42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...
42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...
42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...
42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...
42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...
42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...
42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...
42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...
42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...
Air velocity distribution in a commercial broiler house
USDA-ARS?s Scientific Manuscript database
Increasing air velocity during tunnel ventilation in commercial broiler production facilities improves production efficiency, and many housing design specifications require a minimum air velocity. Air velocities are typically assessed with a hand-held velocity meter at random locations, rather than ...
Analysis of Trajectory Parameters for Probe and Round-Trip Missions to Venus
NASA Technical Reports Server (NTRS)
Dugan, James F., Jr.; Simsic, Carl R.
1960-01-01
For one-way transfers between Earth and Venus, charts are obtained that show velocity, time, and angle parameters as functions of the eccentricity and semilatus rectum of the Sun-focused vehicle conic. From these curves, others are obtained that are useful in planning one-way and round-trip missions to Venus. The analysis is characterized by circular coplanar planetary orbits, successive two-body approximations, impulsive velocity changes, and circular parking orbits at 1.1 planet radii. For round trips the mission time considered ranges from 65 to 788 days, while wait time spent in the parking orbit at Venus ranges from 0 to 467 days. Individual velocity increments, one-way travel times, and departure dates are presented for round trips requiring the minimum total velocity increment. For both single-pass and orbiting Venusian probes, the time span available for launch becomes appreciable with only a small increase in velocity-increment capability above the minimum requirement. Velocity-increment increases are much more effective in reducing travel time for single-pass probes than they are for orbiting probes. Round trips composed of a direct route along an ellipse tangent to Earth's orbit and an aphelion route result in the minimum total velocity increment for wait times less than 100 days and mission times ranging from 145 to 612 days. Minimum-total-velocity-increment trips may be taken along perihelion-perihelion routes for wait times ranging from 300 to 467 days. These wait times occur during missions lasting from 640 to 759 days.
Flow Boiling Critical Heat Flux in Reduced Gravity
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.
2004-01-01
This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met
Mueller, Julia S.; Cheek, Brandon D.; Chen, Qingman; Groeschel, Jillian R.; Brewer, Shannon K.; Grabowski, Timothy B.
2013-01-01
Pelagic broadcast spawning cyprinids are common to Great Plains rivers and streams. This reproductive guild produces non-adhesive semi-buoyant eggs that require sufficient current velocity to remain in suspension during development. Although studies have shown that there may be a minimum velocity needed to keep the eggs in suspension, this velocity has not been estimated directly nor has the influence of physicochemical factors on egg buoyancy been determined. We developed a simple, inexpensive flow chamber that allowed for evaluation of minimum current velocity needed to keep semi-buoyant eggs in suspension at any time frame during egg development. The device described here has the capability of testing the minimum current velocity needed to keep semi-buoyant eggs in suspension at a wide range of physicochemical conditions. We used gellan beads soaked in freshwater for 0, 24, and 48 hrs as egg surrogates and evaluated minimum current velocities necessary to keep them in suspension at different combinations of temperature (20.0 ± 1.0° C, 25.0 ± 1.0° C, and 28.0 ± 1.0° C) and total dissolved solids (TDS; 1,000 mg L-1, 3,000 mg L-1, and 6,000 mg L-1). We found that our methodology generated consistent, repeatable results within treatment groups. Current velocities ranging from 0.001–0.026 needed to keep the gellan beads in suspension were negatively correlated to soak times and TDS and positively correlated with temperature. The flow chamber is a viable approach for evaluating minimum current velocities needed to keep the eggs of pelagic broadcast spawning cyprinids in suspension during development.
Correlations of catalytic combustor performance parameters
NASA Technical Reports Server (NTRS)
Bulzan, D. L.
1978-01-01
Correlations for combustion efficiency percentage drop and the minimum required adiabatic reaction temperature necessary to meet emissions goals of 13.6 g CO/kg fuel and 1.64 g HC/kg fuel are presented. Combustion efficiency was found to be a function of the cell density, cell circumference, reactor length, reference velocity, and adiabatic reaction temperature. The percentage pressure drop at an adiabatic reaction temperature of 1450 K was found to be proportional to the reference velocity to the 1.5 power and to the reactor length. It is inversely proportional to the pressure, cell hydraulic diameter, and fractional open area. The minimum required adiabatic reaction temperature was found to increase with reference velocity and decrease with cell circumference, cell density and reactor length. A catalyst factor was introduced into the correlations to account for differences between catalysts. Combustion efficiency, the percentage pressure drop, and the minimum required adiabatic reaction temperature were found to be a function of the catalyst factor. The data was from a 12 cm-diameter test rig with noble metal reactors using propane fuel at an inlet temperature of 800 K.
Slow Down or Speed Up? Lowering Periapsis versus Escaping from a Circular Orbit
ERIC Educational Resources Information Center
Blanco, Philip
2017-01-01
Paul Hewitt's "Figuring Physics" in the Feb. 2016 issue asked whether it would take a larger velocity change to stop a satellite in a circular orbit or to cause it to escape. An extension of this problem asks: What "minimum" velocity change is required to crash a satellite into the planet, and how does that compare with the…
Propeller Study. Part 2: the Design of Propellers for Minimum Noise
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Woan, C. J.
1977-01-01
The design of propellers which are efficient and yet produce minimum noise requires accurate determinations of both the flow over the propeller. Topics discussed in relating aerodynamic propeller design and propeller acoustics include the necessary approximations and assumptions involved, the coordinate systems and their transformations, the geometry of the propeller blade, and the problem formulations including the induced velocity, required in the determination of mean lines of blade sections, and the optimization of propeller noise. The numerical formulation for the lifting-line model are given. Some applications and numerical results are included.
Marshall, John W; Dahlstrom, Dean B; Powley, Kramer D
2011-06-01
To satisfy the Criminal Code of Canada's definition of a firearm, a barreled weapon must be capable of causing serious bodily injury or death to a person. Canadian courts have accepted the forensically established criteria of "penetration or rupture of an eye" as serious bodily injury. The minimal velocity of nonconventional ammunition required to penetrate the eye including airsoft projectiles has yet to be established. To establish minimal threshold requirements for eye penetration, empirical tests were conducted using a variety of airsoft projectiles. Using the data obtained from these tests, and previous research using "air gun" projectiles, an "energy density" parameter was calculated for the minimum penetration threshold of an eye. Airsoft guns capable of achieving velocities in excess of 99 m/s (325 ft/s) using conventional 6-mm airsoft ammunition will satisfy the forensically established criteria of "serious bodily injury." The energy density parameter for typical 6-mm plastic airsoft projectiles is 4.3 to 4.8 J/cm². This calculation also encompasses 4.5-mm steel BBs.
Zhou, L; Goodman, G; Martikainen, A
2013-01-01
Continuous airflow monitoring can improve the safety of the underground work force by ensuring the uninterrupted and controlled distribution of mine ventilation to all working areas. Air velocity measurements vary significantly and can change rapidly depending on the exact measurement location and, in particular, due to the presence of obstructions in the air stream. Air velocity must be measured at locations away from obstructions to avoid the vortices and eddies that can produce inaccurate readings. Further, an uninterrupted measurement path cannot always be guaranteed when using continuous airflow monitors due to the presence of nearby equipment, personnel, roof falls and rib rolls. Effective use of these devices requires selection of a minimum distance from an obstacle, such that an air velocity measurement can be made but not affected by the presence of that obstacle. This paper investigates the impacts of an obstruction on the behavior of downstream airflow using a numerical CFD model calibrated with experimental test results from underground testing. Factors including entry size, obstruction size and the inlet or incident velocity are examined for their effects on the distributions of airflow around an obstruction. A relationship is developed between the minimum measurement distance and the hydraulic diameters of the entry and the obstruction. A final analysis considers the impacts of continuous monitor location on the accuracy of velocity measurements and on the application of minimum measurement distance guidelines.
Zhou, L.; Goodman, G.; Martikainen, A.
2015-01-01
Continuous airflow monitoring can improve the safety of the underground work force by ensuring the uninterrupted and controlled distribution of mine ventilation to all working areas. Air velocity measurements vary significantly and can change rapidly depending on the exact measurement location and, in particular, due to the presence of obstructions in the air stream. Air velocity must be measured at locations away from obstructions to avoid the vortices and eddies that can produce inaccurate readings. Further, an uninterrupted measurement path cannot always be guaranteed when using continuous airflow monitors due to the presence of nearby equipment, personnel, roof falls and rib rolls. Effective use of these devices requires selection of a minimum distance from an obstacle, such that an air velocity measurement can be made but not affected by the presence of that obstacle. This paper investigates the impacts of an obstruction on the behavior of downstream airflow using a numerical CFD model calibrated with experimental test results from underground testing. Factors including entry size, obstruction size and the inlet or incident velocity are examined for their effects on the distributions of airflow around an obstruction. A relationship is developed between the minimum measurement distance and the hydraulic diameters of the entry and the obstruction. A final analysis considers the impacts of continuous monitor location on the accuracy of velocity measurements and on the application of minimum measurement distance guidelines. PMID:26388684
NASA Astrophysics Data System (ADS)
Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.
2015-03-01
Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.
D.W. Reiser; T.C. Bjornn
1979-01-01
Habitat requirements of anadromous and some resident salmonid fishes have been described for various life stages, including upstream migration of adults, spawning, incubation, and juvenile rearing. Factors important in the migration of adults are water temperature, minimum water depth, maximum water velocity, turbidity, dissolved oxygen, and...
NASA Technical Reports Server (NTRS)
Bean, W. C.
1971-01-01
Comparison of two-impulse and three-impulse orbital transfer, using data from a 63-case numerical study. For each case investigated for which coplanarity of the regressing assembly parking ellipse was attained with the target asymptotic velocity vector, a two-impulse maneuver (or a one-impulse equivalent) was found for which the velocity expenditure was within 1% of a reference absolute minimum lower bound. Therefore, for the coplanar cases, use of a minimum delta-V three-impulse maneuver afforded scant improvement in velocity penalty. However, as the noncoplanarity of the parking ellipse and the target asymptotic velocity vector increased, there was a significant increase in the superiority of minimum delta-V three-impulse maneuvers for slowing the growth of velocity expenditure. It is concluded that a multiple-impulse maneuver should be contemplated if nonnominal launch conditions could occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scofield, C.M.; Des Champs, N.H.
This article examines a design concept for classroom air conditioning systems that guarantees minimum ventilation rates are met. The topics of the article include new ventilation requirements, design concept, outside air induction diffuser, low-velocity ducts and plenums, the relationship of humidity to school absenteeism rates, retrofit applications, and saving energy.
Electromechanical flight control actuator, volume 1
NASA Technical Reports Server (NTRS)
1978-01-01
An electromechanical actuator was developed that will follow a proportional control command with minimum wasted energy to demonstrate the feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts. The approach was restricted to a four-channel redundant configuration. Each channel has independent drive and control electronics, a brushless electric motor with brake, and velocity and position feedback transducers. A differential gearbox sums the output velocities of the motors. Normally, two motors are active and the other two are braked.
Particle Flow Cell Formation at Minimum Fluidization Flow Rates in a Rectangular Gas-Fluidized Bed.
1981-03-01
G’ Fluid mass velocity based on voidage area. Ga Galileo number ( Archimedes number). Ge Hypothetical fluid mass velocity required to merely expand a...eighteen inches high above the distributor plate. All joints were glued together and wood screws added in mounting the distributor plate for additional...inch center to center intervals along its length. The air ports are located at the underside of the tube allowing the air to exhaust downward into the
Optimal rendezvous in the neighborhood of a circular orbit
NASA Technical Reports Server (NTRS)
Jones, J. B.
1975-01-01
The minimum velocity change rendezvous solutions, when the motion may be linearized about a circular orbit, fall into two separate regions; the phase-for-free region and the general region. Phase-for-free solutions are derived from the optimum transfer solutions, require the same velocity change expenditure, but may not be unique. Analytic solutions are presented in two of the three subregions. An algorithm is presented for determining the unique solutions in the general region. Various sources of initial conditions are discussed and three examples presented.
Climate change velocity underestimates climate change exposure in mountainous regions
Dobrowski, Solomon Z.; Parks, Sean A.
2016-01-01
Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545
NASA Technical Reports Server (NTRS)
Chapman, Dean R
1952-01-01
A theoretical investigation is made of the airfoil profile for minimum pressure drag at zero lift in supersonic flow. In the first part of the report a general method is developed for calculating the profile having the least pressure drag for a given auxiliary condition, such as a given structural requirement or a given thickness ratio. The various structural requirements considered include bending strength, bending stiffness, torsional strength, and torsional stiffness. No assumption is made regarding the trailing-edge thickness; the optimum value is determined in the calculations as a function of the base pressure. To illustrate the general method, the optimum airfoil, defined as the airfoil having minimum pressure drag for a given auxiliary condition, is calculated in a second part of the report using the equations of linearized supersonic flow.
Liquid propellant reorientation in a low-gravity environment
NASA Technical Reports Server (NTRS)
Sumner, I. E.
1978-01-01
An existing empirical analysis relating to the reorientation of liquids in cylindrical tanks due to propulsive settling in a low gravity environment was extended to include the effects of geyser formation in the Weber number range from 4 to 10. Estimates of the minimum velocity increment required to be imposed on the propellant tank to achieve liquid reorientation were made. The resulting Bond numbers, based on tank radius, were found to be in the range from 3 to 5, depending upon the initial liquid fill level, with higher Bond number required for high initial fill levels. The resulting Weber numbers, based on tank radius and the velocity of the liquid leading edge, were calculated to be in the range from 6.5 to 8.5 for cylindrical tanks having a fineness ratio of 2.0, with Weber numbers of somewhat greater values for longer cylindrical tanks. It, therefore, appeared to be advantageous to allow small geysers to form and then dissipate into the surface of the collected liquid in order to achieve the minimum velocity increment. The Bond numbers which defined the separation between regions in which geyser formation did and did not occur due to propulsive settling in a spherical tank configuration ranged from 2 to 9 depending upon the liquid fill level.
Airbreathing engine selection criteria for SSTO propulsion system
NASA Astrophysics Data System (ADS)
Ohkami, Yoshiaki; Maita, Masataka
1995-02-01
This paper presents airbreathing engine selection criteria to be applied to the propulsion system of a Single Stage To Orbit (SSTO). To establish the criteria, a relation among three major parameters, i.e., delta-V capability, weight penalty, and effective specific impulse of the engine subsystem, is derived as compared to these parameters of the LH2/LOX rocket engine. The effective specific impulse is a function of the engine I(sub sp) and vehicle thrust-to-drag ratio which is approximated by a function of the vehicle velocity. The weight penalty includes the engine dry weight, cooling subsystem weight. The delta-V capability is defined by the velocity region starting from the minimum operating velocity up to the maximum velocity. The vehicle feasibility is investigated in terms of the structural and propellant weights, which requires an iteration process adjusting the system parameters. The system parameters are computed by iteration based on the Newton-Raphson method. It has been concluded that performance in the higher velocity region is extremely important so that the airbreathing engines are required to operate beyond the velocity equivalent to the rocket engine exhaust velocity (approximately 4500 m/s).
Mars Observer trajectory and orbit design
NASA Technical Reports Server (NTRS)
Beerer, Joseph G.; Roncoli, Ralph B.
1991-01-01
The Mars Observer launch, interplanetary, Mars orbit insertion, and mapping orbit designs are described. The design objective is to enable a near-maximum spacecraft mass to be placed in orbit about Mars. This is accomplished by keeping spacecraft propellant requirements to a minimum, selecting a minimum acceptable launch period, equalizing the spacecraft velocity change requirement at the beginning and end of the launch period, and constraining the orbit insertion maneuvers to be coplanar. The mapping orbit design objective is to provide the opportunity for global observation of the planet by the science instruments while facilitating the spacecraft design. This is realized with a sun-synchronous near-polar orbit whose ground-track pattern covers the planet at progressively finer resolution.
30 CFR 75.371 - Mine ventilation plan; contents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (see § 75.325(a)(3)). (k) The minimum mean entry air velocity in exhausting face ventilation systems where coal is being cut, mined, drilled for blasting, or loaded, if the velocity will be less than 60... loaded, where at least 60 feet per minute or some other minimum mean entry air velocity will be...
30 CFR 75.371 - Mine ventilation plan; contents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (see § 75.325(a)(3)). (k) The minimum mean entry air velocity in exhausting face ventilation systems where coal is being cut, mined, drilled for blasting, or loaded, if the velocity will be less than 60... loaded, where at least 60 feet per minute or some other minimum mean entry air velocity will be...
30 CFR 75.371 - Mine ventilation plan; contents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (see § 75.325(a)(3)). (k) The minimum mean entry air velocity in exhausting face ventilation systems where coal is being cut, mined, drilled for blasting, or loaded, if the velocity will be less than 60... loaded, where at least 60 feet per minute or some other minimum mean entry air velocity will be...
Observation and analysis of abrupt changes in the interplanetary plasma velocity and magnetic field.
NASA Technical Reports Server (NTRS)
Martin, R. N.; Belcher, J. W.; Lazarus, A. J.
1973-01-01
This paper presents a limited study of the physical nature of abrupt changes in the interplanetary plasma velocity and magnetic field based on 19 day's data from the Pioneer 6 spacecraft. The period was chosen to include a high-velocity solar wind stream and low-velocity wind. Abrupt events were accepted for study if the sum of the energy density in the magnetic field and velocity changes was above a specified minimum. A statistical analysis of the events in the high-velocity solar wind stream shows that Alfvenic changes predominate. This conclusion is independent of whether steady state requirements are imposed on conditions before and after the event. Alfvenic changes do not dominate in the lower-speed wind. This study extends the plasma field evidence for outwardly propagating Alfvenic changes to time scales as small as 1 min (scale lengths on the order of 20,000 km).
Calculating e-flow using UAV and ground monitoring
NASA Astrophysics Data System (ADS)
Zhao, C. S.; Zhang, C. B.; Yang, S. T.; Liu, C. M.; Xiang, H.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Shao, N. F.; Yu, Q.
2017-09-01
Intense human activity has led to serious degradation of basin water ecosystems and severe reduction in the river flow available for aquatic biota. As an important water ecosystem index, environmental flows (e-flows) are crucial for maintaining sustainability. However, most e-flow measurement methods involve long cycles, low efficiency, and transdisciplinary expertise. This makes it impossible to rapidly assess river e-flows at basin or larger scales. This study presents a new method to rapidly assessing e-flows coupling UAV and ground monitorings. UAV was firstly used to calculate river-course cross-sections with high-resolution stereoscopic images. A dominance index was then used to identify key fish species. Afterwards a habitat suitability index, along with biodiversity and integrity indices, was used to determine an appropriate flow velocity with full consideration of the fish spawning period. The cross-sections and flow velocity values were then combined into AEHRA, an e-flow assessment method for studying e-flows and supplying-rate. To verify the results from this new method, the widely used Tennant method was employed. The root-mean-square errors of river cross-sections determined by UAV are less than 0.25 m, which constitutes 3-5% water-depth of the river cross-sections. In the study area of Jinan city, the ecological flow velocity (VE) is equal to or greater than 0.11 m/s, and the ecological water depth (HE) is greater than 0.8 m. The river ecosystem is healthy with the minimum e-flow requirements being always met when it is close to large rivers, which is beneficial for the sustainable development of the water ecosystem. In the south river channel of Jinan, the upstream flow mostly meets the minimum e-flow requirements, and the downstream flow always meets the minimum e-flow requirements. The north of Jinan consists predominantly of artificial river channels used for irrigation. Rainfall rarely meets the minimum e-flow and irrigation water requirements. We suggest that the water shortage problem can be partly solved by diversion of the Yellow River. These results can provide useful information for ecological operations and restoration. The method used in this study for calculating e-flow based on a combination of UAV and ground monitoring can effectively promote research progress into basin e-flow, and provide an important reference for e-flow monitoring around the world.
Optimal rendezvous in the neighborhood of a circular orbit
NASA Technical Reports Server (NTRS)
Jones, J. B.
1976-01-01
The minimum velocity-change rendezvous solutions, when the motion may be linearized about a circular orbit, fall into two separate regions; the phase-for-free region and the general region. Phase-for-free solutions are derived from the optimum transfer solutions, require the same velocity-change expenditure, but may not be unique. Analytic solutions are presented in two of the three subregions. An algorithm is presented for determining the unique solutions in the general region. Various sources of initial conditions are discussed and three examples are presented.
Design of a Ram Accelerator mass launch system
NASA Technical Reports Server (NTRS)
1988-01-01
The Ram Accelerator, a chemically propelled, impulsive mass launch system, is presented as a viable concept for directly launching acceleration-insensitive payloads into low Earth orbit. The principles of propulsion are based on those of an airbreathing supersonic ramjet. The payload vehicle acts as the ramjet centerbody and travels through a fixed launch tube that acts as the ramjet outer cowling. The launch tube is filled with premixed gaseous fuel and oxidizer mixtures that combust at the base of the vehicle and produce thrust. Two modes of in-tube propulsion involving ramjet cycles are used in sequence to accelerate the vehicle from 0.7 km/sec to 9 km/sec. Requirements for placing a 2000 kg vehicle into a 500-km circular orbit, with a minimum amount of onboard rocket propellant for orbital maneuvers, are examined. It is shown that in-tube propulsion requirements dictate a launch tube length of 5.1 km to achieve an exit velocity of 9 km/sec, with peak accelerations not to exceed 1000 g's. Aerodynamic heating due to atmospheric transit requires minimal ablative protection and the vehicle retains a large percentage of its exit velocity. An indirect orbital insertion maneuver with aerobraking and two apogee burns is examined to minimize the required onboard propellant mass. An appropriate onboard propulsion system design to perform the required orbital maneuvers with minimum mass requirements is also determined. The structural designs of both the launch tube and the payload vehicle are examined using simple structural and finite element analysis for various materials.
Combustion Limits and Efficiency of Turbojet Engines
NASA Technical Reports Server (NTRS)
Barnett, H. C.; Jonash, E. R.
1956-01-01
Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.
Experiments on 1,000 km/s flyer acceleration and collisions
NASA Astrophysics Data System (ADS)
Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Serlin, V.; Obenschain, S. P.
2012-10-01
We will present results from follow-on experiments to the record-high velocities achieved using the ultra-uniform deep-uv drive of the Nike KrF laser [Karasik et al, Phys. Plasmas 17, 056317 (2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ˜1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Such velocities may indicate a path to lower minimum energy required for central ignition. Still higher velocities and higher target densities are required for impact fast ignition. New results give velocity of >1,100 km/s achieved through improvements in pulseshaping. Variation of second foil parameters results in significant change in fusion neutron production on impact. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Availability of pressures generated by collisions of such highly accelerated flyers may provide an experimental platform for study of matter at extreme conditions. Work is supported by US DOE (NNSA).
Experimental investigation of drying characteristics of cornelian cherry fruits ( Cornus mas L.)
NASA Astrophysics Data System (ADS)
Ozgen, Filiz
2015-03-01
Major target of present paper is to investigate the drying kinetics of cornelian cherry fruits ( Cornus mas L.) in a convective dryer, by varying the temperature and the velocity of drying air. Freshly harvested fruits are dried at drying air temperature of 35, 45 and 55 °C. The considered drying air velocities are V air = 1 and 1.5 m/s for each temperature. The required drying time is determined by taking into consideration the moisture ratio measurements. When the moisture ratio reaches up to 10 % at the selected drying air temperature, then the time is determined ( t = 40-67 h). The moisture ratio, fruit temperature and energy requirement are presented as the functions of drying time. The lowest drying time (40 h) is obtained when the air temperature is 55 °C and air velocity is 1.5 m/s. The highest drying time (67 h) is found under the conditions of 35 °C temperature and 1 m/s velocity. Both the drying air temperature and the air velocity significantly affect the required energy for drying system. The minimum amount of required energy is found as 51.12 kWh, at 55 °C and 1 m/s, whilst the maximum energy requirement is 106.7 kWh, at 35 °C and 1.5 m/s. It is also found that, air temperature significantly influences the total drying time. Moreover, the energy consumption is decreasing with increasing air temperature. The effects of three parameters (air temperature, air velocity and drying time) on drying characteristics have also been analysed by means of analysis of variance method to show the effecting levels. The experimental results have a good agreement with the predicted ones.
Automated Glacier Surface Velocity using Multi-Image/Multi-Chip (MIMC) Feature Tracking
NASA Astrophysics Data System (ADS)
Ahn, Y.; Howat, I. M.
2009-12-01
Remote sensing from space has enabled effective monitoring of remote and inhospitable polar regions. Glacier velocity, and its variation in time, is one of the most important parameters needed to understand glacier dynamics, glacier mass balance and contribution to sea level rise. Regular measurements of ice velocity are possible from large and accessible satellite data set archives, such as ASTER and LANDSAT-7. Among satellite imagery, optical imagery (i.e. passive, visible to near-infrared band sensors) provides abundant data with optimal spatial resolution and repeat interval for tracking glacier motion at high temporal resolution. Due to massive amounts of data, computation of ice velocity from feature tracking requires 1) user-friendly interface, 2) minimum local/user parameter inputs and 3) results that need minimum editing. We focus on robust feature tracking, applicable to all currently available optical satellite imagery, that is ASTER, SPOT and LANDSAT etc. We introduce the MIMC (multiple images/multiple chip sizes) matching approach that does not involve any user defined local/empirical parameters except approximate average glacier speed. We also introduce a method for extracting velocity from LANDSAT-7 SLC-off data, which has 22 percent of scene data missing in slanted strips due to failure of the scan line corrector. We apply our approach to major outlet glaciers in west/east Greenland and assess our MIMC feature tracking technique by comparison with conventional correlation matching and other methods (e.g. InSAR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polat, Orhan, E-mail: orhan.polat@deu.edu.tr; Özer, Çaglar, E-mail: caglar.ozer@deu.edu.tr; Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Geophysical Engineering, Izmir-Turkey
In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improvedmore » by using new minimum velocity structure.« less
Prestack depth migration for complex 2D structure using phase-screen propagators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, P.; Huang, Lian-Jie; Burch, C.
1997-11-01
We present results for the phase-screen propagator method applied to prestack depth migration of the Marmousi synthetic data set. The data were migrated as individual common-shot records and the resulting partial images were superposed to obtain the final complete Image. Tests were performed to determine the minimum number of frequency components required to achieve the best quality image and this in turn provided estimates of the minimum computing time. Running on a single processor SUN SPARC Ultra I, high quality images were obtained in as little as 8.7 CPU hours and adequate images were obtained in as little as 4.4more » CPU hours. Different methods were tested for choosing the reference velocity used for the background phase-shift operation and for defining the slowness perturbation screens. Although the depths of some of the steeply dipping, high-contrast features were shifted slightly the overall image quality was fairly insensitive to the choice of the reference velocity. Our jests show the phase-screen method to be a reliable and fast algorithm for imaging complex geologic structures, at least for complex 2D synthetic data where the velocity model is known.« less
Optimal heliocentric trajectories for solar sail with minimum area
NASA Astrophysics Data System (ADS)
Petukhov, Vyacheslav G.
2018-05-01
The fixed-time heliocentric trajectory optimization problem is considered for planar solar sail with minimum area. Necessary optimality conditions are derived, a numerical method for solving the problem is developed, and numerical examples of optimal trajectories to Mars, Venus and Mercury are presented. The dependences of the minimum area of the solar sail from the date of departure from the Earth, the time of flight and the departing hyperbolic excess of velocity are analyzed. In particular, for the rendezvous problem (approaching a target planet with zero relative velocity) with zero departing hyperbolic excess of velocity for a flight duration of 1200 days it was found that the minimum area-to-mass ratio should be about 12 m2/kg for trajectory to Venus, 23.5 m2/kg for the trajectory to Mercury and 25 m2/kg for trajectory to Mars.
Magnetic Footpoint Velocities: A Combination Of Minimum Energy Fit AndLocal Correlation Tracking
NASA Astrophysics Data System (ADS)
Belur, Ravindra; Longcope, D.
2006-06-01
Many numerical and time dependent MHD simulations of the solar atmosphererequire the underlying velocity fields which should be consistent with theinduction equation. Recently, Longcope (2004) introduced a new techniqueto infer the photospheric velocity field from sequence of vector magnetogramswhich are in agreement with the induction equation. The method, the Minimum Energy Fit (MEF), determines a set of velocities and selects the velocity which is smallest overall flow speed by minimizing an energy functional. The inferred velocity can be further constrained by information aboutthe velocity inferred from other techniques. With this adopted techniquewe would expect that the inferred velocity will be close to the photospheric velocity of magnetic footpoints. Here, we demonstrate that the inferred horizontal velocities from LCT can be used to constrain the MEFvelocities. We also apply this technique to actual vector magnetogramsequences and compare these velocities with velocities from LCT alone.This work is supported by DoD MURI and NSF SHINE programs.
Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity
NASA Astrophysics Data System (ADS)
Zhang, Zhifeng; Drapaca, Corina; Chen, Xiaolin; Xu, Jie
2017-07-01
Models of a droplet passing through narrow constrictions have wide applications in science and engineering. In this paper, we report our findings on the minimum impulse (momentum change) of pushing a droplet through a narrow circular constriction. The existence of this minimum impulse is mathematically derived and numerically verified. The minimum impulse happens at a critical velocity when the time-averaged Young-Laplace pressure balances the total minor pressure loss in the constriction. Finally, numerical simulations are conducted to verify these concepts. These results could be relevant to problems of energy optimization and studies of chemical and biomedical systems.
NASA Technical Reports Server (NTRS)
Larson, T. J.; Schweikhard, W. G.
1974-01-01
A method for evaluating aircraft takeoff performance from brake release to air-phase height that requires fewer tests than conventionally required is evaluated with data for the XB-70 airplane. The method defines the effects of pilot technique on takeoff performance quantitatively, including the decrease in acceleration from drag due to lift. For a given takeoff weight and throttle setting, a single takeoff provides enough data to establish a standardizing relationship for the distance from brake release to any point where velocity is appropriate to rotation. The lower rotation rates penalized takeoff performance in terms of ground roll distance; the lowest observed rotation rate required a ground roll distance that was 19 percent longer than the highest. Rotations at the minimum rate also resulted in lift-off velocities that were approximately 5 knots lower than the highest rotation rate at any given lift-off distance.
Rickman, Ronald L.
1998-01-01
A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate habitat for salmon incubation. The study that determined this minimum flow did not account for the effects of ice formation on habitat. The limiting factor for determining the minimal acceptable flow limit appears to be stream-water velocity. The minimum short-term flow needed to ensure adequate salmon incubation habitat when ice is present is about 30 cubic feet per second. For long-term flows, 40 cubic feet per second is adequate when ice is present. Long-term minimum discharge needed to ensure adequate incubation habitat--which is based on mean velocity alone--is as follows: 40 cubic feet per second when ice is forming; 35 cubic feet per second for stable and eroding ice conditions; and 30 cubic feet per second for ice-free conditions. The effects of long-term streamflow less than 40 cubic feet per second on fine-sediment deposition and dissolved-oxygen interchange could not be extrapolated from the data. Hydrologic properties and water-quality data were measured in winter only from March 1993 to April 1998 at six transects in the lower Bradley River under three phases of icing: forming, stable, and eroding. Discharge in the lower Bradley River ranged from 33.3 to 73.0 cubic feet per second during all phases of ice formation and ice conditions, which ranged from ice free to 100 percent ice cover. Hydrostatic head was adequate for habitat protection for all ice phases and discharges. Mean stream velocity was adequate for all but one ice-forming episode. Velocity distribution within each transect varied significantly from one sampling period to the next. No relation was found between ice phase, discharge, and wetted perimeter. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface- and intragravel-water dissolved-oxygen levels were adequate for all ice phases and discharges. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Fine-sediment deposition was greatest at the downstream end of the study reach because of low shear velocities and tide-induced deposition. Dissolved-oxygen interchange was adequate for all discharges and ice conditions. Stranding potential of salmon fry was found to be low throughout the study reach. Minimum flows from the fish-water bypass needed to maintain 40 cubic feet per second in the lower Bradley River are estimated.
Operational implications of some NACA/NASA rotary wing induced velocity studies
NASA Technical Reports Server (NTRS)
Heyson, H. H.
1980-01-01
Wind tunnel measurements show that the wake of a rotor, except at near-hovering speeds, is not like that of a propeller. The wake is more like that of a wing except that, because of the slow speeds, the wake velocities may be much greater. The helicopter can produce a wake hazard to following light aircraft that is disproportionately great compared to an equivalent fixed-wing aircraft. This hazard should be recognized by both pilots and airport controllers when operating in congested areas. Even simple momentum theory shows that, in autorotation and partial-power descent, the required power is a complex function of both airspeed and descent angle. The nonlinear characteristic, together with an almost total lack of usable instrumentation at low airspeeds, has led to numerous power-settling accidents. The same theory shows that there is a minimum forward speed at which a rotor can autorotate. Neglect of, or inadequate appraisal of this minimum speed has also led to numerous accidents. Ground effect and the problems it creates is discussed.
Frequency Diversity for Improving Synthetic Aperture Radar Imaging
2009-03-01
for broadside spotlight SAR imaging is shown to be δθ = λ 4Yo . (2.34) When θ is small, as is often the case in spotlight SAR imaging, the required...maximum distance ∆y between samples along the y-axis is shown to be ∆y ≤ λRc 4Yo . (2.35) With platform velocity vy along the y-axis, the minimum PRF is
Code of Federal Regulations, 2012 CFR
2012-07-01
... of average velocity during the run and using these data, in conjunction with the pre- and post-test..., you may choose to follow the post-test calibration procedures of Method 320 in appendix A to 40 CFR... of hazardous air pollutants during the press process. This test method requires a minimum of three...
Dagdeviren, Omur E
2018-08-03
The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.
NASA Technical Reports Server (NTRS)
Swett, Clyde C , Jr
1949-01-01
Ignition studies of flowing gases were made to obtain information applicable to ignition problems in gas-turbine and ram-jet aircraft propulsion systems operating at altitude conditions.Spark energies required for ignition of a flowing propane-air mixture were determined for pressure of 2 to 4 inches mercury absolute, gas velocities of 5.0 to 54.2 feet per second, fuel-air ratios of 0.0607 to 0.1245, and spark durations of 1.5 to 24,400 microseconds. The results showed that at a pressure of 3 inches mercury absolute the minimum energy required for ignition occurred at fuel-air ratios of 0.08 to 0.095. The energy required for ignition increased almost linearly with increasing gas velocity. Shortening the spark duration from approximately 25,000 to 125 microseconds decreased the amount of energy required for ignition. A spark produced by the discharge of a condenser directly into the spark gap and having a duration of 1.5 microseconds required ignition energies larger than most of the long-duration sparks.
Assessment of crustal velocity models using seismic refraction and reflection tomography
NASA Astrophysics Data System (ADS)
Zelt, Colin A.; Sain, Kalachand; Naumenko, Julia V.; Sawyer, Dale S.
2003-06-01
Two tomographic methods for assessing velocity models obtained from wide-angle seismic traveltime data are presented through four case studies. The modelling/inversion of wide-angle traveltimes usually involves some aspects that are quite subjective. For example: (1) identifying and including later phases that are often difficult to pick within the seismic coda, (2) assigning specific layers to arrivals, (3) incorporating pre-conceived structure not specifically required by the data and (4) selecting a model parametrization. These steps are applied to maximize model constraint and minimize model non-uniqueness. However, these steps may cause the overall approach to appear ad hoc, and thereby diminish the credibility of the final model. The effect of these subjective choices can largely be addressed by estimating the minimum model structure required by the least subjective portion of the wide-angle data set: the first-arrival times. For data sets with Moho reflections, the tomographic velocity model can be used to invert the PmP times for a minimum-structure Moho. In this way, crustal velocity and Moho models can be obtained that require the least amount of subjective input, and the model structure that is required by the wide-angle data with a high degree of certainty can be differentiated from structure that is merely consistent with the data. The tomographic models are not intended to supersede the preferred models, since the latter model is typically better resolved and more interpretable. This form of tomographic assessment is intended to lend credibility to model features common to the tomographic and preferred models. Four case studies are presented in which a preferred model was derived using one or more of the subjective steps described above. This was followed by conventional first-arrival and reflection traveltime tomography using a finely gridded model parametrization to derive smooth, minimum-structure models. The case studies are from the SE Canadian Cordillera across the Rocky Mountain Trench, central India across the Narmada-Son lineament, the Iberia margin across the Galicia Bank, and the central Chilean margin across the Valparaiso Basin and a subducting seamount. These case studies span the range of modern wide-angle experiments and data sets in terms of shot-receiver spacing, marine and land acquisition, lateral heterogeneity of the study area, and availability of wide-angle reflections and coincident near-vertical reflection data. The results are surprising given the amount of structure in the smooth, tomographically derived models that is consistent with the more subjectively derived models. The results show that exploiting the complementary nature of the subjective and tomographic approaches is an effective strategy for the analysis of wide-angle traveltime data.
Scaling laws for ignition at the National Ignition Facility from first principles.
Cheng, Baolian; Kwan, Thomas J T; Wang, Yi-Ming; Batha, Steven H
2013-10-01
We have developed an analytical physics model from fundamental physics principles and used the reduced one-dimensional model to derive a thermonuclear ignition criterion and implosion energy scaling laws applicable to inertial confinement fusion capsules. The scaling laws relate the fuel pressure and the minimum implosion energy required for ignition to the peak implosion velocity and the equation of state of the pusher and the hot fuel. When a specific low-entropy adiabat path is used for the cold fuel, our scaling laws recover the ignition threshold factor dependence on the implosion velocity, but when a high-entropy adiabat path is chosen, the model agrees with recent measurements.
Preliminary development of a wing in ground effect vehicle
NASA Astrophysics Data System (ADS)
Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat
2018-02-01
Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.
Determination of the Residence Time of Food Particles During Aseptic Sterilization
NASA Technical Reports Server (NTRS)
Carl, J. R.; Arndt, G. D.; Nguyen, T. X.
1994-01-01
The paper describes a non-invasive method to measure the time an individual particle takes to move through a length of stainless steel pipe. The food product is in two phase flow (liquids and solids) and passes through a pipe with pressures of approximately 60 psig and temperatures of 270-285 F. The proposed problem solution is based on the detection of transitory amplitude and/or phase changes in a microwave transmission path caused by the passage of the particles of interest. The particles are enhanced in some way, as will be discussed later, such that they will provide transitory changes that are distinctive enough not to be mistaken for normal variations in the received signal (caused by the non-homogeneous nature of the medium). Two detectors (transmission paths across the pipe) will be required and place at a known separation. A minimum transit time calculation is made from which the maximum velocity can be determined. This provides the minimum residence time. Also average velocity and statistical variations can be computed so that the amount of 'over-cooking' can be determined.
Xu, Yupeng; Li, Tingwen; Musser, Jordan; ...
2017-06-07
The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Li, Tingwen; Musser, Jordan
The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less
An improved computer model for prediction of axial gas turbine performance losses
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1984-01-01
The calculation model performs a rapid preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; and (3) predictions of expected turbine performance. The model uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with an array of seven NASA single-stage axial gas turbine configurations.
A comprehensive method for preliminary design optimization of axial gas turbine stages
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1982-01-01
A method is presented that performs a rapid, reasonably accurate preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; (3) predictions of expected turbine performance. The method uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with four existing single stage turbines.
When is protection from impact needed for the face as well as the eyes in occupational environments?
Dain, Stephen J; Huang, Rose; Tiao, Aimee; Chou, B Ralph
2018-05-01
The most commonly identified reason for requiring or using occupational eye and face protection is for protection against flying objects. Standards vary on what risk may require protection of the eyes alone and what requires protection for the whole face. Information on the minimum energy transfer for face damage to occur is not well-established. The heads of pigs were used as the common model for human skin. A 6 mm steel ball projected at velocities between 45 and 135 m/s was directed at the face area. Examples of impacts were filmed with a high-speed camera and the resulting damage was rated visually on a scale from 1 (no visible damage) to 5 (penetrated the skin and embedded in the flesh). The results for the cheek area indicate that 85 m/s is the velocity above which damage is more likely to occur unless the skin near the lip is included. For damage to the lip area to be avoided, the velocity needs to be 60 m/s or less. The present data support a maximum impact velocity of 85 m/s, provided the thinner and more vulnerable skin of the lids and orbital adnexa is protected. If the coverage area does not extend to the orbital adnexa, then the absolute upper limit for the velocity is 60 m/s. At this stage, eye-only protection, as represented by the lowest level of impact test in the standards in the form of a drop ball test, is not in question. © 2017 Optometry Australia.
Model of Transition from Laminar to Turbulent Flow
NASA Astrophysics Data System (ADS)
Kanda, Hidesada
2001-11-01
For circular pipe flows, a model of transition from laminar to turbulent flow has already been proposed and the minimum critical Reynolds number of approximately 2040 was obtained (Kanda, 1999). In order to prove the validity of the model, another verification is required. Thus, for plane Poiseuille flow, results of previous investigations were studied, focusing on experimental data on the critical Reynolds number Rc, the entrance length, and the transition length. Consequently, concerning the natural transition, it was confirmed from the experimental data that (i) the transition occurs in the entrance region, (ii) Rc increases as the contraction ratio in the inlet section increases, and (iii) the minimum Rc is obtained when the contraction ratio is the smallest or one, and there is no-bellshaped entrance or straight parallel plates. Its value exists in the neighborhood of 1300, based on the channel height and the average velocity. Although, for Hagen-Poiseuille flow, the minimum Rc is approximately 2000, based on the pipe diameter and the average velocity, there seems to be no significant difference in the transition from laminar to turbulent flow between Hagen-Poiseuille flow and plane Poiseuille flow (Kanda, 2001). Rc is determined by the shape of the inlet. Kanda, H., 1999, Proc. of ASME Fluids Engineering Division - 1999, FED-Vol. 250, pp. 197-204. Kanda, H., 2001, Proc. of ASME Fluids Engineering Division - 2001.
Relationship between fluid bed aerosol generator operation and the aerosol produced
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, R.L.; Yerkes, K.
1980-12-01
The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less
Shock wave induced vaporization of porous solids
NASA Astrophysics Data System (ADS)
Shen, Andy H.; Ahrens, Thomas J.; O'Keefe, John D.
2003-05-01
Strong shock waves generated by hypervelocity impact can induce vaporization in solid materials. To pursue knowledge of the chemical species in the shock-induced vapors, one needs to design experiments that will drive the system to such thermodynamic states that sufficient vapor can be generated for investigation. It is common to use porous media to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens [J. Appl. Phys. 43, 2443 (1972)] and Ahrens and O'Keefe [The Moon 4, 214 (1972)] to higher distentions (up to five) and improved their method with a different impedance match calculation scheme and augmented their model with recent thermodynamic and Hugoniot data of metals, minerals, and polymers. Although we reconfirmed the competing effects reported in the previous studies: (1) increase of entropy production and (2) decrease of impedance match, when impacting materials with increasing distentions, our calculations did not exhibit optimal entropy-generating distention. For different materials, very different impact velocities are needed to initiate vaporization. For aluminum at distention (m)<2.2, a minimum impact velocity of 2.7 km/s is required using tungsten projectile. For ionic solids such as NaCl at distention <2.2, 2.5 km/s is needed. For carbonate and sulfate minerals, the minimum impact velocities are much lower, ranging from less than 1 to 1.5 km/s.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1972-01-01
Buoyancy effects on the critical heat flux and general data trends for a liquid nitrogen internal flow system were determined by comparison of upflow and downflow data under identical test conditions. The test section had a 1.28 cm diameter flow passage and a 30.5 cm heated length which was subjected to uniform heat fluxes through resistance heating. Test conditions covered a range of pressures from 3.4 to 10.2 atm, inlet velocities from 0.23 to 3.51 m/sec, with the liquid nitrogen temperature at saturated inlet conditions. Data comparisons showed that the critical heat flux for downflow could be up to 36 percent lower than for upflow. A nonmonotonic relationship between the critical heat flux and velocity was determined for upflow but not for downflow. A limiting inlet velocity of 4.12 m/sec was determined to be the minimum velocity required to completely suppress the influence of buoyancy on the critical heat flux for this saturated inlet flow system. A correlation of this limiting fluid velocity is presented that was developed from previously published subcooled liquid nitrogen data and the saturated data of this investigation.
Canonical fluid thermodynamics. [variational principles of stability for compressible adiabatic flow
NASA Technical Reports Server (NTRS)
Schmid, L. A.
1974-01-01
The space-time integral of the thermodynamic pressure plays in a certain sense the role of the thermodynamic potential for compressible adiabatic flow. The stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and temperature to be generalized velocities. In the fluid context, the definition of proper-time differentiation involves the fluid velocity expressed in terms of three particle identity parameters. The pressure function is then converted into a functional which is the Lagrangian density of the variational principle. Being also a minimum principle, the variational principle provides a means for comparing the relative stability of different flows. For boundary conditions with a high degree of symmetry, as in the case of a uniformly expanding spherical gas box, the most stable flow is a rectilinear flow for which the world-trajectory of each particle is a straight line. Since the behavior of the interior of a freely expanding cosmic cloud may be expected to be similar to that of the fluid in the spherical box of gas, this suggests that the cosmic principle is a consequence of the laws of thermodynamics, rather than just an ad hoc postulate.
Transfers between libration-point orbits in the elliptic restricted problem
NASA Astrophysics Data System (ADS)
Hiday, L. A.; Howell, K. C.
The present time-fixed impulsive transfers between 3D libration point orbits in the vicinity of the interior L(1) libration point of the sun-earth-moon barycenter system are 'optimal' in that the total characteristic velocity required for implementation of the transfer exhibits a local minimum. The conditions necessary for a time-fixed, two-impulse transfer trajectory to be optimal are stated in terms of the primer vector, and the conditions necessary for satisfying the local optimality of a transfer trajectory containing additional impulses are addressed by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses.
Sequence-dependent rotation axis changes and interaction torque use in overarm throwing.
Hansen, Clint; Rezzoug, Nasser; Gorce, Philippe; Venture, Gentiane; Isableu, Brice
2016-01-01
We examined the role of rotation axes during an overarm throwing task. Participants performed such task and were asked to throw a ball at maximal velocity at a target. The purpose of this study was to examine whether the minimum inertia axis would be exploited during the throwing phases, a time when internal-external rotations of the shoulder are particularly important. A motion capture system was used to evaluate the performance and to compute the potential axes of rotation (minimum inertia axis, shoulder-centre of mass axis and the shoulder-elbow axis). More specifically, we investigated whether a velocity-dependent change in rotational axes can be observed in the different throwing phases and whether the control obeys the principle of minimum inertia resistance. Our results showed that the limbs' rotational axis mainly coincides with the minimum inertia axis during the cocking phase and with the shoulder-elbow axis during the acceleration phase. Besides these rotation axes changes, the use of interaction torque is also sequence-dependent. The sequence-dependent rotation axes changes associated with the use of interaction torque during the acceleration phase could be a key factor in the production of hand velocity at ball release.
NASA Astrophysics Data System (ADS)
Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.
2018-05-01
We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.
Varley, Matthew C; Jaspers, Arne; Helsen, Werner F; Malone, James J
2017-09-01
Sprints and accelerations are popular performance indicators in applied sport. The methods used to define these efforts using athlete-tracking technology could affect the number of efforts reported. This study aimed to determine the influence of different techniques and settings for detecting high-intensity efforts using global positioning system (GPS) data. Velocity and acceleration data from a professional soccer match were recorded via 10-Hz GPS. Velocity data were filtered using either a median or an exponential filter. Acceleration data were derived from velocity data over a 0.2-s time interval (with and without an exponential filter applied) and a 0.3-second time interval. High-speed-running (≥4.17 m/s 2 ), sprint (≥7.00 m/s 2 ), and acceleration (≥2.78 m/s 2 ) efforts were then identified using minimum-effort durations (0.1-0.9 s) to assess differences in the total number of efforts reported. Different velocity-filtering methods resulted in small to moderate differences (effect size [ES] 0.28-1.09) in the number of high-speed-running and sprint efforts detected when minimum duration was <0.5 s and small to very large differences (ES -5.69 to 0.26) in the number of accelerations when minimum duration was <0.7 s. There was an exponential decline in the number of all efforts as minimum duration increased, regardless of filtering method, with the largest declines in acceleration efforts. Filtering techniques and minimum durations substantially affect the number of high-speed-running, sprint, and acceleration efforts detected with GPS. Changes to how high-intensity efforts are defined affect reported data. Therefore, consistency in data processing is advised.
Effect of Spacecraft Environmental Variables on the Flammability of Fire Resistant Fabrics
NASA Astrophysics Data System (ADS)
Osorio, A. F.; Fernandez-Pello, C.; Takahashi, S.; Rodriguez, J.; Urban, D. L.; Ruff, G.
2012-01-01
Fire resistant fabrics are used for firefighter, racecar drivers as well as astronaut suits. However, their fire resistant characteristics depend on the environment conditions and require study. Particularly important is the response of these fabrics to elevated oxygen concentration environments and radiant heat from a source such as an adjacent fire. In this work, experiments using two fire resistant fabrics were conducted to study the effect of oxygen concentration, external radiant flux and oxidizer flow velocity in concurrent flame spread. Results show that for a given fabric the minimum oxygen concentration for flame spread depends strongly on the magnitude of the external radiant flux. At increased oxygen concentrations the external radiant flux required for flame spread decreases. Oxidizer flow velocity influences the external radiant flux only when the convective heat flux from the flame has similar values to the external radiant flux. The results of this work provide further understanding of the flammability characteristics of fire resistant fabrics in environments similar to those of future spacecrafts.
NASA Technical Reports Server (NTRS)
Guzman, Jose J.
2003-01-01
Spacecraft flying in tetrahedron formations are excellent instrument platforms for electromagnetic and plasma studies. A minimum of four spacecraft - to establish a volume - is required to study some of the key regions of a planetary magnetic field. The usefulness of the measurements recorded is strongly affected by the tetrahedron orbital evolution. This paper considers the preliminary development of a general optimization procedure for tetrahedron formation control. The maneuvers are assumed to be impulsive and a multi-stage optimization method is employed. The stages include targeting to a fixed tetrahedron orientation, rotating and translating the tetrahedron and/or varying the initial and final times. The number of impulsive maneuvers citn also be varied. As the impulse locations and times change, new arcs are computed using a differential corrections scheme that varies the impulse magnitudes and directions. The result is a continuous trajectory with velocity discontinuities. The velocity discontinuities are then used to formulate the cost function. Direct optimization techniques are employed. The procedure is applied to the Magnetospheric Multiscale Mission (MMS) to compute preliminary formation control fuel requirements.
Accounting for Chromatic Atmospheric Effects on Barycentric Corrections
NASA Astrophysics Data System (ADS)
Blackman, Ryan T.; Szymkowiak, Andrew E.; Fischer, Debra A.; Jurgenson, Colby A.
2017-03-01
Atmospheric effects on stellar radial velocity measurements for exoplanet discovery and characterization have not yet been fully investigated for extreme precision levels. We carry out calculations to determine the wavelength dependence of barycentric corrections across optical wavelengths, due to the ubiquitous variations in air mass during observations. We demonstrate that radial velocity errors of at least several cm s-1 can be incurred if the wavelength dependence is not included in the photon-weighted barycentric corrections. A minimum of four wavelength channels across optical spectra (380-680 nm) are required to account for this effect at the 10 cm s-1 level, with polynomial fits of the barycentric corrections applied to cover all wavelengths. Additional channels may be required in poor observing conditions or to avoid strong telluric absorption features. Furthermore, consistent flux sampling on the order of seconds throughout the observation is necessary to ensure that accurate photon weights are obtained. Finally, we describe how a multiple-channel exposure meter will be implemented in the EXtreme PREcision Spectrograph (EXPRES).
On methods of estimating cosmological bulk flows
NASA Astrophysics Data System (ADS)
Nusser, Adi
2016-01-01
We explore similarities and differences between several estimators of the cosmological bulk flow, B, from the observed radial peculiar velocities of galaxies. A distinction is made between two theoretical definitions of B as a dipole moment of the velocity field weighted by a radial window function. One definition involves the three-dimensional (3D) peculiar velocity, while the other is based on its radial component alone. Different methods attempt at inferring B for either of these definitions which coincide only for the case of a velocity field which is constant in space. We focus on the Wiener Filtering (WF) and the Constrained Minimum Variance (CMV) methodologies. Both methodologies require a prior expressed in terms of the radial velocity correlation function. Hoffman et al. compute B in Top-Hat windows from a WF realization of the 3D peculiar velocity field. Feldman et al. infer B directly from the observed velocities for the second definition of B. The WF methodology could easily be adapted to the second definition, in which case it will be equivalent to the CMV with the exception of the imposed constraint. For a prior with vanishing correlations or very noisy data, CMV reproduces the standard Maximum Likelihood estimation for B of the entire sample independent of the radial weighting function. Therefore, this estimator is likely more susceptible to observational biases that could be present in measurements of distant galaxies. Finally, two additional estimators are proposed.
Basilio, Numa; Morice, Antoine H P; Marti, Geoffrey; Montagne, Gilles
2015-08-01
The aim of this study was to answer the question, Do drivers take into account the action boundaries of their car when overtaking? The Morice et al. affordance-based approach to visually guided overtaking suggests that the "overtake-ability" affordance can be formalized as the ratio of the "minimum satisfying velocity" (MSV) of the maneuver to the maximum velocity (V(max)) of the driven car. In this definition, however, the maximum acceleration (A(max)) of the vehicle is ignored. We hypothesize that drivers may be sensitive to an affordance redefined with the ratio of the "minimum satisfying acceleration" (MSA) to the A(max) of the car. Two groups of nine drivers drove cars differing in their A(max). They were instructed to attempt overtaking maneuvers in 25 situations resulting from the combination of five MSA and five MSV values. When overtaking frequency was expressed as a function of MSV and MSA, maneuvers were found to be initiated differently for the two groups. However, when expressed as a function of MSV/V(max) and MSA/A(max), overtaking frequency was quite similar for both groups. Finally, a multiple regression coefficient analysis demonstrated that overtaking decisions are fully explained by a composite variable comprising MSA/A(max) and the time required to reach MSV. Drivers reliably decide whether overtaking is safe (or not) by using low- and high-order variables taking into account their car's maximum velocity and acceleration, respectively, as predicted by "affordance-based control" theory. Potential applications include the design of overtaking assistance, which should exploit the MSA/A(max) variables in order to suggest perceptually relevant overtaking solutions. © 2015, Human Factors and Ergonomics Society.
NASA Astrophysics Data System (ADS)
Monakhov, A. A.; Chernyavski, V. M.; Shtemler, Yu.
2013-09-01
Bounds of cavitation inception are experimentally determined in a creeping flow between eccentric cylinders, the inner one being static and the outer rotating at a constant angular velocity, Ω. The geometric configuration is additionally specified by a small minimum gap between cylinders, H, as compared with the radii of the inner and outer cylinders. For some values H and Ω, cavitation bubbles are observed, which are collected on the surface of the inner cylinder and equally distributed over the line parallel to its axis near the downstream minimum gap position. Cavitation occurs for the parameters {H,Ω} within a region bounded on the right by the cavitation inception curve that passes through the plane origin and cannot exceed the asymptotic threshold value of the minimum gap, Ha, in whose vicinity cavitation may occur at H < Ha only for high angular rotation velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard
2011-01-10
We report the discovery of HD 156668 b, an extrasolar planet with a minimum mass of M{sub P} sin i = 4.15 M{sub +}. This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 days. The Doppler semi-amplitude of this planet, K = 1.89 m s{sup -1}, is among the lowest ever detected, on par with the detection of GJ 581 e using HARPS. A longer period (P {approx} 2.3more » years), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0.1 mmag, supporting the existence of the planet. No transits were detected down to a photometric limit of {approx}3 mmag, ruling out transiting planets dominated by extremely bloated atmospheres, but not precluding a transiting solid/liquid planet with a modest atmosphere.« less
MO-DE-207A-12: Toward Patient-Specific 4DCT Reconstruction Using Adaptive Velocity Binning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, E.D.; Glide-Hurst, C.; Wayne State University, Detroit, MI
2016-06-15
Purpose: While 4DCT provides organ/tumor motion information, it often samples data over 10–20 breathing cycles. For patients presenting with compromised pulmonary function, breathing patterns can change over the acquisition time, potentially leading to tumor delineation discrepancies. This work introduces a novel adaptive velocity-modulated binning (AVB) 4DCT algorithm that modulates the reconstruction based on the respiratory waveform, yielding a patient-specific 4DCT solution. Methods: AVB was implemented in a research reconstruction configuration. After filtering the respiratory waveform, the algorithm examines neighboring data to a phase reconstruction point and the temporal gate is widened until the difference between the reconstruction point and waveformmore » exceeds a threshold value—defined as percent difference between maximum/minimum waveform amplitude. The algorithm only impacts reconstruction if the gate width exceeds a set minimum temporal width required for accurate reconstruction. A sensitivity experiment of threshold values (0.5, 1, 5, 10, and 12%) was conducted to examine the interplay between threshold, signal to noise ratio (SNR), and image sharpness for phantom and several patient 4DCT cases using ten-phase reconstructions. Individual phase reconstructions were examined. Subtraction images and regions of interest were compared to quantify changes in SNR. Results: AVB increased signal in reconstructed 4DCT slices for respiratory waveforms that met the prescribed criteria. For the end-exhale phases, where the respiratory velocity is low, patient data revealed a threshold of 0.5% demonstrated increased SNR in the AVB reconstructions. For intermediate breathing phases, threshold values were required to be >10% to notice appreciable changes in CT intensity with AVB. AVB reconstructions exhibited appreciably higher SNR and reduced noise in regions of interest that were photon deprived such as the liver. Conclusion: We demonstrated that patient-specific velocity-based 4DCT reconstruction is feasible. Image noise was reduced with AVB, suggesting potential applications for low-dose acquisitions and to improve 4DCT reconstruction for irregular breathing patients. The submitting institution holds research agreements with Philips Healthcare.« less
NASA Astrophysics Data System (ADS)
Nguyen Duy Doan, Anh; Eracleous, Michael; Runnoe, Jessie; Halpern, Jules P.; Liu, Jia; Mathes, Gavin; Flohic, Helene M. L. G.
2018-01-01
Displaced peaks in the Balmer lines of quasars could serve as indirect evidence for the existence of close, bound supermassive black hole binaries (SBHBs) at sub-parsec separations. In this work, we test the SBHB hypothesis for 14 quasars with double-peaked emission lines using their long-term radial velocity curves. We make use of a Markov Chain Monte Carlo method to explore the parameter space efficiently. Compared to previous works, we have relaxed the assumption of circular orbits, adding two parameters (eccentricity and argument of periapsis) to the parameter space. We also account for jitter, i.e., short-term fluctuations in the radial velocity curves due to processes that are intrinsic to an individual broad-line region. We have found that the distribution of jitter about a smooth radial velocity curve resembles a Gaussian. Thus, jitter is equivalent to increasing measurement uncertainty in individual measurements. The resulting posterior distributions show the lower mass limit of the SBHBs to be in the range of 10^8 - 10^11 solar masses. For several objects, the mass limit drops by a few orders of magnitude compared to previous results by Liu et. al. However, we note that solutions corresponding to minimum masses often require very high orbital eccentricity ( > 0.9). We also calculate the orbital decay timescale of the binaries due to gravitational radiation, finding values in the range 10^6 - 10^11 years; these values correspond to the minimum-mass solutions. For one third of our targets, we can confidently disfavor the SBHB hypothesis on the basis that the minimum mass exceeds even the most massive black holes measured so far (2 x 10^10 solar masses). For the remaining objects, we must take into account the plausibility of a variety of parameters (e.g. eccentricity, lifetime, etc.) in our evaluation.
NASA Astrophysics Data System (ADS)
Feldmann, Daniel; Bauer, Christian; Wagner, Claus
2018-03-01
We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.
Hydraulic geometry of river cross sections; theory of minimum variance
Williams, Garnett P.
1978-01-01
This study deals with the rates at which mean velocity, mean depth, and water-surface width increase with water discharge at a cross section on an alluvial stream. Such relations often follow power laws, the exponents in which are called hydraulic exponents. The Langbein (1964) minimum-variance theory is examined in regard to its validity and its ability to predict observed hydraulic exponents. The variables used with the theory were velocity, depth, width, bed shear stress, friction factor, slope (energy gradient), and stream power. Slope is often constant, in which case only velocity, depth, width, shear and friction factor need be considered. The theory was tested against a wide range of field data from various geographic areas of the United States. The original theory was intended to produce only the average hydraulic exponents for a group of cross sections in a similar type of geologic or hydraulic environment. The theory does predict these average exponents with a reasonable degree of accuracy. An attempt to forecast the exponents at any selected cross section was moderately successful. Empirical equations are more accurate than the minimum variance, Gauckler-Manning, or Chezy methods. Predictions of the exponent of width are most reliable, the exponent of depth fair, and the exponent of mean velocity poor. (Woodard-USGS)
Canonical fluid thermodynamics
NASA Technical Reports Server (NTRS)
Schmid, L. A.
1972-01-01
The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.
Sink fast and swim harder! Round-trip cost-of-transport for buoyant divers.
Miller, Patrick J O; Biuw, Martin; Watanabe, Yuuki Y; Thompson, Dave; Fedak, Mike A
2012-10-15
Efficient locomotion between prey resources at depth and oxygen at the surface is crucial for breath-hold divers to maximize time spent in the foraging layer, and thereby net energy intake rates. The body density of divers, which changes with body condition, determines the apparent weight (buoyancy) of divers, which may affect round-trip cost-of-transport (COT) between the surface and depth. We evaluated alternative predictions from external-work and actuator-disc theory of how non-neutral buoyancy affects round-trip COT to depth, and the minimum COT speed for steady-state vertical transit. Not surprisingly, the models predict that one-way COT decreases (increases) when buoyancy aids (hinders) one-way transit. At extreme deviations from neutral buoyancy, gliding at terminal velocity is the minimum COT strategy in the direction aided by buoyancy. In the transit direction hindered by buoyancy, the external-work model predicted that minimum COT speeds would not change at greater deviations from neutral buoyancy, but minimum COT speeds were predicted to increase under the actuator disc model. As previously documented for grey seals, we found that vertical transit rates of 36 elephant seals increased in both directions as body density deviated from neutral buoyancy, indicating that actuator disc theory may more closely predict the power requirements of divers affected by gravity than an external work model. For both models, minor deviations from neutral buoyancy did not affect minimum COT speed or round-trip COT itself. However, at body-density extremes, both models predict that savings in the aided direction do not fully offset the increased COT imposed by the greater thrusting required in the hindered direction.
Zhang, Wei; Wei, Shilin; Teng, Yanbin; Zhang, Jianku; Wang, Xiufang; Yan, Zheping
2017-01-01
In view of a dynamic obstacle environment with motion uncertainty, we present a dynamic collision avoidance method based on the collision risk assessment and improved velocity obstacle method. First, through the fusion optimization of forward-looking sonar data, the redundancy of the data is reduced and the position, size and velocity information of the obstacles are obtained, which can provide an accurate decision-making basis for next-step collision avoidance. Second, according to minimum meeting time and the minimum distance between the obstacle and unmanned underwater vehicle (UUV), this paper establishes the collision risk assessment model, and screens key obstacles to avoid collision. Finally, the optimization objective function is established based on the improved velocity obstacle method, and a UUV motion characteristic is used to calculate the reachable velocity sets. The optimal collision speed of UUV is searched in velocity space. The corresponding heading and speed commands are calculated, and outputted to the motion control module. The above is the complete dynamic obstacle avoidance process. The simulation results show that the proposed method can obtain a better collision avoidance effect in the dynamic environment, and has good adaptability to the unknown dynamic environment. PMID:29186878
The minimum record time for PIV measurement in a vessel agitated by a Rushton turbine
NASA Astrophysics Data System (ADS)
Šulc, Radek; Ditl, Pavel; Fořt, Ivan; Jašíkova, Darina; Kotek, Michal; Kopecký, Václav; Kysela, Bohuš
In PIV studies published in the literature focusing on the investigation of the flow field in an agitated vessel the record time is ranging from the tenths and the units of seconds. The aim of this work was to determine minimum record time for PIV measurement in a vessel agitated by a Rushton turbine that is necessary to obtain relevant results of velocity field. The velocity fields were measured in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a Rushton turbine 133 mm in diameter using 2-D Time Resolved Particle Image Velocimetry in the impeller Reynolds number range from 50 000 to 189 000. This Re range secures the fully-developed turbulent flow of agitated liquid. Three liquids of different viscosities were used as the agitated liquid. On the basis of the analysis of the radial and axial components of the mean- and fluctuation velocities measured outside the impeller region it was found that dimensionless minimum record time is independent of impeller Reynolds number and is equalled N.tRmin = 103 ± 19.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pe’er, Asaf; Long, Killian; Casella, Piergiorgio
Internal shocks between propagating plasma shells, originally ejected at different times with different velocities, are believed to play a major role in dissipating the kinetic energy, thereby explaining the observed light curves and spectra in a large range of transient objects. Even if initially the colliding plasmas are cold, following the first collision, the plasma shells are substantially heated, implying that in a scenario of multiple collisions, most collisions take place between plasmas of non-zero temperatures. Here, we calculate the dynamical properties of plasmas resulting from a collision between arbitrarily hot plasma shells, moving at arbitrary speeds. We provide simplemore » analytical expressions valid for both ultrarelativistic and Newtonian velocities for both hot and cold plasmas. We derive the minimum criteria required for the formation of the two-shock wave system, and show that in the relativistic limit, the minimum Lorentz factor is proportional to the square root of the ratio of the initial plasmas enthalpies. We provide basic scaling laws of synchrotron emission from both the forward and reverse-shock waves, and show how these can be used to deduce the properties of the colliding shells. Finally, we discuss the implications of these results in the study of several astronomical transients, such as X-ray binaries, radio-loud quasars, and gamma-ray bursts.« less
Recent X-ray Variability of eta Carinae: the Quick Road to Recovery
NASA Technical Reports Server (NTRS)
Corcoran, M. Francis; Hamaguchi, K.; Pittard, J. M.; Russell, C. M. P.; Owocki, S. P.; Parkin, E. R.; Okazaki, A.
2010-01-01
We report continued monitoring of the superluminous binary system eta Car by the Proportional Counter Array on the Rossi X-ray Timing Observatory (RXTE) through the 2009 X-ray minimum. The RXTE campaign shows that the minimum began on 2009 January 16, consistent with the phasings of the two previous minima, and overall, the temporal behavior of the X-ray emission was similar to that observed by RXTE in the previous two cycles. However, important differences did occur. The 2-10 keV X-ray flux and X-ray hardness decreased in the 2.5-year interval leading up to the 2009 minimum compared to the previous cycle. Most intriguingly, the 2009 X-ray minimum was about one month shorter than either of the previous two minima. During the egress from the 2009 minimum the X-ray hardness increased markedly as it had during egress from the previous two minima, although the maximum X-ray hardness achieved was less than the maximum observed after the two previous recoveries. We suggest that the cycle-to-cycle variations, especially the unexpectedly early recovery from the 2009 X-ray minimum, might have been the result of a decline in eta Car's wind momentum flux produced by a drop in eta Car's mass loss rate or wind terminal velocity (or some combination), though if so the change in wind momentum flux required to match the X-ray variation is surprisingly large.
NASA Astrophysics Data System (ADS)
Harris, Alan W.; Morbidelli, Alessandro; Granvik, Mikael
2016-10-01
Modeling the distribution of orbits with near-zero orbital parameters requires special attention to the dimensionality of the parameters in question. This is even more true since orbits of near-zero MOID, (e, i), or q are especially interesting as sources or sinks of NEAs. An essentially zero value of MOID (Minimum Orbital Intersection Distance) with respect to the Earth's orbit is a requirement for an impact trajectory, and initially also for ejecta from lunar impacts into heliocentric orbits. The collision cross section of the Earth goes up greatly with decreasing relative encounter velocity, venc, thus the impact flux onto the Earth is enhanced in such low-venc objects, which correspond to near-zero (e,i) orbits. And lunar ejecta that escapes from the Earth-moon system mostly does so at only barely greater than minimum velocity for escape (Gladman, et al., 1995, Icarus 118, 302-321), so the Earth-moon system is both a source and a sink of such low-venc orbits, and understanding the evolution of these populations requires accurately modeling the orbit distributions. Lastly, orbits of very low heliocentric perihelion distance, q, are particularly interesting as a "sink" in the NEA population as asteroids "fall into the sun" (Farinella, et al., 1994, Nature 371, 314-317). Understanding this process, and especially the role of disintegration of small asteroids as they evolve into low-q orbits (Granvik et al., 2016, Nature 530, 303-306), requires accurate modeling of the q distribution that would exist in the absence of a "sink" in the distribution. In this paper, we derive analytical expressions for the expected steady-state distributions near zero of MOID, (e,i), and q in the absence of sources or sinks, compare those to numerical simulations of orbit distributions, and lastly evaluate the distributions of discovered NEAs to try to understand the sources and sinks of NEAs "near zero" of these orbital parameters.
Microtremors study applying the SPAC method in Colima state, Mexico.
NASA Astrophysics Data System (ADS)
Vázquez Rosas, R.; Aguirre González, J.; Mijares Arellano, H.
2007-05-01
One of the main parts of seismic risk studies is to determine the site effect. This can be estimated by means of the microtremors measurements. From the H/V spectral ratio (Nakamura, 1989), the predominant period of the site can be estimated. Although the predominant period by itself can not represent the site effect in a wide range of frequencies and doesn't provide information of the stratigraphy. The SPAC method (Spatial Auto-Correlation Method, Aki 1957), on the other hand, is useful to estimate the stratigraphy of the site. It is based on the simultaneous recording of microtremors in several stations deployed in an instrumental array. Through the spatial autocorrelation coefficient computation, the Rayleigh wave dispersion curve can be cleared. Finally the stratigraphy model (thickness, S and P wave velocity, and density of each layer) is estimated by fitting the theoretical dispersion curve with the observed one. The theoretical dispersion curve is initially computed using a proposed model. That model is modified several times until the theoretical curve fit the observations. This method requires of a minimum of three stations where the microtremors are observed simultaneously in all the stations. We applied the SPAC method to six sites in Colima state, Mexico. Those sites are Santa Barbara, Cerro de Ortega, Tecoman, Manzanillo and two in Colima city. Totally 16 arrays were carried out using equilateral triangles with different apertures with a minimum of 5 m and a maximum of 60 m. For recording microtremors we used short period (5 seconds) velocity type vertical sensors connected to a K2 (Kinemetrics) acquisition system. We could estimate the velocities of the most superficial layers reaching different depths in each site. For Santa Bárbara site the exploration depth was about 30 m, for Tecoman 12 m, for Manzanillo 35 m, for Cerro de Ortega 68 m, and the deepest site exploration was obtained in Colima city with a depth of around 73 m. The S wave velocities fluctuate between 230 m/s and 420 m/s for the most superficial layer. It means that, in general, the most superficial layers are quite competent. The superficial layer with smaller S wave velocity was observed in Tecoman, while that of largest S wave velocity was observed in Cerro de Ortega. Our estimations are consistent with down-hole velocity records obtained in Santa Barbara by previous studies.
Measuring the Power Spectrum with Peculiar Velocities
NASA Astrophysics Data System (ADS)
Macaulay, Edward; Feldman, H. A.; Ferreira, P. G.; Jaffe, A. H.; Agarwal, S.; Hudson, M. J.; Watkins, R.
2012-01-01
The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large scale excess in the matter power spectrum, and can appear to be in some tension with the LCDM model. We use a composite catalogue of 4,537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results from Macaulay et al. (2011), studying minimum variance moments of the velocity field, as calculated by Watkins, Feldman & Hudson (2009) and Feldman, Watkins & Hudson (2010). We find good agreement with the LCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1, although with a 1 sigma uncertainty which includes the LCDM model. We find that the uncertainty in the excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and nonlinear clustering in simulated peculiar velocity catalogues, and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.
Power spectrum estimation from peculiar velocity catalogues
NASA Astrophysics Data System (ADS)
Macaulay, E.; Feldman, H. A.; Ferreira, P. G.; Jaffe, A. H.; Agarwal, S.; Hudson, M. J.; Watkins, R.
2012-09-01
The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large-scale excess in the matter power spectrum and can appear to be in some tension with the Λ cold dark matter (ΛCDM) model. We use a composite catalogue of 4537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results by Macaulay et al., studying minimum variance moments of the velocity field, as calculated by Feldman, Watkins & Hudson. We find good agreement with the ΛCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1 with a 1σ uncertainty which includes the ΛCDM model. We find that the uncertainty in excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and non-linear clustering in simulated peculiar velocity catalogues and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.
Fired heater for coal liquefaction process
Ying, David H. S.; McDermott, Wayne T.; Givens, Edwin N.
1985-01-01
A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.
Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints
NASA Technical Reports Server (NTRS)
Whiffen, Gregory J.
2013-01-01
The science objective of NASA's Dawn Discovery mission is to explore the giant asteroid Vesta and the dwarf planet Ceres, the two largest members of the main asteroid belt. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional low-thrust design objectives (like minimum change in velocity or minimum transfer time) often result in thrust direction time evolutions that cannot be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and turned out to be essential to the successful navigation of Dawn at Vesta.
Accounting for Chromatic Atmospheric Effects on Barycentric Corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackman, Ryan T.; Szymkowiak, Andrew E.; Fischer, Debra A.
2017-03-01
Atmospheric effects on stellar radial velocity measurements for exoplanet discovery and characterization have not yet been fully investigated for extreme precision levels. We carry out calculations to determine the wavelength dependence of barycentric corrections across optical wavelengths, due to the ubiquitous variations in air mass during observations. We demonstrate that radial velocity errors of at least several cm s{sup −1} can be incurred if the wavelength dependence is not included in the photon-weighted barycentric corrections. A minimum of four wavelength channels across optical spectra (380–680 nm) are required to account for this effect at the 10 cm s{sup −1} level,more » with polynomial fits of the barycentric corrections applied to cover all wavelengths. Additional channels may be required in poor observing conditions or to avoid strong telluric absorption features. Furthermore, consistent flux sampling on the order of seconds throughout the observation is necessary to ensure that accurate photon weights are obtained. Finally, we describe how a multiple-channel exposure meter will be implemented in the EXtreme PREcision Spectrograph (EXPRES).« less
Engine Hydraulic Stability. [injector model for analyzing combustion instability
NASA Technical Reports Server (NTRS)
Kesselring, R. C.; Sprouse, K. M.
1977-01-01
An analytical injector model was developed specifically to analyze combustion instability coupling between the injector hydraulics and the combustion process. This digital computer dynamic injector model will, for any imposed chamber of inlet pressure profile with a frequency ranging from 100 to 3000 Hz (minimum) accurately predict/calculate the instantaneous injector flowrates. The injector system is described in terms of which flow segments enter and leave each pressure node. For each flow segment, a resistance, line lengths, and areas are required as inputs (the line lengths and areas are used in determining inertance). For each pressure node, volume and acoustic velocity are required as inputs (volume and acoustic velocity determine capacitance). The geometric criteria for determining inertances of flow segments and capacitance of pressure nodes was set. Also, a technique was developed for analytically determining time averaged steady-state pressure drops and flowrates for every flow segment in an injector when such data is not known. These pressure drops and flowrates are then used in determining the linearized flow resistance for each line segment of flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supardiyono; Santosa, Bagus Jaya; Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya
A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquakemore » locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.« less
Pneumatic Conveying of Seed Cotton: Minimum Velocity and Pressure Drop
USDA-ARS?s Scientific Manuscript database
Electricity is major cost for cotton gins, representing approximately 20% of the industry’s variable costs. Fans used for pneumatic conveying consume the majority of electricity at cotton gins. Development of control systems to reduce the air velocity used for conveying seed cotton could significant...
Pneumatic Conveying of Seed Cotton: Minimum Velocity and Pressure Drop
USDA-ARS?s Scientific Manuscript database
Electricity is a major cost for cotton gins, representing approximately 20% of variable costs. Fans used for pneumatic conveying consume the majority of electricity at cotton gins. Development of control systems to reduce the air velocity used for conveying seed cotton could significantly decrease e...
The evolution of an impact-generated atmosphere
NASA Technical Reports Server (NTRS)
Lange, M. A.; Ahrens, T. J.
1982-01-01
The minimum impact velocities and pressures required to form a primary H2O atmosphere during planetary accretion from chondritelike planetessimals are determined by means of shock wave and thermodynamic data for rock-forming and volatile-bearing minerals. Attenuation of impact-induced shock pressure is modelled to the extent that the amount of released water can be estimated as a function of projectile radius, impact velocity, weight fraction of target water, target porosity, and dehydration efficiency. The two primary processes considered are the impact release of water bound in such hydrous minerals as serpentine, and the subsequent reincorporation of free water by hydration of forsterite and enstatite. These processes are described in terms of model calculations for the accretion of the earth. It is concluded that the concept of dehydration efficiency is of dominant importance in determining the degree to which an accreting planet acquires an atmosphere during its formation.
Particle Velocity Measuring System
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)
1998-01-01
Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.
A Compact, Pi-Mode Extraction Scheme for the Axial B-Field Recirculating Planar Magnetron
2012-07-23
Figure 4). Thus, in a planar magnetron, the minimum phase velocity, vph , to stay above cutoff in the rectangular waveguide is ℎ = ...as magnetrons, electrons must be accelerated such that they are in synchronism with the phase velocity, vph , of the electromagnetic wave for an
The Aeroacoustics of Supersonic Coaxial Jets
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
1994-01-01
Instability waves have been established as the dominant source of mixing noise radiating into the downstream arc of a supersonic jet when the waves have phase velocities that are supersonic relative to ambient conditions. Recent theories for supersonic jet noise have used the concepts of growing and decaying linear instability waves for predicting radiated noise. This analysis is extended to the prediction of noise radiation from supersonic coaxial jets. Since the analysis requires a known mean flow and the coaxial jet mean flow is not described easily in terms of analytic functions, a numerical prediction is made for its development. The Reynolds averaged, compressible, boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed for the effects of velocity and temperature ratios and Mach number. Both normal and inverted velocity profile coaxial jets are considered. Comparisons with measurements for both single and coaxial jets show good agreement. The results from mean flow and stability calculations are used to predict the noise radiation from coaxial jets with different operating conditions. Comparisons are made between different coaxial jets and a single equivalent jet with the same total thrust, mass flow, and exit area. Results indicate that normal velocity profile jets can have noise reductions compared to the single equivalent jet. No noise reductions are found for inverted velocity profile jets operated at the minimum noise condition compared to the single equivalent jet. However, it is inferred that changes in area ratio may provide noise reduction benefits for inverted velocity profile jets.
Initial drop size and velocity distributions for airblast coaxial atomizers
NASA Technical Reports Server (NTRS)
Eroglu, H.; Chigier, N.
1991-01-01
Phase Doppler measurements were used to determine initial drop size and velocity distributions after a complete disintegration of coaxial liquid jets. The Sauter mean diameter (SMD) distribution was found to be strongly affected by the structure and behavior of the preceding liquid intact jet. The axial measurement stations were determined from the photographs of the coaxial liquid jet at very short distances (1-2 mm) downstream of the observed break-up locations. Minimum droplet mean velocities were found at the center, and maximum velocities were near the spray boundary. Size-velocity correlations show that the velocity of larger drops did not change with drop size. Drop rms velocity distributions have double peaks whose radial positions coincide with the maximum mean velocity gradients.
Projectile motion in real-life situation: Kinematics of basketball shooting
NASA Astrophysics Data System (ADS)
Changjan, A.; Mueanploy, W.
2015-06-01
Basketball shooting is a basic practice for players. The path of the ball from the players to the hoop is projectile motion. For undergraduate introductory physics courses student must be taught about projectile motion. Basketball shooting can be used as a case study for learning projectile motion from real-life situation. In this research, we discuss the relationship between optimal angle, minimum initial velocity and the height of the ball before the player shoots the ball for basketball shooting problem analytically. We found that the value of optimal angle and minimum initial velocity decreases with increasing the height of the ball before the player shoots the ball.
NASA Astrophysics Data System (ADS)
Bogusz, Janusz; Kłos, Anna; Grzempowski, Piotr; Kontny, Bernard
2014-06-01
The paper presents the results of testing the various methods of permanent stations' velocity residua interpolation in a regular grid, which constitutes a continuous model of the velocity field in the territory of Poland. Three packages of software were used in the research from the point of view of interpolation: GMT ( The Generic Mapping Tools), Surfer and ArcGIS. The following methods were tested in the softwares: the Nearest Neighbor, Triangulation (TIN), Spline Interpolation, Surface, Inverse Distance to a Power, Minimum Curvature and Kriging. The presented research used the absolute velocities' values expressed in the ITRF2005 reference frame and the intraplate velocities related to the NUVEL model of over 300 permanent reference stations of the EPN and ASG-EUPOS networks covering the area of Europe. Interpolation for the area of Poland was done using data from the whole area of Europe to make the results at the borders of the interpolation area reliable. As a result of this research, an optimum method of such data interpolation was developed. All the mentioned methods were tested for being local or global, for the possibility to compute errors of the interpolated values, for explicitness and fidelity of the interpolation functions or the smoothing mode. In the authors' opinion, the best data interpolation method is Kriging with the linear semivariogram model run in the Surfer programme because it allows for the computation of errors in the interpolated values and it is a global method (it distorts the results in the least way). Alternately, it is acceptable to use the Minimum Curvature method. Empirical analysis of the interpolation results obtained by means of the two methods showed that the results are identical. The tests were conducted using the intraplate velocities of the European sites. Statistics in the form of computing the minimum, maximum and mean values of the interpolated North and East components of the velocity residuum were prepared for all the tested methods, and each of the resulting continuous velocity fields was visualized by means of the GMT programme. The interpolated components of the velocities and their residua are presented in the form of tables and bar diagrams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Connell, D.R.
1986-12-01
The method of progressive hypocenter-velocity inversion has been extended to incorporate S-wave arrival time data and to estimate S-wave velocities in addition to P-wave velocities. S-wave data to progressive inversion does not completely eliminate hypocenter-velocity tradeoffs, but they are substantially reduced. Results of a P and S-wave progressive hypocenter-velocity inversion at The Geysers show that the top of the steam reservoir is clearly defined by a large decrease of V/sub p//V/sub s/ at the condensation zone-production zone contact. The depth interval of maximum steam production coincides with minimum observed V/sub p//V/sub s/, and V/sub p//V/sub s/ increses below the shallowmore » primary production zone suggesting that reservoir rock becomes more fluid saturated. The moment tensor inversion method was applied to three microearthquakes at The Geysers. Estimated principal stress orientations were comparable to those estimated using P-wave firstmotions as constraints. Well constrained principal stress orientations were obtained for one event for which the 17 P-first motions could not distinguish between normal-slip and strike-slip mechanisms. The moment tensor estimates of principal stress orientations were obtained using far fewer stations than required for first-motion focal mechanism solutions. The three focal mechanisms obtained here support the hypothesis that focal mechanisms are a function of depth at The Geysers. Progressive inversion as developed here and the moment tensor inversion method provide a complete approach for determining earthquake locations, P and S-wave velocity structure, and earthquake source mechanisms.« less
Minimum requirements for predictive pore-network modeling of solute transport in micromodels
NASA Astrophysics Data System (ADS)
Mehmani, Yashar; Tchelepi, Hamdi A.
2017-10-01
Pore-scale models are now an integral part of analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Pore network models (PNM) are particularly attractive due to their computational efficiency. However, quantitative predictions with PNM have not always been successful. We focus on single-phase transport of a passive tracer under advection-dominated regimes and compare PNM with high-fidelity direct numerical simulations (DNS) for a range of micromodel heterogeneities. We identify the minimum requirements for predictive PNM of transport. They are: (a) flow-based network extraction, i.e., discretizing the pore space based on the underlying velocity field, (b) a Lagrangian (particle tracking) simulation framework, and (c) accurate transfer of particles from one pore throat to the next. We develop novel network extraction and particle tracking PNM methods that meet these requirements. Moreover, we show that certain established PNM practices in the literature can result in first-order errors in modeling advection-dominated transport. They include: all Eulerian PNMs, networks extracted based on geometric metrics only, and flux-based nodal transfer probabilities. Preliminary results for a 3D sphere pack are also presented. The simulation inputs for this work are made public to serve as a benchmark for the research community.
Localized microwave pulsed plasmas for ignition and flame front enhancement
NASA Astrophysics Data System (ADS)
Michael, James Bennett
Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow instantaneous velocity measurements. FLEET is shown to perform in high temperature and reactive mixtures.
Definition of hydraulic stability of KVGM-100 hot-water boiler and minimum water flow rate
NASA Astrophysics Data System (ADS)
Belov, A. A.; Ozerov, A. N.; Usikov, N. V.; Shkondin, I. A.
2016-08-01
In domestic power engineering, the methods of quantitative and qualitative-quantitative adjusting the load of the heat supply systems are widely distributed; furthermore, during the greater part of the heating period, the actual discharge of network water is less than estimated values when changing to quantitative adjustment. Hence, the hydraulic circuits of hot-water boilers should ensure the water velocities, minimizing the scale formation and excluding the formation of stagnant zones. The results of the calculations of hot-water KVGM-100 boiler and minimum water flow rate for the basic and peak modes at the fulfillment of condition of the lack of surface boil are presented in the article. The minimal flow rates of water at its underheating to the saturation state and the thermal flows in the furnace chamber were defined. The boiler hydraulic calculation was performed using the "Hydraulic" program, and the analysis of permissible and actual velocities of the water movement in the pipes of the heating surfaces was carried out. Based on the thermal calculations of furnace chamber and thermal- hydraulic calculations of heating surfaces, the following conclusions were drawn: the minimum velocity of water movement (by condition of boiling surface) at lifting movement of environment increases from 0.64 to 0.79 m/s; it increases from 1.14 to 1.38 m/s at down movement of environmental; the minimum water flow rate by the boiler in the basic mode (by condition of the surface boiling) increased from 887 t/h at the load of 20% up to 1074 t/h at the load of 100%. The minimum flow rate is 1074 t/h at nominal load and is achieved at the pressure at the boiler outlet equal to 1.1 MPa; the minimum water flow rate by the boiler in the peak mode by condition of surface boiling increases from 1669 t/h at the load of 20% up to 2021 t/h at the load of 100%.
Teke, Memik; Teke, Fatma; Alan, Bircan; Türkoğlu, Ahmet; Hamidi, Cihad; Göya, Cemil; Hattapoğlu, Salih; Gumus, Metehan
2017-01-01
Differentiation of idiopathic granulomatous mastitis (IGM) from carcinoma with routine imaging methods, such as ultrasonography (US) and mammography, is difficult. Therefore, we evaluated the value of a newly developed noninvasive technique called acoustic radiation force impulse imaging in differentiating IGM versus malignant lesions in the breast. Four hundred and eighty-six patients, who were referred to us with a presumptive diagnosis of a mass, underwent Virtual Touch tissue imaging (VTI; Siemens) and Virtual Touch tissue quantification (VTQ; Siemens) after conventional gray-scale US. US-guided percutaneous needle biopsy was then performed on 276 lesions with clinically and radiologically suspicious features. Malignant lesions (n = 122) and IGM (n = 48) were included in the final study group. There was a statistically significant difference in shear wave velocity marginal and internal values between the IGM and malignant lesions. The median marginal velocity for IGM and malignant lesions was 3.19 m/s (minimum-maximum 2.49-5.82) and 5.05 m/s (minimum-maximum 2.09-8.46), respectively (p < 0.001). The median internal velocity for IGM and malignant lesions was 2.76 m/s (minimum-maximum 1.14-4.12) and 4.79 m/s (minimum-maximum 2.12-8.02), respectively (p < 0.001). The combination of VTI and VTQ as a complement to conventional US provides viscoelastic properties of tissues, and thus has the potential to increase the specificity of US.
Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan
2014-06-01
The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.
Running Technique is an Important Component of Running Economy and Performance
FOLLAND, JONATHAN P.; ALLEN, SAM J.; BLACK, MATTHEW I.; HANDSAKER, JOSEPH C.; FORRESTER, STEPHANIE E.
2017-01-01
ABSTRACT Despite an intuitive relationship between technique and both running economy (RE) and performance, and the diverse techniques used by runners to achieve forward locomotion, the objective importance of overall technique and the key components therein remain to be elucidated. Purpose This study aimed to determine the relationship between individual and combined kinematic measures of technique with both RE and performance. Methods Ninety-seven endurance runners (47 females) of diverse competitive standards performed a discontinuous protocol of incremental treadmill running (4-min stages, 1-km·h−1 increments). Measurements included three-dimensional full-body kinematics, respiratory gases to determine energy cost, and velocity of lactate turn point. Five categories of kinematic measures (vertical oscillation, braking, posture, stride parameters, and lower limb angles) and locomotory energy cost (LEc) were averaged across 10–12 km·h−1 (the highest common velocity < velocity of lactate turn point). Performance was measured as season's best (SB) time converted to a sex-specific z-score. Results Numerous kinematic variables were correlated with RE and performance (LEc, 19 variables; SB time, 11 variables). Regression analysis found three variables (pelvis vertical oscillation during ground contact normalized to height, minimum knee joint angle during ground contact, and minimum horizontal pelvis velocity) explained 39% of LEc variability. In addition, four variables (minimum horizontal pelvis velocity, shank touchdown angle, duty factor, and trunk forward lean) combined to explain 31% of the variability in performance (SB time). Conclusions This study provides novel and robust evidence that technique explains a substantial proportion of the variance in RE and performance. We recommend that runners and coaches are attentive to specific aspects of stride parameters and lower limb angles in part to optimize pelvis movement, and ultimately enhance performance. PMID:28263283
Shono, Tomoki; Masumoto, Kenji; Fujishima, Kazutaka; Hotta, Noboru; Ogaki, Tetsuro; Adachi, Takahiro
2007-11-01
This study sought to determine the characteristics of gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow. Eight female subjects (61.4+/-3.9 y) performed underwater and land treadmill walking at varying exercise intensities and velocities. During underwater walking (water level at the xiphoid process) using the Flowmill, which has a treadmill at the base of a water flume, the simultaneous belt and water flow velocities were set to 20, 30 and 4 m.min(-1). Land walking velocities were set to 40, 60 and 80 m.min(-1). Oxygen uptake and heart rate were measured during both walking exercises. Maximum and minimum knee joint angles, and mean angular velocities of knee extension and knee flexion in the swing phase were calculated using two-dimensional motion analysis. Electromyograms were recorded using bipolar surface electrodes for five muscles: the tibialis anterior (TA), medial gastrocnemius (MG), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF). At the same exercise intensity level, cadence was almost half that on land. Step length did not differ significantly because velocity was halved. Compared to land walking, the maximum and minimum knee joint angles were significantly smaller and the mean angular velocity of knee extension was significantly lower. Knee extension in the swing phase was limited by water resistance. While the muscle activity levels of TA, VM and BF were almost the same as during land walking, those of MG and RF were lower. At the same velocity, exercise intensity was significantly higher than during land walking, cadence was significantly lower, and step length significantly larger. The knee joint showed significantly smaller maximum and minimum angles, and the mean angular velocity of knee flexion was significantly larger. The muscle activity levels of TA, VM, and BF increased significantly in comparison with land walking, although those of MG and RF did not significantly differ. Given our findings, it appears that buoyancy, lower cadence, and a moving floor influenced the muscle activity level of MG and RF at the same exercise intensity level and at the same velocity. These results show promise of becoming the basic data of choice for underwater walking exercise prescription.
Characteristics of low-latitude ionospheric depletions and enhancements during solar minimum
NASA Astrophysics Data System (ADS)
Haaser, R. A.; Earle, G. D.; Heelis, R. A.; Klenzing, J.; Stoneback, R.; Coley, W. R.; Burrell, A. G.
2012-10-01
Under the waning solar minimum conditions during 2009 and 2010, the Ion Velocity Meter, part of the Coupled Ion Neutral Dynamics Investigation aboard the Communication/Navigation Outage Forecasting System satellite, is used to measure in situ nighttime ion densities and drifts at altitudes between 400 and 550 km during the hours 21:00-03:00 solar local time. A new approach to detecting and classifying well-formed ionospheric plasma depletions and enhancements (bubbles and blobs) with scale sizes between 50 and 500 km is used to develop geophysical statistics for the summer, winter, and equinox seasons during the quiet solar conditions. Some diurnal and seasonal geomagnetic distribution characteristics confirm previous work on equatorial irregularities and scintillations, while other elements reveal new behaviors that will require further investigation before they may be fully understood. Events identified in the study reveal very different and often opposite behaviors of bubbles and blobs during solar minimum. In particular, more bubbles demonstrating deeper density fluctuations and faster perturbation plasma drifts typically occur earlier near the magnetic equator, while blobs of similar magnitude occur more often far away from the geomagnetic equator closer to midnight.
VizieR Online Data Catalog: OCCASO survey. HRV for 12 open clusters (Casamiquela+, 2016)
NASA Astrophysics Data System (ADS)
Casamiquela, L.; Carrera, R.; Jordi, C.; Balaguer-Nunez, L.; Pancino, E.; Hidalgo, S. L.; Martinez-Vazquez, C. E.; Murabito, S.; Del Pino, A.; Aparicio, A.; Blanco-Cuaresma, S.; Gallart, C.
2016-05-01
We present results of radial velocities for stars in 12 completed clusters (77 stars), and the reference stars Arcturus and μ Leo. This is a total of 79 stars. We include radial velocities from individual spectra, and final radial velocities from combined spectra which reach a minimum signal-to-noise ratio of 70. Comparison with the literature is included in the cases which the stars had previous measurements. (2 data files).
Optimizing velocities and transports for complex coastal regions and archipelagos
NASA Astrophysics Data System (ADS)
Haley, Patrick J.; Agarwal, Arpit; Lermusiaux, Pierre F. J.
2015-05-01
We derive and apply a methodology for the initialization of velocity and transport fields in complex multiply-connected regions with multiscale dynamics. The result is initial fields that are consistent with observations, complex geometry and dynamics, and that can simulate the evolution of ocean processes without large spurious initial transients. A class of constrained weighted least squares optimizations is defined to best fit first-guess velocities while satisfying the complex bathymetry, coastline and divergence strong constraints. A weak constraint towards the minimum inter-island transports that are in accord with the first-guess velocities provides important velocity corrections in complex archipelagos. In the optimization weights, the minimum distance and vertical area between pairs of coasts are computed using a Fast Marching Method. Additional information on velocity and transports are included as strong or weak constraints. We apply our methodology around the Hawaiian islands of Kauai/Niihau, in the Taiwan/Kuroshio region and in the Philippines Archipelago. Comparisons with other common initialization strategies, among hindcasts from these initial conditions (ICs), and with independent in situ observations show that our optimization corrects transports, satisfies boundary conditions and redirects currents. Differences between the hindcasts from these different ICs are found to grow for at least 2-3 weeks. When compared to independent in situ observations, simulations from our optimized ICs are shown to have the smallest errors.
NASA Technical Reports Server (NTRS)
Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.
1975-01-01
Computational aspects of (1) flutter optimization (minimization of structural mass subject to specified flutter requirements), (2) methods for solving the flutter equation, and (3) efficient methods for computing generalized aerodynamic force coefficients in the repetitive analysis environment of computer-aided structural design are discussed. Specific areas included: a two-dimensional Regula Falsi approach to solving the generalized flutter equation; method of incremented flutter analysis and its applications; the use of velocity potential influence coefficients in a five-matrix product formulation of the generalized aerodynamic force coefficients; options for computational operations required to generate generalized aerodynamic force coefficients; theoretical considerations related to optimization with one or more flutter constraints; and expressions for derivatives of flutter-related quantities with respect to design variables.
Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.
2013-01-01
A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained “irreversibly” when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained “irreversibly” upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.
Instability of superfluid Fermi gases induced by a rotonlike density mode in optical lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunomae, Yoshihiro; Yamamoto, Daisuke; Danshita, Ippei
2009-12-15
We study the stability of superfluid Fermi gases in deep optical lattices in the BCS-Bose-Einstein condensation (BEC) crossover at zero temperature. Within the tight-binding attractive Hubbard model, we calculate the spectrum of the low-energy Anderson-Bogoliubov (AB) mode as well as the single-particle excitations in the presence of superfluid flow in order to determine the critical velocities. To obtain the spectrum of the AB mode, we calculate the density response function in the generalized random-phase approximation applying the Green's function formalism developed by Cote and Griffin to the Hubbard model. We find that the spectrum of the AB mode is separatedmore » from the particle-hole continuum having the characteristic rotonlike minimum at short wavelength due to the strong charge-density-wave fluctuations. The energy of the rotonlike minimum decreases with increasing the lattice velocity and it reaches zero at the critical velocity which is smaller than the pair-breaking velocity. This indicates that the superfluid state is energetically unstable due to the spontaneous emission of the short-wavelength rotonlike excitations of the AB mode instead due to pair breaking. We determine the critical velocities as functions of the interaction strength across the BCS-BEC crossover regime.« less
NASA Astrophysics Data System (ADS)
Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri
2018-02-01
Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.
Fuel-Efficient Descent and Landing Guidance Logic for a Safe Lunar Touchdown
NASA Technical Reports Server (NTRS)
Lee, Allan Y.
2011-01-01
The landing of a crewed lunar lander on the surface of the Moon will be the climax of any Moon mission. At touchdown, the landing mechanism must absorb the load imparted on the lander due to the vertical component of the lander's touchdown velocity. Also, a large horizontal velocity must be avoided because it could cause the lander to tip over, risking the life of the crew. To be conservative, the worst-case lander's touchdown velocity is always assumed in designing the landing mechanism, making it very heavy. Fuel-optimal guidance algorithms for soft planetary landing have been studied extensively. In most of these studies, the lander is constrained to touchdown with zero velocity. With bounds imposed on the magnitude of the engine thrust, the optimal control solutions typically have a "bang-bang" thrust profile: the thrust magnitude "bangs" instantaneously between its maximum and minimum magnitudes. But the descent engine might not be able to throttle between its extremes instantaneously. There is also a concern about the acceptability of "bang-bang" control to the crew. In our study, the optimal control of a lander is formulated with a cost function that penalizes both the touchdown velocity and the fuel cost of the descent engine. In this formulation, there is not a requirement to achieve a zero touchdown velocity. Only a touchdown velocity that is consistent with the capability of the landing gear design is required. Also, since the nominal throttle level for the terminal descent sub-phase is well below the peak engine thrust, no bound on the engine thrust is used in our formulated problem. Instead of bangbang type solution, the optimal thrust generated is a continuous function of time. With this formulation, we can easily derive analytical expressions for the optimal thrust vector, touchdown velocity components, and other system variables. These expressions provide insights into the "physics" of the optimal landing and terminal descent maneuver. These insights could help engineers to achieve a better "balance" between the conflicting needs of achieving a safe touchdown velocity, a low-weight landing mechanism, low engine fuel cost, and other design goals. In comparing the computed optimal control results with the preflight landing trajectory design of the Apollo-11 mission, we noted interesting similarities between the two missions.
NASA Astrophysics Data System (ADS)
Moaveni, Bijan; Khosravi Roqaye Abad, Mahdi; Nasiri, Sayyad
2015-10-01
In this paper, vehicle longitudinal velocity during the braking process is estimated by measuring the wheels speed. Here, a new algorithm based on the unknown input Kalman filter is developed to estimate the vehicle longitudinal velocity with a minimum mean square error and without using the value of braking torque in the estimation procedure. The stability and convergence of the filter are analysed and proved. Effectiveness of the method is shown by designing a real experiment and comparing the estimation result with actual longitudinal velocity computing from a three-axis accelerometer output.
Non-intrusive measurements of frictional forces between micro-spheres and flat surfaces
NASA Astrophysics Data System (ADS)
Lin, Wei-Hsun; Daraio, Chiara; Daraio's Group Team
2014-03-01
We report a novel, optical pump-probe experimental setup to study micro-friction phenomena between micro-particles and a flat surface. We present a case study of stainless steel microspheres, of diameter near 250 μm, in contact with different surfaces of variable roughness. In these experiments, the contact area between the particles and the substrates is only a few nanometers wide. To excite the particles, we deliver an impulse using a pulsed, high-power laser. The reaction force resulting from the surface ablation induced by the laser imparts a controlled initial velocity to the target particle. This initial velocity can be varied between 10-5 to 1 m/s. We investigate the vibrating and rolling motions of the micro-particles by detecting their velocity and displacement with a laser vibrometer and a high-speed microscope camera. We calculate the effective Hamaker constant from the vibrating motion of a particle, and study its relation to the substrate's surface roughness. We analyze the relation between rolling friction and the minimum momentum required to break surface bonding forces. This non-contact and non-intrusive technique could be employed to study a variety of contact and tribology problems at the microscale.
NASA Astrophysics Data System (ADS)
Les, A.; Klemperer, S. L.; Keranen, K.; Khan, A.; Maguire, P.
2003-12-01
In January 2003, as part of the Ethiopia-Afar Geoscientific Lithospheric Experiment (EAGLE) we conducted a refraction and wide-angle reflection survey of the Main Ethiopian Rift. 757 RefTek "Texan" seismographs with vertical geophones were deployed in 400 km-long axial and cross-rift lines, with another 231 in a central 3D array 100 km in diameter. An 80-instrument passive array of intermediate and broadband sensors was active during our experiment. We recorded 19 borehole shots loaded in nominal 50-meter boreholes, 2 quarry shots, and 2 lake shots. The shots ranged in size from 50-5750 kg, with the most common shot size being 1 tonne. Prior to loading each shot-hole, we measured distances between shots and the nearest structure, typically un-reinforced mud-and-wood houses, occasionally concrete irrigation ditches and aqueducts. We then used semi-empirical formulae derived by Oriard (Hendron and Oriard, 1972) to calculate expected maximum and minimum bounds on ground velocity at these structures, and selected an appropriate shot size to keep the predicted velocity below the "threshold for cosmetic damage", or 2 inches per second, at the most vulnerable structure. The Oriard formulae are derived from measurements associated with blasting for mining and civil engineering purposes and may not accurately predict the ground velocity from the source depths and explosive type used in the EAGLE and other controlled-source experiments. A detailed, trace-by-trace analysis of maximum ground velocities at our closest seismographs can provide data that will be useful in planning future large-scale seismic experiments. Preliminary results from traces within 20 km of our borehole shots suggest that maximum recorded ground velocities were within or below the maximum-minimum range predicted by Oriard, and hence that larger shot sizes could have been used with acceptable risks. A lake shot fired at the optimum depth (84 m for a 1 tonne shot) produced ground velocities that exceeded the predicted maximum at a few recodrers. However, optimum-depth shots are typically a significant distance offshore (c. 2.3 km for our shot) because of the required depth, so are unlikely to present a hazard to onshore structures. A lake shot fired in a shallower lake at half the optimum depth did not produce ground-velocities that exceed the Oriard maximum. Although we fired shots within 100 m of an unreinforced concrete aqueduct, and within 200 m of poorly engineered native buildings in poor structural condition, no damage was recorded. Our "Texan" seismometers recorded only vertical component velocity, using 4.5 Hz geophones. After removal of the geophone response the peak vertical velocity is typically measured at about 3 Hz and occurs shortly after the first arrival, presumably due to surface waves (ground roll). We are currently extending our analysis to include data from broadband, three-component recorders.
49 CFR Appendix A to Part 223 - Certification of Glazing Materials
Code of Federal Regulations, 2011 CFR
2011-10-01
... material to be tested (Target Material) shall be a full scale sample of the largest dimension intended to... weight impacts at a minimum of 960 feet per second velocity. (ii) Large Object Impact in which a cinder block of 24 lbs minimum weight with dimensions of 8 inches by 8 inches by 16 inches nominally impacts at...
Ion-neutral Coupling During Deep Solar Minimum
NASA Technical Reports Server (NTRS)
Huang, Cheryl Y.; Roddy, Patrick A.; Sutton, Eric K.; Stoneback, Russell; Pfaff, Robert F.; Gentile, Louise C.; Delay, Susan H.
2013-01-01
The equatorial ionosphere under conditions of deep solar minimum exhibits structuring due to tidal forces. Data from instruments carried by the Communication Navigation Outage Forecasting System (CNOFS) which was launched in April 2008 have been analyzed for the first 2 years following launch. The Planar Langmuir Probe (PLP), Ion Velocity Meter (IVM) and Vector Electric Field Investigation (VEFI) all detect periodic structures during the 20082010 period which appear to be tides. However when the tidal features detected by these instruments are compared, there are distinctive and significant differences between the observations. Tides in neutral densities measured by the Gravity Recovery and Climate Experiment (GRACE) satellite were also observed during June 2008. In addition, Broad Plasma Decreases (BPDs) appear as a deep absolute minimum in the plasma and neutral density tidal pattern. These are co-located with regions of large downward-directed ion meridional velocities and minima in the zonal drifts, all on the nightside. The region in which BPDs occur coincides with a peak in occurrence rate of dawn depletions in plasma density observed on the Defense Meterological Satellite Program (DMSP) spacecraft, as well as a minimum in radiance detected by UV imagers on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) and IMAGE satellites
NUV Spectroscopic Studies of Eta Car's Weigelt D across the 2003.5 Minimum
NASA Technical Reports Server (NTRS)
Ivarsson, S.; Nielsen, K. E.; Gull, T. R.; Hillier, J. D.
2006-01-01
HST/STIS high dispersion, high spatial resolution spectra in the near UV (2424-2705A) were recorded of Weigelt D, located 0.25" from Eta Carinae, before, during and after the star's 2003.5 minimum. Most nebular emission, including Lyman-alpha pumped Fe II and [Fe III] lines show phase dependent variations with disappearance at the minimum and reappearance a few months later. Circumstellar absorptions increase at minimum, especially in the Fe II resonance lines originating not only from ground levels but also meta stable levels well above the ground levels. These ionization/excitation effects can be explained by a sudden change in UV flux reaching the blobs, likely due to a line-of-sight obscuration of the hotter companion star, Eta Car B, recently discovered by Iping et al. (poster, this meeting). The scattered starlight seen towards Weigelt D display noticeable different line profiles than the direct starlight from Eta Carinae. P-Cygni absorption profiles in Fe II stellar lines observed directly towards Eta Carinae, show terminal velocities up to -550 km/s. However, scattered starlight of Weigelt D display significant lower velocities ranging from -40 to -150 km/s.We interpret this result to be indicative that no absorbing Fe II wind structure exists between the Central source and Weigelt D. The lower velocity absorption appears to be connected to the outer Fe II wind structure of Eta Car A extending beyond Weigelt D intersecting the observer's line of sight. This result is consistent with the highly extended wind of Eta Car A.
Gartner, J.W.; Ganju, N.K.; ,
2002-01-01
Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.
NASA Technical Reports Server (NTRS)
Hantzsche, W.; Wendt, H.
1942-01-01
For the tunnel corrections of compressible flows those profiles are of interest for which at least the second approximation of the Janzen-Rayleigh method can be applied in closed form. One such case is presented by certain elliptical symmetrical cylinders located in the center of a tunnel with fixed walls and whose maximum velocity, incompressible, is twice the velocity of flow. In the numerical solution the maximum velocity at the profile and the tunnel wall as well as the entry of sonic velocity is computed. The velocity distribution past the contour and in the minimum cross section at various Mach numbers is illustrated on a worked out-example.
NASA Astrophysics Data System (ADS)
Takarada, Takuya; Sato, Bun'ei; Omiya, Masashi; Harakawa, Hiroki; Nagasawa, Makiko; Izumiura, Hideyuki; Kambe, Eiji; Takeda, Yoichi; Yoshida, Michitoshi; Itoh, Yoichi; Ando, Hiroyasu; Kokubo, Eiichiro; Ida, Shigeru
2018-05-01
We report the detection of planets around two evolved giant stars from radial velocity measurements at Okayama Astrophysical observatory. 24 Boo (G3 IV) has a mass of 0.99 M_{⊙}, a radius of 10.64 R_{⊙}, and a metallicity of [Fe/H] = -0.77. The star hosts one planet with a minimum mass of 0.91 MJup and an orbital period of 30.35 d. The planet has one of the shortest orbital periods among those ever found around evolved stars using radial-velocity methods. The stellar radial velocities show additional periodicity with 150 d, which can probably be attributed to stellar activity. The star is one of the lowest-metallicity stars orbited by planets currently known. γ Lib (K0 III) is also a metal-poor giant with a mass of 1.47 M_{⊙}, a radius of 11.1 R_{⊙}, and [Fe/H] = -0.30. The star hosts two planets with minimum masses of 1.02 MJup and 4.58 MJup, and periods of 415 d and 964 d, respectively. The star has the second-lowest metallicity among the giant stars hosting more than two planets. Dynamical stability analysis for the γ Lib system sets the minimum orbital inclination angle to be about 70° and suggests that the planets are in 7:3 mean-motion resonance, though the current best-fitting orbits for the radial-velocity data are not totally regular.
Erosive events in dilute pyroclastic density currents
NASA Astrophysics Data System (ADS)
Douillet, G.; Kueppers, U.; Rasmussen, K.; Merrison, J. P.; Dingwell, D. B.
2011-12-01
Our understanding of the dynamics of pyroclastic density currents (PDCs) is largely based on the study of their deposits. However, sedimentological structures reflect only the low energy, depositional phases of a flow. To enlarge the source of information on PDC behaviour, we provided wind-tunnel experiments to measure the minimal velocity necessary to erode dry, volcanic ash. Our results permit to link erosive surfaces that are often found in PDC deposits to the minimum velocity that must have acted to produce them. We apply the method to field examples and discuss the occurrence of hydraulic-jumps in dilute PDCs. We measured the threshold of surface friction-velocity for erosion of two types of volcanic ash: 1) a mixture of fragments of vesiculated scoria containing also lithics and crystals and 2) pumice clasts from the Plinian Laacher See eruption. Both were sampled in quarries from the East Eifel volcanic field (Germany). For each type, we measured the threshold for particles from 63 μm to 2 mm in 1 phi-size steps. Static threshold friction-velocities have been measured experimentally in an open, 6 m-long wind-tunnel at Aarhus University. In order to quickly guarantee the downwind equilibrium-dynamics of the saltating sand-surface, we produced roughness-carpets upstream of the study area. The roughness-carpets consist of particles of the measured sample fixed onto the bed in order to create an appropriate static roughness. The measuring section (1 m in length) is located at the downwind end of the wind-tunnel and covered with 10 mm of sample. The wind velocity in the wind-tunnel was progressively increased until a small but continuous number of grains left the surface. This wind velocity was taken as the threshold, and the associated surface friction-velocity was deduced by calibration from wind-profiles data taken over the fixed surface of material of the same characteristics. We apply our results to sedimentary features found in natural deposits and usually interpreted as "chute and pool" structures. These are characterized by erosional events producing a steep side facing the flow, and lensoidal layers deposited on the stoss face of the un-eroded, remaining strata. Our experimental results allow for quantifying the minimum current-velocity required for the observed erosion. Based on this, we discuss the interpretation of such erosional features as "chute and pool" structures, which are the sedimentary record of hydraulic-jumps. There is no clear evidence of the presence of internal hydraulic-jumps in the sedimentary record of PDCs. Moreover, such flows can decelerate drastically and eventually stop without leaving the supercritical flow regime due to their highly depositional nature. Accordingly, they would not experience a hydraulic-jump.
NASA Astrophysics Data System (ADS)
Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil
2016-09-01
The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.
Webcams for Bird Detection and Monitoring: A Demonstration Study
Verstraeten, Willem W.; Vermeulen, Bart; Stuckens, Jan; Lhermitte, Stefaan; Van der Zande, Dimitry; Van Ranst, Marc; Coppin, Pol
2010-01-01
Better insights into bird migration can be a tool for assessing the spread of avian borne infections or ecological/climatologic issues reflected in deviating migration patterns. This paper evaluates whether low budget permanent cameras such as webcams can offer a valuable contribution to the reporting of migratory birds. An experimental design was set up to study the detection capability using objects of different size, color and velocity. The results of the experiment revealed the minimum size, maximum velocity and contrast of the objects required for detection by a standard webcam. Furthermore, a modular processing scheme was proposed to track and follow migratory birds in webcam recordings. Techniques such as motion detection by background subtraction, stereo vision and lens distortion were combined to form the foundation of the bird tracking algorithm. Additional research to integrate webcam networks, however, is needed and future research should enforce the potential of the processing scheme by exploring and testing alternatives of each individual module or processing step. PMID:22319308
Webcams for bird detection and monitoring: a demonstration study.
Verstraeten, Willem W; Vermeulen, Bart; Stuckens, Jan; Lhermitte, Stefaan; Van der Zande, Dimitry; Van Ranst, Marc; Coppin, Pol
2010-01-01
Better insights into bird migration can be a tool for assessing the spread of avian borne infections or ecological/climatologic issues reflected in deviating migration patterns. This paper evaluates whether low budget permanent cameras such as webcams can offer a valuable contribution to the reporting of migratory birds. An experimental design was set up to study the detection capability using objects of different size, color and velocity. The results of the experiment revealed the minimum size, maximum velocity and contrast of the objects required for detection by a standard webcam. Furthermore, a modular processing scheme was proposed to track and follow migratory birds in webcam recordings. Techniques such as motion detection by background subtraction, stereo vision and lens distortion were combined to form the foundation of the bird tracking algorithm. Additional research to integrate webcam networks, however, is needed and future research should enforce the potential of the processing scheme by exploring and testing alternatives of each individual module or processing step.
The climate velocity of the contiguous United States during the 20th century
Solomon Z. Dobrowski; John Abatzoglou; Alan K. Swanson; Jonathan A. Greenberg; Alison R. Mynsberge; Zachary A. Holden; Michael K. Schwartz
2013-01-01
Rapid climate change has the potential to affect economic, social, and biological systems. A concern for species conservation is whether or not the rate of on-going climate change will exceed the rate at which species can adapt or move to suitable environments. Here we assess the climate velocity (both climate displacement rate and direction) for minimum temperature,...
43 CFR 5451.1 - Minimum performance bond requirements; types.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Minimum performance bond requirements... § 5451.1 Minimum performance bond requirements; types. (a) A minimum performance bond of not less than 20... minimum bond as provided in § 5451.2 of this title. A minimum performance bond of not less than $500 will...
Field Artillery Cannon Weapons Systems and Ammunition Handbook.
1981-12-01
velocity 472 meters per second Maximum range 11,000 meters Type breechblock Horizontal sliding wedge Type firing mechanism Continuous pull , M13 Type...interrupted screw Type of firing mechanism Continuous pull , M35 Type of recoil mechanism Hydropneumatic Minimum recoil 24 inches Maximum recoil 36...breechblock Threaded, interrupted screw Type of firing mechanism Continuous pull , M35 Type of recoil mechanism Hydropneurnatic Minimum recoil 50 inches +_2
PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1994-01-01
A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and DEC VAX series computers running VMS. Format statements in the code may need to be rewritten depending on your FORTRAN compiler. The source code and sample data are available on a 5.25 inch 360K MS-DOS format diskette. This program was developed in 1972 and was last updated in 1991. IBM and IBM PC are registered trademarks of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. DEC VAX, and VMS are trademarks of Digital Equipment Corporation.
Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.
Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing
2007-12-01
Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.
12 CFR 3.10 - Minimum capital requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Minimum capital requirements. 3.10 Section 3.10 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY CAPITAL ADEQUACY STANDARDS Capital Ratio Requirements and Buffers § 3.10 Minimum capital requirements. (a) Minimum capital...
NASA Technical Reports Server (NTRS)
Bazelyan, E. M.; Aleksandrov, N. L.; Raizer, Yu. Pl.; Konchankov, A. M.
2006-01-01
The purpose of the work was to determine minimum atmospheric electric fields required for lightning initiation from an airborne vehicle at various altitudes up to 10 km. The problem was reduced to the determination of a condition for initiation of a viable positive leader from a conductive object in an ambient electric field. It was shown that, depending on air density and shape and dimensions of the object, critical atmospheric fields are governed by the condition for leader viability or that for corona onset. To establish quantitative criteria for reduced air densities, available observations of spark discharges in long laboratory gaps were analyzed, the effect of air density on leader velocity was discussed and evolution in time of the properties of plasma in the leader channel was numerically simulated. The results obtained were used to evaluate the effect of pressure on the quantitative relationships between the potential difference near the leader tip, leader current and its velocity; based on these relationships, criteria for steady development of a leader were determined for various air pressures. Atmospheric electric fields required for lightning initiation from rods and ellipsoidal objects of various dimensions were calculated at different air densities. It was shown that there is no simple way to extend critical ambient fields obtained for some given objects and pressures to other objects and pressures.
NASA Astrophysics Data System (ADS)
Schäfer, L.; Dierksheide, U.; Klaas, M.; Schröder, W.
2011-03-01
A new method to describe statistical information from passive scalar fields has been proposed by Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006)]. They used direct numerical simulations (DNS) of homogeneous shear flow to introduce the innovative concept. This novel method determines the local minimum and maximum points of the fluctuating scalar field via gradient trajectories, starting from every grid point in the direction of the steepest ascending and descending scalar gradients. Relying on gradient trajectories, a dissipation element is defined as the region of all the grid points, the trajectories of which share the same pair of maximum and minimum points. The procedure has also been successfully applied to various DNS fields of homogeneous shear turbulence using the three velocity components and the kinetic energy as scalar fields [L. Wang and N. Peters, "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. In this spirit, dissipation elements are, for the first time, determined from experimental data of a fully developed turbulent channel flow. The dissipation elements are deduced from the gradients of the instantaneous fluctuation of the three velocity components u', v', and w' and the instantaneous kinetic energy k', respectively. The measurements are conducted at a Reynolds number of 1.7×104 based on the channel half-height δ and the bulk velocity U. The required three-dimensional velocity data are obtained investigating a 17.75×17.75×6 mm3 (0.355δ×0.355δ×0.12δ) test volume using tomographic particle-image velocimetry. Detection and analysis of dissipation elements from the experimental velocity data are discussed in detail. The statistical results are compared to the DNS data from Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006); "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. Similar characteristics have been found especially for the pdf's of the large dissipation element length regarding the exponential decay. In agreement with the DNS results, over 99% of the experimental dissipation elements possess a length that is smaller than three times the average element length.
Low Velocity Sphere Impact of a Soda Lime Silicate Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Fox, Ethan E; Morrissey, Timothy G
2011-10-01
This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted inmore » context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.« less
NASA Astrophysics Data System (ADS)
Crockett, Derick
Detailed observations of geosynchronous satellites from earth are very limited. To better inspect these high altitude satellites, the use of small, refuelable satellites is proposed. The small satellites are stationed on a carrier platform in an orbit near the population of geosynchronous satellites. A carrier platform equipped with deployable, refuelable SmallSats is a viable option to inspect geosynchronous satellites. The propellant requirement to transfer to a targeted geosynchronous satellite, perform a proximity inspection mission, and transfer back to the carrier platform in a nearby orbit is determined. Convex optimization and traditional optimization techniques are explored, determining minimum propellant trajectories. Propellant is measured by the total required change in velocity, delta-v. The trajectories were modeled in a relative reference frame using the Clohessy-Wiltshire equations. Mass estimations for the carrier platform and the SmallSat were determined by using the rocket equation. The mass estimates were compared to the mass of a single, non-refuelable satellite performing the same geosynchronous satellite inspection missions. From the minimum delta-v trajectories and the mass analysis, it is determined that using refuelable SmallSats and a carrier platform in a nearby orbit can be more efficient than using a single non-refuelable satellite to perform multiple geosynchronous satellite inspections.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Minimum Coefficient of Retroreflection (RA) (in Candela/Lux/Meter2) Requirement for Retroreflective Sheeting (Minimum Photometric Performance Requirements... Retroreflection (RA) (in Candela/Lux/Meter2) Requirement for Retroreflective Sheeting (Minimum Photometric...
Sulter, A M; Wit, H P
1996-11-01
Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity conditions. The glottal volume velocity waveforms were obtained by inverse filtering the oral flow. Glottal volume velocity waveforms were parameterized with flow-based (minimum flow, ac flow, average flow, maximum flow declination rate) and time-based parameters (closed quotient, closing quotient, speed quotient), as well as with derived parameters (vocal efficiency and glottal resistance). Higher sound-pressure levels, intra-oral pressures, and flow-parameter values (ac flow, maximum flow declination rate) were observed, when compared with previous investigations. These higher values might be the result of the specific phonation tasks (stressed /ae/ vowel in a word and a sentence) or filtering processes. Few statistically significant (p < 0.01) differences in parameters were found between untrained and trained subjects [the maximum flow declination rate and the closing quotient were higher in trained women (p < 0.001), and the speed quotient was higher in trained men (p < 0.005)]. Several statistically significant parameter differences were found between men and women [minimum flow, ac flow, average flow, maximum flow declination rate, closing quotient, glottal resistance (p < 0.001), and closed quotient (p < 0.005)]. Significant effects of intensity condition were observed on ac flow, maximum flow declination rate, closing quotient, and vocal efficiency in women (p < 0.005), and on minimum flow, ac flow, average flow, maximum flow declination rate, closed quotient, and vocal efficiency in men (p < 0.01).
Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations.
Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot
2013-10-01
Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios.
29 CFR 783.26 - The section 6(b)(2) minimum wage requirement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false The section 6(b)(2) minimum wage requirement. 783.26... The section 6(b)(2) minimum wage requirement. Section 6(b), with paragraph (2) thereof, requires the... prescribed by” paragraph (1) of the subsection is the minimum wage rate applicable according to the schedule...
Optimum flight paths of turbojet aircraft
NASA Technical Reports Server (NTRS)
Miele, Angelo
1955-01-01
The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.
A new colloid transport model is introduced that is conceptually simple but captures the essential features of complicated attachment and detachment behavior of colloids when conditions of secondary minimum attachment exist. This model eliminates the empirical concept of collision efficiency; the attachment rate is computed directly from colloid filtration theory. Also, a new paradigm for colloid detachment based on colloid population heterogeneity is introduced. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of colloids that attach irreversibly and (2) the rate at which reversibly attached colloids leave themore » surface. These two parameters were correlated to physical parameters that control colloid transport such as the depth of the secondary minimum and pore water velocity. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport. This model can be extended to heterogeneous systems characterized by both primary and secondary minimum deposition by simply increasing the fraction of colloids that attach irreversibly.« less
Energetics of swimming by the ferret: consequences of forelimb paddling.
Fish, Frank E; Baudinette, Russell V
2008-06-01
The domestic ferret (Mustela putorius furo) swims by alternate strokes of the forelimbs. This pectoral paddling is rare among semi-aquatic mammals. The energetic implications of swimming by pectoral paddling were examined by kinematic analysis and measurement of oxygen consumption. Ferrets maintained a constant stroke frequency, but increased swimming speed by increasing stroke amplitude. The ratio of swimming velocity to foot stroke velocity was low, indicating a low propulsive efficiency. Metabolic rate increased linearly with increasing speed. The cost of transport decreased with increasing swimming speed to a minimum of 3.59+/-0.28 J N(-1) m(-1) at U=0.44 m s(-1). The minimum cost of transport for the ferret was greater than values for semi-aquatic mammals using hind limb paddling, but lower than the minimum cost of transport for the closely related quadrupedally paddling mink. Differences in energetic performance may be due to the amount of muscle recruited for propulsion and the interrelationship hydrodynamic drag and interference between flow over the body surface and flow induced by propulsive appendages.
Search for companions in visual binary systems using precise radial-velocity measurements
NASA Astrophysics Data System (ADS)
Katoh, Noriyuki; Itoh, Yoichi; Sato, Bun'ei
2018-05-01
The frequency of triple and quadruple systems is considered to be high in the early phase of star formation. Some multiple systems decay in the pre-main-sequence phase. The multiplicity of main-sequence stars provides clues about the evolution of binary systems. This work searched for companions of five components of visual binary systems using precise radial-velocity measurements. Their radial velocities were monitored from 2007 to 2012 using the HIgh Dispersion Echelle Spectrograph (HIDES) installed on the Okayama Astrophysical Observatory (OAO) 1.88 m reflector. In combination with previous work, this work searched for companions with an orbital period of less than 9 yr for the five bodies. We found periodic variations in the radial velocities for ADS 6190 A and BDS 10966A. The radial velocities of ADS 7311 A, 31 Dra A, and 31 Dra B show significant trends. ADS 6190 A is an SB1 binary with an orbital period of 366.2 d. The minimum mass of the secondary star is 0.5^{+0.7}_{-0.2} M_{⊙}. The radial velocity of ADS 7311 A was monitored for an observational span of 3200 d. We rejected a planetary-mass companion as the cause of a decreasing trend in the radial velocity of ADS 7311 A. This work confirmed that the periodic variation in the radial velocity of BDS 10966 A is 771.1 d. Bisector analysis did not reveal a correlation between the asymmetry of a spectral line and the radial velocity of BDS 10966 A. We rejected nonradial oscillation of the photosphere as the source of the radial velocity variation. The variation may be caused by the rotational modulation owing to surface inhomogeneity. The orbital elements of 31 Dra A derived in this paper are consistent with those in a previous paper. 31 Dra A system is an SB1 binary with a minimum mass ratio of 0.30 ± 0.08. 31 Dra B exhibits a periodic variation in radial velocity. The orbital elements derived in this work are consistent with those reported previously by others. The variation is caused by a circumstellar planet.
Effect of simulated lunar impact on the survival of bacterial spores.
NASA Technical Reports Server (NTRS)
Whitfield, O.; Merek, E. L.; Oyama, V. I.
1973-01-01
In order to test the effect of impact on organisms, the survival of bacterial spores after being propelled at high velocity in Pyrex and plastic beads into crushed basalt was measured. The beads were fired into sterilized canisters by both a conventional powder and a light gas gun. Results indicate that at the minimum (2.4 km/sec) lunar capture velocity, the number of colony forming units (CFUs) decreased by five orders of magnitude, and at 5.5 km/sec, statistically a more probable capture velocity, no CFUs were found. The decrease in CFUs observed with increasing velocity indicates that the spores were most probably killed by the impact.
NASA Technical Reports Server (NTRS)
Motiwalla, S. K.
1973-01-01
Using the first and the second derivative of flutter velocity with respect to the parameters, the velocity hypersurface is made quadratic. This greatly simplifies the numerical procedure developed for determining the values of the design parameters such that a specified flutter velocity constraint is satisfied and the total structural mass is near a relative minimum. A search procedure is presented utilizing two gradient search methods and a gradient projection method. The procedure is applied to the design of a box beam, using finite-element representation. The results indicate that the procedure developed yields substantial design improvement satisfying the specified constraint and does converge to near a local optimum.
NASA Astrophysics Data System (ADS)
Boddupalli, Nibodh; Goenka, Vikash; Chandra, Laltu
2017-06-01
Heliostats are used for concentrating beam radiation onto a receiver. The flow induced dust deposition on these reflectors will lead to failure of the receiver. For this purpose, the wake behind a heliostat is analyzed at 25° of inclination and at a Reynolds number of 60000. In this paper the Reynolds Averaged Navier-Stokes (RANS) and the Large Eddy Simulation (LES) approaches are used for analyzing the air-flow behind a heliostat. LES and RANS are performed with a wall-resolved grid. For the purpose of validation, the horizontal velocity is measured in a wind-tunnel with a model heliostat using laser Doppler velocimetry technique. RANS and LES approaches are found to qualitatively predict the statistical quantities, like the mean horizontal-velocity in comparison to experiment. RANS under-predicts root-mean-square of the horizontal-velocity and even failed to capture the flow features behind heliostat. Thus, it is concluded that RANS will suffice with well-resolved grid for analyzing mean flow features. For analyzing wake and to understand the induced dust deposition LES is required. Further, the analysis reveals that the wake-affected region is up to three times the length of the heliostat's mirror. This can be recommended as the minimum distance between any two aligned heliostats in Jodhpur.
NASA Astrophysics Data System (ADS)
Zhou, L.; Gao, S.
2017-12-01
The southern coast of Hainan Island in China is one of the most frequently hit areas of tropical cyclones in the Pacific Northwest regions. Long-term storm data are important to reconstruct past extreme wave events, for understanding present-day coastal vulnerability. However, the magnitude of storm and typhoon events in the historical period over the northwestern South China Sea is still poorly understood. A primary study was carried out to investigate into the characteristics of a carbonate boulder field found at the Xiaodonghai (XDH) site on the southern coast of Hainan Island, in order to derive the maximum spatial extent, wave height, and velocity of coastal flooding and to determine the type of extreme wave events responsible for the boulder distributions. We recorded the position, shape, size, and the long axis orientation of 1247 of the boulders, with the a-axes being between 0.52 and 3.76 m. A morphometric analysis of the boulders shows that they are distributed within 160 m of the reef edge, with an exponential fining trend shoreward. Numerical models are used to estimate the minimum wave height and minimum flow velocity required to move these boulders. Flow velocities of 1.76-14.73 m/s and storm wave height of 0.47-15.87 m are needed to displace the measured boulders deposited near the mean sea level. These values are consistent with the dataset of storm boulder transport at other sites in the Asia-Pacific region and local instrumental records. Overall, the carbonate boulder deposits at the XDH site implies that the area is exposed to giant storm waves capable of displacing the very large boulders observed here. The recurrence of a similar storm event in the future will have the potential to cause severe coastal flooding damage on this densely populated part of the low-lying coastlines of Hainan Island.
The flame structure and vorticity generated by a chemically reacting transverse jet
NASA Technical Reports Server (NTRS)
Karagozian, A. R.
1986-01-01
An analytical model describing the behavior of a turbulent fuel jet injected normally into a cross flow is developed. The model places particular emphasis on the contrarotating vortex pair associated with the jet, and predicts the flame length and shape based on entrainment of the oxidizer by the fuel jet. Effects of buoyancy and density variations in the flame are neglected in order to isolate the effects of large-scale mixing. The results are compared with a simulation of the transverse reacting jet in a liquid (acid-base) system. For a wide range of ratios of the cross flow to jet velocity, the model predicts flame length quite well. In particular, the observed transitional behavior in the flame length between cross-flow velocity to jet velocity of orifice ratios of 0.0 to 0.1, yielding an approximate minimum at the ratio 0.05, is reproduced very clearly by the present model. The transformation in flow structure that accounts for this minimum arises from the differing components of vorticity dominant in the near-field and far-field regions of the jet.
Comparisons of seismic and electromagnetic structures of the MELT area
NASA Astrophysics Data System (ADS)
Evans, R. L.; Hirth, G.; Forsyth, D.; Baba, K.; Chave, A.
2003-04-01
Both seismic and electromagnetic (EM) models from the MELT experiment show similar broad scale features in the mantle beneath the Southern EPR. In all EM models, the conductivity in the upper 50-60˜km is considerably higher to the west of the ridge than to the east. Similarly, seismic models of short period Love waves are asymmetric in velocity structure, with slower velocities to the west of the ridge within the upper 60˜km. Body wave data suggest a similar asymmetry, although the depth extent is not as well defined. West of the ridge, both the higher conductivities and lower velocities have been attributed to the presence of a small melt fraction, although the anomalous regions estimated from different techniques do not entirely agree. To the east, there is a rapid increase in resistivity and S-wave velocity, indicating that within 25˜km of the axis the mantle above 70˜km is both dry and melt-free. Further away from the ridge, the boundary between a conductive asthenospheric mantle and a resistive overlying mantle flattens, at a depth around 60-80˜km. Rayleigh wave inversions also show fairly flat velocity contours with a broad minimum centered at 60-80˜km. Both of these features are consistent with a transition from dry to damp mantle. Also away from the ridge, EM data, shear-wave splitting, and Rayleigh waves all require an azimuthally anisotropic mantle consistent with the a-axis of olivine being preferentially oriented horizontally and perpendicular to the ridge. Anisotropy in EM data suggests damp mantle conditions in the 100-200˜km depth range, with enhanced conduction along the a-axis of olivine. Rayleigh waves are most sensitive to shallower structure and require anisotropy in the upper 70˜km. In the uppermost 40˜km, the most conductive and lowest velocity regions are close to the axis but offset 5-10˜km to the west. Some anisotropic inversions recover a vertically conductive feature that could be interpreted as a few percent melt distributed in vertically aligned channels or tubes. However, modeling of seismic data rule out the presence of a vertical melt bearing channel larger than 5˜km wide with a velocity reduction of 0.5˜kms-1 (3-4% melt fraction). This apparent discrepancy may provide clues as to how melt is distributed.
LOW VELOCITY SHPERE IMPACT OF SODA LIME SILICATE GLASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A
2012-01-01
This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity ( 30 m/s or 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in contextmore » to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
...-AQ06 Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing... correct certain portions of the Protocol Gas Verification Program and Minimum Competency Requirements for... final rule that amends the Agency's Protocol Gas Verification Program (PGVP) and the minimum competency...
Lunar Orbit Insertion Targeting and Associated Outbound Mission Design for Lunar Sortie Missions
NASA Technical Reports Server (NTRS)
Condon, Gerald L.
2007-01-01
This report details the Lunar Orbit Insertion (LOI) arrival targeting and associated mission design philosophy for Lunar sortie missions with up to a 7-day surface stay and with global Lunar landing site access. It also documents the assumptions, methodology, and requirements validated by TDS-04-013, Integrated Transit Nominal and Abort Characterization and Sensitivity Study. This report examines the generation of the Lunar arrival parking orbit inclination and Longitude of the Ascending Node (LAN) targets supporting surface missions with global Lunar landing site access. These targets support the Constellation Program requirement for anytime abort (early return) by providing for a minimized worst-case wedge angle [and an associated minimum plane change delta-velocity (V) cost] between the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM) for an LSAM launch anytime during the Lunar surface stay.
Implicit Large-Eddy Simulations of Zero-Pressure Gradient, Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Sekhar, Susheel; Mansour, Nagi N.
2015-01-01
A set of direct simulations of zero-pressure gradient, turbulent boundary layer flows are conducted using various span widths (62-630 wall units), to document their influence on the generated turbulence. The FDL3DI code that solves compressible Navier-Stokes equations using high-order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Results are analyzed at two different Re values (500 and 1,400), and compared with spectral DNS data. They show that a minimum span width is required for the mere initiation of numerical turbulence. Narrower domains ((is) less than 100 w.u.) result in relaminarization. Wider spans ((is) greater than 600 w.u.) are required for the turbulent statistics to match reference DNS. The upper-wall boundary condition for this setup spawns marginal deviations in the mean velocity and Reynolds stress profiles, particularly in the buffer region.
Analysis of a Linear System for Variable-Thrust Control in the Terminal Phase of Rendezvous
NASA Technical Reports Server (NTRS)
Hord, Richard A.; Durling, Barbara J.
1961-01-01
A linear system for applying thrust to a ferry vehicle in the 3 terminal phase of rendezvous with a satellite is analyzed. This system requires that the ferry thrust vector per unit mass be variable and equal to a suitable linear combination of the measured position and velocity vectors of the ferry relative to the satellite. The variations of the ferry position, speed, acceleration, and mass ratio are examined for several combinations of the initial conditions and two basic control parameters analogous to the undamped natural frequency and the fraction of critical damping. Upon making a desirable selection of one control parameter and requiring minimum fuel expenditure for given terminal-phase initial conditions, a simplified analysis in one dimension practically fixes the choice of the remaining control parameter. The system can be implemented by an automatic controller or by a pilot.
A Simple Criterion to Estimate Performance of Pulse Jet Mixed Vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pease, Leonard F.; Bamberger, Judith A.; Mahoney, Lenna A.
Pulse jet mixed process vessels comprise a key element of the U.S. Department of Energy’s strategy to process millions of gallons of legacy nuclear waste slurries. Slurry suctioned into a pulse jet mixer (PJM) tube at the end of one pulse is pneumatically driven from the PJM toward the bottom of the vessel at the beginning of the next pulse, forming a jet. The jet front traverses the distance from nozzle outlet to the bottom of the vessel and spreads out radially. Varying numbers of PJMs are typically arranged in a ring configuration within the vessel at a selected radiusmore » and operated concurrently. Centrally directed radial flows from neighboring jets collide to create a central upwell that elevates the solids in the center of the vessel when the PJM tubes expel their contents. An essential goal of PJM operation is to elevate solids to the liquid surface to minimize stratification. Solids stratification may adversely affect throughput of the waste processing plant. Unacceptably high slurry densities at the base of the vessel may plug the pipeline through which the slurry exits the vessel. Additionally, chemical reactions required for processing may not achieve complete conversion. To avoid these conditions, a means of predicting the elevation to which the solids rise in the central upwell that can be used during vessel design remains essential. In this paper we present a simple criterion to evaluate the extent of solids elevation achieved by a turbulent upwell jet. The criterion asserts that at any location in the central upwell the local velocity must be in excess of a cutoff velocity to remain turbulent. We find that local velocities in excess of 0.6 m/s are necessary for turbulent jet flow through both Newtonian and yield stress slurries. By coupling this criterion with the free jet velocity equation relating the local velocity to elevation in the central upwell, we estimate the elevation at which turbulence fails, and consequently the elevation at which the upwell fails to further lift the slurry. Comparing this elevation to the vessel fill level predicts whether the jet flow will achieve the full vertical extent of the vessel at the center. This simple local-velocity criterion determines a minimum PJM nozzle velocity at which the full vertical extent of the central upwell in PJM vessels will be turbulent. The criterion determines a minimum because flow in regions peripheral to the central upwelling jet may not be turbulent, even when the center of the vessel in the upwell is turbulent, if the jet pulse duration is too short. The local-velocity criterion ensures only that there is sufficient wherewithal for the turbulent jet flow to drive solids to the surface in the center of the vessel in the central upwell.« less
Determining Cloud Parameters with the Curve-Of-Growth: Application Eta Car
NASA Technical Reports Server (NTRS)
Vieira, G. L.; Gull, T. R.; Bruhweiler, F.; Nielsen, K. E.; Verner, E. M.
2004-01-01
We have investigated the NUV part of the Eta Car spectrum, using data with high spatial and high spectral resolving power obtained with the HST/STIS under the Treasury Program. The NUV spectrum of Eta Car Shows a great contribution of absorption features from neutral and singly ionized elements along the line-of-sight. A large number of velocity systems have been observed. The two most prominent, with Doppler shifts corresponding to -146 and -513 km/s respectively, are shown to be useful for investigations of the gaseous environments responsible for the absorption. The -146 and the -513 km/s velocity systems display different characteristics regarding the ionization state and spectral line width, which suggest that they originate at different distances from the central object. We have investigated the absorption structures before the spectroscopic minimum, occurring during the summer of 2003, with a standard curve-of-growth. We have independently derived the column density and the b-value for the Fe II (-146 km/s) and Ti II (-513 km/s) velocity systems. The excitation temperature has been determined for the -146 km/s velocity system using the photo-ionization code \\textsc(cloudy). The -146 km/s velocity structure shows noticeable variation over the spectroscopic minimum. The sudden appearance and disappearance of Ti II and V II are astonishing. We have made an attempt to analyze these variations with the curve-of-growth method and will present preliminary results.
An improved measurement system for FOG pure lag time with no changing of FOG work status
NASA Astrophysics Data System (ADS)
Chen, X.; Yang, J. H.; Zhou, Y. L.; Shu, X. W.
2018-05-01
The minimum pure lag time is an important factor for characterizing the dynamic performance of fiber optical gyroscope. It is defined as the time duration from the reception of velocity-shock signal to the output of corresponding fiber-optic gyroscope data. Many engineering projects have required for this index specifically, so the measurement of the minimum pure lag time is highly demanded. In typically measurement system, the work status of tested FOG has to be changed. In this work, a FOG pure lag time measurement system without changing the work status of the FOG has been demonstrated. During the operation of this test system, the impact structure generated a shock towards the FOG, and the pure lag time was measured through data processing analysis. The design scheme and test principle have been researched and analyzed in detail. And a prototype has been developed and used for experiment successfully. This measurement system can realize a measurement accuracy of better than ±3 μs and a system resolution of 108.6ns.
Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor.
Artetxe, Maite; Lopez, Gartzen; Amutio, Maider; Barbarias, Itsaso; Arregi, Aitor; Aguado, Roberto; Bilbao, Javier; Olazar, Martin
2015-11-01
Continuous pyrolysis of polystyrene has been studied in a conical spouted bed reactor with the main aim of enhancing styrene monomer recovery. Thermal degradation in a thermogravimetric analyser was conducted as a preliminary study in order to apply this information in the pyrolysis in the conical spouted bed reactor. The effects of temperature and gas flow rate in the conical spouted bed reactor on product yield and composition have been determined in the 450-600°C range by using a spouting velocity from 1.25 to 3.5 times the minimum one. Styrene yield is strongly influenced by both temperature and gas flow rate, with the maximum yield being 70.6 wt% at 500°C and a gas velocity twice the minimum one. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inference and Biogeochemical Response of Vertical Velocities inside a Mode Water Eddy
NASA Astrophysics Data System (ADS)
Barceló-Llull, B.; Pallas Sanz, E.; Sangrà, P.
2016-02-01
With the aim to study the modulation of the biogeochemical fluxes by the ageostrophic secondary circulation in anticyclonic mesoscale eddies, a typical eddy of the Canary Eddy Corridor was interdisciplinary surveyed on September 2014 in the framework of the PUMP project. The eddy was elliptical shaped, 4 month old, 110 km diameter and 400 m depth. It was an intrathermocline type often also referred as mode water eddy type. We inferred the mesoscale vertical velocity field resolving a generalized omega equation from the 3D density and ADCP velocity fields of a five-day sampled CTD-SeaSoar regular grid centred on the eddy. The grid transects where 10 nautical miles apart. Although complex, in average, the inferred omega velocity field (hereafter w) shows a dipolar structure with downwelling velocities upstream of the propagation path (west) and upwelling velocities downstream. The w at the eddy center was zero and maximum values were located at the periphery attaining ca. 6 m day-1. Coinciding with the occurrence of the vertical velocities cells a noticeable enhancement of phytoplankton biomass was observed at the eddy periphery respect to the far field. A corresponding upward diapycnal flux of nutrients was also observed at the periphery. As minimum velocities where reached at the eddy center, lineal Ekman pumping mechanism was discarded. Minimum values of phytoplankton biomass where also observed at the eddy center. The possible mechanisms for such dipolar w cell are still being investigated, but an analysis of the generalized omega equation forcing terms suggest that it may be a combination of horizontal deformation and advection of vorticity by the ageostrophic current (related to nonlinear Ekman pumping). As expected for Trades, the wind was rather constant and uniform with a speed of ca. 5 m s-1. Diagnosed nonlinear Ekman pumping leaded also to a dipolar cell that mirrors the omega w dipolar cell.
NASA Astrophysics Data System (ADS)
Lemarchand, A.; Lesne, A.; Mareschal, M.
1995-05-01
The reaction-diffusion equation associated with the Fisher chemical model A+B-->2A admits wave-front solutions by replacing an unstable stationary state with a stable one. The deterministic analysis concludes that their propagation velocity is not prescribed by the dynamics. For a large class of initial conditions the velocity which is spontaneously selected is equal to the minimum allowed velocity vmin, as predicted by the marginal stability criterion. In order to test the relevance of this deterministic description we investigate the macroscopic consequences, on the velocity and the width of the front, of the intrinsic stochasticity due to the underlying microscopic dynamics. We solve numerically the Langevin equations, deduced analytically from the master equation within a system size expansion procedure. We show that the mean profile associated with the stochastic solution propagates faster than the deterministic solution at a velocity up to 25% greater than vmin.
Percolation flux and Transport velocity in the unsaturated zone, Yucca Mountain, Nevada
Yang, I.C.
2002-01-01
The percolation flux for borehole USW UZ-14 was calculated from 14C residence times of pore water and water content of cores measured in the laboratory. Transport velocity is calculated from the depth interval between two points divided by the difference in 14C residence times. Two methods were used to calculate the flux and velocity. The first method uses the 14C data and cumulative water content data directly in the incremental intervals in the Paintbrush nonwelded unit and the Topopah Spring welded unit. The second method uses the regression relation for 14C data and cumulative water content data for the entire Paintbrush nonwelded unit and the Topopah Spring Tuff/Topopah Spring welded unit. Using the first method, for the Paintbrush nonwelded unit in boreholeUSW UZ-14 percolation flux ranges from 2.3 to 41.0 mm/a. Transport velocity ranges from 1.2 to 40.6 cm/a. For the Topopah Spring welded unit percolation flux ranges from 0.9 to 5.8 mm/a in the 8 incremental intervals calculated. Transport velocity ranges from 1.4 to 7.3 cm/a in the 8 incremental intervals. Using the second method, average percolation flux in the Paintbrush nonwelded unit for 6 boreholes ranges from 0.9 to 4.0 mm/a at the 95% confidence level. Average transport velocity ranges from 0.6 to 2.6 cm/a. For the Topopah Spring welded unit and Topopah Spring Tuff, average percolation flux in 5 boreholes ranges from 1.3 to 3.2 mm/a. Average transport velocity ranges from 1.6 to 4.0 cm/a. Both the average percolation flux and average transport velocity in the PTn are smaller than in the TS/TSw. However, the average minimum and average maximum values for the percolation flux in the TS/TSw are within the PTn average range. Therefore, differences in the percolation flux in the two units are not significant. On the other hand, average, average minimum, and average maximum transport velocities in the TS/TSw unit are all larger than the PTn values, implying a larger transport velocity for the TS/TSw although there is a small overlap.
NASA Technical Reports Server (NTRS)
Rigby, D. L.; Vanfossen, G. J.
1991-01-01
The present study numerically demonstrates how small spanwise variations in velocity upstream of a body can cause relatively large increases in the spanwise-averaged heat transfer to the leading edge. Vorticity introduced by spanwise variations, first decays as it drifts downstream, then amplifies in the stagnation region as a result of vortex stretching. This amplification can cause a periodic array of 3 D structures, similar to horseshoe vortices, to form. The numerical results indicate that, for the given wavelength, there is an amplitude threshold below which a structure does not form. A one-dimensional analysis, to predict the decay of vorticity in the absence of the body, in conjunction with the full numerical results indicated that the threshold is more accurately stated as minimum level of vorticity required in the leading edge region for a structure to form. It is possible, using the one-dimensional analysis, to compute an optimum wavelength in terms of the maximum vorticity reaching the leading edge region for given amplitude. A discussion is presented which relates experimentally observed trends to the trends of the present phenomena.
A Simple Method for High-Lift Propeller Conceptual Design
NASA Technical Reports Server (NTRS)
Patterson, Michael; Borer, Nick; German, Brian
2016-01-01
In this paper, we present a simple method for designing propellers that are placed upstream of the leading edge of a wing in order to augment lift. Because the primary purpose of these "high-lift propellers" is to increase lift rather than produce thrust, these props are best viewed as a form of high-lift device; consequently, they should be designed differently than traditional propellers. We present a theory that describes how these props can be designed to provide a relatively uniform axial velocity increase, which is hypothesized to be advantageous for lift augmentation based on a literature survey. Computational modeling indicates that such propellers can generate the same average induced axial velocity while consuming less power and producing less thrust than conventional propeller designs. For an example problem based on specifications for NASA's Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) flight demonstrator, a propeller designed with the new method requires approximately 15% less power and produces approximately 11% less thrust than one designed for minimum induced loss. Higher-order modeling and/or wind tunnel testing are needed to verify the predicted performance.
Wahl, Patrick; Zwingmann, Lukas; Manunzio, Christian; Wolf, Jacob; Bloch, Wilhelm
2018-05-18
This study evaluated the accuracy of the lactate minimum test, in comparison to a graded-exercise test and established threshold concepts (OBLA and mDmax) to determine running speed at maximal lactate steady state. Eighteen subjects performed a lactate minimum test, a graded-exercise test (2.4 m·s -1 start,+0.4 m·s -1 every 5 min) and 2 or more constant-speed tests of 30 min to determine running speed at maximal lactate steady state. The lactate minimum test consisted of an initial lactate priming segment, followed by a short recovery phase. Afterwards, the initial load of the subsequent incremental segment was individually determined and was increased by 0.1 m·s -1 every 120 s. Lactate minimum was determined by the lowest measured value (LM abs ) and by a third-order polynomial (LM pol ). The mean difference to maximal lactate steady state was+0.01±0.14 m·s -1 (LM abs ), 0.04±0.15 m·s -1 (LM pol ), -0.06±0.31 m·s 1 (OBLA) and -0.08±0.21 m·s 1 (mDmax). The intraclass correlation coefficient (ICC) between running velocity at maximal lactate steady state and LM abs was highest (ICC=0.964), followed by LM pol (ICC=0.956), mDmax (ICC=0.916) and OBLA (ICC=0.885). Due to the higher accuracy of the lactate minimum test to determine maximal lactate steady state compared to OBLA and mDmax, we suggest the lactate minimum test as a valid and meaningful concept to estimate running velocity at maximal lactate steady state in a single session for moderately up to well-trained athletes. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fay, C.W.; Neves, R.J.; Pardue, G.B.
1983-10-01
Species profiles are literature summaries on the taxonomy, morphology, range, life history, and environmental requirements of coastal aquatic species. The striped bass (Morone saxatilis) is a highly valued recreational and commercial fish species and is surpassed in total recreational catch (weight) only by bluefish and Atlantic mackerel on the Atlantic coast. Males mature at age 2 or 3, and females at age 4 or 5. Striped bass are anadromous, spawning in fresh or nearly fresh water, from April through June in the Mid-Atlantic region. Upper Chesapeake Bay, its major tributaries, and the Chesapeake-Delaware Canal are the most important spawning groundsmore » on the Atlantic coast. Eggs are semibuoyant, and require a minimum current velocity of 30.5 cm/s during development to keep them from settling and smothering on the bottom. Environmental conditions during the larval stage are considered most crucial in terms of future year class strength. Juveniles remain in or near areas of origin for 2 or 3 years, at which time a portion of the juveniles may join coastal migratory stocks, moving north in spring and summer and south in fall and winter. Temperature, salinity, current velocity, and turbidity are important environmental factors for striped bass. Eggs require water temperatures between 14/sup 0/C and 23/sup 0/C, salinities between 0 and 10 ppt, water currents of at least 30.5 cm/s, and turbidities less than 1000 mg/l for successful development and hatching. Larvae require temperatures between 10/sup 0/C and 25/sup 0/C, salinities between 0 and 15 ppt, and turbidities less than 500 mg/1 for survival. Juvenile and adult tolerances are generally wider. 171 references, 4 figures, 9 tables.« less
Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herring, Stuart Davis; Germann, Timothy C; Jensen, Niels G
2010-01-01
The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in amore » micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.« less
Jet slurry erosion performance of composite clad and its characterization
NASA Astrophysics Data System (ADS)
B, Lohit R.; Horakeri, Gururaj S.; Bhovi, Prabakhar M.
2016-09-01
In the present work, development of composite cladding consists of Cr23C6 (chromium carbide) as reinforcement particles 20 wt. % in Ni-based matrix 80 wt. % on austenitic stainless steel through exposure of microwave radiation has been carried out. The jet slurry erosion test was performed on microwave composite clad. The functional performance of composite clad has been evaluated for different parametric conditions like varying impingement velocity and impact angle. The increasing weight loss trend was observed with time for the first 30 min. after that the individual trend decreased; at high impingement velocity and maximum impact angle. SEM micrographs of eroded clad samples at various impact angle and impingement velocity were discussed. The maximum weight loss occurred at 90° angle and velocity of 60 m/s, and minimum at 30° angle and velocity of 20 m/s.
The effect of rock fabric on P-wave velocity distribution in amphibolites
NASA Astrophysics Data System (ADS)
Vajdová, V.; Přikryl, R.; Pros, Z.; Klíma, K.
1999-07-01
This study presents contribution to the laboratory investigation of elastic properties and rock fabric of amphibolites. P-wave velocity was determined on four spherical samples prepared from a shallow borehole core. The measurement was conducted in 132 directions under various conditions of hydrostatic pressure (up to 400 MPa). The rock fabric was investigated by image analysis of thin sections that enabled precise determination of grain size, modal composition and shape parameters of rock-forming minerals. Laboratory measurement of P-waves revealed pseudoorthorhombic symmetry of rock fabric in amphibolites studied. This symmetry reflects rocks' macro- and microfabric. Maximum P-wave velocity corresponds to the macroscopically visible stretching lineation. Minimum P-wave velocity is oriented perpendicular to the foliation plane. The average grain size is the main microstructural factor controlling mean P-wave velocity.
Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.
Winkelmann, D. A.; Bourdieu, L.; Kinose, F.; Libchaber, A.
1995-01-01
We have analyzed the dependence of actin filament movement on the mode of myosin attachment to surfaces. Monoclonal antibodies that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. These monoclonal antibodies were used to provide increasing flexibility in the mode of attachment. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these monoclonal antibodies and the sliding movement of fluorescently labeled actin filaments analyzed by video microscopy. Each of these antibodies produced stable, myosin-coated surfaces that supported uniform movement of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM monoclonal antibodies yielded a maximum velocity of 10 microns/s at 30 degrees C, whereas attachment through anti-LC2 produced a lower velocity of 4-5 microns/s. Each antibody showed a characteristic minimum myosin density below which sliding movement was no longer supported and an exponential dependence of actin filament velocity on myosin surface density below Vmax. Maximum sliding velocity was achieved over a range of myosin surface densities. Thus, the specific mode of attachment can influence the characteristic velocity of actin filament movement and the surface density needed to support movement. These data are being used to analyze the dynamics of sliding filament assays and evaluate estimates of the average number of motor molecules per unit length of actin required to support movement. PMID:7787107
Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations
Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot
2014-01-01
Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios. PMID:24729986
Protocol Independent Adaptive Route Update for VANET
Rasheed, Asim; Qayyum, Amir
2014-01-01
High relative node velocity and high active node density have presented challenges to existing routing approaches within highly scaled ad hoc wireless networks, such as Vehicular Ad hoc Networks (VANET). Efficient routing requires finding optimum route with minimum delay, updating it on availability of a better one, and repairing it on link breakages. Current routing protocols are generally focused on finding and maintaining an efficient route, with very less emphasis on route update. Adaptive route update usually becomes impractical for dense networks due to large routing overheads. This paper presents an adaptive route update approach which can provide solution for any baseline routing protocol. The proposed adaptation eliminates the classification of reactive and proactive by categorizing them as logical conditions to find and update the route. PMID:24723807
12 CFR 932.8 - Minimum liquidity requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Minimum liquidity requirements. 932.8 Section 932.8 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK RISK MANAGEMENT AND CAPITAL STANDARDS FEDERAL HOME LOAN BANK CAPITAL REQUIREMENTS § 932.8 Minimum liquidity requirements. In...
7 CFR 932.150 - Modified minimum quality requirements for canned green ripe olives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Modified minimum quality requirements for canned green... (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts... requirements for canned green ripe olives. The minimum quality requirements prescribed in § 932.52 (a)(1) of...
7 CFR 932.150 - Modified minimum quality requirements for canned green ripe olives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 8 2011-01-01 2011-01-01 false Modified minimum quality requirements for canned green... (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts... requirements for canned green ripe olives. The minimum quality requirements prescribed in § 932.52 (a)(1) of...
12 CFR 932.8 - Minimum liquidity requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Minimum liquidity requirements. 932.8 Section 932.8 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK RISK MANAGEMENT AND CAPITAL STANDARDS FEDERAL HOME LOAN BANK CAPITAL REQUIREMENTS § 932.8 Minimum liquidity requirements. In...
1D minimum p-velocity model of the Kamchatka subducting zone
NASA Astrophysics Data System (ADS)
Nizkous, I.; Sanina, I.; Gontovaya, L.
2003-04-01
Kamchatka peninsula is a very active seismic zone. The old Pacific plate subducts below the North American Plate and this causes high seismic and volcanic activity in this region. The extensive Kamchatka Regional Seismic Network (KRSN) has operated since 1962 and registers around 600 earthquakes per year. This provides a large number of high quality seismic data. In this work we are investigate P-velocity structure of the Kamchatka peninsula and subducting zone in Western Pacific. This region is well studied, but we would like to try a little bit different approach. We would like to present 1D minimum P-velocity model of the Kamchatka region created using VELEST program [3]. Data set based on 84 well-located earthquakes (IP, EP, IS and ES phases) recorded by KRSN in 1998 and in 1999. As the initial model Kuzin's model have been taken [1]. But in our calculations we split model into 17 layers instead of initial 5. Maximal investigated depth is 120 km. Using VELEST simultaneous mode we solve coupled hypocenter-velocity model problem for local earthquakes. In this case it is very important to utilize well locatable events for the sake of minimizing a priori added uncertainties. And this is major point of the approach. We apply this idea and the result is looks like the result obtained by A. Gorbatov et. al. [2] Using this 1D minimum model we redefine earthquakes hypocenter parameters and recalculate p-wave travel time residuals. This work is the first step in 3D modeling of the Kamchatka subducting zone. References: 1. I.P Kuzin. 'Focal zone and upper mantle structure of the East Kamchatka region', Moscow, Nauka, 1974. 2. A. Gorbatov, J. Domingues, G.Suarez, V.kostoglodov, D.Zhao, and E. Gordeev, 'Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula', Geophys. J. Int, 1999, 137, 269-279. 3. Kissling, E., W.L. Ellsworth, D. Eberhart-Phillips, and U. Kradolfer: Initial reference models in local earthquake tomography, J. Geophys. Res., 99, 19635-19646, 1994.
47 CFR 22.951 - Minimum coverage requirement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Minimum coverage requirement. 22.951 Section 22.951 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.951 Minimum coverage requirement. Applications for...
Detecting Hardware-assisted Hypervisor Rootkits within Nested Virtualized Environments
2012-06-14
least the minimum required for the guest OS and click “Next”. For 64-bit Windows 7 the minimum required is 2048 MB (Figure 66). Figure 66. Memory...prompted for Memory, allocate at least the minimum required for the guest OS, for 64-bit Windows 7 the minimum required is 2048 MB (Figure 79...130 21. Within the virtual disk creation wizard, select VDI for the file type (Figure 81). Figure 81. Select File Type 22. Select Dynamically
THREE PLANETS ORBITING WOLF 1061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.
We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planetmore » falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.« less
NASA Technical Reports Server (NTRS)
Von Roos, O.; Luke, K. L.
1984-01-01
The short circuit current generated by the electron beam of a scanning electron microscope in p-n junctions is reduced by enhanced recombination at grain boundaries in polycrystalline material. Frequently, grain boundaries separate the semiconductor into regions possessing different minority carrier life times. This markedly affects the short circuit current I(sc) as a function of scanning distance from the grain boundary. It will be shown theoretically that (1) the minimum of the I(sc) in crossing the grain boundary with the scanning electron beam is shifted away from the grain boundary toward the region with smaller life time (shorter diffusion length), (2) the magnitude of the minimum differs markedly from those calculated under the assumption of equal diffusion lengths on either side of the grain boundary, and (3) the minimum disappears altogether for small surface recombination velocities (s less than 10,000 cm/s). These effects become negligible, however, for large recombination velocities s at grain boundaries. For p-type silicon this happens for s not less than 100,000 cm/s.
Multiple-hopping trajectories near a rotating asteroid
NASA Astrophysics Data System (ADS)
Shen, Hong-Xin; Zhang, Tian-Jiao; Li, Zhao; Li, Heng-Nian
2017-03-01
We present a study of the transfer orbits connecting landing points of irregular-shaped asteroids. The landing points do not touch the surface of the asteroids and are chosen several meters above the surface. The ant colony optimization technique is used to calculate the multiple-hopping trajectories near an arbitrary irregular asteroid. This new method has three steps which are as follows: (1) the search of the maximal clique of candidate target landing points; (2) leg optimization connecting all landing point pairs; and (3) the hopping sequence optimization. In particular this method is applied to asteroids 433 Eros and 216 Kleopatra. We impose a critical constraint on the target landing points to allow for extensive exploration of the asteroid: the relative distance between all the arrived target positions should be larger than a minimum allowed value. Ant colony optimization is applied to find the set and sequence of targets, and the differential evolution algorithm is used to solve for the hopping orbits. The minimum-velocity increment tours of hopping trajectories connecting all the landing positions are obtained by ant colony optimization. The results from different size asteroids indicate that the cost of the minimum velocity-increment tour depends on the size of the asteroids.
Velocity control as a tool for optimal plume containment in the Equus Beds aquifer, Kansas
Heidari, M.; Sadeghipour, J.; Drici, O.
1987-01-01
A ground-water-management model was developed to investigate the best management options for the containment of an oil-field-brine plume in the Equus Beds aquifer in south-central Kansas. The main purpose of the management model was to find the optimal locations and minimum rates of pumpage of a set of plume-interception wells, to successfully reverse the velocity vectors at observation wells located along the plume front, and also to satisfy freshwater demands from supply wells. The effects of the calculated minimum withdrawals from the interception wells on the migration of contaminants throughout the ground-water system were evaluated utilizing a solute-transport model. This latter analysis was carried out to ensure the containment of the plume. Whereas application of the management model to the study area achieves the management objectives, the implementation of the results is believed to be impractical and expensive.
Penetration and perforation of skin by bullets and missiles. A review of the literature.
DiMaio, V J
1981-06-01
A review of the literature on perforation of skin by bullets and missiles indicates that there is a range of velocity below which a missile cannot perforate the skin. Velocities of between 38.1 and 61.6 meters/second (125 and 202 ft./second) will produce at least minimal damage to the surface of the skin, though without perforation. In order for a missile to perforate the skin and enter the underlying subcutaneous tissue and muscle, a minimum velocity in the order of 70 meters/second (230 ft./second) is necessary with an energy/area of presentation of approximately 2.1 m-kg/cm2.
Improved MIMO radar GMTI via cyclic-shift transmission of orthogonal frequency division signals
NASA Astrophysics Data System (ADS)
Li, Fuyou; He, Feng; Dong, Zhen; Wu, Manqing
2018-05-01
Minimum detectable velocity (MDV) and maximum detectable velocity are both important in ground moving target indication (GMTI) systems. Smaller MDV can be achieved by longer baseline via multiple-input multiple-output (MIMO) radar. Maximum detectable velocity is decided by blind velocities associated with carrier frequencies, and blind velocities can be mitigated by orthogonal frequency division signals. However, the scattering echoes from different carrier frequencies are independent, which is not good for improving MDV performance. An improved cyclic-shift transmission is applied in MIMO GMTI system in this paper. MDV performance is improved due to the longer baseline, and maximum detectable velocity performance is improved due to the mitigation of blind velocities via multiple carrier frequencies. The signal model for this mode is established, the principle of mitigating blind velocities with orthogonal frequency division signals is presented; the performance of different MIMO GMTI waveforms is analysed; and the performance of different array configurations is analysed. Simulation results by space-time-frequency adaptive processing proves that our proposed method is a valid way to improve GMTI performance.
Stellar Magnetic Activity Cycles, and Hunting for Maunder Minimum-like Events among Sun-like Stars
NASA Astrophysics Data System (ADS)
Wright, J. T.
2016-12-01
Since 1966, astronomers have been making measurements of the chromospheric activity levels of Sun-like stars. Recently, the decades-long Mount Wilson data became public (spanning 1966-1995) complementing the published measurements from the California & Carnegie Planet Survey (1995-2011) and ongoing measurements ancillary to radial velocity planet searches at Keck Observatory. I will discuss what these long time series reveal about stellar magnetic activity cycles, and the prevalence of stars in states analogous to the Sun's Maunder Minimum.
Pelletier, Jennifer E; Schreiber, Liana R N; Laska, Melissa N
2017-07-01
To examine state variation in minimum stocking requirements for Special Supplemental Nutrition Program for Women, Infants, and Children (WIC)-authorized small food retailers. We obtained minimum stocking requirements for 50 states and the District of Columbia in 2017 from WIC Web pages or e-mail from the state WIC agency. We developed a coding protocol to compare minimum quantities and varieties required for 12 food and beverage categories. We calculated the median, range, and interquartile range for each measure. Nearly all states set minimum varieties and quantities of fruits and vegetables, 100% juice, whole grain-rich foods, breakfast cereal, milk, cheese, eggs, legumes, and peanut butter. Fewer states set requirements for canned fish, yogurt, and tofu. Most measures had a large range in minimum requirements (e.g., $8-$100 of fruits and vegetables, 60-144 oz of breakfast cereal). WIC-participating retailers must adhere to very different minimum stocking requirements across states, which may result in disparities in food and beverage products available to WIC recipients. Public Health Implications. The results provide benchmarks that can inform new local, state, and federal program and policy efforts to increase healthy food availability in retail settings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the minimum wage required by section 6(a) of the Fair Labor Standards Act? 520.200 Section 520.200... lower than the minimum wage required by section 6(a) of the Fair Labor Standards Act? Section 14(a) of..., for the payment of special minimum wage rates to workers employed as messengers, learners (including...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Employees exempt from both minimum wage and overtime pay... Exemptions Under the Act; Other Special Requirements § 516.11 Employees exempt from both minimum wage and.... With respect to each and every employee exempt from both the minimum wage and overtime pay requirements...
RCoronae Borealis at the 2003 light minimum
NASA Astrophysics Data System (ADS)
Kameswara Rao, N.; Lambert, David L.; Shetrone, Matthew D.
2006-08-01
A set of five high-resolution optical spectra of R CrB obtained in 2003 March is discussed. At the time of the first spectrum (March 8), the star was at V = 12.6, a decline of more than six magnitudes. By March 31, the date of the last observation, the star at V = 9.3 was on the recovery to maximum light (V = 6). The 2003 spectra are compared with the extensive collection of spectra from the 1995-1996 minimum presented previously. Spectroscopic features common to the two minima include the familiar ones also seen in spectra of other R Coronae Borealis stars (RCBs) in decline: sharp emission lines of neutral and singly ionized atoms, broad emission lines including HeI, [NII] 6583 Å, Na D and CaII H & K lines, and blueshifted absorption lines of Na D, and KI resonance lines. Prominent differences between the 2003 and 1995-1996 spectra are seen. The broad Na D and Ca H & K lines in 2003 and 1995-1996 are centred approximately on the mean stellar velocity. The 2003 profiles are fit by a single Gaussian, but in 1995-1996 two Gaussians separated by about 200 km s-1 were required. However, the HeI broad emission lines are fit by a single Gaussian at all times; the emitting He and Na-Ca atoms are probably not colocated. The C2 Phillips 2-0 lines were detected as sharp absorption lines and the C2 Swan band lines as sharp emission lines in 2003, but in 1995-1996 the Swan band emission lines were broad and the Phillips lines were undetected. The 2003 spectra show CI sharp emission lines at minimum light with a velocity changing in 5 d by about 20 km s-1 when the velocity of `metal' sharp lines is unchanged; the CI emission may arise from shock-heated gas. Reexamination of spectra obtained at maximum light in 1995 shows extended blue wings to strong lines with the extension dependent on a line's lower excitation potential; this is the signature of a stellar wind, also revealed by published observations of the HeI 10830 Å line at maximum light. Changes in the cores of the resonance lines of AlI and Na D (variable blueshifts) and the CaII infrared (IR) lines (variable blueshifts and redshifts) suggest complex flow patterns near the photosphere. The spectroscopic differences at the two mimima show the importance of continued scrutiny of the declines of R CrB (and other RCBs). Thorough understanding of the outer atmosphere and circumstellar regions of R CrB will require such continued scrutiny. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München and Georg-August-Universität Göttingen. E-mail: dll@anchor.as.utexas.edu (DLL)
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Ye, Xiuwei; Lv, Jinshui; Sun, Jinlong; Wang, Xiaona
2018-02-01
The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s-1, exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s-1, exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin.
Jiang, Jimmy J; Leland, J Martin
2014-04-01
Ulnar collateral ligament (UCL) reconstructions are relatively common among professional pitchers in Major League Baseball (MLB). To the authors' knowledge, there has not been a study specifically analyzing pitching velocity after UCL surgery. These measurements were examined in a cohort of MLB pitchers before and after UCL reconstruction. There is no significant loss in pitch velocity after UCL reconstruction in MLB pitchers. Cohort study; Level of evidence, 3. Between the years 2008 to 2010, a total of 41 MLB pitchers were identified as players who underwent UCL reconstruction. Inclusion criteria for this study consisted of a minimum of 1 year of preinjury and 2 years of postinjury pitch velocity data. After implementing exclusion criteria, performance data were analyzed from 28 of the 41 pitchers over a minimum of 4 MLB seasons for each player. A pair-matched control group of pitchers who did not have a known UCL injury were analyzed for comparison. Of the initial 41 players, 3 were excluded for revision UCL reconstruction. Eight of the 38 players who underwent primary UCL reconstruction did not return to pitching at the major league level, and 2 players who met the exclusion criteria were omitted, leaving data on 28 players available for final velocity analysis. The mean percentage change in the velocity of pitches thrown by players who underwent UCL reconstruction was not significantly different compared with that of players in the control group. The mean innings pitched was statistically different only for the year of injury and the first postinjury year. There were also no statistically significant differences between the 2 groups with regard to commonly used statistical performance measurements, including earned run average, batting average against, walks per 9 innings, strikeouts per 9 innings, and walks plus hits per inning pitched. There were no significant differences in pitch velocity and common performance measurements between players who returned to MLB after UCL reconstruction and pair-matched controls.
NASA Astrophysics Data System (ADS)
Bachman, Richard T.; Hamilton, Edwin L.; Curray, Joseph R.
1983-11-01
Supplement is available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009. Document B83-007; $2.50. Payment must accompany order. Measurements of mean sound velocities in the first, largely unlithified layers in the seafloor were made using the sonobuoy technique in several areas in the northern Indian Ocean. Older measurements were added to new measurements, and regressions for mean and instantaneous velocity versus one-way travel time of sound are presented for the central Bengal Fan, the central Andaman Sea Basin, the Nicobar Fan, and the Sunda Trench. New data and regression equations are presented for the Mergui-north Sumatra Basin and for four forearc basins between Sumatra and Java and the Sunda Trench. Minimum velocity gradients were found in those areas where sedimentation rates were high, and sediments have accumulated in thick sections which have not had time to fully consolidate (porosity in the top of the sediment section has not been fully reduced under overburden pressure). These minimum velocity gradients (just under the seafloor) were found in the four forearc basins where they ranged from 0.34 s-1 to 0.84 s-1 with an average of 0.58 s-1. The near-surface velocity gradient in the Sunda Trench was 1.33 s-1, but was higher in the adjacent, fossil Nicobar Fan (1.62 s-1). In the surface of the Bengal Fan the velocity gradient was low in the upper fan (0.86 s-1), high in the central fan (1.94 s-1), and again lower in the southern fan (1.18 s-1), which may support sedimentation models calling for bypassing of the central fan and higher rates of accumulation on the southern fan.
78 FR 21060 - Appeal Proceedings Before the Commission
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
... adoption of alternate standards from those required by the Commission's minimum internal control standards... adoption of alternate standards from those required by the Commission's minimum internal control standards... TGRAs' adoption of alternate standards from those required by the Commission's minimum internal control...
Analytic Development of a Reference Profile for the First Entry in a Skip Atmospheric Entry
NASA Technical Reports Server (NTRS)
Garcia-Llama, Eduardo
2010-01-01
This note shows that a feasible reference drag profile for the first entry portion of a skip entry can be generated as a polynomial expression of the velocity. The coefficients of that polynomial are found through the resolution of a system composed of m + 1 equations, where m is the degree of the drag polynomial. It has been shown that a minimum of five equations (m = 4) are required to establish the range and the initial and final conditions on velocity and flight path angle. It has been shown that at least one constraint on the trajectory can be imposed through the addition of one extra equation in the system, which must be accompanied by the increase in the degree of the drag polynomial. In order to simplify the resolution of the system of equations, the drag was considered as being a probability density function of the velocity, with the velocity as a distribution function of the drag. Combining this notion with the introduction of empirically derived constants, it has been shown that the system of equations required to generate the drag profile can be successfully reduced to a system of linear algebraic equations. For completeness, the resulting drag profiles have been flown using the feedback linearization method of differential geometric control as a guidance law with the error dynamics of a second order homogeneous equation in the form of a damped oscillator. Satisfactory results were achieved when the gains in the error dynamics were changed at a certain point along the trajectory that is dependent on the velocity and the curvature of the drag as a function of the velocity. Future work should study the capacity to update the drag profile in flight when dispersions are introduced. Also, future studies should attempt to link the first entry, as presented and controlled in this note, with a more standard control concept for the second entry, such as the Apollo entry guidance, to try to assess the overall skip entry performance. A guidance law that includes an integral feedback term, as is the case in the actual Space Shuttle entry guidance and as is proposed in Ref 29, could be tried in future studies to assess whether its use results in an improvement of the tracking performance, and to evaluate the design needs when determining the control gains.
Wei, Fang-Fei; Li, Yan; Zhang, Lu; Xu, Ting-Yan; Ding, Feng-Hua; Wang, Ji-Guang; Staessen, Jan A
2014-04-01
Whether target organ damage is associated with blood pressure (BP) variability independent of level remains debated. We assessed these associations from 10-minute beat-to-beat, 24-hour ambulatory, and 7-day home BP recordings in 256 untreated subjects referred to a hypertension clinic. BP variability indices were variability independent of the mean, maximum-minimum difference, and average real variability. Effect sizes (standardized β) were computed using multivariable regression models. In beat-to-beat recordings, left ventricular mass index (n=128) was not (P≥0.18) associated with systolic BP but increased with all 3 systolic variability indices (+2.97-3.53 g/m(2); P<0.04); the urinary albumin-to-creatinine ratio increased (P≤0.03) with systolic BP (+1.14-1.17 mg/mmol) and maximum-minimum difference (+1.18 mg/mmol); and pulse wave velocity increased with systolic BP (+0.69 m/s; P<0.001). In 24-hour recordings, all 3 indices of organ damage increased (P<0.03) with systolic BP, whereas the associations with BP variability were nonsignificant (P≥0.15) except for increases in pulse wave velocity (P<0.05) with variability independent of the mean (+0.16 m/s) and maximum-minimum difference (+0.17 m/s). In home recordings, the urinary albumin-to-creatinine ratio (+1.27-1.30 mg/mmol) and pulse wave velocity (+0.36-0.40 m/s) increased (P<0.05) with systolic BP, whereas all associations of target organ damage with the variability indices were nonsignificant (P≥0.07). In conclusion, while accounting for BP level, associations of target organ damage with BP variability were readily detectable in beat-to-beat recordings, least noticeable in home recordings, with 24-hour ambulatory monitoring being informative only for pulse wave velocity.
Pulse Jet Mixing Tests With Noncohesive Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.
2012-02-17
This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure allmore » solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.« less
42 CFR 84.197 - Respirator containers; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...
9 CFR 2.130 - Minimum age requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Minimum age requirements. 2.130... AGRICULTURE ANIMAL WELFARE REGULATIONS Miscellaneous § 2.130 Minimum age requirements. No dog or cat shall be... least eight (8) weeks of age and has been weaned. ...
9 CFR 2.130 - Minimum age requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Minimum age requirements. 2.130... AGRICULTURE ANIMAL WELFARE REGULATIONS Miscellaneous § 2.130 Minimum age requirements. No dog or cat shall be... least eight (8) weeks of age and has been weaned. ...
9 CFR 2.130 - Minimum age requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Minimum age requirements. 2.130... AGRICULTURE ANIMAL WELFARE REGULATIONS Miscellaneous § 2.130 Minimum age requirements. No dog or cat shall be... least eight (8) weeks of age and has been weaned. ...
9 CFR 2.130 - Minimum age requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Minimum age requirements. 2.130... AGRICULTURE ANIMAL WELFARE REGULATIONS Miscellaneous § 2.130 Minimum age requirements. No dog or cat shall be... least eight (8) weeks of age and has been weaned. ...
NASA Astrophysics Data System (ADS)
Vial, J. C.; Lemaire, P.; Artzner, G.; Gouttebroze, P.
1980-11-01
O VI (λ = 1032 Å) profiles have been measured in and above a filament at the limb, previously analyzed in H I, Mg II, Ca II resonance lines (Vial et al., 1979). They are compared to profiles measured at the quiet Sun center and at the quiet Sun limb. Absolute intensities are found to be about 1.55 times larger than above the quiet limb at the same height (3"); at the top of the prominence (15" above the limb) one finds a maximum blue shift and a minimum line width. The inferred non-thermal velocity (29 km s-1) is about the same as in cooler lines while the approaching line-of-sight velocity (8 km s-1) is lower than in Ca II lines. The O VI profile recorded 30" above the limb outside the filament is wider (FWHM 0.33 Å). It can be interpreted as a coronal emission of 0 VI ions with a temperature of about 106 K, and a non-thermal velocity (NTV) of 49 km s-1. This NTV is twice the NTV of quiet Sun center O VI profiles. Lower NTV require higher temperatures and densities (as suggested by K-coronameter measurements). Computed emission measures for this high temperature regime agree with determinations from disk intensities of EUV lines.
Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.
Luo, W-J
2004-10-15
This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.
Current kinematics and dynamics of Africa and the East African Rift System
NASA Astrophysics Data System (ADS)
Stamps, D. S.; Flesch, L. M.; Calais, E.; Ghosh, A.
2014-06-01
Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are ˜8-20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is ˜1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.
7 CFR 51.311 - Marking requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS) United States Standards for Grades of Apples Marking Requirements § 51.311 Marking requirements... minimum diameter of apples packed in a closed container shall be indicated on the container. For apple... varieties, the minimum diameter and minimum weight of apples packed in a closed container shall be indicated...
7 CFR 51.311 - Marking requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS) United States Standards for Grades of Apples Marking Requirements § 51.311 Marking requirements... minimum diameter of apples packed in a closed container shall be indicated on the container. For apple... varieties, the minimum diameter and minimum weight of apples packed in a closed container shall be indicated...
7 CFR 51.311 - Marking requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS) United States Standards for Grades of Apples Marking Requirements § 51.311 Marking requirements... minimum diameter of apples packed in a closed container shall be indicated on the container. For apple... varieties, the minimum diameter and minimum weight of apples packed in a closed container shall be indicated...
42 CFR 84.134 - Respirator containers; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...
42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates (e.g...
42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates (e.g...
42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates (e.g...
42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates (e.g...
42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates (e.g...
47 CFR 22.951 - Minimum coverage requirement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MOBILE SERVICES Cellular Radiotelephone Service § 22.951 Minimum coverage requirement. Applications for authority to operate a new cellular system in an unserved area, other than those filed by the licensee of an... toward the minimum coverage requirement. Applications for authority to operate a new cellular system in...
42 CFR 84.74 - Apparatus containers; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Apparatus containers; minimum requirements. 84.74...-Contained Breathing Apparatus § 84.74 Apparatus containers; minimum requirements. (a) Apparatus may be...) Containers supplied by the applicant for carrying or storing self-contained breathing apparatus will be...
42 CFR 84.74 - Apparatus containers; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Apparatus containers; minimum requirements. 84.74...-Contained Breathing Apparatus § 84.74 Apparatus containers; minimum requirements. (a) Apparatus may be...) Containers supplied by the applicant for carrying or storing self-contained breathing apparatus will be...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
This report proposes a method for resolving the kinematic redundancy of a serial link manipulator moving in a three-dimensional workspace. The underspecified problem of solving for the joint velocities based on the classical kinematic velocity model is transformed into a well-specified problem. This is accomplished by augmenting the original model with additional equations which relate a new vector variable quantifying the redundant degrees of freedom (DOF) to the joint velocities. The resulting augmented system yields a well specified solution for the joint velocities. Methods for selecting the redundant DOF quantifying variable and the transformation matrix relating it to the jointmore » velocities are presented so as to obtain a minimum Euclidean norm solution for the joint velocities. The approach is also applied to the problem of resolving the kinematic redundancy at the acceleration level. Upon resolving the kinematic redundancy, a rigid body dynamical model governing the gross motion of the manipulator is derived. A control architecture is suggested which according to the model, decouples the Cartesian space DOF and the redundant DOF.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, R. C.
Nuclear fusion was discovered experimentally in 1933-34 and other charged particle nuclear reactions were documented shortly thereafter. Work in earnest on the fusion ignition problem began with Edward Teller's group at Los Alamos during the war years. His group quantified all the important basic atomic and nuclear processes and summarized their interactions. A few years later, the success of the early theory developed at Los Alamos led to very successful thermonuclear weapons, but also to decades of unsuccessful attempts to harness fusion as an energy source of the future. The reasons for this history are many, but it seems appropriatemore » to review some of the basics with the objective of identifying what is essential for success and what is not. This tutorial discusses only the conditions required for ignition in small fusion targets and how the target design impacts driver requirements. Generally speaking, the driver must meet the energy, power and power density requirements needed by the fusion target. The most relevant parameters for ignition of the fusion fuel are the minimum temperature and areal density (rhoR), but these parameters set secondary conditions that must be achieved, namely an implosion velocity, target size and pressure, which are interrelated. Despite the apparent simplicity of inertial fusion targets, there is not a single mode of fusion ignition, and the necessary combination of minimum temperature and areal density depends on the mode of ignition. However, by providing a magnetic field of sufficient strength, the conditions needed for fusion ignition can be drastically altered. Magnetized target fusion potentially opens up a vast parameter space between the extremes of magnetic and inertial fusion.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... short circuit protection; minimum requirements. 77.506-1 Section 77.506-1 Mineral Resources MINE SAFETY...-1 Electric equipment and circuits; overload and short circuit protection; minimum requirements. Devices providing either short circuit protection or protection against overload shall conform to the...
13 CFR 107.210 - Minimum capital requirements for Licensees.
Code of Federal Regulations, 2010 CFR
2010-01-01
... except the minimum capital requirement, as determined solely by SBA; (ii) Has a viable business plan... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Minimum capital requirements for Licensees. 107.210 Section 107.210 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL...
12 CFR 217.10 - Minimum capital requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Minimum capital requirements. 217.10 Section 217.10 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM CAPITAL ADEQUACY OF BOARD-REGULATED INSTITUTIONS Capital Ratio Requirements and Buffers § 217.10 Minimum...
42 CFR 84.87 - Compressed gas filters; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Compressed gas filters; minimum requirements. 84.87...-Contained Breathing Apparatus § 84.87 Compressed gas filters; minimum requirements. All self-contained breathing apparatus using compressed gas shall have a filter downstream of the gas source to effectively...
42 CFR 84.87 - Compressed gas filters; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Compressed gas filters; minimum requirements. 84.87...-Contained Breathing Apparatus § 84.87 Compressed gas filters; minimum requirements. All self-contained breathing apparatus using compressed gas shall have a filter downstream of the gas source to effectively...
42 CFR 84.87 - Compressed gas filters; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Compressed gas filters; minimum requirements. 84.87...-Contained Breathing Apparatus § 84.87 Compressed gas filters; minimum requirements. All self-contained breathing apparatus using compressed gas shall have a filter downstream of the gas source to effectively...
42 CFR 84.87 - Compressed gas filters; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Compressed gas filters; minimum requirements. 84.87...-Contained Breathing Apparatus § 84.87 Compressed gas filters; minimum requirements. All self-contained breathing apparatus using compressed gas shall have a filter downstream of the gas source to effectively...
42 CFR 84.87 - Compressed gas filters; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Compressed gas filters; minimum requirements. 84.87...-Contained Breathing Apparatus § 84.87 Compressed gas filters; minimum requirements. All self-contained breathing apparatus using compressed gas shall have a filter downstream of the gas source to effectively...
9 CFR 2.130 - Minimum age requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Minimum age requirements. 2.130 Section 2.130 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Miscellaneous § 2.130 Minimum age requirements. No dog or cat shall be...
32 CFR 552.73 - Minimum requirements for automobile insurance policies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 3 2010-07-01 2010-07-01 true Minimum requirements for automobile insurance policies. 552.73 Section 552.73 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Military Reservations § 552.73 Minimum requirements for automobile insurance policies. Policies sold on...
32 CFR 552.73 - Minimum requirements for automobile insurance policies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 3 2014-07-01 2014-07-01 false Minimum requirements for automobile insurance policies. 552.73 Section 552.73 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Military Reservations § 552.73 Minimum requirements for automobile insurance policies. Policies sold on...
32 CFR 552.73 - Minimum requirements for automobile insurance policies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 3 2012-07-01 2009-07-01 true Minimum requirements for automobile insurance policies. 552.73 Section 552.73 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Military Reservations § 552.73 Minimum requirements for automobile insurance policies. Policies sold on...
32 CFR 552.73 - Minimum requirements for automobile insurance policies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 3 2013-07-01 2013-07-01 false Minimum requirements for automobile insurance policies. 552.73 Section 552.73 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Military Reservations § 552.73 Minimum requirements for automobile insurance policies. Policies sold on...
32 CFR 552.73 - Minimum requirements for automobile insurance policies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 3 2011-07-01 2009-07-01 true Minimum requirements for automobile insurance policies. 552.73 Section 552.73 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Military Reservations § 552.73 Minimum requirements for automobile insurance policies. Policies sold on...
48 CFR 852.219-9 - VA Small business subcontracting plan minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false VA Small business... Provisions and Clauses 852.219-9 VA Small business subcontracting plan minimum requirements. As prescribed in subpart 819.709, insert the following clause: VA Small Business Subcontracting Plan Minimum Requirements...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 [REG-110980-10] RIN 1545-BJ55 Modifications to Minimum Present Value Requirements for Partial Annuity Distribution Options Under Defined... FR 5454), providing guidance relating to the minimum present value requirements applicable to certain...
30 CFR 77.1706 - First aid training program; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid training program; minimum... OF UNDERGROUND COAL MINES Miscellaneous § 77.1706 First aid training program; minimum requirements. (a) All first aid training programs required under the provisions of §§ 77.1703 and 77.1704 shall...
48 CFR 852.219-9 - VA Small business subcontracting plan minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false VA Small business... Provisions and Clauses 852.219-9 VA Small business subcontracting plan minimum requirements. As prescribed in subpart 819.709, insert the following clause: VA Small Business Subcontracting Plan Minimum Requirements...
48 CFR 852.219-9 - VA Small business subcontracting plan minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false VA Small business... Provisions and Clauses 852.219-9 VA Small business subcontracting plan minimum requirements. As prescribed in subpart 819.709, insert the following clause: VA Small Business Subcontracting Plan Minimum Requirements...
48 CFR 852.219-9 - VA Small business subcontracting plan minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false VA Small business... Provisions and Clauses 852.219-9 VA Small business subcontracting plan minimum requirements. As prescribed in subpart 819.709, insert the following clause: VA Small Business Subcontracting Plan Minimum Requirements...
48 CFR 852.219-9 - VA Small business subcontracting plan minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false VA Small business... Provisions and Clauses 852.219-9 VA Small business subcontracting plan minimum requirements. As prescribed in subpart 819.709, insert the following clause: VA Small Business Subcontracting Plan Minimum Requirements...
26 CFR 1.6664-4 - Reasonable cause and good faith exception to section 6662 penalties.
Code of Federal Regulations, 2011 CFR
2011-04-01
... claimed. Example 3. E, an individual, worked for Company X doing odd jobs and filling in for other... legal justification. (3) Minimum requirements not dispositive. Satisfaction of the minimum requirements... example, depending on the circumstances, satisfaction of the minimum requirements may not be dispositive...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Timers; elapsed time indicators; remaining service life indicators; minimum requirements. 84.83 Section 84.83 Public Health PUBLIC HEALTH SERVICE... indicators; remaining service life indicators; minimum requirements. (a) Elapsed time indicators shall be...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Timers; elapsed time indicators; remaining service life indicators; minimum requirements. 84.83 Section 84.83 Public Health PUBLIC HEALTH SERVICE... indicators; remaining service life indicators; minimum requirements. (a) Elapsed time indicators shall be...
12 CFR 325.6 - Issuance of directives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... is a final order issued to a bank that fails to maintain capital at or above the minimum leverage... operating with less than the minimum leverage capital requirement established by this regulation, the Board... directive requiring the bank to restore its capital to the minimum leverage capital requirement within a...
49 CFR 236.0 - Applicability, minimum requirements, and penalties.
Code of Federal Regulations, 2013 CFR
2013-10-01
... persons, or has caused death or injury, a penalty not to exceed $105,000 per violation may be assessed... 49 Transportation 4 2013-10-01 2013-10-01 false Applicability, minimum requirements, and penalties... § 236.0 Applicability, minimum requirements, and penalties. (a) Except as provided in paragraph (b) of...
49 CFR 236.0 - Applicability, minimum requirements, and penalties.
Code of Federal Regulations, 2014 CFR
2014-10-01
... persons, or has caused death or injury, a penalty not to exceed $105,000 per violation may be assessed... 49 Transportation 4 2014-10-01 2014-10-01 false Applicability, minimum requirements, and penalties... § 236.0 Applicability, minimum requirements, and penalties. (a) Except as provided in paragraph (b) of...
49 CFR 236.0 - Applicability, minimum requirements, and penalties.
Code of Federal Regulations, 2011 CFR
2011-10-01
... persons, or has caused death or injury, a penalty not to exceed $100,000 per violation may be assessed... 49 Transportation 4 2011-10-01 2011-10-01 false Applicability, minimum requirements, and penalties... § 236.0 Applicability, minimum requirements, and penalties. (a) Except as provided in paragraph (b) of...
49 CFR 236.0 - Applicability, minimum requirements, and penalties.
Code of Federal Regulations, 2012 CFR
2012-10-01
... persons, or has caused death or injury, a penalty not to exceed $105,000 per violation may be assessed... 49 Transportation 4 2012-10-01 2012-10-01 false Applicability, minimum requirements, and penalties... § 236.0 Applicability, minimum requirements, and penalties. (a) Except as provided in paragraph (b) of...
49 CFR 236.0 - Applicability, minimum requirements, and penalties.
Code of Federal Regulations, 2010 CFR
2010-10-01
... persons, or has caused death or injury, a penalty not to exceed $100,000 per violation may be assessed... 49 Transportation 4 2010-10-01 2010-10-01 false Applicability, minimum requirements, and penalties... § 236.0 Applicability, minimum requirements, and penalties. (a) Except as provided in paragraph (b) of...
DOT National Transportation Integrated Search
1980-02-01
The report describes the development of an AGT classification structure. Five classes are defined based on three system characteristics: service type, minimum travelling unit capacity, and maximum operating velocity. The five classes defined are: Per...
Luisetto, G; Camozzi, V; De Terlizzi, F
2000-04-01
The aim of this work was to use ultrasonographic technology to differentiate osteoporosis from osteomalacia on the basis of different patterns of the graphic trace. Three patients with osteomalacia and three with osteoporosis, all with the same lumbar spine bone mineral density, were studied. The velocity of the ultrasound beam in bone was measured by a DBM Sonic 1,200/I densitometer at the proximal phalanges of the hands in all the patients. The ultrasound beam velocity was measured when the first peak of the waveform reached a predetermined minimum amplitude value (amplitude-dependent speed of sound) as well as at the lowest point prior to the first and second peaks, before they reached the predetermined minimum amplitude value (first and second minimum speeds of sound). The graphic traces were further analyzed by Fourier analysis, and both the main frequency (f0) and the width of the peak centered in the f0 (full width at half maximum) were measured. The first and second minimum speeds of sound were significantly lower in the patients with osteomalacia than in the osteoporosis group. The first minimum speed of sound was 2,169 +/- 73 m/s in osteoporosis and 1,983 +/- 61 m/s in osteomalacia (P < 0.0001); the second minimum peak speed of sound was 1,895 +/-59 m/s in osteoporosis and 1,748 +/- 38 m/s in osteomalacia (P < 0.0001). The f0 was similar in the two groups (osteoporosis, 0.85 +/- 0.14 MHz; osteomalacia, 0.9 +/- 0.22 MHz; P = 0.72), and the full width at half maximum was significantly higher in the osteomalacia patients (0.52 +/- 0.14 MHz) than in the osteoporosis patients (0.37 +/- 0.15 MHz) (P = 0.022). This study confirms that ultrasonography is a promising, noninvasive method that could be used to differentiate osteoporosis from osteomalacia, but further studies should be carried out before this method can be introduced into clinical practice.
NASA Astrophysics Data System (ADS)
Zhang, Zhifeng; Drapaca, Corina
2016-11-01
Ischemic stroke accounts for about 87 percent of all stroke cases. In these cases, models of squeezing a droplet through a smaller constriction channel can help better understand the pathology and capillary restoring after a Stroke. In the present research, we analytical expressed the minimum impulse of squeezing a droplet through a circular channel as well as its critical velocity. By comparison with a previously defined critical velocity, we find the difference between these two. Applications of this research in the understanding of ischemic stroke are also discussed. Zhifeng Zhang thanks the support of Robert A. Sebrosky Graduate Fellowship in Engineering Science and Mechanics, the Pennsylvania State University.
NASA Astrophysics Data System (ADS)
Diehl, Roger E.; Schinnerer, Ralph G.; Williamson, Walton E.; Boden, Daryl G.
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
NASA Astrophysics Data System (ADS)
Ivanyukhin, A. V.; Petukhov, V. G.
2016-12-01
The problem of optimizing the interplanetary trajectories of a spacecraft (SC) with a solar electric propulsion system (SEPS) is examined. The problem of investigating the permissible power minimum of the solar electric propulsion power plant required for a successful flight is studied. Permissible ranges of thrust and exhaust velocity are analyzed for the given range of flight time and final mass of the spacecraft. The optimization is performed according to Portnyagin's maximum principle, and the continuation method is used for reducing the boundary problem of maximal principle to the Cauchy problem and to study the solution/ parameters dependence. Such a combination results in the robust algorithm that reduces the problem of trajectory optimization to the numerical integration of differential equations by the continuation method.
NASA Technical Reports Server (NTRS)
Diehl, Roger E. (Editor); Schinnerer, Ralph G. (Editor); Williamson, Walton E. (Editor); Boden, Daryl G. (Editor)
1992-01-01
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2011-05-17
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.« less
Rate dependent deformation of porous sandstone across the brittle-ductile transition
NASA Astrophysics Data System (ADS)
Jefferd, M.; Brantut, N.; Mitchell, T. M.; Meredith, P. G.
2017-12-01
Porous sandstones transition from dilatant, brittle deformation at low pressure, to compactant, ductile deformation at high pressure. Both deformation modes are driven by microcracking, and are expected to exhibit a time dependency due to chemical interactions between the pore fluid and the rock matrix. In the brittle regime, time-dependent failure and brittle creep are well documented. However, much less is understood in the ductile regime. We present results from a series of triaxial deformation experiments, performed in the brittle-ductile transition zone of fluid saturated Bleurswiller sandstone (initial porosity = 23%). Samples were deformed at 40 MPa effective pressure, to 4% axial strain, under either constant strain rate (10-5 s-1) or constant stress (creep) conditions. In addition to stress, axial strain and pore volume change, P wave velocities and acoustic emission were monitored throughout. During constant stress tests, the strain rate initially decreased with increasing strain, before reaching a minimum and accelerating to a constant level beyond 2% axial strain. When plotted against axial strain, the strain rate evolution under constant stress conditions, mirrors the stress evolution during the constant strain rate tests; where strain hardening occurs prior to peak stress, which is followed by strain softening and an eventual plateau. In all our tests, the minimum strain rate during creep occurs at the same inelastic strain as the peak stress during constant strain tests, and strongly decreases with decreasing applied stress. The microstructural state of the rock, as interpreted from similar volumetric strain curves, as well as the P-wave velocity evolution and AE production rate, appears to be solely a function of the total inelastic strain, and is independent of the length of time required to reach said strain. We tested the sensitivity of fluid chemistry on the time dependency, through a series of experiments performed under similar stress conditions, but with chemically inert decane instead of water as the pore fluid. Under the same applied stress, decane saturated samples reached a minimum strain rate 2 orders of magnitude lower than the water saturated samples. This is consistent with a mechanism of subcritical crack growth driven by chemical interactions between the pore fluid and the rock.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY... short circuit protection; minimum requirements. A device to provide either short circuit protection or...
Code of Federal Regulations, 2010 CFR
2010-01-01
... minimum wage requirements in determining prevailing rates. 532.205 Section 532.205 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.205 The use of Federal, State, and local minimum wage requirements in determining prevailing...
26 CFR 1.410(b)-1 - Minimum coverage requirements (before 1994).
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc... the minimum age and service requirements (if any) prescribed by the plan, as of the date coverage is... employees (including employees who do not satisfy the minimum age or service requirements of the plan) are...
46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30 Minimum...
Code of Federal Regulations, 2010 CFR
2010-10-01
... C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall not... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. 84.156 Section 84.156 Public Health PUBLIC HEALTH SERVICE...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Minimum financial requirements... forex transactions. 5.7 Section 5.7 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION OFF-EXCHANGE FOREIGN CURRENCY TRANSACTIONS § 5.7 Minimum financial requirements for retail foreign...
40 CFR 131.6 - Minimum requirements for water quality standards submission.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Minimum requirements for water quality standards submission. 131.6 Section 131.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS General Provisions § 131.6 Minimum requirements for water quality standards submission. The...
40 CFR 131.6 - Minimum requirements for water quality standards submission.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Minimum requirements for water quality standards submission. 131.6 Section 131.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS General Provisions § 131.6 Minimum requirements for water quality standards submission. The...
46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30 Minimum...
46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30 Minimum...
46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30 Minimum...
46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30 Minimum...
Implications of NGA for NEHRP site coefficients
Borcherdt, Roger D.
2012-01-01
Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.
SRM attrition rate study of the aft motor case segments due to water impact cavity collapse loading
NASA Technical Reports Server (NTRS)
Crockett, C. D.
1976-01-01
The attrition assessment of the aft segments of Solid Rocket Motor due to water impact requires the establishment of a correlation between loading occurrences and structural capability. Each discrete load case, as identified by the water impact velocities and angle, varies longitudinally and radially in magnitude and distribution of the external pressure. The distributions are further required to be shifted forward or aft one-fourth the vehicle diameter to assure minimization of the effect of test instrumentation location for the load determinations. The asymmetrical load distributions result in large geometric nonlinearities in structural response. The critical structural response is progressive buckling of the case. Discrete stiffeners have been added to these aft segments to aid in gaining maximum structural capability for minimum weight addition for resisting these loads. This report presents the development of the attrition assessment of the aft segments and includes the rationale for eliminating all assessable conservatisms from this assessment.
10 CFR 905.16 - What are the requirements for the minimum investment report alternative?
Code of Federal Regulations, 2010 CFR
2010-01-01
... number, email and Website if applicable, and contact person; (2) Authority or requirement to undertake a..., in writing, a minimum investment report every 5 years. (h) Maintaining minimum investment reports. (1...
Coherent Doppler lidar for automated space vehicle rendezvous, stationkeeping and capture
NASA Technical Reports Server (NTRS)
Bilbro, James A.
1991-01-01
The inherent spatial resolution of laser radar makes ladar or lidar an attractive candidate for Automated Rendezvous and Capture application. Previous applications were based on incoherent lidar techniques, requiring retro-reflectors on the target vehicle. Technology improvements (reduced size, no cryogenic cooling requirement) have greatly enhanced the construction of coherent lidar systems. Coherent lidar permits the acquisition of non-cooperative targets at ranges that are limited by the detection capability rather than by the signal-to-noise ratio (SNR) requirements. The sensor can provide translational state information (range, velocity, and angle) by direct measurement and, when used with any array detector, also can provide attitude information by Doppler imaging techniques. Identification of the target is accomplished by scanning with a high pulse repetition frequency (dependent on the SNR). The system performance is independent of range and should not be constrained by sun angle. An initial effort to characterize a multi-element detection system has resulted in a system that is expected to work to a minimum range of 1 meter. The system size, weight and power requirements are dependent on the operating range; 10 km range requires a diameter of 3 centimeters with overall size at 3 x 3 x 15 to 30 cm, while 100 km range requires a 30 cm diameter.
Methodology of Numerical Optimization for Orbital Parameters of Binary Systems
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.
2010-02-01
The use of a numerical method of maximization (or minimization) in optimization processes allows us to obtain a great amount of solutions. Therefore, we can find a global maximum or minimum of the problem, but this is only possible if we used a suitable methodology. To obtain the global optimum values, we use the genetic algorithm called PIKAIA (P. Charbonneau) and other four algorithms implemented in Mathematica. We demonstrate that derived orbital parameters of binary systems published in some papers, based on radial velocity measurements, are local minimum instead of global ones.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
NASA Astrophysics Data System (ADS)
Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.
2016-09-01
Cutting fluid application plays a significant role in the manufacturing industries that acts as a coolant as well as a lubricant. The conventional flood cooling application of cutting fluids not only increases the production cost on account of the expenses involved in procurement, storage and disposal but also creates serious environmental and health hazards. In order to overcome these negative effects, techniques like Minimum quantity lubrication (MQL) and Minimal Cutting fluid application (MCFA) have increasingly found their way into the area of metal cutting and have already been established as an alternative to conventional wet machining. This paper investigates the effect of minimal Cutting fluid application (MCFA) which involves application of high velocity pulsing jet of proprietary cutting fluids at the contact zones using a special fluid application system. During hard turning of oil hardened non shrinkable steel (OHNS) on cutting temperature and tool wear and to compare the performance with Minimum quantity lubrication (MQL) assisted hard turning in which cutting fluid is carried in a high velocity stream of air. An attempt was also made to compare the performance during Turning with MCFA and MQL application with conventional wet and dry turning by analysing the tool wear pattern using SEM images.
NASA Astrophysics Data System (ADS)
Limbourg, M. C.; Legros, J. C.; Petre, G.
The experiment STEM (Surface Tension Minimum) was performed in an experimental cell integrated in the FMP (Fluid Physics Module) during the D1 mission of Spacelab. The observation volume (1×2×3) cm3 was constituted by a stainless steel frame and by two optical Pyrex windows. It was fixed on the front disk of the FPM. The cell was filled under microgravity conditions by an aqueous solution of n-heptanol 6,04 10-3 molal. At equilibrium this system presents a minimum of surface tension as a function of temperature around 40°C. The fluid was heated from the front disk side of the cell. A temperature difference of 35°C was maintained between two opposite sides of the cell, by using the large heat capacity of a water reservoir in thermal contact with the cold side of the cell. The thermal gradient was parallel to the liquid/gas interface. The motions of the fluid were recorded on video-tapes and the velocities were determined by following latex particles used as tracers. The convective pattern is analysed and compared with ground experiments. In this case the tracer trajectories allow to determine the convective patterns and the velocities are determined by laser doppler anemometry.
Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments
NASA Astrophysics Data System (ADS)
Jeanloz, R.
2015-12-01
Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre-compressed samples may thus offer the closest approach to an isentrope, and therefore the most extreme compression at which matter can be studied at the "warm" temperatures of planetary interiors.
Tao, Xiaojuan; Gao, Peiyi; Jing, Lina; Lin, Yan; Sui, Binbin
2015-01-01
Background Hemodynamics play an important role in the development and progression of carotid atherosclerosis, and may be important in the assessment of plaque vulnerability. The aim of this study was to develop a system to assess the hemodynamics of carotid atherosclerotic plaques using subject-specific fluid-structure interaction (FSI) models based on magnetic resonance imaging (MRI). Material/Methods Models of carotid bifurcations (n=86 with plaques from 52 patients, n=14 normal carotids from 12 participants) were obtained at the Department of Radiology, Beijing Tian Tan Hospital between 2010 and 2013. The maximum von Mises stress, minimum pressure, and flow velocity values were assessed at the most stenotic site in patients, or at the carotid bifurcations in healthy volunteers. Results of one-way FSI were compared with fully-coupled FSI for the plaques of 19 randomly selected models. Results The maximum von Mises stress and the minimum pressure and velocity were significantly increased in the stenosis group compared with controls based on one-way FSI (all P<0.05). The maximum von Mises stress and the minimum pressure were significantly higher and the velocity was significantly lower based on fully coupled FSI compared with on-way FSI (all P<0.05). Although there were differences in numerical values, both methods were equivalent. The maximum von Mises stress of vulnerable plaques was significantly higher than stable plaques (P<0.001). The maximum von Mises stress of the group with fibrous cap defect was significantly higher than the group without fibrous cap defect (P=0.001). Conclusions The hemodynamics of atherosclerotic plaques can be assessed noninvasively using subject-specific models of FSI based on MRI. PMID:26510514
Frolov, S V; Sindeev, S V; Liepsch, D; Balasso, A
2016-05-18
According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the Newtonian fluid. For the non-Newtonian fluid the wall shear stress minimum is 2.94 mPa; the maximum is 9.14 Pa. The lowest value of the wall shear stress for both fluids was obtained at the dome of the aneurysm while the highest wall shear stress was at the beginning of the outlet segment. The vortex in the aneurysm region is unstable during the cardiac cycle. The clockwise rotation of the streamlines at the inlet segment for Newtonian and non-Newtonian fluid is shown. The results of the present study are in agreement with the hemodynamics theory of aneurysm genesis. Low value of wall shear stress is observed at the aneurysm dome which can cause a rupture of an aneurysm.
30 CFR 250.908 - What are the minimum structural fatigue design requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are the minimum structural fatigue design... Platform Approval Program § 250.908 What are the minimum structural fatigue design requirements? (a) API RP... (incorporated by reference as specified in 30 CFR 250.198), requires that the design fatigue life of each joint...
13 CFR 120.473 - Procedures for determining individual minimum capital requirement.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Decision. After the close of the SBLC's response period, the AA/CA will decide, based on a review of SBA... requirement by the specified date, either the SBLC or the AA/CA may propose to the other a change in the... determining individual minimum capital requirement. (a) Notice. When SBA determines that an individual minimum...
26 CFR 1.412(c)(1)-3 - Applying the minimum funding requirements to restored plans.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 5 2013-04-01 2013-04-01 false Applying the minimum funding requirements to..., Stock Bonus Plans, Etc. § 1.412(c)(1)-3 Applying the minimum funding requirements to restored plans. (a) In general—(1) Restoration method. The restoration method is a funding method that adapts the...
Johnson, Barry L.; Knights, Brent C.; Barko, John W.; Gaugush, Robert F.; Soballe, David M.; James, William F.
1998-01-01
The backwaters of large rivers provide winter refuge for many riverine fish, but they often exhibit low dissolved oxygen levels due to high biological oxygen demand and low flows. Introducing water from the main channel can increase oxygen levels in backwaters, but can also increase current velocity and reduce temperature during winter, which may reduce habitat suitability for fish. In 1993, culverts were installed to introduce flow to the Finger Lakes, a system of six backwater lakes on the Mississippi River, about 160 km downstream from Minneapolis, Minnesota. The goal was to improve habitat for bluegills and black crappies during winter by providing dissolved oxygen concentrations >3 mg/L, current velocities <1 cm/s, and temperatures >1°C. To achieve these conditions, we used data on lake volume and oxygen demand to estimate the minimum flow required to maintain 3 mg/L of dissolved oxygen in each lake. Estimated flows ranged from 0.02 to 0.14 m3/s among lakes. Data gathered in winter 1994 after the culverts were opened, indicated that the estimated flows met habitat goals, but that thermal stratification and lake morphometry can reduce the volume of optimal habitat created.
Performance of J33 turbojet engine with shaft-power extraction III : turbine performance
NASA Technical Reports Server (NTRS)
Huppert, M C; Nettles, J C
1949-01-01
The performance of the turbine component of a J33 turbojet engine was determined over a range of turbine speeds from 8000 to 11,500 rpm.Turbine-inlet temperature was varied from the minimum required to drive the compressor to a maximum of approximately 2000 degrees R at each of several intermediate turbine speeds. Data are presented that show the horsepower developed by the turbine per pound of gas flow. The relation between turbine-inlet stagnation pressure, turbine-outlet stagnation pressure, and turbine-outlet static pressure was established. The turbine-weight-flow parameter varied from 39.2 to 43.6. The maximum turbine efficiency measured was 0.86 at a pressure ratio of 3.5 and a ratio of blade speed to theoretical nozzle velocity of 0.39. A generalized performance map of the turbine-horsepower parameter plotted against the turbine-speed parameter indicated that the best turbine efficiency is obtained when the turbine power is 10 percent greater than the compressor horsepower. The variation of efficiency with the ratio of blade speed to nozzle velocity indicated that the turbine operates at a speed above that for maximum efficiency when the engine is operated normally with the 19-inch-diameter jet nozzle.
Ebtehaj, Isa; Bonakdari, Hossein
2016-01-01
Sediment transport without deposition is an essential consideration in the optimum design of sewer pipes. In this study, a novel method based on a combination of support vector regression (SVR) and the firefly algorithm (FFA) is proposed to predict the minimum velocity required to avoid sediment settling in pipe channels, which is expressed as the densimetric Froude number (Fr). The efficiency of support vector machine (SVM) models depends on the suitable selection of SVM parameters. In this particular study, FFA is used by determining these SVM parameters. The actual effective parameters on Fr calculation are generally identified by employing dimensional analysis. The different dimensionless variables along with the models are introduced. The best performance is attributed to the model that employs the sediment volumetric concentration (C(V)), ratio of relative median diameter of particles to hydraulic radius (d/R), dimensionless particle number (D(gr)) and overall sediment friction factor (λ(s)) parameters to estimate Fr. The performance of the SVR-FFA model is compared with genetic programming, artificial neural network and existing regression-based equations. The results indicate the superior performance of SVR-FFA (mean absolute percentage error = 2.123%; root mean square error =0.116) compared with other methods.
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
A highly symmetric Euler flow, first proposed by Kida (1985), and recently simulated by Boratav and Pelz (1994) is considered. It is found that the fourth order spatial derivative of the pressure (pxxxx) at the origin is most probably positive. It is demonstrated that if pxxxx grows fast enough, there must be a finite-time singularity (FTS). For a random energy spectrum E(k) ∞ k-v, a FTS can occur if the spectral index v<3. Furthermore, a positive pxxxx has the dynamical consequence of reducing the third derivative of the velocity uxxx at the origin. Since the expectation value of uxxx is zero for a random distribution of energy, an ever decreasing uxxx means that the Kida flow has an intrinsic tendency to deviate from a random state. By assuming that uxxx reaches the minimum value for a given spectral profile, the velocity and pressure are found to have locally self-similar forms similar in shape to what are found in numerical simulations. Such a quasi self-similar solution relaxes the requirement for FTS to v<6. A special self-similar solution that satisfies Kelvin's circulation theorem and exhibits a FTS is found for v=2.
Linear Mechanisms and Pressure Fluctuations in Wall Turbulence
NASA Astrophysics Data System (ADS)
Septham, Kamthon; Morrison, Jonathan
2014-11-01
Full-domain, linear feedback control of turbulent channel flow at Reτ <= 400 via vU' at low wavenumbers is an effective method to attenuate turbulent channel flow such that it is relaminarised. The passivity-based control approach is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al .Phys .Fluids 2011). The linear forcing acts on the wall-normal velocity field and thus the pressure field via the linear (rapid) source term of the Poisson equation for pressure fluctuations, 2U'∂v/∂x . The minimum required spanwise wavelength resolution without losing control is constant at λz+ = 125, based on the wall friction velocity at t = 0 . The result shows that the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The effectiveness of linear control is qualitatively explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is much shorter than both the nonlinear and viscous timescales. The response of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control is examined and discussed.
UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers
NASA Technical Reports Server (NTRS)
Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor
2017-01-01
This paper documents a study that drove the development of a mathematical expression in the minimum operational performance standards (MOPS) of detect-and-avoid (DAA) systems for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance could be provided during recovery of well clear separation with a non-cooperative VFR aircraft in addition to horizontal maneuver guidance. Although suppressing vertical maneuver guidance in these situations increased the minimum horizontal separation from 500 to 800 feet, the maximum severity of loss of well clear increased in about 35 of the encounters compared to when a vertical maneuver was preferred and allowed. Additionally, analysis of individual cases led to the identification of a class of encounter where vertical rate error had a large effect on horizontal maneuvers due to the difficulty of making the correct left-right turn decision: crossing conflict with intruder changing altitude. These results supported allowing vertical maneuvers when UAS vertical performance exceeds the relative vertical position and velocity accuracy of the DAA tracker given the current velocity of the UAS and the relative vertical position and velocity estimated by the DAA tracker. Looking ahead, these results indicate a need to improve guidance algorithms by utilizing maneuver stability and near mid-air collision risk when determining maneuver guidance to regain well clear separation.
High-field magnetoelasticity of Tm2Co17 and comparison with Er2Co17
NASA Astrophysics Data System (ADS)
Andreev, A. V.; Zvyagin, A. A.; Skourski, Y.; Yasin, S.; Zherlitsyn, S.
2017-11-01
Acoustic properties (ultrasound velocity and attenuation) and magnetostriction were measured in pulsed fields up to 60 T applied along the c axis of Tm2Co17 single crystal. Similar to Er2Co17, the transition in Tm2Co17 is accompanied by clear anomalies in the sound velocity. The observed 0.3% jump of the sound velocity at the transition is negative in Tm2Co17, whereas it is positive in Er2Co17. The magnetostriction at the transition also differs very much from that in Er2Co17. In Tm2Co17, the transition is accompanied by a smooth minimum of 0.15 × 10-4 in longitudinal magnetostriction whereas in Er2Co17 by a very sharp expansion of much larger magnitude (1.2 × 10-4). In the transverse mode, the effect in Tm2Co17 looks as very broad minimum of low amplitude (<0.1 × 10-4) whereas in Er2Co17 as very sharp and large shrinkage (2.6 × 10-4). Thus, both the magnetoacoustics and magnetostriction are rather different in Tm2Co17 and Er2Co17. This supports different nature of the field-induced transitions in these compounds.
Method and system for gas flow mitigation of molecular contamination of optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, Gildardo; Johnson, Terry; Arienti, Marco
A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and amore » purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.« less
Three-dimenstional crustal velocity structure beneath the strait of georgia, British Columbia
Zelt, B.C.; Ellis, R.M.; Zelt, C.A.; Hyndman, R.D.; Lowe, C.; Spence, G.D.; Fisher, M.A.
2001-01-01
The Strait of Georgia is a topographic depression straddling the boundary between the Insular and Coast belts in southwestern British Columbia. Two shallow earthquakes located within the strait (M = 4.6 in 1997 and M = 5.0 in 1975) and felt throughout the Vancouver area illustrate the seismic potential of this region. As part of the 1998 Seismic Hazards Investigation of Puget Sound (SHIPS) experiment, seismic instruments were placed in and around the Strait of Georgia to record shots from a marine source within the strait. We apply a tomographic inversion procedure to first-arrival travel-time data to derive a minimum-structure 3-D P-wave velocity model for the upper crust to about 13 km depth. We also present a 2-D velocity model for a profile orientated across the Strait of Georgia derived using a minimum-parameter traveltime inversion approach. This paper represents the first detailed look at crustal velocity variations within the major Cretaceous to Cenozoic Georgia Basin, which underlies the Strait of Georgia. The 3-D velocity model clearly delineates the structure of the Georgia Basin. Taking the 6 km s-1 isovelocity contour to represent the top of the underlying basement, the basin thickens from between 2 and 4 km in the northwestern half of the strait to between 8 and 9 km at the southeastern end of the study region. Basin velocities in the northeastern half are 4.5-6 km s-1 and primarily represent the Upper Cretaceous Nanaimo Group. Velocities to the south are lower (3-6 km s-1) because of the additional presence of the overlying Tertiary Huntingdon Formation and more recent sediments, including glacial and modern Fraser River deposits. In contrast to the relatively smoothly varying velocity structure of the basin, velocities of the basement rocks, which comprise primarily Palaeozoic to Jurassic rocks of the Wrangellia Terrane and possibly Jurassic to mid-Cretaceous granitic rocks of the Coast Belt, show significantly more structure, probably an indication of the varying basement rock lithologies. The 2-D velocity model more clearly reveals the velocity layering associated with the recent sediments, Huntingdon Formation and Nanaimo Group of the southern Georgia Basin, as well as the underlying basement. We interpret lateral variation in sub-basin velocities of the 2-D model as a transition from Wrangellian to Coast Belt basement rocks. The effect of the narrow, onshore-offshore recording geometry of the seismic experiment on model resolution was tested to allow a critical assessment of the validity of the 3-D velocity model. Lateral resolution throughout the model to a depth of 3-5 km below the top of the basement is generally 10-20 km.
26 CFR 1.412(c)(1)-3T - Applying the minimum funding requirements to restored plans (temporary).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 5 2013-04-01 2013-04-01 false Applying the minimum funding requirements to...-Sharing, Stock Bonus Plans, Etc. § 1.412(c)(1)-3T Applying the minimum funding requirements to restored plans (temporary). (a) In general—(1) Restoration method. The restoration method is a funding method...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Required minimum distributions for defined...-Sharing, Stock Bonus Plans, Etc. § 1.401(a)(9)-6 Required minimum distributions for defined benefit plans and annuity contracts. Q-1. How must distributions under a defined benefit plan be paid in order to...
Scaling-up the minimum requirements analysis for big wilderness issues
David N. Cole
2007-01-01
The concept of applying a "minimum requirements" analysis to decisions about administrative actions in wilderness in the United States has been around for a long time. It comes from Section 4(c) of the Wilderness Act of 1964, which states that "except as necessary to meet minimum requirements for the administration of the area for the purposes of this...
Direct Imaging Of Long Period Radial Velocity Targets With NICI
NASA Astrophysics Data System (ADS)
Salter, Graeme S.; Tinney, Chris G.; Wittenmyer, Robert A.; Jenkins, James S.; Jones, Hugh R. A.; O'Toole, Simon J.
2014-01-01
We are finally entering an era where radial velocity and direct imaging parameter spaces are starting to overlap. Radial velocity measurements provide us with a minimum mass for an orbiting companion (the mass as a function of the inclination of the system). By following up these long period radial velocity detections with direct imaging we can determine whether a trend seen is due to an orbiting planet at low inclination or an orbiting brown dwarf at high inclination. In the event of a non-detection we are still able to put a limit on the maximum mass of the orbiting body. The Anglo-Australian Planet Search is one of the longest baseline radial velocity planet searches in existence, amongst its targets are many that show long period trends in the data. Here we present our direct imaging survey of these objects with our results to date. ADI Observations have been made using NICI (Near Infrared Coronagraphic Imager) on Gemini South and analysed using an in house, LOCI-like, post processing.
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu
2018-05-01
To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu
2017-12-01
To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.
Development of minimum state requirements for local growth management policies : phase 1.
DOT National Transportation Integrated Search
2015-01-01
This research entailed the development of minimum requirements for local growth management policies for use in Louisiana. The purpose of developing minimum statewide standards is to try to alleviate some of the stress placed on state and local govern...
Development of minimum state requirements for local growth management policies -- phase 1.
DOT National Transportation Integrated Search
2015-11-01
This research entailed the development of minimum requirements for local growth management policies for use : in Louisiana. The purpose of developing minimum statewide standards is to try to alleviate some of the stress : placed on state and local go...
Improvements of the Ray-Tracing Based Method Calculating Hypocentral Loci for Earthquake Location
NASA Astrophysics Data System (ADS)
Zhao, A. H.
2014-12-01
Hypocentral loci are very useful to reliable and visual earthquake location. However, they can hardly be analytically expressed when the velocity model is complex. One of methods numerically calculating them is based on a minimum traveltime tree algorithm for tracing rays: a focal locus is represented in terms of ray paths in its residual field from the minimum point (namely initial point) to low residual points (referred as reference points of the focal locus). The method has no restrictions on the complexity of the velocity model but still lacks the ability of correctly dealing with multi-segment loci. Additionally, it is rather laborious to set calculation parameters for obtaining loci with satisfying completeness and fineness. In this study, we improve the ray-tracing based numerical method to overcome its advantages. (1) Reference points of a hypocentral locus are selected from nodes of the model cells that it goes through, by means of a so-called peeling method. (2) The calculation domain of a hypocentral locus is defined as such a low residual area that its connected regions each include one segment of the locus and hence all the focal locus segments are respectively calculated with the minimum traveltime tree algorithm for tracing rays by repeatedly assigning the minimum residual reference point among those that have not been traced as an initial point. (3) Short ray paths without branching are removed to make the calculated locus finer. Numerical tests show that the improved method becomes capable of efficiently calculating complete and fine hypocentral loci of earthquakes in a complex model.
Bye, Robin T; Neilson, Peter D
2010-10-01
Physiological tremor during movement is characterized by ∼10 Hz oscillation observed both in the electromyogram activity and in the velocity profile. We propose that this particular rhythm occurs as the direct consequence of a movement response planning system that acts as an intermittent predictive controller operating at discrete intervals of ∼100 ms. The BUMP model of response planning describes such a system. It forms the kernel of Adaptive Model Theory which defines, in computational terms, a basic unit of motor production or BUMP. Each BUMP consists of three processes: (1) analyzing sensory information, (2) planning a desired optimal response, and (3) execution of that response. These processes operate in parallel across successive sequential BUMPs. The response planning process requires a discrete-time interval in which to generate a minimum acceleration trajectory to connect the actual response with the predicted future state of the target and compensate for executional error. We have shown previously that a response planning time of 100 ms accounts for the intermittency observed experimentally in visual tracking studies and for the psychological refractory period observed in double stimulation reaction time studies. We have also shown that simulations of aimed movement, using this same planning interval, reproduce experimentally observed speed-accuracy tradeoffs and movement velocity profiles. Here we show, by means of a simulation study of constant velocity tracking movements, that employing a 100 ms planning interval closely reproduces the measurement discontinuities and power spectra of electromyograms, joint-angles, and angular velocities of physiological tremor reported experimentally. We conclude that intermittent predictive control through sequential operation of BUMPs is a fundamental mechanism of 10 Hz physiological tremor in movement. Copyright © 2010 Elsevier B.V. All rights reserved.
Input relegation control for gross motion of a kinematically redundant manipulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
1992-10-01
This report proposes a method for resolving the kinematic redundancy of a serial link manipulator moving in a three-dimensional workspace. The underspecified problem of solving for the joint velocities based on the classical kinematic velocity model is transformed into a well-specified problem. This is accomplished by augmenting the original model with additional equations which relate a new vector variable quantifying the redundant degrees of freedom (DOF) to the joint velocities. The resulting augmented system yields a well specified solution for the joint velocities. Methods for selecting the redundant DOF quantifying variable and the transformation matrix relating it to the jointmore » velocities are presented so as to obtain a minimum Euclidean norm solution for the joint velocities. The approach is also applied to the problem of resolving the kinematic redundancy at the acceleration level. Upon resolving the kinematic redundancy, a rigid body dynamical model governing the gross motion of the manipulator is derived. A control architecture is suggested which according to the model, decouples the Cartesian space DOF and the redundant DOF.« less
High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging
Persoons, Tim; O’Donovan, Tadhg S.
2011-01-01
The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods. PMID:22346564
NASA Technical Reports Server (NTRS)
Corcoran, M. F.; Ishibashi, K.; Swank, J. H.; Petre, R.; White, Nicholas E. (Technical Monitor)
2000-01-01
We solve the RXTE X-ray lightcurve of the extremely luminous and massive star eta Carinae with a colliding wind emission model to refine the ground-based orbital elements. The sharp decline to X-ray minimum at the end of 1997 fixes the date of the last periastron passage at 1997.95 +/- 0.05, not 1998.13 as derived from ground-based radial velocities. This helps resolve a discrepancy between the ground-based radial velocities and spatially-resolved velocity measures obtained by STIS. The X-ray data are consistent with a mass function f(M) approx. = 1.5, lower than the value f(M) approx. = 7.5 previously reported, so that the masses of eta Carinae and the companion are M(sub eta) greater than or = 80 solar mass and M(sub c) approx. 30 solar mass respectively. In addition the X-ray data suggest that the mass loss rate from eta Carinae is generally less than 3 x 10(exp -4) solar mass/yr, about a factor of 5 lower than that derived from some observations in other wavebands. We could not match the duration of the X-ray minimum with any standard colliding wind model in which the wind is spherically symmetric and the mass loss rate is constant. However we show that we can match the variations around X-ray minimum if we include an increase of a factor of approx. 20 in the mass loss rate from eta Carinae for approximately 80 days following periastron. If real, this excess in M would be the first evidence of enhanced mass flow off the primary when the two stars are close (presumably driven by tidal interactions). Our interpretation of the X-ray data suggest that the ASCA and RXTE X-ray spectra near the X-ray minimum are significantly contaminated by unresolved hard emission (E greater than or = 2 keV) from sonic other nearby source, probably associated with scattering of tile colliding wind emission by circumstellar dust. Based on the X-ray fluxes the distance to n Carinae is 2300 pc with formal uncertainties of only approx. 10%.
Comparison of direct numerical simulation databases of turbulent channel flow at Reτ = 180
NASA Astrophysics Data System (ADS)
Vreman, A. W.; Kuerten, J. G. M.
2014-01-01
Direct numerical simulation (DNS) databases are compared to assess the accuracy and reproducibility of standard and non-standard turbulence statistics of incompressible plane channel flow at Reτ = 180. Two fundamentally different DNS codes are shown to produce maximum relative deviations below 0.2% for the mean flow, below 1% for the root-mean-square velocity and pressure fluctuations, and below 2% for the three components of the turbulent dissipation. Relatively fine grids and long statistical averaging times are required. An analysis of dissipation spectra demonstrates that the enhanced resolution is necessary for an accurate representation of the smallest physical scales in the turbulent dissipation. The results are related to the physics of turbulent channel flow in several ways. First, the reproducibility supports the hitherto unproven theoretical hypothesis that the statistically stationary state of turbulent channel flow is unique. Second, the peaks of dissipation spectra provide information on length scales of the small-scale turbulence. Third, the computed means and fluctuations of the convective, pressure, and viscous terms in the momentum equation show the importance of the different forces in the momentum equation relative to each other. The Galilean transformation that leads to minimum peak fluctuation of the convective term is determined. Fourth, an analysis of higher-order statistics is performed. The skewness of the longitudinal derivative of the streamwise velocity is stronger than expected (-1.5 at y+ = 30). This skewness and also the strong near-wall intermittency of the normal velocity are related to coherent structures.
47 CFR 87.89 - Minimum operator requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
....89 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Operating Requirements and Procedures Radio Operator Requirements § 87.89 Minimum operator requirements. (a) A station operator must hold a commercial radio operator license or permit...
47 CFR 87.89 - Minimum operator requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
....89 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Operating Requirements and Procedures Radio Operator Requirements § 87.89 Minimum operator requirements. (a) A station operator must hold a commercial radio operator license or permit...
47 CFR 87.89 - Minimum operator requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
....89 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Operating Requirements and Procedures Radio Operator Requirements § 87.89 Minimum operator requirements. (a) A station operator must hold a commercial radio operator license or permit...
47 CFR 87.89 - Minimum operator requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
....89 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Operating Requirements and Procedures Radio Operator Requirements § 87.89 Minimum operator requirements. (a) A station operator must hold a commercial radio operator license or permit...
47 CFR 87.89 - Minimum operator requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
....89 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Operating Requirements and Procedures Radio Operator Requirements § 87.89 Minimum operator requirements. (a) A station operator must hold a commercial radio operator license or permit...
Characterizing Extreme Environments for Army Testing
2004-12-01
necessary to evaluate the plain, upland), well-developed and variable soil capability to conduct a specific test at a given location. profiles ( oxisols ...m) to medium (up to 20m) width streams, with nominal nominal velocities (ងm/s). Soils: Oxisols , ultisols, inceptisols, minimum depth in the range
42 CFR 84.173 - Harnesses; installation and construction; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Harnesses; installation and construction; minimum... SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE... construction; minimum requirements. (a) Each respirator shall, where necessary, be equipped with a suitable...
42 CFR 84.133 - Harnesses; installation and construction; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Harnesses; installation and construction; minimum... SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.133 Harnesses; installation and construction; minimum requirements...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freij, N.; Nelson, C. J.; Mumford, S.
There have been ubiquitous observations of wave-like motions in the solar atmosphere for decades. Recent improvements to space- and ground-based observatories have allowed the focus to shift to smaller magnetic structures on the solar surface. In this paper, high-resolution ground-based data taken using the Swedish 1 m Solar Telescope is combined with co-spatial and co-temporal data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite to analyze running penumbral waves (RPWs). RPWs have always been thought to be radial wave propagation that occurs within sunspots. Recent research has suggested that they are in fact upwardlymore » propagating field-aligned waves (UPWs). Here, RPWs within a solar pore are observed for the first time and are interpreted as UPWs due to the lack of a penumbra that is required to support RPWs. These UPWs are also observed co-spatially and co-temporally within several SDO/AIA elemental lines that sample the transition region and low corona. The observed UPWs are traveling at a horizontal velocity of around 17 ± 0.5 km s{sup –1} and a minimum vertical velocity of 42 ± 21 km s{sup –1}. The estimated energy of the waves is around 150 W m{sup –2}, which is on the lower bound required to heat the quiet-Sun corona. This is a new, yet unconsidered source of wave energy within the solar chromosphere and low corona.« less
NASA Technical Reports Server (NTRS)
Preston, J. L., Jr.; Cook, T. S.
1975-01-01
An investigation of the response of a graphite-epoxy material to foreign object impact was made by impacting spherical projectiles of gelatin, ice, and steel normally on flat panels. The observed damage was classified as transverse (stress wave delamination and cracking), penetrative, or structural (gross failure): the minimum, or threshold, velocity to cause each class of damage was established as a function of projectile characteristics. Steel projectiles had the lowest transverse damage threshold, followed by gelatin and ice. Making use of the threshold velocities and assuming that the normal component of velocity produces the damage in nonnormal impacts, a set of impact angles and velocities was established for each projectile material which would result in damage to composite fan blades. Analysis of the operating parameters of a typical turbine fan blade shows that small steel projectiles are most likely to cause delamination and penetration damage to unprotected graphite-epoxy composite fan blades.
Wallner, P; Ruile, W; Weigel, R
2000-01-01
Theoretical studies on the behavior of leaky-SAW (LSAW) properties in layered structures were performed. For these calculations rotYX LiTaO (3) and rotYX LiNbO(3) LSAW crystal cuts were used, assuming different layer materials. For LSAWs both the velocity and the inherent loss due to bulk wave emission into the substrate are strongly influenced by distinct layer parameters. As a result, these layer properties like elastic constants or thickness have shown a strong influence on the crystal cut angle of minimum LSAW loss. Moreover, for soft and stiff layer materials, a different shift of the LSAW loss minimum can occur. Therefore, using double-layer structures, the shift of the LSAW loss minimum can be influenced by appropriate chosen layers and ratios.
NASA Astrophysics Data System (ADS)
Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.
2012-12-01
We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and DWSA arrivals. We also use an eigenvalue decomposition to determine the direction of the incoming wave field, and to measure the arrival azimuths. This work is supported by the USGS Earthquake Hazards Program under grant numbers G11AP20027 and G11AP20028.
40 CFR 600.010-08 - Vehicle test requirements and minimum data requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... data requirements. 600.010-08 Section 600.010-08 Protection of Environment ENVIRONMENTAL PROTECTION... requirements and minimum data requirements. (a) Unless otherwise exempted from specific emission compliance... applicable): (1) The manufacturer shall generate FTP fuel economy data by testing according to the applicable...
NASA Astrophysics Data System (ADS)
Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.
2009-04-01
Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.
Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics.
Morales, Hernán G; Bonnefous, Odile
2015-02-26
Arterial flow rate affects intra-aneurysmal hemodynamics but it is not clear how their relationship is. This uncertainty hinders the comparison among studies, including clinical evaluations, like a pre- and post-treatment status, since arterial flow rates may differ at each time acquisition. The purposes of this work are as follows: (1) To study how intra-aneurysmal hemodynamics changes within the full physiological range of arterial flow rates. (2) To provide characteristic curves of intra-aneurysmal velocity, wall shear stress (WSS) and pressure as functions of the arterial flow rate. Fifteen image-based aneurysm models were studied using computational fluid dynamics (CFD) simulations. The full range of physiological arterial flow rates reported in the literature was covered by 11 pulsatile simulations. For each aneurysm, the spatiotemporal-averaged blood flow velocity, WSS and pressure were calculated. Spatiotemporal-averaged velocity inside the aneurysm linearly increases as a function of the mean arterial flow (minimum R(2)>0.963). Spatiotemporal-averaged WSS and pressure at the aneurysm wall can be represented by quadratic functions of the arterial flow rate (minimum R(2)>0.996). Quantitative characterizations of spatiotemporal-averaged velocity, WSS and pressure inside cerebral aneurysms can be obtained with respect to the arterial flow rate. These characteristic curves provide more information of the relationship between arterial flow and aneurysm hemodynamics since the full range of arterial flow rates is considered. Having these curves, it is possible to compare experimental studies and clinical evaluations when different flow conditions are used. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Dong, Nianbo; Maynard, Rebecca
2013-01-01
This paper and the accompanying tool are intended to complement existing supports for conducting power analysis tools by offering a tool based on the framework of Minimum Detectable Effect Sizes (MDES) formulae that can be used in determining sample size requirements and in estimating minimum detectable effect sizes for a range of individual- and…
Bridging the gap between high and low acceleration for planetary escape
NASA Astrophysics Data System (ADS)
Indrikis, Janis; Preble, Jeffrey C.
With the exception of the often time consuming analysis by numerical optimization, no single orbit transfer analysis technique exists that can be applied over a wide range of accelerations. Using the simple planetary escape (parabolic trajectory) mission some of the more common techniques are considered as the limiting bastions at the high and the extremely low acceleration regimes. The brachistochrone, the minimum time of flight path, is proposed as the technique to bridge the gap between the high and low acceleration regions, providing a smooth bridge over the entire acceleration spectrum. A smooth and continuous velocity requirement is established for the planetary escape mission. By using these results, it becomes possible to determine the effect of finite accelerations on mission performance and target propulsion and power system designs which are consistent with a desired mission objective.
Karmonik, Christof; Klucznik, Richard; Benndorf, Goetz
2008-01-01
Computational Fluid Dynamic (CFD) is increasingly being used for modeling hemodynamics in intracranial aneurysms. While CFD techniques are well established, need for validation of the results remains. By quantifying features in velocity patterns measured with 2D phase contrast magnetic resonance (pcMRI) in vivo and simulated with CFD, the role of pcMRI for providing reference data for the CFD simulation is explored. Unsteady CFD simulations were performed with inflow boundary conditions obtained from 2D pcMRI measurements of an aneurysm of the anterior communication artery. Intra-aneurysmal velocity profiles were recorded with 2D pcMRI and calculated with CFD. Relative areas of positive and negative velocity were calculated in these profiles for maximum and minimum inflow. Areas of positive and of negative velocity similar in shape were found in the velocity profiles obtained with both methods. Relative difference in size of the relative areas for the whole cardiac cycle ranged from 1%-25% (average 12%). 2D pcMRI is able to record velocity profiles in an aneurysm of the anterior commuting artery in vivo. These velocity profiles can serve as reference data for validation of CFD simulations. Further studies are needed to explore the role of pcMRI in the context of CFD simulations.
The double-lined spectroscopic binary Iota Pegasi
NASA Technical Reports Server (NTRS)
Fekel, F. C.; Tomkin, J.
1983-01-01
Reticon observations of the spectroscopic binary Iota Peg at 6430 A show the secondary star's weak, but well defined lines. Determinations have accordingly been made of the secondary velocity curve as well as that of the primary, together with the orbits and the minimum masses of the two components. The 1.31 + or - 0.02 and 0.81 + or - 0.01 solar mass minimum masses are sufficiently close to the expected actual masses to suggest eclipses, despite the relatively long, 10.2-day period. The spectral type of the secondary is estimated to be G8 V.
40 CFR 600.010-08 - Vehicle test requirements and minimum data requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., US06, SC03 and Cold temperature FTP data from each subconfiguration included within the model type. (2... data requirements. 600.010-08 Section 600.010-08 Protection of Environment ENVIRONMENTAL PROTECTION... Provisions § 600.010-08 Vehicle test requirements and minimum data requirements. (a) Unless otherwise...
40 CFR 600.010-86 - Vehicle test requirements and minimum data requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... additional model types established under § 600.207(a)(2), data from each subconfiguration included within the... data requirements. 600.010-86 Section 600.010-86 Protection of Environment ENVIRONMENTAL PROTECTION... requirements and minimum data requirements. (a) For each certification vehicle defined in this part, and for...
29 CFR 4043.25 - Failure to make required minimum funding payment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... TERMINATIONS REPORTABLE EVENTS AND CERTAIN OTHER NOTIFICATION REQUIREMENTS Post-Event Notice of Reportable Events § 4043.25 Failure to make required minimum funding payment. (a) Reportable event. A reportable event occurs when a required installment or a payment required under section 302 of ERISA or section 412...
29 CFR 4043.25 - Failure to make required minimum funding payment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TERMINATIONS REPORTABLE EVENTS AND CERTAIN OTHER NOTIFICATION REQUIREMENTS Post-Event Notice of Reportable Events § 4043.25 Failure to make required minimum funding payment. (a) Reportable event. A reportable event occurs when a required installment or a payment required under section 302 of ERISA or section 412...
29 CFR 4043.25 - Failure to make required minimum funding payment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... TERMINATIONS REPORTABLE EVENTS AND CERTAIN OTHER NOTIFICATION REQUIREMENTS Post-Event Notice of Reportable Events § 4043.25 Failure to make required minimum funding payment. (a) Reportable event. A reportable event occurs when a required installment or a payment required under section 302 of ERISA or section 412...
29 CFR 4043.25 - Failure to make required minimum funding payment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... TERMINATIONS REPORTABLE EVENTS AND CERTAIN OTHER NOTIFICATION REQUIREMENTS Post-Event Notice of Reportable Events § 4043.25 Failure to make required minimum funding payment. (a) Reportable event. A reportable event occurs when a required installment or a payment required under section 302 of ERISA or section 412...
30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...
30 CFR 75.1107-9 - Dry chemical devices; capacity; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Dry chemical devices; capacity; minimum... Dry chemical devices; capacity; minimum requirements. (a) Dry chemical fire extinguishing systems used...; (3) Hose and pipe shall be as short as possible; the distance between the chemical container and...
30 CFR 75.1107-9 - Dry chemical devices; capacity; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dry chemical devices; capacity; minimum... Dry chemical devices; capacity; minimum requirements. (a) Dry chemical fire extinguishing systems used...; (3) Hose and pipe shall be as short as possible; the distance between the chemical container and...
27 CFR 19.184 - Scale tank minimum graduations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... graduations. 19.184 Section 19.184 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Requirements Tank Requirements § 19.184 Scale tank minimum graduations. (a) The beams or dials on scale tanks used for tax determination must have minimum graduations not greater than the following: Quantity to be...
27 CFR 19.184 - Scale tank minimum graduations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... graduations. 19.184 Section 19.184 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Requirements Tank Requirements § 19.184 Scale tank minimum graduations. (a) The beams or dials on scale tanks used for tax determination must have minimum graduations not greater than the following: Quantity to be...
27 CFR 19.184 - Scale tank minimum graduations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... graduations. 19.184 Section 19.184 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Requirements Tank Requirements § 19.184 Scale tank minimum graduations. (a) The beams or dials on scale tanks used for tax determination must have minimum graduations not greater than the following: Quantity to be...
27 CFR 19.184 - Scale tank minimum graduations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... graduations. 19.184 Section 19.184 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Requirements Tank Requirements § 19.184 Scale tank minimum graduations. (a) The beams or dials on scale tanks used for tax determination must have minimum graduations not greater than the following: Quantity to be...
30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...
30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...
30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...
30 CFR 75.1107-9 - Dry chemical devices; capacity; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Dry chemical devices; capacity; minimum... Dry chemical devices; capacity; minimum requirements. (a) Dry chemical fire extinguishing systems used...; (3) Hose and pipe shall be as short as possible; the distance between the chemical container and...
30 CFR 75.1107-9 - Dry chemical devices; capacity; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Dry chemical devices; capacity; minimum... Dry chemical devices; capacity; minimum requirements. (a) Dry chemical fire extinguishing systems used...; (3) Hose and pipe shall be as short as possible; the distance between the chemical container and...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Self-regulatory organization... Miscellaneous § 1.52 Self-regulatory organization adoption and surveillance of minimum financial requirements. (a) Each self-regulatory organization must adopt rules prescribing minimum financial and related...
30 CFR 77.1707 - First aid equipment; location; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid equipment; location; minimum... OF UNDERGROUND COAL MINES Miscellaneous § 77.1707 First aid equipment; location; minimum requirements. (a) Each operator of a surface coal mine shall maintain a supply of the first aid equipment set forth...
10 CFR 440.16 - Minimum program requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Minimum program requirements. 440.16 Section 440.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION WEATHERIZATION ASSISTANCE FOR LOW-INCOME PERSONS § 440.16 Minimum...) Families with children; (4) High residential energy users; and (5) Households with a high energy burden. (c...
10 CFR 440.16 - Minimum program requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Minimum program requirements. 440.16 Section 440.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION WEATHERIZATION ASSISTANCE FOR LOW-INCOME PERSONS § 440.16 Minimum...) Families with children; (4) High residential energy users; and (5) Households with a high energy burden. (c...
10 CFR 440.16 - Minimum program requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Minimum program requirements. 440.16 Section 440.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION WEATHERIZATION ASSISTANCE FOR LOW-INCOME PERSONS § 440.16 Minimum...) Families with children; (4) High residential energy users; and (5) Households with a high energy burden. (c...
Erosion of metals by multiple impacts with water
NASA Technical Reports Server (NTRS)
Rudy, S. L.; Thiruvengadam, A.
1971-01-01
Investigation determines - relation between impact velocity and minimum number of impacts producing visible erosion, relation between high frequency fatigue stresses and number of cycles to failure, water-hammer stresses relation to high frequency endurance limit, erosion rate as exposure time function, and correlates experimental data with recent theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, T.A.
1992-12-01
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less
Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, T.A.
1992-12-01
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less
NASA Technical Reports Server (NTRS)
Denton, R.; Sonnerup, B. U. O.; Swisdak, M.; Birn, J.; Drake, J. F.; Heese, M.
2012-01-01
When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to accurately determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of maximum inhomogeneity (the direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of magnetic reconnection in the geomagnetic tail, we extend our previous tests of the direction-finding method developed by Shi et al. (2005) and the method to determine the structure velocity relative to the spacecraft Vstr. These methods require data from four proximate spacecraft. We add artificial noise and calibration errors to the simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent minimum gradient was not exactly zero, even without added artificial errors. We also examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of the directions found varied depending on the simulation and spacecraft trajectory, but all the directions could be found within about 10 for all cases. Various aspects of the method were examined, including how to choose averaging intervals and the best intervals for determining the directions and velocity. For the kinetic simulation, we also investigated in detail how the errors in the inferred gradient directions from the unmodified Shi et al. method (using the unperturbed gradient) depended on the amplitude of the calibration errors. For an accuracy of 3 for the maximum gradient direction, the calibration errors could be as large as 3% of reconnection magnetic field, while for the same accuracy for the minimum gradient direction, the calibration errors could only be as large as 0.03% of the reconnection magnetic field. These results suggest that the maximum gradient direction can normally be determined by the unmodified Shi et al. method, while the modified method or some other method must be used to accurately determine the minimum gradient direction. The structure velocity was found with magnitude accurate to 2% and direction accurate to within 5%.
Compressive residual strength of graphite/epoxy laminates after impact
NASA Technical Reports Server (NTRS)
Guy, Teresa A.; Lagace, Paul A.
1992-01-01
The issue of damage tolerance after impact, in terms of the compressive residual strength, was experimentally examined in graphite/epoxy laminates using Hercules AS4/3501-6 in a (+ or - 45/0)(sub 2S) configuration. Three different impactor masses were used at various velocities and the resultant damage measured via a number of nondestructive and destructive techniques. Specimens were then tested to failure under uniaxial compression. The results clearly show that a minimum compressive residual strength exists which is below the open hole strength for a hole of the same diameter as the impactor. Increases in velocity beyond the point of minimum strength cause a difference in the damage produced and cause a resultant increase in the compressive residual strength which asymptotes to the open hole strength value. Furthermore, the results show that this minimum compressive residual strength value is independent of the impactor mass used and is only dependent upon the damage present in the impacted specimen which is the same for the three impactor mass cases. A full 3-D representation of the damage is obtained through the various techniques. Only this 3-D representation can properly characterize the damage state that causes the resultant residual strength. Assessment of the state-of-the-art in predictive analysis capabilities shows a need to further develop techniques based on the 3-D damage state that exists. In addition, the need for damage 'metrics' is clearly indicated.
33 CFR 67.05-20 - Minimum lighting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Lights § 67.05-20 Minimum lighting requirements. The obstruction lighting requirements prescribed... application for authorization to establish more lights, or lights of greater intensity than required to be visible at the distances prescribed: Provided, That the prescribed characteristics of color and flash...
33 CFR 67.05-20 - Minimum lighting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Lights § 67.05-20 Minimum lighting requirements. The obstruction lighting requirements prescribed... application for authorization to establish more lights, or lights of greater intensity than required to be visible at the distances prescribed: Provided, That the prescribed characteristics of color and flash...
33 CFR 67.05-20 - Minimum lighting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Lights § 67.05-20 Minimum lighting requirements. The obstruction lighting requirements prescribed... application for authorization to establish more lights, or lights of greater intensity than required to be visible at the distances prescribed: Provided, That the prescribed characteristics of color and flash...
33 CFR 67.05-20 - Minimum lighting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Lights § 67.05-20 Minimum lighting requirements. The obstruction lighting requirements prescribed... application for authorization to establish more lights, or lights of greater intensity than required to be visible at the distances prescribed: Provided, That the prescribed characteristics of color and flash...
33 CFR 67.05-20 - Minimum lighting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Lights § 67.05-20 Minimum lighting requirements. The obstruction lighting requirements prescribed... application for authorization to establish more lights, or lights of greater intensity than required to be visible at the distances prescribed: Provided, That the prescribed characteristics of color and flash...
Effects of regulated river flows on habitat suitability for the robust redhorse
Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.
2015-01-01
The Robust Redhorse Moxostoma robustum is a rare and imperiled fish, with wild populations occurring in three drainages from North Carolina to Georgia. Hydroelectric dams have altered the species’ habitat and restricted its range. An augmented minimum-flow regime that will affect Robust Redhorse habitat was recently prescribed for Blewett Falls Dam, a hydroelectric facility on the Pee Dee River, North Carolina. Our objective was to quantify suitable spawning and nonspawning habitat under current and proposed minimum-flow regimes. We implanted radio transmitters into 27 adult Robust Redhorses and relocated the fish from spring 2008 to summer 2009, and we described habitat at 15 spawning capture locations. Nonspawning habitat consisted of deep, slow-moving pools (mean depth D 2.3 m; mean velocity D 0.23 m/s), bedrock and sand substrates, and boulders or coarse woody debris as cover. Spawning habitat was characterized as shallower, faster-moving water (mean depth D 0.84 m; mean velocity D 0.61 m/s) with gravel and cobble as substrates and boulders as cover associated with shoals. Telemetry relocations revealed two behavioral subgroups: a resident subgroup (linear range [mean § SE] D 7.9 § 3.7 river kilometers [rkm]) that remained near spawning areas in the Piedmont region throughout the year; and a migratory subgroup (linear range D 64.3 § 8.4 rkm) that migrated extensively downstream into the Coastal Plain region. Spawning and nonspawning habitat suitability indices were developed based on field microhabitat measurements and were applied to model suitable available habitat (weighted usable area) for current and proposed augmented minimum flows. Suitable habitat (both spawning and nonspawning) increased for each proposed seasonal minimum flow relative to former minimum flows, with substantial increases for spawning sites. Our results contribute to an understanding of how regulated flows affect available habitats for imperiled species. Flow managers can use these findings to regulate discharge more effectively and to create and maintain important habitats during critical periods for priority species.
An Approximate Solution to the Plastic Indentation of Circular Sandwich Panels
NASA Astrophysics Data System (ADS)
Xie, Z.
2018-05-01
The plastic indentation response of circular sandwich panels loaded by the flat end of a cylinder is investigated employing a velocity field model. Using the principles of virtual velocities and minimum work, an expression for the indenter load in relation to the indenter displacement and displacement field of the deformed face sheet is derived. The analytical solutions obtained are in good agreement with those found by simulations using the ABAQUS code. The radial tensile strain of the deformed face sheet and the ratio of energy absorption rate of the core to that of the face sheet are discussed.
40 CFR 600.010-86 - Vehicle test requirements and minimum data requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... base level, and (iii) For additional model types established under § 600.207(a)(2), data from each... data requirements. 600.010-86 Section 600.010-86 Protection of Environment ENVIRONMENTAL PROTECTION... Provisions § 600.010-86 Vehicle test requirements and minimum data requirements. (a) For each certification...
Code of Federal Regulations, 2010 CFR
2010-04-01
... financial, cover and segregation requirements by leverage transaction merchants. 31.7 Section 31.7 Commodity... of minimum financial, cover and segregation requirements by leverage transaction merchants. (a) Each... required by § 31.8, or that the amount of leverage customer funds in segregation is less than is required...
Code of Federal Regulations, 2011 CFR
2011-04-01
... financial, cover and segregation requirements by leverage transaction merchants. 31.7 Section 31.7 Commodity... of minimum financial, cover and segregation requirements by leverage transaction merchants. (a) Each... required by § 31.8, or that the amount of leverage customer funds in segregation is less than is required...
Code of Federal Regulations, 2010 CFR
2010-04-01
... requirements to maintain minimum standards for Tribe/Consortium management systems? 1000.396 Section 1000.396... AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT AMENDMENTS TO THE INDIAN SELF-DETERMINATION AND EDUCATION ACT... minimum standards for Tribe/Consortium management systems? Yes, the Tribe/Consortium must maintain...
25 CFR 36.100 - Are there minimum requirements for student attendance checks?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Are there minimum requirements for student attendance checks? 36.100 Section 36.100 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY...
30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cable couplers and connection boxes; minimum... connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power... materials other than metal. (2) Cable couplers shall be adequate for the intended current and voltage. (3...
30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Cable couplers and connection boxes; minimum... connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power... materials other than metal. (2) Cable couplers shall be adequate for the intended current and voltage. (3...
30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...
30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...
30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...
25 CFR 36.100 - Are there minimum requirements for student attendance checks?
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Are there minimum requirements for student attendance checks? 36.100 Section 36.100 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY...
25 CFR 36.100 - Are there minimum requirements for student attendance checks?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Are there minimum requirements for student attendance checks? 36.100 Section 36.100 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY...
25 CFR 36.100 - Are there minimum requirements for student attendance checks?
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Are there minimum requirements for student attendance checks? 36.100 Section 36.100 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY...
25 CFR 36.100 - Are there minimum requirements for student attendance checks?
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Are there minimum requirements for student attendance checks? 36.100 Section 36.100 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... LIBRARY OF CONGRESS Copyright Office 37 CFR Part 201 [Docket No. RM 2009-4] Minimum Balance... transactions per year; require deposit account holders to maintain a minimum balance in that account; mandate... against the balance instead of sending separate payments with applications and other requests for services...
30 CFR 75.1713-7 - First-aid equipment; location; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First-aid equipment; location; minimum... § 75.1713-7 First-aid equipment; location; minimum requirements. (a) Each operator of an underground coal mine shall maintain a supply of the first-aid equipment set forth in paragraph (b) of this § 75...
30 CFR 75.1713-6 - First-aid training program; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First-aid training program; minimum... § 75.1713-6 First-aid training program; minimum requirements. (a) All first-aid training programs... course of instruction similar to that outlined in “First Aid, A Bureau of Mines Instruction Manual.” (b...
29 CFR 780.313 - Piece rate basis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... That Is Exempted From the Minimum Wage and Overtime Pay Requirements Under Section 13(a)(6) Statutory... to the minimum wage provisions of the Act does not meet all the requirements set forth in this section he must be paid at least the minimum wage for each hour worked in a particular workweek...
Code of Federal Regulations, 2012 CFR
2012-10-01
... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...
Code of Federal Regulations, 2013 CFR
2013-10-01
... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...
Code of Federal Regulations, 2014 CFR
2014-10-01
... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...
Code of Federal Regulations, 2010 CFR
2010-10-01
... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... the facepiece shall not fall below atmospheric at inhalation airflows less than 115 liters (4 cubic...
Code of Federal Regulations, 2011 CFR
2011-10-01
... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... the facepiece shall not fall below atmospheric at inhalation airflows less than 115 liters (4 cubic...
14 CFR 171.257 - Minimum requirements for approval.
Code of Federal Regulations, 2010 CFR
2010-01-01
... System (ISMLS) § 171.257 Minimum requirements for approval. (a) The following are the minimum... operate and maintain the ISMLS facility in accordance with § 171.273. (4) The owner must agree to furnish periodic reports as set forth in § 171.275 and agree to allow the FAA to inspect the facility and its...
40 CFR 600.010 - Vehicle test requirements and minimum data requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle test requirements and minimum data requirements. 600.010 Section 600.010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES General...
40 CFR 600.010 - Vehicle test requirements and minimum data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle test requirements and minimum data requirements. 600.010 Section 600.010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES General...
40 CFR 600.010 - Vehicle test requirements and minimum data requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Vehicle test requirements and minimum data requirements. 600.010 Section 600.010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES General...
Dilution jet configurations in a reverse flow combustor. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Zizelman, J.
1985-01-01
Results of measurements of both temperature and velocity fields within a reverse flow combustor are presented. Flow within the combustor is acted upon by perpendicularly injected cooling jets introduced at three different locations along the inner and outer walls of the combustor. Each experiment is typified by a group of parameters: density ratio, momentum ratio, spacing ratio, and confinement parameter. Measurements of both temperature and velocity are presented in terms of normalized profiles at azimuthal positions through the turn section of the combustion chamber. Jet trajectories defined by minimum temperature and maximum velocity give a qualitative indication of the location of the jet within the cross flow. Results of a model from a previous temperature study are presented in some of the plots of data from this work.
NASA Astrophysics Data System (ADS)
Malherbe, J.-M.; Roudier, T.; Stein, R.; Frank, Z.
2018-01-01
We compare horizontal velocities, vertical magnetic fields, and the evolution of trees of fragmenting granules (TFG, also named families of granules) derived in the quiet Sun at disk center from observations at solar minimum and maximum of the Solar Optical Telescope (SOT on board Hinode) and results of a recent 3D numerical simulation of the magneto-convection. We used 24-hour sequences of a 2D field of view (FOV) with high spatial and temporal resolution recorded by the SOT Broad band Filter Imager (BFI) and Narrow band Filter Imager (NFI). TFG were evidenced by segmentation and labeling of continuum intensities. Horizontal velocities were obtained from local correlation tracking (LCT) of proper motions of granules. Stokes V provided a proxy of the line-of-sight magnetic field (BLOS). The MHD simulation (performed independently) produced granulation intensities, velocity, and magnetic field vectors. We discovered that TFG also form in the simulation and show that it is able to reproduce the main properties of solar TFG: lifetime and size, associated horizontal motions, corks, and diffusive index are close to observations. The largest (but not numerous) families are related in both cases to the strongest flows and could play a major role in supergranule and magnetic network formation. We found that observations do not reveal any significant variation in TFG between solar minimum and maximum.
Luisetto, G; Camozzi, V; De Terlizzi, F; Moschini, G; Ballanti, P
1999-03-01
This study was performed to investigate the ability of ultrasonographic technique to distinguish osteomalacia from normal bone with the same mineral content. Ten rats with experimentally induced osteomalacia (group A) and 12 control rats having similar body size and weight (group B) were studied. Histomorphometric analysis confirmed the presence of osteomalacia in two rats from group A and showed normally mineralized bone in two rats from group B. Whole body bone mineral density, measured by dual-energy x-ray absorptiometry, was similar in the two groups (86 +/- 6 mg/cm2 in group A and 89 +/- 4 mg/cm2 in group B). The velocity of the ultrasound beam in bone was measured by densitometer at the first caudal vertebra of each rat. The velocity was measured when the first peak of the waveform reached a predetermined minimum amplitude value (amplitude-dependent speed of sound) as well as at the lowest point of this curve before it reaches the predetermined minimum amplitude (first minimum speed of sound). Although the amplitude-dependent speed of sound was similar in the two groups (1381.9 +/- 11.8 m/s in group A and 1390.9 +/- 17.8 m/s in group B), the first minimum speed of sound was clearly different (1446.1 +/- 8.9 m/s in group A and 1503.3 +/- 10.9 m/s in group B; P < 0.001). This study shows that ultrasonography could be used to identify alterations in bone quality, such as osteomalacia, but further studies need to be carried out before this method can be introduced into clinical practice.
Kinematics and dynamics of Nubia-Somalia divergence along the East African rift
NASA Astrophysics Data System (ADS)
Stamps, Dorothy Sarah
Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition is an estimate of basal shear stress from viscous coupling to horizontal mantle flow. The stress field boundary condition is small (˜1.6 MPa) compared to deviatoric stress from GPE gradients (8-20 MPa) and does not improve the fit to surface deformation indicators more than 8% when combined with deviatoric stress from GPE gradients. Hence we suggest the style of deformation across the EAR can be explained by forces derived from gradients in GPE. We then calculate dynamic velocities using two types of forward models to solve the instantaneous momentum equations. One method is regional and requires vertically averaged effective viscosity to define lithospheric structure with velocity boundary conditions and a free-slip basal boundary condition. The second is a global model that accounts for a brittle upper crust and viscous mantle lithosphere with velocity boundary conditions imposed at the base of the lithosphere from 5 mantle flow models. With both methods we find deformation driven by internal lithospheric buoyancy forces provides the best-fit to GPS observations of surface velocities on the Somalian plate. We find that any additional contribution from horizontal tractions results in overpredicting surface velocities. This work indicates horizontal mantle flow plays a minimal role in Nubia-Somalia divergence and the EAR is driven largely by gradients in GPE.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
... require hybrid and electric passenger cars, light trucks, medium and heavy duty trucks and buses, low... Sound Requirements for Hybrid and Electric Vehicles AGENCY: National Highway Traffic Safety... minimum sound requirements for hybrid and electric vehicles. DATES: Comments must be received on or before...
Hydrostratigraphy characterization of the Floridan aquifer system using ambient seismic noise
NASA Astrophysics Data System (ADS)
James, Stephanie R.; Screaton, Elizabeth J.; Russo, Raymond M.; Panning, Mark P.; Bremner, Paul M.; Stanciu, A. Christian; Torpey, Megan E.; Hongsresawat, Sutatcha; Farrell, Matthew E.
2017-05-01
We investigated a new technique for aquifer characterization that uses cross-correlation of ambient seismic noise to determine seismic velocity structure of the Floridan aquifer system (FAS). Accurate characterization of aquifer systems is vital to hydrogeological research and groundwater management but is difficult due to limited subsurface data and heterogeneity. Previous research on the carbonate FAS found that confining units and high permeability flow zones have distinct seismic velocities. We deployed an array of 9 short period seismometers from 11/2013 to 3/2014 in Indian Lake State Forest near Ocala, Florida, to image the hydrostratigraphy of the aquifer system using ambient seismic noise. We find that interstation distance strongly influences the upper and lower frequency limits of the data set. Seismic waves propagating within 1.5 and 7 wavelengths between stations were optimal for reliable group velocity measurements and both an upper and lower wavelength threshold was used. A minimum of 100-250 hr of signal was needed to maximize signal-to-noise ratio and to allow cross-correlation convergence. We averaged measurements of group velocity between station pairs at each frequency band to create a network average dispersion curve. A family of 1-D shear-wave velocity profiles that best represents the network average dispersion was then generated using a Markov Chain Monte Carlo (MCMC) algorithm. The MCMC algorithm was implemented with either a fixed number of layers, or as transdimensional in which the number of layers was a free parameter. Results from both algorithms require a prominent velocity increase at ∼200 m depth. A shallower velocity increase at ∼60 m depth was also observed, but only in model ensembles created by collecting models with the lowest overall misfit to the observed data. A final round of modelling with additional prior constraints based on initial results and well logs produced a mean shear-wave velocity profile taken as the preferred solution for the study site. The velocity increases at ∼200 and ∼60 m depth are consistent with the top surfaces of two semi-confining units of the study area and the depths of high-resistivity dolomite units seen in geophysical logs and cores from the study site. Our results suggest that correlation of ambient seismic noise holds promise for hydrogeological investigations. However, complexities in the cross-correlations at high frequencies and short traveltimes at low frequencies added uncertainty to the data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poloski, Adam P.; Adkins, Harold E.; Abrefah, John
The WTP pipe plugging issue, as stated by the External Flowsheet Review Team (EFRT) Executive Summary, is as follows: “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” A strategy was employed to perform critical-velocity tests on several physical simulants. Critical velocity is defined as the point where a stationary bed of particles deposits on the bottom of a straight horizontal pipe during slurry transport operations. Results from the critical velocity testing provide an indication ofmore » slurry stability as a function of fluid rheological properties and transport conditions. The experimental results are compared to the WTP design guide on slurry transport velocity in an effort to confirm minimum waste velocity and flushing velocity requirements as established by calculations and critical line velocity correlations in the design guide. The major findings of this testing is discussed below. Experimental results indicate that the use of the Oroskar and Turian (1980) correlation in the design guide is conservative—Slurry viscosity has a greater affect on particles with a large surface area to mass ratio. The increased viscous forces on these particles result in a decrease in predicted critical velocities from this traditional industry derived equations that focus on particles large than 100 μm in size. Since the Hanford slurry particles generally have large surface area to mass ratios, the reliance on such equations in the Hall (2006) design guide is conservative. Additionally, the use of the 95% percentile particle size as an input to this equation is conservative. However, test results indicate that the use of an average particle density as an input to the equation is not conservative. Particle density has a large influence on the overall result returned by the correlation. Lastly, the viscosity correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.« less
The humidity dependence of ozone deposition onto a variety of building surfaces
NASA Astrophysics Data System (ADS)
Grøntoft, Terje; Henriksen, Jan F.; Seip, Hans M.
Measurements of the dry deposition velocity of O 3 to material samples of calcareous stone, concrete and wood at varying humidity of the air, were performed in a deposition chamber. Equilibrium surface deposition velocities were found for various humidity values by fitting a model to the time-dependent deposition data. A deposition velocity-humidity model was derived giving three separate rate constants for the surface deposition velocities, i.e. on the dry surface, on the first mono-layer of adsorbed water and on additional surface water. The variation in the dry air equilibrium surface deposition velocities among the samples correlated with variations in effective areas, with larger effective areas giving higher measured deposition velocities. A minimum for the equilibrium surface deposition velocity was generally measured at an intermediate humidity close to the humidity found to correspond to one mono-layer of water molecules on the surfaces. At low air humidity the equilibrium surface deposition velocity of O 3 was found to decrease as more adsorbed water prevented direct contact of the O 3 molecules with the surface. This was partly compensated by an increase as more adsorbed water became available for reaction with O 3. At high air humidity the equilibrium surface deposition velocity was found to increase as the mass of water on the surface increased. The deposition velocity on bulk de-ionised water at RH=90% was an order of magnitude lower than on the sample surfaces.
An Analysis of Minimum System Requirements to Support Computerized Adaptive Testing.
1986-09-01
adaptive test ( CAT ); adaptive test ing A;4SRAC:’ (Continue on reverie of necessary and ident4f by block number) % This pape-r discusses the minimum system...requirements needed to develop a computerized adaptive test ( CAT ). It lists some of the benefits of adaptive testing, establishes a set of...discusses the minimum system requirements needed to develop a computerized adaptive test ( CAT ). It lists some of the benefits of adaptive testing
Yaslioglu, Erkan; Simsek, Ercan; Kilic, Ilker
2007-04-15
In the study, 10 different dairy cattle barns with natural ventilation system were investigated in terms of structural aspects. VENTGRAPH software package was used to estimate minimum ventilation requirements for three different outdoor design temperatures (-3, 0 and 1.7 degrees C). Variation in indoor temperatures was also determined according to the above-mentioned conditions. In the investigated dairy cattle barns, on condition that minimum ventilation requirement to be achieved for -3, 0 and 1.7 degrees C outdoor design temperature and 70, 80% Indoor Relative Humidity (IRH), estimated indoor temperature were ranged from 2.2 to 12.2 degrees C for 70% IRH, 4.3 to 15.0 degrees C for 80% IRH. Barn type, outdoor design temperature and indoor relative humidity significantly (p < 0.01) affect the indoor temperature. The highest ventilation requirement was calculated for straw yard (13879 m3 h(-1)) while the lowest was estimated for tie-stall (6169.20 m3 h(-1)). Estimated minimum ventilation requirements per animal were significantly (p < 0.01) different according to the barn types. Effect of outdoor esign temperatures on minimum ventilation requirements and minimum ventilation requirements per animal was found to be significant (p < 0.05, p < 0.01). Estimated indoor temperatures were in thermoneutral zone (-2 to 20 degrees C). Therefore, one can be said that use of naturally ventilated cold dairy barns in the region will not lead to problems associated with animal comfort in winter.
WPVS 007: Dramatic Broad Absorption Line Variability in a Narrow-line Seyfert 1
NASA Astrophysics Data System (ADS)
Cooper, Erin M.; Leighly, K.; Hamann, F. W.; Grupe, D.; Dietrich, M.
2014-01-01
Blue-shifted broad absorption lines are the manifestation of gaseous outflows in astrophysical phenomena. In active galaxies, these outflowing winds may play a key role in the central engine physics by removing angular momentum and in influencing host galaxy evolution by imparting energy and chemically enriched gas to the surrounding medium. AGN wind variability affords us a valuable tool to study this still poorly understood phenomenon. The existence of a high velocity broad line outflow in WPVS007 is especially extraordinary, as Seyfert-luminosity active galaxies are unexpected to produce them. With its lower luminosity and compact size, the NLS1 galaxy WPVS007 (M_V=-19.7, z=0.02882) provides us the ability to study even colossal variability on merely human timescales. Since its 1996 FOS observation, displaying miniBALs but no true broad absorption lines, WPVS007 has experienced a short but rich history of UV BAL variability. By the 2003 FUSE observation, WPVS007 had developed a BAL with v_max ~ 6000km/s, indicating an optically thick, high velocity outflow. We present the 2010 and 2013 June and December HST COS spectra. Between 2003 and 2010, both the maximum and minimum outflow velocity had increased substantially. As of 2013 June, the continuum emission has since dimmed by a factor of ~2 and the BALs have appeared to weaken, with both decreased maximum and minimum velocities. Such dramatic shifts in BAL velocity are unprecedented, as BAL variability is typically confined to changes in optical depth. What is the nature of the variability in this BAL wind? The upcoming (as of the writing of this abstract) December observation should give us more insight into tackling that question, whether it be the transient response of a continuous flow to a fluctuating continuum or perhaps the continued decline of a discrete outflow event.
Commentary: legal minimum tread depth for passenger car tires in the U.S.A.--a survey.
Blythe, William; Seguin, Debra E
2006-06-01
Available tire traction is a significant highway safety issue, particularly on wet roads. Tire-roadway friction on dry, clean roads is essentially independent of tread depth, and depends primarily on roadway surface texture. However, tire-wet-roadway friction, both for longitudinal braking and lateral cornering forces, depends on several variables, most importantly on water depth, speed and tire tread depth, and the roadway surface texture. The car owner-operator has control over speed and tire condition, but not on water depth or road surface texture. Minimum tire tread depth is legislated throughout most of the United States and Europe. Speed reduction for wet road conditions is not.A survey of state requirements for legal minimum tread depth for passenger vehicle tires in the United States is presented. Most states require a minimum of 2/32 of an inch (approximately 1.6 mm) of tread, but two require less, some have no requirements, and some defer to the federal criterion for commercial vehicle safety inspections. The requirement of 2/32 of an inch is consistent with the height of the tread-wear bars built in to passenger car tires sold in the United States, but the rationale for that requirement, or other existing requirements, is not clear. Recent research indicates that a minimum tread depth of 2/32 of an inch does not prevent significant loss of friction at highway speeds, even for minimally wet roadways. The research suggests that tires with less than 4/32 of an inch tread depth may lose approximately 50 percent of available friction in those circumstances, even before hydroplaning occurs. It is concluded that the present requirements for minimum passenger car tire tread depth are not based upon rational safety considerations, and that an increase in the minimum tread depth requirements would have a beneficial effect on highway safety.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
... context of the proposed rule's minimum penalty requirements. Two commenters stated that the law is clear... appeal process without being able to appeal the decisions to the Secretary or a court of law. As... court of law, which is why, the commenters stated, the USDA has proposed the minimum penalties to be...
75 FR 18256 - Petition for Exemption; Summary of Petition Received
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... an exemption from the specific dimensions of the passenger entry door of the Hawker Beechcraft Model 390-2. The door has basic dimensions greater than the minimum required by Sec. 23.783(f)(1). The total... than the minimum area required by Sec. 23.783(f)(1); however, the minimum width dimension cannot be met...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensor and warning device systems; minimum requirements; general. 75.1103-3 Section 75.1103-3 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum...
34 CFR 99.22 - What minimum requirements exist for the conduct of a hearing?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false What minimum requirements exist for the conduct of a hearing? 99.22 Section 99.22 Education Office of the Secretary, Department of Education FAMILY EDUCATIONAL RIGHTS AND PRIVACY What Are the Procedures for Amending Education Records? § 99.22 What minimum...
42 CFR 52b.12 - What are the minimum requirements of construction and equipment?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false What are the minimum requirements of construction and equipment? 52b.12 Section 52b.12 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.12 What are the minimum...
Reduced Sensitivity to Minimum-Jerk Biological Motion in Autism Spectrum Conditions
ERIC Educational Resources Information Center
Cook, Jennifer; Saygin, Ayse Pinar; Swain, Rachel; Blakemore, Sarah-Jayne
2009-01-01
We compared psychophysical thresholds for biological and non-biological motion detection in adults with autism spectrum conditions (ASCs) and controls. Participants watched animations of a biological stimulus (a moving hand) or a non-biological stimulus (a falling tennis ball). The velocity profile of the movement was varied between 100% natural…
Pulse Jet Mixing Tests With Noncohesive Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.
2009-05-11
This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important tomore » release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The HLP-022 vessel was also evaluated using 12 m/s pulse jet velocity with 6-in. nozzles, and this design also did not satisfy the criteria for all of the conditions evaluated.« less
42 CFR 84.174 - Respirator containers; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit. ...
Wind tunnel simulation of a wind turbine wake in neutral, stable and unstable wind flow
NASA Astrophysics Data System (ADS)
Hancock, P. E.; Zhang, S.; Pascheke, F.; Hayden, P.
2014-12-01
Measurements of mean velocity, Reynolds stresses, temperature and heat flux have been made in the wake of a model wind turbine in the EnFlo meteorology wind tunnel, for three atmospheric boundary layer states: the base-line neutral case, stable and unstable. The full-to-model scale is approximately 300:1. Primary instrumentation is two-component LDA combine with cold-wire thermometry to measure heat flux. In terms of surface conditions, the stratified cases are weak, but there is a strong 'imposed' condition in the stable case. The measurements were made between 0.5D and 10D, where D is the turbine disk diameter. In the stable case the velocity deficit decreases more slowly; more quickly in the unstable case. Heights at which quantities are maximum or minimum are greater in the unstable case and smaller in the stable case. In the stable case the wake height is suppressed but the width is increased, while in the unstable case the height is increased and the width (at hub height) reaches a maximum and then decreases. The turbulence in the wake behaves in a complex way. Further work needs to be done, to cover stronger levels of surface condition, requiring more extensive measurements to properly capture the wake development.
Current-induced domain wall motion in permalloy nanowires with a rectangular cross-section
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, J. H.; Miao, B. F.; Sun, L.
2011-11-01
We performed micromagnetic simulations of the current-induced domain wall motion in permalloy nanowires with rectangular cross-section. In the absence of the nonadiabatic spin-transfer term, a threshold current, J{sub c} is required to drive the domain wall moving continuously. We find that J{sub c} is proportional to the maximum cross product of the demagnetization field and magnetization orientation of the domain wall and the domain wall width. With varying both the wire thickness and width, a minimum threshold current in the order of 10{sup 6} A/cm{sup 2} is obtained when the thickness is equivalent to the wire width. With the nonadiabaticmore » spin-transfer term, the calculated domain wall velocity {nu} equals to the adiabatic spin transfer velocity u when the current is far above the Walker limit J{sub w}. Below J{sub w}, {nu}=({beta}/{alpha})u, where {beta} is the nonadiabatic parameter and {alpha} is the damping factor. For different {beta}, we find the Walker limit can be scaled as J{sub w}=({alpha}/{beta}-{alpha})J{sub c}. Our simulations agree well with the one dimensional analytical calculation, suggesting the findings are the general behaviors of the systems in this particular geometry.« less
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Bui, T. P.; Dean-Day, J.
2016-01-01
Indirect evidence indicates a role for vertical mixing in the Tropical Tropopause Layer (TTL). In particular, detailed model studies suggest that such vertical mixing may be required to explain the value of the water vapor minimum in the TTL. There have been previous observations during the STEP Tropical aircraft campaign (1987) of bursts of high frequency activity associated with convectively generated gravity waves in the tropical western Pacific. Higher frequency, higher quality measurements from NASA high altitude aircraft (ER-2, WB-57, and Global Hawk) have been made available in the last 20 years. These include measurements of vertical velocity and other meteorological parameters. Most recently, during the ATTREX Global Hawk aircraft mission (Airborne Tropical TRopopause EXperiment), there have been extensive measurements at all altitudes of the TTL in both convective (winter western Pacific) and less convective (winter eastern Pacific) regions. This presentation represents an initial analysis of high frequency small scale (a few km max) meteorological measurements from the ATTREX dataset. We obtain some basic information about the distribution and character of high frequency activity in vertical velocity in the TTL. In particular, we focus on relating the high frequency activity to nearby tropical convection and to vertical shears associated with gravity and inertia-gravity waves.
Effect of viscoplasticity on ignition sensitivity of an HMX based PBX
NASA Astrophysics Data System (ADS)
Hardin, D. Barrett; Zhou, Min
2017-01-01
The effect of viscoplastic deformation of the energetic component (HMX) on the mechanical, thermal, and ignition responses of a two-phase (HMX and Estane) PBX is analyzed. PBX microstructures are subjected to impact loading from a constant velocity piston traveling at a rate of 50 to 200 m/s. The analysis uses a 2D cohesive finite element framework, the focus of which is to evaluate the relative ignition sensitivity of the materials to determine the effect of the viscoplasticity of HMX on the responses. To delineate this effect, two sets of calculations are carried out; one set assumes the HMX grains are fully hyperelastic, and the other set assumes the HMX grains are elastic-viscoplastic. Results show that PBX specimens with elastic-viscoplastic HMX grains experience lower average and peak temperature rises, and as a result, show lower numbers of hotspots. An ignition criterion based on a criticality threshold obtained from chemical kinetics is used to quantify the ignition behavior of the materials. The criterion focuses on hotspot size and temperature to determine if a hotspot will undergo thermal runaway. It is found that the viscoplasticity of HMX increases the minimum load duration, mean load duration, threshold loading velocity, and total input energy required for ignition.
Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.
Cheung, W M; Chan, K S
2017-06-01
We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index = -1 and the valence band with Floquet index = +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.
Middione, Matthew J; Thompson, Richard B; Ennis, Daniel B
2014-06-01
To investigate a novel phase-contrast MRI velocity-encoding technique for faster imaging and reduced chemical shift-induced phase errors. Velocity encoding with the slice select refocusing gradient achieves the target gradient moment by time shifting the refocusing gradient, which enables the use of the minimum in-phase echo time (TE) for faster imaging and reduced chemical shift-induced phase errors. Net forward flow was compared in 10 healthy subjects (N = 10) within the ascending aorta (aAo), main pulmonary artery (PA), and right/left pulmonary arteries (RPA/LPA) using conventional flow compensated and flow encoded (401 Hz/px and TE = 3.08 ms) and slice select refocused gradient velocity encoding (814 Hz/px and TE = 2.46 ms) at 3 T. Improved net forward flow agreement was measured across all vessels for slice select refocused gradient compared to flow compensated and flow encoded: aAo vs. PA (1.7% ± 1.9% vs. 5.8% ± 2.8%, P = 0.002), aAo vs. RPA + LPA (2.1% ± 1.7% vs. 6.0% ± 4.3%, P = 0.03), and PA vs. RPA + LPA (2.9% ± 2.1% vs. 6.1% ± 6.3%, P = 0.04), while increasing temporal resolution (35%) and signal-to-noise ratio (33%). Slice select refocused gradient phase-contrast MRI with a high receiver bandwidth and minimum in-phase TE provides more accurate and less variable flow measurements through the reduction of chemical shift-induced phase errors and a reduced TE/repetition time, which can be used to increase the temporal/spatial resolution and/or reduce breath hold durations. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Kwun; Keener, T.C.; Cook, J.L.
1993-12-31
The experimental data of lime sorbent attrition obtained from attriton tests in a circulating fluidized bed absorber (CFBA) are represented. The results are interpreted as both the weight-based attrition rate and size-based attrition rate. The weight-based attrition rate constants are obtained from a modified second-order attrition model, incorporating a minimum fluidization weight, W{sub min}, and excess velocity. Furthermore, this minimum fluidization weight, or W{sub min} was found to be a function of both particle size and velocity. A plot of the natural log of the overall weight-based attrition rate constants (ln K{sub a}) for Lime 1 (903 MMD) at superficialmore » gas velocities of 2 m/s, 2.35 m/s, and 2.69 m/s and for Lime 2 (1764 MMD) at superficial gas velocities of 2 m/s, 3 m/s, 4 m/s and 5 m/s versus the energy term, 1/(U-U{sub mf}){sup 2}, yielded a linear relationship. And, a regression coefficient of 0.9386 for the linear regression confirms that K{sub a} may be expressed in Arrhenius form. In addition, an unsteady state population model is represented to predict the changes in size distribution of bed materials during fluidization. The unsteady state population model was verified experimentally and the solid size distribution predicted by the model agreed well with the corresponding experimental size distributions. The model may be applicable for the batch and continuous operations of fluidized beds in which the solids size reduction is predominantly resulted from attritions and elutriations. Such significance of the mechanical attrition and elutriation is frequently seen in a fast fluidized bed as well as in a circulating fluidized bed.« less
NASA Astrophysics Data System (ADS)
Wang, Ke; Testi, Leonardo; Burkert, Andreas; Walmsley, C. Malcolm; Beuther, Henrik; Henning, Thomas
2016-09-01
Large-scale gaseous filaments with lengths up to the order of 100 pc are on the upper end of the filamentary hierarchy of the Galactic interstellar medium (ISM). Their association with respect to the Galactic structure and their role in Galactic star formation are of great interest from both an observational and theoretical point of view. Previous “by-eye” searches, combined together, have started to uncover the Galactic distribution of large filaments, yet inherent bias and small sample size limit conclusive statistical results from being drawn. Here, we present (1) a new, automated method for identifying large-scale velocity-coherent dense filaments, and (2) the first statistics and the Galactic distribution of these filaments. We use a customized minimum spanning tree algorithm to identify filaments by connecting voxels in the position-position-velocity space, using the Bolocam Galactic Plane Survey spectroscopic catalog. In the range of 7\\buildrel{\\circ}\\over{.} 5≤slant l≤slant 194^\\circ , we have identified 54 large-scale filaments and derived mass (˜ {10}3{--}{10}5 {M}⊙ ), length (10-276 pc), linear mass density (54-8625 {M}⊙ pc-1), aspect ratio, linearity, velocity gradient, temperature, fragmentation, Galactic location, and orientation angle. The filaments concentrate along major spiral arms. They are widely distributed across the Galactic disk, with 50% located within ±20 pc from the Galactic mid-plane and 27% run in the center of spiral arms. An order of 1% of the molecular ISM is confined in large filaments. Massive star formation is more favorable in large filaments compared to elsewhere. This is the first comprehensive catalog of large filaments that can be useful for a quantitative comparison with spiral structures and numerical simulations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 933.784 Section 933.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 939.784 Section 939.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 941.784 Section 941.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 921.784 Section 921.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groh, J. H.; Damineli, A.; Moises, A. P.
2009-11-01
We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si IV lambdalambda4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of v{sub rot} approx = 150 +- 20 km s{sup -1} is needed (assuming an inclination angle of 30 deg.), implying that HR Car rotates at approx =0.88 +- 0.2 of its critical velocity for breakup (v{sub crit}). Our results suggest that fast rotation is typical in all strong-variable, bona fide galacticmore » LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the 'LBV minimum instability strip'). We suggest this region corresponds to where v{sub crit} is reached. To the left of this strip, a forbidden zone with v{sub rot}/v{sub crit}>1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low v{sub rot}, we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.« less
Pecher, I.A.; Minshull, T.A.; Singh, S.C.; von Huene, Roland E.
1996-01-01
Much of our knowledge of the worldwide distribution of submarine gas hydrates comes from seismic observations of Bottom Simulating Reflectors (BSRs). Full waveform inversion has proven to be a reliable technique for studying the fine structure of BSRs using the compressional wave velocity. We applied a non-linear full waveform inversion technique to a BSR at a location offshore Peru. We first determined the large-scale features of seismic velocity variations using a statistical inversion technique to maximise coherent energy along travel-time curves. These velocities were used for a starting velocity model for the full waveform inversion, which yielded a detailed velocity/depth model in the vicinity of the BSR. We found that the data are best fit by a model in which the BSR consists of a thin, low-velocity layer. The compressional wave velocity drops from 2.15 km/s down to an average of 1.70 km/s in an 18m thick interval, with a minimum velocity of 1.62 km/s in a 6 m interval. The resulting compressional wave velocity was used to estimate gas content in the sediments. Our results suggest that the low velocity layer is a 6-18 m thick zone containing a few percent of free gas in the pore space. The presence of the BSR coincides with a region of vertical uplift. Therefore, we suggest that gas at this BSR is formed by a dissociation of hydrates at the base of the hydrate stability zone due to uplift and subsequently a decrease in pressure.
Interactive Visualization of Complex Seismic Data and Models Using Bokeh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Chengping; Ammon, Charles J.; Maceira, Monica
Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less
Armored garment for protecting
Purvis, James W [Albuquerque, NM; Jones, II, Jack F.; Whinery, Larry D [Albuquerque, NM; Brazfield, Richard [Albuquerque, NM; Lawrie, Catherine [Tijeras, NM; Lawrie, David [Tijeras, NM; Preece, Dale S [Watkins, CO
2009-08-11
A lightweight, armored protective garment for protecting an arm or leg from blast superheated gases, blast overpressure shock, shrapnel, and spall from a explosive device, such as a Rocket Propelled Grenade (RPG) or a roadside Improvised Explosive Device (IED). The garment has a ballistic sleeve made of a ballistic fabric, such as an aramid fiber (e.g., KEVLAR.RTM.) cloth, that prevents thermal burns from the blast superheated gases, while providing some protection from fragments. Additionally, the garment has two or more rigid armor inserts that cover the upper and lower arm and protect against high-velocity projectiles, shrapnel and spall. The rigid inserts can be made of multiple plies of a carbon/epoxy composite laminate. The combination of 6 layers of KEVLAR.RTM. fabric and 28 plies of carbon/epoxy laminate inserts (with the inserts being sandwiched in-between the KEVLAR.RTM. layers), can meet the level IIIA fragmentation minimum V.sub.50 requirements for the US Interceptor Outer Tactical Vest.
Ball bearing heat analysis program (BABHAP)
NASA Technical Reports Server (NTRS)
1978-01-01
The Ball Bearing Heat Analysis Program (BABHAP) is an attempt to assemble a series of equations, some of which are non-linear algebraic systems, in a logical order, which when solved, provide a complex analysis of load distribution among the balls, ball velocities, heat generation resulting from friction, applied load, and ball spinning, minimum lubricant film thickness, and many additional characteristics of ball bearing systems. Although initial design requirements for BABHAP were dictated by the core limitations of the PDP 11/45 computer, (approximately 8K of real words with limited number of instructions) the program dimensions can easily be expanded for large core computers such as the UNIVAC 1108. The PDP version of BABHAP is also operational on the UNIVAC system with the exception that the PDP uses 029 punch and the UNIVAC uses 026. A conversion program was written to allow transfer between machines.
Initiation of Insensitive High Explosives Using Multiple Wave Interactions
NASA Astrophysics Data System (ADS)
Francois, Elizabeth
Insensitive High Explosives (IHEs) increase safety in many types of weapons. However, the safety comes at the cost of performance. Initiation of IHE requires large boosters and powerful detonators as well. Multipoint initiation is being utilized to exploit explosive wave interactions to create overdriven states, greatly facilitating the initiation of IHEs. This presentation will focus on recent explosive experiments where the minimum spot size for single-point initiation in PBX 9502 was determined. Below this threshold, PBX 9502 could not be initiated. This was then expanded to three initiation points, which were smaller this threshold. Measurements of the velocity and pressure of the wave interactions were measured using Photon Doppler Velocimetry (PDV). Initiation was observed, and the resulting pressures at the double and triple points were found to be above the CJ state for PBX 9502. Further testing will be performed using cutback experiments to isolate the overdriven state, and quantify the duration of the phenomenon.
Interactive Visualization of Complex Seismic Data and Models Using Bokeh
Chai, Chengping; Ammon, Charles J.; Maceira, Monica; ...
2018-02-14
Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.; Deal, P. L.
1975-01-01
The simulation employed all six rigid-body degrees of freedom and incorporated aerodynamic characteristics based on wind-tunnel data. The flight instrumentation included a localizer and a flight director which was used to capture and to maintain a two-segment glide slope. A closed-circuit television display of a STOLport provided visual cues during simulations of the approach and landing. The decoupled longitudinal controls used constant prefilter and feedback gains to provide steady-state decoupling of flight-path angle, pitch angle, and forward velocity. The pilots were enthusiastic about the decoupled longitudinal controls and believed that the simulator motion was an aid in evaluating the decoupled controls, although a minimum turbulence level with root-mean-square gust intensity of 0.3 m/sec (1 ft/sec) was required to mask undesirable characteristics of the moving-base simulator.
Fuel-optimal trajectories of aeroassisted orbital transfer with plane change
NASA Technical Reports Server (NTRS)
Naidu, Desineni Subbaramaiah; Hibey, Joseph L.
1989-01-01
The problem of minimization of fuel consumption during the atmospheric portion of an aeroassisted, orbital transfer with plane change is addressed. The complete mission has required three characteristic velocities, a deorbit impulse at high earth orbit (HEO), a boost impulse at the atmospheric exit, and a reorbit impulse at low earth orbit (LEO). A performance index has been formulated as the sum of these three impulses. Application of optimal control principles has led to a nonlinear, two-point, boundary value problem which was solved by using a multiple shooting algorithm. The strategy for the atmospheric portion of the minimum-fuel transfer is to start initially with the maximum positive lift in order to recover from the downward plunge, and then to fly with a gradually decreasing lift such that the vehicle skips out of the atmosphere with a flight path angle near zero degrees.
Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.
Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki
2017-02-01
Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.
Nam, R K; Klotz, L H; Jewett, M A; Danjoux, C; Trachtenberg, J
1998-01-01
To study the rate of change in prostate specific antigen (PSA velocity) in patients with prostate cancer initially managed by 'watchful waiting'. Serial PSA levels were determined in 141 patients with prostate cancer confirmed by biopsy, who were initially managed expectantly and enrolled between May 1990 and December 1995. Sixty-seven patients eventually underwent surgery (mean age 59 years) because they chose it (the decision for surgery was not based on PSA velocity). A cohort of 74 patients remained on 'watchful waiting' (mean age 69 years). Linear regression and logarithmic transformations were used to segregate those patients who showed a rapid rise, defined as a > 50% rise in PSA per year (or a doubling time of < 2 years) and designated 'rapid risers'. An initial analysis based on a minimum of two PSA values showed that 31% were rapid risers. Only 15% of patients with more than three serial PSA determinations over > or = 6 months showed a rapid rise in PSA level. There was no advantage of log-linear analysis over linear regression models. Three serial PSA determinations over > or = 6 months in patients with clinically localized prostate cancer identifies a subset (15%) of patients with a rapidly rising PSA level. Shorter PSA surveillance with fewer PSA values may falsely identify patients with rapid rises in PSA level. However, further follow-up is required to determine if a rapid rise in PSA level identifies a subset of patients with an aggressive biological phenotype who are either still curable or who have already progressed to incurability through metastatic disease.
Earthquake fracture energy inferred from kinematic rupture models on extended faults
Tinti, E.; Spudich, P.; Cocco, M.
2005-01-01
We estimate fracture energy on extended faults for several recent earthquakes by retrieving dynamic traction evolution at each point on the fault plane from slip history imaged by inverting ground motion waveforms. We define the breakdown work (Wb) as the excess of work over some minimum traction level achieved during slip. Wb is equivalent to "seismological" fracture energy (G) in previous investigations. Our numerical approach uses slip velocity as a boundary condition on the fault. We employ a three-dimensional finite difference algorithm to compute the dynamic traction evolution in the time domain during the earthquake rupture. We estimate Wb by calculating the scalar product between dynamic traction and slip velocity vectors. This approach does not require specifying a constitutive law and assuming dynamic traction to be collinear with slip velocity. If these vectors are not collinear, the inferred breakdown work depends on the initial traction level. We show that breakdown work depends on the square of slip. The spatial distribution of breakdown work in a single earthquake is strongly correlated with the slip distribution. Breakdown work density and its integral over the fault, breakdown energy, scale with seismic moment according to a power law (with exponent 0.59 and 1.18, respectively). Our estimates of breakdown work range between 4 ?? 105 and 2 ?? 107 J/m2 for earthquakes having moment magnitudes between 5.6 and 7.2. We also compare our inferred values with geologic surface energies. This comparison might suggest that breakdown work for large earthquakes goes primarily into heat production. Copyright 2005 by the American Geophysical Union.
7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...
7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...
7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...
7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...
7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...
Potential for application of an acoustic camera in particle tracking velocimetry.
Wu, Fu-Chun; Shao, Yun-Chuan; Wang, Chi-Kuei; Liou, Jim
2008-11-01
We explored the potential and limitations for applying an acoustic camera as the imaging instrument of particle tracking velocimetry. The strength of the acoustic camera is its usability in low-visibility environments where conventional optical cameras are ineffective, while its applicability is limited by lower temporal and spatial resolutions. We conducted a series of experiments in which acoustic and optical cameras were used to simultaneously image the rotational motion of tracer particles, allowing for a comparison of the acoustic- and optical-based velocities. The results reveal that the greater fluctuations associated with the acoustic-based velocities are primarily attributed to the lower temporal resolution. The positive and negative biases induced by the lower spatial resolution are balanced, with the positive ones greater in magnitude but the negative ones greater in quantity. These biases reduce with the increase in the mean particle velocity and approach minimum as the mean velocity exceeds the threshold value that can be sensed by the acoustic camera.
H-mode transitions and limit cycle oscillations from mean field transport equations
Staebler, Gary M.; Groebner, Richard J.
2014-11-28
The mean field toroidal and parallel momentum transport equations will be shown to admit both onestep transitions to suppressed transport (L/H) and limit cycle oscillations (LCO). Both types of transitions are driven by the suppression of turbulence by the mean field ExB velocity shear. Using experimental data to evaluate the coefficients of a reduced transport model, the observed frequency of the LCO can be matched. The increase in the H-mode power threshold above and below a minimum density agrees with the trends in the model. Both leading and lagging phase relations between the turbulent density fluctuation amplitude and the ExBmore » velocity shear can occur depending on the evolution of the linear growth rate of the turbulence. As a result, the transport solutions match the initial phase of the L/H transition where the poloidal and ExB velocities are observed to change, and the density fluctuations drop, faster than the diamagnetic velocity.« less
Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects
NASA Technical Reports Server (NTRS)
Olson, S. L.
1991-01-01
Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.
Slip analysis of squeezing flow using doubly stratified fluid
NASA Astrophysics Data System (ADS)
Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha
2018-06-01
The non-isothermal flow is modeled and explored for squeezed fluid. The influence of velocity, thermal and solutal slip effects on transport features of squeezed fluid are analyzed through Darcy porous channel when fluid is moving due to squeezing of upper plate towards the stretchable lower plate. Dual stratification effects are illustrated in transport equations. A similarity analysis is performed and reduced governing flow equations are solved using moderated and an efficient convergent approach i.e. Homotopic technique. The significant effects of physical emerging parameters on flow velocity, temperature and fluid concentration are reporting through various plots. Graphical explanations for drag force, Nusselt and Sherwood numbers are stated and examined. The results reveal that minimum velocity field occurs near the plate, whereas it increases far away from the plate for strong velocity slip parameter. Furthermore, temperature and fluid concentration significantly decreases with increased slip effects. The current analysis is applicable in some advanced technological processes and industrial fluid mechanics.
Power and Efficiency Optimized in Traveling-Wave Tubes Over a Broad Frequency Bandwidth
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.
2001-01-01
A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT's are critical components in deep space probes, communication satellites, and high-power radar systems. Power conversion efficiency is of paramount importance for TWT's employed in deep space probes and communication satellites. A previous effort was very successful in increasing efficiency and power at a single frequency (ref. 1). Such an algorithm is sufficient for narrow bandwidth designs, but for optimal designs in applications that require high radiofrequency power over a wide bandwidth, such as high-density communications or high-resolution radar, the variation of the circuit response with respect to frequency must be considered. This work at the NASA Glenn Research Center is the first to develop techniques for optimizing TWT efficiency and output power over a broad frequency bandwidth (ref. 2). The techniques are based on simulated annealing, which has the advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 3). Two new broadband simulated annealing algorithms were developed that optimize (1) minimum saturated power efficiency over a frequency bandwidth and (2) simultaneous bandwidth and minimum power efficiency over the frequency band with constant input power. The algorithms were incorporated into the NASA coupled-cavity TWT computer model (ref. 4) and used to design optimal phase velocity tapers using the 59- to 64-GHz Hughes 961HA coupled-cavity TWT as a baseline model. In comparison to the baseline design, the computational results of the first broad-band design algorithm show an improvement of 73.9 percent in minimum saturated efficiency (see the top graph). The second broadband design algorithm (see the bottom graph) improves minimum radiofrequency efficiency with constant input power drive by a factor of 2.7 at the high band edge (64 GHz) and increases simultaneous bandwidth by 500 MHz.
NASA Astrophysics Data System (ADS)
Megies, T.; Kraft, T.; Wassermann, J. M.
2015-12-01
Geothermal power plants in Southern Germany are operated hydrothermally and at low injection pressures in a seismically inactive region considered very low seismic hazard. For that reason, permit authorities initially enforced no monitoring requirements on the operating companies. After a series of events perceived by local residents, a scientific monitoring survey was conducted over several years, revealing several hundred induced earthquakes at one project site.We summarize results from monitoring at this site, including absolute locations in a local 3D velocity model, relocations using double-difference and master-event methods and focal mechanism determinations that show a clear association with fault structures in the reservoir which extend down into the underlying crystalline basement. To better constrain the shear wave velocity models that have a strong influence on hypocentral depth estimates, several different approaches to estimate layered vp/vs models are employed.Results from these studies have prompted permit authorities to start imposing minimal monitoring requirements. Since in some cases these geothermal projects are only separated by a few kilometers, we investigate the capabilities of an optimized network combining the monitoring resources of six neighboring well doublets in a joint network. Optimization is taking into account the -- on this local scale, urban environment -- highly heterogeneous background noise conditions and the feasibility of potential monitoring sites, removing non-viable sites before the optimization procedure. First results from the actual network realization show good detection capabilities for small microearthquakes despite the minimum instrumentational effort, demonstrating the benefits of good coordination of monitoring efforts.
Mitigating nonlinearity in full waveform inversion using scaled-Sobolev pre-conditioning
NASA Astrophysics Data System (ADS)
Zuberi, M. AH; Pratt, R. G.
2018-04-01
The Born approximation successfully linearizes seismic full waveform inversion if the background velocity is sufficiently accurate. When the background velocity is not known it can be estimated by using model scale separation methods. A frequently used technique is to separate the spatial scales of the model according to the scattering angles present in the data, by using either first- or second-order terms in the Born series. For example, the well-known `banana-donut' and the `rabbit ear' shaped kernels are, respectively, the first- and second-order Born terms in which at least one of the scattering events is associated with a large angle. Whichever term of the Born series is used, all such methods suffer from errors in the starting velocity model because all terms in the Born series assume that the background Green's function is known. An alternative approach to Born-based scale separation is to work in the model domain, for example, by Gaussian smoothing of the update vectors, or some other approach for separation by model wavenumbers. However such model domain methods are usually based on a strict separation in which only the low-wavenumber updates are retained. This implies that the scattered information in the data is not taken into account. This can lead to the inversion being trapped in a false (local) minimum when sharp features are updated incorrectly. In this study we propose a scaled-Sobolev pre-conditioning (SSP) of the updates to achieve a constrained scale separation in the model domain. The SSP is obtained by introducing a scaled Sobolev inner product (SSIP) into the measure of the gradient of the objective function with respect to the model parameters. This modified measure seeks reductions in the L2 norm of the spatial derivatives of the gradient without changing the objective function. The SSP does not rely on the Born prediction of scale based on scattering angles, and requires negligible extra computational cost per iteration. Synthetic examples from the Marmousi model show that the constrained scale separation using SSP is able to keep the background updates in the zone of attraction of the global minimum, in spite of using a poor starting model in which conventional methods fail.
14 CFR 25.149 - Minimum control speed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum control speed. 25.149 Section 25... Minimum control speed. (a) In establishing the minimum control speeds required by this section, the method... prevent a heading change of more than 20 degrees. (e) VMCG, the minimum control speed on the ground, is...
14 CFR 25.149 - Minimum control speed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum control speed. 25.149 Section 25... Minimum control speed. (a) In establishing the minimum control speeds required by this section, the method... prevent a heading change of more than 20 degrees. (e) VMCG, the minimum control speed on the ground, is...
Gourgoulis, Vassilios; Koulexidis, Stylianos; Gketzenis, Panagiotis; Tzouras, Grigoris
2018-03-01
Gourgoulis, V, Koulexidis, S, Gketzenis, P, and Tzouras, G. Intra-cyclic velocity variation of the center of mass and hip in breaststroke swimming with maximal intensity. J Strength Cond Res 32(3): 830-840, 2018-The aim of the study was to compare the center of mass (CM) and hip (HIP) intracyclic velocity variation in breaststroke swimming using 3-dimensional kinematic analysis. Nine male breaststrokes, of moderate performance level, swam 25-m breaststroke with maximal intensity, and their movements were recorded, both under and above the water surface, using 8 digital cameras. Their CM and HIP velocities and their intracyclic variations were estimated after manual digitization of 28 selected points on the body in a complete arm and leg breaststroke cycle. Paired sample t-tests or Wilcoxon tests, when the assumption of normality was broken, were used for statistical analyses. In both, CM and HIP velocity-time curves, the results revealed a similar pattern of 2 clear peaks associated with the leg and arm propulsive phases and 2 minimal velocities that corresponded to the arm and leg recovery phase and the lag time between the leg and arm propulsive phases, respectively. However, despite this similar general pattern, the HIP minimum resultant velocity was significantly lower, whereas its maximal value was significantly greater, than the corresponding CM values. Consequently, the HIP intracyclic swimming velocity fluctuation significantly overestimates the actual variation of the swimmer's velocity in breaststroke swimming.
A new open-loop fiber optic gyro error compensation method based on angular velocity error modeling.
Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing
2015-02-27
With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.42%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity.
A New Open-Loop Fiber Optic Gyro Error Compensation Method Based on Angular Velocity Error Modeling
Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing
2015-01-01
With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.2%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity. PMID:25734642
On the apparent velocity of integrated sunlight. I - 1983-1985
NASA Technical Reports Server (NTRS)
Deming, Drake; Espenak, Fred; Jennings, Donald E.; Brault, James W.; Wagner, Jeremy
1987-01-01
Frequency measurements for the Delta V = 2 transitions of CO in the integrated light spectrum of the sun are presented. The nature and magnitude of systematic errors which typically arise in absolute velocity measurements of integrated sunlight are explored in some detail, and measurements believed accurate at the level of about 5 m/s or less are presented. It is found that the integrated light velocity varies by about 3 m/s or less over a one-day period. Over the long term, the data indicate an increasing blue-shift in these weak infrared lines amounting to 30 m/s from 1983 to 1985. The sense of the drift is consistent with a lessening in the magnetic inhibition of granular convection at solar minimum. Such an effect has implications for the spectroscopic detectability of planetary-mass companions to solar-type stars.
12 CFR 324.10 - Minimum capital requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Minimum capital requirements. 324.10 Section 324.10 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY CAPITAL ADEQUACY OF FDIC-SUPERVISED INSTITUTIONS Capital Ratio Requirements and Buffers § 324.10...
7 CFR 35.11 - Minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... species table grapes unless such grapes meet the following quality and container marking requirements..., Europe, Greenland, Canada, or Mexico, shall meet each applicable minimum requirement of the U.S. No. 1... 5 pounds or less in master containers, to any destination other than in Canada or Mexico shall be...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
NASA Astrophysics Data System (ADS)
Santos, Ângela M.; Abdu, Mangalathayil A.; Souza, Jonas R.; Batista, Inez S.; Sobral, José H. A.
2017-11-01
The influence of the recent deep and prolonged solar minimum on the daytime zonal and vertical plasma drift velocities during quiet time is investigated in this work. Analyzing the data obtained from incoherent scatter radar from Jicamarca (11.95° S, 76.87° W) we observe an anomalous behavior of the zonal plasma drift during June 2008 characterized by lower than usual daytime westward drift and its early afternoon reversal to eastward. As a case study the zonal drift observed on 24 June 2008 is modeled using a realistic low-latitude ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE (SUPIM-INPE). The results show that an anomalously low zonal wind was mainly responsible for the observed anomalous behavior in the zonal drift. A comparative study of the vertical plasma drifts obtained from magnetometer data for some periods of maximum (2000-2002) and minimum solar activity (1998, 2008, 2010) phases reveal a considerable decrease on the E-region conductivity and the dynamo electric field during 2008. However, we believe that the contribution of these characteristics to the unusual behavior of the zonal plasma drift is significantly smaller than that arising from the anomalously low zonal wind. The SUPIM-INPE result of the critical frequency of the F layer (foF2) over Jicamarca suggested a lower radiation flux than that predicted by solar irradiance model (SOLAR2000) for June 2008.
NASA Astrophysics Data System (ADS)
Harun, S. I.; Idris, S. R. A.; Tamar Jaya, N.
2017-09-01
Local exhaust ventilation (LEV) is an engineering system frequently used in the workplace to protect operators from hazardous substances. The objective of this project is design and fabricate the ventilation system as installation for chamber room of laser cutting machine and to stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed. LEV’s fabricated with rated voltage D.C 10.8V and 1.5 ampere. Its capacity 600 ml, continuously use limit approximately 12-15 minute, overall length LEV’s fabricated is 966 mm with net weight 0.88 kg and maximum airflow is 1.3 meter cubic per minute. Stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed and fabricated overall result get 2 main gas vapor which air and carbon dioxide. For air gas which experimented by using anemometer, general duct velocity that produce is same with other gas produce, carbon dioxide which 5 m/s until 10 m/s. Overall result for 5 m/s and 10 m/s as minimum and maximum duct velocity produce for both air and carbon dioxide. The air gas flow velocity that captured by LEV’s fabricated, 3.998 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 79.960% and 7.667 m/s average velocity captured from 10 m/s duct velocity with efficiency of 76.665%. For carbon dioxide gas flow velocity that captured by LEV’s fabricated, 3.674 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 73.480% and 8.255 m/s average velocity captured from 10 m/s duct velocity with efficiency of 82.545%.
Predicting propagation limits of laser-supported detonation by Hugoniot analysis
NASA Astrophysics Data System (ADS)
Shimamura, Kohei; Ofosu, Joseph A.; Komurasaki, Kimiya; Koizumi, Hiroyuki
2015-01-01
Termination conditions of a laser-supported detonation (LSD) wave were investigated using control volume analysis with a Shimada-Hugoniot curve and a Rayleigh line. Because the geometric configurations strongly affect the termination condition, a rectangular tube was used to create the quasi-one-dimensional configuration. The LSD wave propagation velocity and the pressure behind LSD were measured. Results reveal that the detonation states during detonation and at the propagation limit are overdriven detonation and Chapman-Jouguet detonation, respectively. The termination condition is the minimum velocity criterion for the possible detonation solution. Results were verified using pressure measurements of the stagnation pressure behind the LSD wave.
77 FR 76979 - Pesticides; Revisions to Minimum Risk Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
...EPA is proposing to more clearly describe the active and inert ingredients permitted in products eligible for the exemption from regulation for minimum risk pesticides. EPA is proposing to reorganize these lists with a focus on clarity and transparency by adding specific chemical identifiers. The identifiers would make it clearer to manufacturers; the public; and Federal, state, and tribal inspectors which ingredients are permitted in minimum risk pesticide products. EPA is also proposing to modify the label requirements in the exemption to require the use of specific common chemical names in lists of ingredients on minimum risk pesticide product labels, and to require producer contact information on the label. Once final, these proposed changes would maintain the availability of minimum risk pesticide products while providing more consistent information for consumers, clearer regulations for producers, and easier identification by states, tribes and EPA as to whether a product is in compliance with the exemption.
Non-Intrusive Impedance-Based Cable Tester
NASA Technical Reports Server (NTRS)
Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)
1999-01-01
A non-intrusive electrical cable tester determines the nature and location of a discontinuity in a cable through application of an oscillating signal to one end of the cable. The frequency of the oscillating signal is varied in increments until a minimum, close to zero voltage is measured at a signal injection point which is indicative of a minimum impedance at that point. The frequency of the test signal at which the minimum impedance occurs is then employed to determine the distance to the discontinuity by employing a formula which relates this distance to the signal frequency and the velocity factor of the cable. A numerically controlled oscillator is provided to generate the oscillating signal, and a microcontroller automatically controls operation of the cable tester to make the desired measurements and display the results. The device is contained in a portable housing which may be hand held to facilitate convenient use of the device in difficult to access locations.
77 FR 8896 - Notice of Proposed Information Collection for 1029-0036
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... request for Surface Mining Permit Applications--Minimum Requirements for Reclamation and Operation Plan... Permit Applications-- Minimum Requirements for Reclamation and Operation Plan. OSM is requesting a 3-year... Requirements for Reclamation and Operation Plan. OMB Control Number: 1029-0036. SUMMARY: Sections 507(b), 508(a...
29 CFR 780.300 - Statutory exemptions in section 13(a)(6).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Employment in Agriculture That Is Exempted From the Minimum Wage and Overtime Pay Requirements Under Section... the Act exempts from the minimum wage requirements of section 6 and from the overtime pay requirements... 780.300 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR...
NASA Astrophysics Data System (ADS)
Bennington, Ninfa L.; Thurber, Clifford; Peng, Zhigang; Zhang, Haijiang; Zhao, Peng
2013-03-01
We present a three-dimensional (3D) P wave velocity (Vp) model of the Parkfield region that utilizes existing P wave arrival time data, including fault zone head waves (FZHWs), and data from direct wave secondary arrivals (DWSAs). The first-arrival and DWSA travel times are obtained as the global- and local-minimum travel time paths, respectively. The inclusion of FZHWs and DWSAs results in as much as a 5% and a 10% increase in the across-fault velocity contrast, respectively, for the Vp model at Parkfield relative to that of Thurber et al. [2006]. Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield earthquake hypocenter and the other SE of the 2004 Parkfield earthquake hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. Following Ampuero and Ben-Zion (2008), the pattern of velocity contrasts is consistent with the observed bilateral rupture propagation for the 2004 Parkfield earthquake. Although the velocity contrasts also suggest bilateral rupture propagation for the 1966 Parkfield earthquake, the fault is creeping to the NW here, i.e., exhibiting velocity-strengthening behavior. Thus, it is not surprising that rupture propagated only SE during this event.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF... supplied-air respirators; minimum requirements. (a) Blowers or connections to air supplies providing...
NASA Astrophysics Data System (ADS)
Li, Ming-Hua; Zhu, Weishan; Zhao, Dong
2018-05-01
The gas is the dominant component of baryonic matter in most galaxy groups and clusters. The spatial offsets of gas centre from the halo centre could be an indicator of the dynamical state of cluster. Knowledge of such offsets is important for estimate the uncertainties when using clusters as cosmological probes. In this paper, we study the centre offsets roff between the gas and that of all the matter within halo systems in ΛCDM cosmological hydrodynamic simulations. We focus on two kinds of centre offsets: one is the three-dimensional PB offsets between the gravitational potential minimum of the entire halo and the barycentre of the ICM, and the other is the two-dimensional PX offsets between the potential minimum of the halo and the iterative centroid of the projected synthetic X-ray emission of the halo. Haloes at higher redshifts tend to have larger values of rescaled offsets roff/r200 and larger gas velocity dispersion σ v^gas/σ _{200}. For both types of offsets, we find that the correlation between the rescaled centre offsets roff/r200 and the rescaled 3D gas velocity dispersion, σ _v^gas/σ _{200} can be approximately described by a quadratic function as r_{off}/r_{200} ∝ (σ v^gas/σ _{200} - k_2)2. A Bayesian analysis with MCMC method is employed to estimate the model parameters. Dependence of the correlation relation on redshifts and the gas mass fraction are also investigated.
NASA Astrophysics Data System (ADS)
Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.
2016-03-01
Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.
Minimum pickup velocity ( U pu) of nanoparticles in gas-solid pneumatic conveying
NASA Astrophysics Data System (ADS)
Anantharaman, Aditya; van Ommen, J. Ruud; Chew, Jia Wei
2015-12-01
This paper is the first systematic study of the pneumatic conveying of nanoparticles. The minimum pickup velocity, U pu, of six nanoparticle species of different materials [i.e., silicon dioxide (SiO2), aluminum oxide (Al2O3), and titanium dioxide (TiO2)] and surfaces (i.e., apolar and polar) was determined by the weight loss method. Results show that (1) due to relative lack of hydrogen bonding, apolar nanoparticles had higher mass loss values at the same velocities, mass loss curves with accentuated S-shaped profiles, and lower U pu values, (2) among the three species, SiO2, which has the lowest Hamaker coefficient, exhibited the greatest discrepancy between apolar and polar surfaces with respect to both mass loss curves and U pu values, (3) U mf,polar/ U mf,apolar was between 1 and 3.5 times that of U pu,polar/ U pu,apolar due to greater extents of hydrogen bonding associated with U mf, (4) U pu values were at least an order-of-magnitude lower than that expected from the well-acknowledged U pu correlation (Kalman et al., Powder Technol 160:103-113, 2005) due to agglomeration, (5) although nanoparticles should be categorized as Zone III (Kalman et al. 2005) (or Geldart group C, Powder Technol 7:285-292, 1973), the nanoparticles, and primary and complex agglomerates agreed more with the Zone I (or Geldart group B) correlation.
2014-11-26
This document contains final regulations relating to the requirement to maintain minimum essential coverage enacted by the Patient Protection and Affordable Care Act and the Health Care and Education Reconciliation Act of 2010, as amended by the TRICARE Affirmation Act and Public Law 111-173 (collectively, the Affordable Care Act). These final regulations provide individual taxpayers with guidance under section 5000A of the Internal Revenue Code on the requirement to maintain minimum essential coverage and rules governing certain types of exemptions from that requirement.
ERIC Educational Resources Information Center
Conforti, Peter A.
2013-01-01
This paper compares the minimum requirements for high school graduation in each state with admission requirements for the state's main (or "flagship") university campus. In 80% of the states, the high school graduation requirements do not meet the minimum standards necessary for admission to their own state universities.
Minimum visual requirements in different occupations in Finland.
Aine, E
1984-01-01
In Finland the employers can individually fix the minimum visual requirements for their personnel in almost every occupation. In transportation, in police and national defence proper eyesight is regarded so important that strict visual requirements for these have been fixed by the Government. The regulations are often more close when accepting the person to the occupation than later on when working. The minimum requirements are mostly stated for visual acuity, colour perception and visual fields. In some occupations the regulations concern also the refractive error of the eyes and possible eye diseases. In aviation the regulations have been stated by the International Civil Aviation Organization ( ICAO ). The minimum visual requirements for a driving license in highway traffic are classed according to the types of motor vehicles. In railways , maritime commerce and national defence the task of the worker determines the specified regulations. The policeman must have a distant visual acuity of 0.5 without eyeglasses in both eyes and nearly normal colour perception when starting the training course.
Characteristics of low reynolds number shear-free turbulence at an impermeable base.
Wan Mohtar, W H M; ElShafie, A
2014-01-01
Shear-free turbulence generated from an oscillating grid in a water tank impinging on an impermeable surface at varying Reynolds number 74 ≤ Re(l) ≤ 570 was studied experimentally, where the Reynolds number is defined based on the root-mean-square (r.m.s) horizontal velocity and the integral length scale. A particular focus was paid to the turbulence characteristics for low Re(l) < 150 to investigate the minimum limit of Re l obeying the profiles of rapid distortion theory. The measurements taken at near base included the r.m.s turbulent velocities, evolution of isotropy, integral length scales, and energy spectra. Statistical analysis of the velocity data showed that the anisotropic turbulence structure follows the theory for flows with Re(l) ≥ 117. At low Re(l) < 117, however, the turbulence profile deviated from the prediction where no amplification of horizontal velocity components was observed and the vertical velocity components were seen to be constant towards the tank base. Both velocity components sharply decreased towards zero at a distance of ≈ 1/3 of the integral length scale above the base due to viscous damping. The lower limit where Re(l) obeys the standard profile was found to be within the range 114 ≤ Re(l) ≤ 116.
Characteristics of Low Reynolds Number Shear-Free Turbulence at an Impermeable Base
Wan Mohtar, W. H. M.; ElShafie, A.
2014-01-01
Shear-free turbulence generated from an oscillating grid in a water tank impinging on an impermeable surface at varying Reynolds number 74 ≤ Re l ≤ 570 was studied experimentally, where the Reynolds number is defined based on the root-mean-square (r.m.s) horizontal velocity and the integral length scale. A particular focus was paid to the turbulence characteristics for low Re l < 150 to investigate the minimum limit of Re l obeying the profiles of rapid distortion theory. The measurements taken at near base included the r.m.s turbulent velocities, evolution of isotropy, integral length scales, and energy spectra. Statistical analysis of the velocity data showed that the anisotropic turbulence structure follows the theory for flows with Re l ≥ 117. At low Re l < 117, however, the turbulence profile deviated from the prediction where no amplification of horizontal velocity components was observed and the vertical velocity components were seen to be constant towards the tank base. Both velocity components sharply decreased towards zero at a distance of ≈1/3 of the integral length scale above the base due to viscous damping. The lower limit where Re l obeys the standard profile was found to be within the range 114 ≤ Re l ≤ 116. PMID:25250384
Schrock, John B; Kraeutler, Matthew J; Dayton, Michael R; McCarty, Eric C
2017-06-01
The purpose of this study was to analyze how program directors (PDs) of orthopaedic surgery residency programs use United States Medical Licensing Examination (USMLE) Step 1 and 2 scores in screening residency applicants. A survey was sent to each allopathic orthopaedic surgery residency PD. PDs were asked if they currently use minimum Step 1 and/or 2 scores in screening residency applicants and if these criteria have changed in recent years. Responses were received from 113 of 151 PDs (75%). One program did not have the requested information and five declined participation, leaving 107 responses analyzed. Eighty-nine programs used a minimum USMLE Step 1 score (83%). Eighty-three programs (78%) required a Step 1 score ≥210, 80 (75%) required a score ≥220, 57 (53%) required a score ≥230, and 22 (21%) required a score ≥240. Multiple PDs mentioned the high volume of applications as a reason for using a minimum score and for increasing the minimum score in recent years. A large proportion of orthopaedic surgery residency PDs use a USMLE Step 1 minimum score when screening applications in an effort to reduce the number of applications to be reviewed.
NASA Astrophysics Data System (ADS)
Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.
2016-12-01
Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 947.784 Section 947.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. (a) Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 922.784 Section 922.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 905.780 Section 905.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 910.780 Section 910.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. (a) Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirement for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 947.780 Section 947.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. (a) Part 780 of this chapter, Surface Mining Permit Application—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 937.780 Section 937.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. (a) Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirement for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 912.784 Section 912.784 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 903.780 Section 903.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, applies to any person who submits an application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 942.780 Section 942.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 942.784 Section 942.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 905.784 Section 905.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 937.784 Section 937.784 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 910.784 Section 910.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. (a) Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 941.780 Section 941.780 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. (a) Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 912.780 Section 912.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...