Hisatake, S; Kobayashi, T
2006-12-25
We demonstrate a time-to-space mapping of an optical signal with a picosecond time resolution based on an electrooptic beam deflection. A time axis of the optical signal is mapped into a spatial replica by the deflection. We theoretically derive a minimum time resolution of the time-to-space mapping and confirm it experimentally on the basis of the pulse width of the optical pulses picked out from the deflected beam through a narrow slit which acts as a temporal window. We have achieved the minimum time resolution of 1.6+/-0.2 ps.
Prinz, P; Ronacher, B
2002-08-01
The temporal resolution of auditory receptors of locusts was investigated by applying noise stimuli with sinusoidal amplitude modulations and by computing temporal modulation transfer functions. These transfer functions showed mostly bandpass characteristics, which are rarely found in other species at the level of receptors. From the upper cut-off frequencies of the modulation transfer functions the minimum integration times were calculated. Minimum integration times showed no significant correlation to the receptor spike rates but depended strongly on the body temperature. At 20 degrees C the average minimum integration time was 1.7 ms, dropping to 0.95 ms at 30 degrees C. The values found in this study correspond well to the range of minimum integration times found in birds and mammals. Gap detection is another standard paradigm to investigate temporal resolution. In locusts and other grasshoppers application of this paradigm yielded values of the minimum detectable gap widths that are approximately twice as large than the minimum integration times reported here.
NASA Astrophysics Data System (ADS)
Smith, James F.
2017-11-01
With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.
A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance
NASA Technical Reports Server (NTRS)
Bowe, Aisha Ruth; Santiago, Confesor
2012-01-01
Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.
Du, Shichuan; Martinez, Aleix M.
2013-01-01
Abstract Facial expressions of emotion are essential components of human behavior, yet little is known about the hierarchical organization of their cognitive analysis. We study the minimum exposure time needed to successfully classify the six classical facial expressions of emotion (joy, surprise, sadness, anger, disgust, fear) plus neutral as seen at different image resolutions (240 × 160 to 15 × 10 pixels). Our results suggest a consistent hierarchical analysis of these facial expressions regardless of the resolution of the stimuli. Happiness and surprise can be recognized after very short exposure times (10–20 ms), even at low resolutions. Fear and anger are recognized the slowest (100–250 ms), even in high-resolution images, suggesting a later computation. Sadness and disgust are recognized in between (70–200 ms). The minimum exposure time required for successful classification of each facial expression correlates with the ability of a human subject to identify it correctly at low resolutions. These results suggest a fast, early computation of expressions represented mostly by low spatial frequencies or global configural cues and a later, slower process for those categories requiring a more fine-grained analysis of the image. We also demonstrate that those expressions that are mostly visible in higher-resolution images are not recognized as accurately. We summarize implications for current computational models. PMID:23509409
Davis, Joe M
2011-10-28
General equations are derived for the distribution of minimum resolution between two chromatographic peaks, when peak heights in a multi-component chromatogram follow a continuous statistical distribution. The derivation draws on published theory by relating the area under the distribution of minimum resolution to the area under the distribution of the ratio of peak heights, which in turn is derived from the peak-height distribution. Two procedures are proposed for the equations' numerical solution. The procedures are applied to the log-normal distribution, which recently was reported to describe the distribution of component concentrations in three complex natural mixtures. For published statistical parameters of these mixtures, the distribution of minimum resolution is similar to that for the commonly assumed exponential distribution of peak heights used in statistical-overlap theory. However, these two distributions of minimum resolution can differ markedly, depending on the scale parameter of the log-normal distribution. Theory for the computation of the distribution of minimum resolution is extended to other cases of interest. With the log-normal distribution of peak heights as an example, the distribution of minimum resolution is computed when small peaks are lost due to noise or detection limits, and when the height of at least one peak is less than an upper limit. The distribution of minimum resolution shifts slightly to lower resolution values in the first case and to markedly larger resolution values in the second one. The theory and numerical procedure are confirmed by Monte Carlo simulation. Copyright © 2011 Elsevier B.V. All rights reserved.
Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain
Zachary A. Holden; John T. Abatzoglou; Charles H. Luce; L. Scott Baggett
2011-01-01
Available air temperature models do not adequately account for the influence of terrain on nocturnal air temperatures. An empirical model for night time air temperatures was developed using a network of one hundred and forty inexpensive temperature sensors deployed across the Bitterroot National Forest, Montana. A principle component analysis (PCA) on minimum...
Kaneta, Tomohiro; Ogawa, Matsuyoshi; Motomura, Nobutoku; Iizuka, Hitoshi; Arisawa, Tetsu; Hino-Shishikura, Ayako; Yoshida, Keisuke; Inoue, Tomio
2017-10-11
The goal of this study was to evaluate the performance of the Celesteion positron emission tomography/computed tomography (PET/CT) scanner, which is characterized by a large-bore and time-of-flight (TOF) function, in accordance with the NEMA NU-2 2012 standard and version 2.0 of the Japanese guideline for oncology fluorodeoxyglucose PET/CT data acquisition protocol. Spatial resolution, sensitivity, count rate characteristic, scatter fraction, energy resolution, TOF timing resolution, and image quality were evaluated according to the NEMA NU-2 2012 standard. Phantom experiments were performed using 18 F-solution and an IEC body phantom of the type described in the NEMA NU-2 2012 standard. The minimum scanning time required for the detection of a 10-mm hot sphere with a 4:1 target-to-background ratio, the phantom noise equivalent count (NEC phantom ), % background variability (N 10mm ), % contrast (Q H,10mm ), and recovery coefficient (RC) were calculated according to the Japanese guideline. The measured spatial resolution ranged from 4.5- to 5-mm full width at half maximum (FWHM). The sensitivity and scatter fraction were 3.8 cps/kBq and 37.3%, respectively. The peak noise-equivalent count rate was 70 kcps in the presence of 29.6 kBq mL -1 in the phantom. The system energy resolution was 12.4% and the TOF timing resolution was 411 ps at FWHM. Minimum scanning times of 2, 7, 6, and 2 min per bed position, respectively, are recommended for visual score, noise-equivalent count (NEC) phantom , N 10mm , and the Q H,10mm to N 10mm ratio (QNR) by the Japanese guideline. The RC of a 10-mm-diameter sphere was 0.49, which exceeded the minimum recommended value. The Celesteion large-bore PET/CT system had low sensitivity and NEC, but good spatial and time resolution when compared to other PET/CT scanners. The QNR met the recommended values of the Japanese guideline even at 2 min. The Celesteion is therefore thought to provide acceptable image quality with 2 min/bed position acquisition, which is the most common scan protocol in Japan.
Toward a RPC-based muon tomography system for cargo containers.
NASA Astrophysics Data System (ADS)
Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.
2014-10-01
A large area scanner for cosmic muon tomography is currently being developed at University of Bristol. Thanks to their abundance and penetrating power, cosmic muons have been suggested as ideal candidates to scan large containers in search of special nuclear materials, which are characterized by high-Z and high density. The feasibility of such a scanner heavily depends on the detectors used to track the muons: for a typical container, the minimum required sensitive area is of the order of 100 2. The spatial resolution required depends on the geometrical configuration of the detectors. For practical purposes, a resolution of the order of 1 mm or better is desirable. A good time resolution can be exploited to provide momentum information: a resolution of the order of nanoseconds can be used to separate sub-GeV muons from muons with higher energies. Resistive plate chambers have a low cost per unit area and good spatial and time resolution; these features make them an excellent choice as detectors for muon tomography. In order to instrument a large area demonstrator we have produced 25 new readout boards and 30 glass RPCs. The RPCs measure 1800 mm× 600 mm and are read out using 1.68 mm pitch copper strips. The chambers were tested with a standardized procedure, i.e. without optimizing the working parameters to take into account differences in the manufacturing process, and the results show that the RPCs have an efficiency between 87% and 95%. The readout electronics show a signal to noise ratio greater than 20 for minimum ionizing particles. Spatial resolution better than 500 μm can easily be achieved using commercial read out ASICs. These results are better than the original minimum requirements to pass the tests and we are now ready to install the detectors.
Minimum Requirements for Taxicab Security Cameras.
Zeng, Shengke; Amandus, Harlan E; Amendola, Alfred A; Newbraugh, Bradley H; Cantis, Douglas M; Weaver, Darlene
2014-07-01
The homicide rate of taxicab-industry is 20 times greater than that of all workers. A NIOSH study showed that cities with taxicab-security cameras experienced significant reduction in taxicab driver homicides. Minimum technical requirements and a standard test protocol for taxicab-security cameras for effective taxicab-facial identification were determined. The study took more than 10,000 photographs of human-face charts in a simulated-taxicab with various photographic resolutions, dynamic ranges, lens-distortions, and motion-blurs in various light and cab-seat conditions. Thirteen volunteer photograph-evaluators evaluated these face photographs and voted for the minimum technical requirements for taxicab-security cameras. Five worst-case scenario photographic image quality thresholds were suggested: the resolution of XGA-format, highlight-dynamic-range of 1 EV, twilight-dynamic-range of 3.3 EV, lens-distortion of 30%, and shutter-speed of 1/30 second. These minimum requirements will help taxicab regulators and fleets to identify effective taxicab-security cameras, and help taxicab-security camera manufacturers to improve the camera facial identification capability.
On the timing performance of thin planar silicon sensors
NASA Astrophysics Data System (ADS)
Akchurin, N.; Ciriolo, V.; Currás, E.; Damgov, J.; Fernández, M.; Gallrapp, C.; Gray, L.; Junkes, A.; Mannelli, M.; Martin Kwok, K. H.; Meridiani, P.; Moll, M.; Nourbakhsh, S.; Pigazzini, S.; Scharf, C.; Silva, P.; Steinbrueck, G.; de Fatis, T. Tabarelli; Vila, I.
2017-07-01
We report on the signal timing capabilities of thin silicon sensors when traversed by multiple simultaneous minimum ionizing particles (MIP). Three different planar sensors, with depletion thicknesses 133, 211, and 285 μm, have been exposed to high energy muons and electrons at CERN. We describe signal shape and timing resolution measurements as well as the response of these devices as a function of the multiplicity of MIPs. We compare these measurements to simulations where possible. We achieve better than 20 ps timing resolution for signals larger than a few tens of MIPs.
NASA Astrophysics Data System (ADS)
Akchurin, Nural; CMS Collaboration
2017-11-01
We report on the signal timing capabilities of thin silicon sensors when traversed by multiple simultaneous minimum ionizing particles (MIP). Three different planar sensors, 133, 211, and 285 μm thick in depletion thickness, have been exposed to high energy muons and electrons at CERN. We describe signal shape and timing resolution measurements as well as the response of these devices as a function of the multiplicity of MIPs. We compare these measurements to simulations where possible. We achieve better than 20 ps timing resolution for signals larger than a few tens of MIPs.
An Airborne Conflict Resolution Approach Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Mondoloni, Stephane; Conway, Sheila
2001-01-01
An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.
Minimum Requirements for Taxicab Security Cameras*
Zeng, Shengke; Amandus, Harlan E.; Amendola, Alfred A.; Newbraugh, Bradley H.; Cantis, Douglas M.; Weaver, Darlene
2015-01-01
Problem The homicide rate of taxicab-industry is 20 times greater than that of all workers. A NIOSH study showed that cities with taxicab-security cameras experienced significant reduction in taxicab driver homicides. Methods Minimum technical requirements and a standard test protocol for taxicab-security cameras for effective taxicab-facial identification were determined. The study took more than 10,000 photographs of human-face charts in a simulated-taxicab with various photographic resolutions, dynamic ranges, lens-distortions, and motion-blurs in various light and cab-seat conditions. Thirteen volunteer photograph-evaluators evaluated these face photographs and voted for the minimum technical requirements for taxicab-security cameras. Results Five worst-case scenario photographic image quality thresholds were suggested: the resolution of XGA-format, highlight-dynamic-range of 1 EV, twilight-dynamic-range of 3.3 EV, lens-distortion of 30%, and shutter-speed of 1/30 second. Practical Applications These minimum requirements will help taxicab regulators and fleets to identify effective taxicab-security cameras, and help taxicab-security camera manufacturers to improve the camera facial identification capability. PMID:26823992
Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V
2012-08-01
This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.
Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum
NASA Technical Reports Server (NTRS)
Tennant, Allyn F.; Becker, Werner; Juda, Michael X.; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.; Shibazaki, Noriaki;
1999-01-01
The Chandra X-ray Observatory observed the Crab Nebula and Pulsar using the Low-Energy Transmission Grating (LETG) with the High-Resolution Camera (HRC). Time-resolved zeroth-order images reveal that the pulsar emits x rays at all pulse phases. Analysis of the flux at minimum -- most likely nonthermal in origin -- places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile appears to confirm the absolute timing of the Observatory to within about 0.2 ms.
Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum
NASA Technical Reports Server (NTRS)
Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.
2001-01-01
The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Jason Lee, E-mail: jasoncurtis.astro@gmail.com
The solar analogs of M67 let us glimpse the probable behavior of the Sun on timescales surpassing the duration of human civilization. M67 can serve as a solar proxy because its stars share a similar age and composition with the Sun. Previous surveys of M67 observed that 15% of its Sun-like stars exhibited chromospheric activity levels below solar minimum, which suggest that these stars might be in activity-minimum states analogous to the Maunder Minimum. The activity diagnostic used, the HK index (relative intensities of the Ca ii H and K lines integrated over 1 Å bandpasses), was measured from low-resolution spectramore » ( R ≈ 5000), as is traditional and suitable for nearby, bright stars. However, for stars beyond the Local Bubble, the interstellar medium (ISM) imprints absorption lines in spectra at Ca ii H and K, which negatively bias activity measurements when these lines fall within the HK index bandpass. I model the ISM clouds in the M67 foreground with high-resolution spectra of blue stragglers and solar analogs. I demonstrate that ISM absorption varies across the cluster and must be accounted for on a star-by-star basis. I then apply the ISM model to a solar spectrum and broaden it to the lower spectral resolution employed by prior surveys. Comparing HK indices measured from ISM-free and ISM-contaminated spectra, I find that all stars observed below solar minimum can be explained by this ISM bias. I conclude that there is no compelling evidence for Maunder Minimum candidates in M67 at this time.« less
Low Streamflow Forcasting using Minimum Relative Entropy
NASA Astrophysics Data System (ADS)
Cui, H.; Singh, V. P.
2013-12-01
Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.
NASA Astrophysics Data System (ADS)
Papa, A.; Kettle, P.-R.; Ripiccini, E.; Rutar, G.
2016-07-01
Several scintillating fibre prototypes (single- and double-layers) made of 250 μm multi-clad square fibres coupled to silicon photomultiplier have been studied using electrons, positrons and muons at different energies. Current measurements show promising results: already for a single fibre layer and minimum ionizing particles we obtain a detection efficiency ≥ 95 % (mean collected light/fibre ≈ 8 phe), a timing resolution of 550 ps/fibre and a foreseen spatial resolution < 100 μm, based on the achieved negligible optical cross-talk between fibres (< 1 %). We will also discuss the performances of a double-layer staggered prototype configuration, for which a full detection efficiency (≥ 99 %) has been measured together with a timing resolution of ≈ 400 ps for double hit events.
NASA Astrophysics Data System (ADS)
Irby, Victor D.
2004-09-01
The concept and subsequent experimental verification of the proportionality between pulse amplitude and detector transit time for microchannel-plate detectors is presented. This discovery has led to considerable improvement in the overall timing resolution for detection of high-energy ggr-photons. Utilizing a 22Na positron source, a full width half maximum (FWHM) timing resolution of 138 ps has been achieved. This FWHM includes detector transit-time spread for both chevron-stack-type detectors, timing spread due to uncertainties in annihilation location, all electronic uncertainty and any remaining quantum mechanical uncertainty. The first measurement of the minimum quantum uncertainty in the time interval between detection of the two annihilation photons is reported. The experimental results give strong evidence against instantaneous spatial localization of ggr-photons due to measurement-induced nonlocal quantum wavefunction collapse. The experimental results are also the first that imply momentum is conserved only after the quantum uncertainty in time has elapsed (Yukawa H 1935 Proc. Phys. Math. Soc. Japan 17 48).
Obtaining Reliable Predictions of Terrestrial Energy Coupling From Real-Time Solar Wind Measurement
NASA Technical Reports Server (NTRS)
Weimer, Daniel R.
2001-01-01
The first draft of a manuscript titled "Variable time delays in the propagation of the interplanetary magnetic field" has been completed, for submission to the Journal of Geophysical Research. In the preparation of this manuscript all data and analysis programs had been updated to the highest temporal resolution possible, at 16 seconds or better. The program which computes the "measured" IMF propagation time delays from these data has also undergone another improvement. In another significant development, a technique has been developed in order to predict IMF phase plane orientations, and the resulting time delays, using only measurements from a single satellite at L1. The "minimum variance" method is used for this computation. Further work will be done on optimizing the choice of several parameters for the minimum variance calculation.
Superresolution SAR Imaging Algorithm Based on Mvm and Weighted Norm Extrapolation
NASA Astrophysics Data System (ADS)
Zhang, P.; Chen, Q.; Li, Z.; Tang, Z.; Liu, J.; Zhao, L.
2013-08-01
In this paper, we present an extrapolation approach, which uses minimum weighted norm constraint and minimum variance spectrum estimation, for improving synthetic aperture radar (SAR) resolution. Minimum variance method is a robust high resolution method to estimate spectrum. Based on the theory of SAR imaging, the signal model of SAR imagery is analyzed to be feasible for using data extrapolation methods to improve the resolution of SAR image. The method is used to extrapolate the efficient bandwidth in phase history field and better results are obtained compared with adaptive weighted norm extrapolation (AWNE) method and traditional imaging method using simulated data and actual measured data.
Wiener-matrix image restoration beyond the sampling passband
NASA Technical Reports Server (NTRS)
Rahman, Zia-Ur; Alter-Gartenberg, Rachel; Fales, Carl L.; Huck, Friedrich O.
1991-01-01
A finer-than-sampling-lattice resolution image can be obtained using multiresponse image gathering and Wiener-matrix restoration. The multiresponse image gathering weighs the within-passband and aliased signal components differently, allowing the Wiener-matrix restoration filter to unscramble these signal components and restore spatial frequencies beyond the sampling passband of the photodetector array. A multiresponse images can be reassembled into a single minimum mean square error image with a resolution that is sq rt A times finer than the photodetector-array sampling lattice.
Three-dimensional laser microvision.
Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y
2001-04-10
A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum.
A Method for Modeling Household Occupant Behavior to Simulate Residential Energy Consumption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brandon J; Starke, Michael R; Abdelaziz, Omar
2014-01-01
This paper presents a statistical method for modeling the behavior of household occupants to estimate residential energy consumption. Using data gathered by the U.S. Census Bureau in the American Time Use Survey (ATUS), actions carried out by survey respondents are categorized into ten distinct activities. These activities are defined to correspond to the major energy consuming loads commonly found within the residential sector. Next, time varying minute resolution Markov chain based statistical models of different occupant types are developed. Using these behavioral models, individual occupants are simulated to show how an occupant interacts with the major residential energy consuming loadsmore » throughout the day. From these simulations, the minimum number of occupants, and consequently the minimum number of multiple occupant households, needing to be simulated to produce a statistically accurate representation of aggregate residential behavior can be determined. Finally, future work will involve the use of these occupant models along side residential load models to produce a high-resolution energy consumption profile and estimate the potential for demand response from residential loads.« less
Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C
2018-01-09
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
NASA Astrophysics Data System (ADS)
Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.
2018-01-01
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
A neutron camera system for MAST.
Cecconello, M; Turnyanskiy, M; Conroy, S; Ericsson, G; Ronchi, E; Sangaroon, S; Akers, R; Fitzgerald, I; Cullen, A; Weiszflog, M
2010-10-01
A prototype neutron camera has been developed and installed at MAST as part of a feasibility study for a multichord neutron camera system with the aim to measure the spatial and time resolved 2.45 MeV neutron emissivity profile. Liquid scintillators coupled to a fast digitizer are used for neutron/gamma ray digital pulse shape discrimination. The preliminary results obtained clearly show the capability of this diagnostic to measure neutron emissivity profiles with sufficient time resolution to study the effect of fast ion loss and redistribution due to magnetohydrodynamic activity. A minimum time resolution of 2 ms has been achieved with a modest 1.5 MW of neutral beam injection heating with a measured neutron count rate of a few 100 kHz.
Optimizing the Timing Resolution for the NEXT Array
NASA Astrophysics Data System (ADS)
Engelhardt, A.; Shadrick, S.; Rajabali, M.; Schmitt, K.; Grzywacz, R.
2016-09-01
In nuclear physics studies there are very few detectors capable of measuring neutron energies in the 0.1-10 MeV energy range with a reasonable resolution. The VANDLE array is the premier detector array for these measurements, yet VANDLE is limited by the its thickness (2.9 cm minimum).The Neutron dEtector with Tracking (NEXT) array would be capable of surpassing the limitations caused by the large size of VANDLE bars. A proposed configuration of each neutron detector consists of ten 3-mm thick plastic scintillators with two or more silicon photomultipliers (SiPMs) attached at each end. To achieve the desired energy resolution for neutron energy measurements through time of flight, the timing resolution between these SiPMs needs to be below 200 ps. A SiPM was placed on each end of a plastic scintillator inside a light-tight electrical box along with a 137Cs source. An analog circuit was designed in order to measure the timing difference between the two SiPMs. Different configurations of SiPM sizes, scintillator sizes, and wrappings were tested in order to determine the configuration that yields the best timing resolution. Details of the testing procedures and results will be presented. Research Supported by the National Nuclear Security Administration.
Thruster Limitation Consideration for Formation Flight Control
NASA Technical Reports Server (NTRS)
Xu, Yunjun; Fitz-Coy, Norman; Mason, Paul
2003-01-01
Physical constraints of any real system can have a drastic effect on its performance. Some of the more recognized constraints are actuator and sensor saturation and bandwidth, power consumption, sampling rate (sensor and control-loop) and computation limits. These constraints can degrade system s performance, such as settling time, overshoot, rising time, and stability margins. In order to address these issues, researchers have investigated the use of robust and nonlinear controllers that can incorporate uncertainty and constraints into a controller design. For instance, uncertainties can be addressed in the synthesis model used in such algorithms as H(sub infinity), or mu. There is a significant amount of literature addressing this type of problem. However, there is one constraint that has not often been considered; that is, actuator authority resolution. In this work, thruster resolution and controller schemes to compensate for this effect are investigated for position and attitude control of a Low Earth Orbit formation flight system In many academic problems, actuators are assumed to have infinite resolution. In real system applications, such as formation flight systems, the system actuators will not have infinite resolution. High-precision formation flying requires the relative position and the relative attitude to be controlled on the order of millimeters and arc-seconds, respectively. Therefore, the minimum force resolution is a significant concern in this application. Without the sufficient actuator resolution, the system may be unable to attain the required pointing and position precision control. Furthermore, fuel may be wasted due to high-frequency chattering phenomena when attempting to provide a fine control with inadequate actuators. To address this issue, a Sliding Mode Controller is developed along with the boundary Layer Control to provide the best control resolution constraints. A Genetic algorithm is used to optimize the controller parameters according to the states error and fuel consumption criterion. The tradeoffs and effects of the minimum force limitation on performance are studied and compared to the case without the limitation. Furthermore, two methods are proposed to reduce chattering and improve precision.
NASA Astrophysics Data System (ADS)
Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.
2017-04-01
Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can overcome this challenge and provides a displacement measurement resolution of 116 nm and a strain resolution of 0.04% over a gage length of 300 µm. Similarly, the ability to capture inhomogeneities is demonstrated by mapping strain around a thru-hole. The robustness of the technique is also evaluated, where no appreciable change in strain measurement is observed despite the significant variations imposed on the measurement mesh. The proposed approach introduces critical improvements for the determination of displacement and strain gradients in elastomers regarding the real-time nature of strain mapping with a microscale spatial resolution.
Time-resolved brightness measurements by streaking
NASA Astrophysics Data System (ADS)
Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.
2018-03-01
Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.
Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang
2016-05-30
We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated.
Improving PET spatial resolution and detectability for prostate cancer imaging
NASA Astrophysics Data System (ADS)
Bal, H.; Guerin, L.; Casey, M. E.; Conti, M.; Eriksson, L.; Michel, C.; Fanti, S.; Pettinato, C.; Adler, S.; Choyke, P.
2014-08-01
Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%.
The X-ray Variability of Eta Car, 1996-2010
NASA Technical Reports Server (NTRS)
Corcoran, Michael F.; Hamaguchi, K.; Gull, T.; Owocki, S.; Pittard, J.
2010-01-01
X-ray photometry in the 2-10 keY band of the the supermassive binary star Eta Car has been measured with the Rossi X-ray Timing Explorer from 1996-2010. The ingress to X-ray minimum is consistent with a period of 2024 days. The 2009 X-ray minimum began on January 162009 and showed an unexpectedly abrupt recovery starting after 12 Feb 2009. The X-ray colors become harder about half-way through all three minima and continue until flux recovery. The behavior of the fluxes and X-ray colors for the most recent X-ray minimum, along with Chandra high resolution grating spectra at key phases suggests a significant change in the inner wind of Eta Car, a possible indicator that the star is entering a new unstable phase of mass loss.
On effective and optical resolutions of diffraction data sets.
Urzhumtseva, Ludmila; Klaholz, Bruno; Urzhumtsev, Alexandre
2013-10-01
In macromolecular X-ray crystallography, diffraction data sets are traditionally characterized by the highest resolution dhigh of the reflections that they contain. This measure is sensitive to individual reflections and does not refer to the eventual data incompleteness and anisotropy; it therefore does not describe the data well. A physically relevant and robust measure that provides a universal way to define the `actual' effective resolution deff of a data set is introduced. This measure is based on the accurate calculation of the minimum distance between two immobile point scatterers resolved as separate peaks in the Fourier map calculated with a given set of reflections. This measure is applicable to any data set, whether complete or incomplete. It also allows characterizion of the anisotropy of diffraction data sets in which deff strongly depends on the direction. Describing mathematical objects, the effective resolution deff characterizes the `geometry' of the set of measured reflections and is irrelevant to the diffraction intensities. At the same time, the diffraction intensities reflect the composition of the structure from physical entities: the atoms. The minimum distance for the atoms typical of a given structure is a measure that is different from and complementary to deff; it is also a characteristic that is complementary to conventional measures of the data-set quality. Following the previously introduced terms, this value is called the optical resolution, dopt. The optical resolution as defined here describes the separation of the atomic images in the `ideal' crystallographic Fourier map that would be calculated if the exact phases were known. The effective and optical resolution, as formally introduced in this work, are of general interest, giving a common `ruler' for all kinds of crystallographic diffraction data sets.
Pulse Profiles, Accretion Column Dips and a Flare in GX 1+4 During a Faint State
NASA Technical Reports Server (NTRS)
Giles, A. B.; Galloway, D. K.; Greenhill, J. G.; Storey, M. C.; Wilson, C. A.
1999-01-01
The Rossi X-ray Timing Explorer (RXTE) spacecraft observed the X-ray GX 1+4 for it period of 34 hours on July 19/20 1996. The source faded front an intensity of approximately 20 mcrab to a minimum of <= 0.7 mcrab and then partially recovered towards the end of the observation. This extended minimum lasted approximately 40,000 seconds. Phase folded light curves at a barycentric rotation period of 124.36568 +/- 0.00020 seconds show that near the center of the extended minimum the source stopped pulsing in the traditional sense but retained a weak dip feature at the rotation period. Away from the extended minimum the dips are progressively narrower at higher energies and may be interpreted as obscurations or eclipses of the hot spot by the accretion column. The pulse profile changed from leading-edge bright before the extended minimum to trailing-edge bright after it. Data from the Burst and Transient Source Experiment (BATSE) show that a torque reversal occurred < 10 days after our observation. Our data indicate that the observed rotation departs from a constant period with a P/P value of approximately -1.5% per year at a 4.5sigma significance. We infer that we may have serendipitously obtained data, with high sensitivity and temporal resolution about the time of an accretion disk spin reversal. We also observed a rapid flare which had some precursor activity close to the center of the extended minimum.
Wallsh, Josh O; Gallemore, Ron P; Taban, Mehran; Hu, Charles; Sharareh, Behnam
2013-01-01
To assess the safety and efficacy of a modified technique for pars plana placement of the Ahmed valve in combination with pars plana vitrectomy in the treatment of glaucoma associated with posterior segment disease. Thirty-nine eyes with glaucoma associated with posterior segment disease underwent pars plana vitrectomy combined with Ahmed valve placement. All valves were placed in the pars plana using a modified technique, without the pars plana clip, and using a scleral patch graft. The 24 eyes diagnosed with neovascular glaucoma had an improvement in intraocular pressure from 37.6 mmHg to 13.8 mmHg and best-corrected visual acuity from 2.13 logarithm of minimum angle of resolution to 1.40 logarithm of minimum angle of resolution. Fifteen eyes diagnosed with steroid-induced glaucoma had an improvement in intraocular pressure from 27.9 mmHg to 14.1 mmHg and best-corrected visual acuity from 1.38 logarithm of minimum angle of resolution to 1.13 logarithm of minimum angle of resolution. Complications included four cases of cystic bleb formation and one case of choroidal detachment and explantation for hypotony. Ahmed valve placement through the pars plana during vitrectomy is an effective option for managing complex cases of glaucoma without the use of the pars plana clip.
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-01-01
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification. PMID:28025525
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-12-22
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification.
NASA Astrophysics Data System (ADS)
Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.
2018-04-01
The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e‑ RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .
NASA Astrophysics Data System (ADS)
Chappell, N. A.; Jones, T.; Young, P.; Krishnaswamy, J.
2015-12-01
There is increasing awareness that under-sampling may have resulted in the omission of important physicochemical information present in water quality signatures of surface waters - thereby affecting interpretation of biogeochemical processes. For dissolved organic carbon (DOC) and nitrogen this under-sampling can now be avoided using UV-visible spectroscopy measured in-situ and continuously at a fine-resolution e.g. 15 minutes ("real time"). Few methods are available to extract biogeochemical process information directly from such high-frequency data. Jones, Chappell & Tych (2014 Environ Sci Technol: 13289-97) developed one such method using optically-derived DOC data based upon a sophisticated time-series modelling tool. Within this presentation we extend the methodology to quantify the minimum sampling interval required to avoid distortion of model structures and parameters that describe fundamental biogeochemical processes. This shifting of parameters which results from under-sampling is called "aliasing". We demonstrate that storm dynamics at a variety of sites dominate over diurnal and seasonal changes and that these must be characterised by sampling that may be sub-hourly to avoid aliasing. This is considerably shorter than that used by other water quality studies examining aliasing (e.g. Kirchner 2005 Phys Rev: 069902). The modelling approach presented is being developed into a generic tool to calculate the minimum sampling for water quality monitoring in systems driven primarily by hydrology. This is illustrated with fine-resolution, optical data from watersheds in temperate Europe through to the humid tropics.
High-Resolution Near Real-Time Drought Monitoring in South Asia
NASA Astrophysics Data System (ADS)
Aadhar, S.; Mishra, V.
2017-12-01
Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.
Using high-resolution short-term location data to describe territoriality in Pacific martens
Katie M. Moriarty; Mark A. Linnell; Brandon E. Chasco; Clinton W. Epps; William J. Zielinski
2017-01-01
The home range is one of the most frequently sought-after characteristics of an animalâs behavior and ecology. However, most techniques for evaluating home ranges were developed before GPS collar technology. We use VHF and GPS location data collected in tandem on Pacific marten (Martes caurina) to determine the minimum length of time in which frequent GPS locations...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... Document--Draft DO-XXX, Minimum Aviation Performance Standards (MASPS) for an Enhanced Flight Vision System... Discussion (9:00 a.m.-5:00 p.m.) Provide Comment Resolution of Document--Draft DO-XXX, Minimum Aviation.../Approve FRAC Draft for PMC Consideration--Draft DO- XXX, Minimum Aviation Performance Standards (MASPS...
A Simple Two Aircraft Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.
1999-01-01
Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in the cockpit, dispatchers in operation control centers and air traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control imctions.This paper describes a conflict detection and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection and resolution method.
An improved measurement system for FOG pure lag time with no changing of FOG work status
NASA Astrophysics Data System (ADS)
Chen, X.; Yang, J. H.; Zhou, Y. L.; Shu, X. W.
2018-05-01
The minimum pure lag time is an important factor for characterizing the dynamic performance of fiber optical gyroscope. It is defined as the time duration from the reception of velocity-shock signal to the output of corresponding fiber-optic gyroscope data. Many engineering projects have required for this index specifically, so the measurement of the minimum pure lag time is highly demanded. In typically measurement system, the work status of tested FOG has to be changed. In this work, a FOG pure lag time measurement system without changing the work status of the FOG has been demonstrated. During the operation of this test system, the impact structure generated a shock towards the FOG, and the pure lag time was measured through data processing analysis. The design scheme and test principle have been researched and analyzed in detail. And a prototype has been developed and used for experiment successfully. This measurement system can realize a measurement accuracy of better than ±3 μs and a system resolution of 108.6ns.
Rodríguez, Inés; Alfonso, Amparo; Alonso, Eva; Rubiolo, Juan A; Roel, María; Vlamis, Aristidis; Katikou, Panagiota; Jackson, Stephen A; Menon, Margassery Lekha; Dobson, Alan; Botana, Luis M
2017-01-20
In 2012, Tetrodotoxin (TTX) was identified in mussels and linked to the presence of Prorocentrum minimum (P. minimum) in Greece. The connexion between TTX and P. minimum was further studied in this paper. First, the presence of TTX-producer bacteria, Vibrio and Pseudomonas spp, was confirmed in Greek mussels. In addition these samples showed high activity as inhibitors of sodium currents (I Na ). P. minimum was before associated with neurotoxic symptoms, however, the nature and structure of toxins produced by this dinoflagellate remains unknown. Three P. minimum strains, ccmp1529, ccmp2811 and ccmp2956, growing in different conditions of temperature, salinity and light were used to study the production of toxic compounds. Electrophysiological assays showed no effect of ccmp2811 strain on I Na , while ccmp1529 and ccmp2956 strains were able to significantly reduce I Na in the same way as TTX. In these samples two new compounds, m/z 265 and m/z 308, were identified and characterized by liquid chromatography tandem high-resolution mass spectrometry. Besides, two TTX-related bacteria, Roseobacter and Vibrio sp, were observed. These results show for the first time that P. minimum produce TTX-like compounds with a similar ion pattern and C9-base to TTX analogues and with the same effect on I Na .
Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives
NASA Astrophysics Data System (ADS)
Rivetti, Angelo
2014-11-01
In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8-10 bit resolution, 50-100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.
O'Leary, C A; Perry, E; Bayard, A; Wainger, L; Boynton, W R
2015-10-01
One consequence of nutrient-induced eutrophication in shallow estuarine waters is the occurrence of hypoxia and anoxia that has serious impacts on biota, habitats, and biogeochemical cycles of important elements. Because of the important role of dissolved oxygen (DO) on these ecosystem features, a variety of DO criteria have been established as indicators of system condition. However, DO dynamics are complex and vary on time scales ranging from diel to decadal and spatial scales from meters to multiple kilometers. Because of these complexities, determining DO criteria attainment or failure remains difficult. We propose a method for linking two common measurement technologies for shallow water DO criteria assessment using a Chesapeake Bay tributary as a test case. Dataflow© is a spatially intensive (30-60-m collection intervals) system used to map surface water conditions at the whole estuary scale, and ConMon is a high-frequency (15-min collection intervals) fixed station approach. The former technology is effective with spatial descriptions but poor regarding temporal resolution, while the latter provides excellent temporal but very limited spatial resolution. Our methodology for combining the strengths of these measurement technologies involved a sequence of steps. First, a statistical model of surface water DO dynamics, based on temporally intense ConMon data, was developed. The results of this model were used to calculate daily DO minimum concentrations. Second, this model was then inserted into Dataflow©-generated spatial maps of DO conditions and used to adjust measured DO concentrations to daily minimum concentrations. This information was used to assess DO criteria compliance at the full tributary scale. Model results indicated that it is vital to consider the short-term time scale DO criteria across both space and time concurrently. Large fluctuations in DO occurred within a 24-h time period, and DO dynamics varied across the length and width of the tributary. The overall result provided a more detailed and realistic characterization of the shallow water DO minimum conditions that have the potential to be extended to other tributaries and regions. Broader applications of this model include instantaneous DO criteria assessment, utilizing this model in combination with aerial remote sensing, and developing DO amplitude as an indicator of impaired water bodies.
Development of a real-time transport performance optimization methodology
NASA Technical Reports Server (NTRS)
Gilyard, Glenn
1996-01-01
The practical application of real-time performance optimization is addressed (using a wide-body transport simulation) based on real-time measurements and calculation of incremental drag from forced response maneuvers. Various controller combinations can be envisioned although this study used symmetric outboard aileron and stabilizer. The approach is based on navigation instrumentation and other measurements found on state-of-the-art transports. This information is used to calculate winds and angle of attack. Thrust is estimated from a representative engine model as a function of measured variables. The lift and drag equations are then used to calculate lift and drag coefficients. An expression for drag coefficient, which is a function of parasite drag, induced drag, and aileron drag, is solved from forced excitation response data. Estimates of the parasite drag, curvature of the aileron drag variation, and minimum drag aileron position are produced. Minimum drag is then obtained by repositioning the symmetric aileron. Simulation results are also presented which evaluate the affects of measurement bias and resolution.
NASA Astrophysics Data System (ADS)
Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao
2017-12-01
The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.
Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities
Pan, Lin; Cai, Changsheng; Santerre, Rock; Zhu, Jianjun
2014-01-01
Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA) in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM) is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF). All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF. PMID:25237901
NASA Astrophysics Data System (ADS)
Zeng, Qingtian; Liu, Cong; Duan, Hua
2016-09-01
Correctness of an emergency response process specification is critical to emergency mission success. Therefore, errors in the specification should be detected and corrected at build-time. In this paper, we propose a resource conflict detection approach and removal strategy for emergency response processes constrained by resources and time. In this kind of emergency response process, there are two timing functions representing the minimum and maximum execution time for each activity, respectively, and many activities require resources to be executed. Based on the RT_ERP_Net, the earliest time to start each activity and the ideal execution time of the process can be obtained. To detect and remove the resource conflicts in the process, the conflict detection algorithms and a priority-activity-first resolution strategy are given. In this way, real execution time for each activity is obtained and a conflict-free RT_ERP_Net is constructed by adding virtual activities. By experiments, it is proved that the resolution strategy proposed can shorten the execution time of the whole process to a great degree.
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark A. J.; Beusen, Arthur H. W.; Beck, Hylke E.; King, Henry; Schipper, Aafke M.
2018-03-01
Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean, maximum and minimum annual flow for each year in the period 1960-2015, provided as spatially continuous gridded layers. We mapped streamflow by means of artificial neural networks (ANNs) regression. An ensemble of ANNs were fitted on monthly streamflow observations from 6600 monitoring stations worldwide, i.e., minimum and maximum annual flows represent the lowest and highest mean monthly flows for a given year. As covariates we used the upstream-catchment physiography (area, surface slope, elevation) and year-specific climatic variables (precipitation, temperature, potential evapotranspiration, aridity index and seasonality indices). Confronting the maps with independent data indicated good agreement (R2 values up to 91%). FLO1K delivers essential data for freshwater ecology and water resources analyses at a global scale and yet high spatial resolution.
Sollmann, Nico; Hauck, Theresa; Tussis, Lorena; Ille, Sebastian; Maurer, Stefanie; Boeckh-Behrens, Tobias; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M
2016-10-24
The spatial resolution of repetitive navigated transcranial magnetic stimulation (rTMS) for language mapping is largely unknown. Thus, to determine a minimum spatial resolution of rTMS for language mapping, we evaluated the mapping sessions derived from 19 healthy volunteers for cortical hotspots of no-response errors. Then, the distances between hotspots (stimulation points with a high error rate) and adjacent mapping points (stimulation points with low error rates) were evaluated. Mean distance values of 13.8 ± 6.4 mm (from hotspots to ventral points, range 0.7-30.7 mm), 10.8 ± 4.8 mm (from hotspots to dorsal points, range 2.0-26.5 mm), 16.6 ± 4.8 mm (from hotspots to apical points, range 0.9-27.5 mm), and 13.8 ± 4.3 mm (from hotspots to caudal points, range 2.0-24.2 mm) were measured. According to the results, the minimum spatial resolution of rTMS should principally allow for the identification of a particular gyrus, and according to the literature, it is in good accordance with the spatial resolution of direct cortical stimulation (DCS). Since measurement was performed between hotspots and adjacent mapping points and not on a finer-grained basis, we only refer to a minimum spatial resolution. Furthermore, refinement of our results within the scope of a prospective study combining rTMS and DCS for resolution measurement during language mapping should be the next step.
Design and Implementation of a New Real-Time Frequency Sensor Used as Hardware Countermeasure
Jiménez-Naharro, Raúl; Gómez-Galán, Juan Antonio; Sánchez-Raya, Manuel; Gómez-Bravo, Fernando; Pedro-Carrasco, Manuel
2013-01-01
A new digital countermeasure against attacks related to the clock frequency is –presented. This countermeasure, known as frequency sensor, consists of a local oscillator, a transition detector, a measurement element and an output block. The countermeasure has been designed using a full-custom technique implemented in an Application-Specific Integrated Circuit (ASIC), and the implementation has been verified and characterized with an integrated design using a 0.35 μm standard Complementary Metal Oxide Semiconductor (CMOS) technology (Very Large Scale Implementation—VLSI implementation). The proposed solution is configurable in resolution time and allowed range of period, achieving a minimum resolution time of only 1.91 ns and an initialization time of 5.84 ns. The proposed VLSI implementation shows better results than other solutions, such as digital ones based on semi-custom techniques and analog ones based on band pass filters, all design parameters considered. Finally, a counter has been used to verify the good performance of the countermeasure in avoiding the success of an attack. PMID:24008285
Cho, Sanghee; Grazioso, Ron; Zhang, Nan; Aykac, Mehmet; Schmand, Matthias
2011-12-07
The main focus of our study is to investigate how the performance of digital timing methods is affected by sampling rate, anti-aliasing and signal interpolation filters. We used the Nyquist sampling theorem to address some basic questions such as what will be the minimum sampling frequencies? How accurate will the signal interpolation be? How do we validate the timing measurements? The preferred sampling rate would be as low as possible, considering the high cost and power consumption of high-speed analog-to-digital converters. However, when the sampling rate is too low, due to the aliasing effect, some artifacts are produced in the timing resolution estimations; the shape of the timing profile is distorted and the FWHM values of the profile fluctuate as the source location changes. Anti-aliasing filters are required in this case to avoid the artifacts, but the timing is degraded as a result. When the sampling rate is marginally over the Nyquist rate, a proper signal interpolation is important. A sharp roll-off (higher order) filter is required to separate the baseband signal from its replicates to avoid the aliasing, but in return the computation will be higher. We demonstrated the analysis through a digital timing study using fast LSO scintillation crystals as used in time-of-flight PET scanners. From the study, we observed that there is no significant timing resolution degradation down to 1.3 Ghz sampling frequency, and the computation requirement for the signal interpolation is reasonably low. A so-called sliding test is proposed as a validation tool checking constant timing resolution behavior of a given timing pick-off method regardless of the source location change. Lastly, the performance comparison for several digital timing methods is also shown.
Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals
DOE R&D Accomplishments Database
Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.
1982-04-01
Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.
A practical approach to determination of laboratory GC-MS limits of detection.
Underwood, P J; Kananen, G E; Armitage, E K
1997-01-01
Determination of limit of detection (LOD) values in a forensic laboratory serves a fundamental forensic requirement for assay performance. In addition to demonstrating assay capability, LOD values can also be used to fulfill certification requirements of a high-volume forensic drug laboratory. The LOD was defined as the lowest concentration of drug that the laboratory can detect in a specimen with forensic certainty at a minimum of 85% of the time. Overall batch acceptance criteria included acceptable quantitation of control materials (within 20% of target), acceptable chromatography (symmetry, peak integration, peak shape, peak, and baseline resolution), retention time within +/-1% of the extracted standard, and mass ion ratios within +/-20% of the extracted standard mass ion ratios. Individual specimen acceptance criteria were the same as the batch acceptance criteria excluding the quantitation requirement. Data were collected from all instruments on different runs. A minimum of ten data points was required for each certified instrument, and a minimum of 85% of data points was acceptable. Quantitation within +/-20% of the LOD concentration was not required, but acceptable mass ratios were required. Data points with poor chromatography (internal standard failed mass ratios; interference of the baseline, for example, shoulders; asymmetry; and baseline resolution) was omitted from the acceptable rate calculation. Data points with good chromatography with failed mass ion ratios were included in the acceptable rate calculation. With these criteria, we established the following LODs: 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid, 2 ng/mL; benzoylecgonine, 5 ng/mL; phencyclidine, 2.5 ng/mL; amphetamine, 150 ng/mL; methamphetamine, 100 ng/mL; codeine, 500 ng/mL; and morphine, 1000 ng/mL.
A program of high resolution X-ray astronomy using sounding rockets
NASA Technical Reports Server (NTRS)
1972-01-01
Two Aerobee 170 sounding rocket payloads were flown at the White Sands Missile Range: (1) a focusing X-ray collector on 31 March 1972; and (2) a high resolution telescope on 4 August 1972. Data has been reduced from each of these flights. In the first flight both the rocket and the experiment instrumentation performed adequately, and it is clear that at least the minimum scientific objectives were attained. In the second flight the attitude control system failed to point the telescope at the target for a sufficient length of time. However examination of final preflight checkout data and some flight data indicate that the instrumentation for this rocket payload was functioning according to expectations.
A Simple Two Aircraft Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.
2006-01-01
Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in, the cockpit, dispatchers in operation control centers sad and traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control functions. This paper describes a conflict detection, and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm, which is often used for missile guidance during the terminal phase. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection, and the conflict resolution methods.
Wells, Kristen J; Lee, Ji-Hyun; Calcano, Ercilia R; Meade, Cathy D; Rivera, Marlene; Fulp, William J; Roetzheim, Richard G
2012-10-01
This study examines efficacy of a lay patient navigation (PN) program aimed to reduce time between a cancer abnormality and definitive diagnosis among racially/ethnically diverse and medically underserved populations of Tampa Bay, Florida. Using a cluster randomized design, the study consisted of 11 clinics (six navigated; five control). Patients were navigated from time of a breast or colorectal abnormality to diagnostic resolution, and to completion of cancer treatment. Using a generalized mixed-effects model to assess intervention effects, we examined: (i) length of time between abnormality and definitive diagnosis, and (ii) receipt of definitive diagnosis within the 6-month minimum follow-up period. A total of 1,267 patients participated (588 navigated; 679 control). We also included data from an additional 309 chart abstractions (139 navigated arm; 170 control arm) that assessed outcomes at baseline. PN did not have a significant effect on time to diagnostic resolution in multivariable analysis that adjusted for race-ethnicity, language, insurance status, marital status, and cancer site (P = 0.16). Although more navigated patients achieved diagnostic resolution by 180 days, results were not statistically significant (74.5% navigated vs. 68.5% control, P = 0.07). PN did not impact the overall time to completion of diagnostic care or the number of patients who reached diagnostic resolution of a cancer abnormality. Further evaluation of PN programs applied to other patient populations across the cancer continuum is necessary to gain a better perspective on its effectiveness. PN programs may not impact timely resolution of an abnormality suspicious of breast or colorectal cancer. 2012 AACR
Acoustic Observation of Living Organisms Reveals the Upper Limit of the Oxygen Minimum Zone
Bertrand, Arnaud; Ballón, Michael; Chaigneau, Alexis
2010-01-01
Background Oxygen minimum zones (OMZs) are expanding in the World Ocean as a result of climate change and direct anthropogenic influence. OMZ expansion greatly affects biogeochemical processes and marine life, especially by constraining the vertical habitat of most marine organisms. Currently, monitoring the variability of the upper limit of the OMZs relies on time intensive sampling protocols, causing poor spatial resolution. Methodology/Principal Findings Using routine underwater acoustic observations of the vertical distribution of marine organisms, we propose a new method that allows determination of the upper limit of the OMZ with a high precision. Applied in the eastern South-Pacific, this original sampling technique provides high-resolution information on the depth of the upper OMZ allowing documentation of mesoscale and submesoscale features (e.g., eddies and filaments) that structure the upper ocean and the marine ecosystems. We also use this information to estimate the habitable volume for the world's most exploited fish, the Peruvian anchovy (Engraulis ringens). Conclusions/Significance This opportunistic method could be implemented on any vessel geared with multi-frequency echosounders to perform comprehensive high-resolution monitoring of the upper limit of the OMZ. Our approach is a novel way of studying the impact of physical processes on marine life and extracting valid information about the pelagic habitat and its spatial structure, a crucial aspect of Ecosystem-based Fisheries Management in the current context of climate change. PMID:20442791
NASA Astrophysics Data System (ADS)
Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Boley, Aaron C.; Michael, Scott; McConnell, Caitlin R.
2013-05-01
We conduct a convergence study of a protoplanetary disk subject to gravitational instabilities (GIs) at a time of approximate balance between heating produced by the GIs and radiative cooling governed by realistic dust opacities. We examine cooling times, characterize GI-driven spiral waves and their resultant gravitational torques, and evaluate how accurately mass transport can be represented by an α-disk formulation. Four simulations, identical except for azimuthal resolution, are conducted with a grid-based three-dimensional hydrodynamics code. There are two regions in which behaviors differ as resolution increases. The inner region, which contains 75% of the disk mass and is optically thick, has long cooling times and is well converged in terms of various measures of structure and mass transport for the three highest resolutions. The longest cooling times coincide with radii where the Toomre Q has its minimum value. Torques are dominated in this region by two- and three-armed spirals. The effective α arising from gravitational stresses is typically a few × 10-3 and is only roughly consistent with local balance of heating and cooling when time-averaged over many dynamic times and a wide range of radii. On the other hand, the outer disk region, which is mostly optically thin, has relatively short cooling times and does not show convergence as resolution increases. Treatment of unstable disks with optical depths near unity with realistic radiative transport is a difficult numerical problem requiring further study. We discuss possible implications of our results for numerical convergence of fragmentation criteria in disk simulations.
Mesoscale landscape model of gypsy moth phenology
Joseph M. Russo; John G. W. Kelley; Andrew M. Liebhold
1991-01-01
A recently-developed high resolution climatological temperature data base was input into a gypsy moth phenology model. The high resolution data were created from a coupling of 30-year averages of station observations and digital elevation data. The resultant maximum and minimum temperatures have about a 1 km resolution which represents meteorologically the mesoscale....
A multi-purpose readout electronics for CdTe and CZT detectors for x-ray imaging applications
NASA Astrophysics Data System (ADS)
Yue, X. B.; Deng, Z.; Xing, Y. X.; Liu, Y. N.
2017-09-01
A multi-purpose readout electronics based on the DPLMS digital filter has been developed for CdTe and CZT detectors for X-ray imaging applications. Different filter coefficients can be synthesized optimized either for high energy resolution at relatively low counting rate or for high rate photon-counting with reduced energy resolution. The effects of signal width constraints, sampling rate and length were numerical studied by Mento Carlo simulation with simple CRRC shaper input signals. The signal width constraint had minor effect and the ENC was only increased by 6.5% when the signal width was shortened down to 2 τc. The sampling rate and length depended on the characteristic time constants of both input and output signals. For simple CR-RC input signals, the minimum number of the filter coefficients was 12 with 10% increase in ENC when the output time constant was close to the input shaping time. A prototype readout electronics was developed for demonstration, using a previously designed analog front ASIC and a commercial ADC card. Two different DPLMS filters were successfully synthesized and applied for high resolution and high counting rate applications respectively. The readout electronics was also tested with a linear array CdTe detector. The energy resolutions of Am-241 59.5 keV peak were measured to be 6.41% in FWHM for the high resolution filter and to be 13.58% in FWHM for the high counting rate filter with 160 ns signal width constraint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.
The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less
Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; ...
2017-11-20
The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less
NASA Astrophysics Data System (ADS)
Haji Heidari, Mehdi; Mozaffarzadeh, Moein; Manwar, Rayyan; Nasiriavanaki, Mohammadreza
2018-02-01
In recent years, the minimum variance (MV) beamforming has been widely studied due to its high resolution and contrast in B-mode Ultrasound imaging (USI). However, the performance of the MV beamformer is degraded at the presence of noise, as a result of the inaccurate covariance matrix estimation which leads to a low quality image. Second harmonic imaging (SHI) provides many advantages over the conventional pulse-echo USI, such as enhanced axial and lateral resolutions. However, the low signal-to-noise ratio (SNR) is a major problem in SHI. In this paper, Eigenspace-based minimum variance (EIBMV) beamformer has been employed for second harmonic USI. The Tissue Harmonic Imaging (THI) is achieved by Pulse Inversion (PI) technique. Using the EIBMV weights, instead of the MV ones, would lead to reduced sidelobes and improved contrast, without compromising the high resolution of the MV beamformer (even at the presence of a strong noise). In addition, we have investigated the effects of variations of the important parameters in computing EIBMV weights, i.e., K, L, and δ, on the resolution and contrast obtained in SHI. The results are evaluated using numerical data (using point target and cyst phantoms), and the proper parameters of EIBMV are indicated for THI.
Regaining Lost Separation in a Piloted Simulation of Autonomous Aircraft Operations
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Eischeid, Todd M.; Palmer, Michael T.; Wing, David J.
2002-01-01
NASA is currently investigating a new concept of operations for the National Airspace System, designed to improve capacity while maintaining or improving current levels of safety. This concept, known as Distributed Air/Ground Traffic Management (DAG-TM), allows appropriately equipped autonomous aircraft to maneuver freely for flight optimization while resolving conflicts with other traffic and staying out of special use airspace and hazardous weather. While Airborne Separation Assurance System (ASAS) tools would normally allow pilots to resolve conflicts before they become hazardous, evaluation of system performance in sudden, near-term conflicts is needed in order to determine concept feasibility. If an acceptable safety level can be demonstrated in these situations, then operations may be conducted with lower separation minimums. An experiment was conducted in NASA Langley s Air Traffic Operations Lab to address issues associated with resolving near-term conflicts and the potential use of lower separation minimums. Sixteen commercial airline pilots flew a total of 32 traffic scenarios that required them to use prototype ASAS tools to resolve close range pop-up conflicts. Required separation standards were set at either 3 or 5 NM lateral spacing, with 1000 ft vertical separation being used for both cases. Reducing the lateral separation from 5 to 3 NM did not appear to increase operational risk, as indicated by the proximity to the intruder aircraft. Pilots performed better when they followed tactical guidance cues provided by ASAS than when they didn't follow the guidance. As air-air separation concepts are evolved, further studies will consider integration issues between ASAS and existing Airborne Collision Avoidance Systems (ACAS).These types of non-normal events will require the ASAS to provide effective alerts and resolutions prior to the time that an Airborne Collision Avoidance System (ACAS) would give a Resolution Advisory (RA). When an RA is issued, a pilot must take immediate action in order to avoid a potential near miss. The Traffic Alert and Collision Avoidance System (TCAS) II currently functions as an ACAS aboard commercial aircraft. Depending on the own aircraft s altitude, TCAS only issues RA s 15-35 seconds prior to the Closest Point of Approach (CPA). Prior to an RA, DAG-TM pilots operating autonomous aircraft must rely solely on ASAS for resolution guidance. An additional area of DAG-TM concept feasibility relates to a potential reduction in separation standards. Lower separation standards are likely needed in order to improve NAS efficiency and capacity. Current separation minimums are based in large part on the capabilities of older radar systems. Safety assessments are needed to determine the feasibility of reduced separation minimums. They will give strong consideration to surveillance system performance, including accuracy, integrity, and availability. Candidate surveillance systems include Automatic Dependent Surveillance-Broadcast (ADS-B) and multi-lateration systems. Considering studies done for Reduced Vertical Separation Minimums (RVSM) operations, it is likely that flight technical errors will also be considered. In addition to a thorough evaluation of surveillance system performance, a potential decision to lower the separation standards should also take operational considerations into account. An ASAS Safety Assessment study identified improper maneuvering in response to a conflict (due to ambiguous or improper resolution commands or a pilot s failure to comply with the resolution) as a potential safety risk. If near-term conflicts with lower separation minimums were determined to be more challenging for pilots, the severity of these risks could be even greater.
NASA Astrophysics Data System (ADS)
Prieto, E.; Casanovas, R.; Salvadó, M.
2018-03-01
A scintillation gamma-ray spectrometry water monitor with a 2″ × 2″ LaBr3(Ce) detector was characterized in this study. This monitor measures gamma-ray spectra of river water. Energy and resolution calibrations were performed experimentally, whereas the detector efficiency was determined using Monte Carlo simulations with EGS5 code system. Values of the minimum detectable activity concentrations for 131I and 137Cs were calculated for different integration times. As an example of the monitor performance after calibration, a radiological increment during a rainfall episode was studied.
Aberrations in stimulated emission depletion (STED) microscopy
NASA Astrophysics Data System (ADS)
Antonello, Jacopo; Burke, Daniel; Booth, Martin J.
2017-12-01
Like all methods of super-resolution microscopy, stimulated emission depletion (STED) microscopy can suffer from the effects of aberrations. The most important aspect of a STED microscope is that the depletion focus maintains a minimum, ideally zero, intensity point that is surrounded by a region of higher intensity. It follows that aberrations that cause a non-zero value of this minimum intensity are the most detrimental, as they inhibit fluorescence emission even at the centre of the depletion focus. We present analysis that elucidates the nature of these effects in terms of the different polarisation components at the focus for two-dimensional and three-dimensional STED resolution enhancement. It is found that only certain low-order aberration modes can affect the minimum intensity at the Gaussian focus. This has important consequences for the design of adaptive optics aberration correction systems.
NASA Astrophysics Data System (ADS)
MacMahon, Heber; Vyborny, Carl; Powell, Gregory; Doi, Kunio; Metz, Charles E.
1984-08-01
In digital radiography the pixel size used determines the potential spatial resolution of the system. The need for spatial resolution varies depending on the subject matter imaged. In many areas, including the chest, the minimum spatial resolution requirements have not been determined. Sarcoidosis is a disease which frequently causes subtle interstitial infiltrates in the lungs. As the initial step in an investigation designed to determine the minimum pixel size required in digital chest radiographic systems, we have studied 1 mm pixel digitized images on patients with early pulmonary sarcoidosis. The results of this preliminary study suggest that neither mild interstitial pulmonary infiltrates nor other abnormalities such as pneumothoraces may be detected reliably with 1 mm pixel digital images.
Multiscale sampling of plant diversity: Effects of minimum mapping unit size
Stohlgren, T.J.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.
1997-01-01
Only a small portion of any landscape can be sampled for vascular plant diversity because of constraints of cost (salaries, travel time between sites, etc.). Often, the investigator decides to reduce the cost of creating a vegetation map by increasing the minimum mapping unit (MMU), and/or by reducing the number of vegetation classes to be considered. Questions arise about what information is sacrificed when map resolution is decreased. We compared plant diversity patterns from vegetation maps made with 100-ha, 50-ha, 2-ha, and 0.02-ha MMUs in a 754-ha study area in Rocky Mountain National Park, Colorado, United States, using four 0.025-ha and 21 0.1-ha multiscale vegetation plots. We developed and tested species-log(area) curves, correcting the curves for within-vegetation type heterogeneity with Jaccard's coefficients. Total species richness in the study area was estimated from vegetation maps at each resolution (MMU), based on the corrected species-area curves, total area of the vegetation type, and species overlap among vegetation types. With the 0.02-ha MMU, six vegetation types were recovered, resulting in an estimated 552 species (95% CI = 520-583 species) in the 754-ha study area (330 plant species were observed in the 25 plots). With the 2-ha MMU, five vegetation types were recognized, resulting in an estimated 473 species for the study area. With the 50-ha MMU, 439 plant species were estimated for the four vegetation types recognized in the study area. With the 100-ha MMU, only three vegetation types were recognized, resulting in an estimated 341 plant species for the study area. Locally rare species and keystone ecosystems (areas of high or unique plant diversity) were missed at the 2-ha, 50-ha, and 100-ha scales. To evaluate the effects of minimum mapping unit size requires: (1) an initial stratification of homogeneous, heterogeneous, and rare habitat types; and (2) an evaluation of within-type and between-type heterogeneity generated by environmental gradients and other factors. We suggest that at least some portions of vegetation maps created at a coarser level of resolution be validated at a higher level of resolution.
NASA Astrophysics Data System (ADS)
Reiss, D.; Zanetti, M.; Neukum, G.
2011-09-01
Active dust devils were observed in Syria Planum in Mars Observer Camera - Wide Angle (MOC-WA) and High Resolution Stereo Camera (HRSC) imagery acquired on the same day with a time delay of ˜26 min. The unique operating technique of the HRSC allowed the measurement of the traverse velocities and directions of motion. Large dust devils observed in the HRSC image could be retraced to their counterparts in the earlier acquired MOC-WA image. Minimum lifetimes of three large (avg. ˜700 m in diameter) dust devils are ˜26 min, as inferred from retracing. For one of these large dust devil (˜820 m in diameter) it was possible to calculate a minimum lifetime of ˜74 min based on the measured horizontal speed and the length of its associated dust devil track. The comparison of our minimum lifetimes with previous published results of minimum and average lifetimes of small (˜19 m in diameter, avg. min. lifetime of ˜2.83 min) and medium (˜185 m in diameter, avg. min. lifetime of ˜13 min) dust devils imply that larger dust devils on Mars are active for much longer periods of time than smaller ones, as it is the case for terrestrial dust devils. Knowledge of martian dust devil lifetimes is an important parameter for the calculation of dust lifting rates. Estimates of the contribution of large dust devils (>300-1000 m in diameter) indicate that they may contribute, at least regionally, to ˜50% of dust entrainment by dust devils into the atmosphere compared to the dust devils <300 m in diameter given that the size-frequency distribution follows a power-law. Although large dust devils occur relatively rarely and the sediment fluxes are probably lower compared to smaller dust devils, their contribution to the background dust opacity by dust devils on Mars could be at least regionally large due to their longer lifetimes and ability of dust lifting into high atmospheric layers.
NASA Astrophysics Data System (ADS)
Escoffier, R. P.; Comoretto, G.; Webber, J. C.; Baudry, A.; Broadwell, C. M.; Greenberg, J. H.; Treacy, R. R.; Cais, P.; Quertier, B.; Camino, P.; Bos, A.; Gunst, A. W.
2007-02-01
Aims: The Atacama Large Millimeter Array (ALMA) is an international astronomy facility to be used for detecting and imaging all types of astronomical sources at millimeter and submillimeter wavelengths at a 5000-m elevation site in the Atacama Desert of Chile. Our main aims are: describe the correlator sub-system which is that part of the ALMA system that combines the signal from up to 64 remote individual radio antennas and forms them into a single instrument; emphasize the high spectral resolution and the configuration flexibility available with the ALMA correlator. Methods: The main digital signal processing features and a block diagram of the correlator being constructed for the ALMA radio astronomy observatory are presented. Tables of observing modes and spectral resolutions offered by the correlator system are given together with some examples of multi-resolution spectral modes. Results: The correlator is delivered by quadrants and the first quadrant is being tested while most of the other printed circuit cards required by the system have been produced. In its final version the ALMA correlator will process the outputs of up to 64 antennas using an instantaneous bandwidth of 8 GHz in each of two polarizations per antenna. In the frequency division mode, unrivalled spectral flexibility together with very high resolution (3.8 kHz) and up to 8192 spectral points are achieved. In the time division mode high time resolution is available with minimum data dump rates of 16 ms for all cross-products.
2010-02-01
subsequent research has yielded additional in- sights. This review is a consensus report of current scien- tifi c data. Expected skin reactions for an...table has been cited and reproduced Essentials The minimum radiation dose n causing a specifi c type of reac- tion in the skin or hair is best...expressed in terms of a range of doses, rather than a single threshold dose. The times of onset and resolution n of specifi c radiation injuries
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, W. Geoffrey; Gray, David Clinton
Purpose: To introduce the Joint Commission's requirements for annual diagnostic physics testing of all nuclear medicine equipment, effective 7/1/2014, and to highlight an acceptable methodology for testing lowcontrast resolution of the nuclear medicine imaging system. Methods: The Joint Commission's required diagnostic physics evaluations are to be conducted for all of the image types produced clinically by each scanner. Other accrediting bodies, such as the ACR and the IAC, have similar imaging metrics, but do not emphasize testing low-contrast resolution as it relates clinically. The proposed method for testing low contrast resolution introduces quantitative metrics that are clinically relevant. The acquisitionmore » protocol and calculation of contrast levels will utilize a modified version of the protocol defined in AAPM Report #52. Results: Using the Rose criterion for lesion detection with a SNRpixel = 4.335 and a CNRlesion = 4, the minimum contrast levels for 25.4 mm and 31.8 mm cold spheres were calculated to be 0.317 and 0.283, respectively. These contrast levels are the minimum threshold that must be attained to guard against false positive lesion detection. Conclusion: Low contrast resolution, or detectability, can be properly tested in a manner that is clinically relevant by measuring the contrast level of cold spheres within a Jaszczak phantom using pixel values within ROI's placed in the background and cold sphere regions. The measured contrast levels are then compared to a minimum threshold calculated using the Rose criterion and a CNRlesion = 4. The measured contrast levels must either meet or exceed this minimum threshold to prove acceptable lesion detectability. This research and development activity was performed by the authors while employed at West Physics Consulting, LLC. It is presented with the consent of West Physics, which has authorized the dissemination of the information and/or techniques described in the work.« less
Thermal effects in photomask engineering and nano-thermometry
NASA Astrophysics Data System (ADS)
Chu, Dachen
Electron Beam Lithography (EBL) in photomask fabrication results in heating of the resist films. The local heating can change the chemical properties of resist, leading to placement errors. The heating induced error has been believed to be increasingly significant as the transistor minimum feature size approaches the sub 100 nm region. A Green's function approach has been developed to calculate four-dimensional temperature profiles in complex structures such as the multi-layer work-pieces being exposed in EBL. The model is being used to characterize different ebeam writing strategies to find the optimum. To provide the parameters for the model, two independent techniques have been employed: a thin film electrode method and a laser thermal-reflectance method. Unlike earlier results from polyimide films, no appreciable anisotropy was observed in thermal conductivities for the polymeric resists tested. Gold/nickel thin film thermocouples with minimum junction area of 100nm by 100nm were fabricated and calibrated. These thermocouple demonstrated a 400ns response time when heated by a 10ns laser pulse. Using these nano thermocouples, transient resist heating temperature profiles were for the first time measured at room temperature. Experimental results showed a good agreement with the Green's function model. We also observed a tradeoff in the scaling of thermocouple sensors. The smaller thermocouples may provide higher spatial and temporal resolutions but have poorer temperature resolution. In conclusion, we both modeled and measured the resist heating in EBL. In short exposure time (˜1us or less) the resist heating is nearly adiabatic, while in longer time the heating is dominated by substrate. Nano scale metallic thermocouples were explored and tradeoff was observed in dimension scaling.
Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien
2018-01-01
To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyang; Friedl, Mark A.; Schaaf, Crystal B.
2006-12-01
In the last two decades the availability of global remote sensing data sets has provided a new means of studying global patterns and dynamics in vegetation. The vast majority of previous work in this domain has used data from the Advanced Very High Resolution Radiometer, which until recently was the primary source of global land remote sensing data. In recent years, however, a number of new remote sensing data sources have become available that have significantly improved the capability of remote sensing to monitor global ecosystem dynamics. In this paper, we describe recent results using data from NASA's Moderate Resolution Imaging Spectroradiometer to study global vegetation phenology. Using a novel new method based on fitting piecewise logistic models to time series data from MODIS, key transition dates in the annual cycle(s) of vegetation growth can be estimated in an ecologically realistic fashion. Using this method we have produced global maps of seven phenological metrics at 1-km spatial resolution for all ecosystems exhibiting identifiable annual phenologies. These metrics include the date of year for (1) the onset of greenness increase (greenup), (2) the onset of greenness maximum (maturity), (3) the onset of greenness decrease (senescence), and (4) the onset of greenness minimum (dormancy). The three remaining metrics are the growing season minimum, maximum, and summation of the enhanced vegetation index derived from MODIS. Comparison of vegetation phenology retrieved from MODIS with in situ measurements shows that these metrics provide realistic estimates of the four transition dates identified above. More generally, the spatial distribution of phenological metrics estimated from MODIS data is qualitatively realistic, and exhibits strong correspondence with temperature patterns in mid- and high-latitude climates, with rainfall seasonality in seasonally dry climates, and with cropping patterns in agricultural areas.
Lyman-alpha observations in the vicinity of Saturn with Copernicus
NASA Technical Reports Server (NTRS)
Barker, E.; Cazes, S.; Emerich, C.; Vidal-Madjar, A.; Owen, T.
1980-01-01
For the first time, high-resolution Ly-alpha observations of the Saturn vicinity were completed with the Princeton spectrometer on board the Copernicus satellite. They showed that near a minimum solar activity the emissions related to several sources are 250 + or - 50 rayleighs for the interplanetary medium in a near-downwind direction, less than 100 rayleighs for the rings, 200 + or - 100 rayleighs for a torus linked to the Titan orbit, and 1400 + or - 450 rayleighs for the disk of Saturn. These results induce some constraints through the corresponding theoretical evaluations: the B ring as the primary source of the atoms for the ring emissions; an efficient production mechanism for hydrogen atoms in the Titan torus; and a slightly larger eddy diffusion coefficient in the Saturn atmosphere than in the Jupiter atmosphere near solar minimum.
a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data
NASA Astrophysics Data System (ADS)
Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.
2017-09-01
The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.
Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan
2015-09-11
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.
NASA Technical Reports Server (NTRS)
Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.
2016-01-01
The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.
Characterization of GAGG:Ce scintillators with various Al-to-Ga ratio
NASA Astrophysics Data System (ADS)
Sibczynski, Pawel; Iwanowska-Hanke, Joanna; Moszyński, Marek; Swiderski, Lukasz; Szawłowski, Marek; Grodzicka, Martyna; Szczęśniak, Tomasz; Kamada, Kei; Yoshikawa, Akira
2015-02-01
We have studied the scintillation properties of cerium doped gadolinium aluminum gallium garnet (GAGG:Ce) scintillators with various Al-to-Ga ratio. Having many advantages, like high density (6.63 g/cm3), high light output, fair energy resolution and quite fast decay time, the scintillators are an excellent solution for gamma rays detection. In this paper performance of the GAGG:1%Ce crystals with different Al-to-Ga ratios is presented. The study covered measurements of emission spectra, light output, energy resolution and non-proportionality for each crystal. It was observed that the light output of the recently obtainable crystals varies from 40,000 to 55,000 ph/MeV. Maximum emission wavelength of about 520 nm promotes silicon based photodetectors for use with these scintillators. The best energy resolution of 3.7% at 662 keV, measured with Hamamatsu S8664-1010 APD, was obtained for the sample with the minimum gallium content. This result is close to these obtained with the group of scintillators retaining very good energy resolution, like LaCl3 and CeBr3.
Koziol, Anna; Bordessoule, Michel; Ciavardini, Alessandra; Dawiec, Arkadiusz; Da Silva, Paulo; Desjardins, Kewin; Grybos, Pawel; Kanoute, Brahim; Laulhe, Claire; Maj, Piotr; Menneglier, Claude; Mercere, Pascal; Orsini, Fabienne; Szczygiel, Robert
2018-03-01
This paper presents the performance of a single-photon-counting hybrid pixel X-ray detector with synchrotron radiation. The camera was evaluated with respect to time-resolved experiments, namely pump-probe-probe experiments held at SOLEIL. The UFXC camera shows very good energy resolution of around 1.5 keV and allows the minimum threshold setting to be as low as 3 keV keeping the high-count-rate capabilities. Measurements of a synchrotron characteristic filling mode prove the proper separation of an isolated bunch of photons and the usability of the detector in time-resolved experiments.
Impacts of SST Patterns on Rapid Intensification of Typhoon Megi (2010)
NASA Astrophysics Data System (ADS)
Kanada, Sachie; Tsujino, Satoki; Aiki, Hidenori; Yoshioka, Mayumi K.; Miyazawa, Yasumasa; Tsuboki, Kazuhisa; Takayabu, Izuru
2017-12-01
Typhoon Megi (2010), a very intense tropical cyclone with a minimum central pressure of 885 hPa, was characterized by especially rapid intensification. We investigated this intensification process by a simulation experiment using a high-resolution (0.02° × 0.02°) three-dimensional atmosphere-ocean coupled regional model. We also performed a sensitivity experiment with a time-fixed sea surface temperature (SST). The coupled model successfully simulated the minimum central pressure of Typhoon Megi, whereas the fixed SST experiment simulated an excessively low minimum central pressure of 839 hPa. The simulation results also showed a close relationship between the radial SST profiles and the rapid intensification process. Because the warm sea increased near-surface water vapor and hence the convective available potential energy, the high SST in the eye region facilitated tall and intense updrafts inside the radius of maximum wind speed and led to the start of rapid intensification. In contrast, high SST outside this radius induced local secondary updrafts that inhibited rapid intensification even if the mean SST in the core region exceeded 29.0°C. These secondary updrafts moved inward and eventually merged with the primary eyewall updrafts. Then the storm intensified rapidly when the high SST appeared in the eye region. Thus, the changes in the local SST pattern around the storm center strongly affected the rapid intensification process by modulating the radial structure of core convection. Our results also show that the use of a high-resolution three-dimensional atmosphere-ocean coupled model offers promise for improving intensity forecasts of tropical cyclones.
Feasibility study of an optically coherent telescope array in space
NASA Technical Reports Server (NTRS)
Traub, W. A.
1983-01-01
Numerical methods of image construction which can be used to produce very high angular resolution images at optical wavelengths of astronomical objects from an orbiting array of telescopes are discussed and a concept is presented for a phase-coherent optical telescope array which may be deployed by space shuttle in the 1990's. The system would start as a four-element linear array with a 12 m baseline. The initial module is a minimum redundant array with a photon-counting collecting area three times larger than space telescope and a one dimensional resolution of better than 0.01 arc seconds in the visible range. Later additions to the array would build up facility capability. The advantages of a VLBI observatory in space are considered as well as apertures for the telescopes.
VizieR Online Data Catalog: Observed red supergiants in the inner Galaxy (Messineo+, 2016)
NASA Astrophysics Data System (ADS)
Messineo, M.; Zhu, Q.; Menten, K. M.; Ivanov, V. D.; Figer, D. F.; Kudritzki, R.-P.; Rosie, Chen C.-H.
2018-02-01
Spectroscopic observations were carried out with the Son of ISAAC (SofI; Moorwood et al. 1998Msngr..91....9M) Spectrograph on the ESO/New Technology Telescope (NTT) 3.58 m telescope of the La Silla Observatory, on the three nights from UT 2015 June 16 to 19-program ID 095.D-0252(A). Spectra with the low-resolution red grism, and the 0.6" wide slit, delivering resolution R~980 over the wavelength range λ=1.53-2.52 μm were obtained for 94 targets. For each target a minimum number of four exposures, nodded along the slit, were taken in an ABBA sequence. Typical integration times per frame ranged from 2 to 100 s (DITsxNDITs). (1 data file).
Approximation for the Rayleigh Resolution of a Circular Aperture
ERIC Educational Resources Information Center
Mungan, Carl E.
2009-01-01
Rayleigh's criterion states that a pair of point sources are barely resolved by an optical instrument when the central maximum of the diffraction pattern due to one source coincides with the first minimum of the pattern of the other source. As derived in standard introductory physics textbooks, the first minimum for a rectangular slit of width "a"…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.
Real-time terrain rendering for interactive visualization remains a demanding task. We present a novel algorithm with several advantages over previous methods: our method is unusually stingy with polygons yet achieves real-time performance and is scalable to arbitrary regions and resolutions. The method provides a continuous terrain mesh of specified triangle count having provably minimum error in restricted but reasonably general classes of permissible meshes and error metrics. Our method provides an elegant solution to guaranteeing certain elusive types of consistency in scenes produced by multiple scene generators which share a common finest-resolution database but which otherwise operate entirely independently. Thismore » consistency is achieved by exploiting the freedom of choice of error metric allowed by the algorithm to provide, for example, multiple exact lines-of-sight in real-time. Our methods rely on an off-line pre-processing phase to construct a multi-scale data structure consisting of triangular terrain approximations enhanced ({open_quotes}thickened{close_quotes}) with world-space error information. In real time, this error data is efficiently transformed into screen-space where it is used to guide a greedy top-down triangle subdivision algorithm which produces the desired minimal error continuous terrain mesh. Our algorithm has been implemented and it operates at real-time rates.« less
24 CFR 7.5 - EEO Alternative Dispute Resolution Program.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Statement regarding Alternative Dispute Resolution (ADR) located on the Department's website and 29 CFR 1614.102(b)(2), the Department shall establish and maintain an ADR program that addresses, at a minimum, EEO matters at the pre-complaint and formal complaint stages of the EEO process. ADR is a non...
The birth of a supermassive black hole binary
NASA Astrophysics Data System (ADS)
Pfister, Hugo; Lupi, Alessandro; Capelo, Pedro R.; Volonteri, Marta; Bellovary, Jillian M.; Dotti, Massimo
2017-11-01
We study the dynamical evolution of supermassive black holes, in the late stage of galaxy mergers, from kpc to pc scales. In particular, we capture the formation of the binary, a necessary step before the final coalescence, and trace back the main processes causing the decay of the orbit. We use hydrodynamical simulations of galaxy mergers with different resolutions, from 20 pc down to 1 pc, in order to study the effects of the resolution on our results, remove numerical effects, and assess that resolving the influence radius of the orbiting black hole is a minimum condition to fully capture the formation of the binary. Our simulations include the relevant physical processes, namely star formation, supernova feedback, accretion on to the black holes and the ensuing feedback. We find that, in these mergers, dynamical friction from the smooth stellar component of the nucleus is the main process that drives black holes from kpc to pc scales. Gas does not play a crucial role and even clumps do not induce scattering or perturb the orbits. We compare the time needed for the formation of the binary to analytical predictions and suggest how to apply such analytical formalism to obtain estimates of binary formation times in lower resolution simulations.
NASA Astrophysics Data System (ADS)
Graham, Russell; Stafford, Thomas, Jr.; Semken, Holmes, Jr.
2010-05-01
Advances in AMS physics and organic geochemistry have revolutionized our ability to establish absolute chronologies on vertebrate fossils. Highly purified collagen, which provides extremely accurate 14C ages, can be extracted from single bones and teeth as small as 50 mg. Combined with measurement precisions of ±15 to 25 years for ages of < 20,000 yr, the direct AMS 14C technique enables fossil deposits to be chronologically dissected at the level of single animals. Analysis of data from a variety of sites in the United States indicates that most excavation levels (analysis units) as small as 10 cm can be time averaged by several thousand years at a minimum, even with the greatest care in excavation and processing of sediments. Time averaging of this magnitude has important implications for fine-scale paleoecological analysis of faunas, especially when compared to high-resolution climate records like those derived from speleothems, ice cores, or marine cores. To this end, we propose saturation dating of indicative taxa and plotting dates of individual specimens against high-resolution climate records rather than analysis of complete faunas or faunules. This technique provides even higher resolution of paleoenvironments than pollen spectra.
VizieR Online Data Catalog: Evolution of solar irradiance during Holocene (Vieira+, 2011)
NASA Astrophysics Data System (ADS)
Vieira, L. E. A.; Solanki, S. K.; Krivova, N. A.; Usoskin, I.
2011-05-01
This is a composite total solar irradiance (TSI) time series for 9495BC to 2007AD constructed as described in Sect. 3.3 of the paper. Since the TSI is the main external heat input into the Earth's climate system, a consistent record covering as long period as possible is needed for climate models. This was our main motivation for constructing this composite TSI time series. In order to produce a representative time series, we divided the Holocene into four periods according to the available data for each period. Table 4 (see below) summarizes the periods considered and the models available for each period. After the end of the Maunder Minimum we compute daily values, while prior to the end of the Maunder Minimum we compute 10-year averages. For the period for which both solar disk magnetograms and continuum images are available (period 1) we employ the SATIRE-S reconstruction (Krivova et al. 2003A&A...399L...1K; Wenzler et al. 2006A&A...460..583W). SATIRE-T (Krivova et al. 2010JGRA..11512112K) reconstruction is used from the beginning of the Maunder Minimum (approximately 1640AD) to 1977AD. Prior to 1640AD reconstructions are based on cosmogenic isotopes (this paper). Different models of the Earth's geomagnetic field are available before and after approximately 5000BC. Therefore we treat periods 3 and 4 (before and after 5000BC) separately. Further details can be found in the paper. We emphasize that the reconstructions based on different proxies have different time resolutions. (1 data file).
Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-10-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.
Lu, Hangwen; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei
2016-01-01
Differential phase contrast (DPC) is a non-interferometric quantitative phase imaging method achieved by using an asymmetric imaging procedure. We report a pupil modulation differential phase contrast (PMDPC) imaging method by filtering a sample’s Fourier domain with half-circle pupils. A phase gradient image is captured with each half-circle pupil, and a quantitative high resolution phase image is obtained after a deconvolution process with a minimum of two phase gradient images. Here, we introduce PMDPC quantitative phase image reconstruction algorithm and realize it experimentally in a 4f system with an SLM placed at the pupil plane. In our current experimental setup with the numerical aperture of 0.36, we obtain a quantitative phase image with a resolution of 1.73μm after computationally removing system aberrations and refocusing. We also extend the depth of field digitally by 20 times to ±50μm with a resolution of 1.76μm. PMID:27828473
Changes in the Far UV Spectrum of Eta Carinae Near the 2003 Minimum
NASA Technical Reports Server (NTRS)
Iping, R. C.; Gull, T. R.; Sonneborn, G.; Massa, D.; Vieira, G. L.; Nielsen, K. E.
2004-01-01
High resolution 905-1180 spectra of \\eta Carinae have been obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite at nine epochs between February 2000 and June 2003 . This period of time extends from the broad maximum up to the very beginning of the minimum of the 5.52-year period initially discovered by A. Damineli. The flux levels were unchanged between February 2000 through February 2003 with minor spectral differences. The X-Ray minimum started on June 29, 2003 . Three observations were accomplished on June 10, June 17 and June 27 leading up to the minimum. Substantial changes were present in the June 10 and June 17 spectra, but a very significant change occurred by June 27, 2003. Longward of 1100A, the overall flux dropped 10 to 30 %. Shortward of 1100A, there are spectral intervals with NO decrease in flux even down to the shortest wavelengths (920--950 ). This indicates that dust absorption has a negligible role in the observed spectral changes and that line absorptions play a major role. Throughout the spectrum there are intervals ranging in width of 3-10A with strong increased absorption. Significant absorptions may be associated with the red portion of the following stellar wind lines: C III 977, O VI 1031,1037, P V 1117, while other absorption features are much broader, more extended and not clearly associated with well-known spectral transitions. Given the complexity of the STIS echelle spectra taken in this period of time, many of these absorption features are likely due to multiple absorption lines
NASA Astrophysics Data System (ADS)
Khosla, Kiran E.; Altamirano, Natacha
2017-05-01
The notion of time is given a different footing in quantum mechanics and general relativity, treated as a parameter in the former and being an observer-dependent property in the latter. From an operational point of view time is simply the correlation between a system and a clock, where an idealized clock can be modeled as a two-level system. We investigate the dynamics of clocks interacting gravitationally by treating the gravitational interaction as a classical information channel. This model, known as the classical-channel gravity (CCG), postulates that gravity is mediated by a fundamentally classical force carrier and is therefore unable to entangle particles gravitationally. In particular, we focus on the decoherence rates and temporal resolution of arrays of N clocks, showing how the minimum dephasing rate scales with N , and the spatial configuration. Furthermore, we consider the gravitational redshift between a clock and a massive particle and show that a classical-channel model of gravity predicts a finite-dephasing rate from the nonlocal interaction. In our model we obtain a fundamental limitation in time accuracy that is intrinsic to each clock.
A compact 45 kV curve tracer with picoampere current measurement capability.
Sullivan, W W; Mauch, D; Bullick, A; Hettler, C; Neuber, A; Dickens, J
2013-03-01
This paper discusses a compact high voltage curve tracer for high voltage semiconductor device characterization. The system sources up to 3 mA at up to 45 kV in dc conditions. It measures from 328 V to 60 kV with 15 V resolution and from 9.4 pA to 4 mA with 100 fA minimum resolution. Control software for the system is written in Microsoft Visual C# and features real-time measurement control and IV plotting, arc-protection and detection, an electrically isolated universal serial bus interface, and easy data exporting capabilities. The system has survived numerous catastrophic high voltage device-under-test arcing failures with no loss of measurement capability or system damage. Overall sweep times are typically under 2 min, and the curve tracer system was used to characterize the blocking performance of high voltage ceramic capacitors, high voltage silicon carbide photoconductive semiconductor switches, and high voltage coaxial cable.
Can lagrangian models reproduce the migration time of European eel obtained from otolith analysis?
NASA Astrophysics Data System (ADS)
Rodríguez-Díaz, L.; Gómez-Gesteira, M.
2017-12-01
European eel can be found at the Bay of Biscay after a long migration across the Atlantic. The duration of migration, which takes place at larval stage, is of primary importance to understand eel ecology and, hence, its survival. This duration is still a controversial matter since it can range from 7 months to > 4 years depending on the method to estimate duration. The minimum migration duration estimated from our lagrangian model is similar to the duration obtained from the microstructure of eel otoliths, which is typically on the order of 7-9 months. The lagrangian model showed to be sensitive to different conditions like spatial and time resolution, release depth, release area and initial distribution. In general, migration showed to be faster when decreasing the depth and increasing the resolution of the model. In average, the fastest migration was obtained when only advective horizontal movement was considered. However, faster migration was even obtained in some cases when locally oriented random migration was taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mlynar, J.; Weinzettl, V.; Imrisek, M.
2012-10-15
The contribution focuses on plasma tomography via the minimum Fisher regularisation (MFR) algorithm applied on data from the recently commissioned tomographic diagnostics on the COMPASS tokamak. The MFR expertise is based on previous applications at Joint European Torus (JET), as exemplified in a new case study of the plasma position analyses based on JET soft x-ray (SXR) tomographic reconstruction. Subsequent application of the MFR algorithm on COMPASS data from cameras with absolute extreme ultraviolet (AXUV) photodiodes disclosed a peaked radiating region near the limiter. Moreover, its time evolution indicates transient plasma edge cooling following a radial plasma shift. In themore » SXR data, MFR demonstrated that a high resolution plasma positioning independent of the magnetic diagnostics would be possible provided that a proper calibration of the cameras on an x-ray source is undertaken.« less
Analysis of selected microflares observed by SphinX over the last minimum of solar activity
NASA Astrophysics Data System (ADS)
Siarkowski, Marek; Sylwester, Janusz; Sylwester, Barbara; Gryciuk, Magdalena
The Solar Photometer in X-rays (SphinX) was designed to observe soft X-ray solar emission in the energy range between 1 keV and 15 keV with the resolution better than 0.5 keV. The instrument operated from February until November 2009 aboard CORONAS-Photon satellite, during the phase of exceptionally low minimum of solar activity. Here we use SphinX data for analysis of selected microflare-class events. We selected events of unusual lightcurves or location. Our study involves determination of temporal characteristics (times of start, maximum and end of flares) and analysis of physical conditions in flaring plasma (temperature, emission measure). Dedicated method has been used in order to remove emission not related to flare. Supplementary information about morphology and evolution of investigated events has been derived from the analysis of XRT/Hinode and SECCHI /STEREO images.
Microstructure of the IMF turbulences at 2.5 AU
NASA Technical Reports Server (NTRS)
Mavromichalaki, H.; Vassilaki, A.; Marmatsouri, L.; Moussas, X.; Quenby, J. J.; Smith, E. J.
1995-01-01
A detailed analysis of small period (15-900 sec) magnetohydrodynamic (MHD) turbulences of the interplanetary magnetic field (IMF) has been made using Pioneer-11 high time resolution data (0.75 sec) inside a Corotating Interaction Region (CIR) at a heliocentric distance of 2.5 AU in 1973. The methods used are the hodogram analysis, the minimum variance matrix analysis and the cohenrence analysis. The minimum variance analysis gives evidence of linear polarized wave modes. Coherence analysis has shown that the field fluctuations are dominated by the magnetosonic fast modes with periods 15 sec to 15 min. However, it is also shown that some small amplitude Alfven waves are present in the trailing edge of this region with characteristic periods (15-200 sec). The observed wave modes are locally generated and possibly attributed to the scattering of Alfven waves energy into random magnetosonic waves.
Necessity to review the Brazilian regulation about fluoride toothpastes
Cury, Jaime Aparecido; Caldarelli, Pablo Guilherme; Tenuta, Livia Maria Andaló
2015-01-01
The aim of this study was to evaluate the adequacy of the Brazilian legislation about fluoride toothpaste. A search was conducted in LILACS, Medline and SciELO databases about the fluoride concentration found in Brazilians toothpastes, using descriptors on health. Publications since 1981 have shown that some Brazilian toothpastes are not able to maintain, during their expiration time, a minimum of 1,000 ppm F of soluble fluoride in the formulation. However, the Brazilian regulation (ANVISA, Resolution 79, August 28, 2000) only sets the maximum total fluoride (0.15%; 1,500 ppm F) that a toothpaste may contain but not the minimum concentration of soluble fluoride that it should contain to have anticaries potential, which according to systematic reviews should be 1,000 ppm F. Therefore, the Brazilian regulation on fluoride toothpastes needs to be revised to assure the efficacy of those products for caries control. PMID:26487295
Surface intervalley scattering on GaAs(110): Direct observation with picosecond laser photoemission
NASA Astrophysics Data System (ADS)
Haight, R.; Silberman, J. A.
1989-02-01
Angle-resolved laser photoemission investigations of the laser excited GaAs(110) surface have revealed a previously unobserved valley of the C3 unoccupied surface band whose minimum is at X¯ in the surface Brillouin zone. Electron population in this valley increases only as a result of scattering from the directly photoexcited valley at Γ¯. With high momentum resolution, we have isolated the dynamic electron population changes at both Γ¯ and X¯ and deduced the scattering time between the two valleys.
Middione, Matthew J; Thompson, Richard B; Ennis, Daniel B
2014-06-01
To investigate a novel phase-contrast MRI velocity-encoding technique for faster imaging and reduced chemical shift-induced phase errors. Velocity encoding with the slice select refocusing gradient achieves the target gradient moment by time shifting the refocusing gradient, which enables the use of the minimum in-phase echo time (TE) for faster imaging and reduced chemical shift-induced phase errors. Net forward flow was compared in 10 healthy subjects (N = 10) within the ascending aorta (aAo), main pulmonary artery (PA), and right/left pulmonary arteries (RPA/LPA) using conventional flow compensated and flow encoded (401 Hz/px and TE = 3.08 ms) and slice select refocused gradient velocity encoding (814 Hz/px and TE = 2.46 ms) at 3 T. Improved net forward flow agreement was measured across all vessels for slice select refocused gradient compared to flow compensated and flow encoded: aAo vs. PA (1.7% ± 1.9% vs. 5.8% ± 2.8%, P = 0.002), aAo vs. RPA + LPA (2.1% ± 1.7% vs. 6.0% ± 4.3%, P = 0.03), and PA vs. RPA + LPA (2.9% ± 2.1% vs. 6.1% ± 6.3%, P = 0.04), while increasing temporal resolution (35%) and signal-to-noise ratio (33%). Slice select refocused gradient phase-contrast MRI with a high receiver bandwidth and minimum in-phase TE provides more accurate and less variable flow measurements through the reduction of chemical shift-induced phase errors and a reduced TE/repetition time, which can be used to increase the temporal/spatial resolution and/or reduce breath hold durations. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Singh, Kundan; Siwal, Davinder
2018-04-01
A digital timing algorithm is explored for fast scintillator detectors, viz. LaBr3, BaF2, and BC501A. Signals were collected with CAEN 250 mega samples per second (MSPS) and 500 MSPS digitizers. The zero crossing time markers (TM) were obtained with a standard digital constant fraction timing (DCF) method. Accurate timing information is obtained using cubic spline interpolation of a DCF transient region sample points. To get the best time-of-flight (TOF) resolution, an optimization of DCF parameters is performed (delay and constant fraction) for each pair of detectors: (BaF2-LaBr3), (BaF2-BC501A), and (LaBr3-BC501A). In addition, the slope information of an interpolated DCF signal is extracted at TM position. This information gives a new insight to understand the broadening in TOF, obtained for a given detector pair. For a pair of signals having small relative slope and interpolation deviations at TM, leads to minimum time broadening. However, the tailing in TOF spectra is dictated by the interplay between the interpolation error and slope variations. Best TOF resolution achieved at the optimum DCF parameters, can be further improved by using slope parameter. Guided by the relative slope parameter, events selection can be imposed which leads to reduction in TOF broadening. While the method sets a trade-off between timing response and coincidence efficiency, it provides an improvement in TOF. With the proposed method, the improved TOF resolution (FWHM) for the aforementioned detector pairs are; 25% (0.69 ns), 40% (0.74 ns), 53% (0.6 ns) respectively, obtained with 250 MSPS, and corresponds to 12% (0.37 ns), 33% (0.72 ns), 35% (0.69 ns) respectively with 500 MSPS digitizers. For the same detector pair, event survival probabilities are; 57%, 58%, 51% respectively with 250 MSPS and becomes 63%, 57%, 68% using 500 MSPS digitizers.
Pradhan, Tuhin; Ghoshal, Piue; Biswas, Ranjit
2008-02-07
The excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) has been studied in water-tertiary butanol (TBA) mixtures at different alcohol mole fractions by using steady state and time-resolved fluorescence spectroscopy. The ratio between the areas under the locally excited (LE) and charge transferred (CT) emission bands is found to exhibit a sharp rise at alcohol mole fraction approximately 0.04, a value at which several thermodynamic properties of this mixture is known to show anomalous change due to the enhancement of H-bonding network. The radiative rate associated with the LE emission also shows a maximum at this TBA mole fraction. Although the structural transition from the water-like tetrahedral network to the alcohol-like chain is reflected in the red shift of the absorption spectrum up to TBA mole fraction approximately 0.10, the emission bands (both LE and CT) show the typical nonideal alcohol mole fraction dependence at all TBA mole fractions. Quantum yield, CT radiative rate as well as transition moments also exhibit a nonideal alcohol mole fraction dependence. The time-resolved emission decay of P4C has been found to be biexponential at all TBA mole fractions, regardless of emission collection around either the LE or the CT bands. The time constant associated with the slow component (tau(slow)) shows a minimum at TBA mole fraction approximately 0.04, whereas such a minimum for the fast time constant, tau(fast) (representing the rate of LE --> CT conversion reaction) is not observed. The nonobservation of the minimum in tau(fast) might be due to the limited time resolution employed in our experiments.
NASA Astrophysics Data System (ADS)
de Ruiter, Jolet; Oh, Jung; van den Ende, Dirk; Mugele, Frieder
2011-11-01
Liquid drops impacting on solid surfaces deform under the influence of the ambient gas that needs to be squeezed out before a true solid-liquid contact can be established. We demonstrate experimentally the existence of this theoretically predicted air layer and follow its evolution with time for moderate impact speeds (We ~ 1 ... 10) using reflection interference microscopy with a thickness resolution of approximately 10nm. For a wide range of fluid properties (ρ, γ, η) we find a very robust generic behavior that includes the predicted formation of a dimple in the center of the drop with a local minimum of the air film thickness at its boundary. Depending on We as well as the fluid properties, a skating layer of more or less constant thickness as well as a second local minimum of the air film thickness farther away from the drop center develop in time. Eventually, solid-liquid contact is generated via random nucleation event. The nucleation spot spreads across the drop-substrate interface within a few milliseconds. This process can lead to the entrapment of an air bubble.
Peters, R J B; Oosterink, J E; Stolker, A A M; Georgakopoulos, C; Nielen, M W F
2010-04-01
A unification of doping-control screening procedures of prohibited small molecule substances--including stimulants, narcotics, steroids, beta2-agonists and diuretics--is highly urgent in order to free resources for new classes such as banned proteins. Conceptually this may be achieved by the use of a combination of one gas chromatography-time-of-flight mass spectrometry method and one liquid chromatography-time-of-flight mass spectrometry method. In this work a quantitative screening method using high-resolution liquid chromatography in combination with accurate-mass time-of-flight mass spectrometry was developed and validated for determination of glucocorticosteroids, beta2-agonists, thiazide diuretics, and narcotics and stimulants in urine. To enable the simultaneous isolation of all the compounds of interest and the necessary purification of the resulting extracts, a generic extraction and hydrolysis procedure was combined with a solid-phase extraction modified for these groups of compounds. All 56 compounds are determined using positive electrospray ionisation with the exception of the thiazide diuretics for which the best sensitivity was obtained by using negative electrospray ionisation. The results show that, with the exception of clenhexyl, procaterol, and reproterol, all compounds can be detected below the respective minimum required performance level and the results for linearity, repeatability, within-lab reproducibility, and accuracy show that the method can be used for quantitative screening. If qualitative screening is sufficient the instrumental analysis may be limited to positive ionisation, because all analytes including the thiazides can be detected at the respective minimum required levels in the positive mode. The results show that the application of accurate-mass time-of-flight mass spectrometry in combination with generic extraction and purification procedures is suitable for unification and expansion of the window of screening methods of doping laboratories. Moreover, the full-scan accurate-mass data sets obtained still allow retrospective examination for emerging doping agents, without re-analyzing the samples.
The Year Leading to a Supereruption.
Gualda, Guilherme A R; Sutton, Stephen R
2016-01-01
Supereruptions catastrophically eject 100s-1000s of km3 of magma to the surface in a matter of days to a few months. In this study, we use zoning in quartz crystals from the Bishop Tuff (California) to assess the timescales over which a giant magma body transitions from relatively quiescent, pre-eruptive crystallization to rapid decompression and eruption. Quartz crystals in the Bishop Tuff have distinctive rims (<200 μm thick), which are Ti-rich and bright in cathodoluminescence (CL) images, and which can be used to calculate Ti diffusional relaxation times. We use synchrotron-based x-ray microfluorescence to obtain quantitative Ti maps and profiles along rim-interior contacts in quartz at resolutions of 1-5 μm in each linear dimension. We perform CL imaging on a scanning electron microscope (SEM) using a low-energy (5 kV) incident beam to characterize these contacts in high resolution (<1 μm in linear dimensions). Quartz growth times were determined using a 1D model for Ti diffusion, assuming initial step functions. Minimum quartz growth rates were calculated using these calculated growth times and measured rim thicknesses. Maximum rim growth times span from ~1 min to 35 years, with a median of ~4 days. More than 70% of rim growth times are less than 1 year, showing that quartz rims have mostly grown in the days to months prior to eruption. Minimum growth rates show distinct modes between 10-8 and 10-10 m/s (depending on sample), revealing very fast crystal growth rates (100s of nm to 10s of μm per day). Our data show that quartz rims grew well within a year of eruption, with most of the growth happening in the weeks or days preceding eruption. Growth took place under conditions of high supersaturation, suggesting that rim growth marks the onset of decompression and the transition from pre-eruptive to syn-eruptive conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualda, Guilherme A. R.; Sutton, Stephen R.
Supereruptions catastrophically eject 100s-1000s of km 3 of magma to the surface in a matter of days to a few months. In this study, we use zoning in quartz crystals from the Bishop Tuff (California) to assess the timescales over which a giant magma body transitions from relatively quiescent, pre-eruptive crystallization to rapid decompression and eruption. Quartz crystals in the Bishop Tuff have distinctive rims (<200 μm thick), which are Ti-rich and bright in cathodoluminescence (CL) images, and which can be used to calculate Ti diffusional relaxation times. We use synchrotron-based x-ray microfluorescence to obtain quantitative Ti maps and profilesmore » along rim-interior contacts in quartz at resolutions of 1–5 μm in each linear dimension. We perform CL imaging on a scanning electron microscope (SEM) using a low-energy (5 kV) incident beam to characterize these contacts in high resolution (<1 μm in linear dimensions). Quartz growth times were determined using a 1D model for Ti diffusion, assuming initial step functions. Minimum quartz growth rates were calculated using these calculated growth times and measured rim thicknesses. Maximum rim growth times span from ~1 min to 35 years, with a median of ~4 days. More than 70% of rim growth times are less than 1 year, showing that quartz rims have mostly grown in the days to months prior to eruption. Minimum growth rates show distinct modes between 10 -8 and 10 -10 m/s (depending on sample), revealing very fast crystal growth rates (100s of nm to 10s of μm per day). Our data show that quartz rims grew well within a year of eruption, with most of the growth happening in the weeks or days preceding eruption. Growth took place under conditions of high supersaturation, suggesting that rim growth marks the onset of decompression and the transition from pre-eruptive to syn-eruptive conditions.« less
The Year Leading to a Supereruption
Gualda, Guilherme A. R.; Sutton, Stephen R.
2016-07-20
Supereruptions catastrophically eject 100s-1000s of km 3 of magma to the surface in a matter of days to a few months. In this study, we use zoning in quartz crystals from the Bishop Tuff (California) to assess the timescales over which a giant magma body transitions from relatively quiescent, pre-eruptive crystallization to rapid decompression and eruption. Quartz crystals in the Bishop Tuff have distinctive rims (<200 μm thick), which are Ti-rich and bright in cathodoluminescence (CL) images, and which can be used to calculate Ti diffusional relaxation times. We use synchrotron-based x-ray microfluorescence to obtain quantitative Ti maps and profilesmore » along rim-interior contacts in quartz at resolutions of 1–5 μm in each linear dimension. We perform CL imaging on a scanning electron microscope (SEM) using a low-energy (5 kV) incident beam to characterize these contacts in high resolution (<1 μm in linear dimensions). Quartz growth times were determined using a 1D model for Ti diffusion, assuming initial step functions. Minimum quartz growth rates were calculated using these calculated growth times and measured rim thicknesses. Maximum rim growth times span from ~1 min to 35 years, with a median of ~4 days. More than 70% of rim growth times are less than 1 year, showing that quartz rims have mostly grown in the days to months prior to eruption. Minimum growth rates show distinct modes between 10 -8 and 10 -10 m/s (depending on sample), revealing very fast crystal growth rates (100s of nm to 10s of μm per day). Our data show that quartz rims grew well within a year of eruption, with most of the growth happening in the weeks or days preceding eruption. Growth took place under conditions of high supersaturation, suggesting that rim growth marks the onset of decompression and the transition from pre-eruptive to syn-eruptive conditions.« less
Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth
Brandt, Timothy D.; Spiegel, David S.
2014-01-01
The goal of finding and characterizing nearby Earth-like planets is driving many NASA high-contrast flagship mission concepts, the latest of which is known as the Advanced Technology Large-Aperture Space Telescope (ATLAST). In this article, we calculate the optimal spectral resolution R = λ/δλ and minimum signal-to-noise ratio per spectral bin (SNR), two central design requirements for a high-contrast space mission, to detect signatures of water, oxygen, and chlorophyll on an Earth twin. We first develop a minimally parametric model and demonstrate its ability to fit synthetic and observed Earth spectra; this allows us to measure the statistical evidence for each component’s presence. We find that water is the easiest to detect, requiring a resolution R ≳ 20, while the optimal resolution for oxygen is likely to be closer to R = 150, somewhat higher than the canonical value in the literature. At these resolutions, detecting oxygen will require approximately two times the SNR as water. Chlorophyll requires approximately six times the SNR as oxygen for an Earth twin, only falling to oxygen-like levels of detectability for a low cloud cover and/or a large vegetation covering fraction. This suggests designing a mission for sensitivity to oxygen and adopting a multitiered observing strategy, first targeting water, then oxygen on the more favorable planets, and finally chlorophyll on only the most promising worlds. PMID:25197095
Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth.
Brandt, Timothy D; Spiegel, David S
2014-09-16
The goal of finding and characterizing nearby Earth-like planets is driving many NASA high-contrast flagship mission concepts, the latest of which is known as the Advanced Technology Large-Aperture Space Telescope (ATLAST). In this article, we calculate the optimal spectral resolution R = λ/δλ and minimum signal-to-noise ratio per spectral bin (SNR), two central design requirements for a high-contrast space mission, to detect signatures of water, oxygen, and chlorophyll on an Earth twin. We first develop a minimally parametric model and demonstrate its ability to fit synthetic and observed Earth spectra; this allows us to measure the statistical evidence for each component's presence. We find that water is the easiest to detect, requiring a resolution R ≳ 20, while the optimal resolution for oxygen is likely to be closer to R = 150, somewhat higher than the canonical value in the literature. At these resolutions, detecting oxygen will require approximately two times the SNR as water. Chlorophyll requires approximately six times the SNR as oxygen for an Earth twin, only falling to oxygen-like levels of detectability for a low cloud cover and/or a large vegetation covering fraction. This suggests designing a mission for sensitivity to oxygen and adopting a multitiered observing strategy, first targeting water, then oxygen on the more favorable planets, and finally chlorophyll on only the most promising worlds.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
... International Law (ACPIL)--Online Dispute Resolution (ODR) Study Group The Office of the Assistant Legal Adviser... guidelines and minimum requirements for online dispute resolution providers and arbitrators, substantive... that the working group is addressing is the identification of security issues relating to use of the...
Epifluorescent direct-write photolithography for microfluidic applications
NASA Astrophysics Data System (ADS)
Higgins, MacCallister; Geiger, Emil J.
2015-01-01
We present a technique for fabricating soft-lithography molds created using an epifluorescent microscope. By focusing the UV light emitted from a Hg arc lamp, we demonstrate the ability to direct-write photoresist features with a minimum resolution of 45 μm. This resolution is satisfactory for many microfluidic applications. A major advantage of this technique is its low cost, both in terms of capital investment and on-going expenditures. Furthermore, by using a motorized stage, we can quickly fabricate a design on demand, eliminating the need, cost, and lead-time required for a photomask. With the addition of an electronic shutter, complicated separate structures can be imaged and utilized to make a wide range of microfluidic devices. We demonstrate this technique using dry-film resist due to its low cost, ease of application, and less stringent safety protocols.
An echelle spectrograph for middle ultraviolet solar spectroscopy from rockets.
Tousey, R; Purcell, J D; Garrett, D L
1967-03-01
An echelle grating spectrograph is ideal for use in a rocket when high resolution is required becaus itoccupies a minimum of space. The instrument described covers the range 4000-2000 A with a resolution of 0.03 A. It was designed to fit into the solar biaxial pointing-control section of an Aerobee-150 rocket. The characteristics of the spectrograph are illustrated with laboratory spectra of iron and carbon are sources and with solar spectra obtained during rocket flights in 1961 and 1964. Problems encountered in analyzing the spectra are discussed. The most difficult design problem was the elimination of stray light when used with the sun. Of the several methods investigated, the most effective was a predispersing system in the form of a zero-dispersion double monochromator. This was made compact by folding the beam four times.
The discrete prolate spheroidal filter as a digital signal processing tool
NASA Technical Reports Server (NTRS)
Mathews, J. D.; Breakall, J. K.; Karawas, G. K.
1983-01-01
The discrete prolate spheriodall (DPS) filter is one of the glass of nonrecursive finite impulse response (FIR) filters. The DPS filter is superior to other filters in this class in that it has maximum energy concentration in the frequency passband and minimum ringing in the time domain. A mathematical development of the DPS filter properties is given, along with information required to construct the filter. The properties of this filter were compared with those of the more commonly used filters of the same class. Use of the DPS filter allows for particularly meaningful statements of data time/frequency resolution cell values. The filter forms an especially useful tool for digital signal processing.
Photometric study of the eclipsing binary GR Bootis
NASA Astrophysics Data System (ADS)
Zhang, Z. L.; Zhang, Y. P.; Fu, J. N.; Xue, H. F.
2016-07-01
We present CCD photometry and low-resolution spectra of the eclipsing binary GR Boo. A new ephemeris is determined based on all the available times of the minimum light. The period analysis reveals that the orbital period is decreasing with a rate of dP / dt = - 2.05 ×10-10 d yr-1 . A photometric analysis for the obtained light curves is performed with the Wilson-Devinney Differential Correction program for the first time. The photometric solutions confirm the W UMa-type nature of the binary system. The mass ratio turns out to be q = 0.985 ± 0.001 . The evolutionary status and physical nature of the binary system are briefly discussed.
Changes in tropical precipitation cluster size distributions under global warming
NASA Astrophysics Data System (ADS)
Neelin, J. D.; Quinn, K. M.
2016-12-01
The total amount of precipitation integrated across a tropical storm or other precipitation feature (contiguous clusters of precipitation exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance. To establish baseline behavior in current climate, the probability distribution of cluster sizes from multiple satellite retrievals and National Center for Environmental Prediction (NCEP) reanalysis is compared to those from Coupled Model Intercomparison Project (CMIP5) models and the Geophysical Fluid Dynamics Laboratory high-resolution atmospheric model (HIRAM-360 and -180). With the caveat that a minimum rain rate threshold is important in the models (which tend to overproduce low rain rates), the models agree well with observations in leading properties. In particular, scale-free power law ranges in which the probability drops slowly with increasing cluster size are well modeled, followed by a rapid drop in probability of the largest clusters above a cutoff scale. Under the RCP 8.5 global warming scenario, the models indicate substantial increases in probability (up to an order of magnitude) of the largest clusters by the end of century. For models with continuous time series of high resolution output, there is substantial spread on when these probability increases for the largest precipitation clusters should be detectable, ranging from detectable within the observational period to statistically significant trends emerging only in the second half of the century. Examination of NCEP reanalysis and SSMI/SSMIS series of satellite retrievals from 1979 to present does not yield reliable evidence of trends at this time. The results suggest improvements in inter-satellite calibration of the SSMI/SSMIS retrievals could aid future detection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP... electronic timers have much better set-point resolution than mechanical timers, but require a battery backup... Collection efficiency: 99 percent minimum as measured by the DOP test (ASTM-2986) for particles of 0.3 µm...
Code of Federal Regulations, 2014 CFR
2014-07-01
... filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP... electronic timers have much better set-point resolution than mechanical timers, but require a battery backup... Collection efficiency: 99 percent minimum as measured by the DOP test (ASTM-2986) for particles of 0.3 µm...
Laghi, A; Iafrate, F; Paolantonio, P; Iannaccone, R; Baeli, I; Ferrari, R; Catalano, C; Passariello, R
2002-04-01
To assess the normal anatomy of the anal sphincter complex using high-resolution MR imaging with phased -array coil. Twenty patients, 13 males and 7 females, ranging in age between 27 and 56 years underwent MRI evaluation of the pelvic region, using a superconductive 1.5 T magnet (maximum gradient strength, 25 mT/m; minimum rise time 600 microseconds, equipped with phased-array coil. High-resolution T2-weighted Turbo Spin Echo sequences (TR, 4055 ms; TE, 132 ms; matrix 390x512; in-plane resolution, 0.67x0.57 mm) were acquired on multiple axial, sagittal and coronal planes. Images were reviewed by two experienced gastrointestinal radiologists in order to evaluate the normal anal sphincter complex. Optimal image quality of the anal sphincter complex was obtained in all cases. Different muscular layers were observed between the upper and lower aspects of the anal canal. In the lower part of the anal canal, internal and external sphincter muscles could be observed; in the upper part, puborectal and internal sphincter muscles were depicted. Good visualization of intersphincteric space, levator ani muscle and ischioanal space was also obtained in all cases. High-resolution MR images with phased-array coil provide optimal depiction of the anal canal and the anal sphincter complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Qili; Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071; Shirinzadeh, Bijan
2015-07-28
A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cellmore » mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10{sup −15 }kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections.« less
The Spatial Resolution of Visual Attention.
ERIC Educational Resources Information Center
Intriligator, James; Cavanaugh, Patrick
2001-01-01
Used two tasks to evaluate the grain of visual attention, the minimum spacing at which attention can select individual items. Results for eight adults on a tracking task and five adults on an individuation task show that selection has a coarser grain than visual resolution and suggest that the parietal area is the most likely locus of the…
NASA Astrophysics Data System (ADS)
Bashir, F.; Zeng, X.; Gupta, H. V.; Hazenberg, P.
2017-12-01
Drought as an extreme event may have far reaching socio-economic impacts on agriculture based economies like Pakistan. Effective assessment of drought requires high resolution spatiotemporally continuous hydrometeorological information. For this purpose, new in-situ daily observations based gridded analyses of precipitation, maximum, minimum and mean temperature and diurnal temperature range are developed, that covers whole Pakistan on 0.01º latitude-longitude for a 54-year period (1960-2013). The number of participating meteorological observatories used in these gridded analyses is 2 to 6 times greater than any other similar product available. This data set is used to identify extreme wet and dry periods and their spatial patterns across Pakistan using Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI). Periodicity of extreme events is estimated at seasonal to decadal scales. Spatiotemporal signatures of drought incidence indicating its extent and longevity in different areas may help water resource managers and policy makers to mitigate the severity of the drought and its impact on food security through suitable adaptive techniques. Moreover, this high resolution gridded in-situ observations of precipitation and temperature is used to evaluate other coarser-resolution gridded products.
Language in context: Characterizing the comprehension of referential expressions with MEG.
Brodbeck, Christian; Pylkkänen, Liina
2017-02-15
A critical component of comprehending language in context is identifying the entities that individual linguistic expressions refer to. While previous research has shown that language comprehenders resolve reference quickly and incrementally, little is currently known about the neural basis of successful reference resolution. Using source localized MEG, we provide evidence across 3 experiments and 2 languages that successful reference resolution in simple visual displays is associated with increased activation in the medial parietal lobe. In each trial, participants saw a simple visual display containing three objects which constituted the referential domain. Target referential expressions were embedded in questions about the displays. By varying the displays, we manipulated referential status while keeping the linguistic expressions constant. Follow-up experiments addressed potential interactions of reference resolution with linguistic predictiveness and pragmatic plausibility. Notably, we replicated the effect in Arabic, a language that differs in a structurally informative way from English while keeping referential aspects parallel to our two English studies. Distributed minimum norm estimates of MEG data consistently indicated that reference resolution is associated with increased activity in the medial parietal lobe. With one exception, the timing of the onset of the medial parietal response fell into a mid-latency time-window at 350-500ms after the onset of the resolving word. Through concurrent EEG recordings on a subset of subjects we also describe the EEG topography of the effect of reference resolution, which makes the result available for comparison with a larger existing literature. Our results extend previous reports that medial parietal lobe is involved in referential language processing, indicating that it is relevant for reference resolution to individual referents, and suggests avenues for future research. Copyright © 2016 Elsevier Inc. All rights reserved.
Tom, Stephanie; Frayne, Mark; Manske, Sarah L; Burghardt, Andrew J; Stok, Kathryn S; Boyd, Steven K; Barnabe, Cheryl
2016-10-01
The position-dependence of a method to measure the joint space of metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT) was studied. Cadaveric MCP were imaged at 7 flexion angles between 0 and 30 degrees. The variability in reproducibility for mean, minimum, and maximum joint space widths and volume measurements was calculated for increasing degrees of flexion. Root mean square coefficient of variance values were < 5% under 20 degrees of flexion for mean, maximum, and volumetric joint spaces. Values for minimum joint space width were optimized under 10 degrees of flexion. MCP joint space measurements should be acquired at < 10 degrees of flexion in longitudinal studies.
Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O’Sullivan, Andrew W.; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan
2015-01-01
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC’s active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm2. Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module’s mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/−0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules. PMID:26085702
What model resolution is required in climatological downscaling over complex terrain?
NASA Astrophysics Data System (ADS)
El-Samra, Renalda; Bou-Zeid, Elie; El-Fadel, Mutasem
2018-05-01
This study presents results from the Weather Research and Forecasting (WRF) model applied for climatological downscaling simulations over highly complex terrain along the Eastern Mediterranean. We sequentially downscale general circulation model results, for a mild and wet year (2003) and a hot and dry year (2010), to three local horizontal resolutions of 9, 3 and 1 km. Simulated near-surface hydrometeorological variables are compared at different time scales against data from an observational network over the study area comprising rain gauges, anemometers, and thermometers. The overall performance of WRF at 1 and 3 km horizontal resolution was satisfactory, with significant improvement over the 9 km downscaling simulation. The total yearly precipitation from WRF's 1 km and 3 km domains exhibited < 10% bias with respect to observational data. The errors in minimum and maximum temperatures were reduced by the downscaling, along with a high-quality delineation of temperature variability and extremes for both the 1 and 3 km resolution runs. Wind speeds, on the other hand, are generally overestimated for all model resolutions, in comparison with observational data, particularly on the coast (up to 50%) compared to inland stations (up to 40%). The findings therefore indicate that a 3 km resolution is sufficient for the downscaling, especially that it would allow more years and scenarios to be investigated compared to the higher 1 km resolution at the same computational effort. In addition, the results provide a quantitative measure of the potential errors for various hydrometeorological variables.
Deng, Shijie; Morrison, Alan P
2012-09-15
This Letter presents an active quench-and-reset circuit for Geiger-mode avalanche photodiodes (GM-APDs). The integrated circuit was fabricated using a conventional 0.35 μm complementary metal oxide semiconductor process. Experimental results show that the circuit is capable of linearly setting the hold-off time from several nanoseconds to microseconds with a resolution of 6.5 ns. This allows the selection of the optimal afterpulse-free hold-off time for the GM-APD via external digital inputs or additional signal processing circuitry. Moreover, this circuit resets the APD automatically following the end of the hold-off period, thus simplifying the control for the end user. Results also show that a minimum dead time of 28.4 ns is achieved, demonstrating a saturated photon-counting rate of 35.2 Mcounts/s.
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.; Virts, K.;
2017-01-01
Mission: Fly a flight-spare LIS (Lightning Imaging Sensor) on ISS to take advantage of unique capabilities provided by the ISS (e.g., high inclination, real time data); Integrate LIS as a hosted payload on the DoD Space Test Program-Houston 5 (STP-H5) mission and launch on a Space X rocket for a minimum 2 year mission. Measurement: NASA and its partners developed and demonstrated effectiveness and value of using space-based lightning observations as a remote sensing tool; LIS measures lightning (amount, rate, radiant energy) with storm scale resolution, millisecond timing, and high detection efficiency, with no land-ocean bias. Benefit: LIS on ISS will extend TRMM (Tropical Rainfall Measuring Mission) time series observations, expand latitudinal coverage, provide real time data to operational users, and enable cross-sensor calibration.
Jeong, Jeong-Won; Shin, Dae C; Do, Synho; Marmarelis, Vasilis Z
2006-08-01
This paper presents a novel segmentation methodology for automated classification and differentiation of soft tissues using multiband data obtained with the newly developed system of high-resolution ultrasonic transmission tomography (HUTT) for imaging biological organs. This methodology extends and combines two existing approaches: the L-level set active contour (AC) segmentation approach and the agglomerative hierarchical kappa-means approach for unsupervised clustering (UC). To prevent the trapping of the current iterative minimization AC algorithm in a local minimum, we introduce a multiresolution approach that applies the level set functions at successively increasing resolutions of the image data. The resulting AC clusters are subsequently rearranged by the UC algorithm that seeks the optimal set of clusters yielding the minimum within-cluster distances in the feature space. The presented results from Monte Carlo simulations and experimental animal-tissue data demonstrate that the proposed methodology outperforms other existing methods without depending on heuristic parameters and provides a reliable means for soft tissue differentiation in HUTT images.
Daily High-Resolution Flood Maps of Africa: 1992-present with Near Real Time Updates
NASA Astrophysics Data System (ADS)
Picton, J.; Galantowicz, J. F.; Root, B.
2016-12-01
The ability to characterize past and current flood extents frequently, accurately, and at high resolution is needed for many applications including risk assessment, wetlands monitoring, and emergency management. However, remote sensing methods have not been capable of meeting all of these requirements simultaneously. Cloud cover too often obscures the surface for visual and infrared sensors and observations from radar sensors are too infrequent to create consistent historical databases or monitor evolving events. Lower-resolution (10-50 km) passive microwave sensors, such as SSM/I, AMSR-E, and AMSR2, are sensitive to water cover, acquire useful data during clear and cloudy conditions, have revisit periods of up to twice daily, and provide a continuous record of data from 1992 to the present. What they lack most is the resolution needed to map flood extent. We will present results from a flood mapping system capable of producing high-resolution (90-m) flood extent depictions from lower resolution microwave data. The system uses the strong sensitivity of microwave data to surface water coverage combined with land surface and atmospheric data to derive daily flooded fraction estimates on a sensor-footprint basis. The system downscales flooded fraction to make high-resolution Boolean flood extent depictions that are spatially continuous and consistent with the lower resolution data. The downscaling step is based on a relative floodability (RF) index derived from higher-resolution topographic and hydrological data. We process RF to create a flooded fraction threshold map that relates each 90-m grid point to the surrounding terrain at the microwave scale. We have derived daily, 90-m resolution flood maps for Africa covering 1992-present using SSM/I, AMSR-E, and AMSR2 data and we are now producing new daily maps in near real time. The flood maps are being used by the African Risk Capacity (ARC) Agency to underpin an intergovernmental river flood insurance program in Africa. We will present results showing daily flood extents during major events and discuss: validation of the flood maps against MODIS-derived maps; analyses of minimum detectable flood size; aggregate analyses of flood extent over time; flood map use in ARC's insurance model; and results applying the system to the Americas.
Global-scale high-resolution ( 1 km) modelling of mean, maximum and minimum annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark; Hendriks, Jan; Beusen, Arthur; Clavreul, Julie; King, Henry; Schipper, Aafke
2017-04-01
Quantifying mean, maximum and minimum annual flow (AF) of rivers at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. AF metrics can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict AF metrics based on climate and catchment characteristics. Yet, so far, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. We developed global-scale regression models that quantify mean, maximum and minimum AF as function of catchment area and catchment-averaged slope, elevation, and mean, maximum and minimum annual precipitation and air temperature. We then used these models to obtain global 30 arc-seconds (˜ 1 km) maps of mean, maximum and minimum AF for each year from 1960 through 2015, based on a newly developed hydrologically conditioned digital elevation model. We calibrated our regression models based on observations of discharge and catchment characteristics from about 4,000 catchments worldwide, ranging from 100 to 106 km2 in size, and validated them against independent measurements as well as the output of a number of process-based global hydrological models (GHMs). The variance explained by our regression models ranged up to 90% and the performance of the models compared well with the performance of existing GHMs. Yet, our AF maps provide a level of spatial detail that cannot yet be achieved by current GHMs.
Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome
NASA Astrophysics Data System (ADS)
Abbasi, Hamed; Rauter, Georg; Guzman, Raphael; Cattin, Philippe C.; Zam, Azhar
2018-02-01
In minimal invasive laser osteotomy precise information about the ablation process can be obtained with LIBS in order to avoid carbonization, or cutting of wrong types of tissue. Therefore, the collecting fiber for LIBS needs to be optimally placed in narrow cavities in the endoscope. To determine this optimal placement, the plasma plume expansion dynamics in ablation of bone tissue by the second harmonic of a nanosecond Nd:YAG laser at 532 nm has been studied. The laserinduced plasma plume was monitored in different time delays, from one nanosecond up to one hundred microseconds. Measurements were performed using high-speed gated illumination imaging. The expansion features were studied using illumination of the overall visible emission by using a gated intensified charged coupled device (ICCD). The camera was capable of having a minimum gate width (Optical FWHM) of 3 ns and the timing resolution (minimum temporal shift of the gate) of 10 ps. The imaging data were used to generate position-time data of the luminous plasma-front. Moreover, the velocity of the plasma plume expansion was studied based on the time-resolved intensity data. By knowing the plasma plume profile over time, the optimum position (axial distance from the laser spot) of the collecting fiber and optimal time delay (to have the best signal to noise ratio) in spatial-resolved and time-resolved laser-induced breakdown spectroscopy (LIBS) can be determined. Additionally, the function of plasma plume expansion could be used to study the shock wave of the plasma plume.
Study of the eclipse region of the redback millisecond pulsar J1431-4715
NASA Astrophysics Data System (ADS)
Miraval Zanon, A.; Burgay, M.; Possenti, A.; Ridolfi, A.
2018-01-01
We report on the rotational, astrometric and orbital parameters for PSR J1431-4715, and we also present a preliminary analysis of the eclipsing region. This pulsar was discovered in the High Time Resolution Universe survey and it belongs to the class of “redback” systems. The minimum estimated mass for the companion of J1431-4715 is, indeed, 0.13 M⊙. Thanks to multi-frequency observations, obtained at the 64 m Parkes radio telescope, we note that the magnitude and the duration of the eclipse delay depend upon the observing frequency.
Non-invasive imaging methods applied to neo- and paleontological cephalopod research
NASA Astrophysics Data System (ADS)
Hoffmann, R.; Schultz, J. A.; Schellhorn, R.; Rybacki, E.; Keupp, H.; Gerden, S. R.; Lemanis, R.; Zachow, S.
2013-11-01
Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum-maximum size of objects that can be studied, of the degree of post-processing needed and availability. Main application of the methods is seen in morphometry and volumetry of cephalopod shells in order to improve our understanding of diversity and disparity, functional morphology and biology of extinct and extant cephalopods.
Towards Probablistic Assessment of Hypobaric Decompression Sickness Treatment
NASA Technical Reports Server (NTRS)
Conkin, J.; Abercromby, A. F.; Feiveson, A. H.; Gernhardt, M. L.; Norcross, J. R.; Ploutz-Snyder, R.; Wessel, J. H., III
2013-01-01
INTRODUCTION: Pressure, oxygen (O2), and time are the pillars to effective treatment of decompression sickness (DCS). The NASA DCS Treatment Model links a decrease in computed bubble volume to the resolution of a symptom. The decrease in volume is realized in two stages: a) during the Boyle's Law compression and b) during subsequent dissolution of the gas phase by the O2 window. METHODS: The cumulative distribution of 154 symptoms that resolved during repressurization was described with a log-logistic density function of pressure difference (deltaP as psid) associated with symptom resolution and two other explanatory variables. The 154 symptoms originated from 119 cases of DCS during 969 exposures in 47 different altitude tests. RESULTS: The probability of symptom resolution [P(symptom resolution)] = 1 / (1+exp(- (ln(deltaP) - 1.682 + 1.089×AMB - 0.00395×SYMPTOM TIME) / 0.633)), where AMB is 1 when the subject ambulated as part of the altitude exposure or else 0 and SYMPTOM TIME is the elapsed time in min from start of the altitude exposure to recognition of a DCS symptom. The P(symptom resolution) was estimated from computed deltaP from the Tissue Bubble Dynamics Model based on the "effective" Boyle's Law change: P2 - P1 (deltaP, psid) = P1×V1/V2 - P1, where V1 is the computed volume of a spherical bubble in a unit volume of tissue at low pressure P1 and V2 is computed volume after a change to a higher pressure P2. V2 continues to decrease through time at P2, at a faster rate if 100% ground level O2 was breathed. The computed deltaP is the effective treatment pressure at any point in time as if the entire ?deltaP was just from Boyle's Law compression. DISCUSSION: Given the low probability of DCS during extravehicular activity and the prompt treatment of a symptom with options through the model it is likely that the symptom and gas phase will resolve with minimum resources and minimal impact on astronaut health, safety, and productivity.
First images of a digital autoradiography system based on a Medipix2 hybrid silicon pixel detector.
Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo
2003-06-21
We present the first images of beta autoradiography obtained with the high-resolution hybrid pixel detector consisting of the Medipix2 single photon counting read-out chip bump-bonded to a 300 microm thick silicon pixel detector. This room temperature system has 256 x 256 square pixels of 55 microm pitch (total sensitive area of 14 x 14 mm2), with a double threshold discriminator and a 13-bit counter in each pixel. It is read out via a dedicated electronic interface and control software, also developed in the framework of the European Medipix2 Collaboration. Digital beta autoradiograms of 14C microscale standard strips (containing separate bands of increasing specific activity in the range 0.0038-32.9 kBq g(-1)) indicate system linearity down to a total background noise of 1.8 x 10(-3) counts mm(-2) s(-1). The minimum detectable activity is estimated to be 0.012 Bq for 36,000 s exposure and 0.023 Bq for 10,800 s exposure. The measured minimum detection threshold is less than 1600 electrons (equivalent to about 6 keV Si). This real-time system for beta autoradiography offers lower pixel pitch and higher sensitive area than the previous Medipix1-based system. It has a 14C sensitivity better than that of micro channel plate based systems, which, however, shows higher spatial resolution and sensitive area.
Wavelet data compression for archiving high-resolution icosahedral model data
NASA Astrophysics Data System (ADS)
Wang, N.; Bao, J.; Lee, J.
2011-12-01
With the increase of the resolution of global circulation models, it becomes ever more important to develop highly effective solutions to archive the huge datasets produced by those models. While lossless data compression guarantees the accuracy of the restored data, it can only achieve limited reduction of data size. Wavelet transform based data compression offers significant potentials in data size reduction, and it has been shown very effective in transmitting data for remote visualizations. However, for data archive purposes, a detailed study has to be conducted to evaluate its impact to the datasets that will be used in further numerical computations. In this study, we carried out two sets of experiments for both summer and winter seasons. An icosahedral grid weather model and a highly efficient wavelet data compression software were used for this study. Initial conditions were compressed and input to the model to run to 10 days. The forecast results were then compared to those forecast results from the model run with the original uncompressed initial conditions. Several visual comparisons, as well as the statistics of numerical comparisons are presented. These results indicate that with specified minimum accuracy losses, wavelet data compression achieves significant data size reduction, and at the same time, it maintains minimum numerical impacts to the datasets. In addition, some issues are discussed to increase the archive efficiency while retaining a complete set of meta data for each archived file.
Sensitivity of GRETINA position resolution to hole mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasher, V. S.; Cromaz, M.; Merchan, E.
The sensitivity of the position resolution of the gamma-ray tracking array GRETINA to the hole charge-carrier mobility parameter is investigated. The χ 2 results from a fit of averaged signal (“superpulse”) data exhibit a shallow minimum for hole mobilities 15% lower than the currently adopted values. Calibration data on position resolution is analyzed, together with simulations that isolate the hole mobility dependence of signal decomposition from other effects such as electronics cross-talk. Our results effectively exclude hole mobility as a dominant parameter for improving the position resolution for reconstruction of gamma-ray interaction points in GRETINA.
Sensitivity of GRETINA position resolution to hole mobility
Prasher, V. S.; Cromaz, M.; Merchan, E.; ...
2017-02-01
The sensitivity of the position resolution of the gamma-ray tracking array GRETINA to the hole charge-carrier mobility parameter is investigated. The χ 2 results from a fit of averaged signal (“superpulse”) data exhibit a shallow minimum for hole mobilities 15% lower than the currently adopted values. Calibration data on position resolution is analyzed, together with simulations that isolate the hole mobility dependence of signal decomposition from other effects such as electronics cross-talk. Our results effectively exclude hole mobility as a dominant parameter for improving the position resolution for reconstruction of gamma-ray interaction points in GRETINA.
Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms.
Williams, Logan A; Nehmetallah, Georges; Aylo, Rola; Banerjee, Partha P
2015-02-20
Fresnel transform implementation methods using numerical preprocessing techniques are investigated in this paper. First, it is shown that up-sampling dramatically reduces the minimum reconstruction distance requirements and allows maximal signal recovery by eliminating aliasing artifacts which typically occur at distances much less than the Rayleigh range of the object. Second, zero-padding is employed to arbitrarily scale numerical resolution for the purpose of resolution matching multiple holograms, where each hologram is recorded using dissimilar geometric or illumination parameters. Such preprocessing yields numerical resolution scaling at any distance. Both techniques are extensively illustrated using experimental results.
Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-09-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.
NASA Technical Reports Server (NTRS)
Price, P. B.
1978-01-01
The feasibility of the design, construction, launch and retrieval of a hinged 15 ft by 110 ft the platform containing an array of interleaved CR-39 and Lexan track-recording detectors to be placed into circular orbit by space shuttle is assessed. The total weight of the detector assembly plus supporting structure and accessories is 32,000 pounds. The modular construction permits as little as one fourth of the payload to be exposed at one time. The CR-39 detector has sensitivity adequate to detect and study cosmic rays ranging from minimum ionizing iron-group nuclei to the heaviest elements. The detectors will survive a one year exposure to trapped protons without losing their high resolution. Advantages include low cost, huge collecting power (approximately 150 sq m) as well as the high resolution previously attainable only with electronic detectors.
Active optics for next generation space telescopes
NASA Astrophysics Data System (ADS)
Costes, V.; Perret, L.; Laubier, D.; Delvit, J. M.; Imbert, C.; Cadiergues, L.; Faure, C.
2017-09-01
High resolution observation systems need bigger and bigger telescopes. The design of such telescopes is a key issue for the whole satellite. In order to improve the imaging resolution with minimum impact on the satellite, a big effort must be made to improve the telescope compactness. Compactness is also important for the agility of the satellite and for the size and cost of the launcher. This paper shows how compact a high resolution telescope can be. A diffraction limited telescope can be less than ten times shorter than its focal length. But the compactness impacts drastically the opto-mechanical sensitivity and the optical performances. Typically, a gain of a factor of 2 leads to a mechanical tolerance budget 6 times more difficult. The need to implement active optics for positioning requirements raises very quickly. Moreover, the capability to compensate shape defaults of the primary mirror is the way to simplify the mirror manufacture, to mitigate the development risks and to minimize the cost. The larger the primary mirror is, the more interesting it is to implement active optics for shape compensations. CNES is preparing next generation of earth observation satellite in the frame of OTOS (Observation de la Terre Optique Super-Résolue; High resolution earth observing optical system). OTOS is a technology program. In particular, optical technological developments and breadboards dedicated to active optics are on-going. The aim is to achieve TRL 5 to TRL6 for these new technologies and to validate the global performances of such an active telescope.
Synthetic Pulse Dilation - PMT Model for high bandwidth gamma measurements
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, H.; Herrmann, H. W.; Kim, Y. H.; Zylstra, A. B.; Meaney, K. D.; Lopez, F. E.; Khater, H.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Hares, J. D.; Dymoke-Bradshaw, T.; Milnes, J.
2017-10-01
The Cherenkov mechanism used in Gas Cherenkov Detectors (GCD) is exceptionally fast. However, the temporal resolution of GCDs, such as the Gamma Reaction History diagnostic (GRH), is limited by the current state-of-the-art photomultiplier tube (PMT) to 100 ps. The new pulse dilation - PMT (PD-PMT) for NIF allows for a temporal resolution comparable to that of the gas cell, or of 10ps. Enhanced resolution will contribute to the quest for ignition in a crucial way through precision measurement of reaction history and areal density (ρ R) history, leading to better constrained models. Features such as onset of alpha heating, shock reverberations and burn truncation due to dynamically evolving failure modes will become visible for the first time. PD-PMT will be deployed on GCD-3 at NIF in 2018. Our synthetic PD-PMT model evaluates the capabilities of these future measurements, as well as minimum yield requirements for measurements performed in a well at 3.9 m from target chamber center (TCC), and within a diagnostic inserter at 0.2m from TCC.
Degree Day Requirements for Kudzu Bug (Hemiptera: Plataspidae), a Pest of Soybeans.
Grant, Jessica I; Lamp, William O
2018-04-02
Understanding the phenology of a new potential pest is fundamental for the development of a management program. Megacopta cribraria Fabricius (Hemiptera: Plataspidae), kudzu bug, is a pest of soybeans first detected in the United States in 2009 and in Maryland in 2013. We observed the phenology of kudzu bug life stages in Maryland, created a Celsius degree-day (CDD) model for development, and characterized the difference between microhabitat and ambient temperatures of both kudzu, Pueraria montana (Lour.) Merr. (Fabales: Fabaceae) and soybeans, Glycine max (L.) Merrill (Fabales: Fabaceae). In 2014, low population numbers yielded limited resolution from field phenology observations. We observed kudzu bug populations persisting within Maryland; but between 2013 and 2016, populations were low compared to populations in the southeastern United States. Based on the degree-day model, kudzu bug eggs require 80 CDD at a minimum temperature of 14°C to hatch. Nymphs require 545 CDD with a minimum temperature of 16°C for development. The CDD model matches field observations when factoring a biofix date of April 1 and a minimum preoviposition period of 17 d. The model suggests two full generations per year in Maryland. Standard air temperature monitors do not affect model predictions for pest management, as microhabitat temperature differences did not show a clear trend between kudzu and soybeans. Ultimately, producers can predict the timing of kudzu bug life stages with the CDD model for the use of timing management plans in soybean fields.
Development of a Nonequilibrium Radiative Heating Prediction Method for Coupled Flowfield Solutions
NASA Technical Reports Server (NTRS)
Hartung, Lin C.
1991-01-01
A method for predicting radiative heating and coupling effects in nonequilibrium flow-fields has been developed. The method resolves atomic lines with a minimum number of spectral points, and treats molecular radiation using the smeared band approximation. To further minimize computational time, the calculation is performed on an optimized spectrum, which is computed for each flow condition to enhance spectral resolution. Additional time savings are obtained by performing the radiation calculation on a subgrid optimally selected for accuracy. Representative results from the new method are compared to previous work to demonstrate that the speedup does not cause a loss of accuracy and is sufficient to make coupled solutions practical. The method is found to be a useful tool for studies of nonequilibrium flows.
Performance measurements of hybrid PIN diode arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jernigan, J.G.; Arens, J.F.; Kramer, G.
We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format having 10 {times} 64 pixels, each 120 {mu}m square, and the other format having 256 {times} 256 pixels, each 30 {mu}m square. In both cases, the thickness of the PIN diode layer is 300 {mu}m. Measurementsmore » of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 13 figs.« less
NASA Technical Reports Server (NTRS)
Ayres, T. R.; Shine, R. A.; Linsky, J. L.
1975-01-01
Existing high resolution stellar profiles of the Ca II and Mg II resonance lines suggest a possible width-luminosity correlation of the K1 minimum features. It is shown that such a correlation can be simply understood if the continuum optical depth of the stellar temperature minimum is relatively independent of surface gravity as suggested by three stars studied in detail.
NASA Astrophysics Data System (ADS)
Tang, Xiaojing
Fast and accurate monitoring of tropical forest disturbance is essential for understanding current patterns of deforestation as well as helping eliminate illegal logging. This dissertation explores the use of data from different satellites for near real-time monitoring of forest disturbance in tropical forests, including: development of new monitoring methods; development of new assessment methods; and assessment of the performance and operational readiness of existing methods. Current methods for accuracy assessment of remote sensing products do not address the priority of near real-time monitoring of detecting disturbance events as early as possible. I introduce a new assessment framework for near real-time products that focuses on the timing and the minimum detectable size of disturbance events. The new framework reveals the relationship between change detection accuracy and the time needed to identify events. In regions that are frequently cloudy, near real-time monitoring using data from a single sensor is difficult. This study extends the work by Xin et al. (2013) and develops a new time series method (Fusion2) based on fusion of Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data. Results of three test sites in the Amazon Basin show that Fusion2 can detect 44.4% of the forest disturbance within 13 clear observations (82 days) after the initial disturbance. The smallest event detected by Fusion2 is 6.5 ha. Also, Fusion2 detects disturbance faster and has less commission error than more conventional methods. In a comparison of coarse resolution sensors, MODIS Terra and Aqua combined provides faster and more accurate detection of disturbance events than VIIRS (Visible Infrared Imaging Radiometer Suite) and MODIS single sensor data. The performance of near real-time monitoring using VIIRS is slightly worse than MODIS Terra but significantly better than MODIS Aqua. New monitoring methods developed in this dissertation provide forest protection organizations the capacity to monitor illegal logging events promptly. In the future, combining two Landsat and two Sentinel-2 satellites will provide global coverage at 30 m resolution every 4 days, and routine monitoring may be possible at high resolution. The methods and assessment framework developed in this dissertation are adaptable to newly available datasets.
Meier, Gretchen A.; Brown, Jesslyn F.; Evelsizer, Ross J.; Vogelmann, James E.
2014-01-01
Trembling aspen (Populus tremuloides Michx.) occurs over wide geographical, latitudinal, elevational, and environmental gradients, making it a favorable candidate for a study of phenology and climate relationships. Aspen forests and woodlands provide numerous ecosystem services, such as high primary productivity and biodiversity, retention and storage of environmental variables (precipitation, temperature, snow–water equivalent) that affect the spring and fall phenology of the aspen woodland communities of southwestern Colorado. We assessed the land surface phenology of aspen woodlands using two phenology indices, start of season time (SOST) and end of season time (EOST), from the U.S. Geological Survey (USGS) database of conterminous U.S. phenological indicators over an 11-year time period (2001–2011). These indicators were developed with 250 m resolution remotely sensed data from the Moderate Resolution Imaging Spectroradiometer processed to highlight vegetation response. We compiled data on SOST, EOST, elevation, precipitation, air temperature, and snow water equivalent (SWE) for selected sites having more than 80% cover by aspen woodland communities. In the 11-year time frame of our study, EOST had significant positive correlation with minimum fall temperature and significant negative correlation with fall precipitation. SOST had a significant positive correlation with spring SWE and spring maximum temperature.
Effect of image resolution manipulation in rearfoot angle measurements obtained with photogrammetry
Sacco, I.C.N.; Picon, A.P.; Ribeiro, A.P.; Sartor, C.D.; Camargo-Junior, F.; Macedo, D.O.; Mori, E.T.T.; Monte, F.; Yamate, G.Y.; Neves, J.G.; Kondo, V.E.; Aliberti, S.
2012-01-01
The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter- and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol. PMID:22911379
SU-E-J-197: Investigation of Microsoft Kinect 2.0 Depth Resolution for Patient Motion Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverstein, E; Snyder, M
2015-06-15
Purpose: Investigate the use of the Kinect 2.0 for patient motion tracking during radiotherapy by studying spatial and depth resolution capabilities. Methods: Using code written in C#, depth map data was abstracted from the Kinect to create an initial depth map template indicative of the initial position of an object to be compared to the depth map of the object over time. To test this process, simple setup was created in which two objects were imaged: a 40 cm × 40 cm board covered in non reflective material and a 15 cm × 26 cm textbook with a slightly reflective,more » glossy cover. Each object, imaged and measured separately, was placed on a movable platform with object to camera distance measured. The object was then moved a specified amount to ascertain whether the Kinect’s depth camera would visualize the difference in position of the object. Results: Initial investigations have shown the Kinect depth resolution is dependent on the object to camera distance. Measurements indicate that movements as small as 1 mm can be visualized for objects as close as 50 cm away. This depth resolution decreases linearly with object to camera distance. At 4 m, the depth resolution had decreased to observe a minimum movement of 1 cm. Conclusion: The improved resolution and advanced hardware of the Kinect 2.0 allows for increase of depth resolution over the Kinect 1.0. Although obvious that the depth resolution should decrease with increasing distance from an object given the decrease in number of pixels representing said object, the depth resolution at large distances indicates its usefulness in a clinical setting.« less
Effect of image resolution manipulation in rearfoot angle measurements obtained with photogrammetry.
Sacco, I C N; Picon, A P; Ribeiro, A P; Sartor, C D; Camargo-Junior, F; Macedo, D O; Mori, E T T; Monte, F; Yamate, G Y; Neves, J G; Kondo, V E; Aliberti, S
2012-09-01
The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter- and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol.
Resolution of Persistent Post-Stapedotomy Vertigo With Migraine Prophylactic Medication.
Moshtaghi, Omid; Mahboubi, Hossein; Haidar, Yarah M; Sahyouni, Ronald; Lin, Harrison W; Djalilian, Hamid R
2017-12-01
To describe persistent post-stapedotomy vertigo (PSV) and its treatment using migraine prophylaxis. A retrospective review of all patients with persistent PSV spanning 10 years at a tertiary academic hospital was performed. Patients who experienced persistent vertigo for a minimum of 3 months after surgery were included. Those with possible perilymph fistula, long prosthesis, and benign paroxysmal positional vertigo were excluded. All patients received instructions on migraine dietary and lifestyle changes and Vitamin B2 and magnesium. In addition, prophylactic treatment with nortriptyline, verapamil, or a combination thereof was started. Changes in vertigo frequency was the main outcome variable. The secondary outcome variables included the time period and medications necessary to achieve symptomatic resolution. Four women and one man with an average age of 53 years were identified that met criteria for persistent PSV indicating an incidence of 0.9% at our institution. The onset of vertigo symptoms was on average 20 days postoperatively. All five patients had daily vertigo episodes and experienced complete resolution with no vertigo episodes after treatment. Symptomatic resolution was achieved over an average of 9 weeks after initiating treatments. Persistent PSV beyond 3 months is a rare occurrence and its treatment can be challenging when there is no evidence of an underlying pathology. This subset of patients may be suffering from migraine, which was triggered postoperatively. Treatment with migraine prophylaxis in this cohort of patients may result in resolution of vertigo.
A 128-channel Time-to-Digital Converter (TDC) inside a Virtex-5 FPGA on the GANDALF module
NASA Astrophysics Data System (ADS)
Büchele, M.; Fischer, H.; Gorzellik, M.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.
2012-03-01
The GANDALF 6U-VME64x/VXS module has been developed for the digitization and real time analysis of detector signals. To perform different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition and trigger generation, this module comes with exchangeable analog and digital mezzanine cards. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In contrast to common TDC concepts, the input signal is sampled by 16 equidistant phase-shifted clocks. A particular challenge of the design is the minimum skew routing of the input signals to the sampling flip-flops. We present measurement results for the differential nonlinearity and the time resolution of the TDC readout system.
Huang, Ming-Xiong; Huang, Charles W; Robb, Ashley; Angeles, AnneMarie; Nichols, Sharon L; Baker, Dewleen G; Song, Tao; Harrington, Deborah L; Theilmann, Rebecca J; Srinivasan, Ramesh; Heister, David; Diwakar, Mithun; Canive, Jose M; Edgar, J Christopher; Chen, Yu-Han; Ji, Zhengwei; Shen, Max; El-Gabalawy, Fady; Levy, Michael; McLay, Robert; Webb-Murphy, Jennifer; Liu, Thomas T; Drake, Angela; Lee, Roland R
2014-01-01
The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL's performance was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL's performance was then examined in the analysis of human median-nerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer's problems of signal leaking and distorted source time-courses. © 2013.
Huang, Ming-Xiong; Huang, Charles W.; Robb, Ashley; Angeles, AnneMarie; Nichols, Sharon L.; Baker, Dewleen G.; Song, Tao; Harrington, Deborah L.; Theilmann, Rebecca J.; Srinivasan, Ramesh; Heister, David; Diwakar, Mithun; Canive, Jose M.; Edgar, J. Christopher; Chen, Yu-Han; Ji, Zhengwei; Shen, Max; El-Gabalawy, Fady; Levy, Michael; McLay, Robert; Webb-Murphy, Jennifer; Liu, Thomas T.; Drake, Angela; Lee, Roland R.
2014-01-01
The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL’s performance of was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL’s performance was then examined in the analysis of human mediannerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer’s problems of signal leaking and distorted source time-courses. PMID:24055704
Role of resolution in regional climate change projections over China
NASA Astrophysics Data System (ADS)
Shi, Ying; Wang, Guiling; Gao, Xuejie
2017-11-01
This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to homogeneous forcing (in this case greenhouse gas concentration changes).
Globally optimal, minimum stored energy, double-doughnut superconducting magnets.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2010-01-01
The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.
Vision and the dimensions of nerve fibers.
Wade, Nicholas J
2005-12-01
Vision provided the obvious source of determining the dimensions of nerve fibers when suitable achromatic microscopes were directed at neural tissue in the 1830s. The earlier microscopes of Hooke and Leeuwenhoek were unable to resolve such small structures adequately. However, it was not Hooke's microscope that led to an estimate of the dimensions of nerve fibers, but his experiments on the limits of visual resolution; he determined that a separation of one minute of arc was the minimum that could normally be seen. Descartes had earlier speculated that the retina consisted of the ends of fibers of the optic nerve, and that their size defined the limits of what could be seen. Estimates of the diameters of nerve fibers were made on the basis of human visual acuity by Porterfield in 1738; he calculated the diameters of nerve fibers in the retina as one 7,200th part of an inch (0.0035 mm), based on the resolution of one minute as the minimum visible. In the same year, Jurin questioned the reliability of such estimates because of variations in visual resolution with different stimuli.
Enhancing multi-spot structured illumination microscopy with fluorescence difference
NASA Astrophysics Data System (ADS)
Ward, Edward N.; Torkelsen, Frida H.; Pal, Robert
2018-03-01
Structured illumination microscopy is a super-resolution technique used extensively in biological research. However, this technique is limited in the maximum possible resolution increase. Here we report the results of simulations of a novel enhanced multi-spot structured illumination technique. This method combines the super-resolution technique of difference microscopy with structured illumination deconvolution. Initial results give at minimum a 1.4-fold increase in resolution over conventional structured illumination in a low-noise environment. This new technique also has the potential to be expanded to further enhance axial resolution with three-dimensional difference microscopy. The requirement for precise pattern determination in this technique also led to the development of a new pattern estimation algorithm which proved more efficient and reliable than other methods tested.
Quantitative Analysis of Bone Microstructure Using Tomosynthesis
2013-10-01
resolution of separation, thickness, distances, in-plane and out-of-plane geometric distortion, and density linearity. 5 To assess the minimum spacing... geometric accuracy phantom was created using four 1 mm beads, placed in four corners at 35 mm apart (Figure 1f). An embedded human vertebra was also...included in the phantom as a realistic reference material (Figure 1g). Figure 1: Tray of phantoms to assess DTS resolution, geometric distortion
Quantitative Analysis of Bone Microstructure Using Tomosynthesis
2012-10-01
resolution of separation, thickness, distances, in-plane and out-of-plane geometric distortion, and density linearity. To assess the minimum spacing...volume, a geometric accuracy phantom was created using four 1 mm beads, placed in four corners at 35 mm apart (Figure 1f). An embedded human vertebra...was also included in the phantom as a realistic reference material (Figure 1g). Figure 1: Tray of phantoms to assess DTS resolution, geometric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, N.; Suzuki, I. H.; Onuki, H.
1989-07-01
Optical characteristics of a new beamline consisting of a premirror, a Grasshopper monochromator, and a refocusing mirror have been investigated. The intensity of the monochromatic soft x-ray was estimated to be about 10/sup 8/ photons/(s 100 mA) at 500 eV with the storage electron energy of 600 MeV and the minimum slit width. This slit width provides a resolution of about 500. Angular distributions of fragment ions from an inner-shell excited nitrogen molecule have been measured with a rotatable time-of-flight mass spectrometer by using this beamline.
High resolution miniaturized stepper ultrasonic motor using differential composite motion.
Chu, Xiangcheng; Xing, Zengping; Li, Longtu; Gui, Zhilun
2004-03-01
Experiments show that there is a limited minimum stepped angle in ultrasonic motors (USM). The research on the minimum angle of stepper USM with 15 mm in diameter and wobbling mode is being carried out. This paper presents a novel way to decrease the minimum stepped angle of USM based on the principle of differential composite motion (DCM), i.e. clockwise and counterclockwise rotation. The prototype was fabricated and experiments proved that this method is useful and also keeps a high torque for a large stepped angle. The stator of the prototype is steel, and rotor is fiberglass, antifriction material or steel. The prototype can operate well over 150 h with a 5 kHz wide frequency band. The minimum stepped angle is 46" using a coventional method while 12" using DCM method proposed in this paper.
Automated Glacier Surface Velocity using Multi-Image/Multi-Chip (MIMC) Feature Tracking
NASA Astrophysics Data System (ADS)
Ahn, Y.; Howat, I. M.
2009-12-01
Remote sensing from space has enabled effective monitoring of remote and inhospitable polar regions. Glacier velocity, and its variation in time, is one of the most important parameters needed to understand glacier dynamics, glacier mass balance and contribution to sea level rise. Regular measurements of ice velocity are possible from large and accessible satellite data set archives, such as ASTER and LANDSAT-7. Among satellite imagery, optical imagery (i.e. passive, visible to near-infrared band sensors) provides abundant data with optimal spatial resolution and repeat interval for tracking glacier motion at high temporal resolution. Due to massive amounts of data, computation of ice velocity from feature tracking requires 1) user-friendly interface, 2) minimum local/user parameter inputs and 3) results that need minimum editing. We focus on robust feature tracking, applicable to all currently available optical satellite imagery, that is ASTER, SPOT and LANDSAT etc. We introduce the MIMC (multiple images/multiple chip sizes) matching approach that does not involve any user defined local/empirical parameters except approximate average glacier speed. We also introduce a method for extracting velocity from LANDSAT-7 SLC-off data, which has 22 percent of scene data missing in slanted strips due to failure of the scan line corrector. We apply our approach to major outlet glaciers in west/east Greenland and assess our MIMC feature tracking technique by comparison with conventional correlation matching and other methods (e.g. InSAR).
NASA Technical Reports Server (NTRS)
Haering, E. A., Jr.; Burcham, F. W., Jr.
1984-01-01
A simulation study was conducted to optimize minimum time and fuel consumption paths for an F-15 airplane powered by two F100 Engine Model Derivative (EMD) engines. The benefits of using variable stall margin (uptrim) to increase performance were also determined. This study supports the NASA Highly Integrated Digital Electronic Control (HIDEC) program. The basis for this comparison was minimum time and fuel used to reach Mach 2 at 13,716 m (45,000 ft) from the initial conditions of Mach 0.15 at 1524 m (5000 ft). Results were also compared to a pilot's estimated minimum time and fuel trajectory determined from the F-15 flight manual and previous experience. The minimum time trajectory took 15 percent less time than the pilot's estimate for the standard EMD engines, while the minimum fuel trajectory used 1 percent less fuel than the pilot's estimate for the minimum fuel trajectory. The F-15 airplane with EMD engines and uptrim, was 23 percent faster than the pilot's estimate. The minimum fuel used was 5 percent less than the estimate.
Comparison of Frequency-Domain Array Methods for Studying Earthquake Rupture Process
NASA Astrophysics Data System (ADS)
Sheng, Y.; Yin, J.; Yao, H.
2014-12-01
Seismic array methods, in both time- and frequency- domains, have been widely used to study the rupture process and energy radiation of earthquakes. With better spatial resolution, the high-resolution frequency-domain methods, such as Multiple Signal Classification (MUSIC) (Schimdt, 1986; Meng et al., 2011) and the recently developed Compressive Sensing (CS) technique (Yao et al., 2011, 2013), are revealing new features of earthquake rupture processes. We have performed various tests on the methods of MUSIC, CS, minimum-variance distortionless response (MVDR) Beamforming and conventional Beamforming in order to better understand the advantages and features of these methods for studying earthquake rupture processes. We use the ricker wavelet to synthesize seismograms and use these frequency-domain techniques to relocate the synthetic sources we set, for instance, two sources separated in space but, their waveforms completely overlapping in the time domain. We also test the effects of the sliding window scheme on the recovery of a series of input sources, in particular, some artifacts that are caused by the sliding window scheme. Based on our tests, we find that CS, which is developed from the theory of sparsity inversion, has relatively high spatial resolution than the other frequency-domain methods and has better performance at lower frequencies. In high-frequency bands, MUSIC, as well as MVDR Beamforming, is more stable, especially in the multi-source situation. Meanwhile, CS tends to produce more artifacts when data have poor signal-to-noise ratio. Although these techniques can distinctly improve the spatial resolution, they still produce some artifacts along with the sliding of the time window. Furthermore, we propose a new method, which combines both the time-domain and frequency-domain techniques, to suppress these artifacts and obtain more reliable earthquake rupture images. Finally, we apply this new technique to study the 2013 Okhotsk deep mega earthquake in order to better capture the rupture characteristics (e.g., rupture area and velocity) of this earthquake.
NASA Astrophysics Data System (ADS)
Wiggins, B. B.; deSouza, Z. O.; Vadas, J.; Alexander, A.; Hudan, S.; deSouza, R. T.
2017-11-01
A second generation position-sensitive microchannel plate detector using the induced signal approach has been realized. This detector is presently capable of measuring the incident position of electrons, photons, or ions. To assess the spatial resolution, the masked detector was illuminated by electrons. The initial, measured spatial resolution of 276 μm FWHM was improved by requiring a minimum signal amplitude on the anode and by employing digital signal processing techniques. The resulting measured spatial resolution of 119 μm FWHM corresponds to an intrinsic resolution of 98 μm FWHM when the effect of the finite slit width is de-convoluted. This measurement is a substantial improvement from the last reported spatial resolution of 466 μm FWHM using the induced signal approach. To understand the factors that limit the measured resolution, the performance of the detector is simulated.
NASA Astrophysics Data System (ADS)
Castro, Andrew; Alice-Usa Collaboration; Alice-Tpc Collaboration
2017-09-01
The Time Projection Chamber (TPC) currently used for ALICE (A Large Ion Collider Experiment at CERN) is a gaseous tracking detector used to study both proton-proton and heavy-ion collisions at the Large Hadron Collider (LHC) In order to accommodate the higher luminosit collisions planned for the LHC Run-3 starting in 2021, the ALICE-TPC will undergo a major upgrade during the next LHC shut down. The TPC is limited to a read out of 1000 Hz in minimum bias events due to the intrinsic dead time associated with back ion flow in the multi wire proportional chambers (MWPC) in the TPC. The TPC upgrade will handle the increase in event readout to 50 kHz for heavy ion minimum bias triggered events expected with the Run-3 luminosity by switching the MWPCs to a stack of four Gaseous Electron Multiplier (GEM) foils. The GEM layers will combine different hole pitches to reduce the dead time while maintaining the current spatial and energy resolution of the existing TPC. Undertaking the upgrade of the TPC represents a massive endeavor in terms of design, production, construction, quality assurance, and installation, thus the upgrade is coordinated over a number of institutes worldwide. The talk will go over the physics motivation for the upgrade, the ALICE-USA contribution to the construction of Inner Read Out Chambers IROCs, and QA from the first chambers built in the U.S
Optimal Signal Processing of Frequency-Stepped CW Radar Data
NASA Technical Reports Server (NTRS)
Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.
1995-01-01
An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.
Optimal Signal Processing of Frequency-Stepped CW Radar Data
NASA Technical Reports Server (NTRS)
Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.
1995-01-01
An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-851O network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.
Sarnoff JND Vision Model for Flat-Panel Design
NASA Technical Reports Server (NTRS)
Brill, Michael H.; Lubin, Jeffrey
1998-01-01
This document describes adaptation of the basic Sarnoff JND Vision Model created in response to the NASA/ARPA need for a general-purpose model to predict the perceived image quality attained by flat-panel displays. The JND model predicts the perceptual ratings that humans will assign to a degraded color-image sequence relative to its nondegraded counterpart. Substantial flexibility is incorporated into this version of the model so it may be used to model displays at the sub-pixel and sub-frame level. To model a display (e.g., an LCD), the input-image data can be sampled at many times the pixel resolution and at many times the digital frame rate. The first stage of the model downsamples each sequence in time and in space to physiologically reasonable rates, but with minimum interpolative artifacts and aliasing. Luma and chroma parts of the model generate (through multi-resolution pyramid representation) a map of differences-between test and reference called the JND map, from which a summary rating predictor is derived. The latest model extensions have done well in calibration against psychophysical data and against image-rating data given a CRT-based front-end. THe software was delivered to NASA Ames and is being integrated with LCD display models at that facility,
Ultra-fast high-resolution hybrid and monolithic CMOS imagers in multi-frame radiography
NASA Astrophysics Data System (ADS)
Kwiatkowski, Kris; Douence, Vincent; Bai, Yibin; Nedrow, Paul; Mariam, Fesseha; Merrill, Frank; Morris, Christopher L.; Saunders, Andy
2014-09-01
A new burst-mode, 10-frame, hybrid Si-sensor/CMOS-ROIC FPA chip has been recently fabricated at Teledyne Imaging Sensors. The intended primary use of the sensor is in the multi-frame 800 MeV proton radiography at LANL. The basic part of the hybrid is a large (48×49 mm2) stitched CMOS chip of 1100×1100 pixel count, with a minimum shutter speed of 50 ns. The performance parameters of this chip are compared to the first generation 3-frame 0.5-Mpixel custom hybrid imager. The 3-frame cameras have been in continuous use for many years, in a variety of static and dynamic experiments at LANSCE. The cameras can operate with a per-frame adjustable integration time of ~ 120ns-to- 1s, and inter-frame time of 250ns to 2s. Given the 80 ms total readout time, the original and the new imagers can be externally synchronized to 0.1-to-5 Hz, 50-ns wide proton beam pulses, and record up to ~1000-frame radiographic movies typ. of 3-to-30 minute duration. The performance of the global electronic shutter is discussed and compared to that of a high-resolution commercial front-illuminated monolithic CMOS imager.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.
Gasoline compression ignition (GCI) is a low temperature combustion (LTC) concept that has been gaining increasing interest over the recent years owing to its potential to achieve diesel-like thermal efficiencies with significantly reduced engine-out nitrogen oxides (NOx) and soot emissions compared to diesel engines. In this work, closed-cycle computational fluid dynamics (CFD) simulations are performed of this combustion mode using a sector mesh in an effort to understand effects of model settings on simulation results. One goal of this work is to provide recommendations for grid resolution, combustion model, chemical kinetic mechanism, and turbulence model to accurately capture experimental combustionmore » characteristics. Grid resolutions ranging from 0.7 mm to 0.1 mm minimum cell sizes were evaluated in conjunction with both Reynolds averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) based turbulence models. Solution of chemical kinetics using the multi-zone approach is evaluated against the detailed approach of solving chemistry in every cell. The relatively small primary reference fuel (PRF) mechanism (48 species) used in this study is also evaluated against a larger 312-species gasoline mechanism. Based on these studies the following model settings are chosen keeping in mind both accuracy and computation costs – 0.175 mm minimum cell size grid, RANS turbulence model, 48-species PRF mechanism, and multi-zone chemistry solution with bin limits of 5 K in temperature and 0.05 in equivalence ratio. With these settings, the performance of the CFD model is evaluated against experimental results corresponding to a low load start of injection (SOI) timing sweep. The model is then exercised to investigate the effect of SOI on combustion phasing with constant intake valve closing (IVC) conditions and fueling over a range of SOI timings to isolate the impact of SOI on charge preparation and ignition. Simulation results indicate that there is an optimum SOI timing, in this case -30?aTDC (after top dead center), which results in the most stable combustion. Advancing injection with respect to this point leads to significant fuel mass burning in the colder squish region, leading to retarded phasing and ultimately misfire for SOI timings earlier than -42?aTDC. On the other hand, retarding injection beyond this optimum timing results in reduced residence time available for gasoline ignition kinetics, and also leads to retarded phasing, with misfire at SOI timings later than -15?aTDC.« less
Fast CT-PRESS-based spiral chemical shift imaging at 3 Tesla.
Mayer, Dirk; Kim, Dong-Hyun; Adalsteinsson, Elfar; Spielman, Daniel M
2006-05-01
A new sequence is presented that combines constant-time point-resolved spectroscopy (CT-PRESS) with fast spiral chemical shift imaging. It allows the acquisition of multivoxel spectra without line splitting with a minimum total measurement time of less than 5 min for a field of view of 24 cm and a nominal 1.5x1.5-cm2 in-plane resolution. Measurements were performed with 17 CS encoding steps in t1 (Deltat1=12.8 ms) and an average echo time of 151 ms, which was determined by simulating the CT-PRESS experiment for the spin systems of glutamate (Glu) and myo-inositol (mI). Signals from N-acetyl-aspartate, total creatine, choline-containing compounds (Cho), Glu, and mI were detected in a healthy volunteer with no or only minor baseline distortions within 14 min on a 3 T MR scanner. Copyright (c) 2006 Wiley-Liss, Inc.
Heo, Young Jin; Lee, Donghyeon; Kang, Junsu; Lee, Keondo; Chung, Wan Kyun
2017-09-14
Imaging flow cytometry (IFC) is an emerging technology that acquires single-cell images at high-throughput for analysis of a cell population. Rich information that comes from high sensitivity and spatial resolution of a single-cell microscopic image is beneficial for single-cell analysis in various biological applications. In this paper, we present a fast image-processing pipeline (R-MOD: Real-time Moving Object Detector) based on deep learning for high-throughput microscopy-based label-free IFC in a microfluidic chip. The R-MOD pipeline acquires all single-cell images of cells in flow, and identifies the acquired images as a real-time process with minimum hardware that consists of a microscope and a high-speed camera. Experiments show that R-MOD has the fast and reliable accuracy (500 fps and 93.3% mAP), and is expected to be used as a powerful tool for biomedical and clinical applications.
Infrared Imagery of Shuttle (IRIS). Task 1, summary report
NASA Technical Reports Server (NTRS)
Chocol, C. J.
1977-01-01
The feasibility of remote, high-resolution infrared imagery of the Shuttle Orbiter lower surface during entry to obtain accurate measurements of aerodynamic heat transfer was demonstrated. Using available technology, such images can be taken from an existing aircraft/telescope system (the C141 AIRO) with minimum modification or addition of systems. Images with a spatial resolution of 1 m or better and a temperature resolution of 2.5% between temperatures of 800 and 1900 K can be obtained. Data reconstruction techniques can provide a geometrically and radiometrically corrected array on addressable magnetic tape ready for display by NASA.
NASA Astrophysics Data System (ADS)
Mozaffarzadeh, Moein; Mahloojifar, Ali; Nasiriavanaki, Mohammadreza; Orooji, Mahdi
2018-02-01
Delay and sum (DAS) is the most common beamforming algorithm in linear-array photoacoustic imaging (PAI) as a result of its simple implementation. However, it leads to a low resolution and high sidelobes. Delay multiply and sum (DMAS) was used to address the incapabilities of DAS, providing a higher image quality. However, the resolution improvement is not well enough compared to eigenspace-based minimum variance (EIBMV). In this paper, the EIBMV beamformer has been combined with DMAS algebra, called EIBMV-DMAS, using the expansion of DMAS algorithm. The proposed method is used as the reconstruction algorithm in linear-array PAI. EIBMV-DMAS is experimentally evaluated where the quantitative and qualitative results show that it outperforms DAS, DMAS and EIBMV. The proposed method degrades the sidelobes for about 365 %, 221 % and 40 %, compared to DAS, DMAS and EIBMV, respectively. Moreover, EIBMV-DMAS improves the SNR about 158 %, 63 % and 20 %, respectively.
The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke
Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael
2011-01-01
The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI. These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI. PMID:21209786
The application of MRI for depiction of subtle blood brain barrier disruption in stroke.
Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael
2010-12-26
The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI. These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI.
Surveillance Range and Interference Impacts on Self-Separation Performance
NASA Technical Reports Server (NTRS)
Idris, Husni; Consiglio, Maria C.; Wing, David J.
2011-01-01
Self-separation is a concept of flight operations that aims to provide user benefits and increase airspace capacity by transferring traffic separation responsibility from ground-based controllers to the flight crew. Self-separation is enabled by cooperative airborne surveillance, such as that provided by the Automatic Dependent Surveillance-Broadcast (ADSB) system and airborne separation assistance technologies. This paper describes an assessment of the impact of ADS-B system performance on the performance of self-separation as a step towards establishing far-term ADS-B performance requirements. Specifically, the impacts of ADS-B surveillance range and interference limitations were analyzed under different traffic density levels. The analysis was performed using a batch simulation of aircraft performing self-separation assisted by NASA s Autonomous Operations Planner prototype flight-deck tool, in two-dimensional airspace. An aircraft detected conflicts within a look-ahead time of ten minutes and resolved them using strategic closed trajectories or tactical open maneuvers if the time to loss of separation was below a threshold. While a complex interaction was observed between the impacts of surveillance range and interference, as both factors are physically coupled, self-separation performance followed expected trends. An increase in surveillance range resulted in a decrease in the number of conflict detections, an increase in the average conflict detection lead time, and an increase in the percentage of conflict resolutions that were strategic. The majority of the benefit was observed when surveillance range was increased to a value corresponding to the conflict detection look-ahead time. The benefits were attenuated at higher interference levels. Increase in traffic density resulted in a significant increase in the number of conflict detections, as expected, but had no effect on the conflict detection lead time and the percentage of conflict resolutions that were strategic. With surveillance range corresponding to ADS-B minimum operational performance standards for Class A3 equipment and without background interference, a significant portion of conflict resolutions, 97 percent, were achieved in the preferred strategic mode. The majority of conflict resolutions, 71 percent, were strategic even with very high interference (over three times that expected in 2035).
Enhancing multi-spot structured illumination microscopy with fluorescence difference
Torkelsen, Frida H.
2018-01-01
Structured illumination microscopy is a super-resolution technique used extensively in biological research. However, this technique is limited in the maximum possible resolution increase. Here we report the results of simulations of a novel enhanced multi-spot structured illumination technique. This method combines the super-resolution technique of difference microscopy with structured illumination deconvolution. Initial results give at minimum a 1.4-fold increase in resolution over conventional structured illumination in a low-noise environment. This new technique also has the potential to be expanded to further enhance axial resolution with three-dimensional difference microscopy. The requirement for precise pattern determination in this technique also led to the development of a new pattern estimation algorithm which proved more efficient and reliable than other methods tested. PMID:29657751
A comparison of the wavelet and short-time fourier transforms for Doppler spectral analysis.
Zhang, Yufeng; Guo, Zhenyu; Wang, Weilian; He, Side; Lee, Ting; Loew, Murray
2003-09-01
Doppler spectrum analysis provides a non-invasive means to measure blood flow velocity and to diagnose arterial occlusive disease. The time-frequency representation of the Doppler blood flow signal is normally computed by using the short-time Fourier transform (STFT). This transform requires stationarity of the signal during a finite time interval, and thus imposes some constraints on the representation estimate. In addition, the STFT has a fixed time-frequency window, making it inaccurate to analyze signals having relatively wide bandwidths that change rapidly with time. In the present study, wavelet transform (WT), having a flexible time-frequency window, was used to investigate its advantages and limitations for the analysis of the Doppler blood flow signal. Representations computed using the WT with a modified Morlet wavelet were investigated and compared with the theoretical representation and those computed using the STFT with a Gaussian window. The time and frequency resolutions of these two approaches were compared. Three indices, the normalized root-mean-squared errors of the minimum, the maximum and the mean frequency waveforms, were used to evaluate the performance of the WT. Results showed that the WT can not only be used as an alternative signal processing tool to the STFT for Doppler blood flow signals, but can also generate a time-frequency representation with better resolution than the STFT. In addition, the WT method can provide both satisfactory mean frequencies and maximum frequencies. This technique is expected to be useful for the analysis of Doppler blood flow signals to quantify arterial stenoses.
The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme
Townshend, J.R.G.; Justice, C.O.; Skole, D.; Malingreau, J.-P.; Cihlar, J.; Teillet, P.; Sadowski, F.; Ruttenberg, S.
1994-01-01
Examination of the scientific priorities for the International Geosphere Biosphere Programme (IGBP) reveals a requirement for global land data sets in several of its Core Projects. These data sets need to be at several space and time scales. Requirements are demonstrated for the regular acquisition of data at spatial resolutions of 1 km and finer and at high temporal frequencies. Global daily data at a resolution of approximately 1 km are sensed by the Advanced Very High Resolution Radiometer (AVHRR), but they have not been available in a single archive. It is proposed, that a global data set of the land surface is created from remotely sensed data from the AVHRR to support a number of IGBP's projects. This data set should have a spatial resolution of 1 km and should be generated at least once every 10 days for the entire globe. The minimum length of record should be a year, and ideally a system should be put in place which leads to the continuous acquisition of 1 km data to provide a base line data set prior to the Earth Observing System (EOS) towards the end of the decade. Because of the high cloud cover in many parts of the world, it is necessary to plan for the collection of data from every orbit. Substantial effort will be required in the preprocessing of the data set involving radiometric calibration, atmospheric correction, geometric correction and temporal compositing, to make it suitable for the extraction of information.
High-resolution three-dimensional imaging with compress sensing
NASA Astrophysics Data System (ADS)
Wang, Jingyi; Ke, Jun
2016-10-01
LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.
Real-time bacterial microcolony counting using on-chip microscopy
NASA Astrophysics Data System (ADS)
Jung, Jae Hee; Lee, Jung Eun
2016-02-01
Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery.
Real-time bacterial microcolony counting using on-chip microscopy
Jung, Jae Hee; Lee, Jung Eun
2016-01-01
Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery. PMID:26902822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Melissa R.; Aziz, H. M. Abdul; Coletti, Mark A.
Changing human activity within a geographical location may have significant influence on the global climate, but that activity must be parameterized in such a way as to allow these high-resolution sub-grid processes to affect global climate within that modeling framework. Additionally, we must have tools that provide decision support and inform local and regional policies regarding mitigation of and adaptation to climate change. The development of next-generation earth system models, that can produce actionable results with minimum uncertainties, depends on understanding global climate change and human activity interactions at policy implementation scales. Unfortunately, at best we currently have only limitedmore » schemes for relating high-resolution sectoral emissions to real-time weather, ultimately to become part of larger regions and well-mixed atmosphere. Moreover, even our understanding of meteorological processes at these scales is imperfect. This workshop addresses these shortcomings by providing a forum for discussion of what we know about these processes, what we can model, where we have gaps in these areas and how we can rise to the challenge to fill these gaps.« less
NASA Technical Reports Server (NTRS)
Rorie, Conrad; Fern, Lisa; Pack, Jessica; Shively, Jay; Draper, Mark H.
2015-01-01
The pilot-in-the-loop Detect-and-Avoid (DAA) task requires the pilot to carry out three major functions: 1) detect a potential threat, 2) determine an appropriate resolution maneuver, and 3) execute that resolution maneuver via the GCS control and navigation interface(s). The purpose of the present study was to examine two main questions with respect to DAA display considerations that could impact pilots ability to maintain well clear from other aircraft. First, what is the effect of a minimum (or basic) information display compared to an advanced information display on pilot performance? Second, what is the effect of display location on UAS pilot performance? Two levels of information level (basic, advanced) were compared across two levels of display location (standalone, integrated), for a total of four displays. The results indicate that the advanced displays had faster overall response times compared to the basic displays, however, there were no significant differences between the standalone and integrated displays.
A Fast and Robust Beamspace Adaptive Beamformer for Medical Ultrasound Imaging.
Mohades Deylami, Ali; Mohammadzadeh Asl, Babak
2017-06-01
Minimum variance beamformer (MVB) increases the resolution and contrast of medical ultrasound imaging compared with nonadaptive beamformers. These advantages come at the expense of high computational complexity that prevents this adaptive beamformer to be applied in a real-time imaging system. A new beamspace (BS) based on discrete cosine transform is proposed in which the medical ultrasound signals can be represented with less dimensions compared with the standard BS. This is because of symmetric beampattern of the beams in the proposed BS compared with the asymmetric ones in the standard BS. This lets us decrease the dimensions of data to two, so a high complex algorithm, such as the MVB, can be applied faster in this BS. The results indicated that by keeping only two beams, the MVB in the proposed BS provides very similar resolution and also better contrast compared with the standard MVB (SMVB) with only 0.44% of needed flops. Also, this beamformer is more robust against sound speed estimation errors than the SMVB.
Postglacial eruptive history of the Askja region, North Iceland
NASA Astrophysics Data System (ADS)
Hartley, Margaret E.; Thordarson, Thorvaldur; de Joux, Alexandra
2016-04-01
Temporal variations in magma discharge rates on Iceland's neovolcanic rift zones have been associated with deglaciation. We have used tephrochronological and stratigraphic dating of 175 separate eruptive units to estimate volumetric output and reconstruct eruption rates in the Askja region over the postglacial period. We have identified 14 tephra layers that can be used as time marker horizons in the near vicinity of Askja, including the Vatnaöldur (871 ± 2 AD) tephra which has not previously been reported in surface cover profiles in this region. Our improved tephrochronological resolution indicates that, over the past c. 1,500 years, Askja has been significantly more active than has previously been recognised. A minimum of 39 km3 of basaltic magma has been erupted at Askja since the area became ice-free at around 10.3 ka. The absence of the 7.2 ka Hekla 5 tephra from the Askja region suggests that all postglacial lavas now exposed at the surface are younger than 7.2 ka. Time-averaged magma discharge rates at Askja were highest between 7.2 and 4.3 ka. However, the available tephrochronological resolution is not sufficient to resolve any peak in volcanic activity following deglaciation.
Swain, Ratnakar; Sahoo, Bhabagrahi
2017-05-01
For river water quality monitoring at 30m × 1-day spatio-temporal scales, a spatial and temporal adaptive reflectance fusion model (STARFM) is developed for estimating turbidity (T u ), total suspended solid (TSS), and six heavy metals (HV) of iron, zinc, copper, chromium, lead and cadmium, by blending the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat (L s ) spectral bands. A combination of regression analysis and genetic algorithm (GA) techniques are applied to develop spectral relationships between T u -L s , TSS-T u , and each HV-TSS. The STARFM algorithm and all the developed relationship models are evaluated satisfactorily by various performance evaluation measures to develop heavy metal pollution index-based vulnerability maps at 1-km resolution in the Brahmani River in eastern India. The Monte-Carlo simulation based analysis of the developed formulations reveals that the uncertainty in estimating Zn and Cd is the minimum (1.04%) and the maximum (5.05%), respectively. Hence, the remote sensing based approach developed herein can effectively be used in many world rivers for real-time monitoring of heavy metal pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phase division multiplexed EIT for enhanced temporal resolution.
Dowrick, T; Holder, D
2018-03-29
The most commonly used EIT paradigm (time division multiplexing) limits the temporal resolution of impedance images due to the need to switch between injection electrodes. Advances have previously been made using frequency division multiplexing (FDM) to increase temporal resolution, but in cases where a fixed range of frequencies is available, such as imaging fast neural activity, an upper limit is placed on the total number of simultaneous injections. The use of phase division multiplexing (PDM) where multiple out of phase signals can be injected at each frequency is investigated to increase temporal resolution. TDM, FDM and PDM were compared in head tank experiments, to compare transfer impedance measurements and spatial resolution between the three techniques. A resistor phantom paradigm was established to investigate the imaging of one-off impedance changes, of magnitude 1% and with durations as low as 500 µs (similar to those seen in nerve bundles), using both PDM and TDM approaches. In head tank experiments, a strong correlation (r > 0.85 and p < 0.001) was present between the three sets of measured transfer impedances, and no statistically significant difference was found in reconstructed image quality. PDM was able to image impedance changes down to 500 µs in the phantom experiments, while the minimum duration imaged using TDM was 5 ms. PDM offers a possible solution to the imaging of fast moving impedance changes (such as in nerves), where the use of triggering or coherent averaging is not possible. The temporal resolution presents an order of magnitude improvement of the TDM approach, and the approach addresses the limited spatial resolution of FDM by increasing the number of simultaneous EIT injections.
78 FR 48696 - Draft Revisions to the Marine Safety Manual, Volume III, Chapters 20-26
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-09
...) Updated provisions for vessel manning, including guidance for the issuing of safe manning documents; (2... Distress and Safety System (GMDSS), and the Principles of Minimum Safe Manning (IMO Resolution A.1047(27...
Resolving the Cygnus X-3 iron K line
NASA Technical Reports Server (NTRS)
Kitamoto, Shunji; Kawashima, Kenji; Negoro, Hitoshi; Miyamoto, Sigenori; White, N. E.; Nagase, Fumiaki
1994-01-01
An Advanced Satellite for Cosmology and Astrophysics (ASCA) observation of Cygnus X-3 on 1993 June 11, in its X-ray high intensity state, has for the first time resolved the broad iron K line emission into three components: a He-like line at 6.67 +/- 0.01 keV, a H-like line at 6.96 +/- 0.02 keV, and a neutral line at 6.37 +/- 0.03 keV. The line intensities of the 6.67 keV and 6.96 keV lines are modulated with the 4.8 hr orbital period and are maximum when the continuum intensity is minimum. There is a sharp minimum of the line intensity on the rising phase of the continuum intensity. An iron absorption edge is observed at 7.19 +/- 0.02 keV. The optical depth of the absorption edge varies from 0.3 to 0.5 and is in anti-phase with the overall X-ray continuum modulation. The observed complexity of the iron K line region is greater than that had been assumed in previous spectral modeling based on observations with lower resolution detectors.
Smoke and mirrors: Ultra-rapid-scan FT-IR spectrometry
NASA Astrophysics Data System (ADS)
Manning, C. J.
1998-06-01
Fourier transform-infrared spectrometers have dominated the marketplace and the experimental literature of vibrational spectroscopy for almost three decades. These versatile instruments have been applied to a wide variety of measurements in both industrial and research settings. There has been, however, an ongoing need for enhanced time resolution. Limitations of time resolution in FT-IR measurements arise from the modulation frequencies intrinsic to the spectral multiplexing. Events which are slower than the minimum scan time, about 40 milliseconds at 4-cm-1 resolution, can be readily monitored with conventional instrumentation. For shorter transients, various step-scan, stroboscopic and asynchronous methods have been demonstrated to provide excellent time resolution, down to nanoseconds, but these approaches are limited to events which can be repeated many times with minimal variations. Some of these methods are also susceptible to low-frequency noise sources. The intrinsic scan time of conventional FT-IR spectrometers is limited by the force that can be applied to the moving mirror. In commercial systems the moving mirror is invariably driven by a voice coil linear motor. The maximum force that can be exerted by the voice coil is sharply limited to a few Newtons. It is desirable to decrease the scan time by a large factor, but the required force scales as the square of the scan rate, while the voltage applied to the coil must scale as the cube of the rate. A more suitable approach to very-rapid-scan FT-IR spectrometry may be the use of rotating optical components which do not have to turn around at the end of travel. There is, however, an apparent symmetry mismatch between rotating elements and the nominally planar wavefronts in a Michelson interferometer. In spite of the mismatch, numerous interferometer designs based on rotating elements have been proposed and demonstrated. Some of these designs are suitable for operation with scan times from tens of milliseconds to milliseconds, and perhaps faster, at 4-cm-1 resolution. A novel interferometer design utilizing a single-sided precessing disk mirror allows a complete interferogram to be measured in 1 millisecond or less. A prototype instrument of this design has been constructed and tested. One application reported here is the measurement of a transient combustion event. While combustion reactions can be conveniently repeated under some circumstances, such as with gas-phase reactants, the shot-to-shot variation is unacceptably large for step-scan measurements. Preliminary data, illustrating operation and performance of the system, are presented. It is thought that the high modulation frequencies have resulted in superior rejection of multiplicative noise.
A comparison between temporal and subband minimum variance adaptive beamforming
NASA Astrophysics Data System (ADS)
Diamantis, Konstantinos; Voxen, Iben H.; Greenaway, Alan H.; Anderson, Tom; Jensen, Jørgen A.; Sboros, Vassilis
2014-03-01
This paper compares the performance between temporal and subband Minimum Variance (MV) beamformers for medical ultrasound imaging. Both adaptive methods provide an optimized set of apodization weights but are implemented in the time and frequency domains respectively. Their performance is evaluated with simulated synthetic aperture data obtained from Field II and is quantified by the Full-Width-Half-Maximum (FWHM), the Peak-Side-Lobe level (PSL) and the contrast level. From a point phantom, a full sequence of 128 emissions with one transducer element transmitting and all 128 elements receiving each time, provides a FWHM of 0.03 mm (0.14λ) for both implementations at a depth of 40 mm. This value is more than 20 times lower than the one achieved by conventional beamforming. The corresponding values of PSL are -58 dB and -63 dB for time and frequency domain MV beamformers, while a value no lower than -50 dB can be obtained from either Boxcar or Hanning weights. Interestingly, a single emission with central element #64 as the transmitting aperture provides results comparable to the full sequence. The values of FWHM are 0.04 mm and 0.03 mm and those of PSL are -42 dB and -46 dB for temporal and subband approaches. From a cyst phantom and for 128 emissions, the contrast level is calculated at -54 dB and -63 dB respectively at the same depth, with the initial shape of the cyst being preserved in contrast to conventional beamforming. The difference between the two adaptive beamformers is less significant in the case of a single emission, with the contrast level being estimated at -42 dB for the time domain and -43 dB for the frequency domain implementation. For the estimation of a single MV weight of a low resolution image formed by a single emission, 0.44 * 109 calculations per second are required for the temporal approach. The same numbers for the subband approach are 0.62 * 109 for the point and 1.33 * 109 for the cyst phantom. The comparison demonstrates similar resolution but slightly lower side-lobes and higher contrast for the subband approach at the expense of increased computation time.
Photoionization Rate of Atomic Oxygen
NASA Astrophysics Data System (ADS)
Meier, R. R.; McLaughlin, B. M.; Warren, H. P.; Bishop, J.
2006-05-01
Accurate knowledge of the photoionization rate of atomic oxygen is important for the study and understanding of the ionospheres and emission processes of terrestrial, planetary, and cometary atmospheres. Past calculations of the photoionization rate have been carried out at various spectral resolutions, but none were at sufficiently high resolution to accommodate accidental resonances between solar emission lines and highly structured auto-ionization features in the photoionization cross section. A new version of the NRLEUV solar spectral irradiance model (at solar minimum) and a new model of the O photoionization cross section enable calculations at very high spectral resolution. We find unattenuated photoionization rates computed at 0.001 nm resolution are larger than those at moderate resolution (0.1 nm) by amounts approaching 20%. Allowing for attenuation in the terrestrial atmosphere, we find differences in photoionization rates computed at high and moderate resolution to vary with altitude, especially below 200 km where deviations of plus or minus 20% occur between the two cases.
Neurologic 3D MR Spectroscopic Imaging with Low-Power Adiabatic Pulses and Fast Spiral Acquisition
Gagoski, Borjan A.; Sorensen, A. Gregory
2012-01-01
Purpose: To improve clinical three-dimensional (3D) MR spectroscopic imaging with more accurate localization and faster acquisition schemes. Materials and Methods: Institutional review board approval and patient informed consent were obtained. Data were acquired with a 3-T MR imager and a 32-channel head coil in phantoms, five healthy volunteers, and five patients with glioblastoma. Excitation was performed with localized adiabatic spin-echo refocusing (LASER) by using adiabatic gradient-offset independent adiabaticity wideband uniform rate and smooth truncation (GOIA-W[16,4]) pulses with 3.5-msec duration, 20-kHz bandwidth, 0.81-kHz amplitude, and 45-msec echo time. Interleaved constant-density spirals simultaneously encoded one frequency and two spatial dimensions. Conventional phase encoding (PE) (1-cm3 voxels) was performed after LASER excitation and was the reference standard. Spectra acquired with spiral encoding at similar and higher spatial resolution and with shorter imaging time were compared with those acquired with PE. Metabolite levels were fitted with software, and Bland-Altman analysis was performed. Results: Clinical 3D MR spectroscopic images were acquired four times faster with spiral protocols than with the elliptical PE protocol at low spatial resolution (1 cm3). Higher-spatial-resolution images (0.39 cm3) were acquired twice as fast with spiral protocols compared with the low-spatial-resolution elliptical PE protocol. A minimum signal-to-noise ratio (SNR) of 5 was obtained with spiral protocols under these conditions and was considered clinically adequate to reliably distinguish metabolites from noise. The apparent SNR loss was not linear with decreasing voxel sizes because of longer local T2* times. Improvement of spectral line width from 4.8 Hz to 3.5 Hz was observed at high spatial resolution. The Bland-Altman agreement between spiral and PE data is characterized by narrow 95% confidence intervals for their differences (0.12, 0.18 of their means). GOIA-W(16,4) pulses minimize chemical-shift displacement error to 2.1%, reduce nonuniformity of excitation to 5%, and eliminate the need for outer volume suppression. Conclusion: The proposed adiabatic spiral 3D MR spectroscopic imaging sequence can be performed in a standard clinical MR environment. Improvements in image quality and imaging time could enable more routine acquisition of spectroscopic data than is possible with current pulse sequences. © RSNA, 2011 PMID:22187628
Continuous-Time Monitoring of Landau-Zener Interference in a Cooper-Pair Box
NASA Astrophysics Data System (ADS)
Sillanpää, Mika; Lehtinen, Teijo; Paila, Antti; Makhlin, Yuriy; Hakonen, Pertti
2006-05-01
Landau-Zener (LZ) tunneling can occur with a certain probability when crossing energy levels of a quantum two-level system are swept across the minimum energy separation. Here we present experimental evidence of quantum interference effects in solid-state LZ tunneling. We used a Cooper-pair box qubit where the LZ tunneling occurs at the charge degeneracy. By employing a weak nondemolition monitoring, we observe interference between consecutive LZ-tunneling events; we find that the average level occupancies depend on the dynamical phase. The system’s unusually strong linear response is explained by interband relaxation. Our interferometer can be used as a high-resolution Mach-Zehnder type detector for phase and charge.
Continuous-time monitoring of Landau-Zener interference in a cooper-pair box.
Sillanpää, Mika; Lehtinen, Teijo; Paila, Antti; Makhlin, Yuriy; Hakonen, Pertti
2006-05-12
Landau-Zener (LZ) tunneling can occur with a certain probability when crossing energy levels of a quantum two-level system are swept across the minimum energy separation. Here we present experimental evidence of quantum interference effects in solid-state LZ tunneling. We used a Cooper-pair box qubit where the LZ tunneling occurs at the charge degeneracy. By employing a weak nondemolition monitoring, we observe interference between consecutive LZ-tunneling events; we find that the average level occupancies depend on the dynamical phase. The system's unusually strong linear response is explained by interband relaxation. Our interferometer can be used as a high-resolution Mach-Zehnder-type detector for phase and charge.
Rare Earth Optical Temperature Sensor
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Wolford, David S.
2000-01-01
A new optical temperature sensor suitable for high temperatures (greater than 1700 K) and harsh environments is introduced. The key component of the sensor is the rare earth material contained at the end of a sensor that is in contact with the sample being measured. The measured narrow wavelength band emission from the rare earth is used to deduce the sample temperature. A simplified relation between the temperature and measured radiation was verified experimentally. The upper temperature limit of the sensor is determined by material limits to be approximately 2000 C. The lower limit, determined by the minimum detectable radiation, is found to be approximately 700 K. At high temperatures 1 K resolution is predicted. Also, millisecond response times are calculated.
NASA Technical Reports Server (NTRS)
Allison, L. J.
1972-01-01
A complete documentation of Numbus 2 High Resolution infrared Radiometer data and ESSA-1 and 3 television photographs is presented for the life-time of Hurricane Inez, 1966. Ten computer produced radiation charts were analyzed in order to delineate the three dimensional cloud structure during the formative, mature and dissipating stages of this tropical cyclone. Time sections were drawn throughout the storm's life cycle to relate the warm core development and upper level outflow of the storm with their respective cloud canopies, as shown by the radiation data. Aerial reconnaissance weather reports, radar photographs and conventional weather analyses were used to complement the satellite data. A computer program was utilized to accept Nimbus 2 HRIR equivalent blackbody temperatures within historical maximum and minimum sea surface temperature limits over the tropical Atlantic Ocean.
Liu, Xu; Huang, Xiwei; Jiang, Yu; Xu, Hang; Guo, Jing; Hou, Han Wei; Yan, Mei; Yu, Hao
2017-08-01
Based on a 3.2-Megapixel 1.1- μm-pitch super-resolution (SR) CMOS image sensor in a 65-nm backside-illumination process, a lens-free microfluidic cytometer for complete blood count (CBC) is demonstrated in this paper. Backside-illumination improves resolution and contrast at the device level with elimination of surface treatment when integrated with microfluidic channels. A single-frame machine-learning-based SR processing is further realized at system level for resolution correction with minimum hardware resources. The demonstrated microfluidic cytometer can detect the platelet cells (< 2 μm) required in CBC, hence is promising for point-of-care diagnostics.
Compact and high resolution virtual mouse using lens array and light sensor
NASA Astrophysics Data System (ADS)
Qin, Zong; Chang, Yu-Cheng; Su, Yu-Jie; Huang, Yi-Pai; Shieh, Han-Ping David
2016-06-01
Virtual mouse based on IR source, lens array and light sensor was designed and implemented. Optical architecture including lens amount, lens pitch, baseline length, sensor length, lens-sensor gap, focal length etc. was carefully designed to achieve low detective error, high resolution, and simultaneously, compact system volume. System volume is 3.1mm (thickness) × 4.5mm (length) × 2, which is much smaller than that of camera-based device. Relative detective error of 0.41mm and minimum resolution of 26ppi were verified in experiments, so that it can replace conventional touchpad/touchscreen. If system thickness is eased to 20mm, resolution higher than 200ppi can be achieved to replace real mouse.
Wenkel, Evelyn; Janka, Rolf; Geppert, Christian; Kaemmerer, Nadine; Hartmann, Arndt; Uder, Michael; Hammon, Matthias; Brand, Michael
2017-02-01
Purpose The aim was to evaluate a minimum echo time (minTE) protocol for breast magnetic resonance imaging (MRI) in patients with breast lesions compared to a standard TE (nTE) time protocol. Methods Breasts of 144 women were examined with a 1.5 Tesla MRI scanner. Additionally to the standard gradient-echo sequence with nTE (4.8 ms), a variant with minimum TE (1.2 ms) was used in an interleaved fashion which leads to a better temporal resolution and should reduce the scan time by approximately 50 %. Lesion sizes were measured and the signal-to-noise ratio (SNR) as well as the contrast-to-noise ratio (CNR) were calculated. Subjective confidence was evaluated using a 3-point scale before looking at the nTE sequences (1 = very sure that I can identify a lesion and classify it, 2 = quite sure that I can identify a lesion and classify it, 3 = definitely want to see nTE for final assessment) and the subjective image quality of all examinations was evaluated using a four-grade scale (1 = sharp, 2 = slight blur, 3 = moderate blur and 4 = severe blur/not evaluable) for lesion and skin sharpness. Lesion morphology and contrast enhancement were also evaluated. Results With minTE sequences, no lesion was rated with "definitely want to see nTE sequences for final assessment". The difference of the longitudinal and transverse diameter did not differ significantly (p > 0.05). With minTE, lesions and skin were rated to be significantly more blurry (p < 0.01 for lesions and p < 0.05 for skin). There was no difference between both sequences with respect to SNR, CNR, lesion morphology, contrast enhancement and detection of multifocal disease. Conclusion Dynamic breast MRI with a minTE protocol is feasible without a major loss of information (SNR, CNR, lesion morphology, contrast enhancement and lesion sizes) and the temporal resolution can be increased by a factor of 2 using minTE sequences. Key points · Increase of temporal resolution for a better in-flow curve.. · Dynamic breast MRI with a shorter TE time is possible without relevant loss of information.. · Possible decrease of the overall scan time.. Citation Format · Wenkel E, Janka R, Geppert C et al. Breast MRI at Very Short TE (minTE): Image Analysis of minTE Sequences on Non-Fat-Saturated, Subtracted T1-Weighted Images. Fortschr Röntgenstr 2017; 189: 137 - 145. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve
2009-01-01
Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve
2009-01-01
Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong n8 band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.
Time-resolved spectroscopy using a chopper wheel as a fast shutter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shicong; Wendt, Amy E.; Boffard, John B.
Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsedmore » light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.« less
NASA Technical Reports Server (NTRS)
Gull, Theodore R.
2005-01-01
Eta Carinae, the LBV that we have learned to love and hate, has revealed many clues of its character over the past seven years by studies with HST and VLT. Based upon X-Ray, optical and IR observations, Eta Carinae is convincingly a massive binary system that uniquely has major nebular ejecta that are connected with historical outbursts. We have successhlly followed the stellar and nebular changes over the 5.5 year cycle, especially with STIS and RXTE, and across the spectroscopic minimum in 2003.5 with STIS, CHANDRA, RXTE, FUSE, and VLT/UVES. The HST/STIS high spatial resolution, combined with appropriate spectral resolving powers from 1150 to 10300 A, has revealed much about the Central Source and especially the spatially resolved extended stellar atmosphere and the ejecta, known as the Homunculus. Indeed the neutral, dusty outer Homunculus, ejected in the 1840s, envelops the newly discovered ionized Little Homunculus, ejected in the 1890s. In line of sight, multiple hot clumps, both ionized and neutral, are seen in absorption and provide much information on the physical conditions of these massive ejecta. Against the nebular-scattered starlight, wind and nebular absorptions provide views at different angles from line of sight. The VLT/UVES studies from 2002 through 2004 provided very important time-sampled spectra of both the star as seen directly and as seen by the SE lobe viewing the polar region of the star. The VLTI 2.2 micron measures of the central source are consistent with a prolate spheroid with its axis extending along the axis of the Homunculus. This is consistent with the noticeably larger wind mass and higher terminal velocity along the axis of the Homunculus compared to that measured in line of sight at about 45 degrees from the polar axes. We understand the system to be a massive primary with an O or WR companion in a very highly elliptical orbit. The spectroscopic minimum occurs during periastron, when the greatly extended primary atmosphere and wind bottles up the ionizing uv radiation of the companion star. This transient drop in uv photons leads to recombination of much of the wind structure and of the nearby ejecta. Doubly-ionized elements (iron, neon, argon, vanadium) recombine to singly ionized forms and extended structures on the scales of below 0.03 arcseconds to an arcsecond change, appear, or disappear. With the loss of the STIS on HST, ground-based observations, especially with high spatial-resolution facilities, including the VLT and VLTI will be key to further studies across the minimum centered on 2009.0. Now is the time to plan for these studies.
Dual Energy Method for Breast Imaging: A Simulation Study.
Koukou, V; Martini, N; Michail, C; Sotiropoulou, P; Fountzoula, C; Kalyvas, N; Kandarakis, I; Nikiforidis, G; Fountos, G
2015-01-01
Dual energy methods can suppress the contrast between adipose and glandular tissues in the breast and therefore enhance the visibility of calcifications. In this study, a dual energy method based on analytical modeling was developed for the detection of minimum microcalcification thickness. To this aim, a modified radiographic X-ray unit was considered, in order to overcome the limited kVp range of mammographic units used in previous DE studies, combined with a high resolution CMOS sensor (pixel size of 22.5 μm) for improved resolution. Various filter materials were examined based on their K-absorption edge. Hydroxyapatite (HAp) was used to simulate microcalcifications. The contrast to noise ratio (CNR tc ) of the subtracted images was calculated for both monoenergetic and polyenergetic X-ray beams. The optimum monoenergetic pair was 23/58 keV for the low and high energy, respectively, resulting in a minimum detectable microcalcification thickness of 100 μm. In the polyenergetic X-ray study, the optimal spectral combination was 40/70 kVp filtered with 100 μm cadmium and 1000 μm copper, respectively. In this case, the minimum detectable microcalcification thickness was 150 μm. The proposed dual energy method provides improved microcalcification detectability in breast imaging with mean glandular dose values within acceptable levels.
Dual Energy Method for Breast Imaging: A Simulation Study
2015-01-01
Dual energy methods can suppress the contrast between adipose and glandular tissues in the breast and therefore enhance the visibility of calcifications. In this study, a dual energy method based on analytical modeling was developed for the detection of minimum microcalcification thickness. To this aim, a modified radiographic X-ray unit was considered, in order to overcome the limited kVp range of mammographic units used in previous DE studies, combined with a high resolution CMOS sensor (pixel size of 22.5 μm) for improved resolution. Various filter materials were examined based on their K-absorption edge. Hydroxyapatite (HAp) was used to simulate microcalcifications. The contrast to noise ratio (CNRtc) of the subtracted images was calculated for both monoenergetic and polyenergetic X-ray beams. The optimum monoenergetic pair was 23/58 keV for the low and high energy, respectively, resulting in a minimum detectable microcalcification thickness of 100 μm. In the polyenergetic X-ray study, the optimal spectral combination was 40/70 kVp filtered with 100 μm cadmium and 1000 μm copper, respectively. In this case, the minimum detectable microcalcification thickness was 150 μm. The proposed dual energy method provides improved microcalcification detectability in breast imaging with mean glandular dose values within acceptable levels. PMID:26246848
NASA Astrophysics Data System (ADS)
Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Kratkiewicz, Karl; Adabi, Saba; Nasiriavanaki, Mohammadreza
2018-02-01
In photoacoustic imaging, delay-and-sum (DAS) beamformer is a common beamforming algorithm having a simple implementation. However, it results in a poor resolution and high sidelobes. To address these challenges, a new algorithm namely delay-multiply-and-sum (DMAS) was introduced having lower sidelobes compared to DAS. To improve the resolution of DMAS, a beamformer is introduced using minimum variance (MV) adaptive beamforming combined with DMAS, so-called minimum variance-based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation results in multiple terms representing a DAS algebra. It is proposed to use the MV adaptive beamformer instead of the existing DAS. MVB-DMAS is evaluated numerically and experimentally. In particular, at the depth of 45 mm MVB-DMAS results in about 31, 18, and 8 dB sidelobes reduction compared to DAS, MV, and DMAS, respectively. The quantitative results of the simulations show that MVB-DMAS leads to improvement in full-width-half-maximum about 96%, 94%, and 45% and signal-to-noise ratio about 89%, 15%, and 35% compared to DAS, DMAS, MV, respectively. In particular, at the depth of 33 mm of the experimental images, MVB-DMAS results in about 20 dB sidelobes reduction in comparison with other beamformers.
Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo
2017-04-01
Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.
NASA Astrophysics Data System (ADS)
Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Liu, Hong; Zheng, Bin
2015-03-01
Glucose metabolism relates to biochemical processes in living organisms and plays an important role in diabetes and cancer-metastasis. Although many methods are available for measuring glucose metabolism-activities, from simple blood tests to positron emission tomography, currently there is no robust and affordable device that enables monitoring of glucose levels in real-time. In this study we tested feasibility of applying a unique resonance-frequency based electronic impedance spectroscopy (REIS) device that has been, recently developed to measure and monitor glucose metabolism levels using a phantom study. In this new testing model, a multi-frequency electrical signal sequence is applied and scanned through the subject. When the positive reactance of an inductor inside the device cancels out the negative reactance of the capacitance of the subject, the electrical impedance reaches a minimum value and this frequency is defined as the resonance frequency. The REIS system has a 24-bit analog-to-digital signal convertor and a frequency-resolution of 100Hz. In the experiment, two probes are placed inside a 100cc container initially filled with distilled water. As we gradually added liquid-glucose in increments of 1cc (250mg), we measured resonance frequencies and minimum electrical signal values (where A/D was normalized to a full scale of 1V). The results showed that resonance frequencies monotonously decreased from 243kHz to 178kHz, while the minimum voltages increased from 405mV to 793mV as the added amount of glucose increased from 0 to 5cc. The study demonstrated the feasibility of applying this new REIS technology to measure and/or monitor glucose levels in real-time in future.
Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G
2013-10-07
An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fuyu; Collins, William D.; Wehner, Michael F.
High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, andmore » mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Timers; elapsed time indicators; remaining service life indicators; minimum requirements. 84.83 Section 84.83 Public Health PUBLIC HEALTH SERVICE... indicators; remaining service life indicators; minimum requirements. (a) Elapsed time indicators shall be...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Timers; elapsed time indicators; remaining service life indicators; minimum requirements. 84.83 Section 84.83 Public Health PUBLIC HEALTH SERVICE... indicators; remaining service life indicators; minimum requirements. (a) Elapsed time indicators shall be...
NASA Astrophysics Data System (ADS)
Cruden, A. R.; Vollgger, S.
2016-12-01
The emerging capability of UAV photogrammetry combines a simple and cost-effective method to acquire digital aerial images with advanced computer vision algorithms that compute spatial datasets from a sequence of overlapping digital photographs from various viewpoints. Depending on flight altitude and camera setup, sub-centimeter spatial resolution orthophotographs and textured dense point clouds can be achieved. Orientation data can be collected for detailed structural analysis by digitally mapping such high-resolution spatial datasets in a fraction of time and with higher fidelity compared to traditional mapping techniques. Here we describe a photogrammetric workflow applied to a structural study of folds and fractures within alternating layers of sandstone and mudstone at a coastal outcrop in SE Australia. We surveyed this location using a downward looking digital camera mounted on commercially available multi-rotor UAV that autonomously followed waypoints at a set altitude and speed to ensure sufficient image overlap, minimum motion blur and an appropriate resolution. The use of surveyed ground control points allowed us to produce a geo-referenced 3D point cloud and an orthophotograph from hundreds of digital images at a spatial resolution < 10 mm per pixel, and cm-scale location accuracy. Orientation data of brittle and ductile structures were semi-automatically extracted from these high-resolution datasets using open-source software. This resulted in an extensive and statistically relevant orientation dataset that was used to 1) interpret the progressive development of folds and faults in the region, and 2) to generate a 3D structural model that underlines the complex internal structure of the outcrop and quantifies spatial variations in fold geometries. Overall, our work highlights how UAV photogrammetry can contribute to new insights in structural analysis.
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine
2015-04-01
Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Fern, Lisa; Rorie, R. Conrad; Pack, Jessica S.; Shively, R. Jay; Draper, Mark H.
2015-01-01
A consortium of government, industry and academia is currently working to establish minimum operational performance standards for Detect and Avoid (DAA) and Control and Communications (C2) systems in order to enable broader integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). One subset of these performance standards will need to address the DAA display requirements that support an acceptable level of pilot performance. From a pilot's perspective, the DAA task is the maintenance of self separation and collision avoidance from other aircraft, utilizing the available information and controls within the Ground Control Station (GCS), including the DAA display. The pilot-in-the-loop DAA task requires the pilot to carry out three major functions: 1) detect a potential threat, 2) determine an appropriate resolution maneuver, and 3) execute that resolution maneuver via the GCS control and navigation interface(s). The purpose of the present study was to examine two main questions with respect to DAA display considerations that could impact pilots' ability to maintain well clear from other aircraft. First, what is the effect of a minimum (or basic) information display compared to an advanced information display on pilot performance? Second, what is the effect of display location on UAS pilot performance? Two levels of information level (basic, advanced) were compared across two levels of display location (standalone, integrated), for a total of four displays. The authors propose an eight-stage pilot-DAA interaction timeline from which several pilot response time metrics can be extracted. These metrics were compared across the four display conditions. The results indicate that the advanced displays had faster overall response times compared to the basic displays, however, there were no significant differences between the standalone and integrated displays. Implications of the findings on understanding pilot performance on the DAA task, the development of DAA display performance standards, as well as the need for future research are discussed.
SU-F-J-206: Systematic Evaluation of the Minimum Detectable Shift Using a Range- Finding Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platt, M; Platt, M; Lamba, M
2016-06-15
Purpose: The robotic table used for patient alignment in proton therapy is calibrated only at commissioning under well-defined conditions and table shifts may vary over time and with differing conditions. The purpose of this study is to systematically investigate minimum detectable shifts using a time-of-flight (TOF) range-finding camera for table position feedback. Methods: A TOF camera was used to acquire one hundred 424 × 512 range images from a flat surface before and after known shifts. Range was assigned by averaging central regions of the image across multiple images. Depth resolution was determined by evaluating the difference between the actualmore » shift of the surface and the measured shift. Depth resolution was evaluated for number of images averaged, area of sensor over which depth was averaged, distance from camera to surface, central versus peripheral image regions, and angle of surface relative to camera. Results: For one to one thousand images with a shift of one millimeter the range in error was 0.852 ± 0.27 mm to 0.004 ± 0.01 mm (95% C.I.). For varying regions of the camera sensor the range in error was 0.02 ± 0.05 mm to 0.47 ± 0.04 mm. The following results are for 10 image averages. For areas ranging from one pixel to 9 × 9 pixels the range in error was 0.15 ± 0.09 to 0.29 ± 0.15 mm (1σ). For distances ranging from two to four meters the range in error was 0.15 ± 0.09 to 0.28 ± 0.15 mm. For an angle of incidence between thirty degrees and ninety degrees the average range in error was 0.11 ± 0.08 to 0.17 ± 0.09 mm. Conclusion: It is feasible to use a TOF camera for measuring shifts in flat surfaces under clinically relevant conditions with submillimeter precision.« less
Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs
NASA Astrophysics Data System (ADS)
Bosmans, J. H. C.; Erb, M. P.; Dolan, A. M.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Edge, D.; Pope, J. O.; Lourens, L. J.
2018-05-01
We examine the response of the Indian and East Asian summer monsoons to separate precession and obliquity forcing, using a set of fully coupled high-resolution models for the first time: EC-Earth, GFDL CM2.1, CESM and HadCM3. We focus on the effect of insolation changes on monsoon precipitation and underlying circulation changes, and find strong model agreement despite a range of model physics, parameterization, and resolution. Our results show increased summer monsoon precipitation at times of increased summer insolation, i.e. minimum precession and maximum obliquity, accompanied by a redistribution of precipitation and convection from ocean to land. Southerly monsoon winds over East Asia are strengthened as a consequence of an intensified land-sea pressure gradient. The response of the Indian summer monsoon is less straightforward. Over south-east Asia low surface pressure is less pronounced and winds over the northern Indian Ocean are directed more westward. An Indian Ocean Dipole pattern emerges, with increased precipitation and convection over the western Indian Ocean. Increased temperatures occur during minimum precession over the Indian Ocean, but not during maximum obliquity when insolation is reduced over the tropics and southern hemisphere during northern hemisphere summer. Evaporation is reduced over the northern Indian Ocean, which together with increased precipitation over the western Indian Ocean dampens the increase of monsoonal precipitation over the continent. The southern tropical Indian Ocean as well as the western tropical Pacific (for precession) act as a moisture source for enhanced monsoonal precipitation. The models are in closest agreement for precession-induced changes, with more model spread for obliquity-induced changes, possibly related to a smaller insolation forcing. Our results indicate that a direct response of the Indian and East Asian summer monsoons to insolation forcing is possible, in line with speleothem records but in contrast to what most marine proxy climate records suggest.
Source-space ICA for MEG source imaging.
Jonmohamadi, Yaqub; Jones, Richard D
2016-02-01
One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.
Digibaro pressure instrument onboard the Phoenix Lander
NASA Astrophysics Data System (ADS)
Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.
2009-04-01
The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.
Liang, Jinyang; Zhou, Yong; Maslov, Konstantin I; Wang, Lihong V
2013-09-01
A cross-correlation-based method is proposed to quantitatively measure transverse flow velocity using optical resolution photoacoustic (PA) microscopy enhanced with a digital micromirror device (DMD). The DMD is used to alternately deliver two spatially separated laser beams to the target. Through cross-correlation between the slow-time PA profiles measured from the two beams, the speed and direction of transverse flow are simultaneously derived from the magnitude and sign of the time shift, respectively. Transverse flows in the range of 0.50 to 6.84 mm/s are accurately measured using an aqueous suspension of 10-μm-diameter microspheres, and the root-mean-squared measurement accuracy is quantified to be 0.22 mm/s. The flow measurements are independent of the particle size for flows in the velocity range of 0.55 to 6.49 mm/s, which was demonstrated experimentally using three different sizes of microspheres (diameters: 3, 6, and 10 μm). The measured flow velocity follows an expected parabolic distribution along the depth direction perpendicular to the flow. Both maximum and minimum measurable velocities are investigated for varied distances between the two beams and varied total time for one measurement. This technique shows an accuracy of 0.35 mm/s at 0.3-mm depth in scattering chicken breast, making it promising for measuring flow in biological tissue.
Ahmed, Sameh; Alqurshi, Abdulmalik; Mohamed, Abdel-Maaboud Ismail
2018-07-01
A new robust and reliable high-performance liquid chromatography (HPLC) method with multi-criteria decision making (MCDM) approach was developed to allow simultaneous quantification of atenolol (ATN) and nifedipine (NFD) in content uniformity testing. Felodipine (FLD) was used as an internal standard (I.S.) in this study. A novel marriage between a new interactive response optimizer and a HPLC method was suggested for multiple response optimizations of target responses. An interactive response optimizer was used as a decision and prediction tool for the optimal settings of target responses, according to specified criteria, based on Derringer's desirability. Four independent variables were considered in this study: Acetonitrile%, buffer pH and concentration along with column temperature. Eight responses were optimized: retention times of ATN, NFD, and FLD, resolutions between ATN/NFD and NFD/FLD, and plate numbers for ATN, NFD, and FLD. Multiple regression analysis was applied in order to scan the influences of the most significant variables for the regression models. The experimental design was set to give minimum retention times, maximum resolution and plate numbers. The interactive response optimizer allowed prediction of optimum conditions according to these criteria with a good composite desirability value of 0.98156. The developed method was validated according to the International Conference on Harmonization (ICH) guidelines with the aid of the experimental design. The developed MCDM-HPLC method showed superior robustness and resolution in short analysis time allowing successful simultaneous content uniformity testing of ATN and NFD in marketed capsules. The current work presents an interactive response optimizer as an efficient platform to optimize, predict responses, and validate HPLC methodology with tolerable design space for assay in quality control laboratories. Copyright © 2018 Elsevier B.V. All rights reserved.
Pulse shaping system research of CdZnTe radiation detector for high energy x-ray diagnostic
NASA Astrophysics Data System (ADS)
Li, Miao; Zhao, Mingkun; Ding, Keyu; Zhou, Shousen; Zhou, Benjie
2018-02-01
As one of the typical wide band-gap semiconductor materials, the CdZnTe material has high detection efficiency and excellent energy resolution for the hard X-ray and the Gamma ray. The generated signal of the CdZnTe detector needs to be transformed to the pseudo-Gaussian pulse with a small impulse-width to remove noise and improve the energy resolution by the following nuclear spectrometry data acquisition system. In this paper, the multi-stage pseudo-Gaussian shaping-filter has been investigated based on the nuclear electronic principle. The optimized circuit parameters were also obtained based on the analysis of the characteristics of the pseudo-Gaussian shaping-filter in our following simulations. Based on the simulation results, the falling-time of the output pulse was decreased and faster response time can be obtained with decreasing shaping-time τs-k. And the undershoot was also removed when the ratio of input resistors was set to 1 to 2.5. Moreover, a two stage sallen-key Gaussian shaping-filter was designed and fabricated by using a low-noise voltage feedback operation amplifier LMH6628. A detection experiment platform had been built by using the precise pulse generator CAKE831 as the imitated radiation pulse which was equivalent signal of the semiconductor CdZnTe detector. Experiment results show that the output pulse of the two stage pseudo-Gaussian shaping filter has minimum 200ns pulse width (FWHM), and the output pulse of each stage was well consistent with the simulation results. Based on the performance in our experiment, this multi-stage pseudo-Gaussian shaping-filter can reduce the event-lost caused by pile-up in the CdZnTe semiconductor detector and improve the energy resolution effectively.
Hayashi, K; Hoeksema, J T; Liu, Y; Bobra, M G; Sun, X D; Norton, A A
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.
Conceptual Design Standards for eXternal Visibility System (XVS) Sensor and Display Resolution
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Wilz, Susan J.; Arthur, Jarvis J, III
2012-01-01
NASA is investigating eXternal Visibility Systems (XVS) concepts which are a combination of sensor and display technologies designed to achieve an equivalent level of safety and performance to that provided by forward-facing windows in today s subsonic aircraft. This report provides the background for conceptual XVS design standards for display and sensor resolution. XVS resolution requirements were derived from the basis of equivalent performance. Three measures were investigated: a) human vision performance; b) see-and-avoid performance and safety; and c) see-to-follow performance. From these three factors, a minimum but perhaps not sufficient resolution requirement of 60 pixels per degree was shown for human vision equivalence. However, see-and-avoid and see-to-follow performance requirements are nearly double. This report also reviewed historical XVS testing.
Very high spatial resolution two-dimensional solar spectroscopy with video CCDs
NASA Technical Reports Server (NTRS)
Johanneson, A.; Bida, T.; Lites, B.; Scharmer, G. B.
1992-01-01
We have developed techniques for recording and reducing spectra of solar fine structure with complete coverage of two-dimensional areas at very high spatial resolution and with a minimum of seeing-induced distortions. These new techniques permit one, for the first time, to place the quantitative measures of atmospheric structure that are afforded only by detailed spectral measurements into their proper context. The techniques comprise the simultaneous acquisition of digital spectra and slit-jaw images at video rates as the solar scene sweeps rapidly by the spectrograph slit. During data processing the slit-jaw images are used to monitor rigid and differential image motion during the scan, allowing measured spectrum properties to be remapped spatially. The resulting quality of maps of measured properties from the spectra is close to that of the best filtergrams. We present the techniques and show maps from scans over pores and small sunspots obtained at a resolution approaching 1/3 arcsec in the spectral region of the magnetically sensitive Fe I lines at 630.15 and 630.25 nm. The maps shown are of continuum intensity and calibrated Doppler velocity. More extensive spectral inversion of these spectra to yield the strength of the magnetic field and other parameters is now underway, and the results of that analysis will be presented in a following paper.
NASA Astrophysics Data System (ADS)
Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg
2017-02-01
Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).
High resolution and sensitivity infrared tomography
NASA Astrophysics Data System (ADS)
Fillard, J. P.; Montgomery, P. C.; Gall, P.; Castagné, M.; Bonnafé, J.
1990-06-01
Laser scanning tomography was proposed some years ago by Ogawa and coworkers as a qualification test for semiconductor materials. From that time on, this technique has been used profitably to obtain images of internal defect distributions in III-V compounds as well as in II-VI compounds or even in silicon. These images especially reveal micro precipitates (e.g. decorated dislocations) distributed in the volume of the bulk material. Previously images sale were adapted to wafer examination (centimeter scale) but it appeared later that a major interest was to improve the resolution down to the microscopical range in order to investigate smaller zones and, above all, thinner sections. Nevertheless there is a limitation in the range of 10 μm for the minimum thickness of LST planes and this drawback prevents the using of this technique in the analysis of thin epilayers or structures. In this paper the emphasis is put on the fundamental and practical limits of the resolution, contrast and detectivity. Special optical arrangements will be suggested to reach the best specifications. Other possible dark field scattering tomographical microscopy methods have been evaluated and will be comparatively discussed in the light of preliminary results. Typical results relative to III-V compounds as well as silicon will be presented and quantitative specifications of the methods will be compared.
Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.
2017-12-01
Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eV
Developments in the CCP4 molecular-graphics project.
Potterton, Liz; McNicholas, Stuart; Krissinel, Eugene; Gruber, Jan; Cowtan, Kevin; Emsley, Paul; Murshudov, Garib N; Cohen, Serge; Perrakis, Anastassis; Noble, Martin
2004-12-01
Progress towards structure determination that is both high-throughput and high-value is dependent on the development of integrated and automatic tools for electron-density map interpretation and for the analysis of the resulting atomic models. Advances in map-interpretation algorithms are extending the resolution regime in which fully automatic tools can work reliably, but at present human intervention is required to interpret poor regions of macromolecular electron density, particularly where crystallographic data is only available to modest resolution [for example, I/sigma(I) < 2.0 for minimum resolution 2.5 A]. In such cases, a set of manual and semi-manual model-building molecular-graphics tools is needed. At the same time, converting the knowledge encapsulated in a molecular structure into understanding is dependent upon visualization tools, which must be able to communicate that understanding to others by means of both static and dynamic representations. CCP4 mg is a program designed to meet these needs in a way that is closely integrated with the ongoing development of CCP4 as a program suite suitable for both low- and high-intervention computational structural biology. As well as providing a carefully designed user interface to advanced algorithms of model building and analysis, CCP4 mg is intended to present a graphical toolkit to developers of novel algorithms in these fields.
Tips on preventing or minimizing construction claims.
Kasimer, J H
1981-02-01
With proper planning and use of successful techniques of claims avoidance, recognition, and resolution from the initial stages of the project, a hospital can prevent or minimize construction delays and claims and can complete its new construction in a reasonable atmosphere with a minimum of cost.
Development of a compact E ? B microchannel plate detector for beam imaging
Wiggins, B. B.; Singh, Varinderjit; Vadas, J.; ...
2017-06-17
A beam imaging detector was developed by coupling a multi-strip anode with delay line readout to an E×B microchannel plate (MCP) detector. This detector is capable of measuring the incident position of the beam particles in one-dimension. To assess the spatial resolution, the detector was illuminated by an α-source with an intervening mask that consists of a series of precisely-machined slits. The measured spatial resolution was 520 um source FWHM, which was improved to 413 um FWHM by performing an FFT of the signals, rejecting spurious signals on the delay line, and requiring a minimum signal amplitude. This measured spatialmore » resolution of 413 um FWHM corresponds to an intrinsic resolution of 334 um FWHM when the effect of the finite slit width is de-convoluted. To understand the measured resolution, the performance of the detector is simulated with the ion-trajectory code SIMION.« less
Development of a compact E ? B microchannel plate detector for beam imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiggins, B. B.; Singh, Varinderjit; Vadas, J.
A beam imaging detector was developed by coupling a multi-strip anode with delay line readout to an E×B microchannel plate (MCP) detector. This detector is capable of measuring the incident position of the beam particles in one-dimension. To assess the spatial resolution, the detector was illuminated by an α-source with an intervening mask that consists of a series of precisely-machined slits. The measured spatial resolution was 520 um source FWHM, which was improved to 413 um FWHM by performing an FFT of the signals, rejecting spurious signals on the delay line, and requiring a minimum signal amplitude. This measured spatialmore » resolution of 413 um FWHM corresponds to an intrinsic resolution of 334 um FWHM when the effect of the finite slit width is de-convoluted. To understand the measured resolution, the performance of the detector is simulated with the ion-trajectory code SIMION.« less
Chang'e-3 Extreme Ultraviolet Camera Observations of the Dynamics of the Earth's Plasmasphere
NASA Astrophysics Data System (ADS)
Fok, M. C. H.; Zhang, X.; He, F.; Chen, B.; Wang, H. N.; Shen, C.; Ping, J.; Nakano, S.
2015-12-01
The Moon-based Extreme Ultraviolet Camera (EUVC) aboard China's Chang'e-3 (CE-3) lunar lander has successfully imaged the global plasmasphere on the Moon for the first time through detecting the resonantly scattered sunlight by plasmaspheric He+ at 30.4 nm with a spatial resolution of 0.1 RE and a time resolution of 10 min. The characteristics and the analyzing methods of the EUVC images are introduced in detail in this report. The plasmapause locations on the magnetic equator are reconstructed with the Minimum L Algorithm and are quantitatively compared with those extracted from in-situ observations by DMSP, THEMIS, and RBSP satellites. Then the plasmapause evolutions during substorms on February 21 2014 and April 21 2014 are investigated. It is found that the evolutions of plasmapause correlate well in both universal time and magnetic local time with the equatorial boundaries of auroral oval during substorms. During these two cases, the solar-wind-driven convection and the geomagnetic activity are relatively weak and steady, and the plasmapause motions can reliably be attributed to the substorms. It is proposed that correlations between the auroral signatures and the plasmapause motions may be due to the generation and Earthward-propagation of dipolarization front and resultant pitch angle scattering. In future work, we will search more in-situ and remote sensing data in both the plasmasphere and the magnetotail regions to investigate the correlations between the plasmaspheric erosions, the dipolarization fronts, and the energetic ions injections.
Solar Wind Turbulence and Intermittency at 0.72 AU - Statistical Approach
NASA Astrophysics Data System (ADS)
Teodorescu, E.; Echim, M.; Munteanu, C.; Zhang, T.; Barabash, S. V.; Budnik, E.; Fedorov, A.
2014-12-01
Through this analysis we characterize the turbulent magnetic fluctuations by Venus Express Magnetometer, VEX-MAG in the solar wind during the last solar cycle minimum at a distance of 0.72 AU from the Sun. We analyze data recorded between 2007 and 2009 with time resolutions of 1 Hz and 32 Hz. In correlation with plasma data from the ASPERA instrument, Analyser of Space Plasma and Energetic Atoms, we identify 550 time intervals, at 1 Hz resolution, when VEX is in the solar wind and which satisfy selection criteria defined based on the amount and the continuity of the data. We identify 118 time intervals that correspond to fast solar wind. We compute the power spectral densities (PSD) for Bx, By, Bz, B, B2, B|| and B^. We perform a statistical analysis of the spectral indices computed for each of the PSD's and evidence a dependence of the spectral index on the solar wind velocity and a slight difference in power content between parallel and perpendicular components of the magnetic field. We also estimate the scale invariance of fluctuations by computing the Probability Distribution Functions (PDFs) for Bx, By, Bz, B and B2 time series and discuss the implications for intermittent turbulence. Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.
Modification of Prim’s algorithm on complete broadcasting graph
NASA Astrophysics Data System (ADS)
Dairina; Arif, Salmawaty; Munzir, Said; Halfiani, Vera; Ramli, Marwan
2017-09-01
Broadcasting is an information dissemination from one object to another object through communication between two objects in a network. Broadcasting for n objects can be solved by n - 1 communications and minimum time unit defined by ⌈2log n⌉ In this paper, weighted graph broadcasting is considered. The minimum weight of a complete broadcasting graph will be determined. Broadcasting graph is said to be complete if every vertex is connected. Thus to determine the minimum weight of complete broadcasting graph is equivalent to determine the minimum spanning tree of a complete graph. The Kruskal’s and Prim’s algorithm will be used to determine the minimum weight of a complete broadcasting graph regardless the minimum time unit ⌈2log n⌉ and modified Prim’s algorithm for the problems of the minimum time unit ⌈2log n⌉ is done. As an example case, here, the training of trainer problem is solved using these algorithms.
The magnetic field of the earth - Performance considerations for space-based observing systems
NASA Technical Reports Server (NTRS)
Webster, W. J., Jr.; Taylor, P. T.; Schnetzler, C. C.; Langel, R. A.
1985-01-01
Basic problems inherent in carrying out observations of the earth magnetic field from space are reviewed. It is shown that while useful observations of the core and crustal fields are possible at the peak of the solar cycle, the greatest useful data volume is obtained during solar minimum. During the last three solar cycles, the proportion of data with a planetary disturbance index of less than 2 at solar maximum was in the range 0.4-0.8 in comparison with solar minimum. It is found that current state of the art orbit determination techniques should eliminate orbit error as a problem in gravitational field measurements from space. The spatial resolution obtained for crustal field anomalies during the major satellite observation programs of the last 30 years are compared in a table. The relationship between observing altitude and the spatial resolution of magnetic field structures is discussed. Reference is made to data obtained using the Magsat, the Polar Orbiting Geophysical Observatory (POGO), and instruments on board the Space Shuttle.
Effect of spatial averaging on multifractal properties of meteorological time series
NASA Astrophysics Data System (ADS)
Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika
2016-04-01
Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased by -29.1 % (precipitation; width of MS) up to >4 % (min. Temperature, Radiation; asymmetry of MS). Also, the spatial variability of MS parameters was strongly affected at the highest aggregation (100 km). Obtained results confirm that spatial data aggregation may strongly affect temporal scaling properties. This should be taken into account when upscaling for large-scale studies. Acknowledgements The study was conducted within FACCE MACSUR. Please see Baranowski et al. (2015) for details on funding. References Baranowski, P., Krzyszczak, J., Sławiński, C. et al. (2015). Climate Research 65, 39-52. Hoffman, H., G. Zhao, L.G.J. Van Bussel et al. (2015). Climate Research 65, 53-69. Zhao, G., Siebert, S., Rezaei E. et al. (2015). Agricultural and Forest Meteorology 200, 156-171.
Scanning mirror for infrared sensors
NASA Technical Reports Server (NTRS)
Anderson, R. H.; Bernstein, S. B.
1972-01-01
A high resolution, long life angle-encoded scanning mirror, built for application in an infrared attitude sensor, is described. The mirror uses a Moire' fringe type optical encoder and unique torsion bar suspension together with a magnetic drive to meet stringent operational and environmental requirements at a minimum weight and with minimum power consumption. Details of the specifications, design, and construction are presented with an analysis of the mirror suspension that allows accurate prediction of performance. The emphasis is on mechanical design considerations, and brief discussions are included on the encoder and magnetic drive to provide a complete view of the mirror system and its capabilities.
New X-Ray Technique to Characterize Nanoscale Precipitates in Aged Aluminum Alloys
NASA Astrophysics Data System (ADS)
Sitdikov, V. D.; Murashkin, M. Yu.; Valiev, R. Z.
2017-10-01
This paper puts forward a new technique for measurement of x-ray patterns, which enables to solve the problem of identification and determination of precipitates (nanoscale phases) in metallic alloys of the matrix type. The minimum detection limit of precipitates in the matrix of the base material provided by this technique constitutes as little as 1%. The identification of precipitates in x-ray patterns and their analysis are implemented through a transmission mode with a larger radiation area, longer holding time and higher diffractometer resolution as compared to the conventional reflection mode. The presented technique has been successfully employed to identify and quantitatively describe precipitates formed in the Al alloy of the Al-Mg-Si system as a result of artificial aging. For the first time, the x-ray phase analysis has been used to identify and measure precipitates formed during the alloy artificial aging.
Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.
Handa, Shinya; Domalain, Thierry; Kose, Katsumi
2007-08-01
A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADmicroC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62 kbytes of flash memory, 8 kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40 bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100 ns and a minimum time delay between successive events of approximately 9 micros. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.
Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller
NASA Astrophysics Data System (ADS)
Handa, Shinya; Domalain, Thierry; Kose, Katsumi
2007-08-01
A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADμC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62kbytes of flash memory, 8kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100ns and a minimum time delay between successive events of approximately 9μs. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.
Energy and time optimal trajectories in exploratory jumps of the spider Phidippus regius.
Nabawy, Mostafa R A; Sivalingam, Girupakaran; Garwood, Russell J; Crowther, William J; Sellers, William I
2018-05-08
Jumping spiders are proficient jumpers that use jumps in a variety of behavioural contexts. We use high speed, high resolution video to measure the kinematics of a single regal jumping spider for a total of 15 different tasks based on a horizontal gap of 2-5 body lengths and vertical gap of +/-2 body lengths. For short range jumps, we show that low angled trajectories are used that minimise flight time. For longer jumps, take-off angles are steeper and closer to the optimum for minimum energy cost of transport. Comparison of jump performance against other arthropods shows that Phidippus regius is firmly in the group of animals that use dynamic muscle contraction for actuation as opposed to a stored energy catapult system. We find that the jump power requirements can be met from the estimated mass of leg muscle; hydraulic augmentation may be present but appears not to be energetically essential.
Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo
2013-08-01
VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event's time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μ m mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μ W from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e - RMS at room temperature.
Shang, Huazhe; Letu, Husi; Nakajima, Takashi Y; Wang, Ziming; Ma, Run; Wang, Tianxing; Lei, Yonghui; Ji, Dabin; Li, Shenshen; Shi, Jiancheng
2018-01-18
Analysis of cloud cover and its diurnal variation over the Tibetan Plateau (TP) is highly reliant on satellite data; however, the accuracy of cloud detection from both polar-orbiting and geostationary satellites over this area remains unclear. The new-generation geostationary Himawari-8 satellites provide high-resolution spatial and temporal information about clouds over the Tibetan Plateau. In this study, the cloud detection of MODIS and AHI is investigated and validated against CALIPSO measurements. For AHI and MODIS, the false alarm rate of AHI and MODIS in cloud identification over the TP was 7.51% and 1.94%, respectively, and the cloud hit rate was 73.55% and 80.15%, respectively. Using hourly cloud-cover data from the Himawari-8 satellites, we found that at the monthly scale, the diurnal cycle in cloud cover over the TP tends to increase throughout the day, with the minimum and maximum cloud fractions occurring at 10:00 a.m. and 18:00 p.m. local time. Due to the limited time resolution of polar-orbiting satellites, the underestimation of MODIS daytime average cloud cover is approximately 4.00% at the annual scale, with larger biases during the spring (5.40%) and winter (5.90%).
a UV Spectral Library of Metal-Poor Massive Stars
NASA Astrophysics Data System (ADS)
Robert, Carmelle
1994-01-01
We propose to use the FOS to build a snapshot library of UV spectra of a sample of about 50 metal-poor massive stars located in the Magellanic Clouds. The majority of libraries already existing contains spectra of hot stars with chemical abundances close to solar. The high spectral resolution achieves with the FOS will be a major factor for the uniqueness of this new library. UV spectral libraries represent fundamental tools for the study of the massive star populations of young star-forming regions. Massive stars, which are impossible to identify directly in the optical-IR part of a composite spectrum, display on the other hand key signatures in the UV region. These signatures are mainly broad, metallicity dependent spectral features formed in the hot star winds. They require a high spectral resolution (of the order of 200-300 km/s) for an adequate study. A spectral library of metal-poor massive stars represents also a unique source of data for a stellar atmosphere analysis. Within less then 10 min we will obtain a high signal-to-noise ratio of at least 30. Finally, since short exposure times are possible, this proposal makes extremely good use of the capabilities of HST. We designed an observing strategy which yields a maximum scientific return at a minimum cost of spacecraft time.
The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Detect-And-Avoid Systems
NASA Technical Reports Server (NTRS)
Abramson, Michael; Refai, Mohamad; Santiago, Confesor
2017-01-01
Java Architecture for Detect-And-Avoid (DAA) Extensibility and Modeling (JADEM) was developed at NASA Ames Research Center as a research and modeling tool for Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS). UAS will be required to have DAA systems in order to fulfill the regulatory requirement to remain well clear'' of other traffic. JADEM supports research on technological requirements and Minimum Operational Performance Standards (MOPS) for UAS DAA systems by providing a flexible and extensible software platform that includes models and algorithms for all major DAA functions. This paper describes one of these algorithms, the Generic Resolution Advisor and Conflict Evaluator (GRACE). GRACE supports two core DAA functions: threat evaluation and guidance. GRACE is generic in the sense that it is designed to work with any aircraft or sensor type (both cooperative and non-cooperative), and to be used in various applications and DAA guidance concepts, thus supporting evolving MOPS requirements and research. GRACE combines flexibility, robustness, and computational efficiency. It has modest memory requirements and can handle multiple cooperative and noncooperative intruders. GRACE has been used as a core JADEM component in several real-time and fast-time experiments, including human-in-the-loop simulations and live flight tests.
Research on a dem Coregistration Method Based on the SAR Imaging Geometry
NASA Astrophysics Data System (ADS)
Niu, Y.; Zhao, C.; Zhang, J.; Wang, L.; Li, B.; Fan, L.
2018-04-01
Due to the systematic error, especially the horizontal deviation that exists in the multi-source, multi-temporal DEMs (Digital Elevation Models), a method for high precision coregistration is needed. This paper presents a new fast DEM coregistration method based on a given SAR (Synthetic Aperture Radar) imaging geometry to overcome the divergence and time-consuming problem of the conventional DEM coregistration method. First, intensity images are simulated for two DEMs under the given SAR imaging geometry. 2D (Two-dimensional) offsets are estimated in the frequency domain using the intensity cross-correlation operation in the FFT (Fast Fourier Transform) tool, which can greatly accelerate the calculation process. Next, the transformation function between two DEMs is achieved via the robust least-square fitting of 2D polynomial operation. Accordingly, two DEMs can be precisely coregistered. Last, two DEMs, i.e., one high-resolution LiDAR (Light Detection and Ranging) DEM and one low-resolution SRTM (Shutter Radar Topography Mission) DEM, covering the Yangjiao landslide region of Chongqing are taken as an example to test the new method. The results indicate that, in most cases, this new method can achieve not only a result as much as 80 times faster than the minimum elevation difference (Least Z-difference, LZD) DEM registration method, but also more accurate and more reliable results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adekola, A.S.; Colaresi, J.; Douwen, J.
2015-07-01
Environmental scientific research requires a detector that has sensitivity low enough to reveal the presence of any contaminant in the sample at a reasonable counting time. Canberra developed the germanium detector geometry called Small Anode Germanium (SAGe) Well detector, which is now available commercially. The SAGe Well detector is a new type of low capacitance germanium well detector manufactured using small anode technology capable of advancing many environmental scientific research applications. The performance of this detector has been evaluated for a range of sample sizes and geometries counted inside the well, and on the end cap of the detector. Themore » detector has energy resolution performance similar to semi-planar detectors, and offers significant improvement over the existing coaxial and Well detectors. Energy resolution performance of 750 eV Full Width at Half Maximum (FWHM) at 122 keV γ-ray energy and resolution of 2.0 - 2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed for detector volumes up to 425 cm{sup 3}. The SAGe Well detector offers an optional 28 mm well diameter with the same energy resolution as the standard 16 mm well. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. The detector is compatible with electric coolers without any sacrifice in performance and supports the Canberra Mathematical efficiency calibration method (In situ Object Calibration Software or ISOCS, and Laboratory Source-less Calibration Software or LABSOCS). In addition, the SAGe Well detector supports true coincidence summing available in the ISOCS/LABSOCS framework. The improved resolution performance greatly enhances detection sensitivity of this new detector for a range of sample sizes and geometries counted inside the well. This results in lower minimum detectable concentrations compared to Traditional Well detectors. The SAGe Well detectors are compatible with Marinelli beakers and compete very well with semi-planar and coaxial detectors for large samples in many applications. (authors)« less
NASA Astrophysics Data System (ADS)
Serrels, K. A.; Ramsay, E.; Reid, D. T.
2009-02-01
We present experimental evidence for the resolution-enhancing effect of an annular pupil-plane aperture when performing nonlinear imaging in the vectorial-focusing regime through manipulation of the focal spot geometry. By acquiring two-photon optical beam-induced current images of a silicon integrated-circuit using solid-immersion-lens microscopy at 1550 nm we achieved 70 nm resolution. This result demonstrates a reduction in the minimum effective focal spot diameter of 36%. In addition, the annular-aperture-induced extension of the depth-of-focus causes an observable decrease in the depth contrast of the resulting image and we explain the origins of this using a simulation of the imaging process.
A Pair Production Telescope for Medium-Energy Gamma-Ray Polarimetry
NASA Technical Reports Server (NTRS)
Hunter, Stanley D.; Bloser, Peter F.; Depaola, Gerardo; Dion, Michael P.; DeNolfo, Georgia A.; Hanu, Andrei; Iparraguirre, Marcos; Legere, Jason; Longo, Francesco; McConnell, Mark L.;
2014-01-01
We describe the science motivation and development of a pair production telescope for medium-energy (approximately 5-200 Mega electron Volts) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (approximately 0.6 deg at 70 Mega electron Volts), continuum sensitivity comparable with the Fermi-LAT front detector (is less than 3 x 10(exp -6) Mega electron Volts per square centimeter per second at 70 Mega electron Volts), and minimum detectable polarization less than 10% for a 10 milliCrab source in 10(exp 6) s.
NASA Technical Reports Server (NTRS)
1974-01-01
The instruments to be flown on the Earth Observatory Satellite (EOS) system are defined. The instruments will be used to support the Land Resources Management (LRM) mission of the EOS. Program planning information and suggested acquisition activities for obtaining the instruments are presented. The subjects considered are as follows: (1) the performance and interface of the Thematic Mapper (TM) and the High Resolution Pointing Imager (HRPI), (2) procedure for interfacing the TM and HRPI with the EOS satellite, (3) a space vehicle integration plan suggesting the steps and sequence of events required to carry out the interface activities, and (4) suggested agreements between the contractors for providing timely and equitable solution of problems at minimum cost.
Multi-resolution analysis for ear recognition using wavelet features
NASA Astrophysics Data System (ADS)
Shoaib, M.; Basit, A.; Faye, I.
2016-11-01
Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.
Development of High-Speed Fluorescent X-Ray Micro-Computed Tomography
NASA Astrophysics Data System (ADS)
Takeda, T.; Tsuchiya, Y.; Kuroe, T.; Zeniya, T.; Wu, J.; Lwin, Thet-Thet; Yashiro, T.; Yuasa, T.; Hyodo, K.; Matsumura, K.; Dilmanian, F. A.; Itai, Y.; Akatsuka, T.
2004-05-01
A high-speed fluorescent x-ray CT (FXCT) system using monochromatic synchrotron x rays was developed to detect very low concentration of medium-Z elements for biomedical use. The system is equipped two types of high purity germanium detectors, and fast electronics and software. Preliminary images of a 10mm diameter plastic phantom containing channels field with iodine solutions of different concentrations showed a minimum detection level of 0.002 mg I/ml at an in-plane spatial resolution of 100μm. Furthermore, the acquisition time was reduced about 1/2 comparing to previous system. The results indicate that FXCT is a highly sensitive imaging modality capable of detecting very low concentration of iodine, and that the method has potential in biomedical applications.
DOT National Transportation Integrated Search
2017-01-01
The arterial traffic signal performance measures were not used to their fullest potential in the past. The development of traffic signal controllers with event-based, high-resolution data logging capabilities enabled the advances in derivation and vi...
49 CFR 24.205 - Relocation planning, advisory services, and coordination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... include a personal interview with each business. At a minimum, interviews with displaced business owners... obtaining such assistance. This shall include a personal interview with each residential displaced person... reinstallation of machinery and/or other personal property. (C) For businesses, an identification and resolution...
The limitations of associated alpha particle technique for contraband container inspections
NASA Astrophysics Data System (ADS)
Sudac, Davorin; Blagus, Sasa; Valkovic, Vladivoj
2007-10-01
Inspection of a shipping container for the presence of the threat materials has been investigated in the laboratory by using a 14 MeV neutron beam, a BaF2 gamma detector and the associated alpha particle technique. The associated alpha particle technique is proposed as a part of a two sensor system for contraband container inspections. This method is effective in the reduction of background radiation with the possibility of collimating electronically the neutron beam. The intrinsic time resolution has been experimentally estimated to be 1.3 ns (FWHM), which allows inspection of a minimum voxel having 7 cm depth along the neutron flight path. The neutron beam intensity plays a crucial role as a limiting factor for the acquisition time reduction. Single counting rates of the gamma and alpha detector were investigated as a function of the neutron intensity, distance between the gamma detector and the neutron source and the type of shielding. The time and the energy spectra for different neutron intensities were evaluated.
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.
2011-01-01
Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.
Malkusch, Wolf
2005-01-01
The enzyme-linked immunospot (ELISPOT) assay was originally developed for the detection of individual antibody secreting B-cells. Since then, the method has been improved, and ELISPOT is used for the determination of the production of tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, or various interleukins (IL)-4, IL-5. ELISPOT measurements are performed in 96-well plates with nitrocellulose membranes either visually or by means of image analysis. Image analysis offers various procedures to overcome variable background intensity problems and separate true from false spots. ELISPOT readers offer a complete solution for precise and automatic evaluation of ELISPOT assays. Number, size, and intensity of each single spot can be determined, printed, or saved for further statistical evaluation. Cytokine spots are always round, but because of floating edges with the background, they have a nonsmooth borderline. Resolution is a key feature for a precise detection of ELISPOT. In standard applications shape and edge steepness are essential parameters in addition to size and color for an accurate spot recognition. These parameters need a minimum spot diameter of 6 pixels. Collecting one single image per well with a standard color camera with 750 x 560 pixels will result in a resolution much too low to get all of the spots in a specimen. IFN-gamma spots may have only 25 microm diameters, and TNF-alpha spots just 15 microm. A 750 x 560 pixel image of a 6-mm well has a pixel size of 12 microm, resulting in only 1 or 2 pixel for a spot. Using a precise microscope optic in combination with a high resolution (1300 x 1030 pixel) integrating digital color camera, and at least 2 x 2 images per well will result in a pixel size of 2.5 microm and, as a minimum, 6 pixel diameter per spot. New approaches try to detect two cytokines per cell at the same time (i.e., IFN-gamma and IL-5). Standard staining procedures produce brownish spots (horseradish peroxidase) and blue spots (alkaline phosphatase). Problems may occur with color overlaps from cells producing both cytokines, resulting in violet spots. The latest experiments therefore try to use fluorescence labels as a marker. Fluorescein isothiocyanate results in green spots and Rhodamine in red spots. Cells producing both cytokines appear yellow. These colors can be separated much easier than the violet, red, and blue, especially using a high resolution.
Development of a Transient Thrust Stand with Sub-Millisecond Resolution
NASA Astrophysics Data System (ADS)
Spells, Corbin Fraser
The transient thrust stand has been developed to offer 0.1 ms time resolved thrust measurements for the characterization of mono-propellant thrusters for spacecraft applications. Results demonstrated that the system was capable of obtaining dynamic thrust profiles within 5 % and 0.1 ms. Measuring and improving the thrust performance of mono-propellant thrusters will require 1 ms time resolved forces to observe shot-to-shot variations, oscillations, and minimum impulse bits. To date, no thrust stand is capable of measuring up to 22 N forces with a time response of up to 10 kHz. Calibration forces up to 22 N with a frequency response greater than 0.1 ms were obtained using voice coil actuators. Steady state and low frequency measurements were obtained using displacement and velocity sensors and were combined with high frequency vibration modes measured using several accelerometers along the thrust stand arm. The system uses a predictor-based subspace algorithm to obtain a high order state space model of the thrust stand capable of defining the high frequency vibration modes. The high frequency vibration modes are necessary to provide the time response of 0.1 ms. Thruster forces are estimated using an augmented Kalman filter to combine sensor traces from four accelerometers, a velocity sensor, and displacement transducer. Combining low frequency displacement data with high frequency acceleration measurements provides accurate force data across a broad time domain. The transient thrust stand uses a torsional pendulum configuration to minimize influence from external vibration and achieve high force resolution independent of thruster weight.
Forest Area Derivation from SENTINEL-1 Data
NASA Astrophysics Data System (ADS)
Dostálová, Alena; Hollaus, Markus; Milenković, Milutin; Wagner, Wolfgang
2016-06-01
The recently launched Sentinel-1A provides the high resolution Synthetic Aperture Radar (SAR) data with very high temporal coverage over large parts of European continent. Short revisit time and dual polarization availability supports its usability for forestry applications. The following study presents an analysis of the potential of the multi-temporal dual-polarization Sentinel-1A data for the forest area derivation using the standard methods based on Otsu thresholding and K-means clustering. Sentinel-1 data collected in winter season 2014-2015 over a test area in eastern Austria were used to derive forest area mask with spatial resolution of 10m and minimum mapping unit of 500 m2. The validation with reference forest mask derived from airborne full-waveform laser scanning data revealed overall accuracy of 92 % and kappa statistics of 0.81. Even better results can be achieved when using external mask for urban areas, which might be misclassified as forests when using the introduced approach based on SAR data only. The Sentinel-1 data and the described methods are well suited for forest change detection between consecutive years.
The Sea Breeze in South-Iceland: Observations with an unmanned aircraft and numerical simulations
NASA Astrophysics Data System (ADS)
Opsanger Jonassen, Marius; Ólafsson, Haraldur; Rasol, Dubravka; Reuder, Joachim
2010-05-01
Sea breeze events, 19-20 July 2009, observed during the international field campaign MOSO, at the southcoast of Iceland, have been investigated using high resolution numerical simulations. Thanks to the use of a small unmanned aircraft system (UAS), SUMO, the wind and temperature aloft could be observed at a high resolution in both space and time. Simultaneously with the UAS operations, conventional platforms were used to obtain surface measurements. The observations show a distinct sea breeze circulation with an onset at around noon and a final decay around 19:00 UTC. At the maximum, the sea breeze layer reached a height of appr. 400 m, marked by a capping wind minimum. When compared to the flow aloft, the sea breeze layer was found to exhibit relatively low temperatures and an expected turn from an off-shore to an on-shore flow. Overall, the agreement between the observations and simulations are relatively good. The simulations suggest a horizontal extent of the circulation some 20-30 km off-shore, but only around 5 km on-shore.
De Felice, Francesca; Thomas, Christopher; Patel, Vinod; Connor, Steve; Michaelidou, Andriana; Sproat, Chris; Kwok, Jerry; Burke, Mary; Reilly, Damien; McGurk, Mark; Simo, Ricard; Lyons, Andrew; Oakley, Richard; Jeannon, Jean-Pierre; Lei, Mary; Urbano, Teresa Guerrero
2016-07-01
To analyze clinical features, dosimetric parameters, and outcomes of osteoradionecrosis (ORN). Thirty-six patients with ORN who had been previously treated with radiotherapy (RT) were retrospectively identified between January 2009 and April 2014. ORN volumes were contoured on planning computed tomography (CT) scans. Near maximum dose (D2%), minimum dose (Dmin), mean dose (Dmean), and percentage of bone volume receiving 50 Gy (V50) were examined. Clinical and dosimetric variables were considered to compare ORN resolution versus ORN persistence. Median interval time from end of RT to development of ORN was 6 months. Of the ORN cases, 61% were located in the mandible. Dmean to affected bone was 57.6 Gy, and 44% had a D2% 65 Gy or greater. Smoking was associated with ORN persistence on univariate analysis, but no factors were found to impact ORN resolution or progression on logistic regression. Prevention strategies for ORN development should be prioritized. Dose-volume parameters could have a role in preventing ORN. Copyright © 2016 Elsevier Inc. All rights reserved.
Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process
NASA Technical Reports Server (NTRS)
Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian
2010-01-01
The future X-ray observatory missions, such as International X-ray Observatory, require grazing incidence replicated optics of extremely large collecting area (3 m2) in combination with angular resolution of less than 5 arcsec half-power diameter. The resolution of a mirror shell depends ultimately on the quality of the cylindrical mandrels from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation studies have been performed to optimize the operational parameters as well as the polishing lap configuration. Furthermore, depending upon the surface error profile, a model for localized polishing based on dwell time approach is developed. Using the inputs from the mathematical model, a mandrel, having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. We report our first experimental results and discuss plans for further improvements in the polishing process.
Low resolution spectroscopy of selected Algol systems
NASA Astrophysics Data System (ADS)
Devarapalli, Shanti Priya; Jagirdar, Rukmini; Parthasarathy, M.; Sahu, D. K.; Mohan, Vijay; Bhatt, B. C.; Thomas, Vineet S.
2018-04-01
The analysis of spectroscopic data for 30 Algol-type binaries is presented. All these systems are short period Algols having primaries with spectral types B and A. Dominant spectral lines were identified for the spectra collected and their equivalent widths were calculated. All the spectra were examined to understand presence of mass transfer, a disk or circumstellar matter and chromospheric emission. We also present first spectroscopic and period study for few Algols and conclude that high resolution spectra within and outside the primary minimum are needed for better understanding of these Algol type close binaries.
Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Kratkiewicz, Karl; Adabi, Saba; Nasiriavanaki, Mohammadreza
2018-02-01
In photoacoustic imaging, delay-and-sum (DAS) beamformer is a common beamforming algorithm having a simple implementation. However, it results in a poor resolution and high sidelobes. To address these challenges, a new algorithm namely delay-multiply-and-sum (DMAS) was introduced having lower sidelobes compared to DAS. To improve the resolution of DMAS, a beamformer is introduced using minimum variance (MV) adaptive beamforming combined with DMAS, so-called minimum variance-based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation results in multiple terms representing a DAS algebra. It is proposed to use the MV adaptive beamformer instead of the existing DAS. MVB-DMAS is evaluated numerically and experimentally. In particular, at the depth of 45 mm MVB-DMAS results in about 31, 18, and 8 dB sidelobes reduction compared to DAS, MV, and DMAS, respectively. The quantitative results of the simulations show that MVB-DMAS leads to improvement in full-width-half-maximum about 96%, 94%, and 45% and signal-to-noise ratio about 89%, 15%, and 35% compared to DAS, DMAS, MV, respectively. In particular, at the depth of 33 mm of the experimental images, MVB-DMAS results in about 20 dB sidelobes reduction in comparison with other beamformers. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Salomnson, Vincent V.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it and "first light" observations occurred on June 24,2002. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. The spacecraft, instrument, and data systems for both MODIS instruments are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations.
OnEarth: An Open Source Solution for Efficiently Serving High-Resolution Mapped Image Products
NASA Astrophysics Data System (ADS)
Thompson, C. K.; Plesea, L.; Hall, J. R.; Roberts, J. T.; Cechini, M. F.; Schmaltz, J. E.; Alarcon, C.; Huang, T.; McGann, J. M.; Chang, G.; Boller, R. A.; Ilavajhala, S.; Murphy, K. J.; Bingham, A. W.
2013-12-01
This presentation introduces OnEarth, a server side software package originally developed at the Jet Propulsion Laboratory (JPL), that facilitates network-based, minimum-latency geolocated image access independent of image size or spatial resolution. The key component in this package is the Meta Raster Format (MRF), a specialized raster file extension to the Geospatial Data Abstraction Library (GDAL) consisting of an internal indexed pyramid of image tiles. Imagery to be served is converted to the MRF format and made accessible online via an expandable set of server modules handling requests in several common protocols, including the Open Geospatial Consortium (OGC) compliant Web Map Tile Service (WMTS) as well as Tiled WMS and Keyhole Markup Language (KML). OnEarth has recently transitioned to open source status and is maintained and actively developed as part of GIBS (Global Imagery Browse Services), a collaborative project between JPL and Goddard Space Flight Center (GSFC). The primary function of GIBS is to enhance and streamline the data discovery process and to support near real-time (NRT) applications via the expeditious ingestion and serving of full-resolution imagery representing science products from across the NASA Earth Science spectrum. Open source software solutions are leveraged where possible in order to utilize existing available technologies, reduce development time, and enlist wider community participation. We will discuss some of the factors and decision points in transitioning OnEarth to a suitable open source paradigm, including repository and licensing agreement decision points, institutional hurdles, and perceived benefits. We will also provide examples illustrating how OnEarth is integrated within GIBS and other applications.
Iterative Minimum Variance Beamformer with Low Complexity for Medical Ultrasound Imaging.
Deylami, Ali Mohades; Asl, Babak Mohammadzadeh
2018-06-04
Minimum variance beamformer (MVB) improves the resolution and contrast of medical ultrasound images compared with delay and sum (DAS) beamformer. The weight vector of this beamformer should be calculated for each imaging point independently, with a cost of increasing computational complexity. The large number of necessary calculations limits this beamformer to application in real-time systems. A beamformer is proposed based on the MVB with lower computational complexity while preserving its advantages. This beamformer avoids matrix inversion, which is the most complex part of the MVB, by solving the optimization problem iteratively. The received signals from two imaging points close together do not vary much in medical ultrasound imaging. Therefore, using the previously optimized weight vector for one point as initial weight vector for the new neighboring point can improve the convergence speed and decrease the computational complexity. The proposed method was applied on several data sets, and it has been shown that the method can regenerate the results obtained by the MVB while the order of complexity is decreased from O(L 3 ) to O(L 2 ). Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
2D tilting MEMS micro mirror integrating a piezoresistive sensor position feedback
NASA Astrophysics Data System (ADS)
Lani, S.; Bayat, D.; Despont, M.
2015-02-01
An integrated position sensor for a dual-axis electromagnetic tilting mirror is presented. This tilting mirror is composed of a silicon based mirror directly assembled on a silicon membrane supported by flexible beams. The position sensors are constituted by 4 Wheatstone bridges of piezoresistors which are fabricated by doping locally the flexible beams. A permanent magnet is attached to the membrane and the scanner is mounted above planar coils deposited on a ceramic substrate to achieve electromagnetic actuation. The performances of the piezoresistive sensors are evaluated by measuring the output signal of the piezoresistors as a function of the tilt of the mirror and the temperature. White light interferometry was performed for all measurement to measure the exact tilt angle. The minimum detectable angle with such sensors was 30µrad (around 13bits) in the range of the minimum resolution of the interferometer. The tilt reproducibility was 0.0186%, obtained by measuring the tilt after repeated actuations with a coil current of 50mA during 30 min and the stability over time was 0.05% in 1h without actuation. The maximum measured tilt angle was 6° (mechanical) limited by nonlinearity of the MEMS system.
C-14 and temperature variation around and after AD 775 - after the Dark Age Grand Minimum
NASA Astrophysics Data System (ADS)
Neuhäuser, Ralph; Neuhäuser, Dagmar L.
2016-04-01
We have compiled an extensive catalog of aurora observations from the Far and Near East as well as Europe for the time from AD 550 to 845. From historic observations of aurorae and sunspots as well as the C-14 and Be-10 data, we can date the end of the Dark Age grand minimum to about AD 690; we see strong activity after this period. We can fix the solar activity Schwabe cycle maxima and minima in the 7th and 8th centuries.. The strong 14-C increase in data with 1-yr time resolution in the AD 770s (e.g. Miyake et al. 2012) is still a matter of debate, e.g. a solar super-flare. In the last three millennia, there were two more strong rapid rises in 14-C - around BC 671 and AD 1795. All three 14-C variations are embedded in similar evolution of solar activity, as we can show with various solar activity proxies; secular evolution of solar wind plays an important role. The rises of 14-C - within a few years each - can be explained by a sudden strong decrease in solar modulation potential leading to increased radioisotope production. The strong rises around AD 775 and 1795 are due to three effects: (i) very strong activity in the previous cycles (i.e. very low 14-C level), (ii) the declining phase of a very strong Schwabe cycle, and (iii) a phase of very weak activity after the strong 14-C rise - very short and/or weak cycle(s) like the suddenly starting Dalton minimum. In addition to arXiv:1503.01581 and arXiv:1508.06745, we also discuss the temperature depression and new quasi-annual 10-Be data. If a temperature depression right after AD 775 for a few decades can be confirmed, this would be fully consistent with our suggestion: reduced solar activity since AD 775 (for a few decades like in the Dalton minimum). Otherwise, one would not expect such a temperature depression after a solar super-flare.
A Comparison Study of Second-Order Screening Designs and Their Extension
2013-12-01
H2 97 V. Nonlinear Screening Designs for Defense Testing: An Overview and Case Study 5.1 Introduction “Necessity is the Mother of Invention.” Plato is...involved concepts like design resolution, minimum aber- ration , power, the number of clear (non-confounded) effects, concepts like rotatability
40 CFR 90.314 - Analyzer accuracy and specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... engineering practice. Adhere to the minimum requirements given in §§ 90.316 through 90.325 and § 90.409. (c) Emission measurement accuracy—Bag sampling. (1) Good engineering practice dictates that exhaust emission...) Some high resolution read-out systems, such as computers, data loggers, and so forth, can provide...
40 CFR 90.314 - Analyzer accuracy and specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engineering practice. Adhere to the minimum requirements given in §§ 90.316 through 90.325 and § 90.409. (c) Emission measurement accuracy—Bag sampling. (1) Good engineering practice dictates that exhaust emission...) Some high resolution read-out systems, such as computers, data loggers, and so forth, can provide...
40 CFR 90.314 - Analyzer accuracy and specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engineering practice. Adhere to the minimum requirements given in §§ 90.316 through 90.325 and § 90.409. (c) Emission measurement accuracy—Bag sampling. (1) Good engineering practice dictates that exhaust emission...) Some high resolution read-out systems, such as computers, data loggers, and so forth, can provide...
40 CFR 90.314 - Analyzer accuracy and specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engineering practice. Adhere to the minimum requirements given in §§ 90.316 through 90.325 and § 90.409. (c) Emission measurement accuracy—Bag sampling. (1) Good engineering practice dictates that exhaust emission...) Some high resolution read-out systems, such as computers, data loggers, and so forth, can provide...
The Rotating Morse-Pekeris Oscillator Revisited
ERIC Educational Resources Information Center
Zuniga, Jose; Bastida, Adolfo; Requena, Alberto
2008-01-01
The Morse-Pekeris oscillator model for the calculation of the vibration-rotation energy levels of diatomic molecules is revisited. This model is based on the realization of a second-order exponential expansion of the centrifugal term about the minimum of the vibrational Morse oscillator and the subsequent analytical resolution of the resulting…
Research and Development Services: Methods Development
1982-07-23
At an applied potential of -1.15 volts, the minimum detectable amount was 500 ng, which was not very sensitive. From Hammett linear free energy... Equation 1, the value of N was optimized by using two columns. The other factors which can influence resolution are the capacity factor, k, and the
Stitching-error reduction in gratings by shot-shifted electron-beam lithography
NASA Technical Reports Server (NTRS)
Dougherty, D. J.; Muller, R. E.; Maker, P. D.; Forouhar, S.
2001-01-01
Calculations of the grating spatial-frequency spectrum and the filtering properties of multiple-pass electron-beam writing demonstrate a tradeoff between stitching-error suppression and minimum pitch separation. High-resolution measurements of optical-diffraction patterns show a 25-dB reduction in stitching-error side modes.
Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?
NASA Astrophysics Data System (ADS)
Thomsen, S.; Kanzow, T.; Colas, F.; Echevin, V.; Krahmann, G.; Engel, A.
2016-02-01
The Peruvian upwelling region shows pronounced near-surface submesoscale variability including filaments and sharp density fronts. Submesoscale frontal processes can drive large vertical velocities and enhance vertical tracer fluxes in the upper ocean. The associated high temporal and spatial variability poses a large challenge to observational approaches targeting these processes. In this study the role of submesoscale processes for the ventilation of the near-coastal oxygen minimum zone off Peru is investigated. We use satellite based sea surface temperature measurements and multiple high-resolution glider observations of temperature, salinity, oxygen and chlorophyll fluorescence carried out in January and February 2013 off Peru near 14°S during active upwelling. Additionally, high-resolution regional ocean circulation model outputs (ROMS) outputs are analysed. At the beginning of our observational survey a previously upwelled, productive and highly oxygenated water body is found in the mixed layer. Subsequently, a cold filament forms and the waters are moved offshore. After the decay of the filament and the relaxation of the upwelling front, the oxygen enriched surface water is found in the previously less oxygenated thermocline suggesting the occurrence of frontal subduction. A numerical model simulation is used to analyse the evolution of Lagrangian numerical floats in several upwelling filaments, whose vertical structure and hydrographic properties agree well with the observations. The floats trajectories support our interpretation that the subduction of previously upwelled water occurs in filaments off Peru. We find that 40 - 60 % of the floats seeded in the newly upwelled water is subducted within a time period of 5 days. This hightlights the importance of this process in ventilating the oxycline off Peru.
Duchêne, Sebastián; Archer, Frederick I.; Vilstrup, Julia; Caballero, Susana; Morin, Phillip A.
2011-01-01
The availability of mitochondrial genome sequences is growing as a result of recent technological advances in molecular biology. In phylogenetic analyses, the complete mitogenome is increasingly becoming the marker of choice, usually providing better phylogenetic resolution and precision relative to traditional markers such as cytochrome b (CYTB) and the control region (CR). In some cases, the differences in phylogenetic estimates between mitogenomic and single-gene markers have yielded incongruent conclusions. By comparing phylogenetic estimates made from different genes, we identified the most informative mitochondrial regions and evaluated the minimum amount of data necessary to reproduce the same results as the mitogenome. We compared results among individual genes and the mitogenome for recently published complete mitogenome datasets of selected delphinids (Delphinidae) and killer whales (genus Orcinus). Using Bayesian phylogenetic methods, we investigated differences in estimation of topologies, divergence dates, and clock-like behavior among genes for both datasets. Although the most informative regions were not the same for each taxonomic group (COX1, CYTB, ND3 and ATP6 for Orcinus, and ND1, COX1 and ND4 for Delphinidae), in both cases they were equivalent to less than a quarter of the complete mitogenome. This suggests that gene information content can vary among groups, but can be adequately represented by a portion of the complete sequence. Although our results indicate that complete mitogenomes provide the highest phylogenetic resolution and most precise date estimates, a minimum amount of data can be selected using our approach when the complete sequence is unavailable. Studies based on single genes can benefit from the addition of a few more mitochondrial markers, producing topologies and date estimates similar to those obtained using the entire mitogenome. PMID:22073275
Hardware architecture design of a fast global motion estimation method
NASA Astrophysics Data System (ADS)
Liang, Chaobing; Sang, Hongshi; Shen, Xubang
2015-12-01
VLSI implementation of gradient-based global motion estimation (GME) faces two main challenges: irregular data access and high off-chip memory bandwidth requirement. We previously proposed a fast GME method that reduces computational complexity by choosing certain number of small patches containing corners and using them in a gradient-based framework. A hardware architecture is designed to implement this method and further reduce off-chip memory bandwidth requirement. On-chip memories are used to store coordinates of the corners and template patches, while the Gaussian pyramids of both the template and reference frame are stored in off-chip SDRAMs. By performing geometric transform only on the coordinates of the center pixel of a 3-by-3 patch in the template image, a 5-by-5 area containing the warped 3-by-3 patch in the reference image is extracted from the SDRAMs by burst read. Patched-based and burst mode data access helps to keep the off-chip memory bandwidth requirement at the minimum. Although patch size varies at different pyramid level, all patches are processed in term of 3x3 patches, so the utilization of the patch-processing circuit reaches 100%. FPGA implementation results show that the design utilizes 24,080 bits on-chip memory and for a sequence with resolution of 352x288 and frequency of 60Hz, the off-chip bandwidth requirement is only 3.96Mbyte/s, compared with 243.84Mbyte/s of the original gradient-based GME method. This design can be used in applications like video codec, video stabilization, and super-resolution, where real-time GME is a necessity and minimum memory bandwidth requirement is appreciated.
Minimum-Time Consensus-Based Approach for Power System Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Wu, Di; Sun, Yannan
2016-02-01
This paper presents minimum-time consensus based distributed algorithms for power system applications, such as load shedding and economic dispatch. The proposed algorithms are capable of solving these problems in a minimum number of time steps instead of asymptotically as in most of existing studies. Moreover, these algorithms are applicable to both undirected and directed communication networks. Simulation results are used to validate the proposed algorithms.
Development of ALARO-Climate regional climate model for a very high resolution
NASA Astrophysics Data System (ADS)
Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan
2014-05-01
ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main results of the RCM ALARO-Climate model simulations in 25 and 6.25 km resolutions on the longer time-scale (1961-1990). The model was driven by the ERA-40 re-analyses and run on the integration domain of ~ 2500 x 2500 km size covering the central Europe. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version dataset 8. Other simulated parameters (e.g., cloudiness, radiation or components of water cycle) were compared to the ERA-40 re-analyses. The validation of the first ERA-40 simulation in both, 25 km and 6.25 km resolutions, revealed significant cold biases in all seasons and overestimation of precipitation in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The differences between these simulations were small and thus revealed a robustness of the model's physical parameterization on the resolution change. The series of 25 km resolution simulations with several model adaptations was carried out to study their effect on the simulated properties of climate variables and thus possibly identify a source of major errors in the simulated climate. The current investigation suggests the main reason for biases is related to the model physic. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1.05/1.1.00/02.0073). The partial support was also provided under the projects P209-11-0956 of the Czech Science Foundation and CZ.1.07/2.4.00/31.0056 (Operational Programme of Education for Competitiveness of Ministry of Education, Youth and Sports of the Czech Republic).
50 CFR 259.34 - Minimum and maximum deposits; maximum time to deposit.
Code of Federal Regulations, 2010 CFR
2010-10-01
... B objective. A time longer than 10 years, either by original scheduling or by subsequent extension... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES CAPITAL CONSTRUCTION FUND...) Minimum annual deposit. The minimum annual (based on each party's taxable year) deposit required by the...
Testing Taylor’s hypothesis in Amazonian rainfall fields during the WETAMC/LBA experiment
NASA Astrophysics Data System (ADS)
Poveda, Germán; Zuluaga, Manuel D.
2005-11-01
Taylor's hypothesis (TH) for rainfall fields states that the spatial correlation of rainfall intensity at two points at the same instant of time can be equated with the temporal correlation at two instants of time at some fixed location. The validity of TH is tested in a set of 12 storms developed in Rondonia, southwestern Amazonia, Brazil, during the January-February 1999 Wet Season Atmospheric Meso-scale Campaign. The time Eulerian and Lagrangian Autocorrelation Functions (ACF) are estimated, as well as the time-averaged space ACF, using radar rainfall rates of storms spanning between 3.2 and 23 h, measured at 7-10-min time resolution, over a circle of 100 km radius, at 2 km spatial resolution. TH does not hold in 9 out of the 12 studied storms, due to their erratic trajectories and very low values of zonal wind velocity at 700 hPa, independently from underlying atmospheric stability conditions. TH was shown to hold for 3 storms, up to a cutoff time scale of 10-15 min, which is closely related to observed features of the life cycle of convective cells in the region. Such cutoff time scale in Amazonian storms is much shorter than the 40 min identified in mid-latitude convective storms, due to much higher values of CAPE and smaller values of storm speed in Amazonian storms as compared to mid-latitude ones, which in turn contribute to a faster destruction of the rainfall field isotropy. Storms satisfying TH undergo smooth linear trajectories over space, and exhibit the highest negative values of maximum, mean and minimum zonal wind velocity at 700 hPa, within narrow ranges of atmospheric stability conditions. Non-dimensional parameters involving CAPE (maximum, mean and minimum) and CINE (mean) are identified during the storms life cycle, for which TH holds: CAPE mean/CINE mean = [30-35], CAPE max/CINE mean = [32-40], and CAPE min/CINE mean = [22-28]. These findings are independent upon the timing of storms within the diurnal cycle. Also, the estimated Eulerian time ACF's decay faster than the time-averaged space and the Lagrangian time ACF's, irrespectively of TH validity. The Eulerian ACF's exhibit shorter e-folding times, reflecting smaller correlations over short time scales, but also shorter scale of fluctuation, reflecting less persistence in time than over space. No significant associations (linear, exponential or power law) were found between estimated e-folding times and scale of fluctuation, with all estimates of CAPE and CINE. Secondary correlation maxima appear between 50 and 70 min in the Lagrangian time ACF's for storms satisfying TH. No differences were found in the behavior of each of the three ACF's for storms developed during either the Easterly or Westerly zonal wind regimes which characterize the development of meso-scale convective systems over the region. These results have important implications for modelling and downscaling rainfall fields over tropical land areas.
Analysis of uniformity of as prepared and irradiated S.I. GaAs radiation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nava, F.; Vanni, P.; Canali, C.
1998-06-01
SI (semi-insulating) LEC (Liquid Encapsulated Czochralsky) GaAs (gallium arsenide) Schottky barrier detectors have been irradiated with high energy protons (24 GeV/c, fluence up to 16.45 {times} 10{sup 13} p/cm{sup 2}). The detectors have been characterized in terms of I/V curves, charge collection efficiency (cce) for incident 5.48 MeV {alpha}-, 2 MeV proton and minimum ionizing {beta}-particles and of cce maps by microprobe technique IBIC (Ion Beam Induced Charge). At the highest fluence a significant degradation of the electron and hole collection efficiencies and a remarkable improvement of the Full Width Half Maximum (FWHM) energy resolution have been measured with {alpha}-more » and proton particles. Furthermore, the reduction in the cce is greater than the one measured with {beta}-particles and the energy resolution worsens with increasing the applied bias, V{sub a}, above the voltage V{sub d} necessary to extend the electric field al the way to the ohmic contact. On the contrary, in the unirradiated detectors the charge collection efficiencies with {alpha}-, {beta}- and proton particles are quite similar and the energy resolution improves with increasing V{sub a} > V{sub d}. IBIC spectra and IBIC space maps obtained by scanning a focused (8 {micro}m{sup 2}) 2 MeV proton microbeam on front (Schottky) and back (ohmic) contacts, support the observed electric field dependence of the energy resolution both in unirradiated and most irradiated detectors. The results obtained let them explain the effect of the electric field strength and the plasma on the collection of the charge carriers and the FWHM energy resolution.« less
NASA Astrophysics Data System (ADS)
Patel, Yogesh G.; Nehal, Kishwer S.; Halpern, Allan C.; Rajadhyaksha, Milind
2005-04-01
Mohs surgery is a staged procedure for microscopically excising basal cell carcinomas (BCCs) while preserving the surrounding normal skin. Serial excisions are performed with each excision being guided by examination of the frozen histology. Mohs surgery is a meticulous and time-consuming (15-45 minutes per excision) procedure requiring several (2-20) excisions and frozen histology prepared for each excision. Real-time confocal reflectance microscopy may make Mohs surgery more efficient by enabling rapid detection of BCCs directly in fresh, unprocessed excisions, and thereby possibly avoiding frozen histology. As previously reported, we are developing an acetowhitening-and-cross polarized method to detect BCCs with a confocal reflectance microscope. Acetowhitening compacts the chromatin within the nucleus, increasing nuclear backscatter, and brightening the nuclei in the confocal images of the tissue. Our experiments to optimize acetowhitening, using acetic acid concentrations from 1% to 30% and treatment times from 30 seconds to 5 minutes, show that a minimum concentration of 2% with minimum washing time of 2 minutes is required for enhancing nuclear morphology. Increased depolarization is observed within the compacted chromatin relative to the surrounding collagen, and imaging in brightfield or crossed polarization brightens or darkens the cellular cytoplasm and birefringent dermis; thus, we may potentially vary nuclear/cytoplasm and nuclear/dermis contrast. Images are collected, oriented, and tiled to create mosaics and sub-mosaics to view large excisions at variable 2X - 10X magnifications. To create and display mosaics, adequate pixelation relative to resolution must be maintained and precise mechanical fixturing is necessary to control tilt, sag, flattening and stability of the excised tissue specimen.
Schröder, Winfried; Nickel, Stefan; Schönrock, Simon; Meyer, Michaela; Wosniok, Werner; Harmens, Harry; Frontasyeva, Marina V; Alber, Renate; Aleksiayenak, Julia; Barandovski, Lambe; Carballeira, Alejo; Danielsson, Helena; de Temmermann, Ludwig; Godzik, Barbara; Jeran, Zvonka; Karlsson, Gunilla Pihl; Lazo, Pranvera; Leblond, Sebastien; Lindroos, Antti-Jussi; Liiv, Siiri; Magnússon, Sigurður H; Mankovska, Blanka; Martínez-Abaigar, Javier; Piispanen, Juha; Poikolainen, Jarmo; Popescu, Ion V; Qarri, Flora; Santamaria, Jesus Miguel; Skudnik, Mitja; Špirić, Zdravko; Stafilov, Trajce; Steinnes, Eiliv; Stihi, Claudia; Thöni, Lotti; Uggerud, Hilde Thelle; Zechmeister, Harald G
2016-06-01
For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990-2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990-2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990-2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.
NASA Astrophysics Data System (ADS)
Lee, Timothy; Diehl, Tobias; Kissling, Edi; Wiemer, Stefan
2017-04-01
Earthquake catalogs derived from several decades of observations are often biased by network geometries, location procedures, and data quality changing with time. To study the long-term spatio-temporal behavior of seismogenic fault zones at high-resolution, a consistent homogenization and improvement of earthquake catalogs is required. Assuming that data quality and network density generally improves with time, procedures are needed, which use the best available data to homogeneously solve the coupled hypocenter - velocity structure problem and can be as well applied to earlier network configurations in the same region. A common approach to uniformly relocate earthquake catalogs is the calculation of a so-called "minimum 1D" model, which is derived from the simultaneous inversion for hypocenters and 1D velocity structure, including station specific delay-time corrections. In this work, we will present strategies using the principles of the "minimum 1D" model to consistently relocate hypocenters recorded by the Swiss Seismological Service (SED) in the Swiss Alps over a period of 17 years in a region, which is characterized by significant changes in network configurations. The target region of this study is the Rawil depression, which is located between the Aar and Mont Blanc massifs in southwestern Switzerland. The Rhone-Simplon Fault is located to the south of the Rawil depression and is considered as a dextral strike-slip fault representing the dominant tectonic boundary between Helvetic nappes to the north and Penninic nappes to the south. Current strike-slip earthquakes, however, occur predominantly in a narrow, east-west striking cluster located in the Rawil depression north of the Rhone-Simplon Fault. Recent earthquake swarms near Sion and Sierre in 2011 and 2016, on the other hand, indicate seismically active dextral faults close to the Rhone valley. The region north and south of the Rhone-Simplon Fault is one of the most seismically active regions in Switzerland and therefore a prime target to study the mechanics of active fault zones in the Swiss Alps. In the presented study, existing travel-time data from the SED bulletin from the entire instrumental era (1984-today) are used to calculate a "minimum 1D" model for the region. The dataset is complemented by data of three broadband stations, recently installed to further densify the seismic network of the SED in the Rawil area. The new model is compared to previous local and regional 1D and 3D models. The derived model is used for systematic relocation of the seismicity in the Rawil region and will be used as reference model for high-resolution 3D models imaging the velocity structure of the Rawil fault zone in a next step. The presented procedure is of relevance for similar studies planned in other regions of the Alps, which have been densified by AlpArray stations.
Gokirmak, Ali; Inaltekin, Hazer; Tiwari, Sandip
2009-08-19
A high resolution capacitance-voltage (C-V) characterization technique, enabling direct measurement of electronic properties at the nanoscale in devices such as nanowire field effect transistors (FETs) through the use of random fluctuations, is described. The minimum noise level required for achieving sub-aF (10(-18) F) resolution, the leveraging of stochastic resonance, and the effect of higher levels of noise are illustrated through simulations. The non-linear DeltaC(gate-source/drain)-V(gate) response of FETs is utilized to determine the inversion layer capacitance (C(inv)) and carrier mobility. The technique is demonstrated by extracting the carrier concentration and effective electron mobility in a nanoscale Si FET with C(inv) = 60 aF.
Cryogenic Detectors (Narrow Field Instruments)
NASA Astrophysics Data System (ADS)
Hoevers, H.; Verhoeve, P.
Two cryogenic imaging spectrometer arrays are currently considered as focal plane instruments for XEUS. The narrow field imager 1 (NFI 1) will cover the energy range from 0.05 to 3 keV with an energy resolution of 2 eV, or better, at 500 eV. A second narrow field imager (NFI 2) covers the energy range from 1 to 15 keV with an energy resolution of 2 eV (at 1 keV) and 5 eV (at 7 keV), creating some overlap with part of the NFI 1 energy window. Both narrow field imagers have a 0.5 arcmin field of view. Their imaging capabilities are matched to the XEUS optics of 2 to 5 arcsec leading to 1 arcsec pixels. The detector arrays will be cooled by a closed cycle system comprising a mechanical cooler with a base temperature of 2.5 K and either a low temperature 3He sorption pump providing the very low temperature stage and/or an Adiabatic Demagnetization Refrigerator (ADR). The ADR cooler is explicitly needed to cool the NFI 2 array. The narrow field imager 1} Currently a 48 times 48 element array of superconducting tunnel junctions (STJ) is envisaged. Its operating temperature is in the range between 30 and 350 mK. Small, single Ta STJs (20-50 mum on a side) have shown 3.5 eV (FWHM) resolution at E = 525 eV and small arrays have been successfully demonstrated (6 times 6 pixels), or are currently tested (10 times 12 pixels). Alternatively, a prototype Distributed Read-Out Imaging Device (DROID), consisting of a linear superconducting Ta absorber of 20 times 100 mum2, including a 20 times 20 mum STJ for readout at either end, has shown a measured energy resolution of 2.4 eV (FWHM) at E = 500 eV. Simulations involving the diffusion properties as well as loss and tunnel rates have shown that the performance can be further improved by slight modifications in the geometry, and that the size of the DROIDS can be increased to 0.5-1.0 mm without loss in energy resolution. The relatively large areas and good energy resolution compared to single STJs make DROIDS good candidates for the basic elements of the NFI 1 detector array. With a DROID-based array of 48 times 10 elements covering the NFI 1 field of view of 0.5 arcmin, the number of signal wires would already be reduced by a factor 2.4 compared to a 48 times 48 array of single pixels. While the present prototype DROIDS are still covered with a 480 nm thick SiOx insulation layer, this layer could easily be reduced in thickness or omitted. The detection efficiency of such a device with a 500 nm thick Ta absorber would be >80% in the energy range of 100-3000eV, without any disturbing contributions from other layers as in single STJs. Further developments involve devices of lower Tc-superconductors for better energy resolution and faster diffusion (e.g. Mo). The narrow field imager 2 The NFI 2 will consist of an array of 32 times 32 detector pixels. Each detector is a microcalorimeter which consists of a a superconducting to normal phase transition edge thermometer (transition edge sensor, TES) with an operating temperature of 100 mK, and an absorber which allows a detection efficiency of >90% and a filling factor of the focal plane in excess of 90%. Single pixel microcalorimeters with a Ti/Au TES have already shown an energy resolution of 3.9 eV at 5.89 keV in combination with a thermal response time of 100 mus. These results imply that they the high-energy requirement for XEUS can be met, in terms of energy resolution and response time. It has been demonstrated that bismuth can be applied as absorber material without impeding on the detector performance. Bi increases the stopping power in excess of 90 % and allows for a high filling factor since the absorber is can be modeled in the shape of a mushroom, allowing that the wiring to the detector and the thermal support structure are placed under the hat of the mushroom. In order to realize the NFI 2 detector array, there are two major development areas. Firstly, there is the development of micromachined Si and SiN structures that will provide proper cooling for each of the pixels and the production of small membranes to support the detector pixels. Micromechanical prototypes of this cooling and support structure have been made and are currently characterized. Secondly, the read-out of the array has to be developed. The current baseline for research is frequency division multiplexing (FDM) which will allow that a large detector can be read-out with a minimum of low-temperature electronics (Superconducting Quantum Interference Devices) and with a minimum of wires to the detector, thus reducing the thermal load on the detector cooling. Significant progress has been achieved since a microcalorimeter has been successfully biased at a frequency of 46 kHz, showing a performance which is very similar to that under conventional dc-bias conditions, proving the FDM concept.
Iyer, Swami; Reyes, Joshua; Killingback, Timothy
2014-01-01
The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games. PMID:24709851
Iyer, Swami; Reyes, Joshua; Killingback, Timothy
2014-01-01
The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games.
Sepehrband, Farshid; O'Brien, Kieran; Barth, Markus
2017-12-01
Several diffusion-weighted MRI techniques have been developed and validated during the past 2 decades. While offering various neuroanatomical inferences, these techniques differ in their proposed optimal acquisition design, preventing clinicians and researchers benefiting from all potential inference methods, particularly when limited time is available. This study reports an optimal design that enables for a time-efficient diffusion-weighted MRI acquisition scheme at 7 Tesla. The primary audience of this article is the typical end user, interested in diffusion-weighted microstructural imaging at 7 Tesla. We tested b-values in the range of 700 to 3000 s/mm 2 with different number of angular diffusion-encoding samples, against a data-driven "gold standard." The suggested design is a protocol with b-values of 1000 and 2500 s/mm 2 , with 25 and 50 samples, uniformly distributed over two shells. We also report a range of protocols in which the results of fitting microstructural models to the diffusion-weighted data had high correlation with the gold standard. We estimated minimum acquisition requirements that enable diffusion tensor imaging, higher angular resolution diffusion-weighted imaging, neurite orientation dispersion, and density imaging and white matter tract integrity across whole brain with isotropic resolution of 1.8 mm in less than 11 min. Magn Reson Med 78:2170-2184, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.
2017-12-01
Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.
Hajali, Manal; Fishman, Gerald A; Anderson, Robert J; McAnany, J Jason
2009-07-01
To determine the extent of interocular difference in visual acuity (VA) and the time to at least double the minimal angle of resolution (MAR) in a cohort of patients with Stargardt disease. One hundred fifty patients with Stargardt disease who were examined at least four times over a minimum period of 3 years were identified and their VA and age at each visit recorded. The maximum interocular difference of VA was determined by whether the MAR between the two eyes differed by less than a factor of 2 or by a factor of 2 or greater. Differences in maximum VA between the two eyes were also examined according to a Bland-Altman-type approach. One hundred thirty-one eyes from 76 patients were subjected to survival analysis to determine whether the time to at least double the MAR was dependent on age at baseline or starting VA. Of the 150 patients, 48% had interocular MAR that differed maximally by a factor of less than 2. Thirty-five percent showed a maximum interocular difference in their Snellen VA of less than one line. The Bland-Altman- type analysis showed that maximum interocular acuity difference was dependent on the mean acuity of the two eyes. The hazard for at least doubling the MAR was related to baseline vision and patient age. This information has clinical significance for patient counseling and for monitoring possible benefits and patient selection in future treatment trials.
Performance study of single undoped CsI crystals for the Mu2e experiment
NASA Astrophysics Data System (ADS)
Donghia, R.; Mu2e Calorimeter Group
2016-03-01
The Mu2e experiment at Fermilab aims to measure the neutrinoless muon-to-electron conversion, which is a charged-lepton flavor-violating process. The goal of the experiment is to reach a single event sensitivity of 2.5 × 10^{-17} , to set an upper limit on the muon conversion rate at 6.7 × 10^{-17} in a three-year run. For this purpose, the Mu2e detector is designed to identify electrons from muon conversion and reduce the background to a negligible level. It consists of a low-mass straw tracker and a pure CsI crystal calorimeter. In this paper, the performance of undoped CsI single crystal is reported. Crystals from many vendors have been characterized by determining their Light Yield (LY) and Longitudinal Response Uniformity (LRU), when read with a UV extended PMT, and their time resolution when coupled to a silicon photomultiplier. The crystals show a LY of ˜100 photoelectrons per MeV when wrapped with Tyvek and coupled to the PMT without optical grease. The LRU is well represented by a linear slope that is on average 0.6%/cm. Both measurements have been performed using a ^{22} Na source. The timing performance has been evaluated exploiting cosmic rays, with MPPC readout. A timing resolution lower than 400ps has been achieved (at ˜20{ MeV} , which is the energy released by a minimum ionizing particle in the crystal).
Liang, Jinyang; Zhou, Yong; Maslov, Konstantin I.
2013-01-01
Abstract. A cross-correlation-based method is proposed to quantitatively measure transverse flow velocity using optical resolution photoacoustic (PA) microscopy enhanced with a digital micromirror device (DMD). The DMD is used to alternately deliver two spatially separated laser beams to the target. Through cross-correlation between the slow-time PA profiles measured from the two beams, the speed and direction of transverse flow are simultaneously derived from the magnitude and sign of the time shift, respectively. Transverse flows in the range of 0.50 to 6.84 mm/s are accurately measured using an aqueous suspension of 10-μm-diameter microspheres, and the root-mean-squared measurement accuracy is quantified to be 0.22 mm/s. The flow measurements are independent of the particle size for flows in the velocity range of 0.55 to 6.49 mm/s, which was demonstrated experimentally using three different sizes of microspheres (diameters: 3, 6, and 10 μm). The measured flow velocity follows an expected parabolic distribution along the depth direction perpendicular to the flow. Both maximum and minimum measurable velocities are investigated for varied distances between the two beams and varied total time for one measurement. This technique shows an accuracy of 0.35 mm/s at 0.3-mm depth in scattering chicken breast, making it promising for measuring flow in biological tissue. PMID:24002191
Nanometric depth resolution from multi-focal images in microscopy.
Dalgarno, Heather I C; Dalgarno, Paul A; Dada, Adetunmise C; Towers, Catherine E; Gibson, Gavin J; Parton, Richard M; Davis, Ilan; Warburton, Richard J; Greenaway, Alan H
2011-07-06
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels.
Nanometric depth resolution from multi-focal images in microscopy
Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.
2011-01-01
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Projected changes in climate extremes over Qatar and the Arabian Gulf region
NASA Astrophysics Data System (ADS)
Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.
2015-12-01
The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on regional climate extremes as well. The scenarios generated with the high-resolution model simulation were compared with the coarse resolution CMIP5 model scenarios to identify region specific features that might be better resolved in the former simulation.
Study of a quasi-microscope design for planetary landers
NASA Technical Reports Server (NTRS)
Giat, O.; Brown, E. B.
1973-01-01
The Viking Lander fascimile camera, in its present form, provides for a minimum object distance of 1.9 meters, at which distance its resolution of 0.0007 radian provides an object resolution of 1.33 millimeters. It was deemed desirable, especially for follow-on Viking missions, to provide means for examing Martian terrain at resolutions considerably higher than that now provided. This led to the concept of quasi-microscope, an attachment to be used in conjunction with the fascimile camera to convert it to a low power microscope. The results are reported of an investigation to consider alternate optical configurations for the quasi-microscope and to develop optical designs for the selected system or systems. Initial requirements included consideration of object resolutions in the range of 2 to 50 micrometers, an available field of view of the order of 500 pixels, and no significant modifications to the fascimile camera.
Defense.gov Special Report: Combined Federal Campaign
250 words) and high resolution pictures (minimum 1MB) of your agencies campaign by emailing Ms Department of Defense Dependent Schools (DoDDS) High School Public Service Announcement (PSA) Contest . Contest judges recognized five high schools. View all winning PSAs below: 1st Place, Kadena High School
Generalized provisional seed zones for native plants
Andrew D. Bower; J. Bradley St.Clair; Vicky Erickson
2014-01-01
Deploying well-adapted and ecologically appropriate plant materials is a core component of successful restoration projects. We have developed generalized provisional seed zones that can be applied to any plant species in the United States to help guide seed movement. These seed zones are based on the intersection of high-resolution climatic data for winter minimum...
R. L. Czaplewski
2009-01-01
The minimum variance multivariate composite estimator is a relatively simple sequential estimator for complex sampling designs (Czaplewski 2009). Such designs combine a probability sample of expensive field data with multiple censuses and/or samples of relatively inexpensive multi-sensor, multi-resolution remotely sensed data. Unfortunately, the multivariate composite...
41 CFR 105-8.170-8 - Letter of findings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Letter of findings. 105... Letter of findings. If an informal resolution of the complaint is not reached, the Official shall, within... shall contain, at a minimum, the following: (a) Findings of fact and conclusions of law; (b) A...
Hybrid Weighted Minimum Norm Method A new method based LORETA to solve EEG inverse problem.
Song, C; Zhuang, T; Wu, Q
2005-01-01
This Paper brings forward a new method to solve EEG inverse problem. Based on following physiological characteristic of neural electrical activity source: first, the neighboring neurons are prone to active synchronously; second, the distribution of source space is sparse; third, the active intensity of the sources are high centralized, we take these prior knowledge as prerequisite condition to develop the inverse solution of EEG, and not assume other characteristic of inverse solution to realize the most commonly 3D EEG reconstruction map. The proposed algorithm takes advantage of LORETA's low resolution method which emphasizes particularly on 'localization' and FOCUSS's high resolution method which emphasizes particularly on 'separability'. The method is still under the frame of the weighted minimum norm method. The keystone is to construct a weighted matrix which takes reference from the existing smoothness operator, competition mechanism and study algorithm. The basic processing is to obtain an initial solution's estimation firstly, then construct a new estimation using the initial solution's information, repeat this process until the solutions under last two estimate processing is keeping unchanged.
NASA Astrophysics Data System (ADS)
Baik, Ki-Ho; Dean, Robert L.; Mueller, Mark; Lu, Maiying; Lem, Homer Y.; Osborne, Stephen; Abboud, Frank E.
2002-07-01
A chemically amplified resist (CAR) process has been recognized as an approach to meet the demanding critical dimension (CD) specifications of 100nm node technology and beyond. Recently, significant effort has been devoted to optimizing CAR materials, which offer the characteristics required for next generation photomask fabrication. In this paper, a process established with a positive-tone CAR from TOK and 50kV MEBES eXara system is discussed. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. The coating process is conducted in an environment with amine concentration less than 2 ppb. A nitrogen environment is provided during plate transfer steps. Resolution using a 60nm writing grid is 90nm line and space patterns. CD linearity is maintained down to 240nm for isolated lines or spaces by applying embedded proximity effect correction (emPEC). Optimizations of post-apply bake (PAB) and post-expose bake (PEB) time, temperature, and uniformity are completed to improve adhesion, coating uniformity, and resolution. A puddle develop process is optimized to improve line edge roughness, edge slope, and resolution. Dry etch process is optimized on a TetraT system to transfer the resist image into the chrome layer with minimum etch bias.
Diakaridia, Sanogo; Pan, Yue; Xu, Pengbai; Zhou, Dengwang; Wang, Benzhang; Teng, Lei; Lu, Zhiwei; Ba, Dexin; Dong, Yongkang
2017-07-24
In distributed Brillouin optical fiber sensor when the length of the perturbation to be detected is much smaller than the spatial resolution that is defined by the pulse width, the measured Brillouin gain spectrum (BGS) experiences two or multiple peaks. In this work, we propose and demonstrate a technique using differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) based on double-peak BGS to enhance small-scale events detection capability, where two types of single mode fiber (main fiber and secondary fiber) with 116 MHz Brillouin frequency shift (BFS) difference have been used. We have realized detection of a 5-cm hot spot at the far end of 24-km single mode fiber by employing a 50-cm spatial resolution DPP-BOTDA with only 1GS/s sampling rate (corresponding to 10 cm/point). The BFS at the far end of 24-km sensing fiber has been measured with 0.54 MHz standard deviation which corresponds to a 0.5°C temperature accuracy. This technique is simple and cost effective because it is implemented using the similar experimental setup of the standard BOTDA, however, it should be noted that the consecutive small-scale events have to be separated by a minimum length corresponding to the spatial resolution defined by the pulse width difference.
Computationally-Efficient Minimum-Time Aircraft Routes in the Presence of Winds
NASA Technical Reports Server (NTRS)
Jardin, Matthew R.
2004-01-01
A computationally efficient algorithm for minimizing the flight time of an aircraft in a variable wind field has been invented. The algorithm, referred to as Neighboring Optimal Wind Routing (NOWR), is based upon neighboring-optimal-control (NOC) concepts and achieves minimum-time paths by adjusting aircraft heading according to wind conditions at an arbitrary number of wind measurement points along the flight route. The NOWR algorithm may either be used in a fast-time mode to compute minimum- time routes prior to flight, or may be used in a feedback mode to adjust aircraft heading in real-time. By traveling minimum-time routes instead of direct great-circle (direct) routes, flights across the United States can save an average of about 7 minutes, and as much as one hour of flight time during periods of strong jet-stream winds. The neighboring optimal routes computed via the NOWR technique have been shown to be within 1.5 percent of the absolute minimum-time routes for flights across the continental United States. On a typical 450-MHz Sun Ultra workstation, the NOWR algorithm produces complete minimum-time routes in less than 40 milliseconds. This corresponds to a rate of 25 optimal routes per second. The closest comparable optimization technique runs approximately 10 times slower. Airlines currently use various trial-and-error search techniques to determine which of a set of commonly traveled routes will minimize flight time. These algorithms are too computationally expensive for use in real-time systems, or in systems where many optimal routes need to be computed in a short amount of time. Instead of operating in real-time, airlines will typically plan a trajectory several hours in advance using wind forecasts. If winds change significantly from forecasts, the resulting flights will no longer be minimum-time. The need for a computationally efficient wind-optimal routing algorithm is even greater in the case of new air-traffic-control automation concepts. For air-traffic-control automation, thousands of wind-optimal routes may need to be computed and checked for conflicts in just a few minutes. These factors motivated the need for a more efficient wind-optimal routing algorithm.
Development of multi-layer crystal detector and related front end electronics
NASA Astrophysics Data System (ADS)
Cardarelli, R.; Di Ciaccio, A.; Paolozzi, L.
2014-05-01
A crystal (diamond) particle detector has been developed and tested, whose constitute elements are a multi-layer polycrystalline diamond and a pick-up system capable of collecting in parallel the charge produced in the layers. The charge is read with a charge-to-voltage amplifier (5-6 mV/fC) realized with bipolar junction transistors in order to minimize the effect of the detector capacitance. The tests performed with cosmic rays and at the beam test facility of Frascati with 500 MeV electrons in single electron mode operation have shown that a detector with 4-5 layers of 250 μm thickness each and 9 mm2 active area exhibits an upper limit of 150 ps time resolution for minimum ionizing particles at an operating voltage of about 350 V.
Gannon, J.L.
2012-01-01
Statistics on geomagnetic storms with minima below -50 nanoTesla are compiled using a 25-year span of the 1-minute resolution disturbance index, U.S. Geological Survey Dst. A sudden commencement, main phase minimum, and time between the two has a magnitude of 35 nanoTesla, -100 nanoTesla, and 12 hours, respectively, at the 50th percentile level. The cumulative distribution functions for each of these features are presented. Correlation between sudden commencement magnitude and main phase magnitude is shown to be low. Small, medium, and large storm templates at the 33rd, 50th, and 90th percentile are presented and compared to real examples. In addition, the relative occurrence of rates of change in Dst are presented.
Design of a Mechanical-Tunable Filter Spectrometer for Noninvasive Glucose Measurement
NASA Astrophysics Data System (ADS)
Saptari, Vidi; Youcef-Toumi, Kamal
2004-05-01
The development of an accurate and reliable noninvasive near-infrared (NIR) glucose sensor hinges on the success in addressing the sensitivity and the specificity problems associated with the weak glucose signals and the overlapping NIR spectra. Spectroscopic hardware parameters most relevant to noninvasive blood glucose measurement are discussed, which include the optical throughput, integration time, spectral range, and the spectral resolution. We propose a unique spectroscopic system using a continuously rotating interference filter, which produces a signal-to-noise ratio of the order of 10^5 and is estimated to be the minimum required for successful in vivo glucose sensing. Using a classical least-squares algorithm and a spectral range between 2180 and 2312 nm, we extracted clinically relevant glucose concentrations in multicomponent solutions containing bovine serum albumin, triacetin, lactate, and urea.
NASA Astrophysics Data System (ADS)
Sangelantoni, Lorenzo; Coluccelli, Alessandro; Russo, Aniello
2014-05-01
Marche region (central Italy, facing the Adriatic Sea) climate dynamics are connected to the Mediterranean basin, identified as one of the most sensitive areas to ongoing climate change. Taken into account difficulties to carry out an overarching assessment over the heterogeneous Mediterranean climate-change issues frame, we opted toward a consistent regional bordered study. Projected changes in mean seasonal temperature, with an introductory multi-statistical model performance evaluation and a future heat waves intensity and duration characterization, are here presented. Multi-model projections over Marche Region, on daily mean, minimum and maximum temperature, have been extracted from the outputs of a set of 7 Regional Climate Models (RCMs) over Europe run by several research Institutes participating to the EU ENSEMBLE project. These climate simulations from 1961 to 2100 refer to the boundary conditions of the IPCC A1B emission scenario, and have a horizontal resolution of 25km × 25km. Furthermore, two RCMs outputs from Med-CORDEX project, with a higher horizontal resolution (12km x 12km) and boundary conditions provided by the new Representative Concentration Pathway (RCP) 4.5 and 8.5, are considered. Observed daily mean, minimum and maximum temperature over Marche region domain have been extracted from E-OBS gridded data set (Version 9.0) referring to the period 1970-2004. This twofold work firstly provides a concise statistical summary of how well employed RCMs reproduce observed (1970-2004) mean temperature over Marche region in term of correlation, root-mean-square difference, and ratio of their variances, graphically displayed on a 2D-Taylor diagram. This multi-statistical model performance evaluation easily allows: - to compare the agreement with observation of the 9 individual RCMs - to compare RCMs with different horizontal resolution (12 km and 25 km) - to evaluate the improvement provided by the RCMs ensemble. Results indicate that the 9 RCMs ensemble provides the statistically best reproduction of the observed interannual mean temperature distribution. Secondly, we assessed projected seasonal ensemble average change in mean temperature referring to the ending 21st century obtained by comparison between 2071-2100 and 1961-1990 time slice modeled mean value over Marche region. Results emphasize summer as the season most affected by projected temperature increase (+4.5°C / +5.0°C), followed by spring season temperature increase (+3.5°C / +4.0°C). Finally, considering that some of the most severe health hazards arise from multi-day heat-waves, associated with both hot day-time and warm night-time temperatures, we assessed modeled trend (1961-2100) of the heat waves intensity and duration: intensity through the temporal evolution of the summer (J J A months) maximum and minimum temperature 90th percentile, heat waves length by temporal evolution of two detected threshold-based indices (annual maximum number of consecutive days characterized by Tmin >= 24°C and annual maximum number of consecutive days characterized by Tmax > = 32°C). Same analysis for both coastal and mountainous areas has been conducted. Future research plans aim to involve ensemble RCMs simulation, processed with bias correction methods, in forcing climate change impacts models, to provide a detailed regional heat waves impacts scenario, mainly over agriculture and health sectors.
NASA Astrophysics Data System (ADS)
Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun
2018-06-01
Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be extended to any subsequent brain connectivity analyses used to construct the associated dynamic brain networks.
Modular Coils with Low Hydrogen Content Especially for MRI of Dry Solids.
Eichhorn, Timon; Ludwig, Ute; Fischer, Elmar; Gröbner, Jens; Göpper, Michael; Eisenbeiss, Anne-Katrin; Flügge, Tabea; Hennig, Jürgen; von Elverfeldt, Dominik; Hövener, Jan-Bernd
2015-01-01
Recent advances have enabled fast magnetic resonance imaging (MRI) of solid materials. This development has opened up new applications for MRI, but, at the same time, uncovered new challenges. Previously, MRI-invisible materials like the housing of MRI detection coils are now readily depicted and either cause artifacts or lead to a decreased image resolution. In this contribution, we present versatile, multi-nuclear single and dual-tune MRI coils that stand out by (1) a low hydrogen content for high-resolution MRI of dry solids without artifacts; (2) a modular approach with exchangeable inductors of variable volumes to optimally enclose the given object; (3) low cost and low manufacturing effort that is associated with the modular approach; (4) accurate sample placement in the coil outside of the bore, and (5) a wide, single- or dual-tune frequency range that covers several nuclei and enables multinuclear MRI without moving the sample. The inductors of the coils were constructed from self-supporting copper sheets to avoid all plastic materials within or around the resonator. The components that were mounted at a distance from the inductor, including the circuit board, coaxial cable and holder were manufactured from polytetrafluoroethylene. Residual hydrogen signal was sufficiently well suppressed to allow 1H-MRI of dry solids with a minimum field of view that was smaller than the sensitive volume of the coil. The SNR was found to be comparable but somewhat lower with respect to commercial, proton-rich quadrature coils, and higher with respect to a linearly-polarized commercial coil. The potential of the setup presented was exemplified by 1H/23Na high-resolution zero echo time (ZTE) MRI of a model solution and a dried human molar at 9.4 T. A full 3D image dataset of the tooth was obtained, rich in contrast and similar to the resolution of standard cone-beam computed tomography.
Modular Coils with Low Hydrogen Content Especially for MRI of Dry Solids
Fischer, Elmar; Gröbner, Jens; Göpper, Michael; Eisenbeiss, Anne-Katrin; Flügge, Tabea; Hennig, Jürgen; von Elverfeldt, Dominik; Hövener, Jan-Bernd
2015-01-01
Introduction Recent advances have enabled fast magnetic resonance imaging (MRI) of solid materials. This development has opened up new applications for MRI, but, at the same time, uncovered new challenges. Previously, MRI-invisible materials like the housing of MRI detection coils are now readily depicted and either cause artifacts or lead to a decreased image resolution. In this contribution, we present versatile, multi-nuclear single and dual-tune MRI coils that stand out by (1) a low hydrogen content for high-resolution MRI of dry solids without artifacts; (2) a modular approach with exchangeable inductors of variable volumes to optimally enclose the given object; (3) low cost and low manufacturing effort that is associated with the modular approach; (4) accurate sample placement in the coil outside of the bore, and (5) a wide, single- or dual-tune frequency range that covers several nuclei and enables multinuclear MRI without moving the sample. Materials and Methods The inductors of the coils were constructed from self-supporting copper sheets to avoid all plastic materials within or around the resonator. The components that were mounted at a distance from the inductor, including the circuit board, coaxial cable and holder were manufactured from polytetrafluoroethylene. Results and Conclusion Residual hydrogen signal was sufficiently well suppressed to allow 1H-MRI of dry solids with a minimum field of view that was smaller than the sensitive volume of the coil. The SNR was found to be comparable but somewhat lower with respect to commercial, proton-rich quadrature coils, and higher with respect to a linearly-polarized commercial coil. The potential of the setup presented was exemplified by 1H / 23Na high-resolution zero echo time (ZTE) MRI of a model solution and a dried human molar at 9.4 T. A full 3D image dataset of the tooth was obtained, rich in contrast and similar to the resolution of standard cone-beam computed tomography. PMID:26496192
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umetani, K.; Fukushima, K.
2013-03-15
An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 msmore » using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct investigation of mechanisms of vascular dysfunctions.« less
Development of ALARO-Climate regional climate model for a very high resolution
NASA Astrophysics Data System (ADS)
Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan
2013-04-01
ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main features of the RCM ALARO-Climate and results of the first model simulations on longer time-scales (1961-1990). The model was driven by the ERA-40/Interim re-analyses and run on the large pan-European integration domain ("ENSEMBLES / Euro-Cordex domain") with spatial resolution of 25 km. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version 7 dataset. The validation of the first ERA-40 simulation has revealed significant cold biases in all seasons (between -4 and -2 °C) and overestimation of precipitation on 20% to 60% in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The consequent adaptations in the model and their effect on the simulated properties of climate variables are illustrated. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1.05/1.1.00/02.0073). The partial support was also provided under the projects P209-11-0956 of the Czech Science Foundation and CZ.1.07/2.4.00/31.0056 (Operational Programme of Education for Competitiveness of Ministry of Education, Youth and Sports of the Czech Republic).
Influence of cathode geometry on electron dynamics in an ultrafast electron microscope.
Ji, Shaozheng; Piazza, Luca; Cao, Gaolong; Park, Sang Tae; Reed, Bryan W; Masiel, Daniel J; Weissenrieder, Jonas
2017-09-01
Efforts to understand matter at ever-increasing spatial and temporal resolutions have led to the development of instruments such as the ultrafast transmission electron microscope (UEM) that can capture transient processes with combined nanometer and picosecond resolutions. However, analysis by UEM is often associated with extended acquisition times, mainly due to the limitations of the electron gun. Improvements are hampered by tradeoffs in realizing combinations of the conflicting objectives for source size, emittance, and energy and temporal dispersion. Fundamentally, the performance of the gun is a function of the cathode material, the gun and cathode geometry, and the local fields. Especially shank emission from a truncated tip cathode results in severe broadening effects and therefore such electrons must be filtered by applying a Wehnelt bias. Here we study the influence of the cathode geometry and the Wehnelt bias on the performance of a photoelectron gun in a thermionic configuration. We combine experimental analysis with finite element simulations tracing the paths of individual photoelectrons in the relevant 3D geometry. Specifically, we compare the performance of guard ring cathodes with no shank emission to conventional truncated tip geometries. We find that a guard ring cathode allows operation at minimum Wehnelt bias and improve the temporal resolution under realistic operation conditions in an UEM. At low bias, the Wehnelt exhibits stronger focus for guard ring than truncated tip cathodes. The increase in temporal spread with bias is mainly a result from a decrease in the accelerating field near the cathode surface. Furthermore, simulations reveal that the temporal dispersion is also influenced by the intrinsic angular distribution in the photoemission process and the initial energy spread. However, a smaller emission spot on the cathode is not a dominant driver for enhancing time resolution. Space charge induced temporal broadening shows a close to linear relation with the number of electrons up to at least 10 000 electrons per pulse. The Wehnelt bias will affect the energy distribution by changing the Rayleigh length, and thus the interaction time, at the crossover.
Influence of cathode geometry on electron dynamics in an ultrafast electron microscope
Ji, Shaozheng; Piazza, Luca; Cao, Gaolong; Park, Sang Tae; Reed, Bryan W.; Masiel, Daniel J.; Weissenrieder, Jonas
2017-01-01
Efforts to understand matter at ever-increasing spatial and temporal resolutions have led to the development of instruments such as the ultrafast transmission electron microscope (UEM) that can capture transient processes with combined nanometer and picosecond resolutions. However, analysis by UEM is often associated with extended acquisition times, mainly due to the limitations of the electron gun. Improvements are hampered by tradeoffs in realizing combinations of the conflicting objectives for source size, emittance, and energy and temporal dispersion. Fundamentally, the performance of the gun is a function of the cathode material, the gun and cathode geometry, and the local fields. Especially shank emission from a truncated tip cathode results in severe broadening effects and therefore such electrons must be filtered by applying a Wehnelt bias. Here we study the influence of the cathode geometry and the Wehnelt bias on the performance of a photoelectron gun in a thermionic configuration. We combine experimental analysis with finite element simulations tracing the paths of individual photoelectrons in the relevant 3D geometry. Specifically, we compare the performance of guard ring cathodes with no shank emission to conventional truncated tip geometries. We find that a guard ring cathode allows operation at minimum Wehnelt bias and improve the temporal resolution under realistic operation conditions in an UEM. At low bias, the Wehnelt exhibits stronger focus for guard ring than truncated tip cathodes. The increase in temporal spread with bias is mainly a result from a decrease in the accelerating field near the cathode surface. Furthermore, simulations reveal that the temporal dispersion is also influenced by the intrinsic angular distribution in the photoemission process and the initial energy spread. However, a smaller emission spot on the cathode is not a dominant driver for enhancing time resolution. Space charge induced temporal broadening shows a close to linear relation with the number of electrons up to at least 10 000 electrons per pulse. The Wehnelt bias will affect the energy distribution by changing the Rayleigh length, and thus the interaction time, at the crossover. PMID:28781982
40 CFR 63.1257 - Test methods and compliance procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
...)(2), or 63.1256(h)(2)(i)(C) with a minimum residence time of 0.5 seconds and a minimum temperature of... temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B) For a...
40 CFR 63.1257 - Test methods and compliance procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
...)(2), or 63.1256(h)(2)(i)(C) with a minimum residence time of 0.5 seconds and a minimum temperature of... temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B) For a...
40 CFR 63.1257 - Test methods and compliance procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
...)(2), or 63.1256(h)(2)(i)(C) with a minimum residence time of 0.5 seconds and a minimum temperature of... temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B) For a...
The quality mammographic image. A review of its components.
Rickard, M T
1989-11-01
Seven major factors resulting in a quality or high contrast and high resolution mammographic image have been discussed. The following is a summary of their key features: 1) Dedicated mammographic equipment. --Molybdenum target material --Molybdenum filter, beryllium window --Low kVp usage, in range of 24 to 30 --Routine contact mammography performed at 25 kVp --Slightly lower kVp for coned compression --Slightly higher kVp for microfocus magnification 2) Film density --Phototimer with adjustable position --Calibration of phototimer to optimal optical density of approx. 1.4 over full kVp range 3) Breast Compression --General and focal (coned compression). --Essential to achieve proper contrast, resolution and breast immobility. --Foot controls preferable. 4) Focal Spot. --Size recommendation for contact work 0.3 mm. --Minimum power output of 100 mA at 25 kVp desirable to avoid movement blurring in contact grid work. --Size recommendation for magnification work 0.1 mm. 5) Grid. --Usage recommended as routine in all but magnification work. 6) Film-screen Combination. --High contrast--high speed film. --High resolution screen. --Specifically designed cassette for close film-screen contact and low radiation absorption. --Use of faster screens for magnification techniques. 7) Dedicated processing. --Increased developing time--40 to 45 seconds. --Increased developer temperature--35 to 38 degrees. --Adjusted replenishment rate and dryer temperature. All seven factors contributing to image contrast and resolution affect radiation dosage to the breast. The risk of increased dosage associated with the use of various techniques needs to be balanced against the risks of incorrect diagnosis associated with their non-use.(ABSTRACT TRUNCATED AT 250 WORDS)
Evaluation of TF11 attenuated-PSM mask blanks with DUV laser patterning
NASA Astrophysics Data System (ADS)
Xing, Kezhao; Björnberg, Charles; Karlsson, Henrik; Paulsson, Adisa; Beiming, Peter; Vedenpää, Jukka; Walford, Jonathan
2008-05-01
Tightening requirements on resolution, CD uniformity and positional accuracy push the development of improved photomask blanks. One such blank for 45nm node attenuated phase shift masks (att-PSM) provides a thinner chrome film, TF11, with a higher etch rate compared to previous generation NTAR5 att-PSM blanks from the same supplier. FEP-171, a positive chemically amplified resist, is commonly used in mask manufacturing for both e-beam and DUV laser pattern generators. TF11 chrome allows the FEP-171 resist thickness to be decreased at least down to 2000 Å while maintaining sufficient etch resistance, thereby improving photomask CD performance. The lower stress level in TF11 chrome films also reduces the image placement error induced by the material. In this study, TF11 chrome and FEP-171 resist are evaluated with exposures on a 248 nm DUV laser pattern generator, the Sigma7500. Patterning is first characterized for resist thicknesses of 2000 Å to 2600 Å in steps of 100 Å, assessing the minimum feature resolution, CD linearity, isolated-dense CD bias and dose sensitivity. Swing curve analysis shows a minimum near 2200 Å and a maximum near 2500 Å, corresponding closely to the reflectivity measurements provided by the blank supplier. The best overall patterning performance is obtained when operating near the swing maximum. The patterning performance is then studied in more detail with a resist thickness of 2550 Å that corresponds to the reflectivity maximum. This is compared to the results with 2000 Å resist, a standard thickness for e-beam exposures on TF11. The lithographic performance on NTAR5 att-PSM blanks with 3200 Å resist is also included for reference. This evaluation indicates that TF11 blanks with 2550 Å resist provide the best overall mask patterning performance obtained with the Sigma7500, showing a global CD uniformity below 4 nm (3s) and minimum feature resolution below 100 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lionello, P.; Pernigotti, D.; Zampato, L.
1994-12-31
The purpose of this research program is the construction of the modelling framework to describe and predict the development of the sea and of the atmosphere in the Adriatic region. There are two time scales that are considered: the medium range time scale of the weather-surge-oceanwave forecast and the interseasonal time scale of the thermohaline circulation in the Adriatic Sea. The phenomenology associated with the medium range is represented by the intense storms that take place in the Adriatic Sea, in spite of its relatively small extension, when the presence of a pressure minimum over Italy generates an intense Sciroccomore » wind which, channeled by the mountain ridges surrounding the basin, blows along its whole length. Because of the long fetch, approximately 1,000 Km., this situation produces high ocean waves and the storm surge that is associated with the flooding of Venice. The interseasonal phenomenology is represented by the formation of dense water in the Northern part of the basin during winter. This is presumably caused by Bora, a strong South-Westerly wind, cold and dry, which produces cooling and evaporation in the shallow water coastal region of the Northern Adriatic. The complex orography surrounding the Adriatic and the short duration of this phenomena require a model framework capable of high space and time resolution on a limited area. This is the motivation for addressing these issues in a coupled model framework consisting of a limited area atmospheric circulation model, an ocean circulation model, and a ocean wave model with high resolution both in space and time.« less
NASA Astrophysics Data System (ADS)
McClain, Bobbi J.; Porter, William F.
2000-11-01
Satellite imagery is a useful tool for large-scale habitat analysis; however, its limitations need to be tested. We tested these limitations by varying the methods of a habitat evaluation for white-tailed deer ( Odocoileus virginianus) in the Adirondack Park, New York, USA, utilizing harvest data to create and validate the assessment models. We used two classified images, one with a large minimum mapping unit but high accuracy and one with no minimum mapping unit but slightly lower accuracy, to test the sensitivity of the evaluation to these differences. We tested the utility of two methods of assessment, habitat suitability index modeling, and pattern recognition modeling. We varied the scale at which the models were applied by using five separate sizes of analysis windows. Results showed that the presence of a large minimum mapping unit eliminates important details of the habitat. Window size is relatively unimportant if the data are averaged to a large resolution (i.e., township), but if the data are used at the smaller resolution, then the window size is an important consideration. In the Adirondacks, the proportion of hardwood and softwood in an area is most important to the spatial dynamics of deer populations. The low occurrence of open area in all parts of the park either limits the effect of this cover type on the population or limits our ability to detect the effect. The arrangement and interspersion of cover types were not significant to deer populations.
Temporal resolution requirements of satellite constellations for 30 m global burned area mapping
NASA Astrophysics Data System (ADS)
Melchiorre, A.; Boschetti, L.
2017-12-01
Global burned area maps have been generated systematically with daily, coarse resolution satellite data (Giglio et al. 2013). The production of moderate resolution (10 - 30 m) global burned area products would meet the needs of several user communities: improved carbon emission estimations due to heterogeneous landscapes and for local scale air quality and fire management applications (Mouillot et al. 2014; van der Werf et al. 2010). While the increased spatial resolution reduces the influence of mixed burnt/unburnt pixels and it would increase the spectral separation of burned areas, moderate resolution satellites have reduced temporal resolution (10 - 16 days). Fire causes a land-cover change spectrally visible for a period ranging from a few weeks in savannas to over a year in forested ecosystems (Roy et al. 2010); because clouds, smoke, and other optically thick aerosols limit the number of available observations (Roy et al. 2008; Smith and Wooster 2005), burned areas might disappear before they are observed by moderate resolution sensors. Data fusion from a constellation of different sensors has been proposed to overcome these limits (Boschetti et al. 2015; Roy 2015). In this study, we estimated the probability of moderate resolution satellites and virtual constellations (including Landsat-8/9, Sentinel-2A/B) to provide sufficient observations for burned area mapping globally, and by ecosystem. First, we estimated the duration of the persistence of the signal associated with burned areas by combining the MODIS Global Burned Area and the Nadir BRDF-Adjusted Reflectance Product by characterizing the post-fire trends in reflectance to determine the length of the period in which the burn class is spectrally distinct from the unburned and, therefore, detectable. The MODIS-Terra daily cloud data were then used to estimate the probability of cloud cover. The cloud probability was used at each location to estimate the minimum revisit time needed to obtain at least one cloud-free observation within the duration of the persistence of burned areas. As complementary results, the expected omission error due to insufficient observations was estimated for each of the satellite combination considered making use of the calendar and geometry of acquisition for each of the sensor included in the virtual constellation.
Monitoring monthly surface water dynamics of Dongting Lake using Sentinel-1 data at 10 m.
Xing, Liwei; Tang, Xinming; Wang, Huabin; Fan, Wenfeng; Wang, Guanghui
2018-01-01
High temporal resolution water distribution maps are essential for surface water monitoring because surface water exhibits significant inner-annual variation. Therefore, high-frequency remote sensing data are needed for surface water mapping. Dongting Lake, the second-largest freshwater lake in China, is famous for the seasonal fluctuations of its inundation extents in the middle reaches of the Yangtze River. It is also greatly affected by the Three Gorges Project. In this study, we used Sentinel-1 data to generate surface water maps of Dongting Lake at 10 m resolution. First, we generated the Sentinel-1 time series backscattering coefficient for VH and VV polarizations at 10 m resolution by using a monthly composition method. Second, we generated the thresholds for mapping surface water at 10 m resolution with monthly frequencies using Sentinel-1 data. Then, we derived the monthly surface water distribution product of Dongting Lake in 2016, and finally, we analyzed the inner-annual surface water dynamics. The results showed that: (1) The thresholds were -21.56 and -15.82 dB for the backscattering coefficients for VH and VV, respectively, and the overall accuracy and Kappa coefficients were above 95.50% and 0.90, respectively, for the VH backscattering coefficient, and above 94.50% and 0.88, respectively, for the VV backscattering coefficient. The VV backscattering coefficient achieved lower accuracy due to the effect of the wind causing roughness on the surface of the water. (2) The maximum and minimum areas of surface water were 2040.33 km 2 in July, and 738.89 km 2 in December. The surface water area of Dongting Lake varied most significantly in April and August. The permanent water acreage in 2016 was 556.35 km 2 , accounting for 19.65% of the total area of Dongting Lake, and the acreage of seasonal water was 1525.21 km 2 . This study proposed a method to automatically generate monthly surface water at 10 m resolution, which may contribute to monitoring surface water in a timely manner.
NASA Astrophysics Data System (ADS)
Nowaczyk, Norbert R.; Jiabo, Liu; Frank, Ute; Arz, Helge W.
2018-02-01
A total of nine sediment cores recovered from the Archangelsky Ridge in the SE Black Sea were systematically subjected to intense paleo- and mineral magnetic analyses. Besides 16 accelerator mass spectrometry (AMS) 14C ages available for another core from this area, dating was accomplished by correlation of short-term warming events during the last glacial monitored by high-resolution X-ray fluorescence (XRF) scanning as maxima in both Ca/Ti and K/Ti ratios in Black Sea sediments to the so-called 'Dansgaard-Oeschger events' recognized from Greenland ice cores. Thus, several hiatuses could be identified in the various cores during the last glacial/interglacial cycle. Finally, core sections documenting marine isotope stage (MIS) 4 at high resolution back to 69 ka were selected for detailed analyses. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred, with the Laschamp geomagnetic excursion at 41 ka being associated with the lowest field intensities. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I = 61 °, D = 0 °) still can not yet be termed as 'excursional', since latitudes of corresponding virtual geomagnetic poles (VGP) only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of a geomagnetic excursion with partly reversed inclinations found at several sites much further North in Arctic marine sediments between 69°N and 81°N. Thus, the pronounced intensity minimum at 64.5 ka and described directional variations might be the effect of a weak geomagnetic field with a multi-polar geometry in the middle of MIS 4.
Garner, Alan A; van den Berg, Pieter L
2017-10-16
New South Wales (NSW), Australia has a network of multirole retrieval physician staffed helicopter emergency medical services (HEMS) with seven bases servicing a jurisdiction with population concentrated along the eastern seaboard. The aim of this study was to estimate optimal HEMS base locations within NSW using advanced mathematical modelling techniques. We used high resolution census population data for NSW from 2011 which divides the state into areas containing 200-800 people. Optimal HEMS base locations were estimated using the maximal covering location problem facility location optimization model and the average response time model, exploring the number of bases needed to cover various fractions of the population for a 45 min response time threshold or minimizing the overall average response time to all persons, both in green field scenarios and conditioning on the current base structure. We also developed a hybrid mathematical model where average response time was optimised based on minimum population coverage thresholds. Seven bases could cover 98% of the population within 45mins when optimised for coverage or reach the entire population of the state within an average of 21mins if optimised for response time. Given the existing bases, adding two bases could either increase the 45 min coverage from 91% to 97% or decrease the average response time from 21mins to 19mins. Adding a single specialist prehospital rapid response HEMS to the area of greatest population concentration decreased the average state wide response time by 4mins. The optimum seven base hybrid model that was able to cover 97.75% of the population within 45mins, and all of the population in an average response time of 18 mins included the rapid response HEMS model. HEMS base locations can be optimised based on either percentage of the population covered, or average response time to the entire population. We have also demonstrated a hybrid technique that optimizes response time for a given number of bases and minimum defined threshold of population coverage. Addition of specialized rapid response HEMS services to a system of multirole retrieval HEMS may reduce overall average response times by improving access in large urban areas.
Analysis of the relationship between the monthly temperatures and weather types in Iberian Peninsula
NASA Astrophysics Data System (ADS)
Peña Angulo, Dhais; Trigo, Ricardo; Nicola, Cortesi; José Carlos, González-Hidalgo
2016-04-01
In this study, the relationship between the atmospheric circulation and weather types and the monthly average maximum and minimum temperatures in the Iberian Peninsula is modeled (period 1950-2010). The temperature data used were obtained from a high spatial resolution (10km x 10km) dataset (MOTEDAS dataset, Gonzalez-Hidalgo et al., 2015a). In addition, a dataset of Portuguese temperatures was used (obtained from the Portuguese Institute of Sea and Atmosphere). The weather type classification used was the one developed by Jenkinson and Collison, which was adapted for the Iberian Peninsula by Trigo and DaCamara (2000), using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The analysis of the behaviour of monthly temperatures based on the weather types was carried out using a stepwise regression procedure of type forward to estimate temperatures in each cell of the considered grid, for each month, and for both maximum and minimum monthly average temperatures. The model selects the weather types that best estimate the temperatures. From the validation model it was obtained the error distribution in the time (months) and space (Iberian Peninsula). The results show that best estimations are obtained for minimum temperatures, during the winter months and in coastal areas. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298
Stehly, G.R.; Gingerich, W.H.
1999-01-01
A preliminary evaluation of efficacy and minimum toxic concentration of AQUI-S(TM), a fish anaesthetic/sedative, was determined in two size classes of six species of fish important to US public aquaculture (bluegill, channel catfish, lake trout, rainbow trout, walleye and yellow perch). In addition, efficacy and minimum toxic concentration were determined in juvenile-young adult (fish aged 1 year or older) rainbow trout acclimated to water at 7 ??C, 12 ??C and 17 ??C. Testing concentrations were based on determinations made with range-finding studies for both efficacy and minimum toxic concentration. Most of the tested juvenile-young adult fish species were induced in 3 min or less at a nominal AQUI-S(TM) concentration of 20 mg L-1. In juvenile-young adult fish, the minimum toxic concentration was at least 2.5 times the selected efficacious concentration. Three out of five species of fry-fingerlings (1.25-12.5 cm in length and < 1 year old) were induced in ??? 4.1 min at a nominal concentration of 20 mg L-1 AQUI-S(TM), with the other two species requiring nominal concentrations of 25 and 35 mg L-1 for similar times of induction. Recovery times were ??? 7.3 rain for all species in the two size classes. In fry-fingerlings, the minimum toxic concentration was at least 1.4 times the selected efficacious concentration. There appeared to be little relationship between size of fish and concentrations or times to induction, recovery times and minimum toxic concentration. The times required for induction and for recovery were increased in rainbow trout as the acclimation temperature was reduced.
Differential absorption radar techniques: water vapor retrievals
NASA Astrophysics Data System (ADS)
Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone
2016-06-01
Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.
Mantini, D.; Marzetti, L.; Corbetta, M.; Romani, G.L.; Del Gratta, C.
2017-01-01
Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes. PMID:20052528
Rizzo, Stanislao; Tartaro, Ruggero; Barca, Francesco; Caporossi, Tomaso; Bacherini, Daniela; Giansanti, Fabrizio
2017-12-08
The inverted flap (IF) technique has recently been introduced in macular hole (MH) surgery. The IF technique has shown an increase of the success rate in the case of large MHs and in MHs associated with high myopia. This study reports the anatomical and functional results in a large series of patients affected by MH treated using pars plana vitrectomy and gas tamponade combined with internal limiting membrane (ILM) peeling or IF. This is a retrospective, consecutive, nonrandomized comparative study of patients affected by idiopathic or myopic MH treated using small-gauge pars plana vitrectomy (25- or 23-gauge) between January 2011 and May 2016. The patients were divided into two groups according to the ILM removal technique (complete removal vs. IF). A subgroup analysis was performed according to the MH diameter (MH < 400 µm and MH ≥ 400 µm), axial length (AL < 26 mm and AL ≥ 26 mm), and the presence of chorioretinal atrophy in the macular area (present or absent). We included 620 eyes of 570 patients affected by an MH, 300 patients underwent pars plana vitrectomy and ILM peeling and 320 patients underwent pars plana vitrectomy and IF. Overall, 84.94% of the patients had complete anatomical success characterized by MH closure after the operation. In particular, among the patients who underwent only ILM peeling the closure rate was 78.75%; among the patients who underwent the IF technique, it was 91.93% (P = 0.001); and among the patients affected by full-thickness MH ≥400 µm, success was achieved in 95.6% of the cases in the IF group and in 78.6% in the ILM peeling group (P = 0.001); among the patients with an axial length ≥26 mm, success was achieved in 88.4% of the cases in the IF group and in 38.9% in the ILM peeling group (P = 0.001). Average preoperative best-corrected visual acuity was 0.77 (SD = 0.32) logarithm of the minimum angle of resolution (20/118 Snellen) in the peeling group and 0.74 (SD = 0.33) logarithm of the minimum angle of resolution (20/110 Snellen) in the IF group (P = 0.31). Mean postoperative best-corrected visual acuity was 0.52 (SD = 0.42) logarithm of the minimum angle of resolution (20/66 Snellen) in the peeling group and 0.43 (SD = 0.31) logarithm of the minimum angle of resolution (20/53 Snellen) in the IF group (P = 0.003). Vitrectomy associated with the inverted ILM flap technique seems to be effective surgery for idiopathic and myopic large MHs, improving both functional and anatomical outcomes.
Nonlinear Control Theory for Missile Autopilot Design.
1987-04-24
minimum-time controller which includes constraints on both controls and angle-of-attack is developed and an example is given. -12- - - -~ *% PO PmCF E- A...constructed. In this case, some ideas from robotics on minimum-time trajectory planning under path constraints (see, e.g., Rajan (1985), Sahar and...Auto Cont., Vol. AC-29, No. 4, p. 361. Rajan, V.T. (1985), "Minimum-Time Trajectory Planning ", Proc IEEE Kobotics and Automation Conf., St. Louis. Reed
Probabilistic Assessment of Hypobaric Decompression Sickness Treatment Success
NASA Technical Reports Server (NTRS)
Conkin, Johnny; Abercromby, Andrew F. J.; Dervay, Joseph P.; Feiveson, Alan H.; Gernhardt, Michael L.; Norcross, Jason R.; Ploutz-Snyder, Robert; Wessel, James H., III
2014-01-01
The Hypobaric Decompression Sickness (DCS) Treatment Model links a decrease in computed bubble volume from increased pressure (DeltaP), increased oxygen (O2) partial pressure, and passage of time during treatment to the probability of symptom resolution [P(symptom resolution)]. The decrease in offending volume is realized in 2 stages: a) during compression via Boyle's Law and b) during subsequent dissolution of the gas phase via the O2 window. We established an empirical model for the P(symptom resolution) while accounting for multiple symptoms within subjects. The data consisted of 154 cases of hypobaric DCS symptoms along with ancillary information from tests on 56 men and 18 women. Our best estimated model is P(symptom resolution) = 1 / (1+exp(-(ln(Delta P) - 1.510 + 0.795×AMB - 0.00308×Ts) / 0.478)), where (DeltaP) is pressure difference (psid), AMB = 1 if ambulation took place during part of the altitude exposure, otherwise AMB = 0; and where Ts is the elapsed time in mins from start of the altitude exposure to recognition of a DCS symptom. To apply this model in future scenarios, values of DeltaP as inputs to the model would be calculated from the Tissue Bubble Dynamics Model based on the effective treatment pressure: (DeltaP) = P2 - P1 | = P1×V1/V2 - P1, where V1 is the computed volume of a spherical bubble in a unit volume of tissue at low pressure P1 and V2 is computed volume after a change to a higher pressure P2. If 100% ground level O2 (GLO) was breathed in place of air, then V2 continues to decrease through time at P2 at a faster rate. This calculated value of (DeltaP then represents the effective treatment pressure at any point in time. Simulation of a "pain-only" symptom at 203 min into an ambulatory extravehicular activity (EVA) at 4.3 psia on Mars resulted in a P(symptom resolution) of 0.49 (0.36 to 0.62 95% confidence intervals) on immediate return to 8.2 psia in the Multi-Mission Space Exploration Vehicle. The P(symptom resolution) increased to near certainty (0.99) after 2 hrs of GLO at 8.2 psia or with less certainty on immediate pressurization to 14.7 psia [0.90 (0.83 - 0.95)]. Given the low probability of DCS during EVA and the prompt treatment of a symptom with guidance from the model, it is likely that the symptom and gas phase will resolve with minimum resources and minimal impact on astronaut health, safety, and productivity.
Gumuscu, Burcu; Erdogan, Zeynep; Guler, Mustafa O.; Tekinay, Turgay
2014-01-01
In this work, a new detection method for complete separation of 2,4,6-trinitrotoluene (TNT); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene (2,6-DNT); 2-aminodinitrotoluene (2-ADNT) and 4-aminodinitrotoluene (4-ADNT) molecules in high-performance liquid-chromatography (HPLC) with UV sensor has been developed using diol column. This approach improves on cost, time, and sensitivity over the existing methods, providing a simple and effective alternative. Total analysis time was less than 13 minutes including column re-equilibration between runs, in which water and acetonitrile were used as gradient elution solvents. Under optimized conditions, the minimum resolution between 2,4-DNT and 2,6-DNT peaks was 2.06. The recovery rates for spiked environmental samples were between 95–98%. The detection limits for diol column ranged from 0.78 to 1.17 µg/L for TNT and its byproducts. While the solvent consumption was 26.4 mL/min for two-phase EPA and 30 mL/min for EPA 8330 methods, it was only 8.8 mL/min for diol column. The resolution was improved up to 49% respect to two-phase EPA and EPA 8330 methods. When compared to C-18 and phenyl-3 columns, solvent usage was reduced up to 64% using diol column and resolution was enhanced approximately two-fold. The sensitivity of diol column was afforded by the hydroxyl groups on polyol layer, joining the formation of charge-transfer complexes with nitroaromatic compounds according to acceptor-donor interactions. Having compliance with current requirements, the proposed method demonstrates sensitive and robust separation. PMID:24905826
Rosenfeld, Adar; Dorman, Michael; Schwartz, Joel; Novack, Victor; Just, Allan C; Kloog, Itai
2017-11-01
Meteorological stations measure air temperature (Ta) accurately with high temporal resolution, but usually suffer from limited spatial resolution due to their sparse distribution across rural, undeveloped or less populated areas. Remote sensing satellite-based measurements provide daily surface temperature (Ts) data in high spatial and temporal resolution and can improve the estimation of daily Ta. In this study we developed spatiotemporally resolved models which allow us to predict three daily parameters: Ta Max (day time), 24h mean, and Ta Min (night time) on a fine 1km grid across the state of Israel. We used and compared both the Aqua and Terra MODIS satellites. We used linear mixed effect models, IDW (inverse distance weighted) interpolations and thin plate splines (using a smooth nonparametric function of longitude and latitude) to first calibrate between Ts and Ta in those locations where we have available data for both and used that calibration to fill in neighboring cells without surface monitors or missing Ts. Out-of-sample ten-fold cross validation (CV) was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with and without available Ts observations for both Aqua and Terra (CV Aqua R 2 results for min 0.966, mean 0.986, and max 0.967; CV Terra R 2 results for min 0.965, mean 0.987, and max 0.968). Our research shows that daily min, mean and max Ta can be reliably predicted using daily MODIS Ts data even across Israel, with high accuracy even for days without Ta or Ts data. These predictions can be used as three separate Ta exposures in epidemiology studies for better diurnal exposure assessment. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Salomonson, V. V.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The spacecraft, instrument, and data systems are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAACs) or through Direct Broadcast (DB) stations. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. Subsequently the Aqua MODIS observations will substantially add to the capabilities of the Terra MODIS for environmental applications and global change studies.
NASA Technical Reports Server (NTRS)
Salomonson, Vincent V.; Houser, Paul (Technical Monitor)
2002-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The spacecraft, instrument, and data systems are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceed or, at a minimum, match the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations. The MODIS instrument on the EOS Aqua mission should also be expected to be in orbit and functioning in the Spring of 2002. The Aqua spacecraft will operate in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. Subsequently the Aqua MODIS observations will substantially add to the capabilities of the Terra MODIS for environmental applications and global change studies.
NASA Astrophysics Data System (ADS)
Hogan, Matthew John
A positron emission tomography system designed to perform high resolution imaging of small volumes has been characterized. Two large area planar detectors, used to detect the annihilation gamma rays, formed a large aperture stationary positron camera. The detectors were multiwire proportional chambers coupled to high density lead stack converters. Detector efficiency was 8%. The coincidence resolving time was 500 nsec. The maximum system sensitivity was 60 cps/(mu)Ci for a solid angle of acceptance of 0.74(pi) St. The maximum useful coincidence count rate was 1500 cps and was limited by electronic dead time. Image reconstruction was done by performing a 3-dimensional deconvolution using Fourier transform methods. Noise propagation during reconstruction was minimized by choosing a 'minimum norm' reconstructed image. In the stationary detector system (with a limited angle of acceptance for coincident events) statistical uncertainty in the data limited reconstruction in the direction normal to the detector surfaces. Data from a rotated phantom showed that detector rotation will correct this problem. Resolution was 4 mm in planes parallel to the detectors and (TURN)15 mm in the normal direction. Compton scattering of gamma rays within a source distribution was investigated using both simulated and measured data. Attenuation due to scatter was as high as 60%. For small volume imaging the Compton background was identified and an approximate correction was performed. A semiquantitative blood flow measurement to bone in the leg of a cat using the ('18)F('-) ion was performed. The results were comparable to investigations using more conventional techniques. Qualitative scans using ('18)F labelled deoxy -D-glucose to assess brain glucose metabolism in a rhesus monkey were also performed.
Gumuscu, Burcu; Erdogan, Zeynep; Guler, Mustafa O; Tekinay, Turgay
2014-01-01
In this work, a new detection method for complete separation of 2,4,6-trinitrotoluene (TNT); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene (2,6-DNT); 2-aminodinitrotoluene (2-ADNT) and 4-aminodinitrotoluene (4-ADNT) molecules in high-performance liquid-chromatography (HPLC) with UV sensor has been developed using diol column. This approach improves on cost, time, and sensitivity over the existing methods, providing a simple and effective alternative. Total analysis time was less than 13 minutes including column re-equilibration between runs, in which water and acetonitrile were used as gradient elution solvents. Under optimized conditions, the minimum resolution between 2,4-DNT and 2,6-DNT peaks was 2.06. The recovery rates for spiked environmental samples were between 95-98%. The detection limits for diol column ranged from 0.78 to 1.17 µg/L for TNT and its byproducts. While the solvent consumption was 26.4 mL/min for two-phase EPA and 30 mL/min for EPA 8330 methods, it was only 8.8 mL/min for diol column. The resolution was improved up to 49% respect to two-phase EPA and EPA 8330 methods. When compared to C-18 and phenyl-3 columns, solvent usage was reduced up to 64% using diol column and resolution was enhanced approximately two-fold. The sensitivity of diol column was afforded by the hydroxyl groups on polyol layer, joining the formation of charge-transfer complexes with nitroaromatic compounds according to acceptor-donor interactions. Having compliance with current requirements, the proposed method demonstrates sensitive and robust separation.
26 CFR 5c.168(f)(8)-4 - Minimum investment of lessor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Minimum investment of lessor. 5c.168(f)(8)-4....168(f)(8)-4 Minimum investment of lessor. (a) Minimum investment. Under section 168(f)(8)(B)(ii), an... has a minimum at risk investment which, at the time the property is placed in service under the lease...
26 CFR 5c.168(f)(8)-4 - Minimum investment of lessor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Minimum investment of lessor. 5c.168(f)(8)-4....168(f)(8)-4 Minimum investment of lessor. (a) Minimum investment. Under section 168(f)(8)(B)(ii), an... has a minimum at risk investment which, at the time the property is placed in service under the lease...
Arem, Hannah; Moore, Steven C; Patel, Alpa; Hartge, Patricia; Berrington de Gonzalez, Amy; Visvanathan, Kala; Campbell, Peter T; Freedman, Michal; Weiderpass, Elisabete; Adami, Hans Olov; Linet, Martha S; Lee, I-Min; Matthews, Charles E
2015-06-01
The 2008 Physical Activity Guidelines for Americans recommended a minimum of 75 vigorous-intensity or 150 moderate-intensity minutes per week (7.5 metabolic-equivalent hours per week) of aerobic activity for substantial health benefit and suggested additional benefits by doing more than double this amount. However, the upper limit of longevity benefit or possible harm with more physical activity is unclear. To quantify the dose-response association between leisure time physical activity and mortality and define the upper limit of benefit or harm associated with increased levels of physical activity. We pooled data from 6 studies in the National Cancer Institute Cohort Consortium (baseline 1992-2003). Population-based prospective cohorts in the United States and Europe with self-reported physical activity were analyzed in 2014. A total of 661,137 men and women (median age, 62 years; range, 21-98 years) and 116,686 deaths were included. We used Cox proportional hazards regression with cohort stratification to generate multivariable-adjusted hazard ratios (HRs) and 95% CIs. Median follow-up time was 14.2 years. Leisure time moderate- to vigorous-intensity physical activity. The upper limit of mortality benefit from high levels of leisure time physical activity. Compared with individuals reporting no leisure time physical activity, we observed a 20% lower mortality risk among those performing less than the recommended minimum of 7.5 metabolic-equivalent hours per week (HR, 0.80 [95% CI, 0.78-0.82]), a 31% lower risk at 1 to 2 times the recommended minimum (HR, 0.69 [95% CI, 0.67-0.70]), and a 37% lower risk at 2 to 3 times the minimum (HR, 0.63 [95% CI, 0.62-0.65]). An upper threshold for mortality benefit occurred at 3 to 5 times the physical activity recommendation (HR, 0.61 [95% CI, 0.59-0.62]); however, compared with the recommended minimum, the additional benefit was modest (31% vs 39%). There was no evidence of harm at 10 or more times the recommended minimum (HR, 0.69 [95% CI, 0.59-0.78]). A similar dose-response relationship was observed for mortality due to cardiovascular disease and to cancer. Meeting the 2008 Physical Activity Guidelines for Americans minimum by either moderate- or vigorous-intensity activities was associated with nearly the maximum longevity benefit. We observed a benefit threshold at approximately 3 to 5 times the recommended leisure time physical activity minimum and no excess risk at 10 or more times the minimum. In regard to mortality, health care professionals should encourage inactive adults to perform leisure time physical activity and do not need to discourage adults who already participate in high-activity levels.
Optimized quantum sensing with a single electron spin using real-time adaptive measurements.
Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
Optimized quantum sensing with a single electron spin using real-time adaptive measurements
NASA Astrophysics Data System (ADS)
Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
NASA Technical Reports Server (NTRS)
Wiese, D. N.; Nerem, R. S.; Lemoine, F. G.
2011-01-01
Future satellite missions dedicated to measuring time-variable gravity will need to address the concern of temporal aliasing errors; i.e., errors due to high-frequency mass variations. These errors have been shown to be a limiting error source for future missions with improved sensors. One method of reducing them is to fly multiple satellite pairs, thus increasing the sampling frequency of the mission. While one could imagine a system architecture consisting of dozens of satellite pairs, this paper explores the more economically feasible option of optimizing the orbits of two pairs of satellites. While the search space for this problem is infinite by nature, steps have been made to reduce it via proper assumptions regarding some parameters and a large number of numerical simulations exploring appropriate ranges for other parameters. A search space originally consisting of 15 variables is reduced to two variables with the utmost impact on mission performance: the repeat period of both pairs of satellites (shown to be near-optimal when they are equal to each other), as well as the inclination of one of the satellite pairs (the other pair is assumed to be in a polar orbit). To arrive at this conclusion, we assume circular orbits, repeat groundtracks for both pairs of satellites, a 100-km inter-satellite separation distance, and a minimum allowable operational satellite altitude of 290 km based on a projected 10-year mission lifetime. Given the scientific objectives of determining time-variable hydrology, ice mass variations, and ocean bottom pressure signals with higher spatial resolution, we find that an optimal architecture consists of a polar pair of satellites coupled with a pair inclined at 72deg, both in 13-day repeating orbits. This architecture provides a 67% reduction in error over one pair of satellites, in addition to reducing the longitudinal striping to such a level that minimal post-processing is required, permitting a substantial increase in the spatial resolution of the gravity field products. It should be emphasized that given different sets of scientific objectives for the mission, or a different minimum allowable satellite altitude, different architectures might be selected.
Uncertainty in LiDAR derived Canopy Height Models in three unique forest ecosystems
NASA Astrophysics Data System (ADS)
Goulden, T.; Leisso, N.; Scholl, V.; Hass, B.
2016-12-01
The National Ecological Observatory Network (NEON) is a continental-scale ecological observation platform designed to collect and disseminate data that contributes to understanding and forecasting the impacts of climate change, land use change, and invasive species on ecology. NEON will collect in-situ and airborne data over 81 sites across the US, including Alaska, Hawaii, and Puerto Rico. The Airborne Observation Platform (AOP) group within the NEON project operates a payload suite that includes a waveform / discrete LiDAR, imaging spectrometer (NIS) and high resolution RGB camera. One of the products derived from the discrete LiDAR is a canopy height model (CHM) raster developed at 1 m spatial resolution. Currently, it is hypothesized that differencing annually acquired CHM products allows identification of tree growth at in-situ distributed plots throughout the NEON sites. To test this hypothesis, the precision of the CHM product was determined through a specialized flight plan that independently repeated up to 20 observations of the same area with varying view geometries. The flight plan was acquired at three NEON sites, each with a unique forest types including 1) San Joaquin Experimental Range (SJER, open woodland dominated by oaks), 2) Soaproot Saddle (SOAP, mixed conifer deciduous forest), and 3) Oak Ridge National Laboratory (ORNL, oak hickory and pine forest). A CHM was developed for each flight line at each site and the overlap area was used to empirically estimate a site-specific precision of the CHM. The average cell-by-cell CHM precision at SJER, SOAP and ORNL was 1.34 m, 4.24 m and 0.72 m respectively. Given the average growth rate of the dominant species at each site and the average CHM uncertainty, the minimum time interval required between LiDAR acquisitions to confidently conclude growth had occurred at the plot scale was estimated to be between one and four years. The minimum interval time was shown to be primarily dependent on the CHM uncertainty and number of cells within a plot which contained vegetation. This indicates that users of NEON data should not expect that changes in canopy height can be confidently identified between annual AOP acquisitions for all areas of NEON sites.
Mars Observer trajectory and orbit design
NASA Technical Reports Server (NTRS)
Beerer, Joseph G.; Roncoli, Ralph B.
1991-01-01
The Mars Observer launch, interplanetary, Mars orbit insertion, and mapping orbit designs are described. The design objective is to enable a near-maximum spacecraft mass to be placed in orbit about Mars. This is accomplished by keeping spacecraft propellant requirements to a minimum, selecting a minimum acceptable launch period, equalizing the spacecraft velocity change requirement at the beginning and end of the launch period, and constraining the orbit insertion maneuvers to be coplanar. The mapping orbit design objective is to provide the opportunity for global observation of the planet by the science instruments while facilitating the spacecraft design. This is realized with a sun-synchronous near-polar orbit whose ground-track pattern covers the planet at progressively finer resolution.
NASA Astrophysics Data System (ADS)
Semane, N.; Bencherif, H.; Morel, B.; Hauchecorne, A.; Diab, R. D.
2006-06-01
A prominent ozone minimum of less than 240 Dobson Units (DU) was observed over Irene (25.5° S, 28.1° E), a subtropical site in the Southern Hemisphere, by the Total Ozone Mapping Spectrometer (TOMS) during May 2002 with an extremely low ozone value of less than 219 DU recorded on 12 May, as compared to the climatological mean value of 249 DU for May between 1999 and 2005. In this study, the vertical structure of this ozone minimum is examined using ozonesonde measurements performed over Irene on 15 May 2002, when the total ozone (as given by TOMS) was about 226 DU. It is shown that this ozone minimum is of Antarctic polar origin with a low-ozone layer in the middle stratosphere above 625 K (where the climatological ozone gradient points equatorward), and is of tropical origin with a low-ozone layer in the lower stratosphere between the 400-K and 450-K isentropic levels (where the climatological ozone gradient is reversed). The upper and lower depleted parts of the ozonesonde profile for 15 May are then respectively attributed to equatorward and poleward transport of low-ozone air toward the subtropics in the Southern Hemisphere. The tropical air moving over Irene and the polar one passing over the same area associated with enhanced planetary-wave activity are successfully simulated using the high-resolution advection contour model of Ertel's potential vorticity MIMOSA. The unusual distribution of ozone over Irene during May 2002 in the middle stratosphere is connected to the anomalously pre-conditioned structure of the polar vortex at that time of the year. The winter stratospheric wave driving leading to the ozone minimum is investigated by means of the Eliassen-Palm flux computed from the European Center for Medium-range Weather Forecasts (ECMWF) ERA40 re-analyses.
NASA Technical Reports Server (NTRS)
Kasper, J. C.; Stenens, M. L.; Stevens, M. L.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, Keith W.
2006-01-01
We present a study of the variation of the relative abundance of helium to hydrogen in the solar wind as a function of solar wind speed and heliographic latitude over the previous solar cycle. The average values of A(sub He), the ratio of helium to hydrogen number densities, are calculated in 25 speed intervals over 27-day Carrington rotations using Faraday Cup observations from the Wind spacecraft between 1995 and 2005. The higher speed and time resolution of this study compared to an earlier work with the Wind observations has led to the discovery of three new aspects of A(sub He), modulation during solar minimum from mid-1995 to mid-1997. First, we find that for solar wind speeds between 350 and 415 km/s, A(sub He), varies with a clear six-month periodicity, with a minimum value at the heliographic equatorial plane and a typical gradient of 0.01 per degree in latitude. For the slow wind this is a 30% effect. We suggest that the latitudinal gradient may be due to an additional dependence of coronal proton flux on coronal field strength or the stability of coronal loops. Second, once the gradient is subtracted, we find that A(sub He), is a remarkably linear function of solar wind speed. Finally, we identify a vanishing speed, at which A(sub He), is zero, is 259 km/s and note that this speed corresponds to the minimum solar wind speed observed at one AU. The vanishing speed may be related to previous theoretical work in which enhancements of coronal helium lead to stagnation of the escaping proton flux. During solar maximum the A(sub He), dependences on speed and latitude disappear, and we interpret this as evidence of two source regions for slow solar wind in the ecliptic plane, one being the solar minimum streamer belt and the other likely being active regions.
Estimation of daily minimum land surface air temperature using MODIS data in southern Iran
NASA Astrophysics Data System (ADS)
Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza
2017-11-01
Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference ( RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons ( RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.
Estimation of Rain Intensity Spectra over the Continental US Using Ground Radar-Gauge Measurements
NASA Technical Reports Server (NTRS)
Lin, Xin; Hou, Arthur Y.
2013-01-01
A high-resolution surface rainfall product is used to estimate rain characteristics over the continental US as a function of rain intensity. By defining each data at 4-km horizontal resolutions and 1-h temporal resolutions as an individual precipitating/nonprecipitating sample, statistics of rain occurrence and rain volume including their geographical and seasonal variations are documented. Quantitative estimations are also conducted to evaluate the impact of missing light rain events due to satellite sensors' detection capabilities. It is found that statistics of rain characteristics have large seasonal and geographical variations across the continental US. Although heavy rain events (> 10 mm/hr.) only occupy 2.6% of total rain occurrence, they may contribute to 27% of total rain volume. Light rain events (< 1.0 mm/hr.), occurring much more frequently (65%) than heavy rain events, can also make important contributions (15%) to the total rain volume. For minimum detectable rain rates setting at 0.5 and 0.2 mm/hr which are close to sensitivities of the current and future space-borne precipitation radars, there are about 43% and 11% of total rain occurrence below these thresholds, and they respectively represent 7% and 0.8% of total rain volume. For passive microwave sensors with their rain pixel sizes ranging from 14 to 16 km and the minimum detectable rain rates around 1 mm/hr., the missed light rain events may account for 70% of train occurrence and 16% of rain volume. Statistics of rain characteristics are also examined on domains with different temporal and spatial resolutions. Current issues in estimates of rain characteristics from satellite measurements and model outputs are discussed.
Vale, Beatriz; Brito, Sara; Paulos, Lígia; Moleiro, Pascoal
2014-04-01
To analyse the progression of body mass index in eating disorders and to determine the percentile for establishment and resolution of the disease. A retrospective descriptive cross-sectional study. Review of clinical files of adolescents with eating disorders. Of the 62 female adolescents studied with eating disorders, 51 presented with eating disorder not otherwise specified, 10 anorexia nervosa, and 1 bulimia nervosa. Twenty-one of these adolescents had menstrual disorders; in that, 14 secondary amenorrhea and 7 menstrual irregularities (6 eating disorder not otherwise specified, and 1 bulimia nervosa). In average, in anorectic adolescents, the initial body mass index was in 75th percentile; secondary amenorrhea was established 1 month after onset of the disease; minimum weight was 76.6% of ideal body mass index (at 4th percentile) at 10.2 months of disease; and resolution of amenorrhea occurred at 24 months, with average weight recovery of 93.4% of the ideal. In eating disorder not otherwise specified with menstrual disorder (n=10), the mean initial body mass index was at 85th percentile; minimal weight was in average 97.7% of the ideal value (minimum body mass index was in 52nd percentile) at 14.9 months of disease; body mass index stabilization occurred at 1.6 year of disease; and mean body mass index was in 73rd percentile. Considering eating disorder not otherwise specified with secondary amenorrhea (n=4); secondary amenorrhea occurred at 4 months, with resolution at 12 months of disease (mean 65th percentile body mass index). One-third of the eating disorder group had menstrual disorder - two-thirds presented with amenorrhea. This study indicated that for the resolution of their menstrual disturbance the body mass index percentiles to be achieved by female adolescents with eating disorders was 25-50 in anorexia nervosa, and 50-75, in eating disorder not otherwise specified.
Yang, Qi; Zhang, Yanzhu; Zhao, Tiebiao; Chen, YangQuan
2017-04-04
Image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction aims to recover detailed information from low-resolution images and reconstruct them into high-resolution images. Due to the limited amount of data and information retrieved from low-resolution images, it is difficult to restore clear, artifact-free images, while still preserving enough structure of the image such as the texture. This paper presents a new single image super-resolution method which is based on adaptive fractional-order gradient interpolation and reconstruction. The interpolated image gradient via optimal fractional-order gradient is first constructed according to the image similarity and afterwards the minimum energy function is employed to reconstruct the final high-resolution image. Fractional-order gradient based interpolation methods provide an additional degree of freedom which helps optimize the implementation quality due to the fact that an extra free parameter α-order is being used. The proposed method is able to produce a rich texture detail while still being able to maintain structural similarity even under large zoom conditions. Experimental results show that the proposed method performs better than current single image super-resolution techniques. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Range and azimuth resolution enhancement for 94 GHz real-beam radar
NASA Astrophysics Data System (ADS)
Liu, Guoqing; Yang, Ken; Sykora, Brian; Salha, Imad
2008-04-01
In this paper, two-dimensional (2D) (range and azimuth) resolution enhancement is investigated for millimeter wave (mmW) real-beam radar (RBR) with linear or non-linear antenna scan in the azimuth dimension. We design a new architecture of super resolution processing, in which a dual-mode approach is used for defining region of interest for 2D resolution enhancement and a combined approach is deployed for obtaining accurate location and amplitude estimations of targets within the region of interest. To achieve 2D resolution enhancement, we first adopt the Capon Beamformer (CB) approach (also known as the minimum variance method (MVM)) to enhance range resolution. A generalized CB (GCB) approach is then applied to azimuth dimension for azimuth resolution enhancement. The GCB approach does not rely on whether the azimuth sampling is even or not and thus can be used in both linear and non-linear antenna scanning modes. The effectiveness of the resolution enhancement is demonstrated by using both simulation and test data. The results of using a 94 GHz real-beam frequency modulation continuous wave (FMCW) radar data show that the overall image quality is significantly improved per visual evaluation and comparison with respect to the original real-beam radar image.
A differentially amplified motion in the ear for near-threshold sound detection
Chen, Fangyi; Zha, Dingjun; Fridberger, Anders; Zheng, Jiefu; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Shi, Xiaorui; Nuttall, Alfred L.
2011-01-01
The ear is a remarkably sensitive pressure fluctuation detector. In guinea pigs, behavioral measurements indicate a minimum detectable sound pressure of ~20 μPa at 16 kHz. Such faint sounds produce 0.1 nm basilar membrane displacements, a distance smaller than conformational transitions in ion channels. It seems that noise within the auditory system would swamp such tiny motions, making weak sounds imperceptible. Here, a new mechanism contributing to a resolution of this problem is proposed and validated through direct measurement. We hypothesize that vibration at the apical end of hair cells is enhanced compared to the commonly measured basilar membrane side. Using in vivo optical coherence tomography, we demonstrated that apical-side vibrations peak at a higher frequency, had different timing, and were enhanced compared to the basilar membrane. These effects depend nonlinearly on the stimulus level. The timing difference and enhancement are important for explaining how the noise problem is circumvented. PMID:21602821
Galiana, Gigi; Constable, R. Todd
2014-01-01
Purpose Previous nonlinear gradient research has focused on trajectories that reconstruct images with a minimum number of echoes. Here we describe sequences where the nonlinear gradients vary in time to acquire the image in a single readout. The readout is designed to be very smooth so that it can be compressed to minimal time without violating peripheral nerve stimulation limits, yielding an image from a single 4 ms echo. Theory and Methods This sequence was inspired by considering the code of each voxel, i.e. the phase accumulation that a voxel follows through the readout, an approach connected to traditional encoding theory. We present simulations for the initial sequence, a low slew rate analog, and higher resolution reconstructions. Results Extremely fast acquisitions are achievable, though as one would expect, SNR is reduced relative to the slower Cartesian sampling schemes because of the high gradient strengths. Conclusions The prospect that nonlinear gradients can acquire images in a single <10 ms echo makes this a novel and interesting approach to image encoding. PMID:24465837
Airborne multispectral detection of regrowth cotton fields
NASA Astrophysics Data System (ADS)
Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.
2015-01-01
Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.
Kim, Dong-Keun; Yoo, Sun K; Kim, Sun H
2005-01-01
The instant transmission of radiological images may be important for making rapid clinical decisions about emergency patients. We have examined an instant image transfer system based on a personal digital assistant (PDA) phone with a built-in camera. Images displayed on a picture archiving and communication systems (PACS) monitor can be captured by the camera in the PDA phone directly. Images can then be transmitted from an emergency centre to a remote physician via a wireless high-bandwidth network (CDMA 1 x EVDO). We reviewed the radiological lesions in 10 normal and 10 abnormal cases produced by modalities such as computerized tomography (CT), magnetic resonance (MR) and digital angiography. The images were of 24-bit depth and 1,144 x 880, 1,120 x 840, 1,024 x 768, 800 x 600, 640 x 480 and 320 x 240 pixels. Three neurosurgeons found that for satisfactory remote consultation a minimum size of 640 x 480 pixels was required for CT and MR images and 1,024 x 768 pixels for angiography images. Although higher resolution produced higher clinical satisfaction, it also required more transmission time. At the limited bandwidth employed, higher resolutions could not be justified.
Miyazawa, Yasumasa; Guo, Xinyu; Varlamov, Sergey M.; Miyama, Toru; Yoda, Ken; Sato, Katsufumi; Kano, Toshiyuki; Sato, Keiji
2015-01-01
At the present time, ocean current is being operationally monitored mainly by combined use of numerical ocean nowcast/forecast models and satellite remote sensing data. Improvement in the accuracy of the ocean current nowcast/forecast requires additional measurements with higher spatial and temporal resolution as expected from the current observation network. Here we show feasibility of assimilating high-resolution seabird and ship drift data into an operational ocean forecast system. Data assimilation of geostrophic current contained in the observed drift leads to refinement in the gyre mode events of the Tsugaru warm current in the north-eastern sea of Japan represented by the model. Fitting the observed drift to the model depends on ability of the drift representing geostrophic current compared to that representing directly wind driven components. A preferable horizontal scale of 50 km indicated for the seabird drift data assimilation implies their capability of capturing eddies with smaller horizontal scale than the minimum scale of 100 km resolved by the satellite altimetry. The present study actually demonstrates that transdisciplinary approaches combining bio-/ship- logging and numerical modeling could be effective for enhancement in monitoring the ocean current. PMID:26633309
Longitudinal uniformity, time performances and irradiation test of pure CsI crystals
NASA Astrophysics Data System (ADS)
Angelucci, M.; Atanova, O.; Baccaro, S.; Cemmi, A.; Cordelli, M.; Donghia, R.; Giovannella, S.; Happacher, F.; Miscetti, S.; Sarra, I.; Soleti, S. R.
2016-07-01
To study an alternative to BaF2, as the crystal choice for the Mu2e calorimeter, 13 pure CsI crystals from Opto Materials and ISMA producers have been characterized by determining their light yield (LY) and longitudinal response uniformity (LRU), when read with a UV extended PMT. The crystals show a LY of 100 p.e./MeV ( 150 p.e./MeV) when wrapped with Tyvek and coupled to the PMT without (with) optical grease. The LRU is well represented by a linear slope that is on average δ -0.6%/cm. The timing performances of the Opto Materials crystal, read with a UV extended MPPC, have been evaluated with minimum ionizing particles. A timing resolution of 330 ps ( 440 ps) is achieved when connecting the photosensor to the MPPC with (without) optical grease. The crystal radiation hardness to a ionization dose has also been studied for one pure CsI crystal from SICCAS. After exposing it to a dose of 900 Gy, a decrease of 33% in the LY is observed while the LRU remains unchanged.
NASA Astrophysics Data System (ADS)
Pace, Paul W.; Sutherland, John
2001-10-01
This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.
Neural Imaging Using Single-Photon Avalanche Diodes
Karami, Mohammad Azim; Ansarian, Misagh
2017-01-01
Introduction: This paper analyses the ability of single-photon avalanche diodes (SPADs) for neural imaging. The current trend in the production of SPADs moves toward the minimum dark count rate (DCR) and maximum photon detection probability (PDP). Moreover, the jitter response which is the main measurement characteristic for the timing uncertainty is progressing. Methods: The neural imaging process using SPADs can be performed by means of florescence lifetime imaging (FLIM), time correlated single-photon counting (TCSPC), positron emission tomography (PET), and single-photon emission computed tomography (SPECT). Results: This trend will result in more precise neural imaging cameras. While achieving low DCR SPADs is difficult in deep submicron technologies because of using higher doping profiles, higher PDPs are reported in green and blue part of light. Furthermore, the number of pixels integrated in the same chip is increasing with the technology progress which can result in the higher resolution of imaging. Conclusion: This study proposes implemented SPADs in Deep-submicron technologies to be used in neural imaging cameras, due to the small size pixels and higher timing accuracies. PMID:28446946
NASA Astrophysics Data System (ADS)
Tourre, Y. M.; Lacaux, J.
2007-12-01
Presence (density) of mosquitoes linked to Rift Valley Fever (RVF) epidemics in the Ferlo (Senegal) is evaluated by monitoring the environment from space. Using five SPOT-5 high-resolution images (~10m spatial resolution, on August 17th, 2006) a meridional transect of 290 x 60 km2 is analyzed for the first time. Four major ecozones are thus identified: Senegal River valley; sandy Ferlo; sandy-clayey Ferlo; and steppe/cultivated areas, from north to south, respectively. An integrated/multidisciplinary approach using remote-sensing leads to a composited Zones Potentially Occupied by Mosquitoes (or ZPOMs, with extrema). It is found that at the peak of the rainy season, the area occupied by ponds is of 12,817 ha ± 10% (i.e., ~ 0.8 % of the transect) with a mean ZPOM 17 times larger i.e.: 212,813 ha ± 10 % (or ~14 % of the transect). ZPOMs characteristics (minimum and maximum) at the ecozones levels with different hydrological mechanisms, are presented. Ponds and ZPOMs inter-annual variabilities and RVF risks, are subsequently highlighted by comparing statistics in the so-called Barkedji zone (sandy-clayey Ferlo with a hydrofossil riverbed), for the very humid year of 2003, and the near normal rainfall year of 2006. It is shown that at the end of August 2003/2006, ponds (ZPOMs) areas, were already ~22 (~5) times larger. The key roles played by isolated ponds for animals' exposure to RVF risks are thus identified. These results highlight the importance of monitoring the changing environment when linkages with public health exist. The ZPOM approach is to be adapted for other vector-borne diseases such as malaria, dengue fever, in different places of the world. Results are meant to be included into Health Information Systems (HIS) on an operational basis, in order to minimize socio-economical impacts from epidemics.
An edge-readout, multilayer detector for positron emission tomography.
Li, Xin; Ruiz-Gonzalez, Maria; Furenlid, Lars R
2018-06-01
We present a novel gamma-ray-detector design based on total internal reflection (TIR) of scintillation photons within a crystal that addresses many limitations of traditional PET detectors. Our approach has appealing features, including submillimeter lateral resolution, DOI positioning from layer thickness, and excellent energy resolution. The design places light sensors on the edges of a stack of scintillator slabs separated by small air gaps and exploits the phenomenon that more than 80% of scintillation light emitted during a gamma-ray event reaches the edges of a thin crystal with polished faces due to TIR. Gamma-ray stopping power is achieved by stacking multiple layers, and DOI is determined by which layer the gamma ray interacts in. The concept of edge readouts of a thin slab was verified by Monte Carlo simulation of scintillation light transport. An LYSO crystal of dimensions 50.8 mm × 50.8 mm × 3.0 mm was modeled with five rectangular SiPMs placed along each edge face. The mean-detector-response functions (MDRFs) were calculated by simulating signals from 511 keV gamma-ray interactions in a grid of locations. Simulations were carried out to study the influence of choice of scintillator material and dimensions, gamma-ray photon energies, introduction of laser or mechanically induced optical barriers (LIOBs, MIOBs), and refractive indices of optical-coupling media and SiPM windows. We also analyzed timing performance including influence of gamma-ray interaction position and presence of optical barriers. We also modeled and built a prototype detector, a 27.4 mm × 27.4 mm × 3.0 mm CsI(Tl) crystal with 4 SiPMs per edge to experimentally validate the results predicted by the simulations. The prototype detector used CsI(Tl) crystals from Proteus outfitted with 16 Hamamatsu model S13360-6050PE MPPCs read out by an AiT-16-channel readout. The MDRFs were measured by scanning the detector with a collimated beam of 662-keV photons from a 137 Cs source. The spatial resolution was experimentally determined by imaging a tungsten slit that created a beam of 0.44 mm (FWHM) width normal to the detector surface. The energy resolution was evaluated by analyzing list-mode data from flood illumination by the 137 Cs source. We find that in a block-detector-sized LYSO layer read out by five SiPMs per edge, illuminated by 511-keV photons, the average resolution is 1.49 mm (FWHM). With the introduction of optical barriers, average spatial resolution improves to 0.56 mm (FWHM). The DOI resolution is the layer thickness of 3.0 mm. We also find that optical-coupling media and SiPM-window materials have an impact on spatial resolution. The timing simulation with LYSO crystal yields a coincidence resolving time (CRT) of 200-400 ps, which is slightly position dependent. And the introduction of optical barriers has minimum influence. The prototype CsI(Tl) detector, with a smaller area and fewer SiPMs, was measured to have central-area spatial resolutions of 0.70 and 0.39 mm without and with optical barriers, respectively. These results match well with our simulations. An energy resolution of 6.4% was achieved at 662 keV. A detector design based on a stack of monolithic scintillator layers that uses edge readouts offers several advantages over current block detectors for PET. For example, there is no tradeoff between spatial resolution and detection sensitivity since no reflector material displaces scintillator crystal, and submillimeter resolution can be achieved. DOI information is readily available, and excellent timing and energy resolutions are possible. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Extreme Brightness Temperatures and Refractive Substructure in 3C273 with RadioAstron
NASA Astrophysics Data System (ADS)
Johnson, Michael D.; Kovalev, Yuri Y.; Gwinn, Carl R.; Gurvits, Leonid I.; Narayan, Ramesh; Macquart, Jean-Pierre; Jauncey, David L.; Voitsik, Peter A.; Anderson, James M.; Sokolovsky, Kirill V.; Lisakov, Mikhail M.
2016-03-01
Earth-space interferometry with RadioAstron provides the highest direct angular resolution ever achieved in astronomy at any wavelength. RadioAstron detections of the classic quasar 3C 273 on interferometric baselines up to 171,000 km suggest brightness temperatures exceeding expected limits from the “inverse-Compton catastrophe” by two orders of magnitude. We show that at 18 cm, these estimates most likely arise from refractive substructure introduced by scattering in the interstellar medium. We use the scattering properties to estimate an intrinsic brightness temperature of 7× {10}12 {{K}}, which is consistent with expected theoretical limits, but which is ˜15 times lower than estimates that neglect substructure. At 6.2 cm, the substructure influences the measured values appreciably but gives an estimated brightness temperature that is comparable to models that do not account for the substructure. At 1.35 {{cm}}, the substructure does not affect the extremely high inferred brightness temperatures, in excess of {10}13 {{K}}. We also demonstrate that for a source having a Gaussian surface brightness profile, a single long-baseline estimate of refractive substructure determines an absolute minimum brightness temperature, if the scattering properties along a given line of sight are known, and that this minimum accurately approximates the apparent brightness temperature over a wide range of total flux densities.
An echolocation model for the restoration of an acoustic image from a single-emission echo
NASA Astrophysics Data System (ADS)
Matsuo, Ikuo; Yano, Masafumi
2004-12-01
Bats can form a fine acoustic image of an object using frequency-modulated echolocation sound. The acoustic image is an impulse response, known as a reflected-intensity distribution, which is composed of amplitude and phase spectra over a range of frequencies. However, bats detect only the amplitude spectrum due to the low-time resolution of their peripheral auditory system, and the frequency range of emission is restricted. It is therefore necessary to restore the acoustic image from limited information. The amplitude spectrum varies with the changes in the configuration of the reflected-intensity distribution, while the phase spectrum varies with the changes in its configuration and location. Here, by introducing some reasonable constraints, a method is proposed for restoring an acoustic image from the echo. The configuration is extrapolated from the amplitude spectrum of the restricted frequency range by using the continuity condition of the amplitude spectrum at the minimum frequency of the emission and the minimum phase condition. The determination of the location requires extracting the amplitude spectra, which vary with its location. For this purpose, the Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The location is estimated from the temporal changes of the amplitude spectra. .
Financial Implications of Half- and Full-Time Employment for Persons with Disabilities.
ERIC Educational Resources Information Center
Schloss, Patrick J.; And Others
1987-01-01
Balance sheets comparing yearly income and expenses were developed for three disabled worker situations: no earned income, half-time minimum-wage job, and full-time minimum-wage job. Net disposable income was comparable for part-time and full-time disabled workers, since eligibility for Medicaid, Food Stamps, and Supplemental Security Income was…
NASA Astrophysics Data System (ADS)
Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.
2018-03-01
Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.
Chandra X-ray Time-Domain Study of Alpha Centauri AB, Procyon, and their Environs
NASA Astrophysics Data System (ADS)
Ayres, Thomas R.
2018-06-01
For more than a decade, Chandra X-ray Observatory has been monitoring the central AB binary (G2V+K1V) of the α Centauri triple system with semi-annual pointings, using the High-Resolution Camera. This study has been extended in recent years to the mid-F subgiant, Procyon. The main objective is to follow the coronal (T~1MK) activity variations of the three stars, analogous to the Sun's 11-year sunspot cycle. Tentative periods of 20 yr and 8 yr have been deduced for α Cen A and B, respectively; but so far Procyon has shown only a slow, very modest decline in count rate, which could well reflect a slight instrumental degradation rather than intrinsic behavior. The negligible high-energy variability of Procyon sits in stark contrast to the dramatic factor of several to ten changes in the X-ray luminosities of α Cen AB and the Sun over their respective cycles. Further, although sunlike α Cen A has been observed by successive generations of X-ray observatories for nearly four decades, albeit sporadically, there are key gaps in the coverage that affect the determination of the cycle period. In fact, the most recent pointings suggest a downturn in A's count rate that might be signaling a shorter, more solar-like cycle following a delayed minimum in the 2005--2010 time frame (perhaps an exaggerated version of the extended solar minimum between recent Cycles 23 and 24). Beyond the coronal cycles of the three stars, the sequence of periodic X-ray images represents a unique time-domain history concerning steady as well as variable sources in the two 30'x30' fields. The most conspicuous of the variable objects -- in the α Cen field -- will be described here.
Barriers and dispersal surfaces in minimum-time interception. [for optimizing aircraft flight paths
NASA Technical Reports Server (NTRS)
Rajan, N.; Ardema, M. D.
1984-01-01
A method is proposed for mapping the barrier, dispersal, and control-level surfaces for a class of minimum-time interception and pursuit-evasion problems. Minimum-time interception of a target moving in a horizontal plane is formulated in a coordinate system whose origin is at the interceptor's terminal position and whose x-axis is along the terminal line of sight. This approach makes it possible to discuss the nature of the interceptor's extremals, using its extremal trajectory maps (ETMs), independently of target motion. The game surfaces are constructed by drawing sections of the isochrones, or constant minimum-time loci, from the interceptor and target ETMs. In this way, feedback solutions for the optimal controls are obtained. An example involving the interception of a target moving in a straight line at constant speed is presented.
Code of Federal Regulations, 2011 CFR
2011-07-01
...— (1)(i) For a program offered in credit hours, a minimum of 30 weeks of instructional time; or (ii) For a program offered in clock hours, a minimum of 26 weeks of instructional time; and (2) For an undergraduate educational program, an amount of instructional time whereby a full-time student is expected to...
NASA Astrophysics Data System (ADS)
Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.
2017-07-01
Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.
Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingson; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.
2017-01-01
Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.
NASA Technical Reports Server (NTRS)
Wang, Zhuosen; Schaaf, Crystal B.; Sun, Quingsong; Kim, Jihyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.;
2017-01-01
Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warmingcooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500-meter Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF (Bidirectional Reflectance Distribution Function) / NBAR (Nadir BRDF-Adjusted Reflectance) / albedo products and 30-meter Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDFAlbedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30-meter Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30-meter albedos for the intervening daily time steps in this study. These enhanced daily 30-meter spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of 0.006. These synthetic time series provide much greater spatial detail than the 500 meter gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 kilometers by 14 kilometers) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF-Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30-meter resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.
Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation
NASA Astrophysics Data System (ADS)
Ventura, Jacopo; Romano, Marcello; Walter, Ulrich
2015-05-01
This paper investigates the application of the inverse dynamics in the virtual domain method to Euler angles, quaternions, and modified Rodrigues parameters for rapid optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact of the virtual domain and attitude representation is numerically investigated for both minimum time and minimum energy problems. Owing to the nature of the inverse dynamics method, it yields sub-optimal solutions for minimum time problems. Furthermore, the virtual domain improves the optimality of the solution, but at the cost of more computational time. The attitude representation also affects solution quality and computational speed. For minimum energy problems, the optimal solution can be obtained without the virtual domain with any considered attitude representation.
Sunspot variation and selected associated phenomena: A look at solar cycle 21 and beyond
NASA Technical Reports Server (NTRS)
Wilson, R. M.
1982-01-01
Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated.
Evanoff, M G; Roehrig, H; Giffords, R S; Capp, M P; Rovinelli, R J; Hartmann, W H; Merritt, C
2001-06-01
This report discusses calibration and set-up procedures for medium-resolution monochrome cathode ray tubes (CRTs) taken in preparation of the oral portion of the board examination of the American Board of Radiology (ABR). The board examinations took place in more than 100 rooms of a hotel. There was one display-station (a computer and the associated CRT display) in each of the hotel rooms used for the examinations. The examinations covered the radiologic specialties cardiopulmonary, musculoskeletal, gastrointestinal, vascular, pediatric, and genitourinary. The software used for set-up and calibration was the VeriLUM 4.0 package from Image Smiths in Germantown, MD. The set-up included setting minimum luminance and maximum luminance, as well as positioning of the CRT in each examination room with respect to reflections of roomlights. The calibration for the grey scale rendition was done meeting the Digital Imaging and communication in Medicine (DICOM) 14 Standard Display Function. We describe these procedures, and present the calibration data in. tables and graphs, listing initial values of minimum luminance, maximum luminance, and grey scale rendition (DICOM 14 standard display function). Changes of these parameters over the duration of the examination were observed and recorded on 11 monitors in a particular room. These changes strongly suggest that all calibrated CRTs be monitored over the duration of the examination. In addition, other CRT performance data affecting image quality such as spatial resolution should be included in set-up and image quality-control procedures.
Resolution No. 480, 25 July 1989.
1989-01-01
This Iraq Resolution provides that female graduates may not be employed as officials in "state departments, socialist and mixed sectors, within the limits of [the] sixth degree, downwards, of the Civil Service Law . . . unless they practice nursing in the Ministry of Health or work at [the] Ministry of Industry and Military Industrialization for one year." During this year they are to receive the salary of the "minimum degree" for which their certificates qualify them. The year is to be counted as actual service for the purposes of "increment, promotion and pension." Female graduates who are appointed to military, medical, hygienic, engineering, and educational jobs are exempt from these work requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Dan, E-mail: danzhou@is.mpg.de; Sigle, Wilfried; Wang, Yi
We studied ZrO{sub 2} − La{sub 2/3}Sr{sub 1/3}MnO{sub 3} pillar–matrix thin films which were found to show anomalous magnetic and electron transport properties. With the application of an aberration-corrected transmission electron microscope, interfacial chemistry, and atomic-arrangement of the system, especially of the pillar–matrix interface were revealed at atomic resolution. Minor amounts of Zr were found to occupy Mn positions within the matrix. The Zr concentration reaches a minimum near the pillar–matrix interface accompanied by oxygen vacancies. La and Mn diffusion into the pillar was revealed at atomic resolution and a concomitant change of the Mn valence state was observed.
40 CFR 63.1365 - Test methods and initial compliance procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... design minimum and average temperature in the combustion zone and the combustion zone residence time. (B... establish the design minimum and average flame zone temperatures and combustion zone residence time, and... carbon bed temperature after regeneration, design carbon bed regeneration time, and design service life...
Thermal decomposition of ammonium hexachloroosmate.
Asanova, T I; Kantor, I; Asanov, I P; Korenev, S V; Yusenko, K V
2016-12-07
Structural changes of (NH 4 ) 2 [OsCl 6 ] occurring during thermal decomposition in a reduction atmosphere have been studied in situ using combined energy-dispersive X-ray absorption spectroscopy (ED-XAFS) and powder X-ray diffraction (PXRD). According to PXRD, (NH 4 ) 2 [OsCl 6 ] transforms directly to metallic Os without the formation of any crystalline intermediates but through a plateau where no reactions occur. XANES and EXAFS data by means of Multivariate Curve Resolution (MCR) analysis show that thermal decomposition occurs with the formation of an amorphous intermediate {OsCl 4 } x with a possible polymeric structure. Being revealed for the first time the intermediate was subjected to determine the local atomic structure around osmium. The thermal decomposition of hexachloroosmate is much more complex and occurs within a minimum two-step process, which has never been observed before.
Studies on scintillating fiber response
NASA Astrophysics Data System (ADS)
Albers, D.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Heine, A.; Heider, S.; Hinterberger, F.; Igelbrink, M.; Jahn, R.; Jeske, M.; Langkau, R.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Müller, M.; Münstermann, M.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Steeg, B.; Sterzenbach, G.; Trelle, H. J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.
1996-02-01
Scintillating fibers of type Bicron BCF-12 with 2 × 2 mm 2 cross section, up to 600 mm length, and PMMA cladding have been tested, in conjunction with the multi-channel photomultiplier Hamamatsu R 4760, with minimum ionizing electrons. The impact of cladding, extramural absorbers and/or wrapping on the light attenuation and photoelectron yield is studied in detail. Fibers have been circularly bent with radii of 171 mm and arranged in two layers to bundles forming granulated scintillator rings. Their performance in the EDDA experiment at COSY for detection of high energy protons revealed typically more than 9 (6) photoelectrons per fiber from bundles with (without) mirror on the rear side, guaranteeing detection efficiencies >99% and full compatibility with corresponding solid scintillator rings. The time resolution of 3.4 ns FWHM per fiber read out is essentially due to the R 4760.
Spatio-temporal Reconstruction of Neural Sources Using Indirect Dominant Mode Rejection.
Jafadideh, Alireza Talesh; Asl, Babak Mohammadzadeh
2018-04-27
Adaptive minimum variance based beamformers (MVB) have been successfully applied to magnetoencephalogram (MEG) and electroencephalogram (EEG) data to localize brain activities. However, the performance of these beamformers falls down in situations where correlated or interference sources exist. To overcome this problem, we propose indirect dominant mode rejection (iDMR) beamformer application in brain source localization. This method by modifying measurement covariance matrix makes MVB applicable in source localization in the presence of correlated and interference sources. Numerical results on both EEG and MEG data demonstrate that presented approach accurately reconstructs time courses of active sources and localizes those sources with high spatial resolution. In addition, the results of real AEF data show the good performance of iDMR in empirical situations. Hence, iDMR can be reliably used for brain source localization especially when there are correlated and interference sources.
A giant planet around a metal-poor star of extragalactic origin.
Setiawan, Johny; Klement, Rainer J; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Rodmann, Jens; Schulze-Hartung, Tim
2010-12-17
Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star's periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.
Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo
2016-04-01
Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.
Phytoplankton Modeling with an Imaging FlowCytobot: More Than Just HABs
NASA Astrophysics Data System (ADS)
Henrichs, D.; Campbell, L.
2016-02-01
An 8-year time series of hourly phytoplankton community abundance has been collected using an Imaging FlowCytobot (IFCB) deployed at Port Aransas, Texas. While primarily used for early warning of harmful algal blooms (HABs), the IFCB captures images of all phytoplankton cells (10-100 μm) and permits the study of community structure and changes over time. By combining abundance estimates from the IFCB with a spatially explicit individual-based model, potential regions of origin for several species have been identified. Environmental data from a variety of sources (buoys, models, ship transects) in the northwestern Gulf of Mexico have been examined to identify which physical factors are most important for bloom formation in phytoplankton along the coast of Texas. The present study focuses on a dinoflagellate species, Prorocentrum texanum, which appears at Port Aransas, TX at approximately the same time period (Feb - Mar) every year and the co-occurring community. Individual-based modeling results indicate blooms of P. texanum originate near the coast of Louisiana and are advected toward Port Aransas by downcoast currents. Cross correlation analyses produced significant negative correlations between P. texanum abundance and coastal currents (1 month preceding), water temperature (2 months preceding), salinity (2 months preceding) and a positive correlation with Prorocentrum minimum abundance (1 month preceding). The exact timing of P. texanum bloom appearance varies from year to year and the high temporal resolution (hourly) of cell counts from the IFCB has permitted a more detailed study of the environmental factors involved in bloom formation. Future work will incorporate the high temporal resolution cell counts and environmental factors to develop predictive models for bloom formation.
NASA Astrophysics Data System (ADS)
Palumbo, Giovanna; Tosi, Daniele; Schena, Emiliano; Massaroni, Carlo; Ippolito, Juliet; Verze, Paolo; Carlomagno, Nicola; Tammaro, Vincenzo; Iadicicco, Agostino; Campopiano, Stefania
2017-05-01
Fiber Bragg Grating (FBG) sensors applied to bio-medical procedures such as surgery and rehabilitation are a valid alternative to traditional sensing techniques due to their unique characteristics. Herein we propose the use of FBG sensor arrays for accurate real-time temperature measurements during multi-step RadioFrequency Ablation (RFA) based thermal tumor treatment. Real-time temperature monitoring in the RF-applied region represents a valid feedback for the success of the thermo-ablation procedure. In order to create a thermal multi-point map around the tumor area to be treated, a proper sensing configuration was developed. In particular, the RF probe of a commercial medical instrumentation, has been equipped with properly packaged FBGs sensors. Moreover, in order to discriminate the treatment areas to be ablated as precisely as possible, a second array 3.5 cm long, made by several FBGs was used. The results of the temperature measurements during the RFA experiments conducted on ex-vivo animal liver and kidney tissues are presented herein. The proposed FBGs based solution has proven to be capable of distinguish different and consecutive discharges and for each of them, to measure the temperature profile with a resolution of 0.1 °C and a minimum spatial resolution of 5mm. Based upon our experiments, it is possible to confirm that the temperature decreases with distance from a RF peak ablation, in accordance with RF theory. The proposed solution promises to be very useful for the surgeon because a real-time temperature feedback allows for the adaptation of RFA parameters during surgery and better delineates the area under treatment.
NASA Astrophysics Data System (ADS)
Omidi, Parsa; Diop, Mamadou; Carson, Jeffrey; Nasiriavanaki, Mohammadreza
2017-03-01
Linear-array-based photoacoustic computed tomography is a popular methodology for deep and high resolution imaging. However, issues such as phase aberration, side-lobe effects, and propagation limitations deteriorate the resolution. The effect of phase aberration due to acoustic attenuation and constant assumption of the speed of sound (SoS) can be reduced by applying an adaptive weighting method such as the coherence factor (CF). Utilizing an adaptive beamforming algorithm such as the minimum variance (MV) can improve the resolution at the focal point by eliminating the side-lobes. Moreover, invisibility of directional objects emitting parallel to the detection plane, such as vessels and other absorbing structures stretched in the direction perpendicular to the detection plane can degrade resolution. In this study, we propose a full-view array level weighting algorithm in which different weighs are assigned to different positions of the linear array based on an orientation algorithm which uses the histogram of oriented gradient (HOG). Simulation results obtained from a synthetic phantom show the superior performance of the proposed method over the existing reconstruction methods.
Bettencourt da Silva, Ricardo J N
2016-04-01
The identification of trace levels of compounds in complex matrices by conventional low-resolution gas chromatography hyphenated with mass spectrometry is based in the comparison of retention times and abundance ratios of characteristic mass spectrum fragments of analyte peaks from calibrators with sample peaks. Statistically sound criteria for the comparison of these parameters were developed based on the normal distribution of retention times and the simulation of possible non-normal distribution of correlated abundances ratios. The confidence level used to set the statistical maximum and minimum limits of parameters defines the true positive rates of identifications. The false positive rate of identification was estimated from worst-case signal noise models. The estimated true and false positive identifications rate from one retention time and two correlated ratios of three fragments abundances were combined using simple Bayes' statistics to estimate the probability of compound identification being correct designated examination uncertainty. Models of the variation of examination uncertainty with analyte quantity allowed the estimation of the Limit of Examination as the lowest quantity that produced "Extremely strong" evidences of compound presence. User friendly MS-Excel files are made available to allow the easy application of developed approach in routine and research laboratories. The developed approach was successfully applied to the identification of chlorpyrifos-methyl and malathion in QuEChERS method extracts of vegetables with high water content for which the estimated Limit of Examination is 0.14 mg kg(-1) and 0.23 mg kg(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
A high-resolution European dataset for hydrologic modeling
NASA Astrophysics Data System (ADS)
Ntegeka, Victor; Salamon, Peter; Gomes, Goncalo; Sint, Hadewij; Lorini, Valerio; Thielen, Jutta
2013-04-01
There is an increasing demand for large scale hydrological models not only in the field of modeling the impact of climate change on water resources but also for disaster risk assessments and flood or drought early warning systems. These large scale models need to be calibrated and verified against large amounts of observations in order to judge their capabilities to predict the future. However, the creation of large scale datasets is challenging for it requires collection, harmonization, and quality checking of large amounts of observations. For this reason, only a limited number of such datasets exist. In this work, we present a pan European, high-resolution gridded dataset of meteorological observations (EFAS-Meteo) which was designed with the aim to drive a large scale hydrological model. Similar European and global gridded datasets already exist, such as the HadGHCND (Caesar et al., 2006), the JRC MARS-STAT database (van der Goot and Orlandi, 2003) and the E-OBS gridded dataset (Haylock et al., 2008). However, none of those provide similarly high spatial resolution and/or a complete set of variables to force a hydrologic model. EFAS-Meteo contains daily maps of precipitation, surface temperature (mean, minimum and maximum), wind speed and vapour pressure at a spatial grid resolution of 5 x 5 km for the time period 1 January 1990 - 31 December 2011. It furthermore contains calculated radiation, which is calculated by using a staggered approach depending on the availability of sunshine duration, cloud cover and minimum and maximum temperature, and evapotranspiration (potential evapotranspiration, bare soil and open water evapotranspiration). The potential evapotranspiration was calculated using the Penman-Monteith equation with the above-mentioned meteorological variables. The dataset was created as part of the development of the European Flood Awareness System (EFAS) and has been continuously updated throughout the last years. The dataset variables are used as inputs to the hydrological calibration and validation of EFAS as well as for establishing long-term discharge "proxy" climatologies which can then in turn be used for statistical analysis to derive return periods or other time series derivatives. In addition, this dataset will be used to assess climatological trends in Europe. Unfortunately, to date no baseline dataset at the European scale exists to test the quality of the herein presented data. Hence, a comparison against other existing datasets can therefore only be an indication of data quality. Due to availability, a comparison was made for precipitation and temperature only, arguably the most important meteorological drivers for hydrologic models. A variety of analyses was undertaken at country scale against data reported to EUROSTAT and E-OBS datasets. The comparison revealed that while the datasets showed overall similar temporal and spatial patterns, there were some differences in magnitudes especially for precipitation. It is not straightforward to define the specific cause for these differences. However, in most cases the comparatively low observation station density appears to be the principal reason for the differences in magnitude.
NASA Astrophysics Data System (ADS)
Quinn, Kevin Martin
The total amount of precipitation integrated across a precipitation cluster (contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as the rate of water mass lost or latent heat released, i.e. the power of the disturbance. Probability distributions of cluster power are examined during boreal summer (May-September) and winter (January-March) using satellite-retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) 3B42 and Special Sensor Microwave Imager and Sounder (SSM/I and SSMIS) programs, model output from the High Resolution Atmospheric Model (HIRAM, roughly 0.25-0.5 0 resolution), seven 1-2° resolution members of the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiment, and National Center for Atmospheric Research Large Ensemble (NCAR LENS). Spatial distributions of precipitation-weighted centroids are also investigated in observations (TRMM-3B42) and climate models during winter as a metric for changes in mid-latitude storm tracks. Observed probability distributions for both seasons are scale-free from the smallest clusters up to a cutoff scale at high cluster power, after which the probability density drops rapidly. When low rain rates are excluded by choosing a minimum rain rate threshold in defining clusters, the models accurately reproduce observed cluster power statistics and winter storm tracks. Changes in behavior in the tail of the distribution, above the cutoff, are important for impacts since these quantify the frequency of the most powerful storms. End-of-century cluster power distributions and storm track locations are investigated in these models under a "business as usual" global warming scenario. The probability of high cluster power events increases by end-of-century across all models, by up to an order of magnitude for the highest-power events for which statistics can be computed. For the three models in the suite with continuous time series of high resolution output, there is substantial variability on when these probability increases for the most powerful precipitation clusters become detectable, ranging from detectable within the observational period to statistically significant trends emerging only after 2050. A similar analysis of National Centers for Environmental Prediction (NCEP) Reanalysis 2 and SSM/I-SSMIS rain rate retrievals in the recent observational record does not yield reliable evidence of trends in high-power cluster probabilities at this time. Large impacts to mid-latitude storm tracks are projected over the West Coast and eastern North America, with no less than 8 of the 9 models examined showing large increases by end-of-century in the probability density of the most powerful storms, ranging up to a factor of 6.5 in the highest range bin for which historical statistics are computed. However, within these regional domains, there is considerable variation among models in pinpointing exactly where the largest increases will occur.
NASA Astrophysics Data System (ADS)
Pons, Xavier; Miquel, Ninyerola; Oscar, González-Guerrero; Cristina, Cea; Pere, Serra; Alaitz, Zabala; Lluís, Pesquer; Ivette, Serral; Joan, Masó; Cristina, Domingo; Maria, Serra Josep; Jordi, Cristóbal; Chris, Hain; Martha, Anderson; Juanjo, Vidal
2014-05-01
Combining climate dynamics and land cover at a relative coarse resolution allows a very interesting approach to global studies, because in many cases these studies are based on a quite high temporal resolution, but they may be limited in large areas like the Mediterranean. However, the current availability of long time series of Landsat imagery and spatially detailed surface climate models allow thinking on global databases improving the results of mapping in areas with a complex history of landscape dynamics, characterized by fragmentation, or areas where relief creates intricate climate patterns that can be hardly monitored or modeled at coarse spatial resolutions. DinaCliVe (supported by the Spanish Government and ERDF, and by the Catalan Government, under grants CGL2012-33927 and SGR2009-1511) is the name of the project that aims analyzing land cover and land use dynamics as well as vegetation stress, with a particular emphasis on droughts, and the role that climate variation may have had in such phenomena. To meet this objective is proposed to design a massive database from long time series of Landsat land cover products (grouped in quinquennia) and monthly climate records (in situ climate data) for the Iberian Peninsula (582,000 km2). The whole area encompasses 47 Landsat WRS2 scenes (Landsat 4 to 8 missions, from path 197 to 202 and from rows 30 to 34), and 52 Landsat WRS1 scenes (for the previous Landsat missions, 212 to 221 and 30 to 34). Therefore, a mean of 49.5 Landsat scenes, 8 quinquennia per scene and a about 6 dates per quinquennium , from 1975 to present, produces around 2376 sets resulting in 30 m x 30 m spatial resolution maps. Each set is composed by highly coherent geometric and radiometric multispectral and multitemporal (to account for phenology) imagery as well as vegetation and wetness indexes, and several derived topographic information (about 10 Tbyte of data). Furthermore, on the basis on a previous work: the Digital Climatic Atlas of the Iberian Peninsula, spatio-temporal surface climate data has been generated with a monthly resolution (from January 1950 to December 2010) through a multiple regression model and residuals spatial interpolation using geographic variables (altitude, latitude and continentality) and solar radiation (only in the case of temperatures). This database includes precipitation, mean minimum and mean maximum air temperature and mean air temperature, improving the previous one by using the ASTER GDEM at 30 m spatial resolution, by deepening to a monthly resolution and by increasing the number of meteorological stations used, representing a total amount of 0.7 Tbyte of data. An initial validation shows accuracies higher than 85 % for land cover maps and an RMS of 1.2 ºC, 1.6 ºC and 22 mm for mean and extreme temperatures, and for precipitation, respectively. This amount of new detailed data for the Iberian Peninsula framework will be used to study the spatial direction, velocity and acceleration of the tendencies related to climate change, land cover and tree line dynamics. A global analysis using all these datasets will try to discriminate the climatic signal when interpreted together with anthropogenic driving forces. Ultimately, getting ready for massive database computation and analysis will improve predictions for global models that will require of the growing high-resolution information available.
NASA Astrophysics Data System (ADS)
Sigro, J.; Brunet, M.; Aguilar, E.; Stoll, H.; Jimenez, M.
2009-04-01
The Spanish-funded research project Rapid Climate Changes in the Iberian Peninsula (IP) Based on Proxy Calibration, Long Term Instrumental Series and High Resolution Analyses of Terrestrial and Marine Records (CALIBRE: ref. CGL2006-13327-C04/CLI) has as main objective to analyse climate dynamics during periods of rapid climate change by means of developing high-resolution paleoclimate proxy records from marine and terrestrial (lakes and caves) deposits over the IP and calibrating them with long-term and high-quality instrumental climate time series. Under CALIBRE, the coordinated project Developing and Enhancing a Climate Instrumental Dataset for Calibrating Climate Proxy Data and Analysing Low-Frequency Climate Variability over the Iberian Peninsula (CLICAL: CGL2006-13327-C04-03/CLI) is devoted to the development of homogenised climate records and sub-regional time series which can be confidently used in the calibration of the lacustrine, marine and speleothem time series generated under CALIBRE. Here we present the procedures followed in order to homogenise a dataset of maximum and minimum temperature and precipitation data on a monthly basis over the Spanish northern coast. The dataset is composed of thirty (twenty) precipitation (temperature) long monthly records. The data are quality controlled following the procedures recommended by Aguilar et al. (2003) and tested for homogeneity and adjusted by following the approach adopted by Brunet et al. (2008). Sub-regional time series of precipitation, maximum and minimum temperatures for the period 1853-2007 have been generated by averaging monthly anomalies and then adding back the base-period mean, according to the method of Jones and Hulme (1996). Also, a method to adjust the variance bias present in regional time series associated over time with varying sample size has been applied (Osborn et al., 1997). The results of this homogenisation exercise and the development of the associated sub-regional time series will be widely discussed. Initial comparisons with rapidly growing speleothems in two different caves indicate that speleothem trace element ratios like Ba/Ca are recording the decrease in littoral precipitation in the last several decades. References Aguilar, E., Auer, I., Brunet, M., Peterson, T. C. and Weringa, J. 2003. Guidelines on Climate Metadata and Homogenization, World Meteorological Organization (WMO)-TD no. 1186 / World Climate Data and Monitoring Program (WCDMP) no. 53, Geneva: 51 pp. Brunet M, Saladié O, Jones P, Sigró J, Aguilar E, Moberg A, Lister D, Walther A, Almarza C. 2008. A case-study/guidance on the development of long-term daily adjusted temperature datasets, WMO-TD-1425/WCDMP-66, Geneva: 43 pp. Jones, P D, and Hulme M, 1996, Calculating regional climatic time series for temperature and precipitation: Methods and illustrations, Int. J. Climatol., 16, 361- 377. Osborn, T. J., Briffa K. R., and Jones P. D., 1997, Adjusting variance for sample-size in tree-ring chronologies and other regional mean time series, Dendrochronologia, 15, 89- 99.
Performance of timing Resistive Plate Chambers with protons from 200 to 800 MeV
NASA Astrophysics Data System (ADS)
Machado, J.; Adamczewski-Musch, J.; Blanco, A.; Boretzky, K.; Cabanelas, P.; Cartegni, L.; Ferreira Marques, R.; Fonte, P.; Fruehauf, J.; Galaviz, D.; Heil, M.; Henriques, A.; . Ickert, G.; Körper, D.; Lopes, L.; Palka, M.; Pereira, A.; Rossi, D.; Simon, H.; Teubig, P.; Traxler, M.; Velho, P.; Altstadt, S.; Atar, L.; Aumann, T.; Bemmerer, D.; Caesar, C.; Charpy, A.; Elekes, Z.; Fiori, E.; Gasparic, I.; Gerbig, J.; Göbel, K.; Heftrich, T.; Heine, M.; Heinz, A.; Holl, M.; Ignatov, A.; Isaak, J.; Johansson, H.; Kelic-Heil, A.; Lederer, C.; Lindberg, S.; Löher, B.; Marganiec, J.; Martensson, M.; Nilsson, T.; Panin, V.; Paschalis, S.; Petri, M.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Reinhardt, T. P.; Röder, M.; Savran, D.; Scheit, H.; Schrock, P.; Silva, J.; Stach, D.; Strannerdahl, F.; Thies, R.; Wagner, A.; Wamers, F.; Weigand, M.
2015-01-01
A prototype composed of four resistive plate chamber layers has been exposed to quasi-monoenergetic protons produced from a deuteron beam of varying energy (200 to 800 AMeV) in experiment S406 at GSI, Darmstadt, Germany. The aim of the experiment is to characterize the response of the prototype to protons in this energy range, which deposit from 1.75 to 6 times more energy than minimum ionizing particles. Each layer, with an active area of about 2000 × 500 mm2, is made of modules containing the active gaps, all in multigap construction. Each gap is defined by 0.3 mm nylon mono-filaments positioned between 2.85 mm thick float glass electrodes. The modules are operated in avalanche mode with a non-flammable gas mixture composed of 90% C2H2F4 and 10% SF6. The signals are readout by a pick-up electrode formed by 15 copper strips (per layer), spaced at a pitch of 30 mm, connected at both sides to timing front end electronics. Results show an uniform efficiency close to 100% along with a timing resolution of around 60 ps on the entire 2000 × 500 mm2 area.
Tracking subpixel targets in domestic environments
NASA Astrophysics Data System (ADS)
Govinda, V.; Ralph, J. F.; Spencer, J. W.; Goulermas, J. Y.; Smith, D. H.
2006-05-01
In recent years, closed circuit cameras have become a common feature of urban life. There are environments however where the movement of people needs to be monitored but high resolution imaging is not necessarily desirable: rooms where privacy is required and the occupants are not comfortable with the perceived intrusion. Examples might include domiciliary care environments, prisons and other secure facilities, and even large open plan offices. This paper discusses algorithms that allow activity within this type of sensitive environment to be monitored using data from low resolution cameras (ones where all objects of interest are sub-pixel and cannot be resolved) and other non-intrusive sensors. The algorithms are based on techniques originally developed for wide area reconnaissance and surveillance applications. Of particular importance is determining the minimum spatial resolution that is required to provide a specific level of coverage and reliability.
VizieR Online Data Catalog: Orphan stream high-resolution spectroscopic study (Casey+, 2014)
NASA Astrophysics Data System (ADS)
Casey, A. R.; Keller, S. C.; da Costa, G.; Frebel, A.; Maunder, E.
2017-06-01
High-resolution spectra for five Orphan stream candidates and seven well-studied standard stars have been obtained with the Magellan Inamori Kyocera Echelle spectrograph (Bernstein et al. 2003SPIE.4841.1694B) on the Magellan Clay telescope. These objects were observed in 2011 March using a 1" wide slit in mean seeing of 0.9". This slit configuration provides continuous spectral coverage from 333 nm to 915 nm, with a spectral resolution of R=25000 in the blue arm and R=28000 in the red arm. A minimum of 10 exposures of each calibration type (biases, flat fields, and diffuse flats) were observed in the afternoon of each day, with additional flat-field and Th-Ar arc lamp exposures performed throughout the night to ensure an accurate wavelength calibration. (3 data files).
Does the Minimum Wage Affect Welfare Caseloads?
ERIC Educational Resources Information Center
Page, Marianne E.; Spetz, Joanne; Millar, Jane
2005-01-01
Although minimum wages are advocated as a policy that will help the poor, few studies have examined their effect on poor families. This paper uses variation in minimum wages across states and over time to estimate the impact of minimum wage legislation on welfare caseloads. We find that the elasticity of the welfare caseload with respect to the…
Using in-situ Glider Data to Improve the Interpretation of Time-Series Data in the San Pedro Channel
NASA Astrophysics Data System (ADS)
Teel, E.; Liu, X.; Seegers, B. N.; Ragan, M. A.; Jones, B. H.; Levine, N. M.
2016-02-01
Oceanic time-series have provided insight into biological, physical, and chemical processes and how these processes change over time. However, time-series data collected near coastal zones have not been used as broadly because of regional features that may prevent extrapolation of local results. Though these sites are inherently more affected by local processes, broadening the application of coastal data is crucial for improved modeling of processes such as total carbon drawdown and the development of oxygen minimum zones. Slocum gliders were deployed off the coast of Los Angeles from February to July of 2013 and 2014 providing high temporal and spatial resolution data of the San Pedro Channel (SPC), which includes the San Pedro Ocean Time Series (SPOT). The data were collapsed onto a standardized grid and primary and secondary characteristics of glider profiles were analyzed by principal component analysis to determine the processes impacting SPC and SPOT. The data fell into four categories: active upwelling, offshore intrusion, subsurface bloom, and surface bloom. Waters across the SPC were most similar to offshore water masses, even during the upwelling season when near-shore blooms are commonly observed. The SPOT site was found to be representative of the SPC 86% of the time, suggesting that the findings from SPOT are applicable for the entire SPC. Subsurface blooms were common in both years with co-located chlorophyll and particle maxima, and results suggested that these subsurface blooms contribute significantly to the local primary production. Satellite estimation of integrated chlorophyll was poor, possibly due to the prevalence of subsurface blooms and shallow optical depths during surface blooms. These results indicate that high resolution in-situ glider deployments can be used to determine the spatial domain of coastal time-series data, allowing for broader application of these datasets and greater integration into modeling efforts.
Sizing procedures for sun-tracking PV system with batteries
NASA Astrophysics Data System (ADS)
Nezih Gerek, Ömer; Başaran Filik, Ümmühan; Filik, Tansu
2017-11-01
Deciding optimum number of PV panels, wind turbines and batteries (i.e. a complete renewable energy system) for minimum cost and complete energy balance is a challenging and interesting problem. In the literature, some rough data models or limited recorded data together with low resolution hourly averaged meteorological values are used to test the sizing strategies. In this study, active sun tracking and fixed PV solar power generation values of ready-to-serve commercial products are recorded throughout 2015-2016. Simultaneously several outdoor parameters (solar radiation, temperature, humidity, wind speed/direction, pressure) are recorded with high resolution. The hourly energy consumption values of a standard 4-person household, which is constructed in our campus in Eskisehir, Turkey, are also recorded for the same period. During sizing, novel parametric random process models for wind speed, temperature, solar radiation, energy demand and electricity generation curves are achieved and it is observed that these models provide sizing results with lower LLP through Monte Carlo experiments that consider average and minimum performance cases. Furthermore, another novel cost optimization strategy is adopted to show that solar tracking PV panels provide lower costs by enabling reduced number of installed batteries. Results are verified over real recorded data.
Noise in Charge Amplifiers— A gm/ID Approach
NASA Astrophysics Data System (ADS)
Alvarez, Enrique; Avila, Diego; Campillo, Hernan; Dragone, Angelo; Abusleme, Angel
2012-10-01
Charge amplifiers represent the standard solution to amplify signals from capacitive detectors in high energy physics experiments. In a typical front-end, the noise due to the charge amplifier, and particularly from its input transistor, limits the achievable resolution. The classic approach to attenuate noise effects in MOSFET charge amplifiers is to use the maximum power available, to use a minimum-length input device, and to establish the input transistor width in order to achieve the optimal capacitive matching at the input node. These conclusions, reached by analysis based on simple noise models, lead to sub-optimal results. In this work, a new approach on noise analysis for charge amplifiers based on an extension of the gm/ID methodology is presented. This method combines circuit equations and results from SPICE simulations, both valid for all operation regions and including all noise sources. The method, which allows to find the optimal operation point of the charge amplifier input device for maximum resolution, shows that the minimum device length is not necessarily the optimal, that flicker noise is responsible for the non-monotonic noise versus current function, and provides a deeper insight on the noise limits mechanism from an alternative and more design-oriented point of view.
Non-laser-based scanner for three-dimensional digitization of historical artifacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Daniel V.; Baldwin, Kevin C.; Duncan, Donald D
2007-05-20
A 3D scanner, based on incoherent illumination techniques, and associated data-processing algorithms are presented that can be used to scan objects at lateral resolutions ranging from 5 to100 {mu}m (or more) and depth resolutions of approximately 2 {mu}m.The scanner was designed with the specific intent to scan cuneiform tablets but can be utilized for other applications. Photometric stereo techniques are used to obtain both a surface normal map and a parameterized model of the object's bidirectional reflectance distribution function. The normal map is combined with height information,gathered by structured light techniques, to form a consistent 3D surface. Data from Lambertianmore » and specularly diffuse spherical objects are presented and used to quantify the accuracy of the techniques. Scans of a cuneiform tablet are also presented. All presented data are at a lateral resolution of 26.8 {mu}m as this is approximately the minimum resolution deemed necessary to accurately represent cuneiform.« less
NASA Astrophysics Data System (ADS)
Wang, Andong; Li, Xiaowei; Qu, Lianti; Lu, Yongfeng; Jiang, Lan
2017-03-01
Metal nanowire fabrication has drawn tremendous attention in recent years due to its wide application in electronics, optoelectronics, and plasmonics. However, conventional laser fabrication technologies are limited by diffraction limit thus the fabrication resolution cannot meet the increasingly high demand of modern devices. Herein we report on a novel method for high-resolution high-quality metal nanowire fabrication by using Hermite-Gaussian beam to ablate metal thin film. The nanowire is formed due to the intensity valley in the center of the laser beam while the surrounding film is ablated. Arbitrary nanowire can be generated on the substrate by dynamically adjusting the orientation of the intensity valley. This method shows obvious advantages compared to conventional methods. First, the minimum nanowire has a width of 60 nm (≍1/13 of the laser wavelength), which is much smaller than the diffraction limit. The high resolution is achieved by combining the ultrashort nature of the femtosecond laser and the low thermal conductivity of the thin film. In addition, the fabricated nanowires have good inside qualities. No inner nanopores and particle intervals are generated inside the nanowire, thus endowing the nanowire with good electronic characteristics: the conductivity of the nanowires is as high as 1.2×107 S/m (≍1/4 of buck material), and the maximum current density is up to 1.66×108 A/m2. Last, the nanowire has a good adhesion to the substrates, which can withstand ultrasonic bath for a long time. These advantages make our method a good approach for high-resolution high-quality nanowire fabrication as a complementary method to conventional lithography methods.
The Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS)
NASA Technical Reports Server (NTRS)
Shih, Albert Y.; Lin, Robert P.; Hurford, Gordon J.; Duncan, Nicole A.; Saint-Hilaire, Pascal; Bain, Hazel M.; Boggs, Steven E.; Zoglauer, Andreas C.; Smith, David M.; Tajima, Hiroyasu;
2012-01-01
The balloon-borne Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument will provide a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma-ray/hard X-ray emissions from approximately 20 keV to greater than approximately 10 MeV. GRIPS will address questions raised by recent solar flare observations regarding particle acceleration and energy release, such as: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? The spectrometer/polarimeter consists of sixteen 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution of less than 0.1 cubic millimeter. Imaging is accomplished by a single multi-pitch rotating modulator (MPRM), a 2.5-centimeter thick tungsten alloy slit/slat grid with pitches that range quasi-continuously from 1 to 13 millimeters. The MPRM is situated 8 meters from the spectrometer to provide excellent image quality and unparalleled angular resolution at gamma-ray energies (12.5 arcsec FWHM), sufficient to separate 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs (i.e., as an active scatterer), with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS is scheduled for a continental-US engineering test flight in fall 2013, followed by long or ultra-long duration balloon flights in Antarctica.
Maithani, Sanchi; Mandal, Santanu; Maity, Abhijit; Pal, Mithun; Pradhan, Manik
2018-04-30
We report on the development of a mid-infrared cavity ring-down spectrometer (CRDS) coupled with a continuous wave (cw) external cavity quantum cascade laser (EC-QCL), operating between 6.0 μm and 6.3 μm, for high-resolution spectroscopic studies of ammonia (NH3) which served as a bench-mark molecule in this spectral region. We characterized the EC-QCL based CRDS system in detail and achieved a noise-equivalent absorption (NEA) coefficient of 2.11 × 10-9 cm-1 Hz-1/2 for a 100 Hz data acquisition rate. We thereafter exploited the system for high-resolution spectroscopic analysis of interference-free 10 transition lines of the ν4 fundamental vibrational band of NH3 centred at ∼6.2 μm. We probed the strongest interference-free absorption line RQ(4,3) of ν4, centred at 1613.370 cm-1 for highly-sensitive trace detection of NH3 and subsequently achieved a minimum detection sensitivity (1σ) of 2.78 × 109 molecules per cm3 which translated into the detection limit of 740 parts-per-trillion by volume (pptv/10-12) at a pressure of 115 Torr for an integration time of ∼167 seconds. To demonstrate the efficacy of the present system in real-life applications, we finally measured the mixing ratios of NH3 present in ambient air and human exhaled breath with high sensitivity and molecular specificity.
Study of spatial resolution of coordinate detectors based on Gas Electron Multipliers
NASA Astrophysics Data System (ADS)
Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.
2017-02-01
Spatial resolution of GEM-based tracking detectors is determined in the simulation and measured in the experiments. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting of atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing with accounting of diffusion, gas amplification fluctuations, distribution of signals on readout electrodes, electronics noise and particular algorithm of final coordinate calculation (center of gravity). The simulation demonstrates that the minimum of spatial resolution of about 10 μm can be achieved with a gas mixture of Ar -CO2 (75-25 %) at a strips pitch from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 80-100 μm at a pitch of 460-500 μm. Spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4 M collider. One-coordinate resolution of the DEUTERON detector is measured with electron beam of 500 MeV, 1 GeV and 3.5 GeV energies. The determined value of spatial resolution varies in the range from approximately 35 μm to 50 μm for orthogonal tracks in the experiments.
Solving constrained minimum-time robot problems using the sequential gradient restoration algorithm
NASA Technical Reports Server (NTRS)
Lee, Allan Y.
1991-01-01
Three constrained minimum-time control problems of a two-link manipulator are solved using the Sequential Gradient and Restoration Algorithm (SGRA). The inequality constraints considered are reduced via Valentine-type transformations to nondifferential path equality constraints. The SGRA is then used to solve these transformed problems with equality constraints. The results obtained indicate that at least one of the two controls is at its limits at any instant in time. The remaining control then adjusts itself so that none of the system constraints is violated. Hence, the minimum-time control is either a pure bang-bang control or a combined bang-bang/singular control.
NASA Astrophysics Data System (ADS)
Sathnur, Ashwini
2017-04-01
Validation of the Existing products of the Remote Sensing instruments Review Comment Number 1 Ground - based instruments and space - based instruments are available for remote sensing of the Volcanic eruptions. Review Comment Number 2 The sunlight spectrum appears over the volcanic geographic area. This sunlight is reflected with the image of the volcano geographic area, to the satellite. The satellite captures this emitted spectrum of the image and further calculates the occurrences of the volcanic eruption. Review Comment Number 3 This computation system derives the presence and detection of sulphur dioxide and Volcanic Ash in the emitted spectrum. The temperature of the volcanic region is also measured. If these inputs derive the possibility of occurrence of an eruption, then the data is manually captured by the system for further usage and hazard mitigation. Review Comment Number 4 The instrument is particularly important in capturing the volcanogenic signal. This capturing operation should be carried out during the appropriate time of the day. This is carried out ideally at the time of the day when the reflected image spectra is best available. Capturing the data is not advisable to be performed at the night time, as the sunlight spectra is at its minimum. This would lead to erroneous data interpretation, as there is no sunlight for reflection of the volcanic region. Thus leading to the least capture of the emitted light spectra. Review Comment Number 5 An ideal area coverage of the spectrometer is mandatory. This is basically for the purpose of capturing the right area of data, in order to precisely derive the occurrence of a volcanic eruption. The larger the spatial resolution, there would be a higher capture of the geographic region, and this would lead to a lesser precise data capture. This would lead to missing details in the data capture. Review Comment Number 6 Ideal qualities for the remote sensing instrument are mentioned below:- Minimum "false" positives. Cost - free data made available. Minimum band - width problem. Rapid communication system. Validation and Requirements of the New products of the Remote Sensing instruments The qualities of the existing products would be present in the new products also. Along with these qualities, newly devised additional qualities are also required in order to build an advanced remote sensing instrument. The new additional requirements are mentioned below:- Review Comment Number 1 Enlarging the spatial resolution so that the volcanic plumes erupting from the early volcanic eruption is captured by the remote sensing instrument. This spatial resolution data capture would involve better video and camera facilities on the remote sensing instrument. Review Comment Number 2 Capturing the traces of carbon, carbonic acid and water vapour, along with the existing product's capture of sulphur dioxide and volcanic Ash. Review Comment Number 3 Creating an additional module in the instrument to derive the functionality of forecasting a volcanic eruption. This new forecast model should be able to predict the occurrences of volcanic eruption several months in advance. This is basically to create mechanisms for providing early solutions to the problems of mitigation of volcanic hazards. Review Comment Number 4 Creating additional features in the remote sensing instrument to enable the automatic transfer of forecasted eruptions of volcanoes, to the disaster relief operations team. This transfer of information is to be performed automatically, without any request raised from the relief operations team, for the predicted forecast information. This is for the purpose of receiving the information at the right - time, thus eliminating any possibility of occurrences of errors during hazard management.
Regional Climate Model sesitivity to different parameterizations schemes with WRF over Spain
NASA Astrophysics Data System (ADS)
García-Valdecasas Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Hidalgo-Muñoz, Jose Manuel; Argüeso, Daniel; Castro-Díez, Yolanda; Jesús Esteban-Parra, María
2015-04-01
The ability of the Weather Research and Forecasting (WRF) model to simulate the regional climate depends on the selection of an adequate combination of parameterization schemes. This study assesses WRF sensitivity to different parameterizations using six different runs that combined three cumulus, two microphysics and three surface/planetary boundary layer schemes in a topographically complex region such as Spain, for the period 1995-1996. Each of the simulations spanned a period of two years, and were carried out at a spatial resolution of 0.088° over a domain encompassing the Iberian Peninsula and nested in the coarser EURO-CORDEX domain (0.44° resolution). The experiments were driven by Interim ECMWF Re-Analysis (ERA-Interim) data. In addition, two different spectral nudging configurations were also analysed. The simulated precipitation and maximum and minimum temperatures from WRF were compared with Spain02 version 4 observational gridded datasets. The comparison was performed at different time scales with the purpose of evaluating the model capability to capture mean values and high-order statistics. ERA-Interim data was also compared with observations to determine the improvement obtained using dynamical downscaling with respect to the driving data. For this purpose, several parameters were analysed by directly comparing grid-points. On the other hand, the observational gridded data were grouped using a multistep regionalization to facilitate the comparison in term of monthly annual cycle and the percentiles of daily values analysed. The results confirm that no configuration performs best, but some combinations that produce better results could be chosen. Concerning temperatures, WRF provides an improvement over ERA-Interim. Overall, model outputs reduce the biases and the RMSE for monthly-mean maximum and minimum temperatures and are higher correlated with observations than ERA-Interim. The analysis shows that the Yonsei University planetary boundary layer scheme is the most appropriate parameterization in term of temperatures because it better describes monthly minimum temperatures and seems to perform well for maximum temperatures. Regarding precipitation, ERA-Interim time series are slightly higher correlated with observations than WRF, but the bias and the RMSE are largely worse. These results also suggest that CAM V.5.1 2-moment 5-class microphysics schemes should not be used due to the computational cost with no apparent gain with respect to simpler schemes such as WRF single-moment 3-class. For the convection scheme, this study suggests that Betts-Miller-Janjic scheme is an appropriate choice due to its robustness and Kain-Fritsch cumulus scheme should not be used over this region. KEY WORDS: Regional climate modelling, physics schemes, parameterizations, WRF. ACKNOWLEDGEMENTS This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
Code of Federal Regulations, 2012 CFR
2012-07-01
... per million dry volume 3-run average (1 hour minimum sample time per run) Performance test (Method 10... (Reapproved 2008) c. Oxides of nitrogen 53 parts per million dry volume 3-run average (1 hour minimum sample... average (1 hour minimum sample time per run) Performance test (Method 6 or 6c at 40 CFR part 60, appendix...
Code of Federal Regulations, 2011 CFR
2011-07-01
... per million dry volume 3-run average (1 hour minimum sample time per run) Performance test (Method 10... (Reapproved 2008) c. Oxides of nitrogen 53 parts per million dry volume 3-run average (1 hour minimum sample... average (1 hour minimum sample time per run) Performance test (Method 6 or 6c at 40 CFR part 60, appendix...
Code of Federal Regulations, 2014 CFR
2014-07-01
... parts per million by dry volume 3-run average (1 hour minimum sample time per run) Performance test..., appendix A-4). Oxides of nitrogen 388 parts per million by dry volume 3-run average (1 hour minimum sample... (1 hour minimum sample time per run) Performance test (Method 6 or 6c of appendix A of this part) a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... parts per million by dry volume 3-run average (1 hour minimum sample time per run) Performance test..., appendix A-4). Oxides of nitrogen 388 parts per million by dry volume 3-run average (1 hour minimum sample... (1 hour minimum sample time per run) Performance test (Method 6 or 6c of appendix A of this part) a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch; Zaidi, Habib; Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva
2014-06-15
Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailedmore » investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function superposition and keeping the image representation error to a minimum, is feasible, with the parameter combination range depending upon the scanner's intrinsic resolution characteristics. Conclusions: Using the printed point source array as a MR compatible methodology for experimentally measuring the scanner's PSF, the system's spatially variant resolution properties were successfully evaluated in image space. Overall the PET subsystem exhibits excellent resolution characteristics mainly due to the fact that the raw data are not under-sampled/rebinned, enabling the spatial resolution to be dictated by the scanner's intrinsic resolution and the image reconstruction parameters. Due to the impact of these parameters on the resolution properties of the reconstructed images, the image space PSF varies both under spatial transformations and due to basis function parameter selection. Nonetheless, for a range of basis function parameters, the image space PSF remains unaffected, with the range depending on the scanner's intrinsic resolution properties.« less
Ascent trajectory optimization for stratospheric airship with thermal effects
NASA Astrophysics Data System (ADS)
Guo, Xiao; Zhu, Ming
2013-09-01
Ascent trajectory optimization with thermal effects is addressed for a stratospheric airship. Basic thermal characteristics of the stratospheric airship are introduced. Besides, the airship’s equations of motion are constructed by including the factors about aerodynamic force, added mass and wind profiles which are developed based on horizontal-wind model. For both minimum-time and minimum-energy flights during ascent, the trajectory optimization problem is described with the path and terminal constraints in different scenarios and then, is converted into a parameter optimization problem by a direct collocation method. Sparse Nonlinear OPTimizer(SNOPT) is employed as a nonlinear programming solver and two scenarios are adopted. The solutions obtained illustrate that the trajectories are greatly affected by the thermal behaviors which prolong the daytime minimum-time flights of about 20.8% compared with that of nighttime in scenario 1 and of about 10.5% in scenario 2. And there is the same trend for minimum-energy flights. For the energy consumption of minimum-time flights, 6% decrease is abstained in scenario 1 and 5% decrease in scenario 2. However, a few energy consumption reduction is achieved for minimum-energy flights. Solar radiation is the principal component and the natural wind also affects the thermal behaviors of stratospheric airship during ascent. The relationship between take-off time and performance of airship during ascent is discussed. it is found that the take-off time at dusk is best choice for stratospheric airship. And in addition, for saving energy, airship prefers to fly downwind.
An Examination of Sunspot Number Rates of Growth and Decay in Relation to the Sunspot Cycle
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2006-01-01
On the basis of annual sunspot number averages, sunspot number rates of growth and decay are examined relative to both minimum and maximum amplitudes and the time of their occurrences using cycles 12 through present, the most reliably determined sunspot cycles. Indeed, strong correlations are found for predicting the minimum and maximum amplitudes and the time of their occurrences years in advance. As applied to predicting sunspot minimum for cycle 24, the next cycle, its minimum appears likely to occur in 2006, especially if it is a robust cycle similar in nature to cycles 17-23.
NASA Astrophysics Data System (ADS)
Kennedy, A. M.; Lane, J.; Ebert, M. A.
2014-03-01
Plan review systems often allow dose volume histogram (DVH) recalculation as part of a quality assurance process for trials. A review of the algorithms provided by a number of systems indicated that they are often very similar. One notable point of variation between implementations is in the location and frequency of dose sampling. This study explored the impact such variations can have on DVH based plan evaluation metrics (Normal Tissue Complication Probability (NTCP), min, mean and max dose), for a plan with small structures placed over areas of high dose gradient. Dose grids considered were exported from the original planning system at a range of resolutions. We found that for the CT based resolutions used in all but one plan review systems (CT and CT with guaranteed minimum number of sampling voxels in the x and y direction) results were very similar and changed in a similar manner with changes in the dose grid resolution despite the extreme conditions. Differences became noticeable however when resolution was increased in the axial (z) direction. Evaluation metrics also varied differently with changing dose grid for CT based resolutions compared to dose grid based resolutions. This suggests that if DVHs are being compared between systems that use a different basis for selecting sampling resolution it may become important to confirm that a similar resolution was used during calculation.
Optimization of fixed-range trajectories for supersonic transport aircraft
NASA Astrophysics Data System (ADS)
Windhorst, Robert Dennis
1999-11-01
This thesis develops near-optimal guidance laws that generate minimum fuel, time, or direct operating cost fixed-range trajectories for supersonic transport aircraft. The approach uses singular perturbation techniques to time-scale de-couple the equations of motion into three sets of dynamics, two of which are analyzed in the main body of this thesis and one of which is analyzed in the Appendix. The two-point-boundary-value-problems obtained by application of the maximum principle to the dynamic systems are solved using the method of matched asymptotic expansions. Finally, the two solutions are combined using the matching principle and an additive composition rule to form a uniformly valid approximation of the full fixed-range trajectory. The approach is used on two different time-scale formulations. The first holds weight constant, and the second allows weight and range dynamics to propagate on the same time-scale. Solutions for the first formulation are only carried out to zero order in the small parameter, while solutions for the second formulation are carried out to first order. Calculations for a HSCT design were made to illustrate the method. Results show that the minimum fuel trajectory consists of three segments: a minimum fuel energy-climb, a cruise-climb, and a minimum drag glide. The minimum time trajectory also has three segments: a maximum dynamic pressure ascent, a constant altitude cruise, and a maximum dynamic pressure glide. The minimum direct operating cost trajectory is an optimal combination of the two. For realistic costs of fuel and flight time, the minimum direct operating cost trajectory is very similar to the minimum fuel trajectory. Moreover, the HSCT has three local optimum cruise speeds, with the globally optimum cruise point at the highest allowable speed, if range is sufficiently long. The final range of the trajectory determines which locally optimal speed is best. Ranges of 500 to 6,000 nautical miles, subsonic and supersonic mixed flight, and varying fuel efficiency cases are analyzed. Finally, the payload-range curve of the HSCT design is determined.
One-way coupling of an atmospheric and a hydrologic model in Colorado
Hay, L.E.; Clark, M.P.; Pagowski, M.; Leavesley, G.H.; Gutowski, W.J.
2006-01-01
This paper examines the accuracy of high-resolution nested mesoscale model simulations of surface climate. The nesting capabilities of the atmospheric fifth-generation Pennsylvania State University (PSU)-National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5) were used to create high-resolution, 5-yr climate simulations (from 1 October 1994 through 30 September 1999), starting with a coarse nest of 20 km for the western United States. During this 5-yr period, two finer-resolution nests (5 and 1.7 km) were run over the Yampa River basin in northwestern Colorado. Raw and bias-corrected daily precipitation and maximum and minimum temperature time series from the three MM5 nests were used as input to the U.S. Geological Survey's distributed hydrologic model [the Precipitation Runoff Modeling System (PRMS)] and were compared with PRMS results using measured climate station data. The distributed capabilities of PRMS were provided by partitioning the Yampa River basin into hydrologic response units (HRUs). In addition to the classic polygon method of HRU definition, HRUs for PRMS were defined based on the three MM5 nests. This resulted in 16 datasets being tested using PRMS. The input datasets were derived using measured station data and raw and bias-corrected MM5 20-, 5-, and 1.7-km output distributed to 1) polygon HRUs and 2) 20-, 5-, and 1.7-km-gridded HRUs, respectively. Each dataset was calibrated independently, using a multiobjective, stepwise automated procedure. Final results showed a general increase in the accuracy of simulated runoff with an increase in HRU resolution. In all steps of the calibration procedure, the station-based simulations of runoff showed higher accuracy than the MM5-based simulations, although the accuracy of MM5 simulations was close to station data for the high-resolution nests. Further work is warranted in identifying the causes of the biases in MM5 local climate simulations and developing methods to remove them. ?? 2006 American Meteorological Society.
Headley, John V; Peru, Kerry M; Armstrong, Sarah A; Han, Xiumei; Martin, Jonathan W; Mapolelo, Mmilili M; Smith, Donald F; Rogers, Ryan P; Marshall, Alan G
2009-02-01
Mass spectrometry is a common tool for studying the fate of complex organic compound mixtures in oil sands processed water (OSPW), but a comparison of low-, high- ( approximately 10 000), and ultrahigh-resolution ( approximately 400 000) instrumentation for this purpose has not previously been made. High-resolution quadrupole time-of-flight mass spectrometry (QTOF MS) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), with negative-ion electrospray ionization, provided evidence for the selective dissipation of components in OSPW. Dissipation of oil sands naphthenic acids (NAs with general formula C(n)H(2n+z)O(2) where n is the number of carbon atoms, and Z is zero or a negative even number describing the number of rings) was masked (by components such as fatty acids, O(3), O(5), O(6), O(7), SO(2), SO(3), SO(4), SO(5), SO(6), and NO(4) species) at low resolution (1000) when using a triple quadrupole mass spectrometer. Changes observed in the relative composition of components in OSPW appear to be due primarily to the presence of plants, specifically cattails (Typha latifolia) and their associated microorganisms. The observed dissipation included a range of heteratomic species containing O(2), O(3), O(4), and O(5), present in Athabasca oil sands acid extracts. For the heteratomic O(2) species, namely naphthenic acids, an interesting structural relationship suggests that low and high carbon number NAs are dissipated by the plants preferentially, with a minimum around C(14)/C(15). Other heteratomic species containing O(6), O(7), SO(2), SO(3), SO(4), SO(5), SO(6), and NO(4) appear to be relatively recalcitrant to the cattails and were not dissipated to the same extent in planted systems. Copyright 2009 John Wiley & Sons, Ltd.
Attenuation tomography of the main volcanic regions of the Campanian Plain.
NASA Astrophysics Data System (ADS)
de Siena, Luca; Del Pezzo, Edoardo; Bianco, Francesca
2010-05-01
Passive, high resolution attenuation tomography is used to image the geological structure in the first upper 4 km of shallow crust beneath the Campanian Plain. Images were produced by two separate attenuation tomography studies of the main volcanic regions of the Campanian Plain, Southern Italy, Mt. Vesuvius volcano and Campi Flegrei caldera. The three-dimensional S wave attenuation tomography of Mt. Vesuvius has been obtained with multiple measurements of coda-normalized S-wave spectra of local small magnitude earthquakes. P-wave attenuation tomography was performed using classical spectral methods. The images were obtained inverting the spectral data with a multiple resolution approach expressively designed for attenuation tomography. This allowed to obtain a robust attenuation image of the volumes under the central cone at a maximum resolution of 300 m. The same approach was applied to a data set recorded in the Campi Flegrei area during the 1982-1984 seismic crisis. Inversion ensures a minimum cell size resolution of 500 meters in the zones with sufficient ray coverage, and 1000 meters outside these zones. The study of the resolution matrix as well as the synthetic tests guarantee an optimal reproduction of the input anomalies in the center of the caldera, between 0 and 3.5 km in depth. Results allowed an unprecedented view of several features of the medium, like the residual part of solidified magma from the last eruption, under the central cone of Mt. Vesuvius, and the feeding systems and top of the carbonate basement, 3 km depth below both volcanic areas. Vertical Q contrast image important fault zones, such as the La Starza fault, as well as high attenuation structures that correspond to gas or fluid reservoirs, and reveal the upper part of gas bearing conduits connecting these high attenuation volumes with the magma sill revealed at about 7 km in depth by passive travel-time tomography under the whole Campanian Plain.
Morelli, John N; Ai, Fei; Runge, Val M; Zhang, Wei; Li, Xiaoming; Schmitt, Peter; McNeal, Gary; Michaely, Henrick J; Schoenberg, Stefan O; Miller, Matthew; Gerdes, Clint M; Sincleair, Spencer T; Spratt, Heidi; Attenberger, Ulrike I
2012-09-01
To establish the minimum dose required for detection of renal artery stenosis using high temporal resolution, contrast enhanced MR angiography (MRA) in a porcine model. Surgically created renal artery stenoses were imaged with 3 Tesla MR and digital subtraction angiography (DSA) in 12 swine in this IACUC approved protocol. Gadobutrol was injected intravenously at doses of 0.5, 1, 2, and 4 mL for time-resolved MRA (1.5 × 1.5 mm(2) spatial resolution). Region of interest analysis was performed together with stenosis assessment and qualitative evaluation by two blinded readers. Mean signal to noise ratio (SNR) and contrast to noise ratio (CNR) values were statistically significantly less with the 0.5-mL protocol (P < 0.001). There were no statistically significant differences among the other evaluated doses. Both readers found 10/12 cases with the 0.5-mL protocol to be of inadequate diagnostic quality (κ = 1.0). All other scans were found to be adequate for diagnosis. Accuracies in distinguishing between mild/insignificant (<50%) and higher grade stenoses (>50%) were comparable among the higher-dose protocols (sensitivities 73-93%, specificities 62-100%). Renal artery stenosis can be assessed with very low doses (~0.025 mmol/kg bodyweight) of a high concentration, high relaxivity gadolinium chelate formulation in a swine model, results which are promising with respect to limiting exposure to gadolinium based contrast agents. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sampathkumar, Ashwin
2014-05-01
Conventional photoacoustic imaging (PAI) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target tissue. The resolution of conventional PAI is limited by the sensitivity and bandwidth of the ultrasound transducer. We have developed an all-optical versatile PAI system for characterizing ex vivo and in vivo biological specimens. The system employs noncontact interferometric detection of the acoustic signals that overcomes limitations of conventional PAI. A 532-nm pump laser with a pulse duration of 5 ns excited the PA effect in tissue. Resulting acoustic waves produced surface displacements that were sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a GHz bandwidth. The pump and probe beams were coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam was demodulated using a homodyne interferometer. The detected time-domain signal was time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. Performance was assessed using PA images of ex vivo rabbit lymph node specimens and human tooth samples. A minimum peak surface displacement sensitivity of 0.19 pm was measured. The all-optical PAI (AOPAI) system is well suited for assessment of retinal diseases, caries lesion detection, skin burns, section less histology and pressure or friction ulcers.
A CZT-based blood counter for quantitative molecular imaging.
Espagnet, Romain; Frezza, Andrea; Martin, Jean-Pierre; Hamel, Louis-André; Lechippey, Laëtitia; Beauregard, Jean-Mathieu; Després, Philippe
2017-12-01
Robust quantitative analysis in positron emission tomography (PET) and in single-photon emission computed tomography (SPECT) typically requires the time-activity curve as an input function for the pharmacokinetic modeling of tracer uptake. For this purpose, a new automated tool for the determination of blood activity as a function of time is presented. The device, compact enough to be used on the patient bed, relies on a peristaltic pump for continuous blood withdrawal at user-defined rates. Gamma detection is based on a 20 × 20 × 15 mm 3 cadmium zinc telluride (CZT) detector, read by custom-made electronics and a field-programmable gate array-based signal processing unit. A graphical user interface (GUI) allows users to select parameters and easily perform acquisitions. This paper presents the overall design of the device as well as the results related to the detector performance in terms of stability, sensitivity and energy resolution. Results from a patient study are also reported. The device achieved a sensitivity of 7.1 cps/(kBq/mL) and a minimum detectable activity of 2.5 kBq/ml for 18 F. The gamma counter also demonstrated an excellent stability with a deviation in count rates inferior to 0.05% over 6 h. An energy resolution of 8% was achieved at 662 keV. The patient study was conclusive and demonstrated that the compact gamma blood counter developed has the sensitivity and the stability required to conduct quantitative molecular imaging studies in PET and SPECT.
Hashim, S; Al-Ahbabi, S; Bradley, D A; Webb, M; Jeynes, C; Ramli, A T; Wagiran, H
2009-03-01
Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.
Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation
Roney, Caroline H.; Cantwell, Chris D.; Bayer, Jason D.; Qureshi, Norman A.; Lim, Phang Boon; Tweedy, Jennifer H.; Kanagaratnam, Prapa; Vigmond, Edward J.; Ng, Fu Siong
2017-01-01
Background— Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF. Methods and Results— Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present. Conclusions— The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings. PMID:28500175
NASA Astrophysics Data System (ADS)
Schug, David; Wehner, Jakob; Dueppenbecker, Peter Michael; Weissler, Bjoern; Gebhardt, Pierre; Goldschmidt, Benjamin; Solf, Torsten; Kiessling, Fabian; Schulz, Volkmar
2015-06-01
In 2012, we presented the Hyperion-II D preclinical PET insert which uses Philips Digital Photon Counting's digital SiPMs and is designed to be operated in a 3-T MRI. In this work we use the same platform equipped with scintillators having dimensions closer to a clinical application. This allows an investigation of the time of flight (ToF) performance of the platform and its behavior during simultaneous MR operation. We employ LYSO crystal arrays of 4×4 ×10 mm3 coupled to 4 ×4 PDPC DPC 3200-22 sensors (DPC) resulting in a one-to-one coupling of crystals to read-out channels. Six sensor stacks are mounted onto a singles processing unit in a 2 ×3 arrangement. Two modules are mounted horizontally facing each other on a gantry with a crystal-to-crystal spacing of 217.6 mm (gantry position). A second arrangement places the modules at the maximum distance of approximately 410 mm inside the MR bore (maximum distance position) which brings each module close to the gradient system. The DPCs are cooled down to approximately 5-10° C under operation. We disable 20% of the worst cells and use an overvoltage of Vov = 2.0 V and 2.5 V. To obtain the best time stamps, we use the trigger scheme 1 (first photon trigger), a narrow energy window of 511 ±50 keV and a minimum required light fraction of the main pixel of more than 65% to reject intercrystal scatter. By using a 22Na point source in the isocenter of the modules, the coincidence resolution time (CRT) of the two modules is evaluated inside the MRI system without MR activity and while using highly demanding gradient sequences. Inside the B0 field without any MR activity at an overvoltage of Vov = 2.0 V, the energy resolution is 11.45% (FWHM) and the CRT is 250 ps (FWHM). At an overvoltage of Vov = 2.5 V, the energy resolution is 11.15% (FWHM) and the CRT is 240 ps (FWHM). During a heavy z-gradient sequence (EPI factor: 49, gradient strength: 30 mT/m, slew rate: 192.3 mT/m/ms, TE/TR: 12/25 ms and switching duty cycle: 67%) at the gantry position and an overvoltage of Vov = 2.0 V, the energy resolution is degraded relatively by 4.1% and the CRT by 25%. Using the same sequence but at the maximum distance position and an overvoltage of Vov = 2.5 V, we measure a degradation of the energy resolution of 9.2% and a 52% degradation of the CRT. The Hyperion-IID platform proofs to deliver good timing performance and energy resolution inside the MRI system even under highly demanding gradient sequences.
The 2014 X-Ray Minimum of Eta Carinae as Seen by Swift
NASA Technical Reports Server (NTRS)
Corcoran, M. F.; Liburd, J.; Morris, D.; Russell, C. M. P.; Hamaguchi, K.; Gull, T. R.; Madura, T. I.; Teodoro, M.; Moffat, A. F. J.; Richardson, N. D.
2017-01-01
We report on Swift X-ray Telescope observations of Eta Carinae ( Car), an extremely massive, long-period, highly eccentric binary obtained during the 2014.6 X-ray minimumperiastron passage. These observations show that Car may have been particularly bright in X-rays going into the X-ray minimum state, while the duration of the 2014 X-ray minimum was intermediate between the extended minima seen in 1998.0 and 2003.5 by Rossi X-Ray Timing Explorer (RXTE), and the shorter minimum in 2009.0. The hardness ratios derived from the Swift observations showed a relatively smooth increase to a peak value occurring 40.5 days after the start of the X-ray minimum, though these observations cannot reliably measure the X-ray hardness during the deepest part of the X-ray minimum when contamination by the central constant emission component is significant. By comparing the timings of the RXTE and Swift observations near the X-ray minima, we derive an updated X-ray period of P X equals 2023.7 +/- 0.7 days, in good agreement with periods derived from observations at other wavelengths, and we compare the X-ray changes with variations in the He ii lambda 4686 emission. The middle of the Deep Minimum interval, as defined by the Swift column density variations, is in good agreement with the time of periastron passage derived from the He ii 4686 line variations.
Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.
Jain, Niyati; Zhao, Liang; Liu, John D; Xia, Tianbing
2010-05-04
High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding and base stacking interactions, yielding the high affinity and specificity by the aptamer domain.
Survey of Occupational Noise Exposure in CF Personnel in Selected High-Risk Trades
2003-11-01
peak, maximum level , minimum level , average sound level , time weighted average, dose, projected 8-hour dose, and upper limit time were measured for...10 4.4.2 Maximum Sound Level ...11 4.4.3 Minimum Sound Level
A review of the developments of radioxenon detectors for nuclear explosion monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivels, Ciara B.; McIntyre, Justin I.; Bowyer, Theodore W.
Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.
NASA Astrophysics Data System (ADS)
Wang, Y.; Hendy, I. L.; Thunell, R.
2017-12-01
The short duration of instrumental records limits our understanding of nitrogen loss to denitrification on interannual to centennial time scales. Bulk sediment δ15N is widely applied as a proxy for water column denitrification in oxygen minimum zones (OMZ). Lying within the California OMZ, Santa Barbara Basin (SBB) provides an ideal location for producing a high-resolution δ15N record for denitrification reconstruction. Here we present a high-resolution ( 1-2 y) 2000-year record of δ15N from SPR0901-03KC (34°16.99'N, 120°2.408'W; 586 m depth). Grey flood layer sediments are associated with abrupt decreases of 0.9 to 2.5 ‰ in the δ15N record. After removal of flood-affected samples from the record, δ15N varies from 6.8 to 8.7 ‰ with an average of 7.7 ‰. After 1800 AD δ15N experienced a sustained decrease to its minimum at the core top. Comparison with the principal components (PCs) of scanning X-ray fluorescence (XRF) elemental counts allow for further investigation of factors driving δ15N variations. The first PC (PC1) of scanning XRF elemental records contains high loadings for lithogenic sediment components while the second PC (PC2) has high loadings for biogenic components. The δ15N record is positively correlated with PC2 (r=0.2521, p<0.01) throughout the core while negatively correlated with PC1 relationship (r=-0.2596, p<0.01) between AD 1000-1800. Peaks of δ15N and PC2 (high primary productivity) coincide with intensified upwelling intervals supported by high anchovy scale counts, and bloom-forming diatoms (Rhizosolenia spp.) and silicoflagellates (D. speculum) from a nearby core. These upwelling intervals coincide with low PC1 (low river runoff). The coherent variability appears to indicate an atmospheric influence on the marine environment through the relative intensity of North Pacific High (NPH). Enhanced NPH induces stronger coastal upwelling with associated upward advection of δ15N-enriched subsurface water and higher primary productivity in the surface ocean. Subsurface waters are fed by California Undercurrent originated from the north Eastern Tropical Pacific, where active water column denitrification occurs generating high δ15N values.
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos
2015-02-01
In recent years video traffic has become the dominant application on the Internet with global year-on-year increases in video-oriented consumer services. Driven by improved bandwidth in both mobile and fixed networks, steadily reducing hardware costs and the development of new technologies, many existing and new classes of commercial and industrial video applications are now being upgraded or emerging. Some of the use cases for these applications include areas such as public and private security monitoring for loss prevention or intruder detection, industrial process monitoring and critical infrastructure monitoring. The use of video is becoming commonplace in defence, security, commercial, industrial, educational and health contexts. Towards optimal performances, the design or optimisation in each of these applications should be context aware and task oriented with the characteristics of the video stream (frame rate, spatial resolution, bandwidth etc.) chosen to match the use case requirements. For example, in the security domain, a task-oriented consideration may be that higher resolution video would be required to identify an intruder than to simply detect his presence. Whilst in the same case, contextual factors such as the requirement to transmit over a resource-limited wireless link, may impose constraints on the selection of optimum task-oriented parameters. This paper presents a novel, conceptually simple and easily implemented method of assessing video quality relative to its suitability for a particular task and dynamically adapting videos streams during transmission to ensure that the task can be successfully completed. Firstly we defined two principle classes of tasks: recognition tasks and event detection tasks. These task classes are further subdivided into a set of task-related profiles, each of which is associated with a set of taskoriented attributes (minimum spatial resolution, minimum frame rate etc.). For example, in the detection class, profiles for intruder detection will require different temporal characteristics (frame rate) from those used for detection of high motion objects such as vehicles or aircrafts. We also define a set of contextual attributes that are associated with each instance of a running application that include resource constraints imposed by the transmission system employed and the hardware platforms used as source and destination of the video stream. Empirical results are presented and analysed to demonstrate the advantages of the proposed schemes.
NASA Astrophysics Data System (ADS)
Xiong, Qiufen; Hu, Jianglin
2013-05-01
The minimum/maximum (Min/Max) temperature in the Yangtze River valley is decomposed into the climatic mean and anomaly component. A spatial interpolation is developed which combines the 3D thin-plate spline scheme for climatological mean and the 2D Barnes scheme for the anomaly component to create a daily Min/Max temperature dataset. The climatic mean field is obtained by the 3D thin-plate spline scheme because the relationship between the decreases in Min/Max temperature with elevation is robust and reliable on a long time-scale. The characteristics of the anomaly field tend to be related to elevation variation weakly, and the anomaly component is adequately analyzed by the 2D Barnes procedure, which is computationally efficient and readily tunable. With this hybridized interpolation method, a daily Min/Max temperature dataset that covers the domain from 99°E to 123°E and from 24°N to 36°N with 0.1° longitudinal and latitudinal resolution is obtained by utilizing daily Min/Max temperature data from three kinds of station observations, which are national reference climatological stations, the basic meteorological observing stations and the ordinary meteorological observing stations in 15 provinces and municipalities in the Yangtze River valley from 1971 to 2005. The error estimation of the gridded dataset is assessed by examining cross-validation statistics. The results show that the statistics of daily Min/Max temperature interpolation not only have high correlation coefficient (0.99) and interpolation efficiency (0.98), but also the mean bias error is 0.00 °C. For the maximum temperature, the root mean square error is 1.1 °C and the mean absolute error is 0.85 °C. For the minimum temperature, the root mean square error is 0.89 °C and the mean absolute error is 0.67 °C. Thus, the new dataset provides the distribution of Min/Max temperature over the Yangtze River valley with realistic, successive gridded data with 0.1° × 0.1° spatial resolution and daily temporal scale. The primary factors influencing the dataset precision are elevation and terrain complexity. In general, the gridded dataset has a relatively high precision in plains and flatlands and a relatively low precision in mountainous areas.
NASA Astrophysics Data System (ADS)
Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.
2015-10-01
Reliable river flow forecasts play a key role in flood risk mitigation. Among different approaches of river flow forecasting, data driven approaches have become increasingly popular in recent years due to their minimum information requirements and ability to simulate nonlinear and non-stationary characteristics of hydrological processes. In this study, attempts are made to apply four different types of data driven approaches, namely traditional artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), wavelet neural networks (WNN), and, hybrid ANFIS with multi resolution analysis using wavelets (WNF). Developed models applied for real time flood forecasting at Casino station on Richmond River, Australia which is highly prone to flooding. Hourly rainfall and runoff data were used to drive the models which have been used for forecasting with 1, 6, 12, 24, 36 and 48 h lead-time. The performance of models further improved by adding an upstream river flow data (Wiangaree station), as another effective input. All models perform satisfactorily up to 12 h lead-time. However, the hybrid wavelet-based models significantly outperforming the ANFIS and ANN models in the longer lead-time forecasting. The results confirm the robustness of the proposed structure of the hybrid models for real time runoff forecasting in the study area.
Resolution Limits of Nanoimprinted Patterns by Fluorescence Microscopy
NASA Astrophysics Data System (ADS)
Kubo, Shoichi; Tomioka, Tatsuya; Nakagawa, Masaru
2013-06-01
The authors investigated optical resolution limits to identify minimum distances between convex lines of fluorescent dye-doped nanoimprinted resist patterns by fluorescence microscopy. Fluorescent ultraviolet (UV)-curable resin and thermoplastic resin films were transformed into line-and-space patterns by UV nanoimprinting and thermal nanoimprinting, respectively. Fluorescence immersion observation needed an immersion medium immiscible to the resist films, and an ionic liquid of triisobutyl methylphosphonium tosylate was appropriate for soluble thermoplastic polystyrene patterns. Observation with various numerical aperture (NA) values and two detection wavelength ranges showed that the resolution limits were smaller than the values estimated by the Sparrow criterion. The space width to identify line patterns became narrower as the line width increased. The space width of 100 nm was demonstrated to be sufficient to resolve 300-nm-wide lines in the detection wavelength range of 575-625 nm using an objective lens of NA= 1.40.
High-resolution Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE
Moriya, Toshio; Saur, Michael; Stabrin, Markus; Merino, Felipe; Voicu, Horatiu; Huang, Zhong; Penczek, Pawel A.; Raunser, Stefan; Gatsogiannis, Christos
2017-01-01
SPHIRE (SPARX for High-Resolution Electron Microscopy) is a novel open-source, user-friendly software suite for the semi-automated processing of single particle electron cryo-microscopy (cryo-EM) data. The protocol presented here describes in detail how to obtain a near-atomic resolution structure starting from cryo-EM micrograph movies by guiding users through all steps of the single particle structure determination pipeline. These steps are controlled from the new SPHIRE graphical user interface and require minimum user intervention. Using this protocol, a 3.5 Å structure of TcdA1, a Tc toxin complex from Photorhabdus luminescens, was derived from only 9500 single particles. This streamlined approach will help novice users without extensive processing experience and a priori structural information, to obtain noise-free and unbiased atomic models of their purified macromolecular complexes in their native state. PMID:28570515
Ultra-narrow pulse generator with precision-adjustable pulse width
NASA Astrophysics Data System (ADS)
Fu, Zaiming; Liu, Hanglin
2018-05-01
In this paper, a novel ultra-narrow pulse generation approach is proposed. It is based on the decomposition and synthesis of pulse edges. Through controlling their relative delay, an ultra-narrow pulse could be generated. By employing field programmable gate array digital synthesis technology, the implemented pulse generator is with programmable ability. The amplitude of pulse signals is controlled by the radio frequency amplifiers and bias tees, and high precision can be achieved. More importantly, the proposed approach can break through the limitation of device's propagation delay and optimize the resolution and the accuracy of the pulse width significantly. The implemented pulse generator has two channels, whose minimum pulse width, frequency range, and amplitude range are 100 ps, 15 MHz-1.5 GHz, and 0.1 Vpp-1.8 Vpp, respectively. Both resolution of pulse width and channel delay are 1 ps, and amplitude resolution is 10 mVpp.
NASA Technical Reports Server (NTRS)
Swenson, B. L.; Edsinger, L. E.
1977-01-01
The preliminary feasibility of remote high-resolution infrared imagery of the space shuttle orbiter lower surface during entry to obtain accurate measurements of aerodynamic heat transfer to that vehicle was examined. In general, it was determined that such such images can be taken from an existing aircraft/telescope system (the C-141 AIRO) with a minimum modification or addition of systems using available technology. These images will have a spatial resolution of about 0.3 m and a temperature resolution much better than 2.5 percent. The data from these images will be at conditions and at a scale not reproducible in ground based facilities and should aid in the reduction of the prudent factors of safety required to account for phenomenological uncertainties on the thermal protection system design. Principal phenomena to be observed include laminar heating, boundary-layer transition, turbulent heating, surface catalysis, and flow separation and reattachment.
Pinhole X-ray/coronagraph optical systems concept definition study
NASA Technical Reports Server (NTRS)
Zehnpfenning, T. F.; Rappaport, S.; Wattson, R. B.
1980-01-01
The Pinhole X-ray/Coronagraph Concept utilizes the long baselines possible in Earth orbit with the space transportation system (shuttle) to produce observations of solar X-ray emission features at extremely high spatial resolution (up to 0.1 arc second) and high energy (up to 100 keV), and also white light and UV observations of the inner and outer corona at high spatial and/or spectral resolution. An examination of various aspects of a preliminary version of the X-ray Pinhole/Coronagraph Concept is presented. For this preliminary version, the instrument package will be carried in the shuttle bay on a mounting platform, and will be connected to the occulter with a deployable boom such as an Astromast. Generally, the spatial resolution, stray light levels, and minimum limb observing angles improve as the boom length increases. However, the associated engineering problems also become more serious with greater boom lengths.
Scattered electrons in microscopy and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottensmeyer, F.P.
The use of scattered electrons alone for direct imaging of biological specimens makes it possible to obtain structural information at atomic and near-atomic spatial resolutions of 0.3 to 0.5 nanometer. While this is not as good as the resolution possible with x-ray crystallography, such an approach provides structural information rapidly on individual macromolecules that have not been, and possibly cannot be, crystallized. Analysis of the spectrum of energies of scattered electrons and imaging of the latter with characteristic energy bands within the spectrum produces a powerful new technique of atomic microanalysis. This technique, which has a spatial resolution of aboutmore » 0.5 nanometer and a minimum detection sensitivity of about 50 atoms of phosphorus, is especially useful for light atom analysis and appears to have applications in molecular biology, cell biology, histology, pathology, botany, and many other fields.« less
Scattered electrons in microscopy and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottensmeyer, F.P.
The use of scattered electrons alone for direct imaging of biological specimens makes it possible to obtain structural information at atomic and near-atomic spatial resolutions of 0.3 to 0.5 nanometer. While this is not as good as the resolution possible with x-ray crystallography, such an approach provides structural information rapidly on individual macromolecules that have not been, and possibly cannot be, crystallized. Analysis of the spectrum of energies of scattered electrons and imaging of the latter with characteristic energy bands within the spectrum produce a powerful new technique of atomic microanalysis. This technique, which has a spatial resolution of aboutmore » 0.5 nanometer and a minimum detection sensitivity of about 50 atoms of phosphorus, is especially useful for light atom analysis and appears to have applications in molecular biology, cell biology, histology, pathology, botany, and many other fields.« less
Ponce, Ninez; Shimkhada, Riti; Raub, Amy; Daoud, Adel; Nandi, Arijit; Richter, Linda; Heymann, Jody
2017-08-02
There is recognition that social protection policies such as raising the minimum wage can favourably impact health, but little evidence links minimum wage increases to child health outcomes. We used multi-year data (2003-2012) on national minimum wages linked to individual-level data from the Demographic and Health Surveys (DHS) from 23 low- and middle-income countries (LMICs) that had least two DHS surveys to establish pre- and post-observation periods. Over a pre- and post-interval ranging from 4 to 8 years, we examined minimum wage growth and four nutritional status outcomes among children under 5 years: stunting, wasting, underweight, and anthropometric failure. Using a differences-in-differences framework with country and time-fixed effects, a 10% increase in minimum wage growth over time was associated with a 0.5 percentage point decline in stunting (-0.054, 95% CI (-0.084,-0.025)), and a 0.3 percentage point decline in failure (-0.031, 95% CI (-0.057,-0.005)). We did not observe statistically significant associations between minimum wage growth and underweight or wasting. We found similar results for the poorest households working in non-agricultural and non-professional jobs, where minimum wage growth may have the most leverage. Modest increases in minimum wage over a 4- to 8-year period might be effective in reducing child undernutrition in LMICs.
Two-way communication and analysis program on LANDSAT
NASA Technical Reports Server (NTRS)
1983-01-01
Community workshops, field visits, telephone surveys, and other research reveals that professionals at the substate level are interested in and open to consideration of LANDSAT as a planning and resource management tool, but are at the same time skeptical about some of the inherent problems with LANDSAT such as cost, resolution, frequency of coverage, and data continuity. The principal requirements for increasing the utilization of LANDSAT by potential substate users were identified and documented. Without a committment from the Federal Government for increased substrate utilization and the availability of trained professionals to meet the needs of a largely new user community, substrate activity is likely to remain at a minimum. Well conceived and well executed demonstration projects could play a critical role is shaping the technology's ability to be more sensitive to substate user needs and interests as well as validating the effectiveness of this data to a skeptical audience.
Development of a Distributed Crack Sensor Using Coaxial Cable.
Zhou, Zhi; Jiao, Tong; Zhao, Peng; Liu, Jia; Xiao, Hai
2016-07-29
Cracks, the important factor of structure failure, reflect structural damage directly. Thus, it is significant to realize distributed, real-time crack monitoring. To overcome the shortages of traditional crack detectors, such as the inconvenience of installation, vulnerability, and low measurement range, etc., an improved topology-based cable sensor with a shallow helical groove on the outside surface of a coaxial cable is proposed in this paper. The sensing mechanism, fabrication method, and performances are investigated both numerically and experimentally. Crack monitoring experiments of the reinforced beams are also presented in this paper, illustrating the utility of this sensor in practical applications. These studies show that the sensor can identify a minimum crack width of 0.02 mm and can measure multiple cracks with a spatial resolution of 3 mm. In addition, it is also proved that the sensor performs well to detect the initiation and development of cracks until structure failure.
Development of a Distributed Crack Sensor Using Coaxial Cable
Zhou, Zhi; Jiao, Tong; Zhao, Peng; Liu, Jia; Xiao, Hai
2016-01-01
Cracks, the important factor of structure failure, reflect structural damage directly. Thus, it is significant to realize distributed, real-time crack monitoring. To overcome the shortages of traditional crack detectors, such as the inconvenience of installation, vulnerability, and low measurement range, etc., an improved topology-based cable sensor with a shallow helical groove on the outside surface of a coaxial cable is proposed in this paper. The sensing mechanism, fabrication method, and performances are investigated both numerically and experimentally. Crack monitoring experiments of the reinforced beams are also presented in this paper, illustrating the utility of this sensor in practical applications. These studies show that the sensor can identify a minimum crack width of 0.02 mm and can measure multiple cracks with a spatial resolution of 3 mm. In addition, it is also proved that the sensor performs well to detect the initiation and development of cracks until structure failure. PMID:27483280
Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...
2016-01-20
The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less
Surface dose measurement for helical tomotherapy.
Snir, Jonatan A; Mosalaei, Homeira; Jordan, Kevin; Yartsev, Slav
2011-06-01
To compare the surface dose measurements made by different dosimeters for the helical tomotherapy (HT) plan in the case of the target close to the surface. Surface dose measurements in different points for the HT plan to deliver 2 Gy to the planning target volume (PTV) at 5 mm below the surface of the cylindrical phantom were performed by radiochromic films, single use metal oxide semiconductor field-effect transistor (MOSFET) dosimeters, silicon IVD QED diode, and optically stimulated luminescence (OSL) dosimeters. The measured doses by all dosimeters were within 12 +/- 8% difference of each other. Radiochromic films, EBT, and EBT2, provide high spatial resolution, although it is difficult to get accurate measurements of dose. Both the OSL and QED measured similar dose to that of the MOSFET detectors. The QED dosimeter is promising as a reusable on-line wireless dosimeter, while the OSL dosimeters are easier to use, require minimum setup time and are very precise.
A Giant Planet Around a Metal-Poor Star of Extragalactic Origin
NASA Astrophysics Data System (ADS)
Setiawan, Johny; Klement, Rainer J.; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Rodmann, Jens; Schulze-Hartung, Tim
2010-12-01
Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star’s periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.
Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research
NASA Astrophysics Data System (ADS)
Hoffmann, R.; Schultz, J. A.; Schellhorn, R.; Rybacki, E.; Keupp, H.; Gerden, S. R.; Lemanis, R.; Zachow, S.
2014-05-01
Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum/maximum size of objects that can be studied, the degree of post-processing needed and availability. The main application of the methods is seen in morphometry and volumetry of cephalopod shells. In particular we present a method for precise buoyancy calculation. Therefore, cephalopod shells were scanned together with different reference bodies, an approach developed in medical sciences. It is necessary to know the volume of the reference bodies, which should have similar absorption properties like the object of interest. Exact volumes can be obtained from surface scanning. Depending on the dimensions of the study object different computed tomography techniques were applied.
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina
2010-01-01
Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).
NASA Astrophysics Data System (ADS)
Hugenholtz, Chris H.; Whitehead, Ken; Brown, Owen W.; Barchyn, Thomas E.; Moorman, Brian J.; LeClair, Adam; Riddell, Kevin; Hamilton, Tayler
2013-07-01
Small unmanned aircraft systems (sUAS) are a relatively new type of aerial platform for acquiring high-resolution remote sensing measurements of Earth surface processes and landforms. However, despite growing application there has been little quantitative assessment of sUAS performance. Here we present results from a field experiment designed to evaluate the accuracy of a photogrammetrically-derived digital terrain model (DTM) developed from imagery acquired with a low-cost digital camera onboard an sUAS. We also show the utility of the high-resolution (0.1 m) sUAS imagery for resolving small-scale biogeomorphic features. The experiment was conducted in an area with active and stabilized aeolian landforms in the southern Canadian Prairies. Images were acquired with a Hawkeye RQ-84Z Areohawk fixed-wing sUAS. A total of 280 images were acquired along 14 flight lines, covering an area of 1.95 km2. The survey was completed in 4.5 h, including GPS surveying, sUAS setup and flight time. Standard image processing and photogrammetric techniques were used to produce a 1 m resolution DTM and a 0.1 m resolution orthorectified image mosaic. The latter revealed previously un-mapped bioturbation features. The vertical accuracy of the DTM was evaluated with 99 Real-Time Kinematic GPS points, while 20 of these points were used to quantify horizontal accuracy. The horizontal root mean squared error (RMSE) of the orthoimage was 0.18 m, while the vertical RMSE of the DTM was 0.29 m, which is equivalent to the RMSE of a bare earth LiDAR DTM for the same site. The combined error from both datasets was used to define a threshold of the minimum elevation difference that could be reliably attributed to erosion or deposition in the seven years separating the sUAS and LiDAR datasets. Overall, our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR for geomorphological mapping.
NASA Astrophysics Data System (ADS)
Reichelmann, Dana F. C.; Gouw-Bouman, Marjolein T. I. J.; Hoek, Wim Z.; van Lanen, Rowin J.; Stouthamer, Esther; Jansma, Esther
2016-04-01
High-resolution palaeoclimate reconstructions are essential to identify possible influences of climate variability on landscape evolution and landscape-related cultural changes (e.g., shifting settlement patterns and long-distance trade relations). North-western Europe is an ideal research area for comparison between climate variability and cultural transitions given its geomorphological diversity and the significant cultural changes that took place in this region during the last two millennia (e.g., the decline of the Roman Empire and the transition to medieval kingdoms). Compared to more global climate records, such as ice cores and marine sediments, terrestrial climate proxies have the advantage of representing a relatively short response time to regional climatic change. Furthermore for this region large quantity of climate reconstructions is available covering the last millennium, whereas for the first millennium AD only few high resolution climate reconstructions are available. We compiled climate reconstructions for sites in North-western Europe from the literature and its underlying data. All these reconstructions cover the time period of AD 1 to 1000. We only selected data with an annual to decadal resolution and a minimum resolution of 50 years. This resulted in 18 climate reconstructions from different archives such as chironomids (1), pollen (4), Sphagnum cellulose (1), stalagmites (6), testate amoebae (4), and tree-rings (2). The compilation of the different temperature reconstructions shows similar trends in most of the records. Colder conditions since AD 300 for a period of approximately 400 years and warmer conditions after AD 700 become apparent. A contradicting signal is found before AD 300 with warmer conditions indicated by most of the records but not all. This is likely the result of the use of different proxies, reflecting temperatures linked to different seasons. The compilation of the different precipitation reconstructions also show similar trends. Dry periods are indicated by all records around AD 400 and 600, although precipitation records do not show the same spatial continuity as the temperature proxies. This study shows that clear climate changes occurred over North-western Europe in the period between AD 300 and 700, which are partly reflected by changes in seasonality.
The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment
NASA Astrophysics Data System (ADS)
Williams, J.-P.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E.
2017-02-01
The Diviner Lunar Radiometer Experiment onboard the Lunar Reconnaissance Orbiter (LRO) has been acquiring solar reflectance and mid-infrared radiance measurements nearly continuously since July of 2009. Diviner is providing the most comprehensive view of how regoliths on airless bodies store and exchange thermal energy with the space environment. Approximately a quarter trillion calibrated radiance measurements of the Moon, acquired over 5.5 years by Diviner, have been compiled into a 0.5° resolution global dataset with a 0.25 h local time resolution. Maps generated with this dataset provide a global perspective of the surface energy balance of the Moon and reveal the complex and extreme nature of the lunar surface thermal environment. Our achievable map resolution, both spatially and temporally, will continue to improve with further data acquisition. Daytime maximum temperatures are sensitive to the albedo of the surface and are ∼387-397 K at the equator, dropping to ∼95 K just before sunrise, though anomalously warm areas characterized by high rock abundances can be > 50 K warmer than the zonal average nighttime temperatures. An asymmetry is observed between the morning and afternoon temperatures due to the thermal inertia of the lunar regolith with the dusk terminator ∼30 K warmer than the dawn terminator at the equator. An increase in albedo with incidence angle is required to explain the observed decrease in temperatures with latitude. At incidence angles exceeding ∼40°, topography and surface roughness influence temperatures resulting in increasing scatter in temperatures and anisothermality between Diviner channels. Nighttime temperatures are sensitive to the thermophysical properties of the regolith. High thermal inertia (TI) materials such as large rocks, remain warmer during the long lunar night and result in anomalously warm nighttime temperatures and anisothermality in the Diviner channels. Anomalous maximum and minimum temperatures are highlighted by subtracting the zonal mean temperatures from maps. Terrains can be characterized as low or high reflectance and low or high TI. Low maximum temperatures result from high reflectance surfaces while low minimum temperatures from low-TI material. Conversely, high maximum temperatures result from dark surface, and high minimum temperatures from high-TI materials. Impact craters are found to modify regolith properties over large distances. The thermal signature of Tycho is asymmetric, consistent with an oblique impact coming from the west. Some prominent crater rays are visible in the thermal data and require material with a higher thermal inertial than nominal regolith. The influence of the formation of the Orientale basin on the regolith properties is observable over a substantial portion of the western hemisphere despite its age (∼3.8 Gyr), and may have contributed to mixing of highland and mare material on the southwest margin of Oceanus Procellarum where the gradient in radiative properties at the mare-highland contact is broad (∼200 km).
Efficiency and large deviations in time-asymmetric stochastic heat engines
Gingrich, Todd R.; Rotskoff, Grant M.; Vaikuntanathan, Suriyanarayanan; ...
2014-10-24
In a stochastic heat engine driven by a cyclic non-equilibrium protocol, fluctuations in work and heat give rise to a fluctuating efficiency. Using computer simulations and tools from large deviation theory, we have examined these fluctuations in detail for a model two-state engine. We find in general that the form of efficiency probability distributions is similar to those described by Verley et al (2014 Nat. Commun. 5 4721), in particular featuring a local minimum in the long-time limit. In contrast to the time-symmetric engine protocols studied previously, however, this minimum need not occur at the value characteristic of a reversible Carnot engine. Furthermore, while the local minimum may reside at the global minimum of a large deviation rate function, it does not generally correspond to the least likely efficiency measured over finite time. Lastly, we introduce a general approximation for the finite-time efficiency distribution,more » $$P(\\eta )$$, based on large deviation statistics of work and heat, that remains very accurate even when $$P(\\eta )$$ deviates significantly from its large deviation form.« less
Time optimal paths for high speed maneuvering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
NASA Technical Reports Server (NTRS)
Eaton, J. E.; Cherepashchuk, A. M.; Khaliullin, K. F.
1982-01-01
The 1200-1900 angstrom region and fine error sensor observations in the optical for V444 Cyg were continuously observed. More than half of a primary minimum and almost a complete secondary minimum were observed. It is found that the time of minimum for the secondary eclipse is consistent with that for primary eclipse, and the ultraviolet times of minimum are consistent with the optical ones. The spectrum shows a considerable amount of phase dependence. The general shaps and depths of the light curves for the FES signal and the 1565-1900 angstrom continuum are similar to those for the blue continuum. The FES, however, detected an atmospheric eclipse in line absorption at about the phase the NIV absorption was strongest. It is suggested that there is a source of continuum absorption shortward of 1460 angstrom which exists throughout a large part of the extended atmosphere and which, by implication, must redden considerably the ultraviolet continuua of WN stars. A fairly high degree of ionization for the inner part of the WN star a atmosphere is implied.
Negative-tone imaging with EUV exposure toward 13nm hp
NASA Astrophysics Data System (ADS)
Tsubaki, Hideaki; Nihashi, Wataru; Tsuchihashi, Toru; Yamamoto, Kei; Goto, Takahiro
2016-03-01
Negative-tone imaging (NTI) with EUV exposure has major advantages with respect to line-width roughness (LWR) and resolution due in part to polymer swelling and favorable dissolution mechanics. In NTI process, both resist and organic solvents play important roles in determining lithography performances. The present study describes novel chemically amplified resist materials based on NTI technology with EUV using a specific organic solvents. Lithographic performances of NTI process were described in this paper under exposures using ASML NXE:3300 EUV scanner at imec. It is emphasized that 14 nm hp was nicely resolved under exposure dose of 37 mJ/cm2 without any bridge and collapse, which are attributed to the low swelling character of NTI process. Although 13 nm hp resolution was potentially obtained, a pattern collapse still restricts its resolution in case coating resist film thickness is 40 nm. Dark mask limitation due mainly to mask defectivity issue makes NTI with EUV favorable approach for printing block mask to produce logic circuit. A good resolution of CD-X 21 nm/CD-Y 32 nm was obtained for block mask pattern using NTI with usable process window and dose of 49 mJ/cm2. Minimum resolution now reaches CD-X 17 nm / CD-Y 23 nm for the block. A 21 nm block mask resolution was not affected by exposure dose and explored toward low dose down to 18 mJ/cm2 by reducing quencher loading. In addition, there was a negligible amount of increase in LCDU for isolated dot pattern when decreasing exposure dose from 66 mJ/cm2 to 24 mJ/cm2. On the other hand, there appeared tradeoff relationship between LCDU and dose for dense dot pattern, indicating photon-shot noise restriction, but strong dependency on patterning features. Design to improve acid generation efficiency was described based on acid generation mechanism in traditional chemically amplified materials which contains photo-acid generator (PAG) and polymer. Conventional EUV absorber comprises of organic compounds is expected to have 1.6 times higher EUV absorption than polyhydroxystyrene based on calculation. However, observed value of acid amount was comparable or significantly worse than polyhydroxystyrene.
Yang, Hui; Trouillon, Raphaël; Huszka, Gergely; Gijs, Martin A M
2016-08-10
Dielectric microspheres with appropriate refractive index can image objects with super-resolution, that is, with a precision well beyond the classical diffraction limit. A microsphere is also known to generate upon illumination a photonic nanojet, which is a scattered beam of light with a high-intensity main lobe and very narrow waist. Here, we report a systematic study of the imaging of water-immersed nanostructures by barium titanate glass microspheres of different size. A numerical study of the light propagation through a microsphere points out the light focusing capability of microspheres of different size and the waist of their photonic nanojet. The former correlates to the magnification factor of the virtual images obtained from linear test nanostructures, the biggest magnification being obtained with microspheres of ∼6-7 μm in size. Analyzing the light intensity distribution of microscopy images allows determining analytically the point spread function of the optical system and thereby quantifies its resolution. We find that the super-resolution imaging of a microsphere is dependent on the waist of its photonic nanojet, the best resolution being obtained with a 6 μm Ø microsphere, which generates the nanojet with the minimum waist. This comparison allows elucidating the super-resolution imaging mechanism.
NASA Astrophysics Data System (ADS)
Simon, Quentin; Thouveny, Nicolas; Bourlès, Didier L.; Bassinot, Franck; Savranskaia, Tatiana; Valet, Jean-Pierre; Aster Team
2018-05-01
New high-resolution authigenic 10Be/9Be ratio (Be-ratio) records covering the last geomagnetic reversal, i.e. the Matuyama-Brunhes transition (MBT), have been obtained and set on a time scale using benthic δ18O (Cibicides wuellerstorfi) records. The geographic distribution of the four studied sites allows global comparison between the North Atlantic, Indian and Pacific Oceans. All Be-ratio records contain a two-fold increase triggered by the geomagnetic dipole moment (GDM) collapse associated with the MBT. The stratigraphic position of the Be-ratio spike, relative to marine isotope stages, allows establishment of a robust astrochronological framework for the MBT, anchoring its age between 778 and 766 ka (average mid-peaks at 772 ka), which is consistent with all other available 10Be-proxy records from marine, ice and loess archives. The global 10Be atmospheric production doubling represents an increase of more than 300 atoms m-2 s-1 that is compatible with the increased magnitude of atmospheric 10Be production obtained by simulations between the present GDM and a null-GDM. The minimum 10Be-derived GDM average computed for the 776-771 ka interval is 1.7 ± 0.4 ×1022 Am2, in agreement with model simulations and absolute paleointensities of transitional lava flows.
Optimization of printing techniques for electrochemical biosensors
NASA Astrophysics Data System (ADS)
Zainuddin, Ahmad Anwar; Mansor, Ahmad Fairuzabadi Mohd; Rahim, Rosminazuin Ab; Nordin, Anis Nurashikin
2017-03-01
Electrochemical biosensors show great promise for point-of-care applications due to their low cost, portability and compatibility with microfluidics. The miniature size of these sensors provides advantages in terms of sensitivity, specificity and allows them to be mass produced in arrays. The most reliable fabrication technique for these sensors is lithography followed by metal deposition using sputtering or chemical vapor deposition techniques. This technique which is usually done in the cleanroom requires expensive masking followed by deposition. Recently, cheaper printing techniques such as screen-printing and ink-jet printing have become popular due to its low cost, ease of fabrication and mask-less method. In this paper, two different printing techniques namely inkjet and screen printing are demonstrated for an electrochemical biosensor. For ink-jet printing technique, optimization of key printing parameters, such as pulse voltages, drop spacing and waveform setting, in-house temperature and cure annealing for obtaining the high quality droplets, are discussed. These factors are compared with screen-printing parameters such as mesh size, emulsion thickness, minimum spacing of lines and curing times. The reliability and reproducibility of the sensors are evaluated using scotch tape test, resistivity and profile-meter measurements. It was found that inkjet printing is superior because it is mask-less, has minimum resolution of 100 µm compared to 200 µm for screen printing and higher reproducibility rate of 90% compared to 78% for screen printing.
Diamond thin film temperature and heat-flux sensors
NASA Technical Reports Server (NTRS)
Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.
1995-01-01
Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.
Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations
NASA Technical Reports Server (NTRS)
Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.
2011-01-01
The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.
Herschel Space Observatory - Overview and Observing Opportunities
NASA Astrophysics Data System (ADS)
Pilbratt, G. L.
2005-12-01
The Herschel Space Observatory is the fourth cornerstone mission in the European Space Agency (ESA) science programme. It will perform imaging photometry and spectroscopy in the far infrared and submillimetre part of the spectrum, covering approximately the 55-650 micron range. The key science objectives emphasize current questions connected to the formation and evolution of galaxies, stars, and our own planetary system. However, Herschel will offer unique observing capabilities available to the entire astronomical community. Herschel will carry a 3.5 metre diameter passively cooled telescope. The science payload complement - two cameras/medium resolution spectrometers (PACS and SPIRE) and a very high resolution heterodyne spectrometer (HIFI) - will be housed in a superfluid helium cryostat. The ground segment will be jointly developed by the ESA, the three instrument teams, and NASA/IPAC. Once operational in orbit around L2 sometime in 2008, Herschel will offer a minimum of 3 years of routine observations; roughly 2/3 of the available observing time is open to the general astronomical community through a standard competitive proposal procedure. I will report on the current implementation status of the various elements that together make up the Herschel mission, introduce the mission from the perspective of the prospective user of this major facility, and describe the plans for announcing observing opportunities.
Glasses-free large size high-resolution three-dimensional display based on the projector array
NASA Astrophysics Data System (ADS)
Sang, Xinzhu; Wang, Peng; Yu, Xunbo; Zhao, Tianqi; Gao, Xing; Xing, Shujun; Yu, Chongxiu; Xu, Daxiong
2014-11-01
Normally, it requires a huge amount of spatial information to increase the number of views and to provide smooth motion parallax for natural three-dimensional (3D) display similar to real life. To realize natural 3D video display without eye-wears, a huge amount of 3D spatial information is normal required. However, minimum 3D information for eyes should be used to reduce the requirements for display devices and processing time. For the 3D display with smooth motion parallax similar to the holographic stereogram, the size the virtual viewing slit should be smaller than the pupil size of eye at the largest viewing distance. To increase the resolution, two glass-free 3D display systems rear and front projection are presented based on the space multiplexing with the micro-projector array and the special designed 3D diffuse screens with the size above 1.8 m× 1.2 m. The displayed clear depths are larger 1.5m. The flexibility in terms of digitized recording and reconstructed based on the 3D diffuse screen relieves the limitations of conventional 3D display technologies, which can realize fully continuous, natural 3-D display. In the display system, the aberration is well suppressed and the low crosstalk is achieved.
Amin Nili, Vahid; Mansouri, Ehsan; Kavehvash, Zahra; Fakharzadeh, Mohammad; Shabany, Mahdi; Khavasi, Amin
2018-01-01
In this paper, a closed-form two-dimensional reconstruction technique for hybrid frequency and mechanical scanning millimeter-wave (MMW) imaging systems is proposed. Although being commercially implemented in many imaging systems as a low-cost real-time solution, the results of frequency scanning systems have been reconstructed numerically or have been reported as the captured raw data with no clear details. Furthermore, this paper proposes a new framework to utilize the captured data of different frequencies for three-dimensional (3D) reconstruction based on novel proposed closed-form relations. The hybrid frequency and mechanical scanning structure, together with the proposed reconstruction method, yields a low-cost MMW imaging system with a satisfying performance. The extracted reconstruction formulations are validated through numerical simulations, which show comparable image quality with conventional MMW imaging systems, i.e., switched-array (SA) and phased-array (PA) structures. Extensive simulations are also performed in the presence of additive noise, demonstrating the acceptable robustness of the system against system noise compared to SA and comparable performance with PA. Finally, 3D reconstruction of the simulated data shows a depth resolution of better than 10 cm with minimum degradation of lateral resolution in the 10 GHz frequency bandwidth.
Pardini, A.T.; O'Brien, P. C. M.; Fu, B.; Bonde, R.K.; Elder, F.F.B.; Ferguson-Smith, M. A.; Yang, F.; Robinson, T.J.
2007-01-01
Despite marked improvements in the interpretation of systematic relationships within Eutheria, particular nodes, including Paenungulata (Hyracoidea, Sirenia and Proboscidea), remain ambiguous. The combination of a rapid radiation, a deep divergence and an extensive morphological diversification has resulted in a limited phylogenetic signal confounding resolution within this clade both at the morphological and nucleotide levels. Cross-species chromosome painting was used to delineate regions of homology between Loxodonta africana (2n = 56), Procavia capensis (2n=54), Trichechus manatus latirostris (2n = 48) and an outgroup taxon, the aardvark (Orycteropus afer, 2n = 20). Changes specific to each lineage were identified and although the presence of a minimum of 11 synapomorphies confirmed the monophyly of Paenungulata, no change characterizing intrapaenungulate relationships was evident. The reconstruction of an ancestral paenungulate karyotype and the estimation of rates of chromosomal evolution indicate a reduced rate of genomic repatterning following the paenungulate radiation. In comparison to data available for other mammalian taxa, the paenungulate rate of chromosomal evolution is slow to moderate. As a consequence, the absence of a chromosomal character uniting two paenungulates (at the level of resolution characterized in this study) may be due to a reduced rate of chromosomal change relative to the length of time separating successive divergence events. ?? 2007 The Royal Society.
Koolhof, I S; Bettiol, S; Carver, S
2017-10-01
Health warnings of mosquito-borne disease risk require forecasts that are accurate at fine-temporal resolutions (weekly scales); however, most forecasting is coarse (monthly). We use environmental and Ross River virus (RRV) surveillance to predict weekly outbreak probabilities and incidence spanning tropical, semi-arid, and Mediterranean regions of Western Australia (1991-2014). Hurdle and linear models were used to predict outbreak probabilities and incidence respectively, using time-lagged environmental variables. Forecast accuracy was assessed by model fit and cross-validation. Residual RRV notification data were also examined against mitigation expenditure for one site, Mandurah 2007-2014. Models were predictive of RRV activity, except at one site (Capel). Minimum temperature was an important predictor of RRV outbreaks and incidence at all predicted sites. Precipitation was more likely to cause outbreaks and greater incidence among tropical and semi-arid sites. While variable, mitigation expenditure coincided positively with increased RRV incidence (r 2 = 0·21). Our research demonstrates capacity to accurately predict mosquito-borne disease outbreaks and incidence at fine-temporal resolutions. We apply our findings, developing a user-friendly tool enabling managers to easily adopt this research to forecast region-specific RRV outbreaks and incidence. Approaches here may be of value to fine-scale forecasting of RRV in other areas of Australia, and other mosquito-borne diseases.
Huang, Dan Dan; Li, Yong Jie; Lee, Berto P; Chan, Chak K
2015-03-17
Organic sulfur compounds have been identified in ambient secondary organic aerosols, but their contribution to organic mass is not well quantified. In this study, using a high-resolution time-of-flight aerosol mass spectrometer (AMS), concentrations of organic sulfur compounds were estimated based on the high-resolution fragmentation patterns of methanesulfonic acid (MSA), and organosulfates (OS), including alkyl, phenyl, and cycloalkyl sulfates, obtained in laboratory experiments. Mass concentrations of MSA and minimum mass concentrations of OS were determined in a field campaign conducted at a coastal site of Hong Kong in September 2011. MSA and OS together accounted for at least 5% of AMS detected organics. MSA is of marine origin with its formation dominated by local photochemical activities and enhanced by aqueous phase processing. OS concentrations are better correlated with particle liquid water content (LWC) than with particle acidity. High-molecular-weight OS were detected in the continental influenced period probably because they had grown into larger molecules during long-range transport or they were formed from large anthropogenic precursors. This study highlights the importance of both aqueous-phase processing and regional influence, i.e., different air mass origins, on organic sulfur compound formation in coastal cities like Hong Kong.
HST images of the eclipsing pulsar B1957+20
NASA Technical Reports Server (NTRS)
Fruchter, Andrew S.; Bookbinder, Jay; Bailyn, Charles D.
1995-01-01
We have obtained images of the eclipsing pulsar binary PSR B1957+20 using the Planetary Camera of the Hubble Space Telescope (HST). The high spatial resolution of this instrument has allowed us to separate the pulsar system from a nearby background star which has confounded ground-based observations of this system near optical minimum. Our images limit the temperature of the backside of the companion to T less than or approximately = 2800 K, about a factor of 2 less than the average temperature of the side of the companion facing the pulsar, and provide a marginal detection of the companion at optical minimum. The magnitude of this detection is consistent with previous work which suggests that the companion nearly fills its Roche lobe and is supported through tidal dissipation.
20 CFR 229.47 - Child's benefit.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Child's benefit. 229.47 Section 229.47... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.47 Child's benefit. If a child is included in the computation of the overall minimum, a child's benefit of 50 percent times the Overall...
20 CFR 229.47 - Child's benefit.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Child's benefit. 229.47 Section 229.47... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.47 Child's benefit. If a child is included in the computation of the overall minimum, a child's benefit of 50 percent times the Overall...
20 CFR 229.47 - Child's benefit.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Child's benefit. 229.47 Section 229.47... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.47 Child's benefit. If a child is included in the computation of the overall minimum, a child's benefit of 50 percent times the Overall...
20 CFR 229.47 - Child's benefit.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Child's benefit. 229.47 Section 229.47... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.47 Child's benefit. If a child is included in the computation of the overall minimum, a child's benefit of 50 percent times the Overall...
20 CFR 229.47 - Child's benefit.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Child's benefit. 229.47 Section 229.47... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.47 Child's benefit. If a child is included in the computation of the overall minimum, a child's benefit of 50 percent times the Overall...