.e., when the targets appeared to be shorter than they really were). This asymmetry between grasping apparently shorter and longer targets suggests that the sensorimotor system may initially treat the edges of the configuration as obstacles to be avoided. This finding highlights the sensorimotor system's ability to rapidly update motor programs through error feedback, manifesting as an immunity to the effects of illusion displays even after only a few trials.

  7. The effect of Gestalt laws of perceptual organization on the comprehension of three-variable bar and line graphs.

    PubMed

    Ali, Nadia; Peebles, David

    2013-02-01

    We report three experiments investigating the ability of undergraduate college students to comprehend 2 x 2 "interaction" graphs from two-way factorial research designs. Factorial research designs are an invaluable research tool widely used in all branches of the natural and social sciences, and the teaching of such designs lies at the core of many college curricula. Such data can be represented in bar or line graph form. Previous studies have shown, however, that people interpret these two graphical forms differently. In Experiment 1, participants were required to interpret interaction data in either bar or line graphs while thinking aloud. Verbal protocol analysis revealed that line graph users were significantly more likely to misinterpret the data or fail to interpret the graph altogether. The patterns of errors line graph users made were interpreted as arising from the operation of Gestalt principles of perceptual organization, and this interpretation was used to develop two modified versions of the line graph, which were then tested in two further experiments. One of the modifications resulted in a significant improvement in performance. Results of the three experiments support the proposed explanation and demonstrate the effects (both positive and negative) of Gestalt principles of perceptual organization on graph comprehension. We propose that our new design provides a more balanced representation of the data than the standard line graph for nonexpert users to comprehend the full range of relationships in two-way factorial research designs and may therefore be considered a more appropriate representation for use in educational and other nonexpert contexts.

  8. Reading impairments in schizophrenia relate to individual differences in phonological processing and oculomotor control: evidence from a gaze-contingent moving window paradigm.

    PubMed

    Whitford, Veronica; O'Driscoll, Gillian A; Pack, Christopher C; Joober, Ridha; Malla, Ashok; Titone, Debra

    2013-02-01

    Language and oculomotor disturbances are 2 of the best replicated findings in schizophrenia. However, few studies have examined skilled reading in schizophrenia (e.g., Arnott, Sali, Copland, 2011; Hayes & O'Grady, 2003; Revheim et al., 2006; E. O. Roberts et al., 2012), and none have examined the contribution of cognitive and motor processes that underlie reading performance. Thus, to evaluate the relationship of linguistic processes and oculomotor control to skilled reading in schizophrenia, 20 individuals with schizophrenia and 16 demographically matched controls were tested using a moving window paradigm (McConkie & Rayner, 1975). Linguistic skills supporting reading (phonological awareness) were assessed with the Comprehensive Test of Phonological Processing (R. K. Wagner, Torgesen, & Rashotte, 1999). Eye movements were assessed during reading tasks and during nonlinguistic tasks tapping basic oculomotor control (prosaccades, smooth pursuit) and executive functions (predictive saccades, antisaccades). Compared with controls, schizophrenia patients exhibited robust oculomotor markers of reading difficulty (e.g., reduced forward saccade amplitude) and were less affected by reductions in window size, indicative of reduced perceptual span. Reduced perceptual span in schizophrenia was associated with deficits in phonological processing and reduced saccade amplitudes. Executive functioning (antisaccade errors) was not related to perceptual span but was related to reading comprehension. These findings suggest that deficits in language, oculomotor control, and cognitive control contribute to skilled reading deficits in schizophrenia. Given that both language and oculomotor dysfunction precede illness onset, reading may provide a sensitive window onto cognitive dysfunction in schizophrenia vulnerability and be an important target for cognitive remediation. 2013 APA, all rights reserved

  9. Virtual reality-based navigation task to reveal obstacle avoidance performance in individuals with visuospatial neglect.

    PubMed

    Aravind, Gayatri; Darekar, Anuja; Fung, Joyce; Lamontagne, Anouk

    2015-03-01

    Persons with post-stroke visuospatial neglect (VSN) often collide with moving obstacles while walking. It is not well understood whether the collisions occur as a result of attentional-perceptual deficits caused by VSN or due to post-stroke locomotor deficits. We assessed individuals with VSN on a seated, joystick-driven obstacle avoidance task, thus eliminating the influence of locomotion. Twelve participants with VSN were tested on obstacle detection and obstacle avoidance tasks in a virtual environment that included three obstacles approaching head-on or 30 (°) contralesionally/ipsilesionally. Our results indicate that in the detection task, the contralesional and head-on obstacles were detected at closer proximities compared to the ipsilesional obstacle. For the avoidance task collisions were observed only for the contralesional and head-on obstacle approaches. For the contralesional obstacle approach, participants initiated their avoidance strategies at smaller distances from the obstacle and maintained smaller minimum distances from the obstacles. The distance at detection showed a negative association with the distance at the onset of avoidance strategy for all three obstacle approaches. We conclusion the observation of collisions with contralesional and head-on obstacles, in the absence of locomotor burden, provides evidence that attentional-perceptual deficits due to VSN, independent of post-stroke locomotor deficits, alter obstacle avoidance abilities.

  10. Temporal prediction errors modulate task-switching performance

    PubMed Central

    Limongi, Roberto; Silva, Angélica M.; Góngora-Costa, Begoña

    2015-01-01

    We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as “executive control” is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching. PMID:26379568

  11. Effects of Type of Agreement Violation and Utterance Position on the Auditory Processing of Subject-Verb Agreement: An ERP Study

    PubMed Central

    Dube, Sithembinkosi; Kung, Carmen; Peter, Varghese; Brock, Jon; Demuth, Katherine

    2016-01-01

    Previous ERP studies have often reported two ERP components—LAN and P600—in response to subject-verb (S-V) agreement violations (e.g., the boys *runs). However, the latency, amplitude and scalp distribution of these components have been shown to vary depending on various experiment-related factors. One factor that has not received attention is the extent to which the relative perceptual salience related to either the utterance position (verbal inflection in utterance-medial vs. utterance-final contexts) or the type of agreement violation (errors of omission vs. errors of commission) may influence the auditory processing of S-V agreement. The lack of reports on these effects in ERP studies may be due to the fact that most studies have used the visual modality, which does not reveal acoustic information. To address this gap, we used ERPs to measure the brain activity of Australian English-speaking adults while they listened to sentences in which the S-V agreement differed by type of agreement violation and utterance position. We observed early negative and positive clusters (AN/P600 effects) for the overall grammaticality effect. Further analysis revealed that the mean amplitude and distribution of the P600 effect was only significant in contexts where the S-V agreement violation occurred utterance-finally, regardless of type of agreement violation. The mean amplitude and distribution of the negativity did not differ significantly across types of agreement violation and utterance position. These findings suggest that the increased perceptual salience of the violation in utterance final position (due to phrase-final lengthening) influenced how S-V agreement violations were processed during sentence comprehension. Implications for the functional interpretation of language-related ERPs and experimental design are discussed. PMID:27625617

  12. Effects of Type of Agreement Violation and Utterance Position on the Auditory Processing of Subject-Verb Agreement: An ERP Study.

    PubMed

    Dube, Sithembinkosi; Kung, Carmen; Peter, Varghese; Brock, Jon; Demuth, Katherine

    2016-01-01

    Previous ERP studies have often reported two ERP components-LAN and P600-in response to subject-verb (S-V) agreement violations (e.g., the boys (*) runs). However, the latency, amplitude and scalp distribution of these components have been shown to vary depending on various experiment-related factors. One factor that has not received attention is the extent to which the relative perceptual salience related to either the utterance position (verbal inflection in utterance-medial vs. utterance-final contexts) or the type of agreement violation (errors of omission vs. errors of commission) may influence the auditory processing of S-V agreement. The lack of reports on these effects in ERP studies may be due to the fact that most studies have used the visual modality, which does not reveal acoustic information. To address this gap, we used ERPs to measure the brain activity of Australian English-speaking adults while they listened to sentences in which the S-V agreement differed by type of agreement violation and utterance position. We observed early negative and positive clusters (AN/P600 effects) for the overall grammaticality effect. Further analysis revealed that the mean amplitude and distribution of the P600 effect was only significant in contexts where the S-V agreement violation occurred utterance-finally, regardless of type of agreement violation. The mean amplitude and distribution of the negativity did not differ significantly across types of agreement violation and utterance position. These findings suggest that the increased perceptual salience of the violation in utterance final position (due to phrase-final lengthening) influenced how S-V agreement violations were processed during sentence comprehension. Implications for the functional interpretation of language-related ERPs and experimental design are discussed.

  13. Temporal prediction errors modulate task-switching performance.

    PubMed

    Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña

    2015-01-01

    We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.

  14. Cost-effectiveness of the Federal stream-gaging program in Virginia

    USGS Publications Warehouse

    Carpenter, D.H.

    1985-01-01

    Data uses and funding sources were identified for the 77 continuous stream gages currently being operated in Virginia by the U.S. Geological Survey with a budget of $446,000. Two stream gages were identified as not being used sufficiently to warrant continuing their operation. Operation of these stations should be considered for discontinuation. Data collected at two other stations were identified as having uses primarily related to short-term studies; these stations should also be considered for discontinuation at the end of the data collection phases of the studies. The remaining 73 stations should be kept in the program for the foreseeable future. The current policy for operation of the 77-station program requires a budget of $446,000/yr. The average standard error of estimation of streamflow records is 10.1%. It was shown that this overall level of accuracy at the 77 sites could be maintained with a budget of $430,500 if resources were redistributed among the gages. A minimum budget of $428,500 is required to operate the 77-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, with optimized operation, the average standard error would be 10.4%. The maximum budget analyzed was $650,000, which resulted in an average standard error of 5.5%. The study indicates that a major component of error is caused by lost or missing data. If perfect equipment were available, the standard error for the current program and budget could be reduced to 7.6%. This also can be interpreted to mean that the streamflow data have a standard error of this magnitude during times when the equipment is operating properly. (Author 's abstract)

  15. Augmented GNSS Differential Corrections Minimum Mean Square Error Estimation Sensitivity to Spatial Correlation Modeling Errors

    PubMed Central

    Kassabian, Nazelie; Presti, Letizia Lo; Rispoli, Francesco

    2014-01-01

    Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454

  16. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: development and validation of new methods for Mexico. Part I: humidity

    NASA Astrophysics Data System (ADS)

    Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.

    2017-07-01

    This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.

  17. Analysis and application of minimum variance discrete time system identification

    NASA Technical Reports Server (NTRS)

    Kaufman, H.; Kotob, S.

    1975-01-01

    An on-line minimum variance parameter identifier is developed which embodies both accuracy and computational efficiency. The formulation results in a linear estimation problem with both additive and multiplicative noise. The resulting filter which utilizes both the covariance of the parameter vector itself and the covariance of the error in identification is proven to be mean square convergent and mean square consistent. The MV parameter identification scheme is then used to construct a stable state and parameter estimation algorithm.

  18. Quantizing and sampling considerations in digital phased-locked loops

    NASA Technical Reports Server (NTRS)

    Hurst, G. T.; Gupta, S. C.

    1974-01-01

    The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.

  19. 78 FR 17155 - Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ...The Food and Drug Administration (FDA or we) is correcting the preamble to a proposed rule that published in the Federal Register of January 16, 2013. That proposed rule would establish science-based minimum standards for the safe growing, harvesting, packing, and holding of produce, meaning fruits and vegetables grown for human consumption. FDA proposed these standards as part of our implementation of the FDA Food Safety Modernization Act. The document published with several technical errors, including some errors in cross references, as well as several errors in reference numbers cited throughout the document. This document corrects those errors. We are also placing a corrected copy of the proposed rule in the docket.

  20. Global minimum profile error (GMPE) - a least-squares-based approach for extracting macroscopic rate coefficients for complex gas-phase chemical reactions.

    PubMed

    Duong, Minh V; Nguyen, Hieu T; Mai, Tam V-T; Huynh, Lam K

    2018-01-03

    Master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) has shown to be a powerful framework for modeling kinetic and dynamic behaviors of a complex gas-phase chemical system on a complicated multiple-species and multiple-channel potential energy surface (PES) for a wide range of temperatures and pressures. Derived from the ME time-resolved species profiles, the macroscopic or phenomenological rate coefficients are essential for many reaction engineering applications including those in combustion and atmospheric chemistry. Therefore, in this study, a least-squares-based approach named Global Minimum Profile Error (GMPE) was proposed and implemented in the MultiSpecies-MultiChannel (MSMC) code (Int. J. Chem. Kinet., 2015, 47, 564) to extract macroscopic rate coefficients for such a complicated system. The capability and limitations of the new approach were discussed in several well-defined test cases.

  1. Camera calibration based on the back projection process

    NASA Astrophysics Data System (ADS)

    Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui

    2015-12-01

    Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.

  2. Understanding Perceptual Differences; An Exploration of Neurological-Perceptual Roots of Learning Disabilities with Suggestions for Diagnosis and Treatment.

    ERIC Educational Resources Information Center

    Monroe, George E.

    In exploring the bases of learning disabilities, the following areas are considered: a working definition of perceptual handicaps; the relationship of perceptual handicaps to IQ; diagnosing perceptual handicaps; effective learning experiences for the perceptually handicapped child; and recommendations for developing new curricula. The appendixes…

  3. Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audenaert, Koenraad M. R., E-mail: koenraad.audenaert@rhul.ac.uk; Department of Physics and Astronomy, University of Ghent, S9, Krijgslaan 281, B-9000 Ghent; Mosonyi, Milán, E-mail: milan.mosonyi@gmail.com

    2014-10-01

    We consider the multiple hypothesis testing problem for symmetric quantum state discrimination between r given states σ₁, …, σ{sub r}. By splitting up the overall test into multiple binary tests in various ways we obtain a number of upper bounds on the optimal error probability in terms of the binary error probabilities. These upper bounds allow us to deduce various bounds on the asymptotic error rate, for which it has been hypothesized that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence) C(σ₁, …, σ{sub r}), as recently introduced by Nussbaum and Szkoła in analogy with Salikhov'smore » classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of the pairwise binary Chernoff divergences min{sub j« less

  4. The cost of misremembering: Inferring the loss function in visual working memory.

    PubMed

    Sims, Chris R

    2015-03-04

    Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets. © 2015 ARVO.

  5. Spatial and temporal variability of the overall error of National Atmospheric Deposition Program measurements determined by the USGS collocated-sampler program, water years 1989-2001

    USGS Publications Warehouse

    Wetherbee, G.A.; Latysh, N.E.; Gordon, J.D.

    2005-01-01

    Data from the U.S. Geological Survey (USGS) collocated-sampler program for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) are used to estimate the overall error of NADP/NTN measurements. Absolute errors are estimated by comparison of paired measurements from collocated instruments. Spatial and temporal differences in absolute error were identified and are consistent with longitudinal distributions of NADP/NTN measurements and spatial differences in precipitation characteristics. The magnitude of error for calcium, magnesium, ammonium, nitrate, and sulfate concentrations, specific conductance, and sample volume is of minor environmental significance to data users. Data collected after a 1994 sample-handling protocol change are prone to less absolute error than data collected prior to 1994. Absolute errors are smaller during non-winter months than during winter months for selected constituents at sites where frozen precipitation is common. Minimum resolvable differences are estimated for different regions of the USA to aid spatial and temporal watershed analyses.

  6. Simulating a transmon implementation of the surface code, Part I

    NASA Astrophysics Data System (ADS)

    Tarasinski, Brian; O'Brien, Thomas; Rol, Adriaan; Bultink, Niels; Dicarlo, Leo

    Current experimental efforts aim to realize Surface-17, a distance-3 surface-code logical qubit, using transmon qubits in a circuit QED architecture. Following experimental proposals for this device, and currently achieved fidelities on physical qubits, we define a detailed error model that takes experimentally relevant error sources into account, such as amplitude and phase damping, imperfect gate pulses, and coherent errors due to low-frequency flux noise. Using the GPU-accelerated software package 'quantumsim', we simulate the density matrix evolution of the logical qubit under this error model. Combining the simulation results with a minimum-weight matching decoder, we obtain predictions for the error rate of the resulting logical qubit when used as a quantum memory, and estimate the contribution of different error sources to the logical error budget. Research funded by the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO/OCW), IARPA, an ERC Synergy Grant, the China Scholarship Council, and Intel Corporation.

  7. New syndrome decoder for (n, 1) convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    The letter presents a new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck. The new technique uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). A recursive, Viterbi-like, algorithm is developed to find the minimum weight error vector E(D). An example is given for the binary nonsystematic (2, 1) CC.

  8. Optimum nonparametric estimation of population density based on ordered distances

    USGS Publications Warehouse

    Patil, S.A.; Kovner, J.L.; Burnham, Kenneth P.

    1982-01-01

    The asymptotic mean and error mean square are determined for the nonparametric estimator of plant density by distance sampling proposed by Patil, Burnham and Kovner (1979, Biometrics 35, 597-604. On the basis of these formulae, a bias-reduced version of this estimator is given, and its specific form is determined which gives minimum mean square error under varying assumptions about the true probability density function of the sampled data. Extension is given to line-transect sampling.

  9. Minimum savings requirements in shared savings provider payment.

    PubMed

    Pope, Gregory C; Kautter, John

    2012-11-01

    Payer (insurer) sharing of savings is a way of motivating providers of medical services to reduce cost growth. A Medicare shared savings program is established for accountable care organizations in the 2010 Patient Protection and Affordable Care Act. However, savings created by providers cannot be distinguished from the normal (random) variation in medical claims costs, setting up a classic principal-agent problem. To lessen the likelihood of paying undeserved bonuses, payers may pay bonuses only if observed savings exceed minimum levels. We study the trade-off between two types of errors in setting minimum savings requirements: paying bonuses when providers do not create savings and not paying bonuses when providers create savings. Copyright © 2011 John Wiley & Sons, Ltd.

  10. LOOP- SIMULATION OF THE AUTOMATIC FREQUENCY CONTROL SUBSYSTEM OF A DIFFERENTIAL MINIMUM SHIFT KEYING RECEIVER

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1994-01-01

    The LOOP computer program was written to simulate the Automatic Frequency Control (AFC) subsystem of a Differential Minimum Shift Keying (DMSK) receiver with a bit rate of 2400 baud. The AFC simulated by LOOP is a first order loop configuration with a first order R-C filter. NASA has been investigating the concept of mobile communications based on low-cost, low-power terminals linked via geostationary satellites. Studies have indicated that low bit rate transmission is suitable for this application, particularly from the frequency and power conservation point of view. A bit rate of 2400 BPS is attractive due to its applicability to the linear predictive coding of speech. Input to LOOP includes the following: 1) the initial frequency error; 2) the double-sided loop noise bandwidth; 3) the filter time constants; 4) the amount of intersymbol interference; and 5) the bit energy to noise spectral density. LOOP output includes: 1) the bit number and the frequency error of that bit; 2) the computed mean of the frequency error; and 3) the standard deviation of the frequency error. LOOP is written in MS SuperSoft FORTRAN 77 for interactive execution and has been implemented on an IBM PC operating under PC DOS with a memory requirement of approximately 40K of 8 bit bytes. This program was developed in 1986.

  11. Distinct eye movement patterns enhance dynamic visual acuity

    PubMed Central

    Palidis, Dimitrios J.; Wyder-Hodge, Pearson A.; Fooken, Jolande; Spering, Miriam

    2017-01-01

    Dynamic visual acuity (DVA) is the ability to resolve fine spatial detail in dynamic objects during head fixation, or in static objects during head or body rotation. This ability is important for many activities such as ball sports, and a close relation has been shown between DVA and sports expertise. DVA tasks involve eye movements, yet, it is unclear which aspects of eye movements contribute to successful performance. Here we examined the relation between DVA and the kinematics of smooth pursuit and saccadic eye movements in a cohort of 23 varsity baseball players. In a computerized dynamic-object DVA test, observers reported the location of the gap in a small Landolt-C ring moving at various speeds while eye movements were recorded. Smooth pursuit kinematics—eye latency, acceleration, velocity gain, position error—and the direction and amplitude of saccadic eye movements were linked to perceptual performance. Results reveal that distinct eye movement patterns—minimizing eye position error, tracking smoothly, and inhibiting reverse saccades—were related to dynamic visual acuity. The close link between eye movement quality and DVA performance has important implications for the development of perceptual training programs to improve DVA. PMID:28187157

  12. Perceptual-Attentional and Motor-Intentional Bias in Near and Far Space

    PubMed Central

    Garza, John P.; Eslinger, Paul J.; Barrett, Anna M.

    2008-01-01

    Spatial bias demonstrated in tasks such as line-bisection may stem from perceptual-attentional (PA) “where” and motor-intentional (MI) “aiming” influences. We tested normal participants’ line bisection performance in the presence of an asymmetric visual distracter with a video apparatus designed to dissociate PA from MI bias. An experimenter stood as a distractor to the left or right of a video monitor positioned in either near or far space, where participants viewed lines and a laser point they directed under 1) natural and 2) mirror-reversed conditions. Each trial started with the pointer positioned at either the top left or top right corner of the screen, and alternated thereafter. Data analysis indicated that participants made primarily PA leftward errors in near space, but not in far space. Furthermore, PA, but not MI, bias increased bilaterally in the direction of distraction. In contrast, MI, but not PA, bias was shifted bilaterally in the direction of startside. Results support the conclusion that a primarily PA left sided bias in near space is consistent with right hemisphere spatial attentional dominance. A bottom-up visual distractor specifically affected PA “where” spatial bias while top-down motor cuing influenced MI “aiming” bias. PMID:18381226

  13. False predictions about the detectability of visual changes: the role of beliefs about attention, memory, and the continuity of attended objects in causing change blindness blindness.

    PubMed

    Levin, Daniel T; Drivdahl, Sarah B; Momen, Nausheen; Beck, Melissa R

    2002-12-01

    Recently, a number of experiments have emphasized the degree to which subjects fail to detect large changes in visual scenes. This finding, referred to as "change blindness," is often considered surprising because many people have the intuition that such changes should be easy to detect. documented this intuition by showing that the majority of subjects believe they would notice changes that are actually very rarely detected. Thus subjects exhibit a metacognitive error we refer to as "change blindness blindness." Here, we test whether CBB is caused by a misestimation of the perceptual experience associated with visual changes and show that it persists even when the pre- and postchange views are separated by long delays. In addition, subjects overestimate their change detection ability both when the relevant changes are illustrated by still pictures, and when they are illustrated using videos showing the changes occurring in real time. We conclude that CBB is a robust phenomenon that cannot be accounted for by failure to understand the specific perceptual experience associated with a change. Copyright 2002 Elsevier Science (USA)

  14. Neural correlates of successful semantic processing during propofol sedation.

    PubMed

    Adapa, Ram M; Davis, Matthew H; Stamatakis, Emmanuel A; Absalom, Anthony R; Menon, David K

    2014-07-01

    Sedation has a graded effect on brain responses to auditory stimuli: perceptual processing persists at sedation levels that attenuate more complex processing. We used fMRI in healthy volunteers sedated with propofol to assess changes in neural responses to spoken stimuli. Volunteers were scanned awake, sedated, and during recovery, while making perceptual or semantic decisions about nonspeech sounds or spoken words respectively. Sedation caused increased error rates and response times, and differentially affected responses to words in the left inferior frontal gyrus (LIFG) and the left inferior temporal gyrus (LITG). Activity in LIFG regions putatively associated with semantic processing, was significantly reduced by sedation despite sedated volunteers continuing to make accurate semantic decisions. Instead, LITG activity was preserved for words greater than nonspeech sounds and may therefore be associated with persistent semantic processing during the deepest levels of sedation. These results suggest functionally distinct contributions of frontal and temporal regions to semantic decision making. These results have implications for functional imaging studies of language, for understanding mechanisms of impaired speech comprehension in postoperative patients with residual levels of anesthetic, and may contribute to the development of frameworks against which EEG based monitors could be calibrated to detect awareness under anesthesia. Copyright © 2013 Wiley Periodicals, Inc.

  15. Joint Transmitter and Receiver Power Allocation under Minimax MSE Criterion with Perfect and Imperfect CSI for MC-CDMA Transmissions

    NASA Astrophysics Data System (ADS)

    Kotchasarn, Chirawat; Saengudomlert, Poompat

    We investigate the problem of joint transmitter and receiver power allocation with the minimax mean square error (MSE) criterion for uplink transmissions in a multi-carrier code division multiple access (MC-CDMA) system. The objective of power allocation is to minimize the maximum MSE among all users each of which has limited transmit power. This problem is a nonlinear optimization problem. Using the Lagrange multiplier method, we derive the Karush-Kuhn-Tucker (KKT) conditions which are necessary for a power allocation to be optimal. Numerical results indicate that, compared to the minimum total MSE criterion, the minimax MSE criterion yields a higher total MSE but provides a fairer treatment across the users. The advantages of the minimax MSE criterion are more evident when we consider the bit error rate (BER) estimates. Numerical results show that the minimax MSE criterion yields a lower maximum BER and a lower average BER. We also observe that, with the minimax MSE criterion, some users do not transmit at full power. For comparison, with the minimum total MSE criterion, all users transmit at full power. In addition, we investigate robust joint transmitter and receiver power allocation where the channel state information (CSI) is not perfect. The CSI error is assumed to be unknown but bounded by a deterministic value. This problem is formulated as a semidefinite programming (SDP) problem with bilinear matrix inequality (BMI) constraints. Numerical results show that, with imperfect CSI, the minimax MSE criterion also outperforms the minimum total MSE criterion in terms of the maximum and average BERs.

  16. Results on the spatial resolution of repetitive transcranial magnetic stimulation for cortical language mapping during object naming in healthy subjects.

    PubMed

    Sollmann, Nico; Hauck, Theresa; Tussis, Lorena; Ille, Sebastian; Maurer, Stefanie; Boeckh-Behrens, Tobias; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-10-24

    The spatial resolution of repetitive navigated transcranial magnetic stimulation (rTMS) for language mapping is largely unknown. Thus, to determine a minimum spatial resolution of rTMS for language mapping, we evaluated the mapping sessions derived from 19 healthy volunteers for cortical hotspots of no-response errors. Then, the distances between hotspots (stimulation points with a high error rate) and adjacent mapping points (stimulation points with low error rates) were evaluated. Mean distance values of 13.8 ± 6.4 mm (from hotspots to ventral points, range 0.7-30.7 mm), 10.8 ± 4.8 mm (from hotspots to dorsal points, range 2.0-26.5 mm), 16.6 ± 4.8 mm (from hotspots to apical points, range 0.9-27.5 mm), and 13.8 ± 4.3 mm (from hotspots to caudal points, range 2.0-24.2 mm) were measured. According to the results, the minimum spatial resolution of rTMS should principally allow for the identification of a particular gyrus, and according to the literature, it is in good accordance with the spatial resolution of direct cortical stimulation (DCS). Since measurement was performed between hotspots and adjacent mapping points and not on a finer-grained basis, we only refer to a minimum spatial resolution. Furthermore, refinement of our results within the scope of a prospective study combining rTMS and DCS for resolution measurement during language mapping should be the next step.

  17. Dichoptic movie viewing treats childhood amblyopia.

    PubMed

    Li, Simone L; Reynaud, Alexandre; Hess, Robert F; Wang, Yi-Zhong; Jost, Reed M; Morale, Sarah E; De La Cruz, Angie; Dao, Lori; Stager, David; Birch, Eileen E

    2015-10-01

    Contrast-balanced dichoptic experience with perceptual-learning tasks or simple games has been shown to improve visual acuity significantly in amblyopia. However, these tasks are intensive and repetitive, and up to 40% of unsupervised patients are noncompliant. We investigated the efficacy of a potentially more engaging movie method to provide contrast-balanced binocular experience via complementary dichoptic stimulation. Eight amblyopic children 4-10 years of age were enrolled in a prospective cohort study to watch 3 dichoptic movies per week for 2 weeks on a passive 3D display. Dichoptic versions of 18 popular animated feature films were created. A patterned image mask of irregularly shaped blobs was multiplied with the movie images seen by the amblyopic eye and an inverse mask was multiplied with the images seen by the fellow eye. Fellow-eye contrast was initially set at a reduced level that allowed binocular vision and was then incremented by 10% at each visit. Best-corrected visual acuity, random dot stereoacuity, and interocular suppression were measured at baseline and 2 weeks. Mean amblyopic eye visual acuity (with standard error of the mean) improved from a logarithm of minimum angle of resolution of 0.72 ± 0.08 at baseline to 0.52 ± 0.09 (P = 0.003); that is, 2.0 lines of improvement at the 2-week outcome visit. No significant change in interocular suppression or stereoacuity was found. Passive viewing of dichoptic feature films is feasible and could be a promising new treatment for childhood amblyopia. The maximum improvement that may be achieved by watching dichoptic movies remains to be determined. No known side effects are associated with this new treatment. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  18. Dichoptic movie viewing treats childhood amblyopia

    PubMed Central

    Li, Simone L.; Reynaud, Alexandre; Hess, Robert F.; Wang, Yi-Zhong; Jost, Reed M.; Morale, Sarah E.; De La Cruz, Angie; Dao, Lori; Stager, David; Birch, Eileen E.

    2015-01-01

    Background Contrast-balanced dichoptic experience with perceptual-learning tasks or simple games has been shown to improve visual acuity significantly in amblyopia. However, these tasks are intensive and repetitive, and up to 40% of unsupervised patients are noncompliant. We investigated the efficacy of a potentially more engaging movie method to provide contrast-balanced binocular experience via complementary dichoptic stimulation. Methods Eight amblyopic children 4–10 years of age were enrolled in a prospective cohort study to watch 3 dichoptic movies per week for 2 weeks on a passive 3D display. Dichoptic versions of 18 popular animated feature films were created. A patterned image mask of irregularly shaped blobs was multiplied with the movie images seen by the amblyopic eye and an inverse mask was multiplied with the images seen by the fellow eye. Fellow-eye contrast was initially set at a reduced level that allowed binocular vision and was then incremented by 10% at each visit. Best-corrected visual acuity, random dot stereoacuity, and interocular suppression were measured at baseline and 2 weeks. Results Mean amblyopic eye visual acuity (with standard error of the mean) improved from a logarithm of minimum angle of resolution of 0.72 ± 0.08 at baseline to 0.52 ± 0.09 (P = 0.003); that is, 2.0 lines of improvement at the 2-week outcome visit. No significant change in interocular suppression or stereoacuity was found. Conclusions Passive viewing of dichoptic feature films is feasible and could be a promising new treatment for childhood amblyopia. The maximum improvement that may be achieved by watching dichoptic movies remains to be determined. No known side effects are associated with this new treatment. PMID:26486019

  19. Contingent negative variation (CNV) associated with sensorimotor timing error correction.

    PubMed

    Jang, Joonyong; Jones, Myles; Milne, Elizabeth; Wilson, Daniel; Lee, Kwang-Hyuk

    2016-02-15

    Detection and subsequent correction of sensorimotor timing errors are fundamental to adaptive behavior. Using scalp-recorded event-related potentials (ERPs), we sought to find ERP components that are predictive of error correction performance during rhythmic movements. Healthy right-handed participants were asked to synchronize their finger taps to a regular tone sequence (every 600 ms), while EEG data were continuously recorded. Data from 15 participants were analyzed. Occasional irregularities were built into stimulus presentation timing: 90 ms before (advances: negative shift) or after (delays: positive shift) the expected time point. A tapping condition alternated with a listening condition in which identical stimulus sequence was presented but participants did not tap. Behavioral error correction was observed immediately following a shift, with a degree of over-correction with positive shifts. Our stimulus-locked ERP data analysis revealed, 1) increased auditory N1 amplitude for the positive shift condition and decreased auditory N1 modulation for the negative shift condition; and 2) a second enhanced negativity (N2) in the tapping positive condition, compared with the tapping negative condition. In response-locked epochs, we observed a CNV (contingent negative variation)-like negativity with earlier latency in the tapping negative condition compared with the tapping positive condition. This CNV-like negativity peaked at around the onset of subsequent tapping, with the earlier the peak, the better the error correction performance with the negative shifts while the later the peak, the better the error correction performance with the positive shifts. This study showed that the CNV-like negativity was associated with the error correction performance during our sensorimotor synchronization study. Auditory N1 and N2 were differentially involved in negative vs. positive error correction. However, we did not find evidence for their involvement in behavioral error correction. Overall, our study provides the basis from which further research on the role of the CNV in perceptual and motor timing can be developed. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Cost effective stream-gaging strategies for the Lower Colorado River basin; the Blythe field office operations

    USGS Publications Warehouse

    Moss, Marshall E.; Gilroy, Edward J.

    1980-01-01

    This report describes the theoretical developments and illustrates the applications of techniques that recently have been assembled to analyze the cost-effectiveness of federally funded stream-gaging activities in support of the Colorado River compact and subsequent adjudications. The cost effectiveness of 19 stream gages in terms of minimizing the sum of the variances of the errors of estimation of annual mean discharge is explored by means of a sequential-search optimization scheme. The search is conducted over a set of decision variables that describes the number of times that each gaging route is traveled in a year. A gage route is defined as the most expeditious circuit that is made from a field office to visit one or more stream gages and return to the office. The error variance is defined as a function of the frequency of visits to a gage by using optimal estimation theory. Currently a minimum of 12 visits per year is made to any gage. By changing to a six-visit minimum, the same total error variance can be attained for the 19 stations with a budget of 10% less than the current one. Other strategies are also explored. (USGS)

  1. A Formal Approach to the Selection by Minimum Error and Pattern Method for Sensor Data Loss Reduction in Unstable Wireless Sensor Network Communications

    PubMed Central

    Kim, Changhwa; Shin, DongHyun

    2017-01-01

    There are wireless networks in which typically communications are unsafe. Most terrestrial wireless sensor networks belong to this category of networks. Another example of an unsafe communication network is an underwater acoustic sensor network (UWASN). In UWASNs in particular, communication failures occur frequently and the failure durations can range from seconds up to a few hours, days, or even weeks. These communication failures can cause data losses significant enough to seriously damage human life or property, depending on their application areas. In this paper, we propose a framework to reduce sensor data loss during communication failures and we present a formal approach to the Selection by Minimum Error and Pattern (SMEP) method that plays the most important role for the reduction in sensor data loss under the proposed framework. The SMEP method is compared with other methods to validate its effectiveness through experiments using real-field sensor data sets. Moreover, based on our experimental results and performance comparisons, the SMEP method has been validated to be better than others in terms of the average sensor data value error rate caused by sensor data loss. PMID:28498312

  2. A Formal Approach to the Selection by Minimum Error and Pattern Method for Sensor Data Loss Reduction in Unstable Wireless Sensor Network Communications.

    PubMed

    Kim, Changhwa; Shin, DongHyun

    2017-05-12

    There are wireless networks in which typically communications are unsafe. Most terrestrial wireless sensor networks belong to this category of networks. Another example of an unsafe communication network is an underwater acoustic sensor network (UWASN). In UWASNs in particular, communication failures occur frequently and the failure durations can range from seconds up to a few hours, days, or even weeks. These communication failures can cause data losses significant enough to seriously damage human life or property, depending on their application areas. In this paper, we propose a framework to reduce sensor data loss during communication failures and we present a formal approach to the Selection by Minimum Error and Pattern (SMEP) method that plays the most important role for the reduction in sensor data loss under the proposed framework. The SMEP method is compared with other methods to validate its effectiveness through experiments using real-field sensor data sets. Moreover, based on our experimental results and performance comparisons, the SMEP method has been validated to be better than others in terms of the average sensor data value error rate caused by sensor data loss.

  3. Minimum-norm cortical source estimation in layered head models is robust against skull conductivity error☆☆☆

    PubMed Central

    Stenroos, Matti; Hauk, Olaf

    2013-01-01

    The conductivity profile of the head has a major effect on EEG signals, but unfortunately the conductivity for the most important compartment, skull, is only poorly known. In dipole modeling studies, errors in modeled skull conductivity have been considered to have a detrimental effect on EEG source estimation. However, as dipole models are very restrictive, those results cannot be generalized to other source estimation methods. In this work, we studied the sensitivity of EEG and combined MEG + EEG source estimation to errors in skull conductivity using a distributed source model and minimum-norm (MN) estimation. We used a MEG/EEG modeling set-up that reflected state-of-the-art practices of experimental research. Cortical surfaces were segmented and realistically-shaped three-layer anatomical head models were constructed, and forward models were built with Galerkin boundary element method while varying the skull conductivity. Lead-field topographies and MN spatial filter vectors were compared across conductivities, and the localization and spatial spread of the MN estimators were assessed using intuitive resolution metrics. The results showed that the MN estimator is robust against errors in skull conductivity: the conductivity had a moderate effect on amplitudes of lead fields and spatial filter vectors, but the effect on corresponding morphologies was small. The localization performance of the EEG or combined MEG + EEG MN estimator was only minimally affected by the conductivity error, while the spread of the estimate varied slightly. Thus, the uncertainty with respect to skull conductivity should not prevent researchers from applying minimum norm estimation to EEG or combined MEG + EEG data. Comparing our results to those obtained earlier with dipole models shows that general judgment on the performance of an imaging modality should not be based on analysis with one source estimation method only. PMID:23639259

  4. Macular Ganglion Cell and Retinal Nerve Fiber Layer Thickness in Children With Refractive Errors-An Optical Coherence Tomography Study.

    PubMed

    Goh, Jody P; Koh, Victor; Chan, Yiong Huak; Ngo, Cheryl

    2017-07-01

    To study the distribution of macular ganglion cell-inner plexiform layer (GC-IPL) thickness and peripapillary retinal nerve fiber layer (RNFL) thickness in children with refractive errors. Two hundred forty-three healthy eyes from 139 children with refractive error ranging from -10.00 to +5.00 D were recruited from the National University Hospital Eye Surgery outpatient clinic. After a comprehensive ocular examination, refraction, and axial length (AL) measurement (IOLMaster), macular GC-IPL and RNFL thickness values were obtained with a spectral domain Cirrus high definition optical coherence tomography system (Carl Zeiss Meditec Inc.). Only scans with signal strength of >6/10 were included. Correlation between variables was calculated using the Pearson correlation coefficient. A multivariate analysis using mixed models was done to adjust for confounders. The mean spherical equivalent refraction was -3.20±3.51 D and mean AL was 24.39±1.72 mm. Average, minimum, superior, and inferior GC-IPL were 82.59±6.29, 77.17±9.65, 83.68±6.96, and 81.64±6.70 μm, respectively. Average, superior, and inferior peripapillary RNFL were 99.00±11.45, 123.20±25.81, and 124.24±22.23 μm, respectively. Average, superior, and inferior GC-IPL were correlated with AL (β=-2.056, P-value 0.000; β=-2.383, P-value 0.000; β=-1.721, P-value 0.000), but minimum GC-IPL was not (β=-1.056, P-value 0.115). None of the RNFL parameters were correlated with AL. This study establishes normative macular GC-IPL and RNFL thickness in children with refractive errors. Our results suggest that high definition optical coherence tomography RNFL parameters and minimum GC-IPL are not affected by AL or myopia in children, and therefore warrants further evaluation in pediatric glaucoma patients.

  5. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    PubMed

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.

  6. New syndrome decoding techniques for the (n, k) convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    This paper presents a new syndrome decoding algorithm for the (n, k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3, 1)CC. Previously announced in STAR as N83-34964

  7. Soft-decision decoding techniques for linear block codes and their error performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1996-01-01

    The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.

  8. Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.

    PubMed

    Xin, Pengfei; Yu, Hongbo; Cheng, Huanchong; Shen, Shunyao; Shen, Steve G F

    2013-09-01

    The aim of this study was to demonstrate the feasibility of building a craniofacial virtual reality model by image fusion of 3-dimensional (3D) CT models and 3 dMD stereophotogrammetric facial surface. A CT scan and stereophotography were performed. The 3D CT models were reconstructed by Materialise Mimics software, and the stereophotogrammetric facial surface was reconstructed by 3 dMD patient software. All 3D CT models were exported as Stereo Lithography file format, and the 3 dMD model was exported as Virtual Reality Modeling Language file format. Image registration and fusion were performed in Mimics software. Genetic algorithm was used for precise image fusion alignment with minimum error. The 3D CT models and the 3 dMD stereophotogrammetric facial surface were finally merged into a single file and displayed using Deep Exploration software. Errors between the CT soft tissue model and 3 dMD facial surface were also analyzed. Virtual model based on CT-3 dMD image fusion clearly showed the photorealistic face and bone structures. Image registration errors in virtual face are mainly located in bilateral cheeks and eyeballs, and the errors are more than 1.5 mm. However, the image fusion of whole point cloud sets of CT and 3 dMD is acceptable with a minimum error that is less than 1 mm. The ease of use and high reliability of CT-3 dMD image fusion allows the 3D virtual head to be an accurate, realistic, and widespread tool, and has a great benefit to virtual face model.

  9. Optimizing Linked Perceptual Class Formation and Transfer of Function

    ERIC Educational Resources Information Center

    Fields, Lanny; Garruto, Michelle

    2009-01-01

    A linked perceptual class consists of two distinct perceptual classes, A' and B', the members of which have become related to each other. For example, a linked perceptual class might be composed of many pictures of a woman (one perceptual class) and the sounds of that woman's voice (the other perceptual class). In this case, any sound of the…

  10. Optimization of traffic data collection for specific pavement design applications.

    DOT National Transportation Integrated Search

    2006-05-01

    The objective of this study is to establish the minimum traffic data collection effort required for pavement design applications satisfying a maximum acceptable error under a prescribed confidence level. The approach consists of simulating the traffi...

  11. Subjective rating scales as a workload

    NASA Technical Reports Server (NTRS)

    Bird, K. L.

    1981-01-01

    A multidimensional bipolar-adjective rating scale is employed as a subjective measure of operator workload in the performance of a one-axis tracking task. The rating scale addressed several dimensions of workload, including cognitive, physical, and perceptual task loading as well as fatigue and stress effects. Eight subjects performed a one-axis tracking task (with six levels of difficulty) and rated these tasks on several workload dimensions. Performance measures were tracking error RMS (root-mean square) and the standard deviation of control stick output. Significant relationships were observed between these performance measures and skill required, task complexity, attention level, task difficulty, task demands, and stress level.

  12. Early perception and structural identity: neural implementation

    NASA Astrophysics Data System (ADS)

    Ligomenides, Panos A.

    1992-03-01

    It is suggested that there exists a minimal set of rules for the perceptual composition of the unending variety of spatio-temporal patterns in our perceptual world. Driven by perceptual discernment of "sudden change" and "unexpectedness", these rules specify conditions (such as co-linearity and virtual continuation) for perceptual grouping and for recursive compositions of perceptual "modalities" and "signatures". Beginning with a smallset of primitive perceptual elements, selected contextually at some relevant level of abstraction, perceptual compositions can graduate to an unlimited variety of spatiotemporal signatures, scenes and activities. Local discernible elements, often perceptually ambiguous by themselves, may be integrated into spatiotemporal compositions, which generate unambiguous perceptual separations between "figure" and "ground". The definition of computational algorithms for the effective instantiation of the rules of perceptual grouping remains a principal problem. In this paper we present our approach for solving the problem of perceptual recognition within the confines of one-D variational profiles. More specifically, concerning "early" (pre-attentive) recognition, we define the "structural identity of a k-norm, k ∈ K,"--SkID--as a tool for discerning and locating the instantiation of spatiotemporal objects or events. The SkID profile also serves a s a reference coordinate framework for the "perceptual focusing of attention" and the eventual assessment of resemblance. Neural network implementations of pre-attentive and attentive recognition are also discussed briefly. Our principles are exemplified by application to one-D perceptual profiles, which allows simplicity of definitions and of the rules of perceptual composition.

  13. Minimum probe length for unique identification of all open reading frames in a microbial genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Ng, J; Fitch, J P

    2000-03-05

    In this paper, we determine the minimum hybridization probe length to uniquely identify at least 95% of the open reading frame (ORF) in an organism. We analyze the whole genome sequences of 17 species, 11 bacteria, 4 archaea, and 2 eukaryotes. We also present a mathematical model for minimum probe length based on assuming that all ORFs are random, of constant length, and contain an equal distribution of bases. The model accurately predicts the minimum probe length for all species, but it incorrectly predicts that all ORFs may be uniquely identified. However, a probe length of just 9 bases ismore » adequate to identify over 95% of the ORFs for all 15 prokaryotic species we studied. Using a minimum probe length, while accepting that some ORFs may not be identified and that data will be lost due to hybridization error, may result in significant savings in microarray and oligonucleotide probe design.« less

  14. [Visual perceptual abilities of children with low motor abilities--a pilot study].

    PubMed

    Werpup-Stüwe, Lina; Petermann, Franz

    2015-01-01

    The results of many studies show visual perceptual deficits in children with low motor abilities. This study aims to indicate the correlation between visual-perceptual and motor abilities. The correlation of visual-perceptual and motor abilities of 41 children is measured by using the German versions of the Developmental Test of Visual Perception--Adolescent and Adult (DTVP-A) and the Movement Assessment Battery for Children--Second Edition (M-ABC-2). The visual-perceptual abilities of children with low motor abilities (n=21) are also compared to the visual-perceptual abilities of children with normal motor abilities (the control group, n=20). High correlations between the visual-perceptual and motor abilities are found. The perceptual abilities of the groups differ significantly. Nearly half of the children with low motor abilities show visual-perceptual deficits. Visual perceptual abilities of children suffering coordination disorders should always be assessed. The DTVP-A is useful, because it provides the possibilities to compare motor-reduced visual-perceptual abilities and visualmotor integration abilities and to estimate the deficit's degree.

  15. Perceptual processing affects conceptual processing.

    PubMed

    Van Dantzig, Saskia; Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W

    2008-04-05

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task in alternation. Responses on the property-verification task were slower for those trials that were preceded by a perceptual trial in a different modality than for those that were preceded by a perceptual trial in the same modality. This finding of a modality-switch effect across perceptual processing and conceptual processing supports the hypothesis that perceptual and conceptual representations are partially based on the same systems. 2008 Cognitive Science Society, Inc.

  16. On higher order discrete phase-locked loops.

    NASA Technical Reports Server (NTRS)

    Gill, G. S.; Gupta, S. C.

    1972-01-01

    An exact mathematical model is developed for a discrete loop of a general order particularly suitable for digital computation. The deterministic response of the loop to the phase step and the frequency step is investigated. The design of the digital filter for the second-order loop is considered. Use is made of the incremental phase plane to study the phase error behavior of the loop. The model of the noisy loop is derived and the optimization of the loop filter for minimum mean-square error is considered.

  17. A high speed sequential decoder

    NASA Technical Reports Server (NTRS)

    Lum, H., Jr.

    1972-01-01

    The performance and theory of operation for the High Speed Hard Decision Sequential Decoder are delineated. The decoder is a forward error correction system which is capable of accepting data from binary-phase-shift-keyed and quadriphase-shift-keyed modems at input data rates up to 30 megabits per second. Test results show that the decoder is capable of maintaining a composite error rate of 0.00001 at an input E sub b/N sub o of 5.6 db. This performance has been obtained with minimum circuit complexity.

  18. Perceptual learning.

    PubMed

    Seitz, Aaron R

    2017-07-10

    Perceptual learning refers to how experience can change the way we perceive sights, sounds, smells, tastes, and touch. Examples abound: music training improves our ability to discern tones; experience with food and wines can refine our pallet (and unfortunately more quickly empty our wallet), and with years of training radiologists learn to save lives by discerning subtle details of images that escape the notice of untrained viewers. We often take perceptual learning for granted, but it has a profound impact on how we perceive the world. In this Primer, I will explain how perceptual learning is transformative in guiding our perceptual processes, how research into perceptual learning provides insight into fundamental mechanisms of learning and brain processes, and how knowledge of perceptual learning can be used to develop more effective training approaches for those requiring expert perceptual skills or those in need of perceptual rehabilitation (such as individuals with poor vision). I will make a case that perceptual learning is ubiquitous, scientifically interesting, and has substantial practical utility to us all. Copyright © 2017. Published by Elsevier Ltd.

  19. The effects of acute stress and perceptual load on distractor interference.

    PubMed

    Sato, Hirotsune; Takenaka, Ippei; Kawahara, Jun I

    2012-01-01

    Selective attention can be improved under conditions in which a high perceptual load is assumed to exhaust cognitive resources, leaving scarce resources for distractor processing. The present study examined whether perceptual load and acute stress share common attentional resources by manipulating perceptual and stress loads. Participants identified a target within an array of nontargets that were flanked by compatible or incompatible distractors. Attentional selectivity was measured by longer reaction times in response to the incompatible than to the compatible distractors. Participants in the stress group participated in a speech test that increased anxiety and threatened self-esteem. The effect of perceptual load interacted with the stress manipulation in that participants in the control group demonstrated an interference effect under the low perceptual load condition, whereas such interference disappeared under the high perceptual load condition. Importantly, the stress group showed virtually no interference under the low perceptual load condition, whereas substantial interference occurred under the high perceptual load condition. These results suggest that perceptual and stress related demands consume the same attentional resources.

  20. Older adults encode--but do not always use--perceptual details: intentional versus unintentional effects of detail on memory judgments.

    PubMed

    Koutstaal, Wilma

    2003-03-01

    Investigations of memory deficits in older individuals have concentrated on their increased likelihood of forgetting events or details of events that were actually encountered (errors of omission). However, mounting evidence demonstrates that normal cognitive aging also is associated with an increased propensity for errors of commission--shown in false alarms or false recognition. The present study examined the origins of this age difference. Older and younger adults each performed three types of memory tasks in which details of encountered items might influence performance. Although older adults showed greater false recognition of related lures on a standard (identical) old/new episodic recognition task, older and younger adults showed parallel effects of detail on repetition priming and meaning-based episodic recognition (decreased priming and decreased meaning-based recognition for different relative to same exemplars). The results suggest that the older adults encoded details but used them less effectively than the younger adults in the recognition context requiring their deliberate, controlled use.

  1. Suppressive and enhancing effects in early visual cortex during illusory shape perception: A comment on.

    PubMed

    Moors, Pieter

    2015-01-01

    In a recent functional magnetic resonance imaging study, Kok and de Lange (2014) observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.

  2. Attention Modulates Spatial Precision in Multiple-Object Tracking.

    PubMed

    Srivastava, Nisheeth; Vul, Ed

    2016-01-01

    We present a computational model of multiple-object tracking that makes trial-level predictions about the allocation of visual attention and the effect of this allocation on observers' ability to track multiple objects simultaneously. This model follows the intuition that increased attention to a location increases the spatial resolution of its internal representation. Using a combination of empirical and computational experiments, we demonstrate the existence of a tight coupling between cognitive and perceptual resources in this task: Low-level tracking of objects generates bottom-up predictions of error likelihood, and high-level attention allocation selectively reduces error probabilities in attended locations while increasing it at non-attended locations. Whereas earlier models of multiple-object tracking have predicted the big picture relationship between stimulus complexity and response accuracy, our approach makes accurate predictions of both the macro-scale effect of target number and velocity on tracking difficulty and micro-scale variations in difficulty across individual trials and targets arising from the idiosyncratic within-trial interactions of targets and distractors. Copyright © 2016 Cognitive Science Society, Inc.

  3. A category adjustment approach to memory for spatial location in natural scenes.

    PubMed

    Holden, Mark P; Curby, Kim M; Newcombe, Nora S; Shipley, Thomas F

    2010-05-01

    Memories for spatial locations often show systematic errors toward the central value of the surrounding region. This bias has been explained using a Bayesian model in which fine-grained and categorical information are combined (Huttenlocher, Hedges, & Duncan, 1991). However, experiments testing this model have largely used locations contained in simple geometric shapes. Use of this paradigm raises 2 issues. First, do results generalize to the complex natural world? Second, what types of information might be used to segment complex spaces into constituent categories? Experiment 1 addressed the 1st question by showing a bias toward prototypical values in memory for spatial locations in complex natural scenes. Experiment 2 addressed the 2nd question by manipulating the availability of basic visual cues (using color negatives) or of semantic information about the scene (using inverted images). Error patterns suggest that both perceptual and conceptual information are involved in segmentation. The possible neurological foundations of location memory of this kind are discussed. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  4. Resolving Mixed Algal Species in Hyperspectral Images

    PubMed Central

    Mehrubeoglu, Mehrube; Teng, Ming Y.; Zimba, Paul V.

    2014-01-01

    We investigated a lab-based hyperspectral imaging system's response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system's performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert's law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements. PMID:24451451

  5. Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia

    ERIC Educational Resources Information Center

    Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue

    2011-01-01

    Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…

  6. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.

    PubMed

    Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill-even exceeding usually expected acoustic rhythmic effects on motor learning.

  7. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments

    PubMed Central

    Effenberg, Alfred O.; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill—even exceeding usually expected acoustic rhythmic effects on motor learning. PMID:27303255

  8. Acoustic and Perceptual Effects of Dysarthria in Greek with a Focus on Lexical Stress

    NASA Astrophysics Data System (ADS)

    Papakyritsis, Ioannis

    The field of motor speech disorders in Greek is substantially underresearched. Additionally, acoustic studies on lexical stress in dysarthria are generally very rare (Kim et al. 2010). This dissertation examined the acoustic and perceptual effects of Greek dysarthria focusing on lexical stress. Additional possibly deviant speech characteristics were acoustically analyzed. Data from three dysarthric participants and matched controls was analyzed using a case study design. The analysis of lexical stress was based on data drawn from a single word repetition task that included pairs of disyllabic words differentiated by stress location. This data was acoustically analyzed in terms of the use of the acoustic cues for Greek stress. The ability of the dysarthric participants to signal stress in single words was further assessed in a stress identification task carried out by 14 naive Greek listeners. Overall, the acoustic and perceptual data indicated that, although all three dysarthric speakers presented with some difficulty in the patterning of stressed and unstressed syllables, each had different underlying problems that gave rise to quite distinct patterns of deviant speech characteristics. The atypical use of lexical stress cues in Anna's data obscured the prominence relations of stressed and unstressed syllables to the extent that the position of lexical stress was usually not perceptually transparent. Chris and Maria on the other hand, did not have marked difficulties signaling lexical stress location, although listeners were not 100% successful in the stress identification task. For the most part, Chris' atypical phonation patterns and Maria's very slow rate of speech did not interfere with lexical stress signaling. The acoustic analysis of the lexical stress cues was generally in agreement with the participants' performance in the stress identification task. Interestingly, in all three dysarthric participants, but more so in Anna, targets stressed on the 1st syllable were more impervious to error judgments of lexical stress location than targets stressed on the 2nd syllable, although the acoustic metrics did not always suggest a more appropriate use of lexical stress cues in 1st syllable position. The findings contribute to our limited knowledge of the speech characteristics of dysarthria across different languages.

  9. The magnetic touch illusion: A perceptual correlate of visuo-tactile integration in peripersonal space.

    PubMed

    Guterstam, Arvid; Zeberg, Hugo; Özçiftci, Vedat Menderes; Ehrsson, H Henrik

    2016-10-01

    To accurately localize our limbs and guide movements toward external objects, the brain must represent the body and its surrounding (peripersonal) visual space. Specific multisensory neurons encode peripersonal space in the monkey brain, and neurobehavioral studies have suggested the existence of a similar representation in humans. However, because peripersonal space lacks a distinct perceptual correlate, its involvement in spatial and bodily perception remains unclear. Here, we show that applying brushstrokes in mid-air at some distance above a rubber hand-without touching it-in synchrony with brushstrokes applied to a participant's hidden real hand results in the illusory sensation of a "magnetic force" between the brush and the rubber hand, which strongly correlates with the perception of the rubber hand as one's own. In eight experiments, we characterized this "magnetic touch illusion" by using quantitative subjective reports, motion tracking, and behavioral data consisting of pointing errors toward the rubber hand in an intermanual pointing task. We found that the illusion depends on visuo-tactile synchrony and exhibits similarities with the visuo-tactile receptive field properties of peripersonal space neurons, featuring a non-linear decay at 40cm that is independent of gaze direction and follows changes in the rubber hand position. Moreover, the "magnetic force" does not penetrate physical barriers, thus further linking this phenomenon to body-specific visuo-tactile integration processes. These findings provide strong support for the notion that multisensory integration within peripersonal space underlies bodily self-attribution. Furthermore, we propose that the magnetic touch illusion constitutes a perceptual correlate of visuo-tactile integration in peripersonal space. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. What Is the Evidence for Inter-laminar Integration in a Prefrontal Cortical Minicolumn?

    PubMed

    Opris, Ioan; Chang, Stephano; Noga, Brian R

    2017-01-01

    The objective of this perspective article is to examine columnar inter-laminar integration during the executive control of behavior. The integration hypothesis posits that perceptual and behavioral signals are integrated within the prefrontal cortical inter-laminar microcircuits. Inter-laminar minicolumnar activity previously recorded from the dorsolateral prefrontal cortex (dlPFC) of nonhuman primates, trained in a visual delay match-to-sample (DMS) task, was re-assessed from an integrative perspective. Biomorphic multielectrode arrays (MEAs) played a unique role in the in vivo recording of columnar cell firing in the dlPFC layers 2/3 and 5/6. Several integrative aspects stem from these experiments: 1. Functional integration of perceptual and behavioral signals across cortical layers during executive control. The integrative effect of dlPFC minicolumns was shown by: (i) increased correlated firing on correct vs. error trials; (ii) decreased correlated firing when the number of non-matching images increased; and (iii) similar spatial firing preference across cortical-striatal cells during spatial-trials, and less on object-trials. 2. Causal relations to integration of cognitive signals by the minicolumnar turbo-engines. The inter-laminar integration between the perceptual and executive circuits was facilitated by stimulating the infra-granular layers with firing patterns obtained from supra-granular layers that enhanced spatial preference of percent correct performance on spatial trials. 3. Integration across hierarchical levels of the brain. The integration of intention signals (visual spatial, direction) with movement preparation (timing, velocity) in striatum and with the motor command and posture in midbrain is also discussed. These findings provide evidence for inter-laminar integration of executive control signals within brain's prefrontal cortical microcircuits.

  11. Timing of repetition suppression of event-related potentials to unattended objects.

    PubMed

    Stefanics, Gabor; Heinzle, Jakob; Czigler, István; Valentini, Elia; Stephan, Klaas Enno

    2018-05-26

    Current theories of object perception emphasize the automatic nature of perceptual inference. Repetition suppression (RS), the successive decrease of brain responses to repeated stimuli, is thought to reflect the optimization of perceptual inference through neural plasticity. While functional imaging studies revealed brain regions that show suppressed responses to the repeated presentation of an object, little is known about the intra-trial time course of repetition effects to everyday objects. Here we used event-related potentials (ERP) to task-irrelevant line-drawn objects, while participants engaged in a distractor task. We quantified changes in ERPs over repetitions using three general linear models (GLM) that modelled RS by an exponential, linear, or categorical "change detection" function in each subject. Our aim was to select the model with highest evidence and determine the within-trial time-course and scalp distribution of repetition effects using that model. Model comparison revealed the superiority of the exponential model indicating that repetition effects are observable for trials beyond the first repetition. Model parameter estimates revealed a sequence of RS effects in three time windows (86-140ms, 322-360ms, and 400-446ms) and with occipital, temporo-parietal, and fronto-temporal distribution, respectively. An interval of repetition enhancement (RE) was also observed (320-340ms) over occipito-temporal sensors. Our results show that automatic processing of task-irrelevant objects involves multiple intervals of RS with distinct scalp topographies. These sequential intervals of RS and RE might reflect the short-term plasticity required for optimization of perceptual inference and the associated changes in prediction errors (PE) and predictions, respectively, over stimulus repetitions during automatic object processing. This article is protected by copyright. All rights reserved. © 2018 The Authors European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Visual naming deficits in dyslexia: An ERP investigation of different processing domains.

    PubMed

    Araújo, Susana; Faísca, Luís; Reis, Alexandra; Marques, J Frederico; Petersson, Karl Magnus

    2016-10-01

    Naming speed deficits are well documented in developmental dyslexia, expressed by slower naming times and more errors in response to familiar items. Here we used event-related potentials (ERPs) to examine at what processing level the deficits in dyslexia emerge during a discrete-naming task. Dyslexic and skilled adult control readers performed a primed object-naming task, in which the relationship between the prime and the target was manipulated along perceptual, semantic and phonological dimensions. A 3×2 design that crossed Relationship Type (Visual, Phonemic Onset, and Semantic) with Relatedness (Related and Unrelated) was used. An attenuated N/P190 - indexing early visual processing - and N300 - which index late visual processing - was observed to pictures preceded by perceptually related (vs. unrelated) primes in the control but not in the dyslexic group. These findings suggest suboptimal processing in early stages of object processing in dyslexia, when integration and mapping of perceptual information to a more form-specific percept in memory take place. On the other hand, both groups showed an N400 effect associated with semantically related pictures (vs. unrelated), taken to reflect intact integration of semantic similarities in both dyslexic and control readers. We also found an electrophysiological effect of phonological priming in the N400 range - that is, an attenuated N400 to objects preceded by phonemic related primes vs. unrelated - while it showed a more widespread distributed and more pronounced over the right hemisphere in the dyslexics. Topographic differences between groups might have originated from a word form encoding process with different characteristics in dyslexics compared to control readers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Changes in processing of masked stimuli across early- and late-night sleep: a study on behavior and brain potentials.

    PubMed

    Verleger, Rolf; Schuknecht, Simon-Vitus; Jaśkowski, Piotr; Wagner, Ullrich

    2008-11-01

    Sleep has proven to support the memory consolidation in many tasks including learning of perceptual skills. Explicit, conscious types of memory have been demonstrated to benefit particularly from slow-wave sleep (SWS), implicit, non-conscious types particularly from rapid eye movement (REM) sleep. By comparing the effects of early-night sleep, rich in SWS, and late-night sleep, rich in REM sleep, we aimed to separate the contribution of these two sleep stages in a metacontrast masking paradigm in which explicit and implicit aspects in perceptual learning could be assessed separately by stimulus identification and priming, respectively. We assumed that early sleep intervening between two sessions of task performance would specifically support stimulus identification, while late sleep would specifically support priming. Apart from overt behavior, event-related EEG potentials (ERPs) were measured to record the cortical mechanisms associated with behavioral changes across sleep. In contrast to our hypothesis, late-night sleep appeared to be more important for changes of behavior, both for stimulus identification, which tended to improve across late-night sleep, and for priming, with the increase of errors induced by masked stimuli correlating with the duration of REM sleep. ERP components proved sensitive to presence of target shapes in the masked stimuli and to their priming effects. Of these components, the N2 component, indicating processing of conflict, became larger across early-night sleep and was related to the duration of S4 sleep, the deepest substage of SWS containing particularly high portions of EEG slow waves. These findings suggest that sleep promotes perceptual learning primarily by its REM sleep portion, but indirectly also by way of improved action monitoring supported by deep slow-wave sleep.

  14. A New Test of Attention in Listening (TAIL) Predicts Auditory Performance

    PubMed Central

    Zhang, Yu-Xuan; Barry, Johanna G.; Moore, David R.; Amitay, Sygal

    2012-01-01

    Attention modulates auditory perception, but there are currently no simple tests that specifically quantify this modulation. To fill the gap, we developed a new, easy-to-use test of attention in listening (TAIL) based on reaction time. On each trial, two clearly audible tones were presented sequentially, either at the same or different ears. The frequency of the tones was also either the same or different (by at least two critical bands). When the task required same/different frequency judgments, presentation at the same ear significantly speeded responses and reduced errors. A same/different ear (location) judgment was likewise facilitated by keeping tone frequency constant. Perception was thus influenced by involuntary orienting of attention along the task-irrelevant dimension. When information in the two stimulus dimensions were congruent (same-frequency same-ear, or different-frequency different-ear), response was faster and more accurate than when they were incongruent (same-frequency different-ear, or different-frequency same-ear), suggesting the involvement of executive control to resolve conflicts. In total, the TAIL yielded five independent outcome measures: (1) baseline reaction time, indicating information processing efficiency, (2) involuntary orienting of attention to frequency and (3) location, and (4) conflict resolution for frequency and (5) location. Processing efficiency and conflict resolution accounted for up to 45% of individual variances in the low- and high-threshold variants of three psychoacoustic tasks assessing temporal and spectral processing. Involuntary orientation of attention to the irrelevant dimension did not correlate with perceptual performance on these tasks. Given that TAIL measures are unlikely to be limited by perceptual sensitivity, we suggest that the correlations reflect modulation of perceptual performance by attention. The TAIL thus has the power to identify and separate contributions of different components of attention to auditory perception. PMID:23300934

  15. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.

    PubMed

    Krigolson, Olav E; Hassall, Cameron D; Handy, Todd C

    2014-03-01

    Our ability to make decisions is predicated upon our knowledge of the outcomes of the actions available to us. Reinforcement learning theory posits that actions followed by a reward or punishment acquire value through the computation of prediction errors-discrepancies between the predicted and the actual reward. A multitude of neuroimaging studies have demonstrated that rewards and punishments evoke neural responses that appear to reflect reinforcement learning prediction errors [e.g., Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W. Learning to become an expert: Reinforcement learning and the acquisition of perceptual expertise. Journal of Cognitive Neuroscience, 21, 1833-1840, 2009; Bayer, H. M., & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129-141, 2005; O'Doherty, J. P. Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769-776, 2004; Holroyd, C. B., & Coles, M. G. H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679-709, 2002]. Here, we used the brain ERP technique to demonstrate that not only do rewards elicit a neural response akin to a prediction error but also that this signal rapidly diminished and propagated to the time of choice presentation with learning. Specifically, in a simple, learnable gambling task, we show that novel rewards elicited a feedback error-related negativity that rapidly decreased in amplitude with learning. Furthermore, we demonstrate the existence of a reward positivity at choice presentation, a previously unreported ERP component that has a similar timing and topography as the feedback error-related negativity that increased in amplitude with learning. The pattern of results we observed mirrored the output of a computational model that we implemented to compute reward prediction errors and the changes in amplitude of these prediction errors at the time of choice presentation and reward delivery. Our results provide further support that the computations that underlie human learning and decision-making follow reinforcement learning principles.

  16. Inverse perspective

    NASA Astrophysics Data System (ADS)

    Dolinsky, Margaret

    2006-02-01

    This paper will discuss the potentiality towards a methodology for creating perceptual shifts in virtual reality (VR) environments. A perceptual shift is a cognitive recognition of having experienced something extra-marginal, on the boundaries of normal awareness, outside of conditioned attenuation. Definitions of perceptual shifts demonstrate a historical tradition for the wonder of devices as well as analyze various categories of sensory and optical illusions. Neuroscience and cognitive science attempt to explain perceptual shifts through biological and perceptual mechanisms using the sciences. This paper explores perspective, illusion and projections to situate an artistic process in terms of perceptual shifts. Most VR environments rely on a single perceptual shift while there remains enormous potential for perceptual shifts in VR. Examples of artwork and VR environments develop and present this idea.

  17. Perceptual experience and posttest improvements in perceptual accuracy and consistency.

    PubMed

    Wagman, Jeffrey B; McBride, Dawn M; Trefzger, Amanda J

    2008-08-01

    Two experiments investigated the relationship between perceptual experience (during practice) and posttest improvements in perceptual accuracy and consistency. Experiment 1 investigated the potential relationship between how often knowledge of results (KR) is provided during a practice session and posttest improvements in perceptual accuracy. Experiment 2 investigated the potential relationship between how often practice (PR) is provided during a practice session and posttest improvements in perceptual consistency. The results of both experiments are consistent with previous findings that perceptual accuracy improves only when practice includes KR and that perceptual consistency improves regardless of whether practice includes KR. In addition, the results showed that although there is a relationship between how often KR is provided during a practice session and posttest improvements in perceptual accuracy, there is no relationship between how often PR is provided during a practice session and posttest improvements in consistency.

  18. Visual Perceptual Learning and Models.

    PubMed

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  19. Perceptual load in sport and the heuristic value of the perceptual load paradigm in examining expertise-related perceptual-cognitive adaptations.

    PubMed

    Furley, Philip; Memmert, Daniel; Schmid, Simone

    2013-03-01

    In two experiments, we transferred perceptual load theory to the dynamic field of team sports and tested the predictions derived from the theory using a novel task and stimuli. We tested a group of college students (N = 33) and a group of expert team sport players (N = 32) on a general perceptual load task and a complex, soccer-specific perceptual load task in order to extend the understanding of the applicability of perceptual load theory and further investigate whether distractor interference may differ between the groups, as the sport-specific processing task may not exhaust the processing capacity of the expert participants. In both, the general and the specific task, the pattern of results supported perceptual load theory and demonstrates that the predictions of the theory also transfer to more complex, unstructured situations. Further, perceptual load was the only determinant of distractor processing, as we neither found expertise effects in the general perceptual load task nor the sport-specific task. We discuss the heuristic utility of using response-competition paradigms for studying both general and domain-specific perceptual-cognitive adaptations.

  20. VizieR Online Data Catalog: V and R CCD photometry of visual binaries (Abad+, 2004)

    NASA Astrophysics Data System (ADS)

    Abad, C.; Docobo, J. A.; Lanchares, V.; Lahulla, J. F.; Abelleira, P.; Blanco, J.; Alvarez, C.

    2003-11-01

    Table 1 gives relevant data for the visual binaries observed. Observations were carried out over a short period of time, therefore we assign the mean epoch (1998.58) for the totality of data. Data of individual stars are presented as average data with errors, by parameter, when various observations have been calculated, as well as the number of observations involved. Errors corresponding to astrometric relative positions between components are always present. For single observations, parameter fitting errors, specially for dx and dy parameters, have been calculated analysing the chi2 test around the minimum. Following the rules for error propagation, theta and rho errors can be estimated. Then, Table 1 shows single observation errors with an additional significant digit. When a star does not have known references, we include it in Table 2, where J2000 position and magnitudes are from the USNO-A2.0 catalogue (Monet et al., 1998, Cat. ). (2 data files).

  1. Measurement of Fracture Aperture Fields Using Ttransmitted Light: An Evaluation of Measurement Errors and their Influence on Simulations of Flow and Transport through a Single Fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell L.; Glass, Robert J.; Pringle, Scott E.

    Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity tomore » error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.« less

  2. Changes in Rod and Frame Test Scores Recorded in Schoolchildren during Development – A Longitudinal Study

    PubMed Central

    Bagust, Jeff; Docherty, Sharon; Haynes, Wayne; Telford, Richard; Isableu, Brice

    2013-01-01

    The Rod and Frame Test has been used to assess the degree to which subjects rely on the visual frame of reference to perceive vertical (visual field dependence- independence perceptual style). Early investigations found children exhibited a wide range of alignment errors, which reduced as they matured. These studies used a mechanical Rod and Frame system, and presented only mean values of grouped data. The current study also considered changes in individual performance. Changes in rod alignment accuracy in 419 school children were measured using a computer-based Rod and Frame test. Each child was tested at school Grade 2 and retested in Grades 4 and 6. The results confirmed that children displayed a wide range of alignment errors, which decreased with age but did not reach the expected adult values. Although most children showed a decrease in frame dependency over the 4 years of the study, almost 20% had increased alignment errors suggesting that they were becoming more frame-dependent. Plots of individual variation (SD) against mean error allowed the sample to be divided into 4 groups; the majority with small errors and SDs; a group with small SDs, but alignments clustering around the frame angle of 18°; a group showing large errors in the opposite direction to the frame tilt; and a small number with large SDs whose alignment appeared to be random. The errors in the last 3 groups could largely be explained by alignment of the rod to different aspects of the frame. At corresponding ages females exhibited larger alignment errors than males although this did not reach statistical significance. This study confirms that children rely more heavily on the visual frame of reference for processing spatial orientation cues. Most become less frame-dependent as they mature, but there are considerable individual differences. PMID:23724139

  3. Reliable estimation of orbit errors in spaceborne SAR interferometry. The network approach

    NASA Astrophysics Data System (ADS)

    Bähr, Hermann; Hanssen, Ramon F.

    2012-12-01

    An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of change of the baseline error in range. For their estimation, two alternatives are proposed: a least squares approach that requires prior unwrapping and a less reliable gridsearch method handling the wrapped phase. In both cases, reliability is enhanced by mutual control of error estimates in an overdetermined network of linearly dependent interferometric combinations of images. Thus, systematic biases, e.g., due to unwrapping errors, can be detected and iteratively eliminated. Regularising the solution by a minimum-norm condition results in quasi-absolute orbit errors that refer to particular images. For the 31 images of a sample ENVISAT dataset, orbit corrections with a mutual consistency on the millimetre level have been inferred from 163 interferograms. The method itself qualifies by reliability and rigorous geometric modelling of the orbital error signal but does not consider interfering large scale deformation effects. However, a separation may be feasible in a combined processing with persistent scatterer approaches or by temporal filtering of the estimates.

  4. Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment.

    PubMed

    Preisig, James C

    2005-07-01

    Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error (sigma2(s)) of each equalizer. This error is decomposed into two components. These are the minimum achievable error (sigma2(0)) and the excess error (sigma2(e)). The former is the soft decision error that would be realized by the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel impulse response and statistics of the interfering noise field. The latter is the additional soft decision error that is realized due to errors in the estimates of these channel parameters. These expressions accurately predict the equalizer errors observed in the processing of experimental data by a channel estimate based decision feedback equalizer (DFE) and a passive time-reversal equalizer. Further expressions are presented that allow equalizer performance to be predicted given the scattering function of the acoustic channel. The analysis using these expressions yields insights into the features of surface scattering that most significantly impact equalizer performance in shallow water environments and motivates the implementation of a DFE that is robust with respect to channel estimation errors.

  5. Robust inference from multiple test statistics via permutations: a better alternative to the single test statistic approach for randomized trials.

    PubMed

    Ganju, Jitendra; Yu, Xinxin; Ma, Guoguang Julie

    2013-01-01

    Formal inference in randomized clinical trials is based on controlling the type I error rate associated with a single pre-specified statistic. The deficiency of using just one method of analysis is that it depends on assumptions that may not be met. For robust inference, we propose pre-specifying multiple test statistics and relying on the minimum p-value for testing the null hypothesis of no treatment effect. The null hypothesis associated with the various test statistics is that the treatment groups are indistinguishable. The critical value for hypothesis testing comes from permutation distributions. Rejection of the null hypothesis when the smallest p-value is less than the critical value controls the type I error rate at its designated value. Even if one of the candidate test statistics has low power, the adverse effect on the power of the minimum p-value statistic is not much. Its use is illustrated with examples. We conclude that it is better to rely on the minimum p-value rather than a single statistic particularly when that single statistic is the logrank test, because of the cost and complexity of many survival trials. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Long-Term Prediction of Emergency Department Revenue and Visitor Volume Using Autoregressive Integrated Moving Average Model

    PubMed Central

    Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi

    2011-01-01

    This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume. PMID:22203886

  7. Long-term prediction of emergency department revenue and visitor volume using autoregressive integrated moving average model.

    PubMed

    Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi

    2011-01-01

    This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.

  8. Hybrid digital-analog coding with bandwidth expansion for correlated Gaussian sources under Rayleigh fading

    NASA Astrophysics Data System (ADS)

    Yahampath, Pradeepa

    2017-12-01

    Consider communicating a correlated Gaussian source over a Rayleigh fading channel with no knowledge of the channel signal-to-noise ratio (CSNR) at the transmitter. In this case, a digital system cannot be optimal for a range of CSNRs. Analog transmission however is optimal at all CSNRs, if the source and channel are memoryless and bandwidth matched. This paper presents new hybrid digital-analog (HDA) systems for sources with memory and channels with bandwidth expansion, which outperform both digital-only and analog-only systems over a wide range of CSNRs. The digital part is either a predictive quantizer or a transform code, used to achieve a coding gain. Analog part uses linear encoding to transmit the quantization error which improves the performance under CSNR variations. The hybrid encoder is optimized to achieve the minimum AMMSE (average minimum mean square error) over the CSNR distribution. To this end, analytical expressions are derived for the AMMSE of asymptotically optimal systems. It is shown that the outage CSNR of the channel code and the analog-digital power allocation must be jointly optimized to achieve the minimum AMMSE. In the case of HDA predictive quantization, a simple algorithm is presented to solve the optimization problem. Experimental results are presented for both Gauss-Markov sources and speech signals.

  9. Bit error rate tester using fast parallel generation of linear recurring sequences

    DOEpatents

    Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.

    2003-05-06

    A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.

  10. Perceptual learning and human expertise

    NASA Astrophysics Data System (ADS)

    Kellman, Philip J.; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual learning in areas such as aviation, mathematics, and medicine. Research in perceptual learning promises to advance scientific accounts of learning, and perceptual learning technology may offer similar promise in improving education.

  11. Kinesthetic perceptions of earth- and body-fixed axes.

    PubMed

    Darling, W G; Hondzinski, J M

    1999-06-01

    The major purpose of this research was to determine whether kinesthetic/proprioceptive perceptions of the earth-fixed vertical axis are more accurate than perceptions of intrinsic axes. In one experiment, accuracy of alignment of the forearm to earth-fixed vertical and head- and trunk-longitudinal axes by seven blindfolded subjects was compared in four tasks: (1) Earth-Arm--arm (humerus) orientation was manipulated by the experimenter; subjects aligned the forearm parallel to the vertical axis, which was also aligned with the head and trunk longitudinal axis; (2) Head--head, trunk, and upper-limb orientations were manipulated by the experimenter, subjects aligned the forearm parallel to the longitudinal axis of the head using only elbow flexion/extension and shoulder internal/external rotation; (3) Trunk--same as (2), except that subjects aligned the forearm parallel to the trunk-longitudinal axis; (4) Earth--same as (2), except that subjects aligned the forearm parallel to the earth-fixed vertical. Head, trunk, and gravitational axes were never parallel in tasks 2, 3, and 4 so that subjects could not simultaneously match their forearm to all three axes. The results showed that the errors for alignment of the forearm with the earth-fixed vertical were lower than for the trunk- and head-longitudinal axes. Furthermore, errors in the Earth condition were less dependent on alterations of the head and trunk orientation than in the Head and Trunk conditions. These data strongly suggest that the earth-fixed vertical is used as one axis for the kinesthetic sensory coordinate system that specifies upper-limb orientation at the perceptual level. We also examined the effects of varying gravitational torques at the elbow and shoulder on the accuracy of forearm alignment to earth-fixed axes. Adding a 450 g load to the forearm to increase gravitational torques when the forearm is not vertical did not improve the accuracy of forearm alignment with the vertical. Furthermore, adding small, variably sized loads (between which the subjects could not distinguish at the perceptual level) to the forearm just proximal to the wrist produced similar errors in aligning the forearm with the vertical and horizontal. Forearm-positioning errors were not correlated with the size of the load, as would be expected if gravitational torques affected forearm-position sense. We conclude that gravitational torques exerted about the shoulder and elbow do not make significant contributions to sensing forearm-orientation relative to earth-fixed axes when the upper-limb segments are not constrained by external supports.

  12. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  13. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  14. Image reduction pipeline for the detection of variable sources in highly crowded fields

    NASA Astrophysics Data System (ADS)

    Gössl, C. A.; Riffeser, A.

    2002-01-01

    We present a reduction pipeline for CCD (charge-coupled device) images which was built to search for variable sources in highly crowded fields like the M 31 bulge and to handle extensive databases due to large time series. We describe all steps of the standard reduction in detail with emphasis on the realisation of per pixel error propagation: Bias correction, treatment of bad pixels, flatfielding, and filtering of cosmic rays. The problems of conservation of PSF (point spread function) and error propagation in our image alignment procedure as well as the detection algorithm for variable sources are discussed: we build difference images via image convolution with a technique called OIS (optimal image subtraction, Alard & Lupton \\cite{1998ApJ...503..325A}), proceed with an automatic detection of variable sources in noise dominated images and finally apply a PSF-fitting, relative photometry to the sources found. For the WeCAPP project (Riffeser et al. \\cite{2001A&A...0000..00R}) we achieve 3sigma detections for variable sources with an apparent brightness of e.g. m = 24.9;mag at their minimum and a variation of Delta m = 2.4;mag (or m = 21.9;mag brightness minimum and a variation of Delta m = 0.6;mag) on a background signal of 18.1;mag/arcsec2 based on a 500;s exposure with 1.5;arcsec seeing at a 1.2;m telescope. The complete per pixel error propagation allows us to give accurate errors for each measurement.

  15. Cost effectiveness of the US Geological Survey's stream-gaging program in New York

    USGS Publications Warehouse

    Wolcott, S.W.; Gannon, W.B.; Johnston, W.H.

    1986-01-01

    The U.S. Geological Survey conducted a 5-year nationwide analysis to define and document the most cost effective means of obtaining streamflow data. This report describes the stream gaging network in New York and documents the cost effectiveness of its operation; it also identifies data uses and funding sources for the 174 continuous-record stream gages currently operated (1983). Those gages as well as 189 crest-stage, stage-only, and groundwater gages are operated with a budget of $1.068 million. One gaging station was identified as having insufficient reason for continuous operation and was converted to a crest-stage gage. Current operation of the 363-station program requires a budget of $1.068 million/yr. The average standard error of estimation of continuous streamflow data is 13.4%. Results indicate that this degree of accuracy could be maintained with a budget of approximately $1.006 million if the gaging resources were redistributed among the gages. The average standard error for 174 stations was calculated for five hypothetical budgets. A minimum budget of $970,000 would be needed to operated the 363-gage program; a budget less than this does not permit proper servicing and maintenance of the gages and recorders. Under the restrictions of a minimum budget, the average standard error would be 16.0%. The maximum budget analyzed was $1.2 million, which would decrease the average standard error to 9.4%. (Author 's abstract)

  16. Design of an all-attitude flight control system to execute commanded bank angles and angles of attack

    NASA Technical Reports Server (NTRS)

    Burgin, G. H.; Eggleston, D. M.

    1976-01-01

    A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed.

  17. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

    2018-01-01

    This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

  18. Sensitivity, optimal scaling and minimum roundoff errors in flexible structure models

    NASA Technical Reports Server (NTRS)

    Skelton, Robert E.

    1987-01-01

    Traditional modeling notions presume the existence of a truth model that relates the input to the output, without advanced knowledge of the input. This has led to the evolution of education and research approaches (including the available control and robustness theories) that treat the modeling and control design as separate problems. The paper explores the subtleties of this presumption that the modeling and control problems are separable. A detailed study of the nature of modeling errors is useful to gain insight into the limitations of traditional control and identification points of view. Modeling errors need not be small but simply appropriate for control design. Furthermore, the modeling and control design processes are inevitably iterative in nature.

  19. Audiovisual speech perception development at varying levels of perceptual processing

    PubMed Central

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-01-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children. PMID:27106318

  20. Audiovisual speech perception development at varying levels of perceptual processing.

    PubMed

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-04-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children.

  1. Pre-cue Fronto-Occipital Alpha Phase and Distributed Cortical Oscillations Predict Failures of Cognitive Control

    PubMed Central

    Hamm, Jordan P.; Dyckman, Kara A.; McDowell, Jennifer E.; Clementz, Brett A.

    2012-01-01

    Cognitive control is required for correct performance on antisaccade tasks, including the ability to inhibit an externally driven ocular motor repsonse (a saccade to a peripheral stimulus) in favor of an internally driven ocular motor goal (a saccade directed away from a peripheral stimulus). Healthy humans occasionally produce errors during antisaccade tasks, but the mechanisms associated with such failures of cognitive control are uncertain. Most research on cognitive control failures focuses on post-stimulus processing, although a growing body of literature highlights a role of intrinsic brain activity in perceptual and cognitive performance. The current investigation used dense array electroencephalography and distributed source analyses to examine brain oscillations across a wide frequency bandwidth in the period prior to antisaccade cue onset. Results highlight four important aspects of ongoing and preparatory brain activations that differentiate error from correct antisaccade trials: (i) ongoing oscillatory beta (20–30Hz) power in anterior cingulate prior to trial initiation (lower for error trials), (ii) instantaneous phase of ongoing alpha-theta (7Hz) in frontal and occipital cortices immediately before trial initiation (opposite between trial types), (iii) gamma power (35–60Hz) in posterior parietal cortex 100 ms prior to cue onset (greater for error trials), and (iv) phase locking of alpha (5–12Hz) in parietal and occipital cortices immediately prior to cue onset (lower for error trials). These findings extend recently reported effects of pre-trial alpha phase on perception to cognitive control processes, and help identify the cortical generators of such phase effects. PMID:22593071

  2. Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability.

    PubMed

    Santos, José; Monteagudo, Ángel

    2017-03-27

    The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.

  3. Q-adjusting technique applied to vertical deflections estimation in a single-axis rotation INS/GPS integrated system

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Xingshu; Wang, Jun; Dai, Dongkai; Xiong, Hao

    2016-10-01

    Former studies have proved that the attitude error in a single-axis rotation INS/GPS integrated system tracks the high frequency component of the deflections of the vertical (DOV) with a fixed delay and tracking error. This paper analyses the influence of the nominal process noise covariance matrix Q on the tracking error as well as the response delay, and proposed a Q-adjusting technique to obtain the attitude error which can track the DOV better. Simulation results show that different settings of Q lead to different response delay and tracking error; there exists optimal Q which leads to a minimum tracking error and a comparatively short response delay; for systems with different accuracy, different Q-adjusting strategy should be adopted. In this way, the DOV estimation accuracy of using the attitude error as the observation can be improved. According to the simulation results, the DOV estimation accuracy after using the Q-adjusting technique is improved by approximate 23% and 33% respectively compared to that of the Earth Model EGM2008 and the direct attitude difference method.

  4. DCTune Perceptual Optimization of Compressed Dental X-Rays

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    In current dental practice, x-rays of completed dental work are often sent to the insurer for verification. It is faster and cheaper to transmit instead digital scans of the x-rays. Further economies result if the images are sent in compressed form. DCTune is a technology for optimizing DCT (digital communication technology) quantization matrices to yield maximum perceptual quality for a given bit-rate, or minimum bit-rate for a given perceptual quality. Perceptual optimization of DCT color quantization matrices. In addition, the technology provides a means of setting the perceptual quality of compressed imagery in a systematic way. The purpose of this research was, with respect to dental x-rays, 1) to verify the advantage of DCTune over standard JPEG (Joint Photographic Experts Group), 2) to verify the quality control feature of DCTune, and 3) to discover regularities in the optimized matrices of a set of images. We optimized matrices for a total of 20 images at two resolutions (150 and 300 dpi) and four bit-rates (0.25, 0.5, 0.75, 1.0 bits/pixel), and examined structural regularities in the resulting matrices. We also conducted psychophysical studies (1) to discover the DCTune quality level at which the images became 'visually lossless,' and (2) to rate the relative quality of DCTune and standard JPEG images at various bitrates. Results include: (1) At both resolutions, DCTune quality is a linear function of bit-rate. (2) DCTune quantization matrices for all images at all bitrates and resolutions are modeled well by an inverse Gaussian, with parameters of amplitude and width. (3) As bit-rate is varied, optimal values of both amplitude and width covary in an approximately linear fashion. (4) Both amplitude and width vary in systematic and orderly fashion with either bit-rate or DCTune quality; simple mathematical functions serve to describe these relationships. (5) In going from 150 to 300 dpi, amplitude parameters are substantially lower and widths larger at corresponding bit-rates or qualities. (6) Visually lossless compression occurs at a DCTune quality value of about 1. (7) At 0.25 bits/pixel, comparative ratings give DCTune a substantial advantage over standard JPEG. As visually lossless bit-rates are approached, this advantage of necessity diminishes. We have concluded that DCTune optimized quantization matrices provide better visual quality than standard JPEG. Meaningful quality levels may be specified by means of the DCTune metric. Optimized matrices are very similar across the class of dental x-rays, suggesting the possibility of a 'class-optimal' matrix. DCTune technology appears to provide some value in the context of compressed dental x-rays.

  5. UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers

    NASA Technical Reports Server (NTRS)

    Cone, Andrew C.; Thipphavong, David; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    This paper documents a study that drove the development of a mathematical expression in the detect-and-avoid (DAA) minimum operational performance standards (MOPS) for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance should be provided during recovery of DAA well clear separation with a non-cooperative VFR aircraft. Although the original hypothesis was that vertical maneuvers for DAA well clear recovery should only be offered when sensor vertical rate errors are small, this paper suggests that UAS climb and descent performance should be considered-in addition to sensor errors for vertical position and vertical rate-when determining whether to offer vertical guidance. A fast-time simulation study involving 108,000 encounters between a UAS and a non-cooperative visual-flight-rules aircraft was conducted. Results are presented showing that, when vertical maneuver guidance for DAA well clear recovery was suppressed, the minimum vertical separation increased by roughly 50 feet (or horizontal separation by 500 to 800 feet). However, the percentage of encounters that had a risk of collision when performing vertical well clear recovery maneuvers was reduced as UAS vertical rate performance increased and sensor vertical rate errors decreased. A class of encounter is identified for which vertical-rate error had a large effect on the efficacy of horizontal maneuvers due to the difficulty of making the correct left/right turn decision: crossing conflict with intruder changing altitude. Overall, these results support logic that would allow vertical maneuvers when UAS vertical performance is sufficient to avoid the intruder, based on the intruder's estimated vertical position and vertical rate, as well as the vertical rate error of the UAS' sensor.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Yang, F

    Purpose: Knowing MLC leaf positioning error over the course of treatment would be valuable for treatment planning, QA design, and patient safety. The objective of the current study was to quantify the MLC positioning accuracy for VMAT delivery of head and neck treatment plans. Methods: A total of 837 MLC log files were collected from 14 head and neck cancer patients undergoing full arc VMAT treatment on one Varian Trilogy machine. The actual and planned leaf gaps were extracted from the retrieved MLC log files. For a given patient, the leaf gap error percentage (LGEP), defined as the ratio ofmore » the actual leaf gap over the planned, was evaluated for each leaf pair at all the gantry angles recorded over the course of the treatment. Statistics describing the distribution of the largest LGEP (LLGEP) of the 60 leaf pairs including the maximum, minimum, mean, Kurtosis, and skewness were evaluated. Results: For the 14 studied patients, their PTV located at tonsil, base of tongue, larynx, supraglottis, nasal cavity, and thyroid gland with volume ranging from 72.0 cm{sup 3} to 602.0 cm{sup 3}. The identified LLGEP differed between patients. It ranged from 183.9% to 457.7% with a mean of 368.6%. For the majority of the patients, the LLGEP distributions peaked at non-zero positions and showed no obvious dependence on gantry rotations. Kurtosis and skewness, with minimum/maximum of 66.6/217.9 and 6.5/12.6, respectively, suggested relatively more peaked while right-skewed leaf error distribution pattern. Conclusion: The results indicate pattern of MLC leaf gap error differs between patients of lesion located at similar anatomic site. Understanding the systemic mechanisms underlying these observed error patterns necessitates examining more patient-specific plan parameters in a large patient cohort setting.« less

  7. Edge grouping combining boundary and region information.

    PubMed

    Stahl, Joachim S; Wang, Song

    2007-10-01

    This paper introduces a new edge-grouping method to detect perceptually salient structures in noisy images. Specifically, we define a new grouping cost function in a ratio form, where the numerator measures the boundary proximity of the resulting structure and the denominator measures the area of the resulting structure. This area term introduces a preference towards detecting larger-size structures and, therefore, makes the resulting edge grouping more robust to image noise. To find the optimal edge grouping with the minimum grouping cost, we develop a special graph model with two different kinds of edges and then reduce the grouping problem to finding a special kind of cycle in this graph with a minimum cost in ratio form. This optimal cycle-finding problem can be solved in polynomial time by a previously developed graph algorithm. We implement this edge-grouping method, test it on both synthetic data and real images, and compare its performance against several available edge-grouping and edge-linking methods. Furthermore, we discuss several extensions of the proposed method, including the incorporation of the well-known grouping cues of continuity and intensity homogeneity, introducing a factor to balance the contributions from the boundary and region information, and the prevention of detecting self-intersecting boundaries.

  8. Point focusing using loudspeaker arrays from the perspective of optimal beamforming.

    PubMed

    Bai, Mingsian R; Hsieh, Yu-Hao

    2015-06-01

    Sound focusing is to create a concentrated acoustic field in the region surrounded by a loudspeaker array. This problem was tackled in the previous research via the Helmholtz integral approach, brightness control, acoustic contrast control, etc. In this paper, the same problem was revisited from the perspective of beamforming. A source array model is reformulated in terms of the steering matrix between the source and the field points, which lends itself to the use of beamforming algorithms such as minimum variance distortionless response (MVDR) and linearly constrained minimum variance (LCMV) originally intended for sensor arrays. The beamforming methods are compared with the conventional methods in terms of beam pattern, directional index, and control effort. Objective tests are conducted to assess the audio quality by using perceptual evaluation of audio quality (PEAQ). Experiments of produced sound field and listening tests are conducted in a listening room, with results processed using analysis of variance and regression analysis. In contrast to the conventional energy-based methods, the results have shown that the proposed methods are phase-sensitive in light of the distortionless constraint in formulating the array filters, which helps enhance audio quality and focusing performance.

  9. [Perceptual sharpness metric for visible and infrared color fusion images].

    PubMed

    Gao, Shao-Shu; Jin, Wei-Qi; Wang, Xia; Wang, Ling-Xue; Luo, Yuan

    2012-12-01

    For visible and infrared color fusion images, objective sharpness assessment model is proposed to measure the clarity of detail and edge definition of the fusion image. Firstly, the contrast sensitivity functions (CSF) of the human visual system is used to reduce insensitive frequency components under certain viewing conditions. Secondly, perceptual contrast model, which takes human luminance masking effect into account, is proposed based on local band-limited contrast model. Finally, the perceptual contrast is calculated in the region of interest (contains image details and edges) in the fusion image to evaluate image perceptual sharpness. Experimental results show that the proposed perceptual sharpness metrics provides better predictions, which are more closely matched to human perceptual evaluations, than five existing sharpness (blur) metrics for color images. The proposed perceptual sharpness metrics can evaluate the perceptual sharpness for color fusion images effectively.

  10. Prediction of perceptual defense from experimental stress and susceptibility to stress as indicated by thematic apperception.

    PubMed

    Tuma, J M

    1975-02-01

    The present investigation tested the hypothesis advanced by J. Inglis (1961) that perceptual defense and perceptual vigilance result from an interaction between personality differences and degrees of experimental stress. The design, which controlled for questionable procedures used in previous studies, utilized 32 introverts and 32 extraverts, half male and half female, in an experiment with a visual recognition-task. Results indicated that under low-stress conditions introverts and extraverts identified by their response to a thematic apperception task react to threatening stimuli with perceptual defense and perceptual vigilance, respectively. Under high-stress conditions, type of avoidance activity reverses; extraverts react with perceptual defense and introverts with perceptual vigilance. It was suggested that, when both personality and stress variables are controlled, results of the perceptual defense paradigm are predictable and consistent, in support of Inglis' hypothesis.

  11. The Effects of Differential Training Procedures on Linked Perceptual Class Formation

    ERIC Educational Resources Information Center

    Fields, Lanny; Tittelbach, Danielle; Shamoun, Kimberly; Watanabe, Mari; Fitzer, Adrienne; Matneja, Priya

    2007-01-01

    When the stimuli in one perceptual class (A') become related to the stimuli in another perceptual class (B'), the two are functioning as a single "linked perceptual class". A common linked perceptual class would be the sounds of a person's voice (class A') and the pictures of that person (class B'). Such classes are ubiquitous in real…

  12. Turkish- and English-speaking children display sensitivity to perceptual context in the referring expressions they produce in speech and gesture

    PubMed Central

    Demir, Özlem Ece; So, Wing-Chee; Özyürek, Asli; Goldin-Meadow, Susan

    2012-01-01

    Speakers choose a particular expression based on many factors, including availability of the referent in the perceptual context. We examined whether, when expressing referents, monolingual English- and Turkish-speaking children: (1) are sensitive to perceptual context, (2) express this sensitivity in language-specific ways, and (3) use co-speech gestures to specify referents that are underspecified. We also explored the mechanisms underlying children’s sensitivity to perceptual context. Children described short vignettes to an experimenter under two conditions: The characters in the vignettes were present in the perceptual context (perceptual context); the characters were absent (no perceptual context). Children routinely used nouns in the no perceptual context condition, but shifted to pronouns (English-speaking children) or omitted arguments (Turkish-speaking children) in the perceptual context condition. Turkish-speaking children used underspecified referents more frequently than English-speaking children in the perceptual context condition; however, they compensated for the difference by using gesture to specify the forms. Gesture thus gives children learning structurally different languages a way to achieve comparable levels of specification while at the same time adhering to the referential expressions dictated by their language. PMID:22904588

  13. Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Wrenn, Gregory A.; Dovi, Augustine R.; Coen, Peter G.; Hall, Laura E.

    1992-01-01

    An approach is presented for determining the minimum weight design of aircraft wing models which takes into consideration aerodynamics-structure coupling when calculating both zeroth order information needed for analysis and first order information needed for optimization. When performing sensitivity analysis, coupling is accounted for by using a generalized sensitivity formulation. The results presented show that the aeroelastic effects are calculated properly and noticeably reduce constraint approximation errors. However, for the particular example selected, the error introduced by ignoring aeroelastic effects are not sufficient to significantly affect the convergence of the optimization process. Trade studies are reported that consider different structural materials, internal spar layouts, and panel buckling lengths. For the formulation, model and materials used in this study, an advanced aluminum material produced the lightest design while satisfying the problem constraints. Also, shorter panel buckling lengths resulted in lower weights by permitting smaller panel thicknesses and generally, by unloading the wing skins and loading the spar caps. Finally, straight spars required slightly lower wing weights than angled spars.

  14. Three-dimensional holoscopic image coding scheme using high-efficiency video coding with kernel-based minimum mean-square-error estimation

    NASA Astrophysics Data System (ADS)

    Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai

    2016-07-01

    Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.

  15. Cost effectiveness of the stream-gaging program in Ohio

    USGS Publications Warehouse

    Shindel, H.L.; Bartlett, W.P.

    1986-01-01

    This report documents the results of the cost effectiveness of the stream-gaging program in Ohio. Data uses and funding sources were identified for 107 continuous stream gages currently being operated by the U.S. Geological Survey in Ohio with a budget of $682,000; this budget includes field work for other projects and excludes stations jointly operated with the Miami Conservancy District. No stream gage were identified as having insufficient reason to continue their operation; nor were any station identified as having uses specifically only for short-term studies. All 107 station should be maintained in the program for the foreseeable future. The average standard error of estimation of stream flow records is 29.2 percent at its present level of funding. A minimum budget of $679,000 is required to operate the 107-gage program; a budget less than this does no permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 31.1 percent The maximum budget analyzed was $1,282,000, which resulted in an average standard error of 11.1 percent. A need for additional gages has been identified by the other agencies that cooperate in the program. It is suggested that these gage be installed as funds can be made available.

  16. Effect of ephemeris errors on the accuracy of the computation of the tangent point altitude of a solar scanning ray as measured by the SAGE 1 and 2 instruments

    NASA Technical Reports Server (NTRS)

    Buglia, James J.

    1989-01-01

    An analysis was made of the error in the minimum altitude of a geometric ray from an orbiting spacecraft to the Sun. The sunrise and sunset errors are highly correlated and are opposite in sign. With the ephemeris generated for the SAGE 1 instrument data reduction, these errors can be as large as 200 to 350 meters (1 sigma) after 7 days of orbit propagation. The bulk of this error results from errors in the position of the orbiting spacecraft rather than errors in computing the position of the Sun. These errors, in turn, result from the discontinuities in the ephemeris tapes resulting from the orbital determination process. Data taken from the end of the definitive ephemeris tape are used to generate the predict data for the time interval covered by the next arc of the orbit determination process. The predicted data are then updated by using the tracking data. The growth of these errors is very nearly linear, with a slight nonlinearity caused by the beta angle. An approximate analytic method is given, which predicts the magnitude of the errors and their growth in time with reasonable fidelity.

  17. Perceptual learning modifies untrained pursuit eye movements.

    PubMed

    Szpiro, Sarit F A; Spering, Miriam; Carrasco, Marisa

    2014-07-07

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training led to greater overestimation and, remarkably, it modified untrained smooth pursuit. In contrast, pursuit training did not affect overestimation in either pursuit or perception, even though observers in both training groups were exposed to the same stimuli for the same time period. A second experiment revealed that estimation training also improved discrimination, indicating that overestimation may optimize perceptual sensitivity. Hence, active perceptual training is necessary to alter perceptual responses, and an acquired change in perception suffices to modify pursuit, a motor response. © 2014 ARVO.

  18. Perceptual learning modifies untrained pursuit eye movements

    PubMed Central

    Szpiro, Sarit F. A.; Spering, Miriam; Carrasco, Marisa

    2014-01-01

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training led to greater overestimation and, remarkably, it modified untrained smooth pursuit. In contrast, pursuit training did not affect overestimation in either pursuit or perception, even though observers in both training groups were exposed to the same stimuli for the same time period. A second experiment revealed that estimation training also improved discrimination, indicating that overestimation may optimize perceptual sensitivity. Hence, active perceptual training is necessary to alter perceptual responses, and an acquired change in perception suffices to modify pursuit, a motor response. PMID:25002412

  19. Model of Illusions and Virtual Reality

    PubMed Central

    Gonzalez-Franco, Mar; Lanier, Jaron

    2017-01-01

    In Virtual Reality (VR) it is possible to induce illusions in which users report and behave as if they have entered into altered situations and identities. The effect can be robust enough for participants to respond “realistically,” meaning behaviors are altered as if subjects had been exposed to the scenarios in reality. The circumstances in which such VR illusions take place were first introduced in the 80's. Since then, rigorous empirical evidence has explored a wide set of illusory experiences in VR. Here, we compile this research and propose a neuroscientific model explaining the underlying perceptual and cognitive mechanisms that enable illusions in VR. Furthermore, we describe the minimum instrumentation requirements to support illusory experiences in VR, and discuss the importance and shortcomings of the generic model. PMID:28713323

  20. Evaluation of a mobile augmented reality application for image guidance of neurosurgical interventions.

    PubMed

    Kramers, Matthew; Armstrong, Ryan; Bakhshmand, Saeed M; Fenster, Aaron; de Ribaupierre, Sandrine; Eagleson, Roy

    2014-01-01

    Image guidance can provide surgeons with valuable contextual information during a medical intervention. Often, image guidance systems require considerable infrastructure, setup-time, and operator experience to be utilized. Certain procedures performed at bedside are susceptible to navigational errors that can lead to complications. We present an application for mobile devices that can provide image guidance using augmented reality to assist in performing neurosurgical tasks. A methodology is outlined that evaluates this mode of visualization from the standpoint of perceptual localization, depth estimation, and pointing performance, in scenarios derived from a neurosurgical targeting task. By measuring user variability and speed we can report objective metrics of performance for our augmented reality guidance system.

  1. The effectiveness of multimedia visual perceptual training groups for the preschool children with developmental delay.

    PubMed

    Chen, Yi-Nan; Lin, Chin-Kai; Wei, Ta-Sen; Liu, Chi-Hsin; Wuang, Yee-Pay

    2013-12-01

    This study compared the effectiveness of three approaches to improving visual perception among preschool children 4-6 years old with developmental delays: multimedia visual perceptual group training, multimedia visual perceptual individual training, and paper visual perceptual group training. A control group received no special training. This study employed a pretest-posttest control group of true experimental design. A total of 64 children 4-6 years old with developmental delays were randomized into four groups: (1) multimedia visual perceptual group training (15 subjects); (2) multimedia visual perceptual individual training group (15 subjects); paper visual perceptual group training (19 subjects); and (4) a control group (15 subjects) with no visual perceptual training. Forty minute training sessions were conducted once a week for 14 weeks. The Test of Visual Perception Skills, third edition, was used to evaluate the effectiveness of the intervention. Paired-samples t-test showed significant differences pre- and post-test among the three groups, but no significant difference was found between the pre-test and post-test scores among the control group. ANOVA results showed significant differences in improvement levels among the four study groups. Scheffe post hoc test results showed significant differences between: group 1 and group 2; group 1 and group 3; group 1 and the control group; and group 2 and the control group. No significant differences were reported between group 2 and group 3, and group 3 and the control group. The results showed all three therapeutic programs produced significant differences between pretest and posttest scores. The training effect on the multimedia visual perceptual group program and the individual program was greater than the developmental effect Both the multimedia visual perceptual group training program and the multimedia visual perceptual individual training program produced significant effects on visual perception. The multimedia visual perceptual group training program was more effective for improving visual perception than was multimedia visual perceptual individual training program. The multimedia visual perceptual group training program was more effective than was the paper visual perceptual group training program. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A Bayesian approach to parameter and reliability estimation in the Poisson distribution.

    NASA Technical Reports Server (NTRS)

    Canavos, G. C.

    1972-01-01

    For life testing procedures, a Bayesian analysis is developed with respect to a random intensity parameter in the Poisson distribution. Bayes estimators are derived for the Poisson parameter and the reliability function based on uniform and gamma prior distributions of that parameter. A Monte Carlo procedure is implemented to make possible an empirical mean-squared error comparison between Bayes and existing minimum variance unbiased, as well as maximum likelihood, estimators. As expected, the Bayes estimators have mean-squared errors that are appreciably smaller than those of the other two.

  3. ATM Quality of Service Tests for Digitized Video Using ATM Over Satellite: Laboratory Tests

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Brooks, David E.; Frantz, Brian D.

    1997-01-01

    A digitized video application was used to help determine minimum quality of service parameters for asynchronous transfer mode (ATM) over satellite. For these tests, binomially distributed and other errors were digitally inserted in an intermediate frequency link via a satellite modem and a commercial gaussian noise generator. In this paper, the relation- ship between the ATM cell error and cell loss parameter specifications is discussed with regard to this application. In addition, the video-encoding algorithms, test configurations, and results are presented in detail.

  4. Multiclass Bayes error estimation by a feature space sampling technique

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.

    1979-01-01

    A general Gaussian M-class N-feature classification problem is defined. An algorithm is developed that requires the class statistics as its only input and computes the minimum probability of error through use of a combined analytical and numerical integration over a sequence simplifying transformations of the feature space. The results are compared with those obtained by conventional techniques applied to a 2-class 4-feature discrimination problem with results previously reported and 4-class 4-feature multispectral scanner Landsat data classified by training and testing of the available data.

  5. A recent time of minimum for and atmospheric-eclipse in the ultraviolet spectrum of the Wolf-Rayet eclipsing binary V444 Cygni

    NASA Technical Reports Server (NTRS)

    Eaton, J. E.; Cherepashchuk, A. M.; Khaliullin, K. F.

    1982-01-01

    The 1200-1900 angstrom region and fine error sensor observations in the optical for V444 Cyg were continuously observed. More than half of a primary minimum and almost a complete secondary minimum were observed. It is found that the time of minimum for the secondary eclipse is consistent with that for primary eclipse, and the ultraviolet times of minimum are consistent with the optical ones. The spectrum shows a considerable amount of phase dependence. The general shaps and depths of the light curves for the FES signal and the 1565-1900 angstrom continuum are similar to those for the blue continuum. The FES, however, detected an atmospheric eclipse in line absorption at about the phase the NIV absorption was strongest. It is suggested that there is a source of continuum absorption shortward of 1460 angstrom which exists throughout a large part of the extended atmosphere and which, by implication, must redden considerably the ultraviolet continuua of WN stars. A fairly high degree of ionization for the inner part of the WN star a atmosphere is implied.

  6. The Impact of Dysphonic Voices on Healthy Listeners: Listener Reaction Times, Speech Intelligibility, and Listener Comprehension.

    PubMed

    Evitts, Paul M; Starmer, Heather; Teets, Kristine; Montgomery, Christen; Calhoun, Lauren; Schulze, Allison; MacKenzie, Jenna; Adams, Lauren

    2016-11-01

    There is currently minimal information on the impact of dysphonia secondary to phonotrauma on listeners. Considering the high incidence of voice disorders with professional voice users, it is important to understand the impact of a dysphonic voice on their audiences. Ninety-one healthy listeners (39 men, 52 women; mean age = 23.62 years) were presented with speech stimuli from 5 healthy speakers and 5 speakers diagnosed with dysphonia secondary to phonotrauma. Dependent variables included processing speed (reaction time [RT] ratio), speech intelligibility, and listener comprehension. Voice quality ratings were also obtained for all speakers by 3 expert listeners. Statistical results showed significant differences between RT ratio and number of speech intelligibility errors between healthy and dysphonic voices. There was not a significant difference in listener comprehension errors. Multiple regression analyses showed that voice quality ratings from the Consensus Assessment Perceptual Evaluation of Voice (Kempster, Gerratt, Verdolini Abbott, Barkmeier-Kraemer, & Hillman, 2009) were able to predict RT ratio and speech intelligibility but not listener comprehension. Results of the study suggest that although listeners require more time to process and have more intelligibility errors when presented with speech stimuli from speakers with dysphonia secondary to phonotrauma, listener comprehension may not be affected.

  7. A New Font, Specifically Designed for Peripheral Vision, Improves Peripheral Letter and Word Recognition, but Not Eye-Mediated Reading Performance

    PubMed Central

    Bernard, Jean-Baptiste; Aguilar, Carlos; Castet, Eric

    2016-01-01

    Reading speed is dramatically reduced when readers cannot use their central vision. This is because low visual acuity and crowding negatively impact letter recognition in the periphery. In this study, we designed a new font (referred to as the Eido font) in order to reduce inter-letter similarity and consequently to increase peripheral letter recognition performance. We tested this font by running five experiments that compared the Eido font with the standard Courier font. Letter spacing and x-height were identical for the two monospaced fonts. Six normally-sighted subjects used exclusively their peripheral vision to run two aloud reading tasks (with eye movements), a letter recognition task (without eye movements), a word recognition task (without eye movements) and a lexical decision task. Results show that reading speed was not significantly different between the Eido and the Courier font when subjects had to read single sentences with a round simulated gaze-contingent central scotoma (10° diameter). In contrast, Eido significantly decreased perceptual errors in peripheral crowded letter recognition (-30% errors on average for letters briefly presented at 6° eccentricity) and in peripheral word recognition (-32% errors on average for words briefly presented at 6° eccentricity). PMID:27074013

  8. Dissociation in Optokinetic Stimulation Sensitivity between Omission and Substitution Reading Errors in Neglect Dyslexia.

    PubMed

    Daini, Roberta; Albonico, Andrea; Malaspina, Manuela; Martelli, Marialuisa; Primativo, Silvia; Arduino, Lisa S

    2013-01-01

    Although omission and substitution errors in neglect dyslexia (ND) patients have always been considered as different manifestations of the same acquired reading disorder, recently, we proposed a new dual mechanism model. While omissions are related to the exploratory disorder which characterizes unilateral spatial neglect (USN), substitutions are due to a perceptual integration mechanism. A consequence of this hypothesis is that specific training for omission-type ND patients would aim at restoring the oculo-motor scanning and should not improve reading in substitution-type ND. With this aim we administered an optokinetic stimulation (OKS) to two brain-damaged patients with both USN and ND, MA and EP, who showed ND mainly characterized by omissions and substitutions, respectively. MA also showed an impairment in oculo-motor behavior with a non-reading task, while EP did not. The two patients presented a dissociation with respect to their sensitivity to OKS, so that, as expected, MA was positively affected, while EP was not. Our results confirm a dissociation between the two mechanisms underlying omission and substitution reading errors in ND patients. Moreover, they suggest that such a dissociation could possibly be extended to the effectiveness of rehabilitative procedures, and that patients who mainly omit contralesional-sided letters would benefit from OKS.

  9. Dissociation in Optokinetic Stimulation Sensitivity between Omission and Substitution Reading Errors in Neglect Dyslexia

    PubMed Central

    Daini, Roberta; Albonico, Andrea; Malaspina, Manuela; Martelli, Marialuisa; Primativo, Silvia; Arduino, Lisa S.

    2013-01-01

    Although omission and substitution errors in neglect dyslexia (ND) patients have always been considered as different manifestations of the same acquired reading disorder, recently, we proposed a new dual mechanism model. While omissions are related to the exploratory disorder which characterizes unilateral spatial neglect (USN), substitutions are due to a perceptual integration mechanism. A consequence of this hypothesis is that specific training for omission-type ND patients would aim at restoring the oculo-motor scanning and should not improve reading in substitution-type ND. With this aim we administered an optokinetic stimulation (OKS) to two brain-damaged patients with both USN and ND, MA and EP, who showed ND mainly characterized by omissions and substitutions, respectively. MA also showed an impairment in oculo-motor behavior with a non-reading task, while EP did not. The two patients presented a dissociation with respect to their sensitivity to OKS, so that, as expected, MA was positively affected, while EP was not. Our results confirm a dissociation between the two mechanisms underlying omission and substitution reading errors in ND patients. Moreover, they suggest that such a dissociation could possibly be extended to the effectiveness of rehabilitative procedures, and that patients who mainly omit contralesional-sided letters would benefit from OKS. PMID:24062678

  10. A New Font, Specifically Designed for Peripheral Vision, Improves Peripheral Letter and Word Recognition, but Not Eye-Mediated Reading Performance.

    PubMed

    Bernard, Jean-Baptiste; Aguilar, Carlos; Castet, Eric

    2016-01-01

    Reading speed is dramatically reduced when readers cannot use their central vision. This is because low visual acuity and crowding negatively impact letter recognition in the periphery. In this study, we designed a new font (referred to as the Eido font) in order to reduce inter-letter similarity and consequently to increase peripheral letter recognition performance. We tested this font by running five experiments that compared the Eido font with the standard Courier font. Letter spacing and x-height were identical for the two monospaced fonts. Six normally-sighted subjects used exclusively their peripheral vision to run two aloud reading tasks (with eye movements), a letter recognition task (without eye movements), a word recognition task (without eye movements) and a lexical decision task. Results show that reading speed was not significantly different between the Eido and the Courier font when subjects had to read single sentences with a round simulated gaze-contingent central scotoma (10° diameter). In contrast, Eido significantly decreased perceptual errors in peripheral crowded letter recognition (-30% errors on average for letters briefly presented at 6° eccentricity) and in peripheral word recognition (-32% errors on average for words briefly presented at 6° eccentricity).

  11. Interference from familiar natural distractors is not eliminated by high perceptual load.

    PubMed

    He, Chunhong; Chen, Antao

    2010-05-01

    A crucial prediction of perceptual load theory is that high perceptual load can eliminate interference from distractors. However, Lavie et al. (Psychol Sci 14:510-515, 2003) found that high perceptual load did not eliminate interference when the distractor was a face. The current experiments examined the interaction between familiarity and perceptual load in modulating interference in a name search task. The data reveal that high perceptual load eliminated the interference effect for unfamiliar distractors that were faces or objects, but did not eliminate the interference for familiar distractors that were faces or objects. Based on these results, we proposed that the processing of familiar and natural stimuli may be immune to the effect of perceptual load.

  12. Status report on speech research. A report on the status and progress of studies on the nature of speech, instrumentation for its investigation, and practical applications

    NASA Astrophysics Data System (ADS)

    Liberman, A. M.

    1985-10-01

    This interim status report on speech research discusses the following topics: On Vagueness and Fictions as Cornerstones of a Theory of Perceiving and Acting: A Comment on Walter (1983); The Informational Support for Upright Stance; Determining the Extent of Coarticulation-effects of Experimental Design; The Roles of Phoneme Frequency, Similarity, and Availability in the Experimental Elicitation of Speech Errors; On Learning to Speak; The Motor Theory of Speech Perception Revised; Linguistic and Acoustic Correlates of the Perceptual Structure Found in an Individual Differences Scaling Study of Vowels; Perceptual Coherence of Speech: Stability of Silence-cued Stop Consonants; Development of the Speech Perceptuomotor System; Dependence of Reading on Orthography-Investigations in Serbo-Croatian; The Relationship between Knowledge of Derivational Morphology and Spelling Ability in Fourth, Sixth, and Eighth Graders; Relations among Regular and Irregular, Morphologically-Related Words in the Lexicon as Revealed by Repetition Priming; Grammatical Priming of Inflected Nouns by the Gender of Possessive Adjectives; Grammatical Priming of Inflected Nouns by Inflected Adjectives; Deaf Signers and Serial Recall in the Visual Modality-Memory for Signs, Fingerspelling, and Print; Did Orthographies Evolve?; The Development of Children's Sensitivity to Factors Inf luencing Vowel Reading.

  13. Altered transfer of visual motion information to parietal association cortex in untreated first-episode psychosis: Implications for pursuit eye tracking

    PubMed Central

    Lencer, Rebekka; Keedy, Sarah K.; Reilly, James L.; McDonough, Bruce E.; Harris, Margret S. H.; Sprenger, Andreas; Sweeney, John A.

    2011-01-01

    Visual motion processing and its use for pursuit eye movement control represent a valuable model for studying the use of sensory input for action planning. In psychotic disorders, alterations of visual motion perception have been suggested to cause pursuit eye tracking deficits. We evaluated this system in functional neuroimaging studies of untreated first-episode schizophrenia (N=24), psychotic bipolar disorder patients (N=13) and healthy controls (N=20). During a passive visual motion processing task, both patient groups showed reduced activation in the posterior parietal projection fields of motion-sensitive extrastriate area V5, but not in V5 itself. This suggests reduced bottom-up transfer of visual motion information from extrastriate cortex to perceptual systems in parietal association cortex. During active pursuit, activation was enhanced in anterior intraparietal sulcus and insula in both patient groups, and in dorsolateral prefrontal cortex and dorsomedial thalamus in schizophrenia patients. This may result from increased demands on sensorimotor systems for pursuit control due to the limited availability of perceptual motion information about target speed and tracking error. Visual motion information transfer deficits to higher -level association cortex may contribute to well-established pursuit tracking abnormalities, and perhaps to a wider array of alterations in perception and action planning in psychotic disorders. PMID:21873035

  14. Perceptual impairment in face identification with poor sleep

    PubMed Central

    Beattie, Louise; Walsh, Darragh; McLaren, Jessica; Biello, Stephany M.

    2016-01-01

    Previous studies have shown impaired memory for faces following restricted sleep. However, it is not known whether lack of sleep impairs performance on face identification tasks that do not rely on recognition memory, despite these tasks being more prevalent in security and forensic professions—for example, in photo-ID checks at national borders. Here we tested whether poor sleep affects accuracy on a standard test of face-matching ability that does not place demands on memory: the Glasgow Face-Matching Task (GFMT). In Experiment 1, participants who reported sleep disturbance consistent with insomnia disorder show impaired accuracy on the GFMT when compared with participants reporting normal sleep behaviour. In Experiment 2, we then used a sleep diary method to compare GFMT accuracy in a control group to participants reporting poor sleep on three consecutive nights—and again found lower accuracy scores in the short sleep group. In both experiments, reduced face-matching accuracy in those with poorer sleep was not associated with lower confidence in their decisions, carrying implications for occupational settings where identification errors made with high confidence can have serious outcomes. These results suggest that sleep-related impairments in face memory reflect difficulties in perceptual encoding of identity, and point towards metacognitive impairment in face matching following poor sleep. PMID:27853547

  15. Perceptual issues for color helmet-mounted displays: luminance and color contrast requirements

    NASA Astrophysics Data System (ADS)

    Harding, Thomas H.; Rash, Clarence E.; Lattimore, Morris R.; Statz, Jonathan; Martin, John S.

    2016-05-01

    Color is one of the latest design characteristics of helmet-mounted displays (HMDs). It's inclusion in design specifications is based on two suppositions: 1) color provides an additional method of encoding information, and 2) color provides a more realistic, and hence more intuitive, presentation of information, especially pilotage imagery. To some degree, these two perceived advantages have been validated with head-down panel-mounted displays, although not without a few problems associated with visual physiology and perception. These problems become more prevalent when the user population expands beyond military aviators to a general user population, of which a significant portion may have color vision deficiencies. When color is implemented in HMDs, which are eyes-out, see-through displays, visual perception issues become an increased concern. A major confound with HMDs is their inherent see-through (transparent) property. The result is color in the displayed image combines with color from the outside (or in-cockpit) world, possibly producing a false perception of either or both images. While human-factors derived guidelines based on trial and error have been developed, color HMD systems still place more emphasis on colorimetric than perceptual standards. This paper identifies the luminance and color contrast requirements for see-through HMDs. Also included is a discussion of ambient scene metrics and the choice of symbology color.

  16. Sustained attention to objects' motion sharpens position representations: Attention to changing position and attention to motion are distinct.

    PubMed

    Howard, Christina J; Rollings, Victoria; Hardie, Amy

    2017-06-01

    In tasks where people monitor moving objects, such the multiple object tracking task (MOT), observers attempt to keep track of targets as they move amongst distracters. The literature is mixed as to whether observers make use of motion information to facilitate performance. We sought to address this by two means: first by superimposing arrows on objects which varied in their informativeness about motion direction and second by asking observers to attend to motion direction. Using a position monitoring task, we calculated mean error magnitudes as a measure of the precision with which target positions are represented. We also calculated perceptual lags versus extrapolated reports, which are the times at which positions of targets best match position reports. We find that the presence of motion information in the form of superimposed arrows made no difference to position report precision nor perceptual lag. However, when we explicitly instructed observers to attend to motion, we saw facilitatory effects on position reports and in some cases reports that best matched extrapolated rather than lagging positions for small set sizes. The results indicate that attention to changing positions does not automatically recruit attention to motion, showing a dissociation between sustained attention to changing positions and attention to motion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Selecting multiple features delays perception, but only when targets are horizontally arranged.

    PubMed

    Lo, Shih-Yu

    2017-01-01

    Based on the finding that perception is lagged by attention split on multiple features (Lo et al., 2012), this study investigated how the feature-based lag effect interacts with the target spatial arrangement. Participants were presented with gratings the spatial frequencies of which constantly changed. The task was to monitor two gratings of the same or different colors and report their spatial frequencies right before the stimulus offset. The results showed a perceptual lag wherein the reported value was closer to the physical value some time prior to the stimulus offset. This lag effect was larger when the two gratings were of different colors than when they were the same color. Furthermore, the feature-based lag effect was statistically significant when the two gratings were horizontally arranged but not when they were vertically or diagonally arranged. A model is proposed to explain the effect of target arrangement: When targets are horizontally arranged, selecting an additional feature delays perception. When targets are vertically or diagonally arranged, target selection for the lower field is prioritized. This prioritization on the lower target might prompt observers to only select the lower target and ignore the upper one, and this causes more perceptual errors without delaying perception. © 2017 Elsevier B.V. All rights reserved.

  18. Decision ambiguity is mediated by a late positive potential originating from cingulate cortex.

    PubMed

    Sun, Sai; Zhen, Shanshan; Fu, Zhongzheng; Wu, Daw-An; Shimojo, Shinsuke; Adolphs, Ralph; Yu, Rongjun; Wang, Shuo

    2017-08-15

    People often make decisions in the face of ambiguous information, but it remains unclear how ambiguity is represented in the brain. We used three types of ambiguous stimuli and combined EEG and fMRI to examine the neural representation of perceptual decisions under ambiguity. We identified a late positive potential, the LPP, which differentiated levels of ambiguity, and which was specifically associated with behavioral judgments about choices that were ambiguous, rather than passive perception of ambiguous stimuli. Mediation analyses together with two further control experiments confirmed that the LPP was generated only when decisions are made (not during mere perception of ambiguous stimuli), and only when those decisions involved choices on a dimension that is ambiguous. A further control experiment showed that a stronger LPP arose in the presence of ambiguous stimuli compared to when only unambiguous stimuli were present. Source modeling suggested that the LPP originated from multiple loci in cingulate cortex, a finding we further confirmed using fMRI and fMRI-guided ERP source prediction. Taken together, our findings argue for a role of an LPP originating from cingulate cortex in encoding decisions based on task-relevant perceptual ambiguity, a process that may in turn influence confidence judgment, response conflict, and error correction. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Quantitative image quality evaluation of MR images using perceptual difference models

    PubMed Central

    Miao, Jun; Huo, Donglai; Wilson, David L.

    2008-01-01

    The authors are using a perceptual difference model (Case-PDM) to quantitatively evaluate image quality of the thousands of test images which can be created when optimizing fast magnetic resonance (MR) imaging strategies and reconstruction techniques. In this validation study, they compared human evaluation of MR images from multiple organs and from multiple image reconstruction algorithms to Case-PDM and similar models. The authors found that Case-PDM compared very favorably to human observers in double-stimulus continuous-quality scale and functional measurement theory studies over a large range of image quality. The Case-PDM threshold for nonperceptible differences in a 2-alternative forced choice study varied with the type of image under study, but was ≈1.1 for diffuse image effects, providing a rule of thumb. Ordering the image quality evaluation models, we found in overall Case-PDM ≈ IDM (Sarnoff Corporation) ≈ SSIM [Wang et al. IEEE Trans. Image Process. 13, 600–612 (2004)] > mean squared error ≈ NR [Wang et al. (2004) (unpublished)] > DCTune (NASA) > IQM (MITRE Corporation). The authors conclude that Case-PDM is very useful in MR image evaluation but that one should probably restrict studies to similar images and similar processing, normally not a limitation in image reconstruction studies. PMID:18649487

  20. Aircraft flight test trajectory control

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1988-01-01

    Two design techniques for linear flight test trajectory controllers (FTTCs) are described: Eigenstructure assignment and the minimum error excitation technique. The two techniques are used to design FTTCs for an F-15 aircraft model for eight different maneuvers at thirty different flight conditions. An evaluation of the FTTCs is presented.

  1. Top-down (Prior Knowledge) and Bottom-up (Perceptual Modality) Influences on Spontaneous Interpersonal Synchronization.

    PubMed

    Gipson, Christina L; Gorman, Jamie C; Hessler, Eric E

    2016-04-01

    Coordination with others is such a fundamental part of human activity that it can happen unintentionally. This unintentional coordination can manifest as synchronization and is observed in physical and human systems alike. We investigated the role of top-down influences (prior knowledge of the perceptual modality their partner is using) and bottom-up factors (perceptual modality combination) on spontaneous interpersonal synchronization. We examine this phenomena with respect to two different theoretical perspectives that differently emphasize top-down and bottom-up factors in interpersonal synchronization: joint-action/shared cognition theories and ecological-interactive theories. In an empirical study twelve dyads performed a finger oscillation task while attending to each other's movements through either visual, auditory, or visual and auditory perceptual modalities. Half of the participants were given prior knowledge of their partner's perceptual capabilities for coordinating across these different perceptual modality combinations. We found that the effect of top-down influence depends on the perceptual modality combination between two individuals. When people used the same perceptual modalities, top-down influence resulted in less synchronization and when people used different perceptual modalities, top-down influence resulted in more synchronization. Furthermore, persistence in the change in behavior as a result of having perceptual information about each other ('social memory') was stronger when this top-down influence was present.

  2. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.

    PubMed

    Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.

  3. Perceptual load corresponds with factors known to influence visual search

    PubMed Central

    Roper, Zachary J. J.; Cosman, Joshua D.; Vecera, Shaun P.

    2014-01-01

    One account of the early versus late selection debate in attention proposes that perceptual load determines the locus of selection. Attention selects stimuli at a late processing level under low-load conditions but selects stimuli at an early level under high-load conditions. Despite the successes of perceptual load theory, a non-circular definition of perceptual load remains elusive. We investigated the factors that influence perceptual load by using manipulations that have been studied extensively in visual search, namely target-distractor similarity and distractor-distractor similarity. Consistent with previous work, search was most efficient when targets and distractors were dissimilar and the displays contained homogeneous distractors; search became less efficient when target-distractor similarity increased irrespective of display heterogeneity. Importantly, we used these same stimuli in a typical perceptual load task that measured attentional spill-over to a task-irrelevant flanker. We found a strong correspondence between search efficiency and perceptual load; stimuli that generated efficient searches produced flanker interference effects, suggesting that such displays involved low perceptual load. Flanker interference effects were reduced in displays that produced less efficient searches. Furthermore, our results demonstrate that search difficulty, as measured by search intercept, has little bearing on perceptual load. These results suggest that perceptual load might be defined in part by well-characterized, continuous factors that influence visual search. PMID:23398258

  4. Acute stress influences the discrimination of complex scenes and complex faces in young healthy men.

    PubMed

    Paul, M; Lech, R K; Scheil, J; Dierolf, A M; Suchan, B; Wolf, O T

    2016-04-01

    The stress-induced release of glucocorticoids has been demonstrated to influence hippocampal functions via the modulation of specific receptors. At the behavioral level stress is known to influence hippocampus dependent long-term memory. In recent years, studies have consistently associated the hippocampus with the non-mnemonic perception of scenes, while adjacent regions in the medial temporal lobe were associated with the perception of objects, and faces. So far it is not known whether and how stress influences non-mnemonic perceptual processes. In a behavioral study, fifty male participants were subjected either to the stressful socially evaluated cold-pressor test or to a non-stressful control procedure, before they completed a visual discrimination task, comprising scenes and faces. The complexity of the face and scene stimuli was manipulated in easy and difficult conditions. A significant three way interaction between stress, stimulus type and complexity was found. Stressed participants tended to commit more errors in the complex scenes condition. For complex faces a descriptive tendency in the opposite direction (fewer errors under stress) was observed. As a result the difference between the number of errors for scenes and errors for faces was significantly larger in the stress group. These results indicate that, beyond the effects of stress on long-term memory, stress influences the discrimination of spatial information, especially when the perception is characterized by a high complexity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Guiding attention aids the acquisition of anticipatory skill in novice soccer goalkeepers.

    PubMed

    Ryu, Donghyun; Kim, Seonjin; Abernethy, Bruce; Mann, David L

    2013-06-01

    The ability to anticipate the actions of opponents can be enhanced through perceptual-skill training, though there is doubt regarding the most effective form of doing so. We sought to evaluate whether perceptual-skill learning would be enhanced when supplemented with guiding visual information. Twenty-eight participants without soccer-playing experience were assigned to a guided perceptual-training group (n = 9), an unguided perceptual-training group (n = 10), or a control group (n = 9). The guided perceptual-training group received half of their trials with color cueing that highlighted either the key kinematic changes in the kicker's action or the known visual search strategy of expert goalkeepers. The unguided perceptual-training group undertook an equal number of trials of practice, but all trials were without guidance. The control group undertook no training intervention. All participants completed an anticipation test immediately before and after the 7-day training intervention, as well as a 24-hr retention test. The guided perceptual-training group significantly improved their response accuracy for anticipating the direction of soccer penalty kicks from preintervention to postintervention, whereas no change in performance was evident at posttest for either the unguided perceptual-training group or the control group. The superior performance of the guided perceptual-training group was preserved in the retention test and was confirmed when relative changes in response time were controlled using a covariate analysis. Perceptual training supplemented with guiding information provides a level of improvement in perceptual anticipatory skill that is not seen without guidance.

  6. Chromatic Perceptual Learning but No Category Effects without Linguistic Input.

    PubMed

    Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L

    2016-01-01

    Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.

  7. The influence of schizotypal traits on attention under high perceptual load.

    PubMed

    Stotesbury, Hanne; Gaigg, Sebastian B; Kirhan, Saim; Haenschel, Corinna

    2018-03-01

    Schizophrenia Spectrum Disorders (SSD) are known to be characterised by abnormalities in attentional processes, but there are inconsistencies in the literature that remain unresolved. This article considers whether perceptual resource limitations play a role in moderating attentional abnormalities in SSD. According to perceptual load theory, perceptual resource limitations can lead to attenuated or superior performance on dual-task paradigms depending on whether participants are required to process, or attempt to ignore, secondary stimuli. If SSD is associated with perceptual resource limitations, and if it represents the extreme end of an otherwise normally distributed neuropsychological phenotype, schizotypal traits in the general population should lead to disproportionate performance costs on dual-task paradigms as a function of the perceptual task demands. To test this prediction, schizotypal traits were quantified via the Schizotypal Personality Questionnaire (SPQ) in 74 healthy volunteers, who also completed a dual-task signal detection paradigm that required participants to detect central and peripheral stimuli across conditions that varied in the overall number of stimuli presented. The results confirmed decreasing performance as the perceptual load of the task increased. More importantly, significant correlations between SPQ scores and task performance confirmed that increased schizotypal traits, particularly in the cognitive-perceptual domain, are associated with greater performance decrements under increasing perceptual load. These results confirm that attentional difficulties associated with SSD extend sub-clinically into the general population and suggest that cognitive-perceptual schizotypal traits may represent a risk factor for difficulties in the regulation of attention under increasing perceptual load.

  8. Perceptual grouping enhances visual plasticity.

    PubMed

    Mastropasqua, Tommaso; Turatto, Massimo

    2013-01-01

    Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer's discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity.

  9. Perceptual Processing Affects Conceptual Processing

    ERIC Educational Resources Information Center

    van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.

    2008-01-01

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…

  10. Improving Bandwidth Utilization in a 1 Tbps Airborne MIMO Communications Downlink

    DTIC Science & Technology

    2013-03-21

    number of transmitters). C = log2 ∣∣∣∣∣INr + EsNtN0 HHH ∣∣∣∣∣ (2.32) In the signal to noise ratio, Es represents the total energy from all transmitters...channel matrix pseudo-inverse is computed by (2.36) [6, p. 970] 31 H+ = ( HHH )−1HH. (2.36) 2.6.5 Minimum Mean-Squared Error Detection. Minimum Mean Squared...H† = ( HHH + Nt SNR I )−1 HH . (3.14) Equation (3.14) was defined in [2] as an implementation of a MMSE equalizer, and was applied to the received

  11. Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum

    NASA Technical Reports Server (NTRS)

    Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.

    2001-01-01

    The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.

  12. Action speaks louder than words: young children differentially weight perceptual, social, and linguistic cues to learn verbs.

    PubMed

    Brandone, Amanda C; Pence, Khara L; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy

    2007-01-01

    This paper explores how children use two possible solutions to the verb-mapping problem: attention to perceptually salient actions and attention to social and linguistic information (speaker cues). Twenty-two-month-olds attached a verb to one of two actions when perceptual cues (presence/absence of a result) coincided with speaker cues but not when these cues were placed into conflict (Experiment 1), and not when both possible referent actions were perceptually salient (Experiment 2). By 34 months, children were able to override perceptual cues to learn the name of an action that was not perceptually salient (Experiment 3). Results demonstrate an early reliance on perceptual information for verb mapping and an emerging tendency to weight speaker information more heavily over developmental time.

  13. Perceptual memory drives learning of retinotopic biases for bistable stimuli.

    PubMed

    Murphy, Aidan P; Leopold, David A; Welchman, Andrew E

    2014-01-01

    The visual system exploits past experience at multiple timescales to resolve perceptual ambiguity in the retinal image. For example, perception of a bistable stimulus can be biased toward one interpretation over another when preceded by a brief presentation of a disambiguated version of the stimulus (positive priming) or through intermittent presentations of the ambiguous stimulus (stabilization). Similarly, prior presentations of unambiguous stimuli can be used to explicitly "train" a long-lasting association between a percept and a retinal location (perceptual association). These phenonema have typically been regarded as independent processes, with short-term biases attributed to perceptual memory and longer-term biases described as associative learning. Here we tested for interactions between these two forms of experience-dependent perceptual bias and demonstrate that short-term processes strongly influence long-term outcomes. We first demonstrate that the establishment of long-term perceptual contingencies does not require explicit training by unambiguous stimuli, but can arise spontaneously during the periodic presentation of brief, ambiguous stimuli. Using rotating Necker cube stimuli, we observed enduring, retinotopically specific perceptual biases that were expressed from the outset and remained stable for up to 40 min, consistent with the known phenomenon of perceptual stabilization. Further, bias was undiminished after a break period of 5 min, but was readily reset by interposed periods of continuous, as opposed to periodic, ambiguous presentation. Taken together, the results demonstrate that perceptual biases can arise naturally and may principally reflect the brain's tendency to favor recent perceptual interpretation at a given retinal location. Further, they suggest that an association between retinal location and perceptual state, rather than a physical stimulus, is sufficient to generate long-term biases in perceptual organization.

  14. Tomography of a displacement photon counter for discrimination of single-rail optical qubits

    NASA Astrophysics Data System (ADS)

    Izumi, Shuro; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2018-04-01

    We investigate the performance of a detection strategy composed of a displacement operation and a photon counter, which is known as a beneficial tool in optical coherent communications, to the quantum state discrimination of the two superpositions of vacuum and single photon states corresponding to the {\\hat{σ }}x eigenstates in the single-rail encoding of photonic qubits. We experimentally characterize the detection strategy in vacuum-single photon two-dimensional space using quantum detector tomography and evaluate the achievable discrimination error probability from the reconstructed measurement operators. We furthermore derive the minimum error rate obtainable with Gaussian transformations and homodyne detection. Our proof-of-principle experiment shows that the proposed scheme can achieve a discrimination error surpassing homodyne detection.

  15. An analytic technique for statistically modeling random atomic clock errors in estimation

    NASA Technical Reports Server (NTRS)

    Fell, P. J.

    1981-01-01

    Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.

  16. Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun

    1996-01-01

    In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.

  17. Beyond Perceptual Symbols: A Call for Representational Pluralism

    ERIC Educational Resources Information Center

    Dove, Guy

    2009-01-01

    Recent evidence from cognitive neuroscience suggests that certain cognitive processes employ perceptual representations. Inspired by this evidence, a few researchers have proposed that cognition is inherently perceptual. They have developed an innovative theoretical approach that rests on the notion of perceptual simulation and marshaled several…

  18. Perceptual Aspects of Motor Performance.

    ERIC Educational Resources Information Center

    Gallahue, David L.

    Perceptual-motor functioning is a cyclic process involving: (1) organizing incoming sensory stimuli with past or stored perceptual information; (2) making motor (internal) decisions based on the combination of sensory (present) and perceptual (past) information; (3) executing the actual movement (observable act) itself; and (4) evaluating the act…

  19. Some Insights of Spectral Optimization in Ocean Color Inversion

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping; Franz, Bryan; Shang, Shaoling; Dong, Qiang; Arnone, Robert

    2011-01-01

    In the past decades various algorithms have been developed for the retrieval of water constituents from the measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines an error target (or error function) between the input remote sensing reflectance and the output remote sensing reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables when the error reach a minimum (optimization is achieved) are considered the properties that form the input remote sensing reflectance; or in other words, the equations are solved numerically. The applications of this approach implicitly assume that the error is a monotonic function of the various variables. Here, with data from numerical simulation and field measurements, we show the shape of the error surface, in a way to justify the possibility of finding a solution of the various variables. In addition, because the spectral properties could be modeled differently, impacts of such differences on the error surface as well as on the retrievals are also presented.

  20. Coding for Communication Channels with Dead-Time Constraints

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Hamkins, Jon

    2004-01-01

    Coding schemes have been designed and investigated specifically for optical and electronic data-communication channels in which information is conveyed via pulse-position modulation (PPM) subject to dead-time constraints. These schemes involve the use of error-correcting codes concatenated with codes denoted constrained codes. These codes are decoded using an interactive method. In pulse-position modulation, time is partitioned into frames of Mslots of equal duration. Each frame contains one pulsed slot (all others are non-pulsed). For a given channel, the dead-time constraints are defined as a maximum and a minimum on the allowable time between pulses. For example, if a Q-switched laser is used to transmit the pulses, then the minimum allowable dead time is the time needed to recharge the laser for the next pulse. In the case of bits recorded on a magnetic medium, the minimum allowable time between pulses depends on the recording/playback speed and the minimum distance between pulses needed to prevent interference between adjacent bits during readout. The maximum allowable dead time for a given channel is the maximum time for which it is possible to satisfy the requirement to synchronize slots. In mathematical shorthand, the dead-time constraints for a given channel are represented by the pair of integers (d,k), where d is the minimum allowable number of zeroes between ones and k is the maximum allowable number of zeroes between ones. A system of the type to which the present schemes apply is represented by a binary- input, real-valued-output channel model illustrated in the figure. At the transmitting end, information bits are first encoded by use of an error-correcting code, then further encoded by use of a constrained code. Several constrained codes for channels subject to constraints of (d,infinity) have been investigated theoretically and computationally. The baseline codes chosen for purposes of comparison were simple PPM codes characterized by M-slot PPM frames separated by d-slot dead times.

Top