The United States Environmental Protection Agency's (EPA) Office of Ground Water and Drinking Water (OGWDW) has developed a single-laboratory quantitation procedure: the lowest concentration minimum reporting level (LCMRL). The LCMRL is the lowest true concentration for which fu...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Soohaeng; Apra, Edoardo; Zeng, Xiao Cheng
The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at the MP2 and CCSD(T) levels of theory and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17 the CCSD(T) calculations confirm the previously found at the MP2 level of theory "interior" arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Soohaeng; Apra, Edoardo; Zeng, X.C.
The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at both the MP2 and CCSD(T) levels of theory, and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17, the CCSD(T) calculations confirm the previously found at the MP2 level of theory interior arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum
[Impacts of forest and precipitation on runoff and sediment in Tianshui watershed and GM models].
Ouyang, H
2000-12-01
This paper analyzed the impacts of foret stand volume and precipitation on annual erosion modulus, mean sediment, maximum sediment, mean runoff, maximum runoff, minimum runoff, mean water level, maximum water level and minimum water level in Tianshui watershed, and also analyzed the effect of the variation of forest stand volume on monthly mean runoff, minimum runoff and mean water level. The dynamic models of grey system GM(1, N) were constructed to simulate the changes of these hydrological elements. The dynamic GM models on the impact of stand volumes of different forest types(Chinese fir, masson pine and broad-leaved forests) with different age classes(young, middle-aged, mature and over-mature) and that of precipitation on the hydrological elements were also constructed, and their changes with time were analyzed.
A Potential Approach for Low Flow Selection in Water Resource Supply and Management
Ying Ouyang
2012-01-01
Low flow selections are essential to water resource management, water supply planning, and watershed ecosystem restoration. In this study, a new approach, namely the frequent-low (FL) approach (or frequent-low index), was developed based on the minimum frequent-low flow or level used in minimum flows and/or levels program in northeast Florida, USA. This FL approach was...
Detailed study of the water trimer potential energy surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, J.E.; Schaefer, H.F. III
The potential energy surface of the water trimer has been studied through the use of ab initio quantum mechanical methods. Five stationary points were located, including one minimum and two transition states. All geometries were optimized at levels up to the double-[Zeta] plus polarization plus diffuse (DZP + diff) single and double excitation coupled cluster (CCSD) level of theory. CCSD single energy points were obtained for the minimum, two transition states, and the water monomer using the triple-[Zeta] plus double polarization plus diffuse (TZ2P + diff) basis at the geometries predicted by the DZP + diff CCSD method. Reported aremore » the following: geometrical parameters, total and relative energies, harmonic vibrational frequencies and infrared intensities for the minimum, and zero point vibrational energies for the minimum, two transition states, and three separated water molecules. 27 refs., 5 figs., 10 tabs.« less
Euliss, Ned H.; Mushet, David M.
1996-01-01
We evaluated water-level fluctuation (maximum water depth - minimum water depth/catchment size) in 12 temporary, 12 seasonal, and 12 semipermanent wetlands equally distributed among landscapes dominated by tilled agricultural lands and landscapes dominated by grassland. Water levels fluctuated an average of 14.14 cm in wetlands within tilled agricultural landscapes, while water levels in wetlands within grassland landscapes fluctuated an average of only 4.27 cm. Tillage reduces the natural capacity of catch meets to mitigate surface flow into wetland basins during precipitation events, resulting in greater water-level fluctuations in wetlands with tilled catchments. In addition, water levels in temporary and seasonal wetlands fluctuated an average of 13.74 cm and 11.82 cm, respectively, while water levels in semipermanent wetlands fluctuated only 2.77 cm. Semipermanent wetlands receive a larger proportion of their water as input from ground water than do either temporary or seasonal wetlands. This input of water from the ground has a stabilizing effect on water-levels of semipermanent wetlands. Increases in water-level fluctuation due to tillage or due to alteration of ground-water hydrology may ultimately affect the composition of a wetland's flora and fauna. In this paper, we also describe an inexpensive device for determining absolute maximum and minimum water levels in wetlands.
Sustainable-yield estimation for the Sparta Aquifer in Union County, Arkansas
Hays, Phillip D.
2000-01-01
Options for utilizing alternative sources of water to alleviate overdraft from the Sparta aquifer and ensure that the aquifer can continue to provide abundant water of excellent quality for the future are being evaluated by water managers in Union County. Sustainable yield is a critical element in identifying and designing viable water supply alternatives. With sustainable yield defined and a knowledge of total water demand in an area, any unmet demand can be calculated. The ground-water flow model of the Sparta aquifer was used to estimate sustainable yield using an iterative approach. The Sparta aquifer is a confined aquifer of regional importance that comprises a sequence of unconsolidated sand units that are contained within the Sparta Sand. Currently, the rate of withdrawal in some areas greatly exceeds the rate of recharge to the aquifer and considerable water-level declines have occurred. Ground-water flow model results indicate that the aquifer cannot continue to meet growing water-use demands indefinitely and that water levels will drop below the top of the primary producing sand unit in Union County (locally termed the El Dorado sand) by 2008 if current water-use trends continue. Declines of that magnitude will initiate dewatering of the El Dorado sand. The sustainable yield of the aquifer was calculated by targeting a specified minimum acceptable water level within Union County and varying Union County pumpage within the model to achieve the target water level. Selection of the minimum target water level for sustainable-yield estimation was an important criterion for the modeling effort. In keeping with the State Critical Ground-Water Area designation criteria and the desire of water managers in Union County to improve aquifer conditions and bring the area out of the Critical Ground-Water Area designation, the approximate altitude of the top of the Sparta Sand in central Union County was used as the minimum water level target for estimation of sustainable yield in the county. A specific category of sustainable yield? stabilization yield, reflecting the amount of water that the aquifer can provide while maintaining current water levels? also was determined and provides information for short-term management. The top of the primary producing sand unit (the El Dorado sand) was used as the minimum water-level target for estimating stabilization yield in the county because current minimum water levels in central Union County are near the top of the El Dorado sand. Model results show that withdrawals from the Sparta aquifer in Union County must be reduced to 28 percent of 1997 values to achieve sustainable yield and maintain water levels at the top of the Sparta Sand if future pumpage outside of Union County is assumed to increase at the rate observed from 1985-1997. Results of the simulation define a very large current unmet demand and represent a substantial reduction in the county?s current dependence upon the aquifer. If future pumpage outside of Union County is assumed to increase at double the rate observed from 1985-1997, withdrawals from the Sparta aquifer in Union County must be reduced to 25 percent of 1997 values to achieve sustainable yield. Withdrawals from the Sparta aquifer in Union County must be reduced to about 88 to 91 percent (depending on pumpage growth outside of the county) of 1997 values to stabilize water levels at the top of the El Dorado sand. This result shows that 1997 rate of withdrawal in the county is considerably greater than the rate needed to halt the rapid decline in water levels.
Collins, J.J.; Freeman, L.D.
1996-01-01
Since 1948, ground-water level data have beensystematically collected from selected wells in theSuwannee River Water Management District (SRWMD) by the U.S. Geological Survey (USGS),the SRWMD, and other agencies. Records of waterlevels in the SRWMD (fig. 1), collected by the USGS and SRWMD through 1990, and by the SRWMD from 1990 to 1994, have been published for many years in the USGS annual report series "Water Resources Data for Florida." However, no systematic statistical summaries of water levels in the SRWMD have been previously published. The need for such statistical summary data forevaluations of drought severity, ground-water supplyavailability, and minimum water levels for regulatory purposes increases daily as demands for ground-water usage increase. Also, much of the base flow of the Suwannee River is dependent upon ground water. As the population and demand for ground water for drinking water and irrigation purposes increase, the ability to quickly and easily predict trends in ground-water availability will become paramount. In response to this need, the USGS, in cooperation with the SRWMD, compiled this report. Ground-water sta tistics for 136 sites are presented as well as figures showing water levels that were measured in wells from 1948 through September 1994. In 1994, the SRWMD and the USGS began a long- term program of cooperative studies designed tobetter understand minimum and maximum streamflows and ground-water levels in the SRWMD. Minimum and maximum flows and levels are needed by the district to manage the surface- and ground-water resources of the SRWMD and to maintain or improve the various ecosystems. Data evaluation was a necessary first step in the long- term SRWMD ground-water investigations program, because basic statistics for ground-water levels are not included in the USGS annual data reports such as "Water Resources Data for Florida, Water Year 1994" (Fran klin and others, 1995). Statistics included in this report were generated using the USGS computer pro gram ADAPS (Automatic Data Processing System) to characterize normal ground-water levels and depar tures from normal. The report has been organized so that the statisti cal analyses of water levels in the wells are presentedfollowing this introductory material, a description ofthe hydrogeology in the study area, and a description of the statistics used to present the water-level data. Specifically, the report presents statistical analyses for each well, as appropriate, in the following manner: Description of the well.Hydrographs of ground-water levels for the period of record, for the last 10 years of record, and for the last 5 years of record. Graphs of maximum, minimum, and mean of monthly mean ground-water levels for wells with 5 or more years of record.Frequency hydrographs (25, 50, and 75 percent) of monthly mean ground-water levels for wells with 5 or more years of record. Water-level data and statistical plots are grouped by county and sorted within the county by ascendingsite identification number. Well locations are plottedon county maps preceding the well descriptions andhydrographs.
40 CFR 131.12 - Antidegradation policy.
Code of Federal Regulations, 2011 CFR
2011-07-01
... minimum, be consistent with the following: (1) Existing instream water uses and the level of water quality... waters exceed levels necessary to support propagation of fish, shellfish, and wildlife and recreation in... continuing planning process, that allowing lower water quality is necessary to accommodate important economic...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, P.; Purdue University, West Lafayette, Indiana 47907; Verma, K.
Borazine is isoelectronic with benzene and is popularly referred to as inorganic benzene. The study of non-covalent interactions with borazine and comparison with its organic counterpart promises to show interesting similarities and differences. The motivation of the present study of the borazine-water interaction, for the first time, stems from such interesting possibilities. Hydrogen-bonded complexes of borazine and water were studied using matrix isolation infrared spectroscopy and quantum chemical calculations. Computations were performed at M06-2X and MP2 levels of theory using 6-311++G(d,p) and aug-cc-pVDZ basis sets. At both the levels of theory, the complex involving an N–H⋯O interaction, where the N–Hmore » of borazine serves as the proton donor to the oxygen of water was found to be the global minimum, in contrast to the benzene-water system, which showed an H–π interaction. The experimentally observed infrared spectra of the complexes corroborated well with our computations for the complex corresponding to the global minimum. In addition to the global minimum, our computations also located two local minima on the borazine-water potential energy surface. Of the two local minima, one corresponded to a structure where the water was the proton donor to the nitrogen of borazine, approaching the borazine ring from above the plane of the ring; a structure that resembled the global minimum in the benzene-water H–π complex. The second local minimum corresponded to an interaction of the oxygen of water with the boron of borazine, which can be termed as the boron bond. Clearly the borazine-water system presents a richer landscape than the benzene-water system.« less
7 CFR 1469.5 - Eligibility requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... determines that conservation treatment will contribute to an improvement in an identified natural resource... Quality and Soil Quality to the minimum level of treatment as specified in paragraphs (e)(2) and (3) of... concerns of water quality and soil quality to the minimum level of treatment as specified in paragraphs (e...
Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)
NASA Technical Reports Server (NTRS)
Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.
1995-01-01
The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.
30 CFR 7.100 - Explosion tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... supply to the injector pump. (v) Establish a preliminary low water level for systems using the wet... inches below the minimum allowable low water level. All entrances in the wet exhaust conditioner which do... reserve water supply to the wet exhaust conditioner, insert flanges, float flanges, and cover plates...
30 CFR 7.100 - Explosion tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... supply to the injector pump. (v) Establish a preliminary low water level for systems using the wet... inches below the minimum allowable low water level. All entrances in the wet exhaust conditioner which do... reserve water supply to the wet exhaust conditioner, insert flanges, float flanges, and cover plates...
Minimum Flows and Levels Method of the St. Johns River Water Management District, Florida, USA
NASA Astrophysics Data System (ADS)
Neubauer, Clifford P.; Hall, Greeneville B.; Lowe, Edgar F.; Robison, C. Price; Hupalo, Richard B.; Keenan, Lawrence W.
2008-12-01
The St. Johns River Water Management District (SJRWMD) has developed a minimum flows and levels (MFLs) method that has been applied to rivers, lakes, wetlands, and springs. The method is primarily focused on ecological protection to ensure systems meet or exceed minimum eco-hydrologic requirements. MFLs are not calculated from past hydrology. Information from elevation transects is typically used to determine MFLs. Multiple MFLs define a minimum hydrologic regime to ensure that high, intermediate, and low hydrologic conditions are protected. MFLs are often expressed as statistics of long-term hydrology incorporating magnitude (flow and/or level), duration (days), and return interval (years). Timing and rates of change, the two other critical hydrologic components, should be sufficiently natural. The method is an event-based, non-equilibrium approach. The method is used in a regulatory water management framework to ensure that surface and groundwater withdrawals do not cause significant harm to the water resources and ecology of the above referenced system types. MFLs are implemented with hydrologic water budget models that simulate long-term system hydrology. The method enables a priori hydrologic assessments that include the cumulative effects of water withdrawals. Additionally, the method can be used to evaluate management options for systems that may be over-allocated or for eco-hydrologic restoration projects. The method can be used outside of the SJRWMD. However, the goals, criteria, and indicators of protection used to establish MFLs are system-dependent. Development of regionally important criteria and indicators of protection may be required prior to use elsewhere.
Annual maximum and minimum lake levels for Indiana, 1942-85
Fowler, Kathleen K.
1988-01-01
Indiana has many natural and manmade lakes. Lake-level data are available for 217 lakes. These data were collected during water years 1942-85 by use of staff gages and, more recently, continuous recorders. The period of record at each site ranges from 1 to 43 years. Data from the lake stations have been compiled, and maximum and minimum lake levels for each year of record are reported. In addition to annual maximum and minimum lake levels, each lake station is described by gage location, surface area, drainage area, period of record, datum of gage, gage type, established legal level, lake level control, inlets and outlets, and extremes for the period of record.
A network for continuous monitoring of water quality in the Sabine River basin, Texas and Louisiana
Blakey, J.F.; Skinner, P.W.
1973-01-01
Level I operations at a proposed site would monitor current and potential problems, water-quality changes in subreaches of streams, and water-quality trends in time and place. Level II operations would monitor current or potential problems only. An optimum system would require Level I operations at all nine stations. A minimum system would require Level II operations at most of the stations.
Koltun, G.F.
2013-01-01
This report presents the results of a study to assess potential water availability from the Atwood, Leesville, and Tappan Lakes, located within the Muskingum River Watershed, Ohio. The assessment was based on the criterion that water withdrawals should not appreciably affect maintenance of recreation-season pool levels in current use. To facilitate and simplify the assessment, it was assumed that historical lake operations were successful in maintaining seasonal pool levels, and that any discharges from lakes constituted either water that was discharged to prevent exceeding seasonal pool levels or discharges intended to meet minimum in-stream flow targets downstream from the lakes. It further was assumed that the volume of water discharged in excess of the minimum in-stream flow target is available for use without negatively impacting seasonal pool levels or downstream water uses and that all or part of it is subject to withdrawal. Historical daily outflow data for the lakes were used to determine the quantity of water that potentially could be withdrawn and the resulting quantity of water that would flow downstream (referred to as “flow-by”) on a daily basis as a function of all combinations of three hypothetical target minimum flow-by amounts (1, 2, and 3 times current minimum in-stream flow targets) and three pumping capacities (1, 2, and 3 million gallons per day). Using both U.S. Geological Survey streamgage data and lake-outflow data provided by the U.S. Army Corps of Engineers resulted in analytical periods ranging from 51 calendar years for the Atwood Lake to 73 calendar years for the Leesville and Tappan Lakes. The observed outflow time series and the computed time series of daily flow-by amounts and potential withdrawals were analyzed to compute and report order statistics (95th, 75th, 50th, 25th, 10th, and 5th percentiles) and means for the analytical period, in aggregate, and broken down by calendar month. In addition, surplus-water mass curve data were tabulated for each of the lakes. Monthly order statistics of computed withdrawals indicated that, for the three pumping capacities considered, increasing the target minimum flow-by amount tended to reduce the amount of water that can be withdrawn. The reduction was greatest in the lower percentiles of withdrawal; however, increasing the flow-by amount had no impact on potential withdrawals during high flow. In addition, for a given target minimum flow-by amount, increasing the pumping rate increased the total amount of water that could be withdrawn; however, that increase was less than a direct multiple of the increase in pumping rate for most flow statistics. Potential monthly withdrawals were observed to be more variable and more limited in some calendar months than others. Monthly order statistics and means of computed daily mean flow-by amounts indicated that flow-by amounts generally tended to be lowest during June–October and February. Increasing the target minimum flow-by amount for a given pumping rate resulted in some small increases in the magnitudes of the mean and 50th percentile and lower order statistics of computed mean flow-by, but had no effect on the magnitudes of the higher percentile statistics. Increasing the pumping rate for a given target minimum flow-by amount resulted in decreases in magnitudes of higher-percentile flow-by statistics by an amount equal to the flow equivalent of the increase in pumping rate; however, some lower percentile statistics remained unchanged.
40 CFR 131.12 - Antidegradation policy.
Code of Federal Regulations, 2010 CFR
2010-07-01
... QUALITY STANDARDS Establishment of Water Quality Standards § 131.12 Antidegradation policy. (a) The State... minimum, be consistent with the following: (1) Existing instream water uses and the level of water quality... and on the water, that quality shall be maintained and protected unless the State finds, after full...
Tritium as an indicator of ground-water age in Central Wisconsin
Bradbury, Kenneth R.
1991-01-01
In regions where ground water is generally younger than about 30 years, developing the tritium input history of an area for comparison with the current tritium content of ground water allows quantitative estimates of minimum ground-water age. The tritium input history for central Wisconsin has been constructed using precipitation tritium measured at Madison, Wisconsin and elsewhere. Weighted tritium inputs to ground water reached a peak of over 2,000 TU in 1964, and have declined since that time to about 20-30 TU at present. In the Buena Vista basin in central Wisconsin, most ground-water samples contained elevated levels of tritium, and estimated minimum ground-water ages in the basin ranged from less than one year to over 33 years. Ground water in mapped recharge areas was generally younger than ground water in discharge areas, and estimated ground-water ages were consistent with flow system interpretations based on other data. Estimated minimum ground-water ages increased with depth in areas of downward ground-water movement. However, water recharging through thick moraine sediments was older than water in other recharge areas, reflecting slower infiltration through the sandy till of the moraine.
Outlaw, George S.; Hoos, Anne B.; Pankey, John T.
1994-01-01
Rainfall, streamflow, and water-quality data were collected furing storm conditions at five urban watersheds in Nashville, Tennessee. These data can be used to build a database for developing predictive models of the relations between storm- water quality and land use, storm characteristics, and seasonal variations. The primary land and mix of land uses was different for each watershed. Stormwater samples were collected during three storms at each watershed and analyzed for selected volatile, acidic and base/neutral organic compounds; organic pesticides; trace metals; conventional pollutants; and several physical properties. Storm loads were computed for all constituents and properties with event mean concentration above the minimum reporting level. None of the samples con- tained acidic organic compounds at concentrations above the minimum reporting levels. Several constituents in each of the other categories, however, were present at concentrations above the minimum reporting level. For 21 of these constituents, water-quality criteria have been pro- mulgated by the State of Tennessee. For only 8 of the 21 did the value exceed the most restrictive of the criteria: pyrene, dieldrin, and mercury concen- trations and counts of fecal coliform exceeded the criteria for recreational use, copper and zinc concentrations and pH value exceeded the criteria for fish and aquatic life, and lead concentrations exceeded the criteria for domestic supply.
Prinos, Scott T.; Lietz, A.C.; Irvin, R.B.
2002-01-01
Ground-water resources in southern Florida are under increasing stress caused by a rapid growth in population. As a result of increased demands on aquifers, water managers need more timely and accurate assessments of ground-water conditions in order to avoid or reduce adverse effects such as saltwater intrusion, loss of pumpage in residential water-supply wells, land-surface subsidence, and aquifer compaction. Hydrologic data were analyzed from three aquifer systems in southern Florida: the surficial aquifer system, which includes the Biscayne aquifer; the intermediate aquifer system, which includes the sandstone and mid-Hawthorn aquifers; and the Florida aquifer system represented by the lower Hawthorn producing zone. Long-term water-level trends were analyzed using the Seasonal Kendall trend test in 83 monitoring wells with a daily-value record spanning 26 years (1974-99). The majority of the wells with data for this period were in the Biscayne aquifer in southeastern Florida. Only 14 wells in southwestern Florida aquifers and 9 in the surficial aquifer system of Martin and Palm Beach Counties had data for the full period. Because many monitoring wells did not have data for this full period, several shorter periods were evaluated as well. The trend tests revealed small but statistically significant upward trends in most aquifers, but large and localized downward trends in the sandstone and mid-Hawthorn aquifers. Monthly means of maximum daily water levels from 246 wells were compared to monthly rainfall totals from rainfall stations in southwestern and southeastern Florida in order to determine which monitoring wells most clearly indicated decreases in water levels that corresponded to prolonged rainfall shortages. Of this total, 104 wells had periods of record over 20 years (after considering missing record) and could be compared against several drought periods. After factors such as lag, seasonal cyclicity, and cumulative functions were considered, the timing of minimum values of water level from 15 ground-water monitoring wells and average minimum rainfall values agreed 57 to 62 percent of the time over a 20 to 26 year period. On average, the timing of water-level minimums and rainfall minimums agreed about 52 percent of the time, and in some cases only agreed 29 percent of the time. A regression analysis was used to evaluate daily water levels from 203 monitoring wells that are currently, or recently had been, part of the network to determine which wells were most representative of each aquifer. The regression also was used to determine which wells provided data that could be used to provide estimations of water levels at other wells in the aquifer with a coefficient of determination (R2 value) from the regression of 0.64 or greater. In all, the regression analysis alone indicated that 35 wells, generally with 10 years or more of data, could be used to directly monitor water levels or to estimate water levels at 180 of 203 wells (89 percent of the network). Ultimately, factors such as existing instrumentation, well construction, long-term water-level trends, and variations of water level and chloride concentration were considered together with the R2 results in designing the final network. The Seasonal Kendall trend test was used to examine trends in ground-water chloride concentrations in 113 wells. Of these wells, 61 showed statistically significant trends. Fifty-six percent (34 of 61 wells) of the observed trends in chloride concentration were upward and 44 percent (27 of 61 wells) were downward. The relation between water level and chloride concentration in 114 ground-water wells was examined using Spearman's r and Pearson's r correlation coefficients. Statistically significant results showed both positive and negative relations. Based on the results of statistical analyses, period of record, well construction, and existing satellite telemetry, 33 monitoring wells were selected that could be used to a
Transient response of Salix cuttings to changing water level regimes
NASA Astrophysics Data System (ADS)
Gorla, L.; Signarbieux, C.; Turberg, P.; Buttler, A.; Perona, P.
2015-03-01
Sustainable water management requires an understanding of the effects of flow regulation on riparian ecomorphological processes. We investigated the transient response of Salix viminalis by examining the effect of water-level regimes on its above-ground and below-ground biomass. Four sets of Salix cuttings, three juveniles (in the first growing season) and one mature (1 year old), were planted and initially grown under the same water-level regime for 1 month. We imposed three different water-level regime treatments representing natural variability, a seasonal trend with no peaks, and minimal flow (characteristic of hydropower) consisting of a constant water level and natural flood peaks. We measured sap flux, stem water potential, photosynthesis, growth parameters, and final root architecture. The mature cuttings were not affected by water table dynamics, but the juveniles displayed causal relationships between the changing water regime, plant growth, and root distribution during a 2 month transient period. For example, a 50% drop in mean sap flux corresponded with a -1.5 Mpa decrease in leaf water potential during the first day after the water regime was changed. In agreement with published field observations, the cuttings concentrated their roots close to the mean water table of the corresponding treatment, allowing survival under altered conditions and resilience to successive stress events. Juvenile development was strongly impacted by the minimum flow regime, leading to more than 60% reduction of both above-ground and below-ground biomass, with respect to the other treatments. Hence, we suggest avoiding minimum flow regimes where Salix restoration is prioritized.
NASA Astrophysics Data System (ADS)
Medina-Silva, Renata; de Oliveira, Rafael R.; Pivel, Maria A. G.; Borges, Luiz G. A.; Simão, Taiz L. L.; Pereira, Leandro M.; Trindade, Fernanda J.; Augustin, Adolpho H.; Valdez, Fernanda P.; Eizirik, Eduardo; Utz, Laura R. P.; Groposo, Claudia; Miller, Dennis J.; Viana, Adriano R.; Ketzer, João M. M.; Giongo, Adriana
2018-02-01
Conspicuous physicochemical vertical stratification in the deep sea is one of the main forces driving microbial diversity in the oceans. Oxygen and sunlight availability are key factors promoting microbial diversity throughout the water column. Ocean currents also play a major role in the physicochemical stratification, carrying oxygen down to deeper zones as well as moving deeper water masses up towards shallower depths. Water samples within a 50-km radius in a pockmark location of the southwestern Atlantic Ocean were collected and the prokaryotic communities from different water depths - chlorophyll maximum, oxygen minimum and deep-sea bottom (down to 1355 m) - were described. At phylum level, Proteobacteria were the most frequent in all water depths, Cyanobacteria were statistically more frequent in chlorophyll maximum zone, while Thaumarchaeota were significantly more abundant in both oxygen minimum and bottom waters. The most frequent microorganism in the chlorophyll maximum and oxygen minimum zones was a Pelagibacteraceae operational taxonomic unit (OTU). At the bottom, the most abundant genus was the archaeon Nitrosopumilus. Beta diversity analysis of the 16S rRNA gene sequencing data uncovered in this study shows high spatial heterogeneity among water zones communities. Our data brings important contribution for the characterisation of oceanic microbial diversity, as it consists of the first description of prokaryotic communities occurring in different oceanic water zones in the southwestern Atlantic Ocean.
Koltun, G.F.
2014-01-01
This report presents the results of a study to assess potential water availability from the Charles Mill, Clendening, Piedmont, Pleasant Hill, Senecaville, and Wills Creek Lakes, located within the Muskingum River Watershed, Ohio. The assessment was based on the criterion that water withdrawals should not appreciably affect maintenance of recreation-season pool levels in current use. To facilitate and simplify the assessment, it was assumed that historical lake operations were successful in maintaining seasonal pool levels, and that any discharges from lakes constituted either water that was discharged to prevent exceeding seasonal pool levels or discharges intended to meet minimum in-stream flow targets downstream from the lakes. It further was assumed that the volume of water discharged in excess of the minimum in-stream flow target is available for use without negatively impacting seasonal pool levels or downstream water uses and that all or part of it is subject to withdrawal. Historical daily outflow data for the lakes were used to determine the quantity of water that potentially could be withdrawn and the resulting quantity of water that would flow downstream (referred to as “flow-by”) on a daily basis as a function of all combinations of three hypothetical target minimum flow-by amounts (1, 2, and 3 times current minimum in-stream flow targets) and three pumping capacities (1, 2, and 3 million gallons per day). Using both U.S. Geological Survey streamgage data (where available) and lake-outflow data provided by the U.S. Army Corps of Engineers resulted in analytical periods ranging from 51 calendar years for Charles Mill, Clendening, and Piedmont Lakes to 74 calendar years for Pleasant Hill, Senecaville, and Wills Creek Lakes. The observed outflow time series and the computed time series of daily flow-by amounts and potential withdrawals were analyzed to compute and report order statistics (95th, 75th, 50th, 25th, 10th, and 5th percentiles) and means for the analytical period, in aggregate, and broken down by calendar month. In addition, surplus-water mass curve data were tabulated for each of the lakes. Monthly order statistics of computed withdrawals indicated that, for the three pumping capacities considered, increasing the target minimum flow-by amount tended to reduce the amount of water that can be withdrawn. The reduction was greatest in the lower percentiles of withdrawal; however, increasing the flow-by amount had no impact on potential withdrawals during high flow. In addition, for a given target minimum flow-by amount, increasing the pumping rate typically increased the total amount of water that could be withdrawn; however, that increase was less than a direct multiple of the increase in pumping rate for most flow statistics. Potential monthly withdrawals were observed to be more variable and more limited in some calendar months than others. Monthly order statistics and means of computed daily mean flow-by amounts indicated that flow-by amounts generally tended to be lowest during June–October. Increasing the target minimum flow-by amount for a given pumping rate resulted in some small increases in the magnitudes of the mean and 50th percentile and lower order statistics of computed mean flow-by, but had no effect on the magnitudes of the higher percentile statistics. Increasing the pumping rate for a given target minimum flow-by amount resulted in decreases in magnitudes of higher-percentile flow-by statistics by an amount equal to the flow equivalent of the increase in pumping rate; however, some lower percentile statistics remained unchanged.
The Water Level and Transport Regimes of the Lower Columbia River
NASA Astrophysics Data System (ADS)
Jay, D. A.
2011-12-01
Tidal rivers are vital, spatially extensive conduits of material from land to sea. Yet the tidal-fluvial regime remains poorly understood relative to the bordering fluvial and estuarine/coastal regimes with which it interacts. The 235km-long Lower Columbia River (LCR) consists of five zones defined by topographic constrictions: a 5km-long ocean-entrance, the lower estuary (15km), an energy-minimum (67km), the tidal river (142km), and a landslide zone (5km). Buoyant plume lift-off occurs within the entrance zone, which is dominated by tidal and wave energy. The lower estuary is strongly tidally, amplifies the semidiurnal tide, and has highly variable salinity intrusion. Tidal and fluvial influences are balanced in the wide energy-minimum, into which salinity intrudes during low-flow periods. It has a turbidity maximum and a dissipation minimum at its lower end, but a water-level variance minimum at its landward end. The tidal river shows a large increase in the ratio of fluvial-to-tidal energy in the landward direction and strong seasonal variations in tidal properties. Because tidal monthly water level variations are large, low waters are higher on spring than neap tides. The steep landslide zone has only weak tides and is the site of the most seaward hydropower dam. Like many dammed systems, the LCR has pseudo-tides: daily and weakly hydropower peaking waves that propagate seaward. Tidal constituent ratios vary in the alongchannel direction due to frictional non-linearities, the changing balance of dissipation vs. propagation, and power peaking. Long-term changes to the system have occurred due to climate change and direct human manipulation. Flood control, hydropower regulation, and diversion have reduced peak flows, total load and sand transport by ~45, 50 and 80%, respectively, causing a blue-shift in the flow and water level power spectra. Overbank flows have been largely eliminated through a redundant combination of diking and flow regulation. Export of sand to the ocean now occurs mainly through dredging, though fine sediment export may be higher than natural levels. Reduced sediment input and navigational development have reduced water levels in the upper tidal river by ~0.4/1.5m during low/high flow periods, impacting both navigation and shallow-water habitat availability. Tidal amplitudes have increased due both to increased coastal tides and reduced friction. This exacerbates difficulties with low-waters during fall neap tides. Climate-induced changes have so far had much less influence on system properties than human modifications. At present, regional sea level (RSL) rise and tectonic change are in balance, yielding no net sea level rise.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... SFP Purification Loop and recirculation and purification of the RWST water using the BARS is not... revise the minimum volume and low level setpoint on the Refueling Water Storage Tank. Because the... proposed change would revise Technical Specification 3.5.4, ``Refueling Water Storage Tank (RWST)'' such...
Predicting water table response to rainfall events, central Florida.
van Gaalen, J F; Kruse, S; Lafrenz, W B; Burroughs, S M
2013-01-01
A rise in water table in response to a rainfall event is a complex function of permeability, specific yield, antecedent soil-water conditions, water table level, evapotranspiration, vegetation, lateral groundwater flow, and rainfall volume and intensity. Predictions of water table response, however, commonly assume a linear relationship between response and rainfall based on cumulative analysis of water level and rainfall logs. By identifying individual rainfall events and responses, we examine how the response/rainfall ratio varies as a function of antecedent water table level (stage) and rainfall event size. For wells in wetlands and uplands in central Florida, incorporating stage and event size improves forecasting of water table rise by more than 30%, based on 10 years of data. At the 11 sites studied, the water table is generally least responsive to rainfall at smallest and largest rainfall event sizes and at lower stages. At most sites the minimum amount of rainfall required to induce a rise in water table is fairly uniform when the water table is within 50 to 100 cm of land surface. Below this depth, the minimum typically gradually increases with depth. These observations can be qualitatively explained by unsaturated zone flow processes. Overall, response/rainfall ratios are higher in wetlands and lower in uplands, presumably reflecting lower specific yields and greater lateral influx in wetland sites. Pronounced depth variations in rainfall/response ratios appear to correlate with soil layer boundaries, where corroborating data are available. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
Determination of minimum suction level necessary for field dental units.
Charlton, David G
2010-04-01
A significant problem with most field dental units is that their suction is too weak to effectively remove debris from the mouth. The purpose of this study was to determine the minimum clinically acceptable suction level for routine dentistry. A vacuum pump was connected to a high-volume dental evacuation line in a simulated clinical setting and different suction airflow rates were evaluated by nine evaluator dentists for their capability to effectively remove amalgam debris and water. Airflow levels were rated as "clinically acceptable" or "clinically unacceptable" by each evaluator. Data were analyzed using a chi2 test for trend. Analysis indicated a significant linear trend between airflow and ratings (p < 0.0001). The first airflow level considered by all evaluators as producing clinically acceptable suction was 4.5 standard cubic feet per minute (0.127 standard cubic meters per minute). This value should be the minimum level required for all military field dental units.
Alterations in freshwater inflow resulting from watershed development and water management practices have impacted salinity and water quality and led to declines in oyster populations within southwest Florida estuaries. In the Caloosahatchee Estuary, Florida watershed management ...
Quality of ground water used for selected municipal water supplies in Iowa, 1982-96 water years
Schaap, B.D.; Linhart, S.M.
1998-01-01
Maps show the general location of wells that have been sampled in the various aquifers. Other maps show the location of wells where sulfate and nitrite plus nitrate concentrations exceed the respective Maximum Contaminant Levels and wells where concentrations of the pesticides alachlor, atrazine, or cyanazine exceeded the respective minimum reporting levels. The compact disc included with this report has information about water-quality properties and concentrations of dissolved solids, major ions, nutrients, trace elements, radionuclides, total organic carbon, pesticides, and synthetic organic compounds for water years 1982 through 1996.
40 CFR 420.21 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission control system that utilizes filters to remove iron-bearing particles (fines) from blast furnace...-tetrachlorodibenzofuran, the minimum level is 10 pg/L per EPA Method 1613B for water and wastewater samples. (d) The term... term wet air pollution control system means an emission control system that utilizes water to clean...
Results of qualification tests on water-level sensing instruments, 1987
Olive, T.E.
1989-01-01
The U.S. Geological Survey 's Hydrologic Instrumentation Facility at the Stennis Space Center, Mississippi, conducts qualification tests on water level sensing instruments. Instrument systems, which meet or exceed the Survey 's minimum performance requirements, are placed on the Survey 's Qualified Products List. The qualification tests conducted in 1987 added two instrument systems to the Survey 's Qualified Products List. One system met requirements for use at a daily-discharge station , and the other system met requirements for a special-case station. The report is prepared for users of hydrologic instruments. The report provides a list of instrument features, describes the instrument systems, summarizes test procedures, and presents test results for the two instrument systems that met the Survey 's minimum performance standards for the 1987 round of qualification tests. (USGS)
Extreme value theory applied to the definition of bathing water quality discounting limits.
Haggarty, R A; Ferguson, C A; Scott, E M; Iroegbu, C; Stidson, R
2010-02-01
The European Community Bathing Water Directive (European Parliament, 2006) set compliance standards for bathing waters across Europe, with minimum standards for microbiological indicators to be attained at all locations by 2015. The Directive allows up to 15% of samples affected by short-term pollution episodes to be disregarded from the figures used to classify bathing waters, provided certain management criteria have been met, including informing the public of short-term water pollution episodes. Therefore, a scientifically justifiable discounting limit is required which could be used as a management tool to determine the samples that should be removed. This paper investigates different methods of obtaining discounting limits, focusing in particular on extreme value methodology applied to data from Scottish bathing waters. Return level based limits derived from threshold models applied at a site-specific level improved the percentage of sites which met at least the minimum required standard. This approach provides a method of obtaining limits which identify the samples that should be removed from compliance calculations, although care has to be taken in terms of the quantity of data which is removed. (c) 2009 Elsevier Ltd. All rights reserved.
ASSESSMENT OF RADON IN SOIL AND WATER IN DIFFERENT REGIONS OF KOLHAPUR DISTRICT, MAHARASHTRA, INDIA.
Raste, P M; Sahoo, B K; Gaware, J J; Sharma, Anil; Waikar, M R; Shaikh, A A; Sonkawade, R G
2018-03-19
Researchers have already established that inhalation of high radon concentration is hazardous to human health. Radon concentration has been measured in water and soil, in various part of Kolhapur district has been carried out by the AQTEK Smart RnDuo which is an active device technique. The observed minimum value of the radon mass exhalation rate of the soil is 13.16 ± 0.83 mBq/kg/h and maximum is 35.11 ± 1.84 mBq/kg/h. The minimum value of the Radon concentration in water is 0.33 ± 0.052 Bq/L and maximum is 7.32 ± 0.078 Bq/L. These values of radon concentration are below the action of recommended level by the USEPA, which is set as the maximum contaminant level of 11.1-148 Bq/L of radon in drinking water. Total annual effective dose rate of water is 11 μSv/y. The purpose of present study is to assess radiological risk from consumption of water that provide in Kolhapur district and to evaluate the radon mass exhalation rate of soil in few places of Kolhapur district.
Jeong, Byungkwan; Jeong, Eui-Suk; Malazarte, Jacqueline Martha; Sin, Yongsik
2016-05-14
Bioassay and gene expression experiments were conducted in order to evaluate the growth and physiology of Prorocentrum minimum isolated from a eutrophic coastal water in response to tannic acid. In the bioassay experiments, variations in abundance, chlorophyll (chl) a concentration, maximum fluorescence (in vivo Fm), and photosynthetic efficiency (Fv/Fm) were measured over the course of a seven-day incubation. Moreover, stress-related gene expression in both the control and an experimental (2.5 ppm TA treatment) group was observed for 24 h and 48 h. The molecular markers used in this study were the heat shock proteins (Hsp70 and Hsp90) and cyclophilin (CYP). The findings show that P. minimum can thrive and grow at low concentrations (<2.5 ppm) of tannic acid, and, above this concentration, cells begin to slow down development. In addition, TA concentration of 10 ppm halted photosynthetic activity. At the molecular level, treatment with tannic acid increased the expression of Hsp70, Hsp90, and CYP, and heat shock proteins are more upregulated than the cyclophilin gene. Exposure to tannic acid increased the expression of stress factors over time (48 h) by 10- to 27-fold the expression level of the control group. These results suggest that tannic acid can be used to control harmful algal blooms such as those containing P. minimum in eutrophic coastal waters.
Kelly, Brian P.; Rydlund, Jr., Paul H.
2006-01-01
Riverbank filtration substantially improves the source-water quality of the Independence, Missouri well field. Coliform bacteria, Cryptosporidium, Giardia, viruses and selected constituents were analyzed in water samples from the Missouri River, two vertical wells, and a collector well. Total coliform bacteria, Cryptosporidium, Giardia, and total culturable viruses were detected in the Missouri River, but were undetected in samples from wells. Using minimum reporting levels for non-detections in well samples, minimum log removals were 4.57 for total coliform bacteria, 1.67 for Cryptosporidium, 1.67 for Giardia, and 1.15 for total culturable virus. Ground-water flow rates between the Missouri River and wells were calculated from water temperature profiles and ranged between 1.2 and 6.7 feet per day. Log removals based on sample pairs separated by the traveltime between the Missouri River and wells were infinite for total coliform bacteria (minimum detection level equal to zero), between 0.8 and 3.5 for turbidity, between 1.5 and 2.1 for Giardia, and between 0.4 and 2.6 for total culturable viruses. Cryptosporidium was detected once in the Missouri River but no corresponding well samples were available. No clear relation was evident between changes in water quality in the Missouri River and in wells for almost all constituents. Results of analyses for organic wastewater compounds and the distribution of dissolved oxygen, specific conductance, and temperature in the Missouri River indicate water quality on the south side of the river was moderately influenced by the south bank inflows to the river upstream from the Independence well field.
49 CFR 194.103 - Significant and substantial harm; operator's statement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... a stress level greater than 50 percent of the specified minimum yield strength of the pipe, (4) Is located within a 5 mile (8 kilometer) radius of potentially affected public drinking water intakes and could reasonably be expected to reach public drinking water intakes, or (5) Is located within a 1 mile...
49 CFR 194.103 - Significant and substantial harm; operator's statement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... a stress level greater than 50 percent of the specified minimum yield strength of the pipe, (4) Is located within a 5 mile (8 kilometer) radius of potentially affected public drinking water intakes and could reasonably be expected to reach public drinking water intakes, or (5) Is located within a 1 mile...
Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995
Haggard, Brian; Green, W. Reed
2002-01-01
The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.
40 CFR 131.6 - Minimum requirements for water quality standards submission.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Minimum requirements for water quality standards submission. 131.6 Section 131.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS General Provisions § 131.6 Minimum requirements for water quality standards submission. The...
40 CFR 131.6 - Minimum requirements for water quality standards submission.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Minimum requirements for water quality standards submission. 131.6 Section 131.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS General Provisions § 131.6 Minimum requirements for water quality standards submission. The...
Shono, Tomoki; Masumoto, Kenji; Fujishima, Kazutaka; Hotta, Noboru; Ogaki, Tetsuro; Adachi, Takahiro
2007-11-01
This study sought to determine the characteristics of gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow. Eight female subjects (61.4+/-3.9 y) performed underwater and land treadmill walking at varying exercise intensities and velocities. During underwater walking (water level at the xiphoid process) using the Flowmill, which has a treadmill at the base of a water flume, the simultaneous belt and water flow velocities were set to 20, 30 and 4 m.min(-1). Land walking velocities were set to 40, 60 and 80 m.min(-1). Oxygen uptake and heart rate were measured during both walking exercises. Maximum and minimum knee joint angles, and mean angular velocities of knee extension and knee flexion in the swing phase were calculated using two-dimensional motion analysis. Electromyograms were recorded using bipolar surface electrodes for five muscles: the tibialis anterior (TA), medial gastrocnemius (MG), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF). At the same exercise intensity level, cadence was almost half that on land. Step length did not differ significantly because velocity was halved. Compared to land walking, the maximum and minimum knee joint angles were significantly smaller and the mean angular velocity of knee extension was significantly lower. Knee extension in the swing phase was limited by water resistance. While the muscle activity levels of TA, VM and BF were almost the same as during land walking, those of MG and RF were lower. At the same velocity, exercise intensity was significantly higher than during land walking, cadence was significantly lower, and step length significantly larger. The knee joint showed significantly smaller maximum and minimum angles, and the mean angular velocity of knee flexion was significantly larger. The muscle activity levels of TA, VM, and BF increased significantly in comparison with land walking, although those of MG and RF did not significantly differ. Given our findings, it appears that buoyancy, lower cadence, and a moving floor influenced the muscle activity level of MG and RF at the same exercise intensity level and at the same velocity. These results show promise of becoming the basic data of choice for underwater walking exercise prescription.
Westenburg, C.L.; La Camera, R. J.
1996-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1994. Data collected prior to 1994 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-94.
Trends in Water Level and Flooding in Dhaka, Bangladesh and Their Impact on Mortality
Thiele-Eich, Insa; Burkart, Katrin; Simmer, Clemens
2015-01-01
Climate change is expected to impact flooding in many highly populated coastal regions, including Dhaka (Bangladesh), which is currently among the fastest growing cities in the world. In the past, high mortality counts have been associated with extreme flood events. We first analyzed daily water levels of the past 100 years in order to detect potential shifts in extremes. A distributed lag non-linear model was then used to examine the connection between water levels and mortality. Results indicate that for the period of 2003–2007, which entails two major flood events in 2004 and 2007, high water levels do not lead to a significant increase in relative mortality, which indicates a good level of adaptation and capacity to cope with flooding. However, following low water levels, an increase in mortality could be found. As our trend analysis of past water levels shows that minimum water levels have decreased during the past 100 years, action should be taken to ensure that the exposed population is also well-adapted to drought. PMID:25648177
Oxygen and Temperature Effects on Vertically Migrating Animals in Oxygen Minimum Zones
NASA Astrophysics Data System (ADS)
Seibel, B.
2016-02-01
Large populations of oceanic nekton and zooplankton undergo daily migrations from shallow water at night to depths greater than 200 m during the daytime. In some regions, these migrations cross extreme gradients of temperature, oxygen and carbon dioxide. Oxygen minimum zones (OMZs) are extensive and characterized by deep-water (100-800 m) oxygen partial pressures that would be lethal to most marine organisms, yet are tolerated by vertical migrators. Climate change is predicted to further deplete oxygen, and measurable reductions in oxygen have already been documented in some regions. Increases in shallow water temperature and carbon dioxide are occurring simultaneously. Oxygen levels and temperature are important drivers of biodiversity and distribution, and documented changes in community structure and function are reportedly associated with OMZ expansion and warming. Here I answer fundamental questions concerning zooplankton distributions, adaptations, and functions in oxygen minimum zones. In particular I report that metabolic suppression is a common strategy that facilitates diel occupancy of extreme hypoxia in many oceanic taxa. Anaerobic metabolic pathways play a minimal role in compensating for reduced aerobic ATP production. Numerous epigenetic mechanisms lead to reductions in energetically costly cellular processes, such as transcription and translation. Total metabolism is reduced by 50% or more during exposure to levels of hypoxia that characterize the daytime habitat for most vertically-migrating zooplankton. I further show that many migrators approach their upper thermal maximum in shallow water at night. Thus expanding OMZs and global warming may together compress the habitable depth range for many species.
Temporal variation of VOC emission from solvent and water based wood stains
NASA Astrophysics Data System (ADS)
de Gennaro, Gianluigi; Loiotile, Annamaria Demarinis; Fracchiolla, Roberta; Palmisani, Jolanda; Saracino, Maria Rosaria; Tutino, Maria
2015-08-01
Solvent- and water-based wood stains were monitored using a small test emission chamber in order to characterize their emission profiles in terms of Total and individual VOCs. The study of concentration-time profiles of individual VOCs enabled to identify the compounds emitted at higher concentration for each type of stain, to examine their decay curve and finally to estimate the concentration in a reference room. The solvent-based wood stain was characterized by the highest Total VOCs emission level (5.7 mg/m3) that decreased over time more slowly than those related to water-based ones. The same finding was observed for the main detected compounds: Benzene, Toluene, Ethylbenzene, Xylenes, Styrene, alpha-Pinene and Camphene. On the other hand, the highest level of Limonene was emitted by a water-based wood stain. However, the concentration-time profile showed that water-based product was characterized by a remarkable reduction of the time of maximum and minimum emission: Limonene concentration reached the minimum concentration in about half the time compared to the solvent-based product. According to AgBB evaluation scheme, only one of the investigated water-based wood stains can be classified as a low-emitting product whose use may not determine any potential adverse effect on human health.
Four groups (minimum of 10/dose group) of male Dutch-Belted rabbits were treated daily to dibromoacetic acid (DBA) via drinking water beginning in utero from gestation day 15 throughout life; target dosages were 1, 5, and 50 mg DBA /kg body weight. Developmental, prepubertal as ...
Sensitivity of Water-Energy Nexus to dam operation: A Water-Energy Productivity concept.
Basheer, Mohammed; Elagib, Nadir Ahmed
2018-03-01
Understanding and modelling the complex nature of interlinkages between water and energy are essential for efficient use of the two resources. Hydropower storage dams represent an interesting example of the water-energy interdependencies since they are often multipurpose. The concept of Water-Energy Productivity (WEP), defined as the amount of energy produced per unit of water lost in the process, is introduced in this study to illustrate the relationship between energy generation and water losses by examining the sensitivity of the Water-Energy Nexus (WEN) to changing dam operation policy. This concept is demonstrated by developing a water allocation model of the White Nile in Sudan, including Jebel Aulia Dam (JAD), using a general river and reservoir simulation software called RiverWare. A number of 77 operation scenarios of JAD are examined for 30 hydrologic years (1980-2009), considering reducing the Full Supply Level (FSL) gradually from its current value to the minimum possible value, increasing the Minimum Operating Level (MOL) gradually to the maximum possible level, and operating the dam at a Constant Operating Level (COL). The results show that raising the operating level does not necessarily increase the WEP. In comparison to the current policy, the analysis shows that a maximum WEP of 32.6GWh/BCM (GWh/Billion Cubic Meters) would be reached by raising the MOL to 375masl (meters above sea level), resulting in an increase in average annual energy generation to 164.6GWh (+18.1%) at the expense of an annual water loss of 5.05BCM (+12.7%). Even though this operation policy results in a more efficient water use compared to the original operation policy, a basin-wide assessment that includes all hydropower storage dams in the Nile basin should be conducted to decide on where and how much energy should be generated. The present analysis and future examination of the multi-dimensions of the WEN in the context of dam operation are imperative to improve the decision making in the quest for efficient resource use and management. Copyright © 2017 Elsevier B.V. All rights reserved.
Rickman, Ronald L.
1998-01-01
A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate habitat for salmon incubation. The study that determined this minimum flow did not account for the effects of ice formation on habitat. The limiting factor for determining the minimal acceptable flow limit appears to be stream-water velocity. The minimum short-term flow needed to ensure adequate salmon incubation habitat when ice is present is about 30 cubic feet per second. For long-term flows, 40 cubic feet per second is adequate when ice is present. Long-term minimum discharge needed to ensure adequate incubation habitat--which is based on mean velocity alone--is as follows: 40 cubic feet per second when ice is forming; 35 cubic feet per second for stable and eroding ice conditions; and 30 cubic feet per second for ice-free conditions. The effects of long-term streamflow less than 40 cubic feet per second on fine-sediment deposition and dissolved-oxygen interchange could not be extrapolated from the data. Hydrologic properties and water-quality data were measured in winter only from March 1993 to April 1998 at six transects in the lower Bradley River under three phases of icing: forming, stable, and eroding. Discharge in the lower Bradley River ranged from 33.3 to 73.0 cubic feet per second during all phases of ice formation and ice conditions, which ranged from ice free to 100 percent ice cover. Hydrostatic head was adequate for habitat protection for all ice phases and discharges. Mean stream velocity was adequate for all but one ice-forming episode. Velocity distribution within each transect varied significantly from one sampling period to the next. No relation was found between ice phase, discharge, and wetted perimeter. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface- and intragravel-water dissolved-oxygen levels were adequate for all ice phases and discharges. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Fine-sediment deposition was greatest at the downstream end of the study reach because of low shear velocities and tide-induced deposition. Dissolved-oxygen interchange was adequate for all discharges and ice conditions. Stranding potential of salmon fry was found to be low throughout the study reach. Minimum flows from the fish-water bypass needed to maintain 40 cubic feet per second in the lower Bradley River are estimated.
Ammonia-water cation and ammonia dimer cation.
Kim, Hahn; Lee, Han Myoung
2009-06-25
We have investigated the structure, interaction energy, electronic properties, and IR spectra of the ammonia-water cation (NH(3)H(2)O)(+) using density functional theory (DFT) and high-level ab initio theory. The ammonia-water cation has three minimum-energy structures of (a) H(2)NH(+)...OH(2), (b) H(3)N(+)...OH(2), and (c) H(3)NH(+)...OH. The lowest-energy structure is (a), followed by (c) and (b). The ammonia dimer cation has two minimum-energy structures [the lowest H(3)NH(+)...NH(2) structure and the second lowest (H(3)N...NH(3))(+) structure]. The minimum transition barrier for the interconversion between (a), (b), and (c) is approximately 6 kcal/mol. Most DFT calculations with various functionals, except a few cases, overstabilize the N...O and N...N binding, predicting different structures from Moller-Plesset second-order perturbation (MP2) theory and the most reliable complete basis set (CBS) limit of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. Thus, the validity test of the DFT functionals for these ionized molecular systems would be of importance.
Vrabel, Joseph; Teeple, Andrew; Kress, Wade H.
2009-01-01
With increasing demands for reliable water supplies and availability estimates, groundwater flow models often are developed to enhance understanding of surface-water and groundwater systems. Specific hydraulic variables must be known or calibrated for the groundwater-flow model to accurately simulate current or future conditions. Surface geophysical surveys, along with selected test-hole information, can provide an integrated framework for quantifying hydrogeologic conditions within a defined area. In 2004, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, performed a surface geophysical survey using a capacitively coupled resistivity technique to map the lithology within the top 8 meters of the near-surface for 110 kilometers of the Interstate and Tri-State Canals in western Nebraska and eastern Wyoming. Assuming that leakage between the surface-water and groundwater systems is affected primarily by the sediment directly underlying the canal bed, leakage potential was estimated from the simple vertical mean of inverse-model resistivity values for depth levels with geometrically increasing layer thickness with depth which resulted in mean-resistivity values biased towards the surface. This method generally produced reliable results, but an improved analysis method was needed to account for situations where confining units, composed of less permeable material, underlie units with greater permeability. In this report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, the authors use geostatistical analysis to develop the minimum-unadjusted method to compute a relative leakage potential based on the minimum resistivity value in a vertical column of the resistivity model. The minimum-unadjusted method considers the effects of homogeneous confining units. The minimum-adjusted method also is developed to incorporate the effect of local lithologic heterogeneity on water transmission. Seven sites with differing geologic contexts were selected following review of the capacitively coupled resistivity data collected in 2004. A reevaluation of these sites using the mean, minimum-unadjusted, and minimum-adjusted methods was performed to compare the different approaches for estimating leakage potential. Five of the seven sites contained underlying confining units, for which the minimum-unadjusted and minimum-adjusted methods accounted for the confining-unit effect. Estimates of overall leakage potential were lower for the minimum-unadjusted and minimum-adjusted methods than those estimated by the mean method. For most sites, the local heterogeneity adjustment procedure of the minimum-adjusted method resulted in slightly larger overall leakage-potential estimates. In contrast to the mean method, the two minimum-based methods allowed the least permeable areas to control the overall vertical permeability of the subsurface. The minimum-adjusted method refined leakage-potential estimation by additionally including local lithologic heterogeneity effects.
Winslow, Stephen D; Pepich, Barry V; Martin, John J; Hallberg, George R; Munch, David J; Frebis, Christopher P; Hedrick, Elizabeth J; Krop, Richard A
2006-01-01
The United States Environmental Protection Agency's Office of Ground Water and Drinking Water has developed a single-laboratory quantitation procedure: the lowest concentration minimum reporting level (LCMRL). The LCMRL is the lowest true concentration for which future recovery is predicted to fall, with high confidence (99%), between 50% and 150%. The procedure takes into account precision and accuracy. Multiple concentration replicates are processed through the entire analytical method and the data are plotted as measured sample concentration (y-axis) versus true concentration (x-axis). If the data support an assumption of constant variance over the concentration range, an ordinary least-squares regression line is drawn; otherwise, a variance-weighted least-squares regression is used. Prediction interval lines of 99% confidence are drawn about the regression. At the points where the prediction interval lines intersect with data quality objective lines of 50% and 150% recovery, lines are dropped to the x-axis. The higher of the two values is the LCMRL. The LCMRL procedure is flexible because the data quality objectives (50-150%) and the prediction interval confidence (99%) can be varied to suit program needs. The LCMRL determination is performed during method development only. A simpler procedure for verification of data quality objectives at a given minimum reporting level (MRL) is also presented. The verification procedure requires a single set of seven samples taken through the entire method procedure. If the calculated prediction interval is contained within data quality recovery limits (50-150%), the laboratory performance at the MRL is verified.
18 CFR 420.42 - Contracts; minimum charge.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Contracts; minimum charge. 420.42 Section 420.42 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.42 Contracts; minimum...
Nageswar Rao, M; Ram, Anirudh; Rokade, M A; Raja, P; Rakesh, P S; Chemburkar, Parul; Gajbhiye, S N
2016-07-01
Amba Estuary, which receives effluent from several industries including a petrochemical complex, opens to the southern limits of the Mumbai Harbor. The study was conducted to find out the level of Total Petroleum Hydrocarbons (TPHs) in water and their bioconcentration in ten commercially important fishes from Amba Estuary during different months. In water high concentration of TPHs (39.7 μg/L) was obtained during December (middle of estuary) and minimum value (7.2 μg/L) was observed in September (lower estuarine). The maximum concentration of TPHs was found to be in Trichiurus savala (3.2 µg/g) during December and minimum in Boleophthalmus sp (0.4 µg/g) during May. Irrespective of the monthly variations, TPHs accumulation in all the species was considerably lower than hazardous levels. Although there was no statistical significance between TPHs and total length/weight, the T. savala recording maximum concentration during all months and it can be used as indicator of hydrocarbon pollution in this region.
NASA Astrophysics Data System (ADS)
Yeghiazarian, L.; Riasi, M. S.
2016-12-01
Although controlling the level of contamination everywhere in the surface water network may not be feasible, it is vital to maintain safe water quality levels in specific areas, e.g. recreational waters. The question then is "what is the most efficient way to fully/partially control water quality in surface water networks?". This can be posed as a control problem where the goal is to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to (1) finding the best control locations in the network to influence the state of the system; and (2) choosing the time-variant inputs at the control locations to achieve the desired state of the system with minimum effort. We demonstrate that the optimal solution to control the level of contamination in the network can be found through application of control theory concepts to transport in dendritic surface water networks.
Tan, Qiu-Xia; Zhu, Boi; Hua, Ke-Ke
2013-08-01
The water-level fluctuation zone of the Three Gorges Reservoir (TGR) exposes in spring and summer, then, green plants especially herbaceous plants grow vigorously. In the late of September, water-level fluctuation zone of TGR goes to inundation. Meanwhile, annually accumulated biomass of plant will be submerged for decaying, resulting in organism decomposition and release a large amount of dissolved organic carbon (DOC). This may lead to negative impacts on water environment of TGR. The typical herbaceous plants from water-level fluctuation zone were collected and inundated in the laboratory for dynamic measurements of DOC concentration of overlying water. According to the determination, the DOC release rates and fluxes have been calculated. Results showed that the release process of DOC variation fitted in a parabolic curve. The peak DOC concentrations emerge averagely in the 15th day of inundation, indicating that DOC released quickly with organism decay of herbaceous plant. The release process of DOC could be described by the logarithm equation. There are significant differences between the concentration of DOC (the maximum DOC concentration is 486.88 mg x L(-1) +/- 35.97 mg x L(-1) for Centaurea picris, the minimum is 4.18 mg x L(-1) +/- 1.07 mg x L(-1) for Echinochloacrus galli) and the release amount of DOC (the maximum is 50.54 mg x g(-1) for Centaurea picris, the minimum is 6.51 mg x g(-1) for Polygonum hydropiper) due to different characteristics of plants, especially, the values of C/N of herbaceous plants. The cumulative DOC release quantities during the whole inundation period were significantly correlated with plants' C/N values in linear equations.
Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.
2003-01-01
Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.
NASA Astrophysics Data System (ADS)
Stein, Robyn; Niklaas, Lindie
This paper will examine the legal implications of the South African Constitutional judgement of Government of the Republic of South Africa and others vs Grootboom and others (2001(1) SA 46 (CC)) in view of the developing debate on socio-economic rights under the constitution on the constitutional right of access to sufficient water. It will look at the manner in which effect is being given to this right at municipal level through the provision of free water and the constitutional implications of an adequate basic minimum level set by the State and local authorities. The paper will also explore the implications of relevant legislation, which enables local authorities to cut off water supplies as well as the implications of the Grootboom decision for communities facing water cut-offs.
Behavioral and physiological significance of minimum resting metabolic rate in king penguins.
Halsey, L G; Butler, P J; Fahlman, A; Woakes, A J; Handrich, Y
2008-01-01
Because fasting king penguins (Aptenodytes patagonicus) need to conserve energy, it is possible that they exhibit particularly low metabolic rates during periods of rest. We investigated the behavioral and physiological aspects of periods of minimum metabolic rate in king penguins under different circumstances. Heart rate (f(H)) measurements were recorded to estimate rate of oxygen consumption during periods of rest. Furthermore, apparent respiratory sinus arrhythmia (RSA) was calculated from the f(H) data to determine probable breathing frequency in resting penguins. The most pertinent results were that minimum f(H) achieved (over 5 min) was higher during respirometry experiments in air than during periods ashore in the field; that minimum f(H) during respirometry experiments on water was similar to that while at sea; and that RSA was apparent in many of the f(H) traces during periods of minimum f(H) and provides accurate estimates of breathing rates of king penguins resting in specific situations in the field. Inferences made from the results include that king penguins do not have the capacity to reduce their metabolism to a particularly low level on land; that they can, however, achieve surprisingly low metabolic rates at sea while resting in cold water; and that during respirometry experiments king penguins are stressed to some degree, exhibiting an elevated metabolism even when resting.
Effect of water on hydrogen permeability
NASA Technical Reports Server (NTRS)
Hulligan, David; Tomazic, William A.
1987-01-01
Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.
Low Impact Development in Army Construction
2012-05-01
recycling , to reduce outdoor potable water consumption by a minimum of 50 percent over that consumed by conventional means (plant species and plant...Infiltration trenches • Subsurface infiltration beds • Bioretention • Level spreaders • Native revegetation • Pervious pavement with infiltration
Code of Federal Regulations, 2010 CFR
2010-07-01
... following requirements: (1) You must reduce your intake flow, at a minimum, to a level commensurate with... that the total design intake flow from all cooling water intake structures at your facility meets the... total design intake flow must be no greater than five (5) percent of the source water annual mean flow...
NASA Astrophysics Data System (ADS)
Scopélitis, J.; Andréfouët, S.; Phinn, S.; Done, T.; Chabanet, P.
2011-12-01
Observations made on Heron Island reef flat during the 1970s-1990s highlighted the importance of rapid change in hydrodynamics and accommodation space for coral development. Between the 1940s and the 1990s, the minimum reef-flat top water level varied by some tens of centimetres, successively down then up, in rapid response to local engineering works. Coral growth followed sea-level variations and was quantified here for several coral communities using horizontal two-dimensional above water remotely sensed observations. This required seven high spatial resolution aerial photographs and Quickbird satellite images spanning 35 years: 1972, 1979, 1990, 1992, 2002, 2006 and 2007. The coral growth dynamics followed four regimes corresponding to artificially induced changes in sea levels: 1972-1979 (lowest growth rate): no detectable coral development, due to high tidal currents and minimum mean low-tide water level; 1979-1991 (higher growth rate): horizontal coral development promoted by calmer hydrodynamic conditions; 1991-2001(lower growth rate): vertical coral development, induced by increased local sea level by ~12 cm due to construction of new bund walls; 2001-2007 (highest growth rate): horizontal coral development after that vertical growth had become limited by sea level. This unique time-series displays a succession of ecological stage comprising a `catch-up' dynamic in response to a rapid local sea-level rise in spite of the occurrences of the most severe bleaching events on record (1998, 2002) and the decreasing calcification rates reported in massive corals in the northern part of the Great Barrier Reef.
Risk assessment of groundwater level variability using variable Kriging methods
NASA Astrophysics Data System (ADS)
Spanoudaki, Katerina; Kampanis, Nikolaos A.
2015-04-01
Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). Varouchakis, E. A. and D. T. Hristopulos (2013). "Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables." Advances in Water Resources 52: 34-49. Kitanidis, P. K. (1997). Introduction to geostatistics, Cambridge: University Press.
Estimation of Missing Water-Level Data for the Everglades Depth Estimation Network (EDEN)
Conrads, Paul; Petkewich, Matthew D.
2009-01-01
The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and water-surface elevation models designed to provide scientists, engineers, and water-resource managers with current (2000-2009) water-depth information for the entire freshwater portion of the greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN and their goal of providing quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. To increase the accuracy of the daily water-surface elevation model, water-level estimation equations were developed to fill missing data. To minimize the occurrences of no estimation of data due to missing data for an input station, a minimum of three linear regression equations were developed for each station using different input stations. Of the 726 water-level estimation equations developed to fill missing data at 239 stations, more than 60 percent of the equations have coefficients of determination greater than 0.90, and 92 percent have an coefficient of determination greater than 0.70.
NASA Astrophysics Data System (ADS)
Jiang, Y.; Liu, J.-R.; Luo, Y.; Yang, Y.; Tian, F.; Lei, K.-C.
2015-11-01
Groundwater in Beijing has been excessively exploited in a long time, causing the groundwater level continued to declining and land subsidence areas expanding, which restrained the economic and social sustainable development. Long years of study show good time-space corresponding relationship between groundwater level and land subsidence. To providing scientific basis for the following land subsidence prevention and treatment, quantitative research between groundwater level and settlement is necessary. Multi-linear regression models are set up by long series factual monitoring data about layered water table and settlement in the Tianzhu monitoring station. The results show that: layered settlement is closely related to water table, water level variation and amplitude, especially the water table. Finally, according to the threshold value in the land subsidence prevention and control plan of China (45, 30, 25 mm), the minimum allowable layered water level in this region while settlement achieving the threshold value is calculated between -18.448 and -10.082 m. The results provide a reasonable and operable control target of groundwater level for rational adjustment of groundwater exploited horizon in the future.
30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...
Locke, Glenn L.
2008-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.
Present and Future Water Supply for Mammoth Cave National Park, Kentucky
Cushman, R.V.; Krieger, R.A.; McCabe, John A.
1965-01-01
The increase in the number of visitors during the past several years at Mammoth Cave National Park has rendered the present water supply inadequate. Emergency measures were necessary during August 1962 to supplement the available supply. The Green River is the largest potential source of water supply for Mammoth Cave. The 30-year minimum daily discharge is 40 mgd (million gallons per day) . The chemical quality is now good, but in the past the river has been contaminated by oil-field-brine wastes. By mixing it with water from the existing supply, Green River water could be diluted to provide water of satisfactory quality in the event of future brine pollution. The Nolin River is the next largest potential source of water (minimum releases from Nolin Reservoir, 97-129 mgd). The quality is satisfactory, but use of this source would require a 8-mile pipeline. The present water supply comes from springs draining a perched aquifer in the Haney Limestone Member of the Golconda Formation on Flint Ridge. Chemical quality is excellent but the minimum observed flow of all the springs on Flint Ridge plus Bransford well was only 121,700 gpd (gallons per day). This supply is adequate for present needs but not for future requirements; it could be augmented with water from the Green River. Wet Prong Buffalo Creek is the best of several small-stream supplies in the vicinity of Mammoth Cave. Minimum flow of the creek is probably about 300,000 gpd and the quality is good. The supply is about 5 miles from Mammoth Cave. This supply also may be utilized for a future separate development in the northern part of the park. The maximum recorded yield of wells drilled into the basal ground water in the Ste. Genevieve and St. Louis Limestone is 36 gpm (gallons per minute). Larger supplies may be developed if a large underground stream is struck. Quality can be expected to be good unless the well is drilled too far below the basal water table and intercepts poorer quality water at a lower level. This source of supply might be used to augment the present supply, but locating the trunk conduits might be difficult. Water in alluvium adjacent to the Green River and perched water in the Big Clifty Sandstone Member of the Golconda Formation and Girkin Formation have little potential as a water supply.
A model for estimating pathogen variability in shellfish and predicting minimum depuration times.
McMenemy, Paul; Kleczkowski, Adam; Lees, David N; Lowther, James; Taylor, Nick
2018-01-01
Norovirus is a major cause of viral gastroenteritis, with shellfish consumption being identified as one potential norovirus entry point into the human population. Minimising shellfish norovirus levels is therefore important for both the consumer's protection and the shellfish industry's reputation. One method used to reduce microbiological risks in shellfish is depuration; however, this process also presents additional costs to industry. Providing a mechanism to estimate norovirus levels during depuration would therefore be useful to stakeholders. This paper presents a mathematical model of the depuration process and its impact on norovirus levels found in shellfish. Two fundamental stages of norovirus depuration are considered: (i) the initial distribution of norovirus loads within a shellfish population and (ii) the way in which the initial norovirus loads evolve during depuration. Realistic assumptions are made about the dynamics of norovirus during depuration, and mathematical descriptions of both stages are derived and combined into a single model. Parameters to describe the depuration effect and norovirus load values are derived from existing norovirus data obtained from U.K. harvest sites. However, obtaining population estimates of norovirus variability is time-consuming and expensive; this model addresses the issue by assuming a 'worst case scenario' for variability of pathogens, which is independent of mean pathogen levels. The model is then used to predict minimum depuration times required to achieve norovirus levels which fall within possible risk management levels, as well as predictions of minimum depuration times for other water-borne pathogens found in shellfish. Times for Escherichia coli predicted by the model all fall within the minimum 42 hours required for class B harvest sites, whereas minimum depuration times for norovirus and FRNA+ bacteriophage are substantially longer. Thus this study provides relevant information and tools to assist norovirus risk managers with future control strategies.
40 CFR 133.102 - Secondary treatment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Secondary treatment. 133.102 Section 133.102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS SECONDARY TREATMENT REGULATION § 133.102 Secondary treatment. The following paragraphs describe the minimum level of...
NASA Astrophysics Data System (ADS)
Li, Dong Feng; Bai, Fu Qing; Nie, Hui
2018-06-01
In order to analyze the influence of bridge holes widening on hydrodynamic such as water level, a two-dimensional mathematical model was used to calculate the hydrodynamic factors, river network flow velocity vector distribution is given, water level and difference of bridge widening before and after is calculated and charted, water surface gradient in seven different river sections near the upper reaches of bridges is counted and revealed. The results of hydrodynamic calculation indicate that The Maximum and the minimum deducing numerical value of the water level after bridge widening is 0.028m, and 0.018m respective. the seven sections water surface gradient becomes smaller until it becomes negative, the influence of bridge widening on the upstream is basically over, the range of influence is about 450m from the bridge to the upstream. reach
Goldstein, F.J.; Weight, W.D.
1982-01-01
The Idaho National Engineering Laboratory (INEL) covers about 890 square miles of the eastern Snake River Plain, in southeastern Idaho. The eastern Snake River Plain is a structural basin which has been filled with thin basaltic lava flows, rhyolitic deposits, and interbedded sediments. These rocks form an extensive ground-water reservoir known as the Snake River Plain aquifer. Six wells were drilled and two existing wells were deepened at the INEL from 1969 through 1974. Interpretation of data from the drilling program confirms that the subsurface is dominated by basalt flows interbedded with layers of sediment, cinders, and silicic volcanic rocks. Water levels in the wells show cyclic seasonal fluctuations of maximum water levels in winter and minimum water levels in mid-summer. Water levels in three wells near the Big Lost River respond to changes in recharge to the Snake River Plain aquifer from the Big Lost River. Measured water levels in multiple piezometers in one well indicate increasing pressure heads with depth. A marked decline in water levels in the wells since 1977 is attributed to a lack of recharge to the Snake River Plain aquifer.
Havelaar, Arie H; Vazquez, Kathleen M; Topalcengiz, Zeynal; Muñoz-Carpena, Rafael; Danyluk, Michelle D
2017-10-09
The U.S. Food and Drug Administration (FDA) has defined standards for the microbial quality of agricultural surface water used for irrigation. According to the FDA produce safety rule (PSR), a microbial water quality profile requires analysis of a minimum of 20 samples for Escherichia coli over 2 to 4 years. The geometric mean (GM) level of E. coli should not exceed 126 CFU/100 mL, and the statistical threshold value (STV) should not exceed 410 CFU/100 mL. The water quality profile should be updated by analysis of a minimum of five samples per year. We used an extensive set of data on levels of E. coli and other fecal indicator organisms, the presence or absence of Salmonella, and physicochemical parameters in six agricultural irrigation ponds in West Central Florida to evaluate the empirical and theoretical basis of this PSR. We found highly variable log-transformed E. coli levels, with standard deviations exceeding those assumed in the PSR by up to threefold. Lognormal distributions provided an acceptable fit to the data in most cases but may underestimate extreme levels. Replacing censored data with the detection limit of the microbial tests underestimated the true variability, leading to biased estimates of GM and STV. Maximum likelihood estimation using truncated lognormal distributions is recommended. Twenty samples are not sufficient to characterize the bacteriological quality of irrigation ponds, and a rolling data set of five samples per year used to update GM and STV values results in highly uncertain results and delays in detecting a shift in water quality. In these ponds, E. coli was an adequate predictor of the presence of Salmonella in 150-mL samples, and turbidity was a second significant variable. The variability in levels of E. coli in agricultural water was higher than that anticipated when the PSR was finalized, and more detailed information based on mechanistic modeling is necessary to develop targeted risk management strategies.
La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.
2006-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.
A Simple ab initio Model for the Hydrated Electron that Matches Experiment
Kumar, Anil; Walker, Jonathan A.; Bartels, David M.; Sevilla, Michael D.
2015-01-01
Since its discovery over 50 years ago, the “structure” and properties of the hydrated electron has been a subject for wonderment and also fierce debate. In the present work we seriously explore a minimal model for the aqueous electron, consisting of a small water anion cluster embedded in a polarized continuum, using several levels of ab initio calculation and basis set. The minimum energy zero “Kelvin” structure found for any 4-water (or larger) anion cluster, at any post-Hartree-Fock theory level, is very similar to a recently reported embedded-DFT-in-classical-water-MD simulation (UMJ: Uhlig, Marsalek, and Jungwirth, Journal of Physical Chemistry Letters 2012, 3, 3071-5), with four OH bonds oriented toward the maximum charge density in a small central “void”. The minimum calculation with just four water molecules does a remarkably good job of reproducing the resonance Raman properties, the radius of gyration derived from the optical spectrum, the vertical detachment energy, and the hydration free energy. For the first time we also successfully calculate the EPR g-factor and (low temperature ice) hyperfine couplings. The simple tetrahedral anion cluster model conforms very well to experiment, suggesting it does in fact represent the dominant structural motif of the hydrated electron. PMID:26275103
Protist communities in a marine oxygen minimum zone off Costa Rica by 454 pyrosequencing
NASA Astrophysics Data System (ADS)
Jing, H.; Rocke, E.; Kong, L.; Xia, X.; Liu, H.; Landry, M. R.
2015-08-01
Marine planktonic protists, including microalgae and protistan grazers, are an important contributor to global primary production and carbon and mineral cycles, however, little is known about their population shifts along the oxic-anoxic gradient in the water column. We used 454 pyrosequencing of the 18S rRNA gene and gene transcripts to study the community composition of whole and active protists throughout a water column in the Costa Rica Dome, where a stable oxygen minimum zone (OMZ) exists at a depth of 400~700 m. A clear shift of protist composition from photosynthetic Dinoflagellates in the surface to potential parasitic Dinoflagellates and Ciliates in the deeper water was revealed along the vertical profile at both rRNA and rDNA levels. Those protist groups recovered only at the rDNA level represent either lysed aggregates sinking from the upper waters or potential hosts for parasitic groups. UPGMA clustering demonstrated that total and active protists in the anoxic core of OMZ (550 m) were distinct from those in other water depths. The reduced community diversity and presence of a parasitic/symbiotic trophic lifestyle in the OMZ, especially the anoxic core, suggests that OMZs can exert a selective pressure on protist communities. Such changes in community structure and a shift in trophic lifestyle could result in a modulation of the microbial loop and associated biogeochemical cycling.
Marya, Charu Mohan; Ashokkumar, B R; Dhingra, Sonal; Dahiya, Vandana; Gupta, Anil
2014-05-01
The present study aimed to determine the prevalence of and relationship between dental caries and dental fluorosis at varying levels of fluoride in drinking water. The study was conducted among 3007 school children in the age group of 12 to 16 years in 2 districts of Haryana having varying fluoride levels in drinking water. Type III examination for dental caries according to the WHO index and dental fluorosis estimation according to Dean's index was done. The prevalence of dental caries decreased from 48.02% to 28.07% as fluoride levels increased from 0.5 to 1.13 ppm, but as the fluoride level increased further to 1.51 ppm, there was no further reduction in caries prevalence, but there was a substantial increase in fluorosis prevalence. The optimum level of fluoride in drinking water was found to be 1.13 ppm, at which there was maximum caries reduction with minimum amount of esthetically objectionable fluorosis. © 2012 APJPH.
La Camera, Richard J.; Westenburg, Craig L.
1994-01-01
Tne U.S. Geological Survey. in support of the U.S. Department of Energy, Yucca Mountain Site- Characterization Project, collects, compiles, and summarizes water-resource data in the Yucca Mountain region. The data are collected to document the historical and current condition of ground-water resources, to detect and document changes in those resources through time, and to allow assessments of ground-water resources during investigations to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground- water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Fiat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies or as part of other programs are included to further indicate variations through time. A statistical summary of ground-water levels and median annual ground-water withdrawals in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of a11 water-level altitudes for selected baseline periods and for calendar year 1992. Data on ground-water quality are compared to established, proposed, or tentative primary and secondary drinking-water standards, and measures which exceeded those standards are listed for 18 sites. Detected organic compounds for which established, proposed, or tentative drinking-water standards exist also are listed.
[Exposure to fluorides from drinking water in the city of Aguascalientes, Mexico].
Trejo-Vázquez, R; Bonilla-Petriciolet, A
2001-08-01
Determine the fluoride content in all the wells that supply drinking water to the city of Aguascalientes, Mexico, in order to establish the population's degree of exposure. The fluoride content of the 126 wells that supply drinking water to the city of Aguascalientes was determined, using the SPADNS method, in accordance with two Mexican regulations, NMX-AA-77-1982 and NMX-014-SSAI-1993. Using that data, we created fluoride isopleth maps showing the distribution of fluoride concentrations in the water supplies for the city of Aguascalientes. We also estimated exposure doses for the city's inhabitants. The mean analysis uncertainty was 3.9%. Seventy-three wells had a fluoride concentration of" 1.5 mg/L, which was the maximum permissible value set by the Mexican standards then in effect. All the maximum exposure doses surpassed the minimum risk level set by Agency for Toxic Substances and Disease Registry (ATSDR) of the Department of Health and Human Services of the United States of America. In the children under 1 year of age, even the minimum does was slightly higher than the ATSDR risk level. From estimating the fluoride exposure doses caused by water consumption in the city of Aguascalientes and comparing those doses with ones from other states in Mexico, we concluded that the fluoride intake in Aguascalientes represents a potential risk for inhabitants' health. The fluoride content of the city's drinking water should be reduced to 0.69 mg/L.
NASA Astrophysics Data System (ADS)
Parchevsky, V. M.; Guryanova, V. V.
2017-01-01
A computational and experimental procedure for construction of the two-dimensional separation curve (TDSC) for a horizontal steam generator (SG) at a nuclear power station (NPS) with VVER-reactors. In contrast to the conventional one-dimensional curve describing the wetness of saturated steam generated in SG as a function of the boiler water level at one, usually rated, load, TDSC is a function of two variables, which are the level and the load of SGB that enables TDSC to be used for wetness control in a wide load range. The procedure is based on two types of experimental data obtained during rated load operation: the nonuniformity factor of the steam load at the outlet from the submerged perforated sheet (SPS) and the dependence of the mass water level in the vicinity of the "hot" header on the water level the "cold" end of SG. The TDSC prediction procedure is presented in the form of an algorithm using SG characteristics, such as steam load and water level as the input and giving the calculated steam wetness at the output. The zoneby-zone calculation method is used. The result is presented in an analytical form (as an empirical correlation) suitable for uploading into controllers or other controls. The predicted TDSC can be used during real-time operation for implementation of different wetness control scenarios (for example, if the effectiveness is a priority, then the minimum water level, minimum wetness, and maximum turbine efficiency should be maintained; if safety is a priority, then the maximum level at the allowable wetness and the maximum water inventory should be kept), for operation of NPS in controlling the frequency and power in a power system, at the design phase (as a part of the simulation complex for verification of design solutions), during construction and erection (in developing software for personnel training simulators), during commissioning tests (to reduce the duration and labor-intensity of experimental activities), and for training.
Hydrologic conditions in Florida during Water Year 2008
Verdi, Richard J.; Holt, Sandra L.; Irvin, Ronald B.; Fulcher, David L.
2010-01-01
Record-high and record-low hydrologic conditions occurred during water year 2008 (October 1, 2007-September 30, 2008). Record-low levels were caused by a continuation of the 2007 water year drought conditions into the 2008 water year and persisting until summer rainfall. The gage at the Santa Fe River near Fort White site recorded record-low monthly mean discharges in October and November 2007. The previous records for this site were set in 1956 and 2002, respectively. Record-high conditions in northeast and northwest Florida were caused by the rainfall and runoff associated with Tropical Storm Fay. For example, St. Mary's River near Macclenny recorded a new record-high monthly mean discharge in August 2008. The previous record for this site was set in 1945. Lake Okeechobee in south Florida reached new minimum monthly mean lake levels since monitoring began in 1912 from October to March during the 2008 water year. Some wells throughout northwest and south Florida registered period-of-record lowest daily maximum water levels.
Gillip, Jonathan A.; Czarnecki, John B.; Mugel, Douglas N.
2008-01-01
The Springfield Plateau and Ozark aquifers are important sources of ground water in the Ozark Plateaus aquifer system. Water from these aquifers is used for agricultural, domestic, industrial, and municipal water sources. Changing water use over time in these aquifers presents a need for updated potentiometric-surface maps of the Springfield Plateau and Ozark aquifers. The Springfield Plateau aquifer consists of water-bearing Mississippian-age limestone and chert. The Ozark aquifer consists of Late Cambrian to Middle Devonian age water-bearing rocks consisting of dolostone, limestone, and sandstone. Both aquifers are complex with areally varying lithologies, discrete hydrologic units, varying permeabilities, and secondary permeabilities related to fractures and karst features. During the spring of 2006, ground-water levels were measured in 285 wells. These data, and water levels from selected lakes, rivers, and springs, were used to create potentiometric-surface maps for the Springfield Plateau and Ozark aquifers. Linear kriging was used initially to construct the water-level contours on the maps; the contours were subsequently modified using hydrologic judgment. The potentiometric-surface maps presented in this report represent ground-water conditions during the spring of 2006. During the spring of 2006, the region received less than average rainfall. Dry conditions prior to the spring of 2006 could have contributed to the observed water levels as well. The potentiometric-surface map of the Springfield Plateau aquifer shows a maximum measured water-level altitude within the study area of about 1,450 feet at a spring in Barry County, Missouri, and a minimum measured water-level altitude of 579 feet at a well in Ottawa County, Oklahoma. Cones of depression occur in Dade, Lawrence and Newton Counties in Missouri and Delaware and Ottawa Counties in Oklahoma. These cones of depression are associated with private wells. Ground water in the Springfield Plateau aquifer generally flows to the west in the study area, and to surface features (lakes, rivers, and springs) particularly in the south and east of the study area where the Springfield Plateau aquifer is closest to land surface. The potentiometric-surface map of the Ozark aquifer indicates a maximum measured water-level altitude of 1,303 feet in the study area at a well in Washington County, Arkansas, and a minimum measured water-level altitude of 390 feet in Ottawa County, Oklahoma. The water in the Ozark aquifer generally flows to the northwest in the northern part of the study area and to the west in the remaining study area. Cones of depression occur in Barry, Barton, Cedar, Jasper, Lawrence, McDonald, Newton, and Vernon Counties in Missouri, Cherokee and Crawford Counties in Kansas, and Craig and Ottawa Counties in Oklahoma. These cones of depression are associated with municipal supply wells. The flow directions, based on both potentiometric-surface maps, generally agree with flow directions indicated by previous studies.
Magnitude and frequency of low flows in the Suwannee River Water Management District, Florida
Giese, G.L.; Franklin, M.A.
1996-01-01
Low-flow frequency statistics for 20 gaging stations having at least 10 years of continuous record and 31 other stations having less than 10 years of continu ous record or a series of at least two low- flow measurements are presented for unregulated streams in the Suwannee River Water Management District in north-central Florida. Statistics for the 20 continuous-record stations included are the annual and monthly minimum consecutive-day average low- flow magnitudes for 1, 3, 7, 14, and 30 consecutive days for recurrence intervals of 2, 5, 10, 20, and, for some long-term stations, 50 years, based on records available through the 1994 climatic year.Only theannual statistics are given for the 31 other stations; these are for the 7- and 30-consecutive day periods only and for recurrence intervals of 2 and 10 years only. Annual low-flow frequency statistics range from zero for many small streams to 5,500 cubic feet per second for the annual 30- consecutive-day average flow with a recurrenceinterval of 2 years for the Suwannee River near Wilcox (station 02323500). Monthly low-flow frequency statistics range from zero for many small streams to 13,800 cubic feet per second for the minimum 30-consecutive-day average flow with a 2-year recurrence interval for the month of March for the same station. Generally, low-flow characteristics of streams in the Suwannee River Water Management District are controlled by climatic, topographic, and geologic fac tors. The carbonate Floridan aquifer system underlies, or is at the surface of, the entire District. The terrane's karstic nature results in manysinkholes and springs. In some places, springs may contribute greatly to low streamflow and the contributing areas of such springs may include areasoutside the presumed surface drainage area of the springs. In other places, water may enter sinkholes within a drainage basin, then reappear in springs downstream from a gage. Many of the smaller streams in the District go dry or have no flow forseveral months in many years. In addition to the low-flow statistics, four synoptic low-flow measurement surveys were conducted on 161 sites during 1990, 1995, and 1996. Themeasurements were made to provide "snapshots" of flow conditions of streams throughout the Suwannee River Water Management District. Magnitudes of low flows during the 1990 series of measurements were in the range associated withminimum 7-consecutive-day 50-year recurrence interval to the minimum 7-consecutive-day 20-year recurrence interval, except in Taylor and Dixie Counties, where the magnitudes ranged from the minimum 7-consecutive-day 5-year flow level to the7-consecutive-day 2-year flow level. The magnitudes were all greater than the minimum 7- consecutive-day 2-year flow level during 1995 and 1996. Observations of no flow were recorded at many of the sites for all four series of measurements.
Locke, Glenn L.; La Camera, Richard J.
2003-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 1992-2002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 1985-93. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.3-2.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.
Locke, G.L.
2001-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1999. Data collected prior to 1999 are graphically presented and data collected by other agencies (or as part of other Geological Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-99. At two water-supply wells median water levels for calendar year 1999 were unchanged from their respective baseline periods. At a nearby observation well, the 1999 median water level was slightly lower (0.1 foot) than its baseline period. At the remaining four wells in Jackass Flats, median water levels for 1999 were slightly higher (0.2 foot to 1.6 feet) than for their respective baseline periods.
A new photocatalytic reactor for trace contaminant control: a water polishing system.
Gonzalez-Martin, A; Kim, J; Van Hyfte, J; Rutherford, L A; Andrews, C
2001-01-01
In spacecraft water recovery systems there is a need to develop a postprocessor water polishing system to remove organic impurities to levels below 250 micrograms/L (ppb) with a minimum use of expendables. This article addresses the development of a photocatalytic process as a postprocessor water polishing system that is microgravity compatible, operates at room temperature, and requires only a minimal use of both oxygen gas (or air) and electrical power for low energy UV-A (315-400 nm) lamps. In the photocatalytic process, organic contaminants are degraded to benign end products on semiconductor surfaces, usually TiO2. Some challenging issues related to the use of TiO2 for the degradation of organic contaminants have been addressed. These include: i) efficient and stable catalytic material; ii) immobilization of the catalyst to produce a high surface area material that can be used in packed-bed reactors, iii) effective light penetration, iv) effective, microgravity-compatible, oxidant delivery; v) reduced pressure drop, and vi) minimum retention time. The research and development performed on this photocatalytic process is presented in detail. Grant numbers: NAS9-97182.
36Cl: A tracer in groundwater in the aquia formation of Southern Maryland
Purdy, C.B.; Mignerey, A.C.; Helz, G.R.; Drummond, D.D.; Kubik, P.W.; Elmore, D.; Hemmick, T.
1987-01-01
The Aquia Formation (Paleocene) of Southern Maryland, a marine unit consisting predominantly of quartz sands, but containing 20-40% glauconite, represents one of the many productive, heavily pumped aquifers of the Southeastern Coastal Plain. An unusually high 36Cl activity ( ~ 15 ?? modem water) measured in an outcrop sample is interpreted as a result of the bomb pulse input. About 25 km downdip from the recharge area, a minimum in total chloride concentration occurs. This minimum is thought to correlate with the latest low-stand of sea-level, and thus to provide time information which is in general agreement with ages calculated from hydrodynamic data. However, significant increases in the 36Cl concentrations are observed along the flow path which may be due to ion filtration or to leakage of modem, bomb-contaminated water into the Aquia aquifer. ?? 1987.
Geographical information system (GIS) application for flood prediction at Sungai Sembrong
NASA Astrophysics Data System (ADS)
Kamin, Masiri; Ahmad, Nor Farah Atiqah; Razali, Siti Nooraiin Mohd; Hilaham, Mashuda Mohamad; Rahman, Mohamad Abdul; Ngadiman, Norhayati; Sahat, Suhaila
2017-10-01
The occurrence of flood is one of natural disaster that often beset Malaysia. The latest incident that happened in 2007 was the worst occurrence of floods ever be set in Johor. Reporting floods mainly focused on rising water rising levels, so about once a focus on the area of flood delineation. A study focused on the effectiveness of using Geographic Information System (GIS) to predict the flood by taking Sg. Sembrong, Batu Pahat, Johor as study area. This study combined hydrological model and water balance model in the display to show the expected flood area for future reference. The minimum, maximum and average rainfall data for January 2007 at Sg Sembrong were used in this study. The data shows that flood does not occurs at the minimum and average rainfall of 17.2mm and 2mm respectively. At maximum rainfall, 203mm, shows the flood area was 9983 hectares with the highest level of the water depth was 2m. The result showed that the combination of hydrological models and water balance model in GIS is very suitable to be used as a tool to obtain preliminary information on flood immediately. Besides that, GIS system is a very powerful tool used in hydrology engineering to help the engineer and planner to imagine the real situation of flood events, doing flood analysis, problem solving and provide a rational, accurate and efficient decision making.
Assessment of age-dependent uranium intake due to drinking water in Hyderabad, India.
Balbudhe, A Y; Srivastava, S K; Vishwaprasad, K; Srivastava, G K; Tripathi, R M; Puranik, V D
2012-03-01
A study has been done to assess the uranium intake through drinking water. The area of study is twin cities of Hyderabad and Secunderabad, India. Uranium concentration in water samples was analysed by laser-induced fluorimetry. The associated age-dependent uranium intake was estimated by taking the prescribed water intake values. The concentration of uranium varies from below detectable level (minimum detectable level = 0.20 ± 0.02 μg l(-1)) to 2.50 ± 0.18 μg l(-1), with the geometric mean (GM) of 0.67 μg l(-1) in tap water, whereas in ground water, the range is 0.60 ± 0.05 to 82 ± 7.1 µg l(-1) with GM of 10.07 µg l(-1). The daily intake of uranium by drinking water pathway through tap water for various age groups is found to vary from 0.14 to 9.50 µg d(-1) with mean of 1.55 µg d(-1).
Kendy, Eloise; Tresch, R.E.
1996-01-01
This report combines a literature review with new information to provide summaries of the geography, geology, and hydrology of each of 32 intermontane basins in western Montana. The summary of each intermontane basin includes concise descriptions of topography, areal extent, altitude, climate, 1990 population, land and water use, geology, surface water, aquifer hydraulic characteristics, ground-water flow, and ground-water quality. If present, geothermal features are described. Average annual and monthly temperature and precipitation are reported from one National Weather Service station in each basin. Streamflow data, including the drainage area, period of record, and average, minimum, and maximum historical streamflow, are reported for all active and discontinued USGS streamflow-gaging stations in each basin. Monitoring-well data, including the well depth, aquifer, period of record, and minimum and maximum historical water levels, are reported for all long-term USGS monitoring wells in each basin. Brief descriptions of geologic, geophysical, and potentiometric- surface maps available for each basin also are included. The summary for each basin also includes a bibliography of hydrogeologic literature. When used alone or in conjunction with regional RASA reports, this report provides a practical starting point for site-specific hydrogeologic investigations.
Ground-water levels in Huron County, Michigan, 2006-07
Weaver, T.L.; Blumer, S.P.; Fuller, L.M.
2008-01-01
In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to measure water levels at selected wells throughout Huron County. As part of the agreement, USGS initially operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham (H5r), Fairhaven (H9r), Grant (H2r), and Lake Townships (H25Ar) and summarized the data collected in an annual or bi-annual report (fig. 1). The agreement was altered in 2003, and beginning January 1, 2004, only wells H9r and H25Ar retained continuous water-level recorders, while wells H2r and H5r reverted to quarterly or periodic measurement status due to budget constraints. The decision of which two wells to discontinue was based on an analysis of the intrinsic value to Huron County of data from each well. Well H2r was selected for periodic measurement at that time because it is completed in the glacial aquifer, which is absent in much of Huron County and well H5r, which is completed in the Marshall aquifer, was selected because the water level in the well is often perturbed as a result of pumpage from nearby production wells and does not always reflect baseline conditions within the aquifer. USGS also has provided training for County or Huron Conservation District personnel to measure the water level in 24 of the wells on a quarterly basis. USGS personnel accompany County or Huron Conservation District personnel on a semi-annual basis to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the wells is summarized in an annual or bi-annual report. The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for groundwater levels in Huron County. Figure 2 shows the meanmonthly water-level altitude of Lake Huron, averaged from measurements made at Essexville and Harbor Beach (National Oceanic and Atmospheric Administration, 2008), and monthly precipitation measured in Harbor Beach, Sebewaing, and Bad Axe (National Oceanic and Atmospheric Administration, Danny Costello, written commun., 2007-08). In December 2007, the water level in Lake Huron dropped to a new monthly mean low of 576.38 ft for the period from 1988 through 2007 (the previous lowwater level of 576.57 ft was measured in March 2003). The net decline in the water level of Lake Huron from January 2006 through December 2007 was 0.68 ft. In 2006, annual precipitation measured at Harbor Beach was 3.2 in. above the long-term average of 31.1 in., with 10.6 in. measured during the 2006 growing season (May through August). In 2007, annual precipitation measured at Harbor Beach was 1.4 in. below normal, with 9.7 in. measured during the growing season. In the two wells equipped with continuous waterlevel recorders, the water level rose 0.32 ft from January 1, 2006 to December 31, 2007 in well H9r, but declined 1.11 ft in well H25Ar. Curiously, well H9r is drilled adjacent to Saginaw Bay (Lake Huron), and, as previously noted, there was a 0.68 ft decline in the water level in Saginaw Bay during that period. Twenty four wells were measured on a quarterly or periodic basis from December 2005 through December 2007 (well H26 was destroyed during summer 2007 reducing the total number of wells from 25). These wells are completed in the glacial, Saginaw and Marshall aquifers, and the Coldwater confining unit. Although each quarterly or periodic measurement only provides a “snapshot” water level (measured in ft below land surface, and altitude, in ft above sea level), the data adequately define the generalized water-level trend in the aquifer near the well. Water levels in 6 quarterly-measured wells had net rises ranging from 0.09 to 1.45 ft for the period, while water levels in 18 of the wells had net declines ranging from 0.26 to 2.19 ft (tables 1 and 2; fig. 3). Period-of-record (the time period during which water levels have been measured by U.S. Geological Survey or their cooperators) minimum depths to water (high-water levels) were measured in March and December 2006 in two quarterly-measured wells completed in the Saginaw aquifer in Oliver and Sebewaing Townships, respectively. A period-of-record minimum depth to water was also recorded June 5, 2007 in well H9r, completed in the Michigan Formation/Marshall aquifer in Fairhaven Township. Period-of-record maximum depths to water were measured in September 2007 in two wells completed in the Marshall aquifer in Oliver and Dwight Townships. Notably, water levels in those two wells recovered about 1 to 3 ft between September and December 2007. No period-of-record minimum or maximum depths to water were measured in wells completed in either the glacial aquifer or the Coldwater confining unit from December 2005 through December 2007. Several external factors influence water-level trends including proximity to nearby production wells, amount and timing of precipitation events, evapotranspiration and type of prevalent ground cover, proximity of aquifer to the surface, and hydraulic characteristics of overlying geologic materials.
NASA Astrophysics Data System (ADS)
Schmidt, M.; Eggert, A.
2016-02-01
The Angola Gyre and the Northern Benguela Upwelling System are two major oxygen minimum zones (OMZ) of different kind connected by the system of African Eastern Boundary Currents. We discuss results from a 3-dimensional coupled biogeochemical model covering both oxygen-deficient systems. The biogeochemical model component comprises trophic levels up to zooplankton. Physiological properties of organisms are parameterized from field data gained mainly in the course of the project "Geochemistry and Ecology of the Namibian Upwelling System" (GENUS). The challenge of the modelling effort is the different nature of both systems. The Angola Gyre, located in a "shadow zone" of the tropical Atlantic, has a low productivity and little ventilation, hence a long residence time of water masses. In the northern Benguela Upwelling System, trade winds drive an intermittent, but permanent nutrient supply into the euphotic zone which fuels a high coastal productivity, large particle export and high oxygen consumption from dissimilatory processes. In addition to the local processes, oxygen-deficient water formed in the Angola Gyre is one of the source water masses of the poleward undercurrent, which feeds oxygen depleted water into the Benguela system. In order to simulate the oxygen distribution in the Benguela system, both physical transport as well as local biological processes need to be carefully adjusted in the model. The focus of the analysis is on the time scale and the relative contribution of the different oxygen related processes to the oxygen budgets in both the oxygen minimum zones. Although these are very different in both the OMZ, the model is found as suitable to produce oxygen minimum zones comparable with observations in the Benguela and the Angola Gyre as well. Variability of the oxygen concentration in the Angola Gyre depends strongly on organismic oxygen consumption, whereas the variability of the oxygen concentration on the Namibian shelf is governed mostly by pole-ward advection of tropical water masses.
A holistic framework for design of cost-effective minimum water utilization network.
Wan Alwi, S R; Manan, Z A; Samingin, M H; Misran, N
2008-07-01
Water pinch analysis (WPA) is a well-established tool for the design of a maximum water recovery (MWR) network. MWR, which is primarily concerned with water recovery and regeneration, only partly addresses water minimization problem. Strictly speaking, WPA can only lead to maximum water recovery targets as opposed to the minimum water targets as widely claimed by researchers over the years. The minimum water targets can be achieved when all water minimization options including elimination, reduction, reuse/recycling, outsourcing and regeneration have been holistically applied. Even though WPA has been well established for synthesis of MWR network, research towards holistic water minimization has lagged behind. This paper describes a new holistic framework for designing a cost-effective minimum water network (CEMWN) for industry and urban systems. The framework consists of five key steps, i.e. (1) Specify the limiting water data, (2) Determine MWR targets, (3) Screen process changes using water management hierarchy (WMH), (4) Apply Systematic Hierarchical Approach for Resilient Process Screening (SHARPS) strategy, and (5) Design water network. Three key contributions have emerged from this work. First is a hierarchical approach for systematic screening of process changes guided by the WMH. Second is a set of four new heuristics for implementing process changes that considers the interactions among process changes options as well as among equipment and the implications of applying each process change on utility targets. Third is the SHARPS cost-screening technique to customize process changes and ultimately generate a minimum water utilization network that is cost-effective and affordable. The CEMWN holistic framework has been successfully implemented on semiconductor and mosque case studies and yielded results within the designer payback period criterion.
Quantitative assessment of Urmia Lake water using spaceborne multisensor data and 3D modeling.
Jeihouni, Mehrdad; Toomanian, Ara; Alavipanah, Seyed Kazem; Hamzeh, Saeid
2017-10-18
Preserving aquatic ecosystems and water resources management is crucial in arid and semi-arid regions for anthropogenic reasons and climate change. In recent decades, the water level of the largest lake in Iran, Urmia Lake, has decreased sharply, which has become a major environmental concern in Iran and the region. The efforts to revive the lake concerns the amount of water required for restoration. This study monitored and assessed Urmia Lake status over a period of 30 years (1984 to 2014) using remotely sensed data. A novel method is proposed that generates a lakebed digital elevation model (LBDEM) for Urmia Lake based on time series images from Landsat satellites, water level field measurements, remote sensing techniques, GIS, and 3D modeling. The volume of water required to restore the Lake water level to that of previous years and the ecological water level was calculated based on LBDEM. The results indicate a marked change in the area and volume of the lake from its maximum water level in 1998 to its minimum level in 2014. During this period, 86% of the lake became a salt desert and the volume of the lake water in 2013 was just 0.83% of the 1998 volume. The volume of water required to restore Urmia Lake from benchmark status (in 2014) to ecological water level (1274.10 m) is 12.546 Bm 3 , excluding evaporation. The results and the proposed method can be used by national and international environmental organizations to monitor and assess the status of Urmia Lake and support them in decision-making.
Definition of hydraulic stability of KVGM-100 hot-water boiler and minimum water flow rate
NASA Astrophysics Data System (ADS)
Belov, A. A.; Ozerov, A. N.; Usikov, N. V.; Shkondin, I. A.
2016-08-01
In domestic power engineering, the methods of quantitative and qualitative-quantitative adjusting the load of the heat supply systems are widely distributed; furthermore, during the greater part of the heating period, the actual discharge of network water is less than estimated values when changing to quantitative adjustment. Hence, the hydraulic circuits of hot-water boilers should ensure the water velocities, minimizing the scale formation and excluding the formation of stagnant zones. The results of the calculations of hot-water KVGM-100 boiler and minimum water flow rate for the basic and peak modes at the fulfillment of condition of the lack of surface boil are presented in the article. The minimal flow rates of water at its underheating to the saturation state and the thermal flows in the furnace chamber were defined. The boiler hydraulic calculation was performed using the "Hydraulic" program, and the analysis of permissible and actual velocities of the water movement in the pipes of the heating surfaces was carried out. Based on the thermal calculations of furnace chamber and thermal- hydraulic calculations of heating surfaces, the following conclusions were drawn: the minimum velocity of water movement (by condition of boiling surface) at lifting movement of environment increases from 0.64 to 0.79 m/s; it increases from 1.14 to 1.38 m/s at down movement of environmental; the minimum water flow rate by the boiler in the basic mode (by condition of the surface boiling) increased from 887 t/h at the load of 20% up to 1074 t/h at the load of 100%. The minimum flow rate is 1074 t/h at nominal load and is achieved at the pressure at the boiler outlet equal to 1.1 MPa; the minimum water flow rate by the boiler in the peak mode by condition of surface boiling increases from 1669 t/h at the load of 20% up to 2021 t/h at the load of 100%.
49 CFR 387.33 - Financial responsibility, minimum levels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Financial responsibility, minimum levels. 387.33... MINIMUM LEVELS OF FINANCIAL RESPONSIBILITY FOR MOTOR CARRIERS Motor Carriers of Passengers § 387.33 Financial responsibility, minimum levels. The minimum levels of financial responsibility referred to in...
Becker, C.J.
1994-01-01
Aquifers are the primary source of water for drinking and agricultural purposes in western Oklahoma. Health concerns about consuming nitrogen and an increased reliance on ground water for drinking necessitate a better understanding of the cause and effect of contamination from nutrients. The purpose of this project was to compile nutrients data from the National Water Information System data base for the alluvial aquifers west of longitude 98 degrees W. and from three bedrock aquifers, High Plains, Rush Springs, and Blaine, and provide this information in a report for future projects and for the facilitation of nutrient source management. The scope of the work consisted of (1) compiling ground-water quality data concerning nitrogen and phosphorus ions, (2) constructing boxplots illustrating data variability, (3) maps for each aquifer showing locations of wells when nitrogen and phosphorus ions were measured in ground water and where concentrations of nitrate and nitrite, reported as nitrogen, exceed the maximum contaminant level, and (4) calculating summary statistics. Nutrient data were obtained from the U.S. Geological Survey data base called the National Water Information System. Data were restricted to ground-water samples, but no restrictions were placed on well and water use or date and time of sampling. Compiled nutrient data consist of dissolved and total concentrations of the common nitrogen and phosphorus ions measured in ground water. For nitrogen these ions include nitrate, nitrite, ammonium, and nitrite plus nitrate. All concentrations are reported in milligrams per liter as nitrogen. Phosphorus in ground water is measured as the orthophosphate ion, and is reported in milligrams per liter as phosphorus. Nutrient variability is illustrated by a standard boxplot. The data are presented by aquifer or hydrologic subregion for alluvial aquifers, with one boxplot constructed for each nutrient compound if more than four analyses are present. Maps for each aquifer show where nitrogen and phosphorus have been measured in ground water and where the concentrations of nitrate and nitrite exceed the maximum contaminant level. A statistical summary for each aquifer and subregion show if censored data were present, number of samples in each data set, largest minimum reporting level for each nutrient compound, percentiles used to construct boxplots, and minimum and maximum values. Also given are the number of wells sampled in each aquifer and the number of wells exceeding the maximum contaminant level.
García-Valiñas, Maria A; Martínez-Espiñeira, Roberto; González-Gómez, Francisco
2010-12-01
Using information on a basic or "lifeline" level of domestic water use obtained from a water demand function based on a Stone-Geary utility function, a minimum water threshold of 128 m(3) per household per year was estimated in a sample of municipalities in Southern Spain. As a second objective, water affordability indexes were then calculated that relate the cost of such lifeline to average municipal income levels. The analysis of the factors behind the differences in that ratio across Andalusian municipalities shows that the relative cost of purchasing the lifeline appears inversely related to average income levels, revealing an element of regressivity in the component of water tariffs affecting the least superfluous part of the household's consumption. The main policy recommendation would involve redesigning water tariffs in order to improve access for lower income households to an amount of water sufficient to cover their basic needs. The proposed methodology could be applied to other geographical areas, both from developed and from developing countries, in order to analyze the degree of progressivity of the water tariffs currently in effect and in order to guide the design of more equitable regulatory policies. Copyright © 2010 Elsevier Ltd. All rights reserved.
40 CFR 63.9590 - What emission limitations must I meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Except as provided in paragraph (b)(2) of this section, for each wet scrubber applied to meet any... drop and daily average scrubber water flow rate at or above the minimum levels established during the initial performance test. (2) For each dynamic wet scrubber applied to meet any particulate matter...
40 CFR 63.9590 - What emission limitations must I meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Except as provided in paragraph (b)(2) of this section, for each wet scrubber applied to meet any... drop and daily average scrubber water flow rate at or above the minimum levels established during the initial performance test. (2) For each dynamic wet scrubber applied to meet any particulate matter...
40 CFR 63.9590 - What emission limitations must I meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Except as provided in paragraph (b)(2) of this section, for each wet scrubber applied to meet any... drop and daily average scrubber water flow rate at or above the minimum levels established during the initial performance test. (2) For each dynamic wet scrubber applied to meet any particulate matter...
2007-08-30
ITRC Interstate Technology Regulatory Council LRL Laboratory reporting level LDPE Low-density polyethylene MDL Minimum detection limit MNA...diameter of the well. Another diffusion membrane sampler design consists of a tubular-shaped bag made of flexible low-density polyethylene ( LDPE ...
Locke, Glenn L.
2001-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1998. Data collected prior to 1998 are graphically presented and data collected by other agencies (or as part of other Geolgical Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-98. At two water-supply wells and a nearby observation well, median water levels for calendar year 1998 were slightly lower (0.2 to 0.3 foot) than for their respective baseline periods. At the remaining four wells in Jackass Flats, median water levels for 1998 were unchanged at two wells and slightly higher (0.4 and 1.4 foot) at two wells than those for their respective baseline periods.
49 CFR 387.9 - Financial responsibility, minimum levels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Financial responsibility, minimum levels. 387.9... MINIMUM LEVELS OF FINANCIAL RESPONSIBILITY FOR MOTOR CARRIERS Motor Carriers of Property § 387.9 Financial responsibility, minimum levels. The minimum levels of financial responsibility referred to in § 387.7 of this...
46 CFR 169.549 - Ring lifebuoys and water lights.
Code of Federal Regulations, 2014 CFR
2014-10-01
... chapter and be international orange in color. (2) Each water light must be approved under subpart 161.010... 46 Shipping 7 2014-10-01 2014-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549... lights. (a)(1) The minimum number of life buoys and the minimum number to which water lights must be...
46 CFR 169.549 - Ring lifebuoys and water lights.
Code of Federal Regulations, 2012 CFR
2012-10-01
... chapter and be international orange in color. (2) Each water light must be approved under subpart 161.010... 46 Shipping 7 2012-10-01 2012-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549... lights. (a)(1) The minimum number of life buoys and the minimum number to which water lights must be...
30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...
30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...
30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...
30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...
Cyclic fluctuations of water level as a basis for determining aquifer transmissibility
Ferris, John G.
1952-01-01
In coastal areas, wells near bodies of tidal water frequently exhibit sinusoidal fluctuations of water level, in response to periodic changes of tidewater stage. Inland, the regulation of a surface reservoir often produces correlative changes of ground-water stage in wells adjacent either to the reservoir or to its attendant stream. As the stage of the surface water rises, the head upon the subaqueous outcrop of the aquifer increases and thereby either increases the rate of inflow to the aquifer or reduces the rate of outflow therefrom. The increase in recharge or reduction in discharge results in a general recovery of water level in the aquifer. On the subsequent falling stage this pattern is reversed. When the stage of the surface body fluctuates as a simple harmonic motion a train of sinusoidal waves is propagated shoreward through the sub-outcrop of the aquifer. With increasing distance from the sub-outcrop, the amplitude of the transmitted wave decreases and the time lag of a given maximum or minimum increases.
Gesch, Dean B.
2013-01-01
The accuracy with which coastal topography has been mapped directly affects the reliability and usefulness of elevationbased sea-level rise vulnerability assessments. Recent research has shown that the qualities of the elevation data must be well understood to properly model potential impacts. The cumulative vertical uncertainty has contributions from elevation data error, water level data uncertainties, and vertical datum and transformation uncertainties. The concepts of minimum sealevel rise increment and minimum planning timeline, important parameters for an elevation-based sea-level rise assessment, are used in recognition of the inherent vertical uncertainty of the underlying data. These concepts were applied to conduct a sea-level rise vulnerability assessment of the Mobile Bay, Alabama, region based on high-quality lidar-derived elevation data. The results that detail the area and associated resources (land cover, population, and infrastructure) vulnerable to a 1.18-m sea-level rise by the year 2100 are reported as a range of values (at the 95% confidence level) to account for the vertical uncertainty in the base data. Examination of the tabulated statistics about land cover, population, and infrastructure in the minimum and maximum vulnerable areas shows that these resources are not uniformly distributed throughout the overall vulnerable zone. The methods demonstrated in the Mobile Bay analysis provide an example of how to consider and properly account for vertical uncertainty in elevation-based sea-level rise vulnerability assessments, and the advantages of doing so.
A brief overview on radon measurements in drinking water.
Jobbágy, Viktor; Altzitzoglou, Timotheos; Malo, Petya; Tanner, Vesa; Hult, Mikael
2017-07-01
The aim of this paper is to present information about currently used standard and routine methods for radon analysis in drinking waters. An overview is given about the current situation and the performance of different measurement methods based on literature data. The following parameters are compared and discussed: initial sample volume and sample preparation, detection systems, minimum detectable activity, counting efficiency, interferences, measurement uncertainty, sample capacity and overall turnaround time. Moreover, the parametric levels for radon in drinking water from the different legislations and directives/guidelines on radon are presented. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Potentiometric surface of the Ozark aquifer in northern Arkansas, 2010
Czarnecki, John B.; Pugh, Aaron L.; Blackstock, Joshua M.
2014-01-01
The Ozark aquifer in northern Arkansas is composed of dolomite, limestone, sandstone, and shale of Late Cambrian to Middle Devonian age and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 56 well and 5 spring water-level measurements made in 2010 in Arkansas and Missouri, has a maximum water-level altitude measurement of 1,174 feet in Carroll County and a minimum water-level altitude measurement of 120 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the west, northwest, and north in the western part of the study area. Water-level altitudes changed 0.5 feet or less in 31 out of 56 wells measured between 2007 and 2010. Despite rapidly increasing population within the study area, the increase appears to have minimal effect on groundwater levels, although the effect may have been minimized by the development and use of surface-water distribution infrastructure, suggesting that most of the incoming populations are fulfilling their water needs from surface-water sources. The conversion of some users from groundwater to surface water may be allowing water levels in some wells to recover (rise) or decline at a slower rate in some areas such as in Benton, Carroll, and Washington Counties.
Damrau, D.L.
1993-01-01
Increased awareness of the quality of water in the United States has led to the development of a method for determining low levels (0.2-5.0 microg/L) of silver in water samples. Use of graphite furnace atomic absorption spectrophotometry provides a sensitive, precise, and accurate method for determining low-level silver in samples of low ionic-strength water, precipitation water, and natural water. The minimum detection limit determined for low-level silver is 0.2 microg/L. Precision data were collected on natural-water samples and SRWS (Standard Reference Water Samples). The overall percent relative standard deviation for natural-water samples with silver concentrations more than 0.2 microg/L was less than 40 percent throughout the analytical range. For the SRWS with concentrations more than 0.2 microg/L, the overall percent relative standard deviation was less than 25 percent throughout the analytical range. The accuracy of the results was determined by spiking 6 natural-water samples with different known concentrations of the silver standard. The recoveries ranged from 61 to 119 percent at the 0.5-microg/L spike level. At the 1.25-microg/L spike level, the recoveries ranged from 92 to 106 percent. For the high spike level at 3.0 microg/L, the recoveries ranged from 65 to 113 percent. The measured concentrations of silver obtained from known samples were within the Branch of Quality Assurance accepted limits of 1 1/2 standard deviations on the basis of the SRWS program for Inter-Laboratory studies.
NASA Astrophysics Data System (ADS)
Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.
2009-04-01
The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter , gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less fuel for preparing the germination bed. Presently it is necessary a change concerning the concept of conservation practices and a new approach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditional understanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus to another level concerning conservation by focusing on of soil quality. Carbon management is necessary for a complex of matters including soil, water management, field productivity, biological fuel and climatic change. Profound research is necessary in order to establish the carbon sequestration practices and their implementation impact.
NASA Astrophysics Data System (ADS)
Rusu, T.; Gus, P.; Bogdan, I.; Moraru, P.; Pop, A.; Clapa, D.; Pop, L.
2009-04-01
The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter, gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less fuel for preparing the germination bed. Presently it is necessary a change concerning the concept of conservation practices and a new approach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditional understanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus to another level concerning conservation by focusing on of soil quality. Carbon management is necessary for a complex of matters including soil, water management, field productivity, biological fuel and climatic change.
Water solubility in aluminous orthopyroxene and the origin of Earth's asthenosphere.
Mierdel, Katrin; Keppler, Hans; Smyth, Joseph R; Langenhorst, Falko
2007-01-19
Plate tectonics is based on the concept of rigid lithosphere plates sliding on a mechanically weak asthenosphere. Many models assume that the weakness of the asthenosphere is related to the presence of small amounts of hydrous melts. However, the mechanism that may cause melting in the asthenosphere is not well understood. We show that the asthenosphere coincides with a zone where the water solubility in mantle minerals has a pronounced minimum. The minimum is due to a sharp decrease of water solubility in aluminous orthopyroxene with depth, whereas the water solubility in olivine continuously increases with pressure. Melting in the asthenosphere may therefore be related not to volatile enrichment but to a minimum in water solubility, which causes excess water to form a hydrous silicate melt.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the District Manager. (b) Any changes or modifications to plans for water, sediment, or slurry... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements; changes or modifications; certification. 77.216-2 Section...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the District Manager. (b) Any changes or modifications to plans for water, sediment, or slurry... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements; changes or modifications; certification. 77.216-2 Section...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the District Manager. (b) Any changes or modifications to plans for water, sediment, or slurry... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements; changes or modifications; certification. 77.216-2 Section...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the District Manager. (b) Any changes or modifications to plans for water, sediment, or slurry... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements; changes or modifications; certification. 77.216-2 Section...
Global-scale high-resolution ( 1 km) modelling of mean, maximum and minimum annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark; Hendriks, Jan; Beusen, Arthur; Clavreul, Julie; King, Henry; Schipper, Aafke
2017-04-01
Quantifying mean, maximum and minimum annual flow (AF) of rivers at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. AF metrics can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict AF metrics based on climate and catchment characteristics. Yet, so far, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. We developed global-scale regression models that quantify mean, maximum and minimum AF as function of catchment area and catchment-averaged slope, elevation, and mean, maximum and minimum annual precipitation and air temperature. We then used these models to obtain global 30 arc-seconds (˜ 1 km) maps of mean, maximum and minimum AF for each year from 1960 through 2015, based on a newly developed hydrologically conditioned digital elevation model. We calibrated our regression models based on observations of discharge and catchment characteristics from about 4,000 catchments worldwide, ranging from 100 to 106 km2 in size, and validated them against independent measurements as well as the output of a number of process-based global hydrological models (GHMs). The variance explained by our regression models ranged up to 90% and the performance of the models compared well with the performance of existing GHMs. Yet, our AF maps provide a level of spatial detail that cannot yet be achieved by current GHMs.
Bentonite Clay Adsorption Procedure for Concentrating Enteroviruses from Water.
1992-07-01
1 pm (nominal porosity) wool filter bags, and filter beds of sand, glass, or diatomaceous earth , did not retain clay- adsorbed virus as effectively as...number) L/ A method of adsorbing enteroviruses to bentonite clay was developed for use as a concentration technique designed to sample low levels of...bentonite within a 20 minute contact period. A minimum bentonite level of 50 mg/L was necessary to adsorb the virus and to still allow efficient
Mallory, Michael J.; Swain, Lindsay A.; Tyley, Stephen J.
1980-01-01
This report presents a preliminary evaluation of the geohydrologic factors affecting storage of water by artificial recharge in the upper Coachella Valley, Calif. The ground-water basin of the upper Coachella Valley seems to be geologically suitable for large-scale artificial recharge. A minimum of 900 ,000 acre-feet of water could probably be stored in the basin without raising basinwide water levels above those that existed in 1945. Preliminary tests indicate that a long-term artificial recharge rate of 5 feet per day may be feasible for spreading grounds in the basin if such factors as sediment and bacterial clogging can be controlled. The California Department of Water Resources, through the Future Water Supply Program, is investigating the use of ground-water basins for storage of State Water Project water in order to help meet maximum annual entitlements to water project contractors. (USGS)
Water supply pipe dimensioning using hydraulic power dissipation
NASA Astrophysics Data System (ADS)
Sreemathy, J. R.; Rashmi, G.; Suribabu, C. R.
2017-07-01
Proper sizing of the pipe component of water distribution networks play an important role in the overall design of the any water supply system. Several approaches have been applied for the design of networks from an economical point of view. Traditional optimization techniques and population based stochastic algorithms are widely used to optimize the networks. But the use of these approaches is mostly found to be limited to the research level due to difficulties in understanding by the practicing engineers, design engineers and consulting firms. More over due to non-availability of commercial software related to the optimal design of water distribution system,it forces the practicing engineers to adopt either trial and error or experience-based design. This paper presents a simple approach based on power dissipation in each pipeline as a parameter to design the network economically, but not to the level of global minimum cost.
A compendium of geochemical information from the Saanich Inlet water column
NASA Astrophysics Data System (ADS)
Torres-Beltrán, Mónica; Hawley, Alyse K.; Capelle, David; Zaikova, Elena; Walsh, David A.; Mueller, Andreas; Scofield, Melanie; Payne, Chris; Pakhomova, Larysa; Kheirandish, Sam; Finke, Jan; Bhatia, Maya; Shevchuk, Olena; Gies, Esther A.; Fairley, Diane; Michiels, Céline; Suttle, Curtis A.; Whitney, Frank; Crowe, Sean A.; Tortell, Philippe D.; Hallam, Steven J.
2017-10-01
Extensive and expanding oxygen minimum zones (OMZs) exist at variable depths in coastal and open ocean waters. As oxygen levels decline, nutrients and energy are increasingly diverted away from higher trophic levels into microbial community metabolism, resulting in fixed nitrogen loss and production of climate active trace gases including nitrous oxide and methane. While ocean deoxygenation has been reported on a global scale, our understanding of OMZ biology and geochemistry is limited by a lack of time-resolved data sets. Here, we present a historical dataset of oxygen concentrations spanning fifty years and nine years of monthly geochemical time series observations in Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia, Canada that undergoes recurring changes in water column oxygenation status. This compendium provides a unique geochemical framework for evaluating long-term trends in biogeochemical cycling in OMZ waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.
1995-10-01
The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, samples 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, seven domestic wells, two springs, one stock well, and one observation well. Two quality assurance samples also were collected and analyzed.more » None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that exceeded their minimum reporting levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.
1996-09-01
The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of themore » radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level.« less
Groundwater levels in the Kabul Basin, Afghanistan, 2004-2013
Taher, Mohammad R.; Chornack, Michael P.; Mack, Thomas J.
2014-01-01
The Afghanistan Geological Survey, with technical assistance from the U.S. Geological Survey, established a network of wells to measure and monitor groundwater levels to assess seasonal, areal, and potentially climatic variations in groundwater characteristics in the Kabul Basin, Afghanistan, the most populous region in the country. Groundwater levels were monitored in 71 wells in the Kabul Basin, Afghanistan, starting as early as July 2004 and continuing to the present (2013). The monitoring network is made up exclusively of existing production wells; therefore, both static and dynamic water levels were recorded. Seventy wells are in unconsolidated sediments, and one well is in bedrock. Water levels were measured periodically, generally monthly, using electric tape water-level meters. Water levels in well 64 on the grounds of the Afghanistan Geological Survey building were measured more frequently. This report provides a 10-year compilation of groundwater levels in the Kabul Basin prepared in cooperation with the Afghanistan Geological Survey. Depths to water below land surface range from a minimum of 1.47 meters (m) in the Shomali subbasin to a maximum of 73.34 m in the Central Kabul subbasin. The Logar subbasin had the smallest range in depth to water below land surface (1.5 to 12.4 m), whereas the Central Kabul subbasin had the largest range (2.64 to 73.34 m). Seasonal water-level fluctuations can be estimated from the hydrographs in this report for wells that have depth-to-water measurements collected under static conditions. The seasonal water-level fluctuations range from less than 1 m to a little more than 7 m during the monitoring period. In general, the hydrographs for the Deh Sabz, Logar, Paghman and Upper Kabul, and Shomali subbasins show relatively little change in the water-level trend during the period of record, whereas hydrographs for the Central Kabul subbasin show water level decreases of several meters to about 25 m.
Marie, James R.
1976-01-01
The computer models were developed to investigate possible hydrologic effects within the Indiana Dunes National Lakeshore caused by planned dewatering at the adjacent Bailly Nuclear Generator construction site. The model analysis indicated that the planned dewatering would cause a drawdown of about 4 ft under the westernmost pond of the Lakeshore and that this drawdown would cause the pond to go almost dry--less than 0.5 ft of water remaining in about 1 percent of the pond--under average conditions during the 18-month dewatering period. When water levels are below average, as during late July and early August 1974, the pond would go dry in about 5.5 months. However, the pond may not have to go completely dry to damage the ecosystem. If the National Park Service 's independent study determines the minimum pond level at which ecosystem damage would be minimized, the models developed in this study could be used to predict the hydrologic conditions necessary to maintain that level.
Digital model of the Arikaree Aquifer near Wheatland, southeastern Wyoming
Hoxie, Dwight T.
1977-01-01
A digital model that mathematically simulates the flow of ground water, approximating the flow system as two-dimensional, has been applied to predict the long-term effects of irrigation and proposed industrial pumping from the unconfined Arikaree aquifer in a 400 square-mile area in southeastern Wyoming. Three cases that represent projected maximum, mean, and minimum combined irrigation and industrial ground-water withdrawals at annual rates of 16,176, 11,168, and 6,749 acre-feet, respectively, were considered. Water-level declines of more than 5 feet over areas of 124, 120, and 98 square miles and depletions in streamflow of 14.4, 8.9, and 7.2 cfs from the Laramie and North Laramie Rivers were predicted to occur at the end of a 40-year simulation period for these maximum, mean, and minimum withdrawal rates, respectively. A tenfold incrase in the vertical hydraulic conductivity that was assumed for the streambeds results in smaller predicted drawdowns near the Laramie and North Laramie Rivers and a 36 percent increase in the predicted depletion in streamflow for the North Laramie River. (Woodard-USGS)
Quadroni, Silvia; Crosa, Giuseppe; Gentili, Gaetano; Espa, Paolo
2017-12-31
The present work focuses on evaluating the ecological effects of hydropower-induced streamflow alteration within four catchments in the central Italian Alps. Downstream from the water diversions, minimum flows are released as an environmental protection measure, ranging approximately from 5 to 10% of the mean annual natural flow estimated at the intake section. Benthic macroinvertebrates as well as daily averaged streamflow were monitored for five years at twenty regulated stream reaches, and possible relationships between benthos-based stream quality metrics and environmental variables were investigated. Despite the non-negligible inter-site differences in basic streamflow metrics, benthic macroinvertebrate communities were generally dominated by few highly resilient taxa. The highest level of diversity was detected at sites where upstream minimum flow exceedance is higher and further anthropogenic pressures (other than hydropower) are lower. However, according to the current Italian normative index, the ecological quality was good/high on average at all of the investigated reaches, thus complying the Water Framework Directive standards. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Shuang-Shuang; Ying, Guang-Guo; Liu, You-Sheng; Yang, Yuan-Yuan; He, Liang-Ying; Chen, Jun; Liu, Wang-Rong; Zhao, Jian-Liang
2015-06-15
A total of 21 progestagens were screened in animal wastes and environmental samples from two representative swine farms and surrounding environments of South China using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) to assess the effectiveness of simple lagoon (and digester) treatment. The results showed that 11, 8 and 8 of 21 target progestagens were detected with the minimum concentration of 2.31 ng/L and maximum of 6150 ng/L in the water samples, with the minimum of 1.36 ng/L and maximum of 98.3 ng/L in the suspended particles, and with the minimum of 1.57 ng/g dry weight (dw) and maximum of 3310 ng/g dw in the solid samples, respectively. Trace levels (a few ng/L or ng/g levels) of dydrogesterone, 5α-dihydroprogesterone, norgestrel and progesterone were found in samples from nearby surface waters and vegetable fields impacted by animal wastes. The residual progestagens at the reported levels may still pose potential risks to aquatic organisms such as fish in the receiving aquatic environments. This finding suggests that swine wastewater and feces could lead to contamination of some detectable progestagens in the surrounding environments. Significant reduction in total progestagen concentrations were observed from the fresh swine wastewaters to the fish ponds, indicating effective removal of these compounds by the lagoon (and digester) treatment. In addition, the biogas digesters provided high removal of the progestagens in the waste streams. This low-cost and eco-friendly treatment system should be promoted in developing countries with concentrated animal operations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kurz-Besson, Cathy B; Lousada, José L; Gaspar, Maria J; Correia, Isabel E; David, Teresa S; Soares, Pedro M M; Cardoso, Rita M; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M; Gouveia, Célia M
2016-01-01
Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster's vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster's production capacity and quality in response to more arid conditions in the near future in the region.
Kurz-Besson, Cathy B.; Lousada, José L.; Gaspar, Maria J.; Correia, Isabel E.; David, Teresa S.; Soares, Pedro M. M.; Cardoso, Rita M.; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M.; Gouveia, Célia M.
2016-01-01
Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the region. PMID:27570527
Evaluation of an active humidification system for inspired gas.
Roux, Nicolás G; Plotnikow, Gustavo A; Villalba, Darío S; Gogniat, Emiliano; Feld, Vivivana; Ribero Vairo, Noelia; Sartore, Marisa; Bosso, Mauro; Scapellato, José L; Intile, Dante; Planells, Fernando; Noval, Diego; Buñirigo, Pablo; Jofré, Ricardo; Díaz Nielsen, Ernesto
2015-03-01
The effectiveness of the active humidification systems (AHS) in patients already weaned from mechanical ventilation and with an artificial airway has not been very well described. The objective of this study was to evaluate the performance of an AHS in chronically tracheostomized and spontaneously breathing patients. Measurements were quantified at three levels of temperature (T°) of the AHS: level I, low; level II, middle; and level III, high and at different flow levels (20 to 60 L/minute). Statistical analysis of repeated measurements was performed using analysis of variance and significance was set at a P<0.05. While the lowest temperature setting (level I) did not condition gas to the minimum recommended values for any of the flows that were used, the medium temperature setting (level II) only conditioned gas with flows of 20 and 30 L/minute. Finally, at the highest temperature setting (level III), every flow reached the minimum absolute humidity (AH) recommended of 30 mg/L. According to our results, to obtain appropiate relative humidity, AH and T° of gas one should have a device that maintains water T° at least at 53℃ for flows between 20 and 30 L/m, or at T° of 61℃ at any flow rate.
Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Ming-Liang; Te, Jerez; Cendagorta, Joseph R.
2015-02-14
The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol V{sub E} as a function of ethanol mole fraction X{sub E} is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decreasemore » is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has “brittle” hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water.« less
On-Site Incineration of Contaminated Soil: A Study into U.S. Navy Applications
1991-08-01
venturi scrubber Minimum water flow rate and p1l to absorber Minimum water/alkaline reagent flow to dry scrubber Minimum particulate scrubber blowdown...remove hydrochloric acid and sulfur dioxide from flue gases using, for example, wet scrubbers and limestone adsorption towers, respectively. Modified...Reagent preparation 8) Bllending 26) Fugitive emission control 9) Pretreatment 27) Scrubber liquid cooling 10) Blended and pretreated solid waste
Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender
2016-10-01
This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Wood, Tamara M.; Fuhrer, Gregory J.; Morace, Jennifer L.
1996-01-01
Based on the analysis of data that they have been collecting for several years, the Klamath Tribes recently recommended that the Bureau of Reclamation (Reclamation) modify the operating plan for the dam to make the minimum lake levels for the June-August period more closely resemble pre-dam conditions (Jacob Kann, written commun., 1995). The U.S. Geological Survey (USGS) was asked to analyze the available data for the lake and to assess whether the evidence exists to conclude that year-to-year differences in certain lake water-quality variables are related to year-to-year differences in lake level. The results of the analysis will be used as scientific input in the process of developing an operating plan for the Link River Dam.
2008-03-01
access from the Illinois River to Lake Chautauqua is provided by flood events that top the levee and water -control structure. Therefore, the south...cell of Lake Chautauqua may be considered a semi-natural backwater lake that mimics the hydrologic regime of the Illinois River during some years and...minimum water -level management, but the lake generally was connected to the Illinois River (Irons et. al. 1997). Lake Chautauqua is between RMs 124 and
33 CFR 67.10-40 - Sound signals authorized for use prior to January 1, 1973.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and 67.10-10, if the sound signal has a minimum sound pressure level as specified in Table A of... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sound signals authorized for use... STRUCTURES General Requirements for Sound signals § 67.10-40 Sound signals authorized for use prior to...
Modeling fish community dynamics in Florida Everglades: Role of temperature variation
Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling
2002-01-01
The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.
Halford, Keith J.
2006-01-01
MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.
Groundwater-level trends in the U.S. glacial aquifer system, 1964-2013
Hodgkins, Glenn A.; Dudley, Robert W.; Nielsen, Martha G.; Renard, Benjamin; Qi, Sharon L.
2017-01-01
The glacial aquifer system in the United States is a major source of water supply but previous work on historical groundwater trends across the system is lacking. Trends in annual minimum, mean, and maximum groundwater levels for 205 monitoring wells were analyzed across three regions of the system (East, Central, West Central) for four time periods: 1964-2013, 1974-2013, 1984-2013, and 1994-2013. Trends were computed separately for wells in the glacial aquifer system with low potential for human influence on groundwater levels and ones with high potential influence from activities such as groundwater pumping. Generally there were more wells with significantly increasing groundwater levels (levels closer to ground surface) than wells with significantly decreasing levels. The highest numbers of significant increases for all four time periods were with annual minimum and/or mean levels. There were many more wells with significant increases from 1964 to 2013 than from more recent periods, consistent with low precipitation in the 1960s. Overall there were low numbers of wells with significantly decreasing trends regardless of time period considered; the highest number of these were generally for annual minimum groundwater levels at wells with likely human influence. There were substantial differences in the number of wells with significant groundwater-level trends over time, depending on whether the historical time series are assumed to be independent, have short-term persistence, or have long-term persistence. Mean annual groundwater levels have significant lag-one-year autocorrelation at 26.0% of wells in the East region, 65.4% of wells in the Central region, and 100% of wells in the West Central region. Annual precipitation across the glacial aquifer system, on the other hand, has significant autocorrelation at only 5.5% of stations, about the percentage expected due to chance.
Sandra J. Bucci; Guillermo Goldstein; Frederick C. Meinzer; Augusto C. Franco; Paula Campanello; Fabián G. Scholz
2005-01-01
Seasonal regulation of leaf water potential (ΨL) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum Ψ...
42 CFR 412.348 - Exception payments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... beginning on or after October 1, 1991 and before October 1, 2001. (c) Minimum payment level by class of hospital. (1) CMS establishes a minimum payment level by class of hospital. The minimum payment level for a hospital will equal a fixed percentage of the hospital's capital-related costs. The minimum payment levels...
12 CFR 263.82 - Establishment of minimum capital levels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Establishment of minimum capital levels. 263.82... Maintain Adequate Capital § 263.82 Establishment of minimum capital levels. The Board has established minimum capital levels for state member banks and bank holding companies in its Capital Adequacy...
75 FR 38423 - Minimum Levels of Financial Responsibility for Motor Carriers
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... No. FMCSA-2006-26262] RIN 2126-AB05 Minimum Levels of Financial Responsibility for Motor Carriers... amends its regulations concerning minimum levels of financial responsibility for motor carriers to allow... principal place of business. This final rule does not change the required minimum levels of financial...
Simulating future water temperatures in the North Santiam River, Oregon
NASA Astrophysics Data System (ADS)
Buccola, Norman L.; Risley, John C.; Rounds, Stewart A.
2016-04-01
A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990-1999) and future (2059-2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam's spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake's surface with cooler water from deep in the lake, and the spillway is an important release point near the lake's surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A hypothetical floating surface withdrawal at Detroit Dam improved temperature control in summer and autumn (0.6 °C warmer in summer, 0.6 °C cooler in autumn compared to existing structures) without altering release rates or lake level management rules.
Yunus, Ahmad Jailani Muhamed; Nakagoshi, Nobukazu; Salleh, Khairulmaini Osman
2003-03-01
This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses. Three levels of relationships were observed in the study. Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly, individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set up showed that minimum flow discharge (Q min) was dependent of basin area (AU), stream length (LS), maximum relief (Hmax), average relief (HAV) and stream frequency (SF). These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins. Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response. In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the "time to peak" of flow. A shorter time period would mean higher discharge, which is generally considered the prerequisite to flooding. This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months. Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the water supply as well as the habitat within the areas.
NASA Astrophysics Data System (ADS)
Franz, Jasmin; Krahmann, Gerd; Lavik, Gaute; Grasse, Patricia; Dittmar, Thorsten; Riebesell, Ulf
2012-04-01
The tropical South East Pacific is characterized by strong coastal upwelling on the narrow continental shelf and an intense oxygen minimum zone (OMZ) in the intermediate water layer. These hydrographic properties are responsible for a permanent supply of intermediate water masses to the surface rich in nutrients and with a remarkably low inorganic N:P stoichiometry. To investigate the impact of OMZ-influenced upwelling waters on phytoplankton growth, elemental and taxonomical composition we measured hydrographic and biogeochemical parameters along an east-west transect at 10°S in the tropical South East Pacific, stretching from the upwelling region above the narrow continental shelf to the well-stratified oceanic section of the eastern boundary regime. New production in the area of coastal upwelling was driven by large-sized phytoplankton (e.g. diatoms) with generally low N:P ratios (<16:1). While nitrate and phosphate concentrations were at levels not limiting phytoplankton growth along the entire transect, silicate depletion prohibited diatom growth further off-shore. A deep chlorophyll a maximum consisting of pico-/nano- (Synechococcus, flagellates) and microphytoplankton occurred within a pronounced thermocline in subsurface waters above the shelf break and showed intermediate N:P ratios close to Redfield proportions. High PON:POP (>20:1) ratios were observed in the stratified open ocean section of the transect, coinciding with the abundance of two strains of the pico-cyanobacterium Prochlorococcus; a high-light adapted strain in the surface layer and a low-light adapted strain occurring along the oxic-anoxic transition zone below the thermocline. Excess phosphate present along the entire transect did not appear to stimulate growth of nitrogen-fixing phytoplankton, as pigment fingerprinting did not indicate the presence of diazotrophic cyanobacteria at any of our sampling stations. Instead, a large fraction of the excess phosphate generated within the oxygen minimum zone was consumed by non-Redfield production of large phytoplankton in shelf surface waters.
Changes in the channel-bed level of the western Carpathian rivers over the last 40years
NASA Astrophysics Data System (ADS)
Kijowska-Strugała, Małgorzata; Bucała-Hrabia, Anna
2017-04-01
Channel-bed level is constantly changing in time and space, and the process is dependent on both natural and anthropogenic factors. In mountain areas this is one of the more visible morphological processes. The main aim of the research was to analyze the dynamics of the position of river channel beds. Three rivers located within the western part of Polish Carpathians were chosen for the analysis: the Ropa river, the Kamienica Nawojowska river and the Ochotnica river. They are typical rivers for the Beskidy Mountains, medium Flysch mountains. To assess changes in the position of channel bed long-term series of data of minimum water stages in the river were used. The Ropa river is the biggest left tributary of the Wisłoka river (basin a of the upper Vistula River). The total length of the river amounts to 80 km, its gradient equals 58.9‰ and the water basin area amounts to 974 km2. The Kamienica Nawojowska river, with a length of 32.2 km is a right tributary of Dunajec river. The average decrease for the entire watercourse is 18.1‰. The catchment area is 238 km2. The Ochotnica river is 22.7 km long and it is a left tributary of the Dunajec river. The average slope for the entire watercourse is 36.1‰. The Ochotnica river characterized by deep valleys (catchment area 107.6 km2). Analysis of trends in minimum annual water stages in the alluvial Ropa river channel throughout the multi-year period of 1995-2014 shows an increasing trend amounting to 0.8 cm/year. In the Kamienica Nawojowska river the tendency of incision was observed starting from the 1960 to 2014. Average annual rate of increase of the minimum stages was between 0.4 to 1.2 cm/year. On the basis of the analysis of the minimum water levels in the years 1972-2011 two periods can be seen with different tendencies to change the position of the Ochotnica channel bottom. The first covers the years 1972-1996, where aggradation (3.9 cm/year) was the predominant process while in the period 1997-2011 incision (3.2 cm/year) was dominated. Two main factors determine changes in the position of the rivers channel beds: natural (floods, tributaries, type of the channel bed substrate) and anthropogenic (control works in the channel, extraction gravels, reservoir backwater. The deep erosion observed in the Carpathians rivers in the last decade is also associated with changes in land use that have increased due to the economic transformation of the country, and in recent years, the Polish accession to the EU.
[Space-time water monitoring system at the Iriklinsk hydroelectric power station].
Deriabin, D G; Poliakov, E G; Priakhina, A A; Karimov, I F
2002-01-01
The Microbiosensor B 17677 F test system was applied to make a space-time monitoring of the biotoxicity of water used for production and everyday purposes at the Iriklinsk hydroelectric power station (IHEPS) and to identify the leading causes determining the biotoxicity of tested samples. There were seasonal variations in the biotoxicity with the maximum in spring and with minimum in winter and spring and a relationship of the spring rise in the biotoxicity to water pH changes. There was also an association of the certain values of the biotoxicity of industrial water with the concentration of petroleum products that are major pollutants at the IHEPS. The datum points that characterize the maximum level of technogenic exposure were identified.
Nur-E-Alam, M; Islam, M Monirul; Islam, M Nazrul; Rima, Farhana Rahman; Islam, M Nurul
2016-03-01
The cleansing efficiencies of laundry detergents depend on composition and variation of ingredients such as surfactants, phosphate, and co-builders. Among these ingredients, surfactants and phosphate are considered as hazardous materials. Knowledge on compositions and micellar behavior is very useful for understanding their cleansing efficiencies and environmental impact. With this view, composition, critical micelle concentration, and dissolved oxygen level in aqueous solution of some laundry detergents available in Bangladesh such as keya, Wheel Power White, Tibet, Surf Excel, and Chaka were determined. Surfactant and phosphate were found to be maximum in Surf Excel and Wheel Power White, respectively, while both of the ingredients were found to be minimum in Tibet. The critical micelle concentration decreased with increasing surfactant content. The amount of laundry detergents required for efficient cleansing was found to be minimum for Surf Excel and maximum for Chaka; however, cleansing cost was the highest for Surf Excel and the lowest for Tibet. The maximum amount of surfactants and phosphate was discharged by Surf Excel and Wheel Power White, respectively, while discharges of both of the ingredients were minimum for Tibet. The maximum decrease of dissolved oxygen level was caused by Surf Excel and the minimum by Tibet. Therefore, it can be concluded that Tibet is cost-effective and environment friendly, whereas Surf Excel and Wheel Power White are expensive and pose a threat to water environment.
33 CFR 154.1130 - Requirements for prepositioned response equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...
33 CFR 154.1130 - Requirements for prepositioned response equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...
33 CFR 154.1130 - Requirements for prepositioned response equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...
33 CFR 154.1130 - Requirements for prepositioned response equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...
Pricing of Water Resources With Depletable Externality: The Effects of Pollution Charges
NASA Astrophysics Data System (ADS)
Kitabatake, Yoshifusa
1990-04-01
With an abstraction of a real-world situation, the paper views water resources as a depletable capital asset which yields a stream of services such as water supply and the assimilation of pollution discharge. The concept of the concave or convex water resource depletion function is then introduced and applied to a general two-sector, three-factor model. The main theoretical contribution is to prove that when the water resource depletion function is a concave rather than a convex function of pollution, it is more likely that gross regional income will increase with a higher pollution charge policy. The concavity of the function is meant to imply that with an increase in pollution released, the ability of supplying water at a certain minimum quality level diminishes faster and faster. A numerical example is also provided.
Distillation Designs for the Lunar Surface
NASA Technical Reports Server (NTRS)
Boul, Peter J.; Lange,Kevin E.; Conger, Bruce; Anderson, Molly
2010-01-01
Gravity-based distillation methods may be applied to the purification of wastewater on the lunar base. These solutions to water processing are robust physical separation techniques, which may be more advantageous than many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams.
Carpenter, Kurt D.; Snyder, Daniel T.; Duff, John H.; Triska, Frank J.; Lee, Karl K.; Avanzino, Ronald J.; Sobieszczyk, Steven
2009-01-01
Restoring previously drained wetlands is a strategy currently being used to improve water quality and decrease nutrient loading into Upper Klamath Lake, Oregon. In this 2003-05 study, ground- and surface-water quality and hydrologic conditions were characterized in the Wood River Wetland. Nitrogen and phosphorus levels, primarily as dissolved organic nitrogen and ammonium (NH4) and soluble reactive phosphorus (SRP), were high in surface waters. Dissolved organic carbon concentrations also were elevated in surface water, with median concentrations of 44 and 99 milligrams of carbon per liter (mg-C/L) in the North and South Units of the Wood River Wetland, respectively, reaching a maximum of 270 mg-C/L in the South Unit in late autumn. Artesian well water produced NH4 and SRP concentrations of about 6,000 micrograms per liter (ug/L), and concentrations of 36,500 ug-N/L NH4 and 4,110 ug-P/L SRP in one 26-28 ft deep piezometer well. Despite the high ammonium concentrations, the nitrate levels were moderate to low in wetland surface and ground waters. The surface-water concentrations of NH4 and SRP increased in spring and summer, outpacing those for chloride (a conservative tracer), indicative of evapoconcentration. In-situ chamber experiments conducted in June and August 2005 indicated a positive flux of NH4 and SRP from the wetland sediments. Potential sources of NH4 and SRP include diffusion of nutrients from decomposed peat, decomposing aquatic vegetation, or upwelling ground water. In addition to these inputs, evapoconcentration raised surface-water solute concentrations to exceedingly high values by the end of summer. The increase was most pronounced in the South Unit, where specific conductance reached 2,500 uS/cm and median concentrations of total nitrogen and total phosphorus reached 18,000-36,500 ug-N/L and about 18,000-26,000 ug-P/L, respectively. Water-column SRP and total phosphorus levels decreased during autumn and winter following inputs of irrigation water and precipitation, which have lower nutrient concentrations. The SRP concentrations, however, decreased faster than the dilution rate alone, possibly due to precipitation of phosphorus with iron, manganese, or calcium. The high concentrations of dissolved nitrogen and phosphorus during the growing season give rise to a rich plant community in the wetland consisting of emergent and submergent macrophytes and algae including phytoplankton and benthic and epiphytic algae that have pronounced effects on dissolved oxygen (DO) and pH. Midday readings of surface-water DO during summer often were supersaturated (as much as 310 percent saturation) with elevated pH (as much as 9.2 units), indicative of high rates of photosynthesis. Minimum DO concentrations in the shallow ground-water piezometer wells were 0.4 mg/L in the North Unit and 0.8 mg/L in the South Unit during summer, which is probably low enough to support microbial denitrification. Denitrification was confirmed during in-situ experiments conducted at the sediment-water interface, but rates were low due to low background nitrate (NO3). Nevertheless, denitrification (and plant uptake) likely contribute to low nitrate levels. Another possible cause of low nitrate levels is dissimilatory nitrate reduction to ammonia (DNRA), a microbial process that converts and decreases nitrate to ammonia. DNRA explains the excess ammonia production measured in the chambers treated with nitrate. Surface-water levels and standing surface-water volume in the Wood River Wetland reached a maximum in early spring, inundating 80-90 percent of the wetland. Surface-water levels and standing volume then declined reaching a minimum in August through November, when the South Unit was only 10 percent inundated and the North Unit was nearly dry. The shallow ground-water levels followed a trend similar to surface-water levels and indicated a strong upward gradient. A monthly water budget was developed individually for the North
Reservoir water level forecasting using group method of data handling
NASA Astrophysics Data System (ADS)
Zaji, Amir Hossein; Bonakdari, Hossein; Gharabaghi, Bahram
2018-06-01
Accurately forecasted reservoir water level is among the most vital data for efficient reservoir structure design and management. In this study, the group method of data handling is combined with the minimum description length method to develop a very practical and functional model for predicting reservoir water levels. The models' performance is evaluated using two groups of input combinations based on recent days and recent weeks. Four different input combinations are considered in total. The data collected from Chahnimeh#1 Reservoir in eastern Iran are used for model training and validation. To assess the models' applicability in practical situations, the models are made to predict a non-observed dataset for the nearby Chahnimeh#4 Reservoir. According to the results, input combinations (L, L -1) and (L, L -1, L -12) for recent days with root-mean-squared error (RMSE) of 0.3478 and 0.3767, respectively, outperform input combinations (L, L -7) and (L, L -7, L -14) for recent weeks with RMSE of 0.3866 and 0.4378, respectively, with the dataset from https://www.typingclub.com/st. Accordingly, (L, L -1) is selected as the best input combination for making 7-day ahead predictions of reservoir water levels.
Potentiometric Surface of the Ozark Aquifer in Northern Arkansas, 2007
Pugh, Aaron L.
2008-01-01
The Ozark aquifer in northern Arkansas is composed of dolomite, limestone, sandstone, and shale of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 58 well and 5 spring water-level measurements collected in 2007 in Arkansas and Missouri, has a maximum water-level altitude measurement of 1,169 feet in Carroll County and a minimum water-level altitude measurement of 118 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the west, northwest, and north in the western part of the study area. Comparing the 2007 potentiometric-surface map with a predevelopment potentiometric-surface map indicates general agreement between the two surfaces except in the northwestern part of the study area. Potentiometric-surface differences can be attributed to withdrawals related to increasing population, changes in public-supply sources, processes or water withdrawals outside the study area, or differences in data-collection or map-construction methods. The rapidly increasing population within the study area appears to have some effect on ground-water levels. Although, the effect appears to have been minimized by the development and use of surface-water distribution infrastructure, suggesting most of the incoming populations are fulfilling their water needs from surface-water sources. The conversion of some users from ground water to surface water may be allowing water levels in wells to recover (rise) or decline at a slower rate, such as in Benton, Carroll, and Washington Counties.
Changing climate and endangered high mountain ecosystems in Colombia.
Ruiz, Daniel; Moreno, Hernán Alonso; Gutiérrez, María Elena; Zapata, Paula Andrea
2008-07-15
High mountain ecosystems are among the most sensitive environments to changes in climatic conditions occurring on global, regional and local scales. The article describes the changing conditions observed over recent years in the high mountain basin of the Claro River, on the west flank of the Colombian Andean Central mountain range. Local ground truth data gathered at 4150 m, regional data available at nearby weather stations, and satellite info were used to analyze changes in the mean and the variance, and significant trends in climatic time series. Records included minimum, mean and maximum temperatures, relative humidity, rainfall, sunshine, and cloud characteristics. In high levels, minimum and maximum temperatures during the coldest days increased at a rate of about 0.6 degrees C/decade, whereas maximum temperatures during the warmest days increased at a rate of about 1.3 degrees C/decade. Rates of increase in maximum, mean and minimum diurnal temperature range reached 0.6, 0.7, and 0.5 degrees C/decade. Maximum, mean and minimum relative humidity records showed reductions of about 1.8, 3.9 and 6.6%/decade. The total number of sunny days per month increased in almost 2.1 days. The headwaters exhibited no changes in rainfall totals, but evidenced an increased occurrence of unusually heavy rainfall events. Reductions in the amount of all cloud types over the area reached 1.9%/decade. In low levels changes in mean monthly temperatures and monthly rainfall totals exceeded + 0.2 degrees C and - 4% per decade, respectively. These striking changes might have contributed to the retreat of glacier icecaps and to the disappearance of high altitude water bodies, as well as to the occurrence and rapid spread of natural and man-induced forest fires. Significant reductions in water supply, important disruptions of the integrity of high mountain ecosystems, and dramatic losses of biodiversity are now a steady menu of the severe climatic conditions experienced by these fragile tropical environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, A.M.H.
Poor control of steam generator water level of a nuclear power plant may lead to frequent nuclear reactor shutdowns. These shutdowns are more common at low power where the plant exhibits strong non-minimum phase characteristics and flow measurements at low power are unreliable in many instances. There is need to investigate this problem and systematically design a controller for water level regulation. This work is concerned with the study and the design of a suitable controller for a U-Tube Steam Generator (UTSG) of a Pressurized Water Reactor (PWR) which has time varying dynamics. The controller should be suitable for themore » water level control of UTSG without manual operation from start-up to full load transient condition. Some preliminary simulation results are presented that demonstrate the effectiveness of the proposed controller. The development of the complete control algorithm includes components such as robust output tracking, and adaptively estimating both the system parameters and state variables simultaneously. At the present time all these components are not completed due to time constraints. A robust tracking component of the controller for water level control is developed and its effectiveness on the parameter variations is demonstrated in this study. The results appear encouraging and they are only preliminary. Additional work is warranted to resolve other issues such as robust adaptive estimation.« less
Effect of censoring trace-level water-quality data on trend-detection capability
Gilliom, R.J.; Hirsch, R.M.; Gilroy, E.J.
1984-01-01
Monte Carlo experiments were used to evaluate whether trace-level water-quality data that are routinely censored (not reported) contain valuable information for trend detection. Measurements are commonly censored if they fall below a level associated with some minimum acceptable level of reliability (detection limit). Trace-level organic data were simulated with best- and worst-case estimates of measurement uncertainty, various concentrations and degrees of linear trend, and different censoring rules. The resulting classes of data were subjected to a nonparametric statistical test for trend. For all classes of data evaluated, trends were most effectively detected in uncensored data as compared to censored data even when the data censored were highly unreliable. Thus, censoring data at any concentration level may eliminate valuable information. Whether or not valuable information for trend analysis is, in fact, eliminated by censoring of actual rather than simulated data depends on whether the analytical process is in statistical control and bias is predictable for a particular type of chemical analyses.
Evaluation of an Active Humidification System for Inspired Gas
Roux, Nicolás G.; Villalba, Darío S.; Gogniat, Emiliano; Feld, Vivivana; Ribero Vairo, Noelia; Sartore, Marisa; Bosso, Mauro; Scapellato, José L.; Intile, Dante; Planells, Fernando; Noval, Diego; Buñirigo, Pablo; Jofré, Ricardo; Díaz Nielsen, Ernesto
2015-01-01
Objectives The effectiveness of the active humidification systems (AHS) in patients already weaned from mechanical ventilation and with an artificial airway has not been very well described. The objective of this study was to evaluate the performance of an AHS in chronically tracheostomized and spontaneously breathing patients. Methods Measurements were quantified at three levels of temperature (T°) of the AHS: level I, low; level II, middle; and level III, high and at different flow levels (20 to 60 L/minute). Statistical analysis of repeated measurements was performed using analysis of variance and significance was set at a P<0.05. Results While the lowest temperature setting (level I) did not condition gas to the minimum recommended values for any of the flows that were used, the medium temperature setting (level II) only conditioned gas with flows of 20 and 30 L/minute. Finally, at the highest temperature setting (level III), every flow reached the minimum absolute humidity (AH) recommended of 30 mg/L. Conclusion According to our results, to obtain appropiate relative humidity, AH and T° of gas one should have a device that maintains water T° at least at 53℃ for flows between 20 and 30 L/m, or at T° of 61℃ at any flow rate. PMID:25729499
Peeters, J E; Mazás, E A; Masschelein, W J; Villacorta Martiez de Maturana, I; Debacker, E
1989-01-01
Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce 100% infection. Treatment of water containing 10(4) oocysts per ml with 1.11 mg of ozone per liter (concentration at time zero [C0]) for 6 min totally eliminated the infectivity of the oocysts for neonatal mice. A level of 2.27 mg of ozone per liter (C0) was necessary to inactivate water containing 5 x 10(5) oocysts per ml within 8 min. Also, 0.4 mg of chlorine dioxide per liter (C0) significantly reduced infectivity within 15 min of contact, although some oocysts remained viable. PMID:2764564
RECENT DEVELOPMENTS IN HYDROLOGIC INSTRUMENTATION.
Latkovich, Vito J.
1985-01-01
The availability of space-age materials and implementation of state-of-the-art electronics is making possible the recent developments of hydrologic instrumentation. Material developments include: Synthetic-fiber sounding and tag lines; fiberglass wading rod; polymer (plastic) sheaves, pulleys and sampler components; and polymer (plastic) bucket wheels for current meters. These materials are very cost effective and efficient. Electromechanical and electronic developments and applications include: adaptable data acquisition system; downhole sampler for hazardous substances; current-meter digitizer; hydraulic power/drive system for discharge measurements and water-quality sampling; non-contact water-level sensors; minimum data recorder; acoustic velocity meters, and automated current meter discharge-measurement system.
49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.
Code of Federal Regulations, 2010 CFR
2010-10-01
... stress in pounds psi; P = test pressure prescribed for water jacket test, i.e., at least 2 times service... seamless hemispheres) or a circumferentially welded cylinder (two seamless drawn shells) with a water... the wall stress at the minimum specified test pressure may not exceed 67 percent of the minimum...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay, David A.; Borde, Amy B.; Diefenderfer, Heida L.
Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetlandmore » hydrologic regimes at different locations on the river floodplain. A new predictive tool is introduced and validated, the potential SEV (pSEV), which can reduce the need for extensive new data collection in wetland restoration planning. Models of water levels and inundation frequency distinguish four zones encompassing eight reaches. The system zones are the wave- and current-dominated Entrance to river kilometer (rkm) 5; the Estuary (rkm-5 to 87), comprised of a lower reach with salinity, the energy minimum (where the turbidity maximum normally occurs), and an upper estuary reach without salinity; the Tidal River (rkm-87 to 229), with lower, middle, and upper reaches in which river flow becomes increasingly dominant over tides in determining water levels; and the steep and weakly tidal Cascade (rkm-229 to 234) immediately downstream from Bonneville Dam. The same zonation is seen in the water levels of floodplain stations, with considerable modification of tidal properties. The system zones and reaches defined here reflect geological features and their boundaries are congruent with five wetland vegetation zones« less
Soeder, Daniel J.; Raffensperger, Jeff P.; Nardi, Mark R.
2007-01-01
Ground water is the primary source of water supply in most areas of Maryland?s Atlantic Coastal Plain, including Southern Maryland. The counties in this area are experiencing some of the most rapid growth and development in the State, resulting in an increased demand for ground-water production. The cooperative, basic water-data program of the U.S. Geological Survey and the Maryland Geological Survey has collected long-term observations of ground-water levels in Southern Maryland and parts of the Eastern Shore for many decades. Additional water-level observations were made by both agencies beginning in the 1970s, under the Power Plant Research Program of the Maryland Department of Natural Resources. These long-term water levels commonly show significant declines over several decades, which are attributed to ground-water withdrawals. Ground-water-level trends since 1980 in major Coastal Plain aquifers such as the Piney Point-Nanjemoy, Aquia, Magothy, upper Patapsco, lower Patapsco, and Patuxent were compared to water use and withdrawal data. Potentiometric surface maps show that most of the declines in ground-water levels can be directly related to effects from major pumping centers. There is also evidence that deep drawdowns in some pumped aquifers may be causing declines in adjacent, unpumped aquifers. Water-level hydrographs of many wells in Southern Maryland show linear declines in levels year after year, instead of the gradual leveling-off that would be expected as the aquifers equilibrate with pumping. A continual increase in the volumes of water being withdrawn from the aquifers is one explanation for why they are not reaching equilibrium. Although reported ground-water production in Southern Maryland has increased somewhat over the past several decades, the reported increases are often not large enough to account for the observed water-level declines. Numerical modeling simulations indicate that a steady, annual increase in the number of small wells could account for the observed aquifer behavior. Such wells, being pumped at rates below the minimum legal reporting threshold of 10,000 gallons per day, might be the source of the additional withdrawals. More detailed water-use data, especially from domestic wells, central-pivot irrigation wells, and other small users not currently reporting withdrawals to the State, may help to determine the cause of the aquifer declines.
Rodgers, Kirk D.
2017-09-20
The Nacatoch Sand in northeastern and southwestern Arkansas and the Tokio Formation in southwestern Arkansas are sources of groundwater for agricultural, domestic, industrial, and public use. Water-level altitudes measured in 51 wells completed in the Nacatoch Sand and 42 wells completed in the Tokio Formation during 2014 and 2015 were used to create potentiometric-surface maps of the two areas. Aquifers in the Nacatoch Sand and Tokio Formation are hereafter referred to as the Nacatoch aquifer and the Tokio aquifer, respectively.Potentiometric surfaces show that groundwater in the Nacatoch aquifer flows southeast toward the Mississippi River in northeastern Arkansas. Groundwater flow direction is towards the south and southeast in Hempstead, Little River, and Nevada Counties in southwestern Arkansas. An apparent cone of depression exists in southern Clark County and likely alters groundwater flow from a regional direction toward the depression.In southwestern Arkansas, potentiometric surfaces indicate that groundwater flow in the Tokio aquifer is towards the city of Hope. Northwest of Hope, an apparent cone of depression exists. In southwestern Pike, northwestern Nevada, and northeastern Hempstead Counties, an area of artesian flow (water levels are at or above land surface) exists.Water-level changes in wells were identified using two methods: (1) linear regression analysis of hydrographs from select wells with a minimum of 20 years of water-level data, and (2) a direct comparison between water-level measurements from 2008 and 2014–15 at each well. Of the six hydrographs analyzed in the Nacatoch aquifer, four indicated a decline in water levels. Compared to 2008 measurements, the largest rise in water levels was 35.14 feet (ft) in a well in Clark County, whereas the largest decline was 14.76 ft in a well in Nevada County, both located in southwestern Arkansas.Of the four hydrographs analyzed in the Tokio aquifer, one indicated a decline in water levels, while the others remained relatively unchanged. Compared to 2008 measurements, the largest rise in water levels was 21.34 ft in Hempstead County, and the largest water-level decline was 39.37 ft in Clark County. Although changes in water levels since 2008 are spatially varied; long-term trends indicate an overall decline in water levels in both aquifers.
Grimmett, Paul E; Munch, Jean W
2009-01-01
1,4-Dioxane has been identified as a probable human carcinogen and an emerging contaminant in drinking water. The United States Environmental Protection Agency's (U.S. EPA) National Exposure Research Laboratory (NERL) has developed a method for the analysis of 1,4-dioxane in drinking water at ng/L concentrations. The method consists of an activated carbon solid-phase extraction of 500-mL or 100-mL water samples using dichloromethane as the elution solvent. The extracts are analyzed by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. In the NERL laboratory, recovery of 1,4-dioxane ranged from 94-110% in fortified laboratory reagent water and recoveries of 96-102% were demonstrated for fortified drinking water samples. The relative standard deviations for replicate analyses were less than 6% at concentrations exceeding the minimum reporting level.
Naveena, Basappa M; Jagadeesh, Deepak S; Jagadeesh Babu, A; Madhava Rao, T; Kamuni, Veeranna; Vaithiyanathan, S; Kulkarni, Vinayak V; Rapole, Srikanth
2017-10-15
The present study compared the accuracy of an OFFGEL electrophoresis and tandem mass spectrometry-based proteomic approach with a DNA-based method for meat species identification from raw and cooked ground meat mixes containing cattle, water buffalo and sheep meat. The proteomic approach involved the separation of myofibrillar proteins using OFFGEL electrophoresis, SDS-PAGE and protein identification by MALDI-TOF MS. Species-specific peptides derived from myosin light chain-1 and 2 were identified for authenticating buffalo meat spiked at a minimum 0.5% level in sheep meat with high confidence. Relative quantification of buffalo meat mixed with sheep meat was done by quantitative label-free mass spectrometry using UPLC-QTOF and PLGS search engine to substantiate the confidence level of the data. In the DNA-based method, PCR amplification of mitochondrial D loop gene using species specific primers found 226bp and 126bp product amplicons for buffalo and cattle meat, respectively. The method was efficient in detecting a minimum of 0.5% and 1.0% when buffalo meat was spiked with cattle meat in raw and cooked meat mixes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reconnaissance of ground-water resources of the Squaxin Island Indian Reservation, Washington
Lum, W.E.; Walters, Kenneth Lyle
1976-01-01
A supply of fresh ground water for the Squaxin Island Indian Reservation, Washington, exists in saturated deposits underlying the 3.09-square-mile island. Four test wells tapped a water-bearing zone of sand and gravel and had yields ranging from 27 to 170 gpm, with drawdowns of about 5 feet to about 65 feet. Except for high concentrations of iron and manganese (which can be treated and reduced for domestic use), the water quality is good. Conditions for drain-field waste disposal from septic tanks are good in at least the northern two-thirds of the island. The danger of inducing seawater encroachment can be minimized by maintaining pumping levels above sea level, using a network of several wells pumped intermittently into a storage facility, and spacing these wells to spread out the effects of pumping. In the northern half of the island, wells 100 to 200 feet deep may yield 25 to 100 gpm with minimum chances of seawater encroachment. The southern half of the island has a smaller apparent potential for ground-water development and an increased possibility of seawater encroachment. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Scheihing, Konstantin; Tröger, Uwe
2018-05-01
The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to -25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to 15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3-8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of 2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of 10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2-3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.
Estimation of mussel population response to hydrologic alteration in a southeastern U.S. stream
Peterson, J.T.; Wisniewski, J.M.; Shea, C.P.; Rhett, Jackson C.
2011-01-01
The southeastern United States has experienced severe, recurrent drought, rapid human population growth, and increasing agricultural irrigation during recent decades, resulting in greater demand for the water resources. During the same time period, freshwater mussels (Unioniformes) in the region have experienced substantial population declines. Consequently, there is growing interest in determining how mussel population declines are related to activities associated with water resource development. Determining the causes of mussel population declines requires, in part, an understanding of the factors influencing mussel population dynamics. We developed Pradel reverse-time, tag-recapture models to estimate survival, recruitment, and population growth rates for three federally endangered mussel species in the Apalachicola- Chattahoochee-Flint River Basin, Georgia. The models were parameterized using mussel tag-recapture data collected over five consecutive years from Sawhatchee Creek, located in southwestern Georgia. Model estimates indicated that mussel survival was strongly and negatively related to high flows during the summer, whereas recruitment was strongly and positively related to flows during the spring and summer. Using these models, we simulated mussel population dynamics under historic (1940-1969) and current (1980-2008) flow regimes and under increasing levels of water use to evaluate the relative effectiveness of alternative minimum flow regulations. The simulations indicated that the probability of simulated mussel population extinction was at least 8 times greater under current hydrologic regimes. In addition, simulations of mussel extinction under varying levels of water use indicated that the relative risk of extinction increased with increased water use across a range of minimum flow regulations. The simulation results also indicated that our estimates of the effects of water use on mussel extinction were influenced by the assumptions about the dynamics of the system, highlighting the need for further study of mussel population dynamics. ?? 2011 Springer Science+Business Media, LLC (outside the USA).
Conifer species adapt to low-rainfall climates by following one of two divergent pathways.
Brodribb, Timothy J; McAdam, Scott A M; Jordan, Gregory J; Martins, Samuel C V
2014-10-07
Water stress is one of the primary selective forces in plant evolution. There are characters often cited as adaptations to water stress, but links between the function of these traits and adaptation to drying climates are tenuous. Here we combine distributional, climatic, and physiological evidence from 42 species of conifers to show that the evolution of drought resistance follows two distinct pathways, both involving the coordinated evolution of tissues regulating water supply (xylem) and water loss (stomatal pores) in leaves. Only species with very efficient stomatal closure, and hence low minimum rates of water loss, inhabit dry habitats, but species diverged in their apparent mechanism for maintaining closed stomata during drought. An ancestral mechanism found in Pinaceae and Araucariaceae species relies on high levels of the hormone abscisic acid (ABA) to close stomata during water stress. A second mechanism, found in the majority of Cupressaceae species, uses leaf desiccation rather than high ABA levels to close stomata during sustained water stress. Species in the latter group were characterized by xylem tissues with extreme resistance to embolism but low levels of foliar ABA after 30 d without water. The combination of low levels of ABA under stress with cavitation-resistant xylem enables these species to prolong stomatal opening during drought, potentially extending their photosynthetic activity between rainfall events. Our data demonstrate a surprising simplicity in the way conifers evolved to cope with water shortage, indicating a critical interaction between xylem and stomatal tissues during the process of evolution to dry climates.
[Research on ecological population capacity based on food and water in Shandong province].
Lin, C
1991-02-01
The population carrying capacity in Shandong Province, China, based on current food production and water supply is discusses. In 1988, the staple food production exceeded the amount needed for the minimum subsistence level of 300 kg/person. But if the food supply were to be kept at 500 kilos/person, the amount considered to be abundant, the province had a surplus population of 16.11 million. Based on a population projection of medium scenario, the projected level of food production would meet the needs for adequate food consumption. But if the level of abundant supply were to be kept, there would be 12.4 million surplus population. The shortage of water supply is a more acute problem. On the basis of the current water consumption of 514 cubic m/person, the water supply of the province could only meet the needs of 44.9 million. But the population in the province was already 80.6 million in 1988. If the water consumption was 1000 cubic m/person, which was the consumption level of the Soviet Union, the supply can only meet the needs of 23 million population. Even if the potential water resources were fully developed, the supply can only meet the needs of 65.4 million people at the end of the century. The 92.5 million projected population at the time would far exceed the water supply capacity. The severe shortage of water supply of the province would be the most serious ecological problem. Such constraint may also have considerable impact on the sustained socioeconomic development of the province.
NASA Astrophysics Data System (ADS)
Silva, Nelson; Rojas, Nora; Fedele, Aldo
2009-07-01
Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.
NASA Astrophysics Data System (ADS)
Lopes, Ana Rita; Trübenbach, Katja; Teixeira, Tatiana; Lopes, Vanessa M.; Pires, Vanessa; Baptista, Miguel; Repolho, Tiago; Calado, Ricardo; Diniz, Mário; Rosa, Rui
2013-12-01
Diel vertical migrators, such as myctophid fishes, are known to encounter oxygen minimum zones (OMZ) during daytime in the Eastern Pacific Ocean and, therefore, have to cope with temperature and oxidative stress that arise while ascending to warmer, normoxic surface waters at night-time. The aim of this study was to investigate the antioxidant defense strategies and heat shock response (HSR) in two myctophid species, namely Triphoturus mexicanus and Benthosema panamense, at shallow and warm surface waters (21 kPa, 20-25 °C) and at hypoxic, cold (≤1 kPa, 10 °C) mesopelagic depths. More specifically, we quantified (i) heat shock protein concentrations (HSP70/HSC70) (ii) antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], and (iii) lipid peroxidation [malondialdehyde (MDA) levels]. HSP70/HSC70 levels increased in both myctophid species at warmer, well-oxygenated surface waters probably to prevent cellular damage (oxidative stress) due to increased oxygen demand under elevated temperatures and reactive oxygen species (ROS) formation. On the other hand, CAT and GST activities were augmented under hypoxic conditions, probably as preparatory response to a burst of oxyradicals during the reoxygenation phase (while ascending). SOD activity decreased under hypoxia in B. panamense, but was kept unchanged in T. mexicanus. MDA levels in B. panamense did not change between the surface and deep-sea conditions, whereas T. mexicanus showed elevated MDA and HSP70/HSC70 concentrations at warmer surface waters. This indicated that T. mexicanus seems to be not so well tuned to temperature and oxidative stress associated to diel vertical migrations. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how different species might respond to the impacts of environmental stressors (e.g. expanding mesopelagic hypoxia) coupled with global climate change.
Hydrologic effects of proposed changes in management practices, Winnebago Pool, Wisconsin
Krug, William R.
1981-01-01
In addition, the study illustrated that the discharge from the Winnebago pool could be managed to guarantee that the discharge in the Fox River downstream would not fall below a specified discharge up to 1,500 ft^/s. In most years this would have no effect on the stage of the pool. In a few years there would be a conflict between releasing water from the pool to maintain the desired discharge and maintaining water levels above the required minimum stage. The frequency of this possible conflict varies with the level of discharge desired in the Fox River from 1 year in 60 for a discharge of 1,100 ft^/s to about 1 year in 15 for a discharge of 1,500 ft^/s.
49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the formula: S = PD / 4tE Where: S = Wall stress in psi; P = Test pressure prescribed for water jacket... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a water... thickness. The minimum wall thickness must be such that the wall stress at the minimum specified test...
49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... stress in pounds psi; P = test pressure prescribed for water jacket test, i.e., at least 2 times service... hemispheres) or a circumferentially welded cylinder (two seamless drawn shells) with a water capacity not over... the wall stress at the minimum specified test pressure may not exceed 67 percent of the minimum...
40 CFR 86.318-79 - Oxides of nitrogen analyzer specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES... be calibrated per § 86.330. (5) The minimum water rejection ratio (maximum water interference) for the NO NDIR analyzer shall be 5,000:1 (see § 86.321). (6) The minimum CO2 rejection ratio (maximum CO2...
Hydrologic and climatic changes in three small watersheds after timber harvest.
W.B. Fowler; J.D. Helvey; E.N. Felix
1987-01-01
No significant increases in annual water yield were shown for three small watersheds in northeastern Oregon after shelterwood cutting (30-percent canopy removal, 50-percent basal area removal) and clearcutting. Average maximum air temperature increased after harvest and average minimum air temperature decreased by up to 2.6 °C. Both maximum and minimum water...
Code of Federal Regulations, 2011 CFR
2011-07-01
....35 Section 122.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Permit... minimum control measure(s) in your storm water management program. (For example, if a State or Tribe is...
Code of Federal Regulations, 2010 CFR
2010-07-01
....35 Section 122.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Permit... minimum control measure(s) in your storm water management program. (For example, if a State or Tribe is...
Ground-water levels in Huron County, Michigan, 2002-03
Weaver, T.L.; Blumer, S.P.; Crowley, S.L.
2008-01-01
In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to collect water-level altitudes (hereafter referred to as water levels) at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships will have continuous water-level recorders, while the wells in Grant and Bingham Townships will revert to quarterly measurement status. USGS has also provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 23 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 23 quarterly-measured wells is also summarized in the annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998).The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for groundwater levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville and Harbor Beach, and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration [NOAA], 2002-04; Danny Costello, NOAA hydrologist, written commun., 2003-04). In March 2003, a new low-water level for the period of this study was measured in Lake Huron (National Oceanic and Atmospheric Administration, 2003; 2004). The net decline in the water level of Lake Huron from January 1, 2002 to December 31, 2003 was about 0.3 ft. Annual precipitation in 2002 was about 0.3 inches above normal, with much of it occurring during summer months. The provisional precipitation total for 2003 is about an inch below normal (NOAA, 2003, 2004; Danny Costello, NOAA hydrologist, written commun., 2003, 2004).Four wells equipped with continuous-data recorders are completed in the glacial, Saginaw, and Marshall aquifers. Water levels in three of the four wells equipped with continuous-data recorders experienced a net decline over the period from January 2002 to December 2003, while the level in well H9r, completed in the Saginaw aquifer in Fairhaven Township adjacent to Saginaw Bay (Lake Huron), rose about 1.3 ft over the same period. Interestingly, the water level in Saginaw Bay declined about 0.3 ft over the same period. A period-ofrecord maximum depth to water was recorded in September 2003 in well H25Ar, completed in the Marshall aquifer in Lake Township. Hydrographs showing altitude of the water surface are presented for each of four wells equipped with continuous-data recorders.Twenty three wells were measured on a quarterly basis in 2002-03. These wells are completed in the Saginaw and Marshall aquifers, and Coldwater confining unit. Although each quarterly measurement only provides a “snapshot” water level, the data adequately define the “generalized” water-level trend in the aquifer near the well. The water level in one quarterly-measured well completed in the Saginaw aquifer near Saginaw Bay, had a net rise for the period from January 2002 to December 2003, while levels in the other 22 quarterly-measured wells declined about 0.5 to 2.0 ft during the same period. A period-of-record minimum depth to water (high) was measured in 2002 in two quarterly-measured wells completed in the Saginaw aquifer, although the level in one of those wells had a net decline over the period from January 2002 through December 2003. Conversely, period-of-record maximum depths to water (low) were measured in 2002 in one well completed in the Saginaw aquifer and two wells completed in the Marshall aquifer; and in 2003, in 6 of 16 wells completed in the Marshall aquifer. Near period-ofrecord maximum depths to water were measured in 2003 in two additional wells completed in the Marshall aquifer. No period-of-record minimum or maximum depths to water were measured in 2002-03 in wells completed in the Coldwater confining unit. Hydrographs showing water levels measured in each well are presented for the 23 wells measured on a quarterly basis.Water-level trends measured in 2002-03 in other wells in Lower Michigan have similarities to those measured in Huron County wells. Several external factors appear to influence water-level trends including proximity to nearby production wells, amount and timing of precipitation events, evapotranspiration and type of prevalent ground cover, proximity of aquifer to the surface, and hydraulic characteristics of overlying geologic materials.
Alarcon Falconi, Tania M; Kulinkina, Alexandra V; Mohan, Venkata Raghava; Francis, Mark R; Kattula, Deepthi; Sarkar, Rajiv; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N
2017-01-01
Municipal water sources in India have been found to be highly contaminated, with further water quality deterioration occurring during household storage. Quantifying water quality deterioration requires knowledge about the exact source tap and length of water storage at the household, which is not usually known. This study presents a methodology to link source and household stored water, and explores the effects of spatial assumptions on the association between tap-to-household water quality deterioration and enteric infections in two semi-urban slums of Vellore, India. To determine a possible water source for each household sample, we paired household and tap samples collected on the same day using three spatial approaches implemented in GIS: minimum Euclidean distance; minimum network distance; and inverse network-distance weighted average. Logistic and Poisson regression models were used to determine associations between water quality deterioration and household-level characteristics, and between diarrheal cases and water quality deterioration. On average, 60% of households had higher fecal coliform concentrations in household samples than at source taps. Only the weighted average approach detected a higher risk of water quality deterioration for households that do not purify water and that have animals in the home (RR=1.50 [1.03, 2.18], p=0.033); and showed that households with water quality deterioration were more likely to report diarrheal cases (OR=3.08 [1.21, 8.18], p=0.02). Studies to assess contamination between source and household are rare due to methodological challenges and high costs associated with collecting paired samples. Our study demonstrated it is possible to derive useful spatial links between samples post hoc; and that the pairing approach affects the conclusions related to associations between enteric infections and water quality deterioration. Copyright © 2016 Elsevier GmbH. All rights reserved.
Estimation of water surface elevations for the Everglades, Florida
Palaseanu, Monica; Pearlstine, Leonard
2008-01-01
The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring gages and modeling methods that provides scientists and managers with current (2000–present) online water surface and water depth information for the freshwater domain of the Greater Everglades. This integrated system presents data on a 400-m square grid to assist in (1) large-scale field operations; (2) integration of hydrologic and ecologic responses; (3) supporting biological and ecological assessment of the implementation of the Comprehensive Everglades Restoration Plan (CERP); and (4) assessing trophic-level responses to hydrodynamic changes in the Everglades.This paper investigates the radial basis function multiquadric method of interpolation to obtain a continuous freshwater surface across the entire Everglades using radio-transmitted data from a network of water-level gages managed by the US Geological Survey (USGS), the South Florida Water Management District (SFWMD), and the Everglades National Park (ENP). Since the hydrological connection is interrupted by canals and levees across the study area, boundary conditions were simulated by linearly interpolating along those features and integrating the results together with the data from marsh stations to obtain a continuous water surface through multiquadric interpolation. The absolute cross-validation errors greater than 5 cm correlate well with the local outliers and the minimum distance between the closest stations within 2000-m radius, but seem to be independent of vegetation or season.
Arctic intermediate water in the Norwegian sea
NASA Astrophysics Data System (ADS)
Blindheim, Johan
1990-09-01
At least two types of intermediate water propagate into the Norwegian Sea from the Iceland and Greenland seas. North Icelandic Winter Water flows along the slope of the Faroe-Iceland Ridge towards the Faroes. The distribution of this intermediate water is limited to the southern Norwegian Sea. The second type intrudes between the bottom water and the Atlantic Water, and can be traced as a slight salinity minimum of the entire area of the Norwegian Sea. There seems to be along-isopycnal advection of this water type along the Arctic Front from both the Iceland and Greenland Seas. Although the salinity minimum is less distinct along the slope of the continental shelf than in the western Norwegian Sea, this intermediate water separates the deep water and the Atlantic Water, and prohibits direct mixing of these two water masses.
Determination of selected anions in water by ion chromatography
Fishman, Marvin J.; Pyen, Grace
1979-01-01
Ion chromatography is a rapid, sensitive, precise, and accurate method for the determination of major anions in rain water and surface waters. Simultaneous analyses of a single sample for bromide, chloride, fluoride, nitrate, nitrite, orthophosphate, and sulfate require approximately 20 minutes to obtain a chromatogram.Minimum detection limits range from 0.01 milligrams per liter for fluoride to 0.20 milligrams per liter for chloride and sulfate. Percent relative standard deviations were less than nine percent for all anions except nitrite in Standard Reference Water Samples. Only one reference sample contained nitrite and its concentration was near the minimum level of detection. Similar precision was found for chloride, nitrate, and sulfate at concentrations less than 5 milligrams per liter in rainfall samples. Precision for fluoride ranged from 12 to 22 percent, but is attributed to the low concentrations in these samples. The other anions were not detected.To determine accuracy of results, several samples were spiked with known concentrations of fluoride, chloride, nitrate, and sulfate; recoveries ranged from 96 to 103 percent. Known amounts of bromide and phosphate were added, separately, to several other waters, which contained bromide or phosphate. Recovery of added bromide and phosphate ranged from approximately 95 to 104 percent. No recovery data were obtained for nitrite.Chloride, nitrate, nitrite, orthophosphate, and sulfate, in several samples, were also determined independently by automated colorimetric procedures. An automated ion-selective electrode method was used to determine fluoride. Results are in agreement with results obtained by ion chromatography.
Plummer, Niel; Busenberg, E.; Eberts, S.M.; Bexfield, L.M.; Brown, C.J.; Fahlquist, L.S.; Katz, B.G.; Landon, M.K.
2008-01-01
Concentrations of halogenated volatile organic compounds (VOCs) were determined by gas chromatography (GC) with an electron-capture detector (GC-ECD) and by gas chromatography with mass spectrometry (GC-MS) in 109 groundwater samples from five study areas in the United States. In each case, the untreated water sample was used for drinking-water purposes or was from a monitoring well in an area near a drinking-water source. The minimum detection levels (MDLs) for 25 VOCs that were identified in GC-ECD chromatograms, typically, were two to more than four orders of magnitude below the GC-MS MDLs. At least six halogenated VOCs were detected in all of the water samples analyzed by GC-ECD, although one or more VOCs were detected in only 43% of the water samples analyzed by GC-MS. In nearly all of the samples, VOC concentrations were very low and presented no known health risk. Most of the low-level VOC detections indicated post-1940s recharge, or mixtures of recharge that contained a fraction of post-1940s water. Concentrations of selected halogenated VOCs in groundwater from natural and anthropogenic atmospheric sources were estimated and used to recognize water samples that are being impacted by nonatmospheric sources. A classification is presented to perform vulnerability assessments at the scale of individual wells using the number of halogenated VOC detections and total dissolved VOC concentrations in samples of untreated drinking water. The low-level VOC detections are useful in vulnerability assessments, particularly for samples in which no VOCs are detected by GC-MS analysis.
Potentiometric surface of the Ozark aquifer in northern Arkansas, 2004
Schrader, T.P.
2005-01-01
The Ozark aquifer in northern Arkansas comprises dolomites, limestones, sandstones, and shales of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 59 well and 5 spring water-level measurements collected in 2004 in Arkansas and Missouri, indicates maximum water-level altitudes of about 1,188 feet in Benton County and minimum water-level altitudes of about 116 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the northwest and north in the western part of the study area. Comparing the 2004 potentiometric- surface map with a predevelopment potentiometricsurface map indicates general agreement between the two surfaces. Potentiometric-surface differences could be attributed to differences in pumping related to changing population from 1990 to 2000, change in source for public supplies, processes or water use outside the study area, or differences in data-collection or map-construction methods.
A comparison of two systems for chlorinating water in rural Honduras.
Henderson, Amy K; Sack, R Bradley; Toledo, Erick
2005-09-01
This study investigated a small subset of the two community water-disinfection systems--hypochlorinators and tablet feeders-in rural Honduras. Levels of residual chlorine were assessed at three locations within the distribution system: the tank, the proximal house, and the distal house. The levels of residual chlorine were compared with the standard guidelines set by the Pan American Health Organization and the International Rural Water Association for potable water that require a minimum of 1.0 (tank), 0.5 (proximal house), and 0.2 (distal house) ppm for each location. The levels of residual chlorine were also compared across systems, e.g. hypochlorinators to tablet feeders. At the tank and proximal house, tablet feeders had significantly higher mean values for levels of residual chlorine (measured in ppm) than hypochlorinators (tank: 1.20 vs 0.67; proximal house: 0.44 vs 0.32, p < 0.001 for both) with no significant difference at the distal house (0.16 vs 0.16). At the tank and proximal house, tablet feeders were more likely to meet recommended standards than hypochlorinators (90.3% vs 13.3%, p < 0.0001 and 41.3% vs 23.7%, p < 0.0001) with a smaller difference seen at the distal house (30.6% vs 27.1%, p = 0.24). The apparent dichotomy in chlorine levels of tablet feeders (e.g. between tank/proximal house and distal house) is discussed. The results suggest that tablet feeders may be more effective than hypochlorinators in supplying clean water in rural, resource-poor settings and possibly serve as an alternative technology for water disinfection. Further research on techniques for empowering and building capacity within community water boards will help organize and introduce sustainable water systems in developing countries.
Microstructural analysis of hot press formed 22MnB5 steel
NASA Astrophysics Data System (ADS)
Aziz, Nuraini; Aqida, Syarifah Nur; Ismail, Izwan
2017-10-01
This paper presents a microstructural study on hot press formed 22MnB5 steel for enhanced mechanical properties. Hot press forming process consists of simultaneous forming and quenching of heated blank. The 22MnB5 steel was processed at three different parameter settings: quenching time, water temperature and water flow rate. 22MnB5 was processed using 33 full factorial design of experiment (DOE). The full factorial DOE was designed using three factors of quenching time, water temperature and water flow rate at three levels. The factors level were quenching time range of 5 - 11 s, water temperature; 5 - 27°C and water flow rate; 20 - 40 L/min. The as-received and hot press forming processed steel was characterised for metallographic study and martensitic structure area percentage using JEOL Field Emission Scanning Electron Microscopic (FESEM). From the experimental finding, the hot press formed 22MnB5 steel consisted of 50 to 84% martensitic structure area. The minimum quenching time of 8 seconds was required to obtain formed sample with high percentage of martensite. These findings contribute to initial design of processing parameters in hot press forming of 22MnB5 steel blanks for automotive component.
Simulating future water temperatures in the North Santiam River, Oregon
Buccola, Norman; Risley, John C.; Rounds, Stewart A.
2016-01-01
A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A hypothetical floating surface withdrawal at Detroit Dam improved temperature control in summer and autumn (0.6 °C warmer in summer, 0.6 °C cooler in autumn compared to existing structures) without altering release rates or lake level management rules.
NASA Astrophysics Data System (ADS)
He, Anhua; Singh, Ramesh P.; Sun, Zhaohua; Ye, Qing; Zhao, Gang
2016-07-01
The earth tide, atmospheric pressure, precipitation and earthquake fluctuations, especially earthquake greatly impacts water well levels, thus anomalous co-seismic changes in ground water levels have been observed. In this paper, we have used four different models, simple linear regression (SLR), multiple linear regression (MLR), principal component analysis (PCA) and partial least squares (PLS) to compute the atmospheric pressure and earth tidal effects on water level. Furthermore, we have used the Akaike information criterion (AIC) to study the performance of various models. Based on the lowest AIC and sum of squares for error values, the best estimate of the effects of atmospheric pressure and earth tide on water level is found using the MLR model. However, MLR model does not provide multicollinearity between inputs, as a result the atmospheric pressure and earth tidal response coefficients fail to reflect the mechanisms associated with the groundwater level fluctuations. On the premise of solving serious multicollinearity of inputs, PLS model shows the minimum AIC value. The atmospheric pressure and earth tidal response coefficients show close response with the observation using PLS model. The atmospheric pressure and the earth tidal response coefficients are found to be sensitive to the stress-strain state using the observed data for the period 1 April-8 June 2008 of Chuan 03# well. The transient enhancement of porosity of rock mass around Chuan 03# well associated with the Wenchuan earthquake (Mw = 7.9 of 12 May 2008) that has taken its original pre-seismic level after 13 days indicates that the co-seismic sharp rise of water well could be induced by static stress change, rather than development of new fractures.
Minimum distribution of subsea ice-bearing permafrost on the US Beaufort Sea continental shelf
Brothers, Laura L.; Hart, Patrick E.; Ruppel, Carolyn D.
2012-01-01
Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along <5% of the tracklines at depths of ~5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.
High-Performance Integrated Control of water quality and quantity in urban water reservoirs
NASA Astrophysics Data System (ADS)
Galelli, S.; Castelletti, A.; Goedbloed, A.
2015-11-01
This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3-D, high-fidelity simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low-order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 storm-water-fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D-FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).
Ground-water levels in Huron County, Michigan, January 1996 through December 1996
Sweat, M.J.
1997-01-01
In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into an agreement to continue collecting water levels at selected wells throughout Huron County. As part of the agreement, the USGS has provided training and instrumentation for County personnel to measure, on a quarterly basis, the depth to water below the land surface in selected wells. The agreement includes the operation of continuous water-level recorders installed on four wells in Bingham, Fairhaven, Grant and Lake Townships (fig. 1). County personnel make quarterly water-level measurements of 22 other wells. Once each year, County personnel are accompanied by USGS personnel who provide a quality assurance/quality control check of all measurements being made.Precipitation and the altitude of Lake Huron are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean monthly water-level altitude of Lake Huron, averaged from measurements made by U.S. Army Corps of Engineers at two sites, and mean monthly precipitation as recorded in Huron County, for the period October 1988 through December 1996. In general, Lake Huron water levels in 1996 were about the same as they were from 1992-94 (NOAA, 1988-96). Precipitation was generally within the normal range, but was lower than 1993 or 1994. Rainfall during May, June, and July was, cumulatively, about 8.5 inches less in 1995 than in 1994.Hydrographs are presented for each of four wells with water-level recorders. Quarterly water-level measurements and range of water levels during 1996 for the other 22 wells are shown graphically and tabulated.In general, water levels in the glaciofluvial aquifer reflect seasonal variations, with maximum depths to water occurring in late summer and early fall and minimum depths to water occurring in late winter and early spring. In general, wells completed in the lower part of the Marshall aquifer continue to show an increase in water-level altitude from the original project period (1988-90); wells completed in the upper part of the Marshall aquifer showed little variation in water-level altitudes compared to previous years. Wells completed in the Saginaw aquifer continued to show higher water level altitudes in 1995, not only near the lake but also farther inland, while water-level altitudes in wells completed in the Coldwater confining unit showed a small increase from the original project period. Water-level altitudes were higher in the southwest and central parts of the County during 1995 than in the previous year, and water-level altitudes were for the most-part unchanged in the northwest, northeast, and southeast parts of the county during 1995. All wells with recorders had lower water levels in September 1995 than in 1993-94. Lower than average precipitation during May-August is the primary reason for lower levels.
Lotspeich, R. Russell
2007-01-01
Lunga Reservoir is on the U.S. Marine Corps Base in Quantico, which is in the Potomac River basin and the Piedmont Physiographic Province of northern Virginia. Because of the potential use of the reservoir for scuba-diver training and public water supply in addition to current recreational activities, the U.S. Marine Corps wanted to know more about the water quality of Lunga Reservoir and how it compared to Virginia Department of Environmental Quality and Virginia State Water Control Board ambient water-quality standards. Water samples and physical properties were collected by the U.S. Geological Survey at 6 locations throughout Lunga Reservoir, and physical properties were collected at 11 additional locations in the reservoir from September 2004 through August 2005. Water samples for analysis of pesticides and bottom-material trace elements were collected once during the study at four of the sampling locations. Water temperature, dissolved-oxygen concentration, specific conductance, pH, and total chlorophyll concentration in Lunga Reservoir all had similar seasonal and spatial variations as in other lakes and reservoirs in this geographic region - thermal gradient in the summer and fall and isothermal conditions in the winter and early spring. Concentrations of water-quality indicators in Lunga Reservoir were within comparable levels of those in other reservoirs and did not violate the Virginia State Water Control Board standards for public water supplies. Water temperatures throughout Lunga Reservoir during the study period ranged from 4.4 to 30.1 degrees Celsius, well below the State Water Control Board maximum water temperature criteria of 32 degrees Celsius. Dissolved-oxygen concentrations ranged from 0.05 to 14.1 milligrams per liter throughout the reservoir during the study period, but never fell below the State Water Control Board minimum dissolved-oxygen criterion of 4.0 milligrams per liter at the surface of Lunga Reservoir. Specific conductance throughout Lunga Reservoir ranged from 29 to 173 microsiemens per centimeter at 25 degrees Celsius during the study period, with a mean specific conductance of 68 microsiemens per centimeter at 25 degrees Celsius. Measurements of pH throughout the reservoir ranged from 4.8 to 7.6 standard units. Concentrations of chemical constituents analyzed in Lunga Reservoir samples were below any State Water Control Board criteria and generally were similar in concentration to the same chemical constituents in other reservoirs in the State. Four water samples were analyzed for 54 pesticides, and none of these pesticides were above the laboratory minimum reporting level.
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
...)] / (D2 − d2) Where: S = wall stress in psi; P = minimum test pressure prescribed for water jacket test or... seams that are forged lap-welded or brazed and with water capacity (nominal) not over 1,000 pounds and a... calculated wall stress at minimum test pressure (paragraph (i)(4) of this section) may not exceed the...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
...)] / (D2 − d2) Where: S = wall stress in psi; P = minimum test pressure prescribed for water jacket test or... longitudinal seams that are forged lap-welded or brazed and with water capacity (nominal) not over 1,000 pounds... calculated wall stress at minimum test pressure (paragraph (i)(4) of this section) may not exceed the...
Cooling tower water conditioning study. [using ozone
NASA Technical Reports Server (NTRS)
Humphrey, M. F.; French, K. R.
1979-01-01
Successful elimination of cooling tower treatment chemicals was demonstrated. Three towers functioned for long periods of time with ozone as the only treatment for the water. The water in the systems was reused as much as 30 times (cycles of concentration) without deleterious effects to the heat exchangers. Actual system blow-down was eliminated and the only makeup water added was that required to replace the evaporation and mist entrainment losses. Minimum water savings alone are approximately 75.1 1/kg/year. Cost estimates indicate that a savings of 55 percent was obtained on the systems using ozone. A major problem experienced in the use of ozone for cooling tower applications was the difficulty of accurate concentration measurements. The ability to control the operational characteristics relies on easily and accurately determined concentration levels. Present methods of detection are subject to inaccuracies because of interfering materials and the rapid destruction of the ozone.
Quantitative Analysis and Stability of the Rodenticide TETS ...
Journal Article The determination of the rodenticide tetramethylenedisulfotetramine (TETS) in drinking water is reportable through the use of automated sample preparation via solid phase extraction and detection using isotope dilution gas chromatography-mass spectrometry. The method was characterized over twenty-two analytical batches with quality control samples. Accuracies for low and high concentration quality control pools were 100 and 101%, respectively. The minimum reporting level (MRL) for TETS in this method is 0.50 ug/L. Five drinking waters representing a range of water quality parameters and disinfection practices were fortified with TETS at ten times the MRL and analyzed over a 28 day period to determine the stability of TETS in these waters. The amount of TETS measured in these samples averaged 100 ± 6% of the amount fortified suggesting that tap water samples may be held for up to 28 days prior to analysis.
Toward the minimum inner edge distance of the habitable zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zsom, Andras; Seager, Sara; De Wit, Julien
2013-12-01
We explore the minimum distance from a host star where an exoplanet could potentially be habitable in order not to discard close-in rocky exoplanets for follow-up observations. We find that the inner edge of the Habitable Zone for hot desert worlds can be as close as 0.38 AU around a solar-like star, if the greenhouse effect is reduced (∼1% relative humidity) and the surface albedo is increased. We consider a wide range of atmospheric and planetary parameters such as the mixing ratios of greenhouse gases (water vapor and CO{sub 2}), surface albedo, pressure, and gravity. Intermediate surface pressure (∼1-10 bars)more » is necessary to limit water loss and to simultaneously sustain an active water cycle. We additionally find that the water loss timescale is influenced by the atmospheric CO{sub 2} level, because it indirectly influences the stratospheric water mixing ratio. If the CO{sub 2} mixing ratio of dry planets at the inner edge is smaller than 10{sup –4}, the water loss timescale is ∼1 billion years, which is considered here too short for life to evolve. We also show that the expected transmission spectra of hot desert worlds are similar to an Earth-like planet. Therefore, an instrument designed to identify biosignature gases in an Earth-like atmosphere can also identify similarly abundant gases in the atmospheres of dry planets. Our inner edge limit is closer to the host star than previous estimates. As a consequence, the occurrence rate of potentially habitable planets is larger than previously thought.« less
NASA Astrophysics Data System (ADS)
Imani, Moslem; You, Rey-Jer; Kuo, Chung-Yen
2014-10-01
Sea level forecasting at various time intervals is of great importance in water supply management. Evolutionary artificial intelligence (AI) approaches have been accepted as an appropriate tool for modeling complex nonlinear phenomena in water bodies. In the study, we investigated the ability of two AI techniques: support vector machine (SVM), which is mathematically well-founded and provides new insights into function approximation, and gene expression programming (GEP), which is used to forecast Caspian Sea level anomalies using satellite altimetry observations from June 1992 to December 2013. SVM demonstrates the best performance in predicting Caspian Sea level anomalies, given the minimum root mean square error (RMSE = 0.035) and maximum coefficient of determination (R2 = 0.96) during the prediction periods. A comparison between the proposed AI approaches and the cascade correlation neural network (CCNN) model also shows the superiority of the GEP and SVM models over the CCNN.
Hydrology of C-3 watershed, Seney National Wildlife Refuge, Michigan
Sweat, Michael J.
2001-01-01
Proposed changes to watershed management practices near C-3 Pool at Seney National Wildlife Refuge will affect surface-water flow patterns, ground-water levels, and possibly local plant communities. Data were collected between fall 1998 and spring 2000 to document existing conditions and to assess potential changes in hydrology that might occur as a consequence of modifications to water management practices in C-3 watershed.Minimum and maximum measured inflows and outflows for the study period are presented in light of proposed management changes to C-3 watershed. Streamflows ranged from 0 to 8.61 cubic meters per second. Low or zero flow was generally measured in late summer and early fall, and highest flows were measured during spring runoff and winter rain events. Ground-water levels varied by about a half meter, with levels closest to or above the land surface during spring runoff into the early summer, and with levels generally below land surface during late fall into early winter.A series of optional management practices that could conserve and restore habitat of the C-3 watershed is described. Modifications to the existing system of a drainage ditch and control structures are examined, as are the possibilities of reconnecting streams to their historical channels and the construction of additional or larger control structures to further manage the distribution of water in the watershed. The options considered could reduce erosion, restore presettlement streamflow conditions, and modify the ground-water gradient.
Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, J. LaRue; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.
2002-01-01
Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation component of 0.5 foot, is estimated to be about 6,000 acre-feet. Annual subsurface outflow from Oasis Valley into the Amargosa Desert is estimated to be between 30 and 130 acre-feet. Estimates of total annual ground-water withdrawal from Oasis Valley by municipal and non-municipal users in 1996 and 1999 are 440 acre-feet and 210 acre-feet, respectively. Based on these values, natural annual ground-water discharge from Oasis Valley is about 6,100 acre-feet. Total annual discharge was 6,500 acre-ft in 1996 and 6,300 acre-ft in 1999. This quantity of natural ground-water discharge from Oasis Valley exceeds the previous estimate made in 1962 by a factor of about 2.5. Water levels were measured in Oasis Valley to gain additional insight into the ET process. In shallow wells, water levels showed annual fluctuations as large as 7 feet and daily fluctuations as large as 0.2 foot. These fluctuations may be attributed to water loss associated with evapotranspiration. In shallow wells affected by ET, annual minimum depths to water generally occurred in winter or early spring shortly after daily ET reached minimum rates. Annual maximum depths to water generally occurred in late summer or fall shortly after daily ET reached maximum rates. The magnitude of daily water-level fluctuations generally increased as ET increased and decreased as depth to water increased.
NASA Astrophysics Data System (ADS)
1981-07-01
The two detached single family dwellings in the Mission Viejo community in California were monitored for the temperature and flow rate of water and air at some 45 points throughout the domestic hot water, mechanical conditioning, and solar energy systems. On site weather data were collected. Testing of levels of odor and moisture was performed to determine the effect of the tighter than average construction methods used in the MED houses. Electric consumption data for the mechanical system and household consumption were recorded separately. Utility cost records were maintained as a measure of savings between the MED houses and the standard Cordova model. Analyses and results of the data are presented.
Mangione, Antonio M; Dearing, M Denise; Karasov, William H
2004-07-01
Although many plant secondary compounds are known to have serious consequences for herbivores, the costs of processing them are generally unknown. Two potential costs of ingestion and detoxification of secondary compounds are elevation of the minimum drinking water requirement and excretion of energetically expensive metabolites (i.e., glucuronides) in the urine. To address these impacts, we studied the costs of ingestion of resin from creosote bush (Larrea tridentata) on desert woodrats (Neotoma lepida). The following hypotheses were tested: ingestion of creosote resin by woodrats (1) increases minimum water requirement and (2) reduces energy available by increasing fecal and urinary energy losses. We tested the first hypothesis, by measuring the minimum water requirement of woodrats fed a control diet with and without creosote resin. Drinking water was given in decreasing amounts until woodrats could no longer maintain constant body mass. In two separate experiments, the minimum drinking water requirement of woodrats fed resin was higher than that of controls by 18-30% (about 1-1.7 ml/d). We tested several potential mechanisms of increased water loss associated with the increase in water requirement. The rate of fecal water loss was higher in woodrats consuming resin. Neither urinary water nor evaporative water loss was affected by ingestion of resin. Hypothesis 2 was tested by measuring energy fluxes of woodrats consuming control vs. resin-treated diets. Woodrats on a resin diet had higher urinary energy losses and, thus, metabolized a lower proportion of the dietary energy than did woodrats on control diet. Fecal energy excretion was not affected by resin. The excretion of glucuronic acid represented almost half of the energy lost as a consequence of resin ingestion. The increased water requirement and energy losses of woodrats consuming a diet with resin could have notable ecological consequences.
NASA Astrophysics Data System (ADS)
Rasiq, K. T.; Kurian, S.; Karapurkar, S. G.; Naqvi, S. W. A.
2016-07-01
Sedimentary pigments, carbon and nitrogen content and their stable isotopes were studied in three short cores collected from the oxygen minimum zone (OMZ) of the Eastern Arabian Sea (EAS). Nine pigments including chlorophyll a and their degradation products were quantified using High Performance Liquid Chromatography (HPLC). Astaxanthin followed by canthaxanthin and zeaxanthin were the major carotenoids detected in these cores. The total pigment concentration was high in the core collected from 500 m water depth (6.5 μgg-1) followed by 800 m (1.7 μgg-1) and 1100 m (1.1 μgg-1) depths respectively. The organic carbon did not have considerable control on sedimentary pigments preservation. Pigment degradation was comparatively high in the core collected from the 800 m site which depended not only the bottom dissolved oxygen levels, but also on the faunal activity. As reported earlier, the bottom water dissolved oxygen and presence of fauna have good control on the organic carbon accumulation and preservation at Indian margin OMZ sediments. The C/N ratios and δ13C values for all the cores conclude the marine origin of organic matter and δ15N profiles revealed signature of upwelling associated denitrification within the water column.
30 CFR 75.1107-10 - High expansion foam devices; minimum capacity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High expansion foam devices; minimum capacity... foam devices; minimum capacity. (a) On unattended underground equipment the amount of water delivered as high expansion foam for a period of approximately 20 minutes shall be not less than 0.06 gallon...
30 CFR 75.1107-10 - High expansion foam devices; minimum capacity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High expansion foam devices; minimum capacity... foam devices; minimum capacity. (a) On unattended underground equipment the amount of water delivered as high expansion foam for a period of approximately 20 minutes shall be not less than 0.06 gallon...
NASA Astrophysics Data System (ADS)
Bellagamba, Laura; Denaro, Simona; Kern, Jordan; Giuliani, Matteo; Castelletti, Andrea; Characklis, Gregory
2016-04-01
Growing water demands and more frequent and severe droughts are increasingly challenging water management in many regions worldwide, exacerbating water disputes and reducing the space for negotiated agreements at the catchment scale. In the lack of a centralized controller, the design and deployment of coordination and/or regulatory mechanisms is a way to improve system-wide efficiency while preserving the distributed nature of the decision making setting, and facilitating cooperation among institutionally independent decision-makers. Recent years have witnessed an increased interest in index-based insurance contracts as mechanisms for sharing hydro-meteorological risk in complex and heterogeneous decision making context (e.g. multiple stakeholders and institutionally independent decision makers). In this study, we explore the potential for index-based insurance contracts to mitigate the conflict in a water system characterized by (political) power asymmetry between hydropower companies upstream and farmers downstream. The Lake Como basin in the Italian Alps is considered as a case study. We generated alternative regulatory mechanisms in the form of minimum release constraints to the hydropower facilities, and designed an insurance contract for hedging against hydropower relative revenue losses. The fundamental step in designing this type of insurance contracts is the identification of a suitable index, which triggers the payouts as well as the payout function, defined by strike level and slope (e.g., euros/index unit). A portfolio of index-based contracts was designed for the case study and evaluated in terms of revenue floor, basis risk and revenue fluctuation around the mean, both with and without insurance. Over the long term, the insurance proved to be capable to keep the minimum revenue above a specified level while providing a greater certainty on the revenue trend. This result shows the possibility to augment farmer's supply with little loss for hydropower companies, thus helping in mitigating the conflict between the stakeholders.
NASA Astrophysics Data System (ADS)
Chaussard, Estelle; Milillo, Pietro; Bürgmann, Roland; Perissin, Daniele; Fielding, Eric J.; Baker, Brett
2017-10-01
Groundwater management typically relies on water-level data and spatially limited deformation measurements. While interferometric synthetic aperture radar has been used to study hydrological deformation, its limited temporal sampling can lead to biases in rapidly changing systems. Here we use 2011-2017 COSMO-SkyMed data with revisit intervals as short as 1 day to study the response of the Santa Clara Valley (SCV) aquifer in California to the unprecedented 2012-2015 drought. Cross-correlation and independent component analyses of deformation time series enable tracking water through the aquifer system. The aquifer properties are derived prior to and during the drought to assess the success of water-resource management practices. Subsidence due to groundwater withdrawal dominates during 2011-2017, limited to the confined aquifer and west of the Silver Creek Fault, similar to predrought summer periods. Minimum water levels and elevations were reached in mid-2014, but thanks to intensive groundwater management efforts the basin started to rebound in late 2014, during the deepening drought. By 2017, water levels were back to their predrought levels, while elevations had not yet fully rebounded due to the delayed poroelastic response of aquitards and their large elastic compressibility. As water levels did not reach a new lowstand, the drought led to only elastic and recoverable changes in the SCV. The SCV lost 0.09 km3 during the drought while seasonal variations amount to 0.02 km3. Analysis of surface loads due to water mass changes in the aquifer system suggests that groundwater drawdowns could influence the stress on nearby faults.
Iogna, Patricia A; Bucci, Sandra J; Scholz, Fabián G; Goldstein, Guillermo
2013-11-01
Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.
NASA Astrophysics Data System (ADS)
Stollsteiner, P.; Bessiere, H.; Nicolas, J.; Allier, D.; Berthet, O.
2015-04-01
This article is based on a BRGM study on piezometric indicators, threshold values of discharge and groundwater levels for the assessment of potentially-exploitable water resources of chalky watersheds. A method for estimating low water levels based on groundwater levels is presented from three examples representing chalk aquifers with different cycles: annual, combined and interannual. The first is located in Picardy and the two others in the Champagne-Ardennes region. Piezometers with annual cycles, used in these examples, are supposed to be representative of the aquifer hydro-dynamics. Except for multi-annual systems, the analysis between discharge measurements at a hydrometric station and groundwater levels measured at a piezometer representative of the main aquifer, leads to relatively precise and satisfactory relationships within a chalky context. These relationships may be useful for monitoring, validation, extension or reconstruction of the low water flow data. On the one hand, they allow definition of the piezometric levels corresponding to the different alert thresholds of river discharges. On the other hand, they clarify the proportions of low surface water flow from runoff or drainage of the aquifer. Finally, these correlations give an assessment of the minimum flow for the coming weeks. However, these correlations cannot be used to optimize the value of the exploitable water resource because it seems to be difficult to integrate the value of the effective rainfall that could occur during the draining period. Moreover, in the case of multi-annual systems, the solution is to attempt a comprehensive system modelling and, if it is satisfactory, using the simulated values to get rid of parasites or running the model for forecasting purposes.
A Phosphate Minimum in the Oxygen Minimum Zone (OMZ) off Peru
NASA Astrophysics Data System (ADS)
Paulmier, A.; Giraud, M.; Sudre, J.; Jonca, J.; Leon, V.; Moron, O.; Dewitte, B.; Lavik, G.; Grasse, P.; Frank, M.; Stramma, L.; Garcon, V.
2016-02-01
The Oxygen Minimum Zone (OMZ) off Peru is known to be associated with the advection of Equatorial SubSurface Waters (ESSW), rich in nutrients and poor in oxygen, through the Peru-Chile UnderCurrent (PCUC), but this circulation remains to be refined within the OMZ. During the Pelágico cruise in November-December 2010, measurements of phosphate revealed the presence of a phosphate minimum (Pmin) in various hydrographic stations, which could not be explained so far and could be associated with a specific water mass. This Pmin, localized at a relatively constant layer ( 20<220 m) and with a patchy distribution mainly between 10 and 16°S, is confirmed and characterized in details from the complementary hydrological data acquired during the German Meteor cruise M77 (Legs 3 and 4, January-February 2009). The significant Pmin present an intense minimum with a mean vertical phosphate decrease of 0.6 µM but highly variable between 0.1 and 2.2 µM. In average, these Pmin are associated with a predominant mixing of SubTropical Under- and Surface Waters (STUW and STSW: 20 and 40%, respectively) within ESSW ( 25%), complemented evenly by overlying (ESW, TSW: 8%) and underlying waters (AAIW, SPDW: 7%). The hypotheses and mechanisms leading to the Pmin formation in the OMZ are further explored and discussed, considering the physical regional contribution associated with various circulation pathways ventilating the OMZ and the local biogeochemical contribution including the potential diazotrophic activity.
Results of qualification tests on water-level sensing instruments, 1986
Holland, Randolph R.; Rapp, Donald H.
1988-01-01
This report presents to users of hydrological instrumentation and U.S. Geological Survey procurement personnel a list of instruments that have met or exceeded the Survey 's minimum performance requirements for water level sensing instruments. The Hydrologic Instrumentation Facility at the National Space Technology Laboratories, Mississippi conducted qualification tests on four instrument systems. The data collected are summarized, brief system descriptions are given, qualification testing purposes and procedures are summarized, and results are given for each of the three systems that met performance requirements. The fourth system was returned to the manufacturer , because in preliminary testing the instrument system did not perform properly according to the manufacturer 's operating procedures. As a result of the qualification tests, the three systems that met performance requirements have been included on the Survey 's Qualified Products List. (USGS)
Natural radionuclides in waste water discharged from coal-fired power plants in Serbia.
Janković, Marija M; Todorović, Dragana J; Sarap, Nataša B; Krneta Nikolić, Jelena D; Rajačić, Milica M; Pantelić, Gordana K
2016-12-01
Investigation of the natural radioactivity levels in water around power plants, as well as in plants, coal, ash, slag and soil, and to assess the associated radiation hazard is becoming an emerging and interesting topic. This paper is focused on the results of the radioactivity analysis in waste water samples from five coal-fired power plants in Serbia (Nikola Tesla A, Nikola Tesla B, Kolubara, Morava and Kostolac), which were analyzed in the period 2003-2015. River water samples taken upstream and downstream from the power plants, drain water and overflow water were analyzed. In the water samples gamma spectrometry analysis was performed as well as determination of gross alpha and beta activity. Natural radionuclide 40 K was detected by gamma spectrometry, while the concentrations of other radionuclides, 226 Ra, 235 U and 238 U, usually were below the minimum detection activity (MDA). 232 Th and artificial radionuclide 137 Cs were not detected in these samples. Gross alpha and beta activities were determined by the α/β low level proportional counter Thermo Eberline FHT 770 T. In the analyzed samples, gross alpha activity ranged from MDA to 0.47 Bq L - 1 , while the gross beta activity ranged from MDA to 1.55 Bq L - 1 .
NASA Astrophysics Data System (ADS)
Dettmann, Ullrich; Bechtold, Michel
2016-04-01
Water level depth is one of the crucial state variables controlling the biogeochemical processes in peatlands. For flat soil surfaces, water level depth dynamics as response to boundary fluxes are primarily controlled by the water retention characteristics of the soil in and above the range of the water level fluctuations. For changing water levels, the difference of the integrals of two soil moisture profiles (ΔAsoil), of a lower and a upper water level, is equal to the amount of water received or released by the soil. Dividing ΔAsoil by the water level change, results into a variable that is known as specific yield (Sy). For water level changes approaching the soil surface, changes in soil water storage are small due to the thin unsaturated zone that remains. Consequentially, Sy values approach zero with an abrupt transition to 1 in case of inundation. However, on contrary, observed water level rises due to precipitation events at various locations showed increasing Sy values for water level changes at shallow depths (Sy = precipitation/water level change; Logsdon et al., 2010). The increase of Sy values can be attributed in large parts to the influence of the microrelief on water level changes in these wet landscapes that are characterized by a mosaic of inundated and non-inundated areas. Consequentially, water level changes are dampened by partial inundation. In this situation, total Sy is composed of a spatially-integrated below ground and above ground contribution. We provide a general one-dimensional expression that correctly represents the effect of a microrelief on the total Sy. The one-dimensional expression can be applied for any soil hydraulic parameterizations and soil surface elevation frequency distributions. We demonstrate that Sy is influenced by the microrelief not only when surface storage directly contributes to Sy by (partial) inundation but also when water levels are lower than the minimum surface elevation. With the derived one-dimensional expression we developed a novel approach for the in situ determination of soil water retention characteristics that is applicable to shallow groundwater systems. Our approach is built on two assumptions: i) for shallow groundwater systems with medium- to high conductive soils the soil moisture profile is always close to hydrostatic equilibrium and ii) over short time periods differences in total water storage due to lateral fluxes are negligible. Given these assumptions, the height of a water level rise due to a precipitation event mainly depends on the soil water retention characteristics, the precipitation amount, the initial water level depth and, if present, the microrelief. We use this dependency to determine water retention characteristics (van Genuchten parameter) by Bayesian inversion. Our results demonstrate that observations of water level rises, caused by precipitation events, contain sufficient information to constrain the water retention characteristics around two dip wells in a Sphagnum bog to plausible ranges. We discuss the possible biases that come along with our approach and point out the research that is needed to quantify their significance.
Prediction of episodic acidification in North-eastern USA: An empirical/mechanistic approach
Davies, T.D.; Tranter, M.; Wigington, P.J.; Eshleman, K.N.; Peters, N.E.; Van Sickle, J.; DeWalle, David R.; Murdoch, Peter S.
1999-01-01
Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the North-eastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre-episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in the minimum ANC in individual catchments can be explained (with levels of explanation >70% for nine of the 13 streams) by a multiple linear regression model that includes pre-episode ANC and change in discharge as independent variable. The predictive scheme is demonstrated to be regionally robust, with the regional variance explained ranging from 77 to 83%. The scheme is not successful for each ERP stream, and reasons are suggested for the individual failures. The potential for applying the predictive scheme to other watersheds is demonstrated by testing the model with data from the Panola Mountain Research Watershed in the South-eastern United States, where the variance explained by the model was 74%. The model can also be utilized to assess 'chemically new' and 'chemically old' water sources during acidification episodes.Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the Northeastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre-episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in the minimum ANC in individual catchments can be explained (with levels of explanation >70% for nine of the 13 streams) by a multiple linear regression model that includes pre-episode ANC and change in discharge as independent variables. The predictive scheme is demonstrated to be regionally robust, with the regional variance explained ranging from 77 to 83%. The scheme is not successful for each ERP stream, and reasons are suggested for the individual failures. The potential for applying the predictive scheme to other watersheds is demonstrated by testing the model with data from the Panola Mountain Research Watershed in the South-eastern United States, where the variance explained by the model was 74%. The model can also be utilized to assess `chemically new' and `chemically old' water sources during acidification episodes.
Holocene environmental change at the oasis of Tayma
NASA Astrophysics Data System (ADS)
Engel, Max; Brückner, Helmut; Wellbrock, Kai; Pint, Anna; Grottker, Matthias; Voss, Peter; Ginau, Andreas; Klasen, Nicole; Frenzel, Peter
2013-04-01
The oasis of Tayma in northwestern Saudi Arabia has a rich cultural heritage comprising a large number of historic buildings and artefacts from the late Neolithic onwards. Extensive groundwater resources and the location at a branch of the Incense Road connecting south Arabia and the eastern Mediterranean determined the site's importance in Antiquity. This paper reports about Holocene environmental change at Tayma setting the frame for the interpretation of the archaeological record. Humid conditions during the early Holocene are inferred for the Arabian Peninsula (AP) based on the investigation of sabkhas, palaeo-lakes, sand dunes, wadis, speleothems and marine sediments. Most of these climate archives are located in the southern and southeastern part of the AP, where a northward shift of the Intertropical Convergence Zone (ITCZ) triggered increased rainfall at the onset of the Holocene. At Tayma, where the influence of the ITCZ shift can be excluded, the sedimentary infill of a sabkha basin, the micro- and macrofaunal record, a digital elevation model based on DGPS measurements, and 14C-AMS data indicate the presence of a perennial lake with a minimum depth of 13 m, a stored water volume of 1.16 107 m3 and a surface of 18.45 km2 between 10,000-9000 cal BP. Foraminiferal test malformations and the shape of sieve pores on ostracod valves were used to detect trends in palaeo-salinity and ecological stress conditions. Contraction of the lake at least after 8500 cal BP is a response to a long-term aridisation trend subsequent to the early Holocene. Based on the hydrological water balance equation, quantitative data on minimum palaeo-rainfall during the early Holocene humid period were determined. Input parameters for the equation are the minimum lake level, lake surface and lake volume during the peak of the early Holocene humid period as well as palaeo-evapotranspiration, groundwater infiltration, and surface runoff. A perennial lake in the endorheic basin of the modern sabkha with a lake level at the same elevation as the uppermost shoreline deposit would have required a minimum annual precipitation of 150 +/- 25 mm (three times the modern value).
Breakup of Solid Ice Covers Due to Rapid Water Level Variations,
1982-02-01
Larsen, and Dr. Devinder S. Sodhi for their valuable comments and reviews of the report. He also thanks Dr. Ashton and Guenther E. Frankenstein for the...for wave periods larger than about 10 seconds. What are the minimum wave lengths that might be generated by discharge variations at a hydro- electric ...Canadian Electrical Association, Research and Development, Suite 580, One Westmount Square, Montreal, Canada. 2. Ashton, G.D. (1974a) Entrainment of ice
North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea
2010-09-30
Similar behavior had previously been observed in the central North Pacific (Gaul et al., 2007 ). The minimum noise levels presumably correspond to times...REFERENCES Gaul, R. D., D. P. Knobles, J. A. Shooter, and A. F. Wittenborn ( 2007 ), Ambient noise analysis of deep-ocean measurements in the Northeast...September 2009, Hall, J., Harrison, D. E. and Stammer , D., Eds., ESA Publication WPP-306. [in press, refereed] Farrell, W. E. and W. H. Munk (2010
Evaluation of Military Fuels Using a Ford 6.7L Powerstroke Diesel Engine
2011-08-01
natural steady state values during idle testing steps. Engine oil cooler plumbing was factory integrated to the engine water jacket, thus not...Innospec Fuel Specialties DCI-4A. Per QPL-25017, the minimum effective treat rate of DCI-4A required an additive concentration level of 9ppm in the...dynamometer was used to control engine speed and dissipate load. Engine load was manipulated through the actuation of the engine throttle pedal assembly
2014-03-28
four sub-sections were included into “System” because none of them address limits of contaminates or chemicals in the water. 24 The Hazardous...maximum contaminant levels (MCL) of chemicals, stricter emission standards, stricter control limits, greater minimum separation distances, prohibited...0.37 Indonesia Strugglers 52.29 -0.40 Malaysia Progressives 62.51 0.34 Mongolia Regressives 45.37 -0.21 Myanmar Strugglers 52.72 -1.09 Nepal
Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing
2016-01-01
The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield. PMID:26752657
Effects of temperature and salinity on light scattering by water
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Hu, Lianbo
2010-04-01
A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.
POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. King
2000-06-19
The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupka, K.M.; Serne, R.J.
The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to modelmore » pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments.« less
NASA Astrophysics Data System (ADS)
Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.
2017-07-01
From the results of experimental studies of the processes of suppressing the thermal decomposition of the typical forest combustibles (birch leaves, fir needles, asp twigs, and a mixture of these three materials) by water aerosol, the minimum volumes of the fire-extinguishing liquid have been determined (by varying the volume of samples of the forest combustibles from 0.00002 m3 to 0.0003 m3 and the area of their open surface from 0.0001 m2 to 0.018 m2). The dependences of the minimum volume of water on the area of the open surface of the forest combustible have been established. Approximation expressions for these dependences have been obtained. Forecast has been made of the minimum volume of water for suppressing the process of thermal decomposition of forest combustibles in areas from 1 cm2 to 1 km2, as well as of the characteristic quenching times by varying the water concentration per unit time. It has been shown that the amount of water needed for effective suppression of the process of thermal decomposition of forest combustibles is several times less than is customarily assumed.
Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura
2015-01-01
A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity of...) Wall thickness. The minimum wall thickness must be such that the wall stress at the minimum specified... the physical tests required in paragraphs (j) and (k) of this section. A wall stress of more than 90...
Application of QUAL2K Model to Assess Ecological Purification Technology for a Polluted River
Zhu, Wenting; Niu, Qian; Zhang, Ruibin; Ye, Rui; Qian, Xin; Qian, Yu
2015-01-01
Industrialization and urbanization have caused water pollution and ecosystem degradation, especially in urban canals and rivers in China; accordingly, effective water quality improvement programs are needed. In this study, the Tianlai River in Jiangsu, China was taken as a research site, and a combination of ecological purification technologies consisting of biological rope, phytoremediation, and activated carbon were applied in a laboratory-scale study to examine degradation coefficients under dynamic water conditions. Coefficients were then input into the QUAL2K model to simulate various hypothetical scenarios and determine the minimum density of ecological purification combination and hydraulic retention time (HRT) to meet Grade V or IV of the China standard for surface water. The minimum densities for Grade V and IV were 1.6 times and 2 times the experimental density, while the minimum HRTs for Grade V and IV were 2.4 day and 3 day. The results of this study should provide a practical and efficient design method for ecological purification programs. PMID:25689997
Monti, Jack; Busciolano, Ronald J.
2009-01-01
The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects ground-water data at varying measurement frequencies to monitor the hydrologic situation on Long Island, New York. Each year during March and April, the USGS conducts a synoptic survey of hydrologic conditions to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island - the upper glacial, Magothy, and Lloyd aquifers. These data and the maps constructed from them are commonly used in studies of Long Island's hydrology, and by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 502 wells across Long Island during March-April 2006, were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured using these measurements. The water-table contours were interpreted using water-level data collected from 341 wells screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer's potentiometric-surface contours were interpreted from measurements at 102 wells screened in the middle to deep Magothy aquifer and (or) contiguous and hydraulically connected Jameco aquifer; and the Lloyd aquifer's potentiometric-surface contours were interpreted from measurements at 59 wells screened in the Lloyd aquifer or contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made so that the water levels in the wells could recover to the level of the potentiometric head in the surrounding aquifer. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less accurate than those measured at observation wells, which are not pumped. In this report, all water-level altitudes are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).
Decentralized and cost-effective solar water purification system for remote communities
NASA Astrophysics Data System (ADS)
Abd-ur-Rehman, Hafiz M.; Shakir, Sehar; Atta-ur-Razaq; Saqib, Hamza; Tahir, Saad
2018-05-01
In this study, a modified stepped solar still is proposed for water desalination. The overall objective of this work is to develop and test the proposed still design to identify the productivity enhancement as compared to conventional basin type solar still. The proposed design takes the advantage of its stepped configuration that allows the water stream to maintain a minimum desirable water column height and the water flow through the stages under the force of gravity. A minimum water depth in the still results in a higher rate of evaporation. The still is also incorporated with Fresnel lens to increase the water temperature that eventually increases the rate of water evaporation. Another important aspect of this design is the incorporation of phase-change-material (PCM) to increase the operational hours of the solar still. Consequently, daily productivity of fresh water is increased.
40 CFR 131.35 - Colville Confederated Tribes Indian Reservation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.35 Colville Confederated Tribes Indian Reservation. The water quality standards applicable to the waters within the... these Federal water quality standards to prescribe minimum water quality requirements for the surface...
Using stochastic dynamic programming to support catchment-scale water resources management in China
NASA Astrophysics Data System (ADS)
Davidsen, Claus; Pereira-Cardenal, Silvio Javier; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter
2013-04-01
A hydro-economic modelling approach is used to optimize reservoir management at river basin level. We demonstrate the potential of this integrated approach on the Ziya River basin, a complex basin on the North China Plain south-east of Beijing. The area is subject to severe water scarcity due to low and extremely seasonal precipitation, and the intense agricultural production is highly dependent on irrigation. Large reservoirs provide water storage for dry months while groundwater and the external South-to-North Water Transfer Project are alternative sources of water. An optimization model based on stochastic dynamic programming has been developed. The objective function is to minimize the total cost of supplying water to the users, while satisfying minimum ecosystem flow constraints. Each user group (agriculture, domestic and industry) is characterized by fixed demands, fixed water allocation costs for the different water sources (surface water, groundwater and external water) and fixed costs of water supply curtailment. The multiple reservoirs in the basin are aggregated into a single reservoir to reduce the dimensions of decisions. Water availability is estimated using a hydrological model. The hydrological model is based on the Budyko framework and is forced with 51 years of observed daily rainfall and temperature data. 23 years of observed discharge from an in-situ station located downstream a remote mountainous catchment is used for model calibration. Runoff serial correlation is described by a Markov chain that is used to generate monthly runoff scenarios to the reservoir. The optimal costs at a given reservoir state and stage were calculated as the minimum sum of immediate and future costs. Based on the total costs for all states and stages, water value tables were generated which contain the marginal value of stored water as a function of the month, the inflow state and the reservoir state. The water value tables are used to guide allocation decisions in simulation mode. The performance of the operation rules based on water value tables was evaluated. The approach was used to assess the performance of alternative development scenarios and infrastructure projects successfully in the case study region.
Pesticide data for selected Wyoming streams, 1976-78
Butler, David L.
1987-01-01
In 1976, the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, started a monitoring program to determine pesticide concentrations in Wyoming streams. This program was incorporated into the water-quality data-collection system already in operation. Samples were collected at 20 sites for analysis of various insecticides, herbicides, polychlorinated biphenyls, and polychlorinated napthalenes.\\The results through 1978 revealed small concentrations of pesticides in water and bottom-material samples were DDE (39 percent of the concentrations equal to or greater than the minimum reported concentrations of the analytical methods), DDD (20 percent), dieldrin (21 percent), and polychlorinated biphenyls (29 percent). The herbicides most commonly found in water samples were 2,4-D (29 percent of the concentrations equal to or greater than the minimum reported concentrations of the analytical method) and picloram (23 percent). Most concentrations were significantly less than concentrations thought to be harmful to freshwater aquatic life based on available toxicity data. However for some pesticides, U.S. Environmental Protection Agency water-quality criteria for freshwater aquatic life are based on bioaccumulation factors that result in criteria concentrations less than the minimum reported concentrations of the analytical methods. It is not known if certain pesticides were present at concentrations less than the minimum reported concentrations that exceeded these criteria.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
... Materials: Special Permits and Approvals--Minimum Level of Fitness Determinations; Public Meeting AGENCY... Special Permit and Approval applicant fitness determinations. PHMSA will hold a public meeting on August... minimum level of fitness. DATES: Public Meeting: August 19, 2010; starting at 9:30 a.m. and ending by 3:30...
NASA Astrophysics Data System (ADS)
Liu, Xiaofei; Zhang, Qiuwen
2016-11-01
Studies have considered the many factors involved in the mechanism of reservoir seismicity. Focusing on the correlation between reservoir-induced seismicity and the water level, this study proposes to utilize copula theory to build a correlation model to analyze their relationships and perform the risk analysis. The sequences of reservoir induced seismicity events from 2003 to 2011 in the Three Gorges reservoir in China are used as a case study to test this new methodology. Next, we construct four correlation models based on the Gumbel, Clayton, Frank copula and M-copula functions and employ four methods to test the goodness of fit: Q-Q plots, the Kolmogorov-Smirnov (K-S) test, the minimum distance (MD) test and the Akaike Information Criterion (AIC) test. Through a comparison of the four models, the M-copula model fits the sample better than the other three models. Based on the M-copula model, we find that, for the case of a sudden drawdown of the water level, the possibility of seismic frequency decreasing obviously increases, whereas for the case of a sudden rising of the water level, the possibility of seismic frequency increasing obviously increases, with the former being greater than the latter. The seismic frequency is mainly distributed in the low-frequency region (Y ⩽ 20) for the low water level and in the middle-frequency region (20 < Y ≤ 80) for both the medium and high water levels; the seismic frequency in the high-frequency region (Y > 80) is the least likely. For the conditional return period, it can be seen that the period of the high-frequency seismicity is much longer than those of the normal and medium frequency seismicity, and the high water level shortens the periods.
Van Dyke, Miriam E; Komro, Kelli A; Shah, Monica P; Livingston, Melvin D; Kramer, Michael R
2018-07-01
Despite substantial declines since the 1960's, heart disease remains the leading cause of death in the United States (US) and geographic disparities in heart disease mortality have grown. State-level socioeconomic factors might be important contributors to geographic differences in heart disease mortality. This study examined the association between state-level minimum wage increases above the federal minimum wage and heart disease death rates from 1980 to 2015 among 'working age' individuals aged 35-64 years in the US. Annual, inflation-adjusted state and federal minimum wage data were extracted from legal databases and annual state-level heart disease death rates were obtained from CDC Wonder. Although most minimum wage and health studies to date use conventional regression models, we employed marginal structural models to account for possible time-varying confounding. Quasi-experimental, marginal structural models accounting for state, year, and state × year fixed effects estimated the association between increases in the state-level minimum wage above the federal minimum wage and heart disease death rates. In models of 'working age' adults (35-64 years old), a $1 increase in the state-level minimum wage above the federal minimum wage was on average associated with ~6 fewer heart disease deaths per 100,000 (95% CI: -10.4, -1.99), or a state-level heart disease death rate that was 3.5% lower per year. In contrast, for older adults (65+ years old) a $1 increase was on average associated with a 1.1% lower state-level heart disease death rate per year (b = -28.9 per 100,000, 95% CI: -71.1, 13.3). State-level economic policies are important targets for population health research. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Löscher, C. R.; Bange, H. W.; Schmitz, R. A.; Callbeck, C. M.; Engel, A.; Hauss, H.; Kanzow, T.; Kiko, R.; Lavik, G.; Loginova, A.; Melzner, F.; Neulinger, S. C.; Pahlow, M.; Riebesell, U.; Schunck, H.; Thomsen, S.; Wagner, H.
2015-03-01
Recent modeling results suggest that oceanic oxygen levels will decrease significantly over the next decades to centuries in response to climate change and altered ocean circulation. Hence the future ocean may experience major shifts in nutrient cycling triggered by the expansion and intensification of tropical oxygen minimum zones (OMZs). There are numerous feedbacks between oxygen concentrations, nutrient cycling and biological productivity; however, existing knowledge is insufficient to understand physical, chemical and biological interactions in order to adequately assess past and potential future changes. We investigated the pelagic biogeochemistry of OMZs in the eastern tropical North Atlantic and eastern tropical South Pacific during a series of cruise expeditions and mesocosm studies. The following summarizes the current state of research on the influence of low environmental oxygen conditions on marine biota, viruses, organic matter formation and remineralization with a particular focus on the nitrogen cycle in OMZ regions. The impact of sulfidic events on water column biogeochemistry, originating from a specific microbial community capable of highly efficient carbon fixation, nitrogen turnover and N2O production is further discussed. Based on our findings, an important role of sinking particulate organic matter in controlling the nutrient stochiometry of the water column is suggested. These particles can enhance degradation processes in OMZ waters by acting as microniches, with sharp gradients enabling different processes to happen in close vicinity, thus altering the interpretation of oxic and anoxic environments.
Temporal and Spatial Variation of Water Yield Modulus in the Yangtze River Basin in Recent 60 Years
NASA Astrophysics Data System (ADS)
Shi, Xiaoqing; Weng, Baisha; Qin, Tianling
2018-01-01
The Yangtze River Basin is the largest river basin of Asia and the third largest river basin of the world, the gross water resources amount ranks first in the river basins of the country, and it occupies an important position in the national water resources strategic layout. Under the influence of climate change and human activities, the water cycle has changed. The temporal and spatial distribution of precipitation in the basin is more uneven and the floods are frequent. In order to explore the water yield condition in the Yangtze River Basin, we selected the Water Yield Modulus (WYM) as the evaluation index, then analyzed the temporal and spatial evolution characteristics of the WYM in the Yangtze River Basin by using the climate tendency method and the M-K trend test method. The results showed that the average WYM of the Yangtze River Basin in 1956-2015 are between 103,600 and 1,262,900 m3/km2, with an average value of 562,300 m3/km2, which is greater than the national average value of 295,000 m3/km2. The minimum value appeared in the northwestern part of the Tongtian River district, the maximum value appeared in the northeastern of Dongting Lake district. The rate of change in 1956-2015 is between -0.68/a and 0.79/a, it showed a downward trend in the western part but not significantly, an upward trend in the eastern part reached a significance level of α=0.01. The minimum value appeared in the Tongtian River district, the largest value appeared in the Hangjia Lake district, and the average tendency rate is 0.04/a in the whole basin.
NASA Astrophysics Data System (ADS)
Tiano, Laura; Garcia-Robledo, Emilio; Dalsgaard, Tage; Devol, Allan H.; Ward, Bess B.; Ulloa, Osvaldo; Canfield, Donald E.; Peter Revsbech, Niels
2014-12-01
Highly sensitive STOX O2 sensors were used for determination of in situ O2 distribution in the eastern tropical north and south Pacific oxygen minimum zones (ETN/SP OMZs), as well as for laboratory determination of O2 uptake rates of water masses at various depths within these OMZs. Oxygen was generally below the detection limit (few nmol L-1) in the core of both OMZs, suggesting the presence of vast volumes of functionally anoxic waters in the eastern Pacific Ocean. Oxygen was often not detectable in the deep secondary chlorophyll maximum found at some locations, but other secondary maxima contained up to 0.4 μmol L-1. Directly measured respiration rates were high in surface and subsurface oxic layers of the coastal waters, reaching values up to 85 nmol L-1 O2 h-1. Substantially lower values were found at the depths of the upper oxycline, where values varied from 2 to 33 nmol L-1 O2 h-1. Where secondary chlorophyll maxima were found the rates were higher than in the oxic water just above. Incubation times longer than 20 h, in the all-glass containers, resulted in highly increased respiration rates. Addition of amino acids to the water from the upper oxycline did not lead to a significant initial rise in respiration rate within the first 20 h, indicating that the measurement of respiration rates in oligotrophic Ocean water may not be severely affected by low levels of organic contamination during sampling. Our measurements indicate that aerobic metabolism proceeds efficiently at extremely low oxygen concentrations with apparent half-saturation concentrations (Km values) ranging from about 10 to about 200 nmol L-1.
Pleistocene Thermocline Reconstruction and Oxygen Minimum Zone Evolution in the Maldives
NASA Astrophysics Data System (ADS)
Yu, S. M.; Wright, J.
2017-12-01
Drift deposits of the southern flank the Kardiva Channel in the eastern Inner Sea of the Maldives provide a complete record of Pleistocene water column changes in conjunction with monsoon cyclicity and fluctuations in the current system. We sampled IODP Site 359-U1467 to reconstruct water column using foraminiferal stable isotope records. This unlithified lithostratigraphic unit is rich in well-preserved microfossils and has an average sedimentation rate of 3.4 cm/yr. Marine Isotope Stages 1-6 were identified and show higher sedimentation rates during the interglacial sections approaching 6 cm/kyr. We present the δ13C and δ18O record of planktonic and benthic foraminiferal species taken at intervals of 3 cm. Globigerinoides ruber was used to constrain surface conditions. The thermocline dwelling species, Globorotalia menardii, was chosen to monitor fluctuations in the thermocline compared to the mixed layer. Lastly, the δ13C of the benthic species, Cibicidoides subhaidingerii and Planulina renzi, reveal changes to the bottom water ventilation and expansion of oxygen minimum zones over time. All three taxa recorded similar changes in δ18O over the glacial/interglacial cycles which is remarkable given the large sea level change ( 120 m) and the relatively shallow water depth ( 450 m). There is a small increase in the δ13C gradient during the glacial intervals which might reflect less ventilated bottom waters in the Inner Sea. This multispecies approach allows us to better constrain the thermocline hydrography and suggests that changes in the OMZ thickness are driven by the intensification of the monsoon cycles while painting a more cohesive picture to the changes in the water column structure.
Santos, Izulmé R I; Stushnoff, Cecil
2003-01-01
Embryonic axes of Citrus sinensis L. were successfully cryopreserved. While fully hydrated unfrozen axes germinated 100%, survival decreased as axes water content dropped, and total loss of viability was observed when the water content dropped to 0.04 and 0.10 mg H2O/mg dry mass, for axes without and with sucrose preculture, respectively. Fully hydrated axes did not survive exposure to liquid nitrogen. Highest seedling recovery (93-100%) for untreated axes was observed at 0.26 to 0.15 mg H2O/mg dry mass. Differential scanning calorimetry revealed the presence of broad melting peaks in fully hydrated embryonic axes. The size of the melting peak diminished as water was removed by desiccation. Minimum melting of water was observed at the point axes survived cryopreservation. Occurrence of a glass transition upon warming was not a condition for axes to survive liquid nitrogen exposure. In untreated axes, glucose, increased with desiccation to 0.2 mg H2O/mg dry mass, and decreased as the axes were desiccated to lower water contents. Fructose and sucrose levels did not increase when untreated samples were desiccated for the same periods of time. Raffinose and stachyose levels decreased as untreated and precultured embryonic axes were desiccated. In sucrose precultured axes, sucrose and fructose levels increased when they were dehydrated, reaching maximum levels at 0.2 mg H2O/mg dry mass. Tissue glucose did not change significantly with desiccation. Raffinose and stachyose levels dropped as precultured embryonic axes were dried.
Ensuring safe water in post-chemical, biological, radiological and nuclear emergencies
Amar, Praveen Kumar
2010-01-01
Disaster scenarios are dismal and often result in mass displacement and migration of people. In eventuality of emergency situations, people need to be rehabilitated and provided with an adequate supply of drinking water, the most essential natural resource needed for survival, which is often not easily available even during non-disaster periods. In the aftermath of a natural or human-made disaster affecting mankind and livestock, the prime aim is to ensure supply of safe water to reduce the occurrence and spread of water borne disease due to interrupted, poor and polluted water supply. Chemical, biological, radiological and nuclear (CBRN) emergencies augment the dilemma as an additional risk of “contamination” is added. The associated risks posed to health and life should be reduced to as low as reasonably achievable. Maintaining a high level of preparedness is the crux of quick relief and efficient response to ensure continuous supply of safe water, enabling survival and sustenance. The underlying objective would be to educate and train the persons concerned to lay down the procedures for the detection, cleaning, and treatment, purification including desalination, disinfection, and decontamination of water. The basic information to influence the organization of preparedness and execution of relief measures at all levels while maintaining minimum standards in water management at the place of disaster, are discussed in this article. PMID:21829321
Wu, Shimin; Anumol, Tarun; Gandhi, Jay; Snyder, Shane A
2017-03-03
The addition of oxidants for disinfecting water can lead to the formation of potentially carcinogenic compounds referred to as disinfection byproducts (DBPs). Haloacetic acids (HAAs) are one of the most widely detected DBPs in US water utilities and some of them are regulated by the US Environmental Protection Agency (USEPA). The present study developed a method to analyze all the compounds in the USEPA method 557 (nine HAAs, bromate and dalapon) plus four potentially more toxic iodinated HAAs in water by coupling ion chromatography with tandem mass spectrometry (IC-MS/MS). This aqueous direct injection method has significant advantages over traditional GC methods, which require a derivatization and sample extraction that are laborious, time-consuming, and can negatively impact reproducibility. The method developed in this study requires half the time of the current USEPA method 557 on IC-MS/MS while including more compounds and achieving sub-μg/L level method detection limits (MDLs) for all 15 target analytes. The single laboratory lowest concentration minimum reporting level (LCMRL) has also been determined in reagent water, which ranged from 0.011 to 0.62μg/L for the analytes. The mean recoveries of the analytes during matrix spike recovery tests were 77-125% in finished drinking water and 81-112% in surface water. This method was then applied to untreated, chlorinated, and chloraminated groundwater and surface water samples. Bromate and 9 HAAs were detected at different levels in some of these samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Removal of bromide and bromate from drinking water using granular activated carbon.
Zhang, Yong-Qing; Wu, Qing-Ping; Zhang, Ju-Mei; Yang, Xiu-Hua
2015-03-01
Granular activated carbon (GAC) was used to remove bromide (Br⁻) and bromate (BrO(3)(-)) from drinking water in both bench- and pilot-scale experiments. The present study aims to minimize BrO(3)(-) formation and eliminate BrO(3)(-) generated during the ozonation of drinking water, particularly in packaged drinking water. Results show that the Br⁻ and BrO(3)(-) levels in GAC-treated water decreased in both bench- and pilot-scale experiments. In the bench-scale experiments, when the empty bed contact time (EBCT) was 5 min, the highest reduction rates of Br(-) in the mineral and ultrapure water were found to be 74.9% and 91.2%, respectively, and those of BrO(3)(-) were 94.4% and 98.8%, respectively. The GAC capacity for Br⁻ and BrO(3)(-) removal increased with the increase in EBCT. Reduction efficiency was better in ultrapure water than in mineral water. In the pilot-scale experiments, the minimum reduction rates of Br⁻ and BrO(3)(-) were 38.5% and 73.2%, respectively.
Gillip, Jonathan A.; Czarnecki, John B.
2009-01-01
A ground-water flow model of the Mississippi River Valley alluvial aquifer in eastern Arkansas, developed in 2003 to simulate the period of 1918-98, was validated with the addition of water-level and water-use data that extended the observation period to 2005. The original model (2003) was calibrated using water-level observations from 1972, 1982, 1992, and 1998, and water-use data through 1997. The original model subsequently was used to simulate water levels from 1999 to 2049 and showed that simulation of continued pumping at the 1997 water-use rate could not be sustained indefinitely without causing dry cells in the model. After publication of the original ground-water flow model, a total of 3,616 water-level observations from 698 locations measured during the period of 1998 to 2005 became available. Additionally, water-use data were compiled and used for the same period, totaling 290,005 discrete water-use values from 43,440 wells with as many as 39,169 wells pumping in any one year. Total pumping (which is primarily agricultural) for this 8-year period was about 2.3 trillion cubic feet of water and was distributed over approximately 10,340 square miles within the model area. An updated version of the original ground-water flow model was used to simulate the period of 1998-2005 with the additional water-level and water-use data. Water-level observations for 1998-2005 ranged from 74 to 293 feet above National Geodetic Vertical Datum of 1929 across the model area. The maximum water-level residual (observed minus simulated water-level values) for the 3,616 water-level observations was 52 feet, the minimum water-level residual was 60 feet, the average annual root mean squared error was 8.2 feet, and the annual average absolute residual was 6.0 feet. A correlation coefficient value of 0.96 was calculated for the line of best fit for observed to simulated water levels for the combined 1998-2005 dataset, indicating a good fit to the data and an acceptable validation of the model. After the validation process was completed, additional ground-water model simulations were run to evaluate the response of the aquifer with the 2005 water-use rate applied through 2049 (scenario 1) and the 2005 water-use rate increased 2 percent annually until 2049 (scenario 2). Scenario 1 resulted in 779 dry cells (779 square miles) by 2049 and scenario 2 resulted in 2,910 dry cells (2,910 square miles) by 2049. In both scenarios, the dry cells are concentrated in the Grand Prairie area and Cache River area west of Crowleys Ridge. However, scenario 2 resulted in dry cells to the east of Crowleys Ridge as well. A simulation applying the 1997 water-use rate contained in the original ground-water flow model resulted in 401 dry cells (401 square miles) in the Grand Prairie and Cache River areas.
NASA Technical Reports Server (NTRS)
Drews, D.; Stein, T. P.
1992-01-01
The doubly labeled water (DLW, 2H(2)18O) method is a highly accurate method for measuring energy expenditure (EE). A possible source of error is bolus fluid intake before body water sampling. If there is bolus fluid intake immediately before body water sampling, the saliva may reflect the ingested water disproportionately, because the ingested water may not have had time to mix fully with the body water pool. To ascertain the magnitude of this problem, EE was measured over a 5-day period by the DLW method. Six subjects were dosed with 2H2(18)O. After the reference salivas for the two-point determination were obtained, subjects drank water (700-1,000 ml), and serial saliva samples were collected for the next 3 h. Expressing the postbolus saliva enrichments as a percentage of the prebolus value, we found 1) a minimum in the saliva isotopic enrichments were reached at approximately 30 min with the minimum for 2H (95.48 +/- 0.43%) being significantly lower than the minimum for 18O (97.55 +/- 0.44, P less than 0.05) and 2) EE values calculated using the postbolus isotopic enrichments are appreciably higher (19.9 +/- 7.5%) than the prebolus reference values. In conclusion, it is not advisable to collect saliva samples for DLW measurements within approximately 1 h of bolus fluid intake.
NASA Astrophysics Data System (ADS)
Balbín, R.; López-Jurado, J. L.; Aparicio-González, A.; Serra, M.
2014-10-01
Oceanographic data obtained between 2001 and 2011 by the Spanish Institute of Oceanography (IEO, Spain) have been used to characterise the spatial distribution and the temporal variability of the dissolved oxygen around the Balearic Islands (Mediterranean Sea). The study area includes most of the Western Mediterranean Sea, from the Alboran Sea to Cape Creus, at the border between France and Spain. Dissolved oxygen (DO) at the water surface is found to be in a state of equilibrium exchange with the atmosphere. In the spring and summer a subsurface oxygen supersaturation is observed due to the biological activity, above the subsurface fluorescence maximum. Minimum observed values of dissolved oxygen are related to the Levantine Intermediate Waters (LIW). An unusual minimum of dissolved oxygen concentrations was also recorded in the Alboran Sea Oxygen Minimum Zone. The Western Mediterranean Deep Waters (WMDW) and the Western Intermediate Waters (WIW) show higher values of dissolved oxygen than the Levantine Intermediate Waters due to their more recent formation. Using these dissolved oxygen concentrations it is possible to show that the Western Intermediate Waters move southwards across the Ibiza Channel and the deep water circulates around the Balearic Islands. It has also been possible to characterise the seasonal evolution of the different water masses and their dissolved oxygen content in a station in the Algerian sub-basin.
2010-09-01
Regulatory Council LRL Laboratory reporting level LDPE Low-density polyethylene MDL Minimum detection limit MNA Monitored natural attenuation...consists of a tubular-shaped bag made of flexible low-density polyethylene ( LDPE ) (Vroblesky, 2001a, 2001b). The LDPE tube is heat-sealed on one end...be constructed from small- diameter LDPE tubing that fits into small-diameter wells. These polyethylene diffusion bag (PDB) samplers have been
2010-04-01
LDPE low-density polyethylene LF low-flow purging LRL laboratory reporting level MDL minimum detection limit MNA monitored natural attenuation...shaped bag made of flexible low-density polyethylene ( LDPE ) (Vroblesky, 2001a, 2001b). The LDPE tube is heat-sealed on one end, filled with high...from small- diameter LDPE tubing that fits into small-diameter wells. These PDB samplers have been shown to be useful only for collection of VOCs
NASA Astrophysics Data System (ADS)
Lv, Gangming; Zhu, Shihua; Hui, Hui
Multi-cell resource allocation under minimum rate request for each user in OFDMA networks is addressed in this paper. Based on Lagrange dual decomposition theory, the joint multi-cell resource allocation problem is decomposed and modeled as a limited-cooperative game, and a distributed multi-cell resource allocation algorithm is thus proposed. Analysis and simulation results show that, compared with non-cooperative iterative water-filling algorithm, the proposed algorithm can remarkably reduce the ICI level and improve overall system performances.
Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.
2012-01-01
Detroit Dam was constructed in 1953 on the North Santiam River in western Oregon and resulted in the formation of Detroit Lake. With a full-pool storage volume of 455,100 acre-feet and a dam height of 463 feet, Detroit Lake is one of the largest and most important reservoirs in the Willamette River basin in terms of power generation, recreation, and water storage and releases. The U.S. Army Corps of Engineers operates Detroit Dam as part of a system of 13 reservoirs in the Willamette Project to meet multiple goals, which include flood-damage protection, power generation, downstream navigation, recreation, and irrigation. A distinct cycle in water temperature occurs in Detroit Lake as spring and summer heating through solar radiation creates a warm layer of water near the surface and isolates cold water below. Controlling the temperature of releases from Detroit Dam, therefore, is highly dependent on the location, characteristics, and usage of the dam's outlet structures. Prior to operational changes in 2007, Detroit Dam had a well-documented effect on downstream water temperature that was problematic for endangered salmonid fish species, releasing water that was too cold in midsummer and too warm in autumn. This unnatural seasonal temperature pattern caused problems in the timing of fish migration, spawning, and emergence. In this study, an existing calibrated 2-dimensional hydrodynamic water-quality model [CE-QUAL-W2] of Detroit Lake was used to determine how changes in dam operation or changes to the structural release points of Detroit Dam might affect downstream water temperatures under a range of historical hydrologic and meteorological conditions. The results from a subset of the Detroit Lake model scenarios then were used as forcing conditions for downstream CE-QUAL-W2 models of Big Cliff Reservoir (the small reregulating reservoir just downstream of Detroit Dam) and the North Santiam and Santiam Rivers. Many combinations of environmental, operational, and structural options were explored with the model scenarios. Multiple downstream temperature targets were used along with three sets of environmental forcing conditions representing cool/wet, normal, and hot/dry conditions. Five structural options at Detroit Dam were modeled, including the use of existing outlets, one hypothetical variable-elevation outlet such as a sliding gate, a hypothetical combination of a floating outlet and a fixed-elevation outlet, and a hypothetical combination of a floating outlet and a sliding gate. Finally, 14 sets of operational guidelines for Detroit Dam were explored to gain an understanding of the effects of imposing different downstream minimum streamflows, imposing minimum outflow rules to specific outlets, and managing the level of the lake with different timelines through the year. Selected subsets of these combinations of operational and structural scenarios were run through the downstream models of Big Cliff Reservoir and the North Santiam and Santiam Rivers to explore how hypothetical changes at Detroit Dam might provide improved temperatures for endangered salmonids downstream of the Detroit-Big Cliff Dam complex. Conclusions that can be drawn from these model scenarios include: *The water-temperature targets set by the U.S. Army Corps of Engineers for releases from Detroit Dam can be met through a combination of new dam outlets or a delayed drawdown of the lake in autumn. *Spring and summer dam operations greatly affect the available release temperatures and operational flexibility later in the autumn. Releasing warm water during midsummer tends to keep more cool water available for release in autumn. *The ability to meet downstream temperature targets during spring depends on the characteristics of the available outlets. Under existing conditions, although warm water sometimes is present at the lake surface in spring and early summer, such water may not be available for release if the lake level is either well below or well above the spillway crest. *Managing lake releases to meet downstream temperature targets depends on having outlet structures that can access both (warm) lake surface water and (cold) deeper lake water throughout the year. The existing outlets at Detroit Dam do not allow near-surface waters to be released during times when the lake surface level is below the spillway (spring and autumn). *Using the existing outlets at Detroit Dam, lake level management is important to the water temperature of releases because it controls the availability and depth of water at the spillway. When lake level is lowered below the spillway crest in late summer, the loss of access to warm water at the lake surface can result in abrupt changes to release temperatures. *Because the power-generation intakes (penstocks) are 166 feet below the full-pool lake level, imposing minimum power production requirements at Detroit Dam limits the amount of warm surface water that can be expelled from the lake in midsummer, thereby postponing and amplifying warm outflows from Detroit Lake into the autumn spawning season. *Likewise, imposing minimum power production requirements at Detroit Dam in autumn can limit the amount of cool hypolimnetic water that is released from the lake, thereby limiting cool outflows from Detroit Lake during the autumn spawning season. *Model simulations indicate that a delayed drawdown of Detroit Lake in autumn would result in better control over release temperatures in the immediate downstream vicinity of Big Cliff Dam, but the reduced outflows necessary to retain more water in the lake in late summer are more susceptible to rapid heating downstream. *Compared to the existing outlets at Detroit Dam, floating or sliding-gate outlet structures can provide greater control over release temperatures because they provide better access to warm water at the lake surface and cooler water at depth. These conclusions can be grouped into several common themes. First, optimal and flexible management and achievement of downstream temperature goals requires that releases of warm water near the surface of the lake and cold water below the thermocline are both possible with the available dam outlets during spring, summer, and autumn. This constraint can be met to some extent with existing outlets, but only if access to the spillway is extended into autumn by keeping the lake level higher than called for by the current rule curve (the typical target water-surface elevation throughout the year). If new outlets are considered, a variable-elevation outlet such as a sliding gate structure, or a floating outlet in combination with a fixed-elevation outlet at sufficient depth to access cold water, is likely to work well in terms of accessing a range of water temperatures and achieving downstream temperature targets. Furthermore, model results indicate that it is important to release warm water from near the lake surface during midsummer. If not released downstream, the warm water will build up at the top of the lake as a result of solar energy inputs and the thermocline will deepen, potentially causing warm water to reach the depth of deeper fixed-elevation outlets in autumn, particularly when the lake level is drawn down to make room for flood storage. Delaying the drawdown in autumn can help to keep the thermocline above such outlets and preserve access to cold water. Although it is important to generate hydropower at Detroit Dam, minimum power-production requirements limit the ability of dam operators to meet downstream temperature targets with existing outlet structures. The location of the power penstocks below the thermocline in spring and most of summer causes the release of more cool water during summer than is optimal. Reducing the power-production constraint allows the temperature target to be met more frequently, but at the cost of less power generation. Finally, running the Detroit Dam, Big Cliff Dam, and North Santiam and Santiam River models in series allows dam operators to evaluate how different operational strategies or combinations of new dam outlets might affect downstream temperatures for many miles of critical endangered salmonid habitat. Temperatures can change quickly in these downstream reaches as the river exchanges heat with its surroundings, and heating or cooling of 6 degrees Celsius is not unusual in the 40–50 miles downstream of Big Cliff Dam. The results published in this report supersede preliminary results published in U.S. Geological Survey Open-File Report 2011-1268 (Buccola and Rounds, 2011). Those preliminary results are still valid, but the results in this report are more current and comprehensive.
NASA Astrophysics Data System (ADS)
Cook, Peter G.; Rodellas, Valentí; Stieglitz, Thomas C.
2018-03-01
Tracer approaches to estimate both porewater exchange (the cycling of water between surface water and sediments, with zero net water flux) and groundwater inflow (the net flow of terrestrially derived groundwater into surface water) are commonly based on solute mass balances. However, this requires appropriate characterization of tracer end-member concentrations in exchanging or discharging water. Where either porewater exchange or groundwater inflow to surface water occur in isolation, then the water flux is easily estimated from the net tracer flux if the end-member is appropriately chosen. However, in most natural systems porewater exchange and groundwater inflow will occur concurrently. Our analysis shows that if groundwater inflow (Qg) and porewater exchange (Qp) mix completely before discharging to surface water, then the combined water flux (Qg + Qp) can be approximated by dividing the combined tracer flux by the difference between the porewater and surface water concentrations, (cp - c). If Qg and Qp do not mix prior to discharge, then (Qg + Qp) can only be constrained by minimum and maximum values. The minimum value is obtained by dividing the net tracer flux by the groundwater concentration, and the maximum is obtained by dividing by (cp - c). Dividing by the groundwater concentration gives a maximum value for Qg. If porewater exchange and groundwater outflow occur concurrently, then dividing the net tracer flux by (cp - c) will provide a minimum value for Qp. Use of multiple tracers, and spatial and temporal replication should provide a more complete picture of exchange processes and the extent of subsurface mixing.
Extreme Water Levels in Bangladesh: Past Trends, Future Projections and their Impact on Mortality
NASA Astrophysics Data System (ADS)
Thiele-Eich, I.; Burkart, K.; Hopson, T. M.; Simmer, C.
2014-12-01
Climate change is expected to have an impact on meteorological and therefore hydrological extremes, thereby possibly altering the vulnerability of exposed populations. Our study focuses on Bangladesh, which is particularly vulnerable to changes in extremes due to both the large population at risk, as well as geographical characteristics such as the low-rising slope of the country through which the outflow of the combined catchments of the Ganges, Brahmaputra and Meghna rivers (GBM, ~1.75 million km2) is channeled.Time series of daily discharge and water level data for the past 100 years were analyzed with respect to trends in frequency, magnitude and duration, focusing on rare but particularly high-risk events using extreme-value theory. Mortality data is available for a five-year period (2003-2007), with a distributed lag non-linear model used to examine possible connections between extreme water levels and mortality. Then, using output from the Community Climate System Model CCSM4, projections were made regarding future flooding due to changes in precipitation intensity and frequency, while also accounting for the backwater effect of sea-level rise. For this, the upper catchment precipitation as well as monthly mean thermosteric sea-level rise at the river mouth outflow were taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP 2.6, 4.5, 6.0 and 8.5.Results show that while e.g. the mean water level did not significantly rise during the past 100 years, a change in extreme water levels can be detected. In addition, annual minimum water levels have decreased, which is of particular importance as there is a significant connection to an increase in mortality for low water levels. While mortality does not seem to increase significantly due to extreme floods, our results indicate that return levels projected for the future shift progressively, with the effect being strongest for RCP 8.5. Further measures to strengthen the resilience of the exposed population are therefore required to ensure that climate change effects do not overwhelm the population's coping capacities.
Plans for a sensitivity analysis of bridge-scour computations
Dunn, David D.; Smith, Peter N.
1993-01-01
Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.
Zhong, Hui-zhou; Wei, Chao-hai
2015-04-01
In order to investigate the risk of trihalomethane formation potential (THMFP) in finished waters as drinking water sources, 70 samples, 114 samples, and 70 samples were collected in November 2013, April 2014 and July 2014, respectively from different locations in the Beijiang River and the Pearl River. After filtration by 0.45 μm filter membrane, a total of 254 samples were chlorinated using Uniform Formation Condition (UFC) method for determining their THM Formation Potential (THMFP). The cancer risk and non-cancer risk of THMs were estimated using USEPA risk assessment model while dominant factors for total risk potential were estimated using sensitivity analysis. Among four THM species, chloroform( CF) was the highest ranging from 101.92-2 590.85 μg x L(-1), followed by bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform (BF). Chloroform, the major THMs speciation, accounted for 96.17% of total THMs. Non-cancer and cancer risk from ingesting THMs was estimated. The result indicated that non-cancer risk of THMs level ranged from 2.03 x 10(-7) to 1.00 x 10(-5) and was not more than 1.0 x 10(-5), the minimum or negligible non-cancer risk level defined by the USEPA. The average cancer risk of THMs was 2.91 x 10(-4) for male and 3.30 x 10(-4) for female in the two rivers, respectively, exceeding the minimum or negligible risk level defined by the USEPA (1. 0 x 10 ~6). The difference of cancer risk between the two rivers was that BDCM ranging from 2.50 x 10(-5) to 6.37 x 10(-4) was approximately twice that of CF in Beijing River. BDCM played an important role in the total risk in the Beijiang River while CF played an important role in the total risk in the Pearl River, Guangzhou. Sensitivity analysis showed that CF played an important role in the estimation of total risk potential, and that the direct utilization of water sources from Beijiang River and the Pearl River Guangzhou is dangerous, thus pretreatment is necessary before chlorination.
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
Haxel, Joseph H; Dziak, Robert P; Matsumoto, Haru
2013-05-01
A year-long experiment (March 2010 to April 2011) measuring ambient sound at a shallow water site (50 m) on the central OR coast near the Port of Newport provides important baseline information for comparisons with future measurements associated with resource development along the inner continental shelf of the Pacific Northwest. Ambient levels in frequencies affected by surf-generated noise (f < 100 Hz) characterize the site as a high-energy end member within the spectrum of shallow water coastal areas influenced by breaking waves. Dominant sound sources include locally generated ship noise (66% of total hours contain local ship noise), breaking surf, wind induced wave breaking and baleen whale vocalizations. Additionally, an increase in spectral levels for frequencies ranging from 35 to 100 Hz is attributed to noise radiated from distant commercial ship commerce. One-second root mean square (rms) sound pressure level (SPLrms) estimates calculated across the 10-840 Hz frequency band for the entire year long deployment show minimum, mean, and maximum values of 84 dB, 101 dB, and 152 dB re 1 μPa.
Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida
Reich, Christopher; Flocks, James; Davis, Jeffrey
2012-01-01
This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the edges to approximately 12 ohm-m in the center. These well-defined areas may indicate a "ravel" zone of increased porosity or clay content. Within Lake Helen (Volusia County), a parallel set of seismic reflectors within a host of chaotic reflectors may represent fill within a large sinkhole. The feature extends to more than 50 meters (m) deep and contains very steep pinnacles within the center. Seismic data in Lake Helen are supported by high resistivity values from adjacent continuous resistivity profiles that show possible center collapse within the lake and infilling of sandy material. When used together, HRSP and DC resistivity techniques provide a composite image of structure and lithology to detect potential conduits for fluid flow.
Stell, Susan M.; Hopkins, Evelyn H.; Buell, Gary R.; Hippe, Daniel J.
1995-01-01
The Apalachicola-Chattahoochee-Flint (ACF) River basin was one of the first 20 study units selected in 1991 by the U.S. Geological Survey for its National Water-Quality Assessment (NAWQA) program. Because pesticide contamination of surface water and ground water is a concern nationwide, a major emphasis of the NAWQA program is to examine the occurrence and distribution of pesticides in the water resources of these study unit basins. An understanding of the types and distribution of land uses; pesticide properties, pest-control practices, and pesticide use; and an evaluation of the occurrence and distribution of pesticides in the water resources of the ACF are necessary to meet this objective of the NAWQA program. This report describes land use and pesticide use at a county level, and the occurrence and distribution of pesticides in the water resources of the ACF River basin on the basis of previously-collected data. About 33 percent of the ACF River basin is used for agriculture, 16 percent is used for silviculture, and about 5 percent of the basin is in urban and suburban settings; primarily the Columbus, Albany, and Atlanta Metropolitan areas. The remainder is in wetlands and non-silvicultural forest. A broad range of synthetic-organic herbicides, insecticides, and fungicides are applied to land in agricultural, silvicultural, urban, and suburban areas. The period of intensive pesticide applications extends from March to October. Pesticide data available for the period from 1971 through 1989 in the U.S. Geological Survey National Water Information System (NWIS) and for the period from 1960 through 1991 in the U.S. Environmental Protection Agency Storage and Retrieval System (STORET) were analyzed to describe the occurrence and distribution of pesticides in water resources of the ACF River basin. Collectively, the NWIS and STORET databases contain about 19,600 individual analyses for pesticide concentration in the ACF River basin. Pesticide concentrations were at or above a minimum reporting level in about five percent of all analyses. Most of the pesticide analyses and most of the analyses having concentrations above minimum reporting levels in these databases are for organochlorine insecticides in samples collected five or more years before this study. With few exceptions, most of organochlorine insecticides are now banned from use in the United States. Concentrations of currently (1991) used pesticides were at or above a minimum reporting level in about 0.3 percent of the analyses. The geographic patterns in the occurrence and distribution of pesticides in the ACF River basin (as defined by data collected during 1960-91) are, as expected, somewhat defined by land-use patterns. DDT (together with DDD and DDE) were detected in wide distribution in the sediments and aquatic biota of primarily mainstem and reservoir sites in the Chattahoochee, Flint, and Apalachicola drainages. DDT was used through 1973 as an insecticide on cotton, fruits, and vegetables; and for mosquito control, so its widespread occurrence in both urban and agricultural settings is consistent with its use. Chlordane, heptachlor, dieldrin, and related compounds were agriculturally used through 1974, but predominantly as termiticides through the late 1980?s. Compounds in these groups have been found in the sediments and aquatic biota of tributary streams draining the Atlanta Metropolitan area and of mainstem reaches and reservoirs of the Chattahoochee River downstream from the Atlanta and Columbus, Ga., Metropolitan areas. The phenoxy-acid herbicides are widely used in residential, commercial/industrial, agricultural, and silvicultural areas of the ACF River basin. Detectable concentrations of 2,4-D were found in most of the surface-waters sampled in the Atlanta Metropolitan area. It is unfortunate that only limited inference can be drawn on temporal patterns. Many of the Federal and State agency pesticide-monitoring programs have been targeted
Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones.
Seibel, Brad A
2011-01-15
The survival of oceanic organisms in oxygen minimum zones (OMZs) depends on their total oxygen demand and the capacities for oxygen extraction and transport, anaerobic ATP production and metabolic suppression. Anaerobic metabolism and metabolic suppression are required for daytime forays into the most extreme OMZs. Critical oxygen partial pressures are, within a range, evolved to match the minimum oxygen level to which a species is exposed. This fact demands that low oxygen habitats be defined by the biological response to low oxygen rather than by some arbitrary oxygen concentration. A broad comparative analysis of oxygen tolerance facilitates the identification of two oxygen thresholds that may prove useful for policy makers as OMZs expand due to climate change. Between these thresholds, specific physiological adaptations to low oxygen are required of virtually all species. The lower threshold represents a limit to evolved oxygen extraction capacity. Climate change that pushes oxygen concentrations below the lower threshold (~0.8 kPa) will certainly result in a transition from an ecosystem dominated by a diverse midwater fauna to one dominated by diel migrant biota that must return to surface waters at night. Animal physiology and, in particular, the response of animals to expanding hypoxia, is a critical, but understudied, component of biogeochemical cycles and oceanic ecology. Here, I discuss the definition of hypoxia and critical oxygen levels, review adaptations of animals to OMZs and discuss the capacity for, and prevalence of, metabolic suppression as a response to temporary residence in OMZs and the possible consequences of climate change on OMZ ecology.
Code of Federal Regulations, 2012 CFR
2012-07-01
... employees. The facilities shall have: (i) Running water, including hot and cold or tepid water at a minimum... containers shall be clean, containing only water and ice, and shall be fitted with covers. (3) Common...
Code of Federal Regulations, 2014 CFR
2014-07-01
... employees. The facilities shall have: (i) Running water, including hot and cold or tepid water at a minimum... containers shall be clean, containing only water and ice, and shall be fitted with covers. (3) Common...
Code of Federal Regulations, 2013 CFR
2013-07-01
... employees. The facilities shall have: (i) Running water, including hot and cold or tepid water at a minimum... containers shall be clean, containing only water and ice, and shall be fitted with covers. (3) Common...
21 CFR 177.2415 - Poly(aryletherketone) resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., and have a minimum weight-average molecular weight of 12,000, as determined by gel permeation...: Distilled water, 50 percent (by volume) ethanol in distilled water, 3 percent acetic acid in distilled water...
A soil water based index as a suitable agricultural drought indicator
NASA Astrophysics Data System (ADS)
Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.
2015-03-01
Currently, the availability of soil water databases is increasing worldwide. The presence of a growing number of long-term soil moisture networks around the world and the impressive progress of remote sensing in recent years has allowed the scientific community and, in the very next future, a diverse group of users to obtain precise and frequent soil water measurements. Therefore, it is reasonable to consider soil water observations as a potential approach for monitoring agricultural drought. In the present work, a new approach to define the soil water deficit index (SWDI) is analyzed to use a soil water series for drought monitoring. In addition, simple and accurate methods using a soil moisture series solely to obtain soil water parameters (field capacity and wilting point) needed for calculating the index are evaluated. The application of the SWDI in an agricultural area of Spain presented good results at both daily and weekly time scales when compared to two climatic water deficit indicators (average correlation coefficient, R, 0.6) and to agricultural production. The long-term minimum, the growing season minimum and the 5th percentile of the soil moisture series are good estimators (coefficient of determination, R2, 0.81) for the wilting point. The minimum of the maximum value of the growing season is the best estimator (R2, 0.91) for field capacity. The use of these types of tools for drought monitoring can aid the better management of agricultural lands and water resources, mainly under the current scenario of climate uncertainty.
Nichols, Wallace J.; Smath, J.A.; Adamik, J.T.
1983-01-01
Hydrologic data collected on the Great and Denbow Heaths, Maine, include precipitation, pan evaporation, air temperatures, streamflow, groundwater levels, and water quality constituents. These data were collected for a peat bog hydrology study conducted in cooperation with the Maine Geological Survey. The data network consisted of climate information from three rain gages, an evaporation pan, and two maximum-minimum thermometers; surface water information from two continuous gaging stations and 19 partial record sites; groundwater information from an observation well equipped with a continuous recorder and 106 piezometers; and water quality information from 13 wells and seven surface water sites. Water quality constituents include: field determinations of pH, specific conductance, and temperature, and laboratory determinations of common inorganic cations and anions, trace elements, and selected organic compounds. Methods used for the collection and analyses of data included standard Survey techniques modified for the unique hydrologic environment of the study area. (Author 's abstract)
Detection and persistence of environmental DNA from an invasive, terrestrial mammal.
Williams, Kelly E; Huyvaert, Kathryn P; Vercauteren, Kurt C; Davis, Amy J; Piaggio, Antoinette J
2018-01-01
Invasive Sus scrofa , a species commonly referred to as wild pig or feral swine, is a destructive invasive species with a rapidly expanding distribution across the United States. We used artificial wallows and small waterers to determine the minimum amount of time needed for pig eDNA to accumulate in the water source to a detectable level. We removed water from the artificial wallows and tested eDNA detection over the course of 2 weeks to understand eDNA persistence. We show that our method is sensitive enough to detect very low quantities of eDNA shed by a terrestrial mammal that has limited interaction with water. Our experiments suggest that the number of individuals shedding into a water system can affect persistence of eDNA. Use of an eDNA detection technique can benefit management efforts by providing a sensitive method for finding even small numbers of individuals that may be elusive using other methods.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... endangered (T&E) species. Minimum setbacks from water bodies, wetlands, surface water supply intakes and water supply reservoirs at distances specified in the regulations, and from occupied homes, public buildings, public roads, public water supply wells, and domestic water supply wells as provided by...
Kreck, Cara A; Mancera, Ricardo L
2014-02-20
Molecular dynamics simulations allow detailed study of the experimentally inaccessible liquid state of supercooled water below its homogeneous nucleation temperature and the characterization of the glass transition. Simple, nonpolarizable intermolecular potentials are commonly used in classical molecular dynamics simulations of water and aqueous systems due to their lower computational cost and their ability to reproduce a wide range of properties. Because the quality of these predictions varies between the potentials, the predicted glass transition of water is likely to be influenced by the choice of potential. We have thus conducted an extensive comparative investigation of various three-, four-, five-, and six-point water potentials in both the NPT and NVT ensembles. The T(g) predicted from NPT simulations is strongly correlated with the temperature of minimum density, whereas the maximum in the heat capacity plot corresponds to the minimum in the thermal expansion coefficient. In the NVT ensemble, these points are instead related to the maximum in the internal pressure and the minimum of its derivative, respectively. A detailed analysis of the hydrogen-bonding properties at the glass transition reveals that the extent of hydrogen-bonds lost upon the melting of the glassy state is related to the height of the heat capacity peak and varies between water potentials.
Pathak, Arup Kumar; Mukherjee, Tulsi; Maity, Dilip Kumar
2010-01-18
The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine-dimer radical-anion clusters, I(2)(*-) x n H(2)O (n=1-10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum-energy structure by applying a Monte Carlo simulated annealing procedure including spin-orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I-I stretching band but enhances the intensity of the O-H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O-H bonds in a cyclic water network are observed for I(2)(*-) x n H(2)O clusters with n > or = 3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite-size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I(2)(*-) in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl(2)(*-) and Br(2)(*-).
NASA Astrophysics Data System (ADS)
Zhuang, X. W.; Li, Y. P.; Nie, S.; Fan, Y. R.; Huang, G. H.
2018-01-01
An integrated simulation-optimization (ISO) approach is developed for assessing climate change impacts on water resources. In the ISO, uncertainties presented as both interval numbers and probability distributions can be reflected. Moreover, ISO permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised water-allocation targets are violated. A snowmelt-precipitation-driven watershed (Kaidu watershed) in northwest China is selected as the study case for demonstrating the applicability of the proposed method. Results of meteorological projections disclose that the incremental trend of temperature (e.g., minimum and maximum values) and precipitation exist. Results also reveal that (i) the system uncertainties would significantly affect water resources allocation pattern (including target and shortage); (ii) water shortage would be enhanced from 2016 to 2070; and (iii) the more the inflow amount decreases, the higher estimated water shortage rates are. The ISO method is useful for evaluating climate change impacts within a watershed system with complicated uncertainties and helping identify appropriate water resources management strategies hedging against drought.
2014-06-06
Adaptive Management Plan NED national economic development NEPA National Environmental Policy Act NER National Ecosystem Restoration NFIP... management and flow maintenance (e.g., flood water height, channel and culvert sizing) are based on high water events (i.e., FEMA base flood – 1% or 100...Minimum 15 years of experience in economics X Minimum 15 years of experience in flood risk management analysis and benefits calculations X Direct
Low-flow characteristics of streams in Ohio through water year 1997
Straub, David E.
2001-01-01
This report presents selected low-flow and flow-duration characteristics for 386 sites throughout Ohio. These sites include 195 long-term continuous-record stations with streamflow data through water year 1997 (October 1 to September 30) and for 191 low-flow partial-record stations with measurements into water year 1999. The characteristics presented for the long-term continuous-record stations are minimum daily streamflow; average daily streamflow; harmonic mean flow; 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 5-, 10-, 20-, and 50-year recurrence intervals; and 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 20-, and 10-percent daily duration flows. The characteristics presented for the low-flow partial-record stations are minimum observed streamflow; estimated 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 10-, and 20-year recurrence intervals; and estimated 98-, 95-, 90-, 85- and 80-percent daily duration flows. The low-flow frequency and duration analyses were done for three seasonal periods (warm weather, May 1 to November 30; winter, December 1 to February 28/29; and autumn, September 1 to November 30), plus the annual period based on the climatic year (April 1 to March 31).
A potential approach for low flow selection in water resource supply and management
NASA Astrophysics Data System (ADS)
Ouyang, Ying
2012-08-01
SummaryLow flow selections are essential to water resource management, water supply planning, and watershed ecosystem restoration. In this study, a new approach, namely the frequent-low (FL) approach (or frequent-low index), was developed based on the minimum frequent-low flow or level used in minimum flows and/or levels program in northeast Florida, USA. This FL approach was then compared to the conventional 7Q10 approach for low flow selections prior to its applications, using the USGS flow data from the freshwater environment (Big Sunflower River, Mississippi) as well as from the estuarine environment (St. Johns River, Florida). Unlike the FL approach that is associated with the biological and ecological impacts, the 7Q10 approach could lead to the selections of extremely low flows (e.g., near-zero flows) that may hinder its use for establishing criteria to prevent streams from significant harm to biological and ecological communities. Additionally, the 7Q10 approach could not be used when the period of data records is less than 10 years by definition while this may not the case for the FL approach. Results from both approaches showed that the low flows from the Big Sunflower River and the St. Johns River decreased as time elapsed, demonstrating that these two rivers have become drier during the last several decades with a potential of salted water intrusion to the St. Johns River. Results from the FL approach further revealed that the recurrence probability of low flow increased while the recurrence interval of low flow decreased as time elapsed in both rivers, indicating that low flows occurred more frequent in these rivers as time elapsed. This report suggests that the FL approach, developed in this study, is a useful alternative for low flow selections in addition to the 7Q10 approach.
Subjective well-being and minimum wages: Evidence from U.S. states.
Kuroki, Masanori
2018-02-01
This paper investigates whether increases in minimum wages are associated with higher life satisfaction by using monthly-level state minimum wages and individual-level data from the 2005-2010 Behavioral Risk Factor Surveillance System. The magnitude I find suggests that a 10% increase in the minimum wage is associated with a 0.03-point increase in life satisfaction for workers without a high school diploma, on a 4-point scale. Contrary to popular belief that higher minimum wages hurt business owners, I find little evidence that higher minimum wages lead to the loss of well-being among self-employed people. Copyright © 2017 John Wiley & Sons, Ltd.
Majuru, Batsirai; Jagals, Paul; Hunter, Paul R
2012-10-01
Although a number of studies have reported on water supply improvements, few have simultaneously taken into account the reliability of the water services. The study aimed to assess whether upgrading water supply systems in small rural communities improved access, availability and potability of water by assessing the water services against selected benchmarks from the World Health Organisation and South African Department of Water Affairs, and to determine the impact of unreliability on the services. These benchmarks were applied in three rural communities in Limpopo, South Africa where rudimentary water supply services were being upgraded to basic services. Data were collected through structured interviews, observations and measurement, and multi-level linear regression models were used to assess the impact of water service upgrades on key outcome measures of distance to source, daily per capita water quantity and Escherichia coli count. When the basic system was operational, 72% of households met the minimum benchmarks for distance and water quantity, but only 8% met both enhanced benchmarks. During non-operational periods of the basic service, daily per capita water consumption decreased by 5.19l (p<0.001, 95% CI 4.06-6.31) and distances to water sources were 639 m further (p ≤ 0.001, 95% CI 560-718). Although both rudimentary and basic systems delivered water that met potability criteria at the sources, the quality of stored water sampled in the home was still unacceptable throughout the various service levels. These results show that basic water services can make substantial improvements to water access, availability, potability, but only if such services are reliable. Copyright © 2012 Elsevier B.V. All rights reserved.
Böhlke, J K; O'Connell, Michael E; Prestegaard, Karen L
2007-01-01
Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.
Böhlke, J.K.; O'Connell, M. E.; Prestegaard, K.L.
2007-01-01
Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr-1) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds. ?? ASA, CSSA, SSSA.
VAHID DASTJERDI, Elahe; ABDOLAZIMI, Zahra; GHAZANFARIAN, Marzieh; AMDJADI, Parisa; KAMALINEJAD, Mohammad; MAHBOUBI, Arash
2014-01-01
Background: Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire. Methods: Antibacterial property of P. granatum L. water extract was primarily evaluated in brain heart infusion agar medium using well-plate method. The minimum inhibitory concentration and minimum bactericidal concentration were determined by macro-dilution method. The inhibitory effect on orthodontic wire bacterial biofilm formation was evaluated using viable cell count in biofilm medium. At the final phase, samples were fixed and analyzed by Scanning Electron Microscopy. Results: The growth inhibition zone diameter was proportional to the extract concentration. The water extract demonstrated the maximum antibacterial effect on Streptococcus sanguinis ATCC 10556 with a minimum inhibitory concentration of 6.25 mg/ml and maximum bactericidal effect on S. sanguinis ATCC 10556 and S. sobrinus ATCC 27607 with minimum bactericidal concentration of 25 mg/ml. The water extract decreased bacterial biofilm formation by S. sanguinis, S. sobrinus, S. salivarius, S. mutans ATCC 35608 and E. faecalis CIP 55142 by 93.7–100%, 40.6–99.9%, 85.2–86.5%, 66.4–84.4% and 35.5–56.3% respectively. Conclusion: Punica granatum L. water extract had significant antibacterial properties against 5 oral bacteria and prevented orthodontic wire bacterial biofilm formation. However, further investigations are required to generalize these results to the clinical setting. PMID:26171362
Survey of Occupational Noise Exposure in CF Personnel in Selected High-Risk Trades
2003-11-01
peak, maximum level , minimum level , average sound level , time weighted average, dose, projected 8-hour dose, and upper limit time were measured for...10 4.4.2 Maximum Sound Level ...11 4.4.3 Minimum Sound Level
Kerfahi, Dorsaf; Hall-Spencer, Jason M; Tripathi, Binu M; Milazzo, Marco; Lee, Junghoon; Adams, Jonathan M
2014-05-01
The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments.
Speciated mercury at marine, coastal, and inland sites in New England - Part 1: Temporal variability
NASA Astrophysics Data System (ADS)
Mao, H.; Talbot, R.
2011-12-01
A comprehensive analysis was conducted using long-term continuous measurements of gaseous elemental mercury (Hgo), reactive mercury (RGM), and particulate phase mercury (HgP) at coastal (Thompson Farm, denoted as TF), marine (Appledore Island, denoted as AI), and elevated inland (Pac Monadnock, denoted as PM) sites from the AIRMAP Observatories. Decreasing trends in background Hgo were identified in the 7- and 5-yr records at TF and PM with decline rates of 3.3 parts per quadrillion by volume (ppqv) yr-1 and 6.3 ppqv yr-1, respectively. Common characteristics at these sites were the reproducible annual cycle of Hgo with its maximum in winter-spring and minimum in fall as well as a decline/increase trend in the warm/cool season. The coastal site TF differed from the other two sites with its exceptionally low levels (as low as below 50 ppqv) in the nocturnal inversion layer probably due to dissolution in dew water. Year-to-year variability was observed in the warm season decline in Hgo at TF varying from a minimum total seasonal loss of 20 ppqv in 2010 to a maximum of 92 ppqv in 2005, whereas variability remained small at AI and PM. Measurements of Hgo at PM, an elevated inland rural site, exhibited the smallest diurnal to annual variability among the three environments, where peak levels rarely exceeded 250 ppqv and the minimum was typically 100 ppqv. It should be noted that summertime diurnal patterns at TF and AI are opposite in phase indicating strong sink(s) for Hgo during the day in the marine boundary layer, which is consistent with the hypothesis of Hgo oxidation by halogen radicals there. Mixing ratios of RGM in the coastal and marine boundary layers reached annual maximum in spring and minimum in fall, whereas at PM levels were generally below the limit of detection (LOD) except in spring. RGM levels at AI were higher than at TF and PM indicating a stronger source strength(s) in the marine environment. Mixing ratios of HgP at AI and TF were close in magnitude to RGM levels and were mostly below 1 ppqv. Diurnal variation in HgP was barely discernible at TF and AI in spring and summer with higher levels during the day and smaller but above the LOD at night.
Water survey of Canada: Application for use of ERTS-A for retransmission of water resources data
NASA Technical Reports Server (NTRS)
Halliday, R. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Over 7000 transmissions were received from six operating DCPs in 1972. Of these, only two were incorrect. One had the wrong date and the other had an invalid digit in the water level reading. Extensive checks have indicated that DCP data are accurate. The maximum number of transmissions received each day varies from 26 to 12 and the minimum from 10 to 3 depending on the site. Data has been received on as many as seven orbits in a day. The number of transmissions received from the two DCPs located in mountainous areas of southern B.C. is lower than the number received from more northerly but more open sites. The unheated DCPs have survived temperatures of -40 F and antenna loadings of two feet of snow and wind speeds over 50 mph. Two DCPs have indicated sensor malfunctions thus alerting field staff to the fact that repairs will be necessary on their next visit to the site. Also in another case, DCP data were used to fill in a period of missing record when a water level recorder malfunctioned for a few days.
The effects of pulse pressure from seismic water gun technology on Northern Pike
Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.
2013-01-01
We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.
MODELING INACTIVATION OF GIARDIA LAMBLIA
Under the auspices of the Safe Drinking Water Act (SDWA)the U.S. EPA hasa promulgated the Surface Water Treatment Rule (SWTR) requiring public water systems using surface water to provide minimum disinfection to Control Giardia Lamblia, enteric virsues, and bacteria. The C-t con...
Production, fixation, and staining of cells on slides for maximum photometric sensitivity
NASA Astrophysics Data System (ADS)
Leif, Robert C.; Harlow, Patrick M.; Vallarino, Lidia M.
1994-07-01
The need to detect increasingly low levels of antigens or polynucleotides in cells requires improvements in both the preparation and the staining of samples. The combination of centrifugal cytology with the use of glyoxal as cross-linking fixative produces monolayers of cells having minimum background fluorescence. Detection can be further improved by the use of a recently developed type of luminescent tag containing a lanthanide(III) ion as the light- emitting center. These novel tags are macrocyclic complexes functionalized with an isothiocyanate group to allow covalent coupling to a biosubstrate. The Eu(III) complex possesses a set of properties -- water solubility, inertness to metal release over a wide pH range, ligand-sensitized narrow-band luminescence, large Stoke's shift, and long excited-state lifetime -- that provides ease of staining as well as maximum signal with minimum interference from background autofluorescence. Luminescence efficiency studies indicate significant solvent effects.
Zhang, Ming; Zhang, Ren-Zhi; Cai, Li-Qun
2008-07-01
Based on a long-term experiment, the leaf water potential of spring wheat and field pea, its relationships with environmental factors, and the diurnal variations of leaf relative water content and water saturation deficient under different tillage patterns were studied. The results showed that during whole growth period, field pea had an obviously higher leaf water potential than spring wheat, but the two crops had similar diurnal variation trend of their leaf water potential, i.e., the highest in early morning, followed by a descent, and a gradual ascent after the descent. For spring wheat, the maximum leaf water potential appeared at its jointing and heading stages, followed by at booting and flowering stages, and the minimum appeared at filling stage. For field pea, the maximum leaf water potential achieved at squaring stage, followed by at branching and flowering stages, and the minimum was at podding stage. The leaf relative water content of spring wheat was the highest at heading stage, followed by at jointing and flowering stages, and achieved the minimum at filling stage; while the water saturation deficient was just in adverse. With the growth of field pea, its leaf relative water content decreased, but leaf water saturation deficient increased. The leaf water potential of both spring wheat and field pea had significant correlations with environmental factors, including soil water content, air temperature, solar radiation, relative air humidity, and air water potential. Path analysis showed that the meteorological factor which had the strongest effect on the diurnal variation of spring wheat' s and field pea' s leaf water potential was air water potential and air temperature, respectively. Compared with conventional tillage, the protective tillage patterns no-till, no-till plus straw mulching, and conventional tillage plus straw returning increased the leaf water potential and relative water content of test crops, and the effect of no-till plus straw mulching was most significant.
Dissolved Rare Earth Elements in the US GEOTRACES North Atlantic Section
NASA Astrophysics Data System (ADS)
Shiller, A. M.
2016-12-01
The rare earth elements (REEs) are a unique chemical set wherein there are systematic changes in geochemical behavior across the series. Furthermore, while most REEs are in the +III oxidation state, Ce and Eu can be in other oxidation states leading to distinct characteristics of those elements. Thus, the geochemical properties of the REEs make them particularly useful tools for inquiring into various geochemical processes. As part of the US GEOTRACES effort, we determined dissolved REEs and Y at 32 stations across the North Atlantic during US cruises GT10 and GT11 along a meridional transect from Lisbon to the Cape Verde Islands and a zonal transect from Cape Cod to the Mauritanian coast. While profiles are similar to previous reports, the high spatial resolution of the section allows for better elucidation of processes. Light rare earths (LREEs) show removal in the upper water column with a minimum at the chlorophyll maximum. LREE concentrations then increase into the oxygen minimum followed by a slight decrease and fairly constant concentrations in the mid-water column followed by an increase into the deep and bottom waters. Heavy rare earths (HREEs) show a more monotonic increase with depth. We also take advantage of a previously published water mass analysis for the section to estimate that most of the deep water changes can be explained by conservative mixing of waters with different pre-formed REE concentrations. Nonetheless, the pattern of LREE shallow water removal followed by regeneration, possible re-scavenging, and then deep water input is still preserved. Other features of note include an increase in LREEs in the strong oxygen minimum zone off Mauritania, consistent with an association of REE cycling with the redox cycles of Fe and Mn. Also along the eastern margin, but below the oxygen minimum, a small but distinct increase in the cerium and europium anomalies is observed, consistent with terrigenous input. In hydrothermally influenced waters along the mid-Atlantic Ridge, there are increases in Ce/Ce*, Eu/Eu*, and Y/Ho but a decrease in Nd/Yb and in REE concentrations. Surface water distributions are more consistent with elements influenced by margin inputs than with atmospheric input.
Potential of mean force between two hydrophobic solutes in water.
Southall, Noel T; Dill, Ken A
2002-12-10
We study the potential of mean force between two nonpolar solutes in the Mercedes Benz model of water. Using NPT Monte Carlo simulations, we find that the solute size determines the relative preference of two solute molecules to come into contact ('contact minimum') or to be separated by a single layer of water ('solvent-separated minimum'). Larger solutes more strongly prefer the contacting state, while smaller solutes have more tendency to become solvent-separated, particularly in cold water. The thermal driving forces oscillate with solute separation. Contacts are stabilized by entropy, whereas solvent-separated solute pairing is stabilized by enthalpy. The free energy of interaction for small solutes is well-approximated by scaled-particle theory. Copyright 2002 Elsevier Science B.V.
Fluid and Electrolyte Nutrition
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Smith, Scott M.; Leach, Carolyn S.; Rice, Barbara L.
1999-01-01
Studies of fluid and electrolyte homeostasis have been completed since the early human space flight programs, with comprehensive research completed on the Spacelab Life Sciences missions SLS-1 and SLS-2 flights, and more recently on the Mir 18 mission. This work documented the known shifts in fluids, the decrease in total blood volume, and indications of reduced thirst. Data from these flights was used to evaluate the nutritional needs for water, sodium, and potassium. Interpretations of the data are confounded by the inadequate energy intakes routinely observed during space flight. This in turn results in reduced fluid intake, as food provides approximately 70% water intake. Subsequently, body weight, lean body mass, total body water, and total body potassium may decrease. Given these issues, there is evidence to support a minimum required water intake of 2 L per day. Data from previous Shuttle flights indicated that water intake is 2285 +/- 715 ml/day (mean +/- SD, n=26). There are no indications that sodium intake or homeostasis is compromised during space flight. The normal or low aldosterone and urinary sodium levels suggest adequate sodium intake (4047 +/- 902 mg/day, n=26). Because excessive sodium intake is associated with hypercalciuria, the recommended maximum amount of sodium intake during flight is 3500 mg/day (i.e., similar to the Recommended Dietary Allowance, RDA). Potassium metabolism appears to be more complex. Data indicate loss of body potassium related to muscle atrophy and low dietary intake (2407 +/- 548 mg/day, n=26). Although possibly related to measurement error, the elevations in blood potassium suggest alterations in potassium homeostasis. The space RDA for minimum potassium intake is 3500 mg/day. With the documented inadequate intakes, efforts are being made to increase dietary consumption of potassium.
An Eight-Month Sample of Marine Stratocumulus Cloud Fraction, Albedo, and Integrated Liquid Water.
NASA Astrophysics Data System (ADS)
Fairall, C. W.; Hare, J. E.; Snider, J. B.
1990-08-01
As part of the First International Satellite Cloud Climatology Regional Experiment (FIRE), a surface meteorology and shortwave/longwave irradiance station was operated in a marine stratocumulus regime on the northwest tip of San Nicolas island off the coast of Southern California. Measurements were taken from March through October 1987, including a FIRE Intensive Field Operation (IFO) held in July. Algorithms were developed to use the longwave irradiance data to estimate fractional cloudiness and to use the shortwave irradiance to estimate cloud albedo and integrated cloud liquid water content. Cloud base height is estimated from computations of the lifting condensation level. The algorithms are tested against direct measurements made during the IFO; a 30% adjustment was made to the liquid water parameterization. The algorithms are then applied to the entire database. The stratocumulus clouds over the island are found to have a cloud base height of about 400 m, an integrated liquid water content of 75 gm2, a fractional cloudiness of 0.95, and an albedo of 0.55. Integrated liquid water content rarely exceeds 350 g m2 and albedo rarely exceeds 0.90 for stratocumulus clouds. Over the summer months, the average cloud fraction shows a maximum at sunrise of 0.74 and a minimum at sunset of 0.41. Over the same period, the average cloud albedo shows a maximum of 0.61 at sunrise and a minimum of 0.31 a few hours after local noon (although the estimate is more uncertain because of the extreme solar zenith angle). The use of joint frequency distributions of fractional cloudiness with solar transmittance or cloud base height to classify cloud types appears to be useful.
Effects of Southern Hemispheric Wind Changes on Global Oxygen and the Pacific Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Getzlaff, J.; Dietze, H.; Oschlies, A.
2016-02-01
We use a coupled ocean biogeochemistry-circulation model to compare the impact of changes in southern hemispheric winds with that of warming induced buoyancy fluxes on dissolved oxygen. Changes in the southern hemispheric wind fields, which are in line with an observed shift of the southern annual mode, are a combination of a strengthening and poleward shift of the southern westerlies. We differentiate between effects caused by a strengthening of the westerlies and effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our results confirm that the Southern Ocean plays an important role for the marine oxygen supply: a strengthening of the southern westerlies, that leads to an increase of the water formation rates of the oxygen rich deep and intermediate water masses, can counteract part of the warming-induced decline in marine oxygen levels. The wind driven intensification of the Southern Ocean meridional overturning circulation drives an increase of the global oxygen supply. Furthermore the results show that the shift of the boundary between westerlies and trades results in an increase of subantarctic mode water and an anti-correlated decrease of deep water formation and reduces the oceanic oxygen supply. In addition we find that the increased meridional extension of the southern trade winds, results in a strengthening and southward shift of the subtropical wind stress curl. This alters the subtropical gyre circulation (intensification and southward shift) and with it decreases the water mass transport into the oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-to-westerlies boundary is as important for the future evolution of the suboxic volume as direct warming-induced changes.
Neutralisation of an acidic pit lake by alkaline waste products.
Allard, Bert; Bäckström, Mattias; Karlsson, Stefan; Grawunder, Anja
2014-01-01
A former open pit where black shale (alum shale) was excavated during 1942-1965 has been water filled since 1966. The water chemistry was dominated by calcium and sulphate and had a pH of 3.2-3.4 until 1997-1998, when pH was gradually increasing. This was due to the intrusion of leachates from alkaline cement waste deposited close to the lake. A stable pH of around 7.5 was obtained after 6-7 years. The chemistry of the pit lake has changed due to the neutralisation. Concentrations of some dissolved metals, notably zinc and nickel, have gone down, as a result of adsorption/co-precipitation on solid phases (most likely iron and aluminium hydroxides), while other metals, notably uranium and molybdenum, are present at elevated levels. Uranium concentration is reaching a minimum of around pH 6.5 and is increasing at higher pH, which may indicate a formation of neutral and anionic uranyl carbonate species at high pH (and total carbonate levels around 1 mM). Weathering of the water-exposed shale is still in progress.
U S Navy Diving Manual. Volume 2. Mixed-Gas Diving. Revision 1.
1981-07-01
has been soaked in a solution of portant aspects of underwater physics and physiology caustic potash. This chemical absorbed the carbon as they...between the diver’s breathing passages and the circuit must be of minimum volume minimum of caustic fumes. Water produced by the to preclude deadspace and...strongly react with water to pro- space around the absorbent bed to reduce the gas duce caustic fumes and cannot be used in UBA’s. flow distance. The
Code of Federal Regulations, 2010 CFR
2010-10-01
... conference tariff or at the stated minimum level or floor rate for an open-rated commodity published in a..., stated minimum level, or floor rate has at least one foreign-flag carrier as a voting member, or (b) At a rate or tariff agreement rate, or at the stated minimum level or floor rate for an open-rated commodity...
DEVELOPMENT OF MARINE WATER QUALITY CRITERIA
The U.S. Environmental Protectional Agency has developed guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. These guidelines provide the method for deriving water quality criteria, including minimum data base...
Statistical summaries of water-quality data for two coal areas of Jackson County, Colorado
Kuhn, Gerhard
1982-01-01
Statistical summaries of water-quality data are compiled for eight streams in two separate coal areas of Jackson County, Colo. The quality-of-water data were collected from October 1976 to September 1980. For inorganic constituents, the maximum, minimum, and mean concentrations, as well as other statistics are presented; for minor elements, only the maximum, minimum, and mean values are included. Least-squares equations (regressions) are also given relating specific conductance of the streams to the concentration of the major ions. The observed range of specific conductance was 85 to 1,150 micromhos per centimeter for the eight sites. (USGS)
NASA Technical Reports Server (NTRS)
Rind, D.; Chiou, E.-W.; Chu, W.; Oltmans, S.; Lerner, J.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.
1993-01-01
Results are presented of water vapor observations in the troposphere and stratosphere performed by the Stratospheric Aerosol and Gas Experiment II solar occultation instrument, and the analysis procedure, the instrument errors, and data characteristics are discussed. The results are compared with correlative in situ measurements and other satellite data. The features of the data set collected between 1985 and 1989 include an increase in middle- and upper-tropospheric water vapor during northern hemisphere summer and autumn; minimum water vapor values of 2.5-3 ppmv in the tropical lower stratosphere; slowly increasing water vapor values with altitude in the stratosphere, reaching 5-6 ppmv or greater near the stratopause; extratropical values with minimum profile amounts occurring above the conventionally defined tropopause; and higher extratropical than tropical water vapor values throughout the stratosphere except in locations of possible polar stratospheric clouds.
Sulfur speciation and sulfide oxidation in the water column of the Black Sea
NASA Astrophysics Data System (ADS)
Luther, George W., III; Church, Thomas M.; Powell, David
We have applied sulfur speciation techniques to understand the chemistry and cycling of sulfur in Black Sea waters. The only reduced dissolved inorganic sulfur species detected (above the low minimum detection limits of the voltammetric methods employed) in the water column was hydrogen sulfide. The maximum concentration of sulfide (423 μM) is similar to previous reports. Using a cathodic stripping square wave voltammetry (CSSWV) method for nanomolar levels of sulfide, we determined the precise boundary between the "free" hydrogen sulfide (sulfidic) zone and the upper (oxic/suboxic) water column at the two stations studied. This boundary has apparently moved up by about 50 m in the past 20 years. Our results help demonstrate three chemically distinct zones of water in the central basin of the Black Sea: (1) the oxic [0-65 m], (2) the anoxic/nonsulfidic [65-100 m] and (3) the sulfidic [>100 m]. Sulfide bound to metals ("complexed" sulfide) is observed in both the oxic and anoxic/nonsulfidic zones of the water column. This supports previous studies on metal sulfide forms. From the electrochemical data, it is possible to estimate the strength of the complexation of sulfide to metals (log K = 10 to 11). Thiosulfate and sulfite were below our minimum detectable limit (MDL) of 50 nM using CSSWV. Elemental sulfur (MDL 5 nM) was detected below the onset of the hydrogen sulfide zone (90-100 m) with a maximum of 30-60 nM near 120 m. The sulfur speciation results for the Black Sea are lower by one order of magnitude or more than other marine systems such as the Cariaco Trench and salt marshes. New HPLC techniques were applied to detect thiols at submicromolar levels. The presence of thiols (2-mercaptoethylamine, 2-mercaptoethanol, N-acetylcysteine and glutathione) is correlated with the remineralization of organic matter at the oxic and anoxic/nonsulfidic interface. Water samples collected from the upper 50 m of the sulfidic zone showed significant sulfide oxidation on storage onboard ship even though they were filtered (0.2 μm) and handled to exclude oxygen contamination. Chemical additives such as formaldehyde, glutaraldehyde, hydroxylamine and ascorbic acid prevented or retarded the sulfide loss. Thiosulfate and azide did not inhibit sulfide loss. These studies suggest an anaerobic chemical oxidation of sulfide rather than a biological oxidation on stored and filtered samples.
Sloto, Ronald A.; Reif, Andrew G.
2017-06-02
An evaluation of trends in hydrologic and water quality conditions and estimation of water budgets through 2013 was done by the U.S. Geological Survey in cooperation with the Chester County Water Resources Authority. Long-term hydrologic, meteorologic, and biologic data collected in Chester County, Pennsylvania, which included streamflow, groundwater levels, surface-water quality, biotic integrity, precipitation, and air temperature were analyzed to determine possible trends or changes in hydrologic conditions. Statistically significant trends were determined by applying the Kendall rank correlation test; the magnitudes of the trends were determined using the Sen slope estimator. Water budgets for eight selected watersheds were updated and a new water budget was developed for the Marsh Creek watershed. An average water budget for Chester County was developed using the eight selected watersheds and the new Marsh Creek water budget.Annual and monthly mean streamflow, base flow, and runoff were analyzed for trends at 10 streamgages. The periods of record at the 10 streamgages ranged from 1961‒2013 to 1988‒2013. The only statistically significant trend for annual mean streamflow was for West Branch Brandywine Creek near Honey Brook, Pa. (01480300) where annual mean streamflow increased 1.6 cubic feet per second (ft3/s) per decade. The greatest increase in monthly mean streamflow was for Brandywine Creek at Chadds Ford, Pa. (01481000) for December; the increase was 47 ft3/s per decade. No statistically significant trends in annual mean base flow or runoff were determined for the 10 streamgages. The greatest increase in monthly mean base flow was for Brandywine Creek at Chadds Ford, Pa. (01481000) for December; the increase was 26 ft3/s per decade.The magnitude of peaks greater than a base streamflow was analyzed for trends for 12 streamgages. The period of record at the 12 stream gages ranged from 1912‒2012 to 2004–11. Fifty percent of the streamgages showed a small statistically significant increase in peaks greater than the base streamflow. The greatest increase was for Brandywine Creek at Chadds Ford, Pa. (01481000) during 1962‒2012; the increase was 1.8 ft3/s per decade. There were no statistically significant trends in the number of floods equal to or greater than the 2-year recurrence interval flood flow.Twenty‒one monitoring wells were evaluated for statistically significant trends in annual mean water level, minimum annual water level, maximum annual water level, and annual range in water-level fluctuations. For four wells, a small statistically significant increase in annual mean water level was determined that ranged from 0.16 to 0.7 feet per decade. There was poor or no correlation between annual mean groundwater levels and annual mean streamflow and base flow. No correlation was determined between annual mean groundwater level and annual precipitation. Despite rapid population growth and land-use change since 1950, there appears to have been little or no detrimental effects on groundwater levels in 21 monitoring wells.Long-term precipitation and temperature data were available from the West Chester (1893‒2013) and Phoenixville, Pa. (1915‒2013) National Oceanic and Atmospheric Administration (NOAA) weather stations. No statistically significant trends in annual mean precipitation or annual mean temperature were determined for either station. Both weather stations had a significant decrease in the number of days per year with precipitation greater than or equal to 0.1 inch. Annual mean minimum and maximum temperatures from the NOAA Southeastern Piedmont Climate Division increased 0.2 degrees Fahrenheit (F) per decade between 1896 and 2014. The number of days with a maximum temperature equal to or greater than 90 degrees F increased at West Chester and decreased at Phoenixville. No statistically significant trend was determined for annual snowfall amounts.Data from 1974 to 2013 for three stream water-quality monitors in the Brandywine Creek watershed were evaluated. The monitors are on the West Branch Brandywine Creek at Modena, Pa. (01480617), East Branch Brandywine Creek below Downingtown, Pa. (01480870), and Brandywine Creek at Chadds Ford, Pa. (01481000). Statistically significant upward trends were determined for annual mean specific conductance at all three stations, indicating the total dissolved solids load has been increasing. If the current trend continues, the annual mean specific conductance could almost double from 1974 to 2050. The increase in specific conductance likely is due to increases in chloride concentrations, which have been increasing steadily over time at all three stations. No correlation was found between monthly mean specific conductance and monthly mean streamflow or base flow. Statistically significant upward trends in pH were determined for all three stations. Statistically significant upward trends in stream temperature were determined for East Branch Brandywine Creek below Downingtown, Pa. (01480870) and Brandywine Creek at Chadds Ford, Pa. (01481000). The stream water-quality data indicate substantial increases in the minimum daily dissolved oxygen concentrations in the Brandywine Creek over time.The Chester County Index of Biotic Integrity (CC-IBI) determined for 1998‒2013 was evaluated for the five biological sampling sites collocated with streamgages. CC-IBI scores are based on a 0‒100 scale with higher scores indicating better stream quality. Statistically significant upward trends in the CC-IBI were determined for West Branch Brandywine Creek at Modena, Pa. (01480617) and East Branch Brandywine Creek below Downingtown, Pa. (01480870). No correlation was found between the CC-IBI and streamflow, precipitation, or stream specific conductance, pH, temperature, or dissolved oxygen concentration.A Chester County average water budget was developed using the nine estimated watershed water budgets. Average precipitation was 48.4 inches, and average streamflow was 21.4 inches. Average runoff and base flow were 8.3 and 13.1 inches, respectively, and average evapotranspiration and estimation of errors was 27.2 inches."
Thantsha, M S; Labuschagne, P W; Mamvura, C I
2014-02-01
The probiotic industry faces the challenge of retention of probiotic culture viability as numbers of these cells within their products inevitably decrease over time. In order to retain probiotic viability levels above the therapeutic minimum over the duration of the product's shelf life, various methods have been employed, among which encapsulation has received much interest. In line with exploitation of encapsulation for protection of probiotics against adverse conditions, we have previously encapsulated bifidobacteria in poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex microparticles under supercritical conditions. The microparticles produced had suitable characteristics for food applications and also protected the bacteria in simulated gastrointestinal fluids. The current study reports on accelerated shelf life studies of PVP:PVAc-CA encapsulated Bifidobacterium lactis Bb12 and Bifidobacterium longum Bb46. Samples were stored as free powders in glass vials at 30 °C for 12 weeks and then analysed for viable counts and water activity levels weekly or fortnightly. Water activities of the samples were within the range of 0.25-0.43, with an average a(w) = 0.34, throughout the storage period. PVP:PVAc-CA interpolymer complex encapsulation retained viable levels above the recommended minimum for 10 and 12 weeks, for B. longum Bb46 and B. lactis Bb12, respectively, thereby extending their shelf lives under high storage temperature by between 4 and 7 weeks. These results reveal the possibility for manufacture of encapsulated probiotic powders with increased stability at ambient temperatures. This would potentially allow the supply of a stable probiotic formulation to impoverished communities without proper storage facilities recommended for most of the currently available commercial probiotic products.
Access to water in gazetted and ungazetted rural settlements in Ngamiland, Botswana
NASA Astrophysics Data System (ADS)
Mazvimavi, Dominic; Mmopelwa, Gagoitseope
Lack of access to safe or improved water supply in developing countries is a major global concern, since water is a basic need for sustenance. Programmes aimed at improving access to safe water have been implemented in several sub-Saharan countries. In Botswana, only gazetted settlements have access to water and other basic services provided by the government. This paper examined the level of access to safe water, effort required, and problems encountered in collecting water by households in ungazetted settlements. The paper also investigated whether households in these settlements were willing to pay for improving access to water. The study has been undertaken on settlements located along the Boteti River in the North West District of Botswana. The majority of households in ungazetted settlements satisfy their domestic water requirements through abstracting untreated water from river flows and hand-dug wells when the river is not flowing. Men dominate in collecting water in ungazetted settlements, with the most dominant mode of transporting water being the use of donkey carts. The dominance of men in water collection and use of donkey carts is due to water sources being too distant from homesteads. This has resulted in low water consumption levels, with the per capita water consumption being less than 20 l/capita/day for most households. Such low levels of water consumption adversely affect attainment of desirable personal hygiene and food preparation. The opportunity cost of time for water collection has been estimated at 1.80 Botswana Pula (P) and the price of water is estimated to be P18/m 3 (1.00 P = 0.1755 USD on 18 November 2005). This is higher than the price paid by households residing in rural settlements obtaining water from government or district council water supply schemes. The majority of the households were willing to make a once-off contribution towards improving access to potable water with the mean willingness to pay (WTP) being P161 per household, or just over a third of the statutory agricultural minimum wage in Botswana, P589/month. The potential contribution by household to an improved water supply is significant for a largely unemployed rural population.
Tayyem, Reema Fayez; Shehadeh, Ihab Numan; Abumweis, Suhad Sameer; Bawadi, Hiba Ahmad; Hammad, Shatha Sabri; Bani-Hani, Kamal Eddin; Al-Jaberi, Tareq Mohammad; Alnusair, Majed Mohammed
2013-01-01
Physical activity has been found to play a role in cancer prevention. The purpose of this matched case-control study was to investigate the association between physical activity levels, water intake, constipation and colorectal cancer (CRC). Two hundred and thirty-two patients diagnosed with CRC (125 male, 107 female) were enrolled in this case-control study. Cases were matched to 271 population controls (137 male, 134 female). Drinking more than 4 cups of water daily decreased the risk of CRC by 33-42%; however, this effect was non-significant. Having constipation was found to be a significant risk factor for developing CRC with an OR=6.284 (95%CI=2.741-14.40). With reference to sedentary behavior, minimum activity (600-3000 Metabolic Equivalents Task (MET)) had 43% protection against CRC and the level of Health Enhancing Physical Activity OR was 0.58 (at 95%CI; 0.37-0.92). A significant negative association was found between CRC and physical activity levels expressed as both METs and MET-hours/week (p for trend=0.017 and 0.03, respectively). Among females, a significant trend of reduction in CRC by 62% was observed with increasing the level of physical activity expressed in MET (p for trend=0.04). The risk of CRC may be reduced by adopting a healthy lifestyle and practicing physically activity regularly, especially among females. Consuming adequate amounts of water and healthy bowel motility could also reduce the risk of CRC.
NASA Astrophysics Data System (ADS)
Buyuk, Ersin; Karaman, Abdullah
2017-04-01
We estimated transmissivity and storage coefficient values from the single well water-level measurements positioned ahead of the mining face by using particle swarm optimization (PSO) technique. The water-level response to the advancing mining face contains an semi-analytical function that is not suitable for conventional inversion shemes because the partial derivative is difficult to calculate . Morever, the logaritmic behaviour of the model create difficulty for obtaining an initial model that may lead to a stable convergence. The PSO appears to obtain a reliable solution that produce a reasonable fit between water-level data and model function response. Optimization methods have been used to find optimum conditions consisting either minimum or maximum of a given objective function with regard to some criteria. Unlike PSO, traditional non-linear optimization methods have been used for many hydrogeologic and geophysical engineering problems. These methods indicate some difficulties such as dependencies to initial model, evolution of the partial derivatives that is required while linearizing the model and trapping at local optimum. Recently, Particle swarm optimization (PSO) became the focus of modern global optimization method that is inspired from the social behaviour of birds of swarms, and appears to be a reliable and powerful algorithms for complex engineering applications. PSO that is not dependent on an initial model, and non-derivative stochastic process appears to be capable of searching all possible solutions in the model space either around local or global optimum points.
Electrical Breakdown in Water Vapor
NASA Astrophysics Data System (ADS)
Škoro, N.; Marić, D.; Malović, G.; Graham, W. G.; Petrović, Z. Lj.
2011-11-01
In this paper investigations of the voltage required to break down water vapor are reported for the region around the Paschen minimum and to the left of it. In spite of numerous applications of discharges in biomedicine, and recent studies of discharges in water and vapor bubbles and discharges with liquid water electrodes, studies of the basic parameters of breakdown are lacking. Paschen curves have been measured by recording voltages and currents in the low-current Townsend regime and extrapolating them to zero current. The minimum electrical breakdown voltage for water vapor was found to be 480 V at a pressure times electrode distance (pd) value of around 0.6 Torr cm (˜0.8 Pa m). The present measurements are also interpreted using (and add additional insight into) the developing understanding of relevant atomic and particularly surface processes associated with electrical breakdown.
NASA Astrophysics Data System (ADS)
Brand, Uwe
1989-12-01
A progressive trend towards heavier δ 13C values of Devonian-Mississippian brachiopods from North America, Europe, Afghanistan and Algeria probably reflects expansion of the terrestrestrial and/or marine biomass and/or burial of carbon in soils/sediments. Oceanic Productivity crises, based on perturbations in the overall δ 13C trend, are recognized for the Mid Givetian, Early Famennian, Late Kinderhookian, Late Osagean and Early and Late Meramecian. The Givetian productivity crisis was probably accompanied by massive overturn of biologically toxic deep-ocean water. Temperature data, adjusted for the possible secular variation of seawater, support the hypothesis of global greenhouse conditions for the Devonian (mean of 30°C, mean of 26°C if extrinsic data are deleted) and icehouse conditions for the Mississippian (mean of 17°C). During the Mid Givetian, Frasnian and Early Famennian calculated water temperatures for tropical epeiric seas were generally above the thermal threshold limit (˜ 38°C) of most marine invertebrates or epeiric seawater was characterized by unusually low salinities (˜ pp ppt) or a combination of the two. These elevated water temperatures and/or low salinities, in conjunction with the postulated productivity crises and overturning of toxic deep waters are considered prime causes for the biotic crisis of the Late Devonian. In addition, a presumed expanding oxygen-minimum zone and general anoxia in the oceans prevented shallow-water organisms from escaping these inhospitable conditions. Re-population of the tropical seas occurred, after either water temperatures had dropped below the thermal threshold limit and/or salinities were back to normal, and oceanic productivity had increased due to more vigorous oceanic circulation, sometime during the Mid-Late Famennian. Migration of eurythermal, shallow- and deeper-water organisms into the vacant niches of the shallow seas was possible because of, generally, slightly lower sea levels, but, more importantly of more restricted oxygen-minimum zone and generally reduced oceanic anoxia.
An Ultra-Sensitive Method for the Analysis of Perfluorinated ...
In epidemiological research, it has become increasingly important to assess subjects' exposure to different classes of chemicals in multiple environmental media. It is a common practice to aliquot limited volumes of samples into smaller quantities for specific trace level chemical analysis. A novel method was developed for the determination of 14 perfluorinated alkyl acids (PFAAs) in small volumes (10 mL) of drinking water using off-line solid phase extraction (SPE) pre-treatment followed by on-line pre-concentration on WAX column before analysis on column-switching high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). In general, large volumes (100 - 1000 mL) have been used for the analysis of PFAAs in drinking water. The current method requires approximately 10 mL of drinking water concentrated by using an SPE cartridge and eluted with methanol. A large volume injection of the extract was introduced on to a column-switching HPLC-MS/MS using a mix-mode SPE column for the trace level analysis of PFAAs in water. The recoveries for most of the analytes in the fortified laboratory blanks ranged from 73±14% to 128±5%. The lowest concentration minimum reporting levels (LCMRL) for the 14 PFAAs ranged from 0.59 to 3.4 ng/L. The optimized method was applied to a pilot-scale analysis of a subset of drinking water samples from an epidemiological study. These samples were collected directly from the taps in the households of Ohio and Nor
Simulating effects of microtopography on wetland specific yield and hydroperiod
Summer, David M.; Wang, Xixi
2011-01-01
Specific yield and hydroperiod have proven to be useful parameters in hydrologic analysis of wetlands. Specific yield is a critical parameter to quantitatively relate hydrologic fluxes (e.g., rainfall, evapotranspiration, and runoff) and water level changes. Hydroperiod measures the temporal variability and frequency of land-surface inundation. Conventionally, hydrologic analyses used these concepts without considering the effects of land surface microtopography and assumed a smoothly-varying land surface. However, these microtopographic effects could result in small-scale variations in land surface inundation and water depth above or below the land surface, which in turn affect ecologic and hydrologic processes of wetlands. The objective of this chapter is to develop a physically-based approach for estimating specific yield and hydroperiod that enables the consideration of microtopographic features of wetlands, and to illustrate the approach at sites in the Florida Everglades. The results indicate that the physically-based approach can better capture the variations of specific yield with water level, in particular when the water level falls between the minimum and maximum land surface elevations. The suggested approach for hydroperiod computation predicted that the wetlands might be completely dry or completely wet much less frequently than suggested by the conventional approach neglecting microtopography. One reasonable generalization may be that the hydroperiod approaches presented in this chapter can be a more accurate prediction tool for water resources management to meet the specific hydroperiod threshold as required by a species of plant or animal of interest.
40 CFR 141.88 - Monitoring requirements for lead and copper in source water.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., and collection methods: (i) Groundwater systems shall take a minimum of one sample at every entry... to install source water treatment under § 141.83(b)(2). (i) A water system using only groundwater...
40 CFR 141.88 - Monitoring requirements for lead and copper in source water.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and collection methods: (i) Groundwater systems shall take a minimum of one sample at every entry... to install source water treatment under § 141.83(b)(2). (i) A water system using only groundwater...
40 CFR 141.88 - Monitoring requirements for lead and copper in source water.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., and collection methods: (i) Groundwater systems shall take a minimum of one sample at every entry... to install source water treatment under § 141.83(b)(2). (i) A water system using only groundwater...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes... for an underground mining permit shall also indicate how compliance will be achieved with the Washington Water Pollution Control Act, RCW 90.48. ...
Bails, Jeffrey B.; Dietsch, Benjamin J.; Landon, Matthew K.; Paschke, Suzanne S.
2009-01-01
The National Water-Quality Assessment Program of the U.S. Geological Survey has an ongoing Source Water-Quality Assessment program designed to characterize the quality of water in aquifers used as a source of drinking-water supply for some of the largest metropolitan areas in the Nation. In addition to the sampling of the source waters, sampling of finished or treated waters was done in the second year of local studies to evaluate if the organic compounds detected in the source waters also were present in the water supplied to the public. An evaluation of source-water quality used in selected groundwater-supplied public water systems in east-central Nebraska and in the south Denver metropolitan area of Colorado was completed during 2002 through 2004. Fifteen wells in the Plio-Pleistocene alluvial and glacial deposits in east-central Nebraska (the High Plains study) and 12 wells in the Dawson and Denver aquifers, south of Denver (the South Platte study), were sampled during the first year to obtain information on the occurrence and distribution of selected organic chemicals in the source waters. During the second year of the study, two wells in east-central Nebraska were resampled, along with the associated finished water derived from these wells, to determine if organic compounds detected in the source water also were present in the finished water. Selection of the second-phase sampling sites was based on detections of the most-frequently occurring organic compounds from the first-year Source Water-Quality Assessment study results. The second-year sampling also required that finished waters had undergone water-quality treatment processes before being distributed to the public. Sample results from the first year of sampling groundwater wells in east-central Nebraska show that the most-frequently detected organic compounds were the pesticide atrazine and its degradate, deethylatrazine (DEA, otherwise known as 2-chloro-4-isopropylamino-6-amino-s-triazine or CIAT), which were detected in 9 of the 15 wells (60 percent of the samples). The second most frequently detected organic compound was tetrachloroethylene, detected in 4 of the 15 wells (27 percent of the samples), followed by chloroform, trichloroethylene, and 2-hydroxyatrazine (2-hydroxy-4-isopropylamino-6-ethylamino-s-triazine, or OIET), present in 3 of the 15 wells (20 percent of the samples). The pesticide compounds deisopropylatrazine (2-chloro-6-ethylamino-4-amino-s-triazine, or CEAT), metolachlor, and simazine and the volatile organic compound cis-1,2-dichloroethylene were detected in 2 of the 15 wells, and the compounds diuron and 1,2-dichloroethane were detected in only 1 of the 15 wells during the first-year sampling. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. There were few detections of organic compounds during the first year of sampling groundwater wells in the South Platte study area. The compounds atrazine, deethylatrazine, picloram, tetrachloroethylene, methyl-tert-butyl-ether (MTBE), tris(2-butoxyethyl)phosphate, and bromoform were detected only once in all the samples from the 12 wells. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. Second-year sampling, which included the addition of paired source- and finished-water samples, was completed at two sites in the High Plains study area. Source-water samples from the second-year sampling had detections of atrazine and deethylatrazine; at one site deisopropylatrazine and chloroform also were detected. The finished-water samples, which represent the source water after blending with water from other wells and treatment, indicated a decrease in the concentrations of the pesticides at one site, whereas concentrations remained nearly constant at a second site. The trihalomethanes (THMs or disinfec
NASA Astrophysics Data System (ADS)
Panyi, A.; Long, M. H.; Mooney, T. A.
2016-02-01
While young animals found future cohorts and populations, these early life stages are often particularly susceptible to conditions of the local environment in which they develop. The oxygen and pH of this critical developmental environment is likely impacted by the nearby physical conditions and the animals own respirations. Yet, in nearly all cases, this microenvironment is unknown, limiting our understanding of animal tolerances to current and future OA and hypoxic conditions. This study investigated the oxygen and pH environment adjacent to and within the egg cases of a keystone species, the longfin squid, Doryteuthis pealeii, under ambient and elevated CO2 (400 and 2200 ppm), and across differing water flow rates (0, 1, and 10 cm/s) using microprobes. Under both CO2 treatments, oxygen and pH in the egg case centers dropped dramatically across development to levels generally considered metabolically stressful even for adults. In the ambient CO2 trial, oxygen concentrations reached a minimum of 4.351 µmol/L, and pH reached a minimum of 7.36. In the elevated CO2 trial, oxygen concentrations reached a minimum of 9.910 µmol/L, and pH reached a minimum of 6.79. Flow appeared to alleviate these conditions, with highest O2 concentrations in the egg cases exposed to 10 cm/s flow in both CO2 trials, across all age classes measured. Surprisingly, all tested egg cases successfully hatched, demonstrating that developing D. pealeii embryos have a strong tolerance for low oxygen and pH, but there were more unsuccessful embryos counted in the 0 and 1 cm/s flow conditions. Further climate change could place young, keystone squid outside of their physiological limits, but water flow may play a key role in mitigating developmental stress to egg case bound embryos by increasing available oxygen.
Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul
2016-09-29
The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the event that a station does malfunction, ADAM provides an accurate estimate for the period of missing data. The ADAM software also is used in the quality assurance and quality control of the data. The virtual signals are compared to the real-time data, and if the difference between the two signals exceeds a certain tolerance, corrective action to the data and (or) the gaging station can be taken. The ADAM software is automated so that, each morning, the real-time EDEN data are compared to the inferential sensor signals and digital reports highlighting potential erroneous real-time data are generated for appropriate support personnel. The development and application of inferential sensors is easily transferable to other real-time hydrologic monitoring networks.
Schrader, T.P.
2006-01-01
During the spring of 2003, water levels were measured in 341 wells in the Sparta-Memphis aquifer in Arkansas. Waterquality samples were collected for temperature and specificconductance measurements during the spring-summer of 2003 from 70 wells in Arkansas in the Sparta-Memphis aquifer. Maps of areal distribution of potentiometric surface, change in waterlevel measurements from 1999 to 2003, and specific-conductance data reveal spatial trends across the study area. The highest water-level altitude measured in Arkansas was 328 feet above National Geodetic Vertical Datum of 1929 (NGVD of 1929) in Craighead County; the lowest water-level altitude was 199 feet below NGVD of 1929 in Union County. Three large cones of depression are shown in the 2003 potentiometric surface map, centered in Columbia, Jefferson, and Union Counties in Arkansas as a result of large withdrawals for industrial and public supplies. A broad depression exists in western Poinsett County in Arkansas. The potentiometric surface indicates that large withdrawals have altered or reversed the natural direction of flow in most areas. In the northern third of the study area the flow is from the east, west, and north towards the broad depression in Poinsett County. In the central third of the study area the flow is dominated by the cone of depression centered in Jefferson County. In the southern third of the study area the flow is dominated by the two cones of depression in Union and Columbia Counties. A map of water-level changes from 1999 to 2003 was constructed using water-level measurements from 281 wells. The largest rise in water level measured was about 57.8 feet in Columbia County. The largest decline in water level measured was about -71.6 feet in Columbia County. Areas with a general rise are shown in Arkansas, Bradley, Calhoun, Cleveland, Columbia, Ouachita, and Union Counties. Areas with a general decline are shown in Craighead, Crittenden, Cross, Desha, Drew, Jefferson, Lonoke, Phillips, Poinsett, Prairie, and Woodruff Counties. Hydrographs were constructed for wells with a minimum of 25 years of water-level measurements. A trend line using a linear regression was calculated for the period of record from spring of 1978 to spring of 2003 to determine the annual decline or rise in feet per year for water levels in each well. The hydrographs were grouped by county. The mean values for county annual water-level decline or rise ranged from -1.42 to 0.27 foot per year. Specific conductance ranged from 82 microsiemens per centimeter at 25 degrees Celsius in Jefferson County to about 1,210 microsiemens per centimeter at 25 degrees Celsius in Lee County. The mean specific conductance was 400 microsiemens per centimeter at 25 degrees Celsius.
NASA Astrophysics Data System (ADS)
Cartwright, I.; Gilfedder, B.; Hofmann, H.
2014-01-01
This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. During the early stages of high-discharge events, the chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those based on chemical mass balance using Cl calculated from continuous electrical conductivity measurements. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of the annual discharge with a net baseflow contribution of 16% of total discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of discharge annually with a net baseflow contribution between 2001 and 2011 of 35% of total discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge and 26% of total discharge). These differences most probably reflect how the different techniques characterise baseflow. The local minimum and recursive digital filters probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow, floodplain storage, or interflow) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low-salinity water from the transient stores as discharge falls. The joint use of complementary techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.
18 CFR 8.1 - Publication of license conditions relating to recreation.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., reservoir water surface elevations, minimum water releases or rates of change of water releases and such... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Publication of license conditions relating to recreation. 8.1 Section 8.1 Conservation of Power and Water Resources FEDERAL ENERGY...
Code of Federal Regulations, 2011 CFR
2011-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...
Code of Federal Regulations, 2010 CFR
2010-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...
NASA Astrophysics Data System (ADS)
Yalin, David; Shenker, Moshe; Schwartz, Amnon; Assouline, Shmuel; Tarchitzky, Jorge
2016-04-01
Treated wastewater (TW) has become a common source of water for agriculture. However recent findings raise concern regarding its use: a marked decrease (up to 40%) in yield appeared in orchards irrigated with TW compared with fresh water (FW) irrigated orchards. These detrimental effects appeared predominantly in orchards cultivated in clay soils. The association of the damage with clay soils rather than sandy soils led us to hypothesize that the damage is linked to soil aeration problems. We suspected that in clay soils, high sodium adsorption ratio (SAR) and high levels of organic material, both typical of TW, may jointly lead to an extreme decrease in soil oxygen levels, so as to shift soil reduction-oxidation (redox) state down to levels that are known to damage plants. Two-year continuous measurement of redox potential, pH, water tension, and oxygen were conducted in the root-zone (20-35 cm depth) of avocado trees planted in clay soil and irrigated with either TW or FW. Soil solution composition was sampled periodically in-situ and mineral composition was sampled in tree leaves and woody organs biannually. In dry periods the pe+pH values indicated oxic conditions (pe+pH>14), and the fluctuations in redox values were small in both TW and FW plots. Decreases in soil water tension following irrigation or rain were followed by drops in soil oxygen and pe+pH values. TW irrigated plots had significantly lower minimum pe+pH values compared with FW-irrigated plots, the most significant differences occurred during the irrigation season rather than the rain season. A linear correlation appeared between irrigation volume and reduction severity in TW-irrigated plots, but not in the FW plots, indicating a direct link to the irrigation regime in TW-irrigated plots. The minimum pe+pH values measured in the TW plots are indicative of suboxic conditions (9
Ground-Water Levels in Huron County, Michigan, 2004-05
Weaver, T.L.; Crowley, S.L.; Blumer, S.P.
2006-01-01
In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to measure water levels at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships retained continuous waterlevel recorders, while the wells in Grant and Bingham Townships reverted primarily to periodic or quarterly measurement status. USGS also has provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 25 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 25 periodically or quarterly-measured wells is summarized in an annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998).The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville or Harbor Beach, or both (National Oceanic and Atmospheric Administration, 2003-05), and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration, 2003-05). In March 2003, a new low-water level for the period from 1991 through 2005 was measured in Lake Huron. There was almost no net change in the water level of Lake Huron from January 2004 through December 2005. In 2004, annual precipitation measured in Port Hope was about 3.7 inches above normal, but precipitation measured in Bad Axe was about 1.4 inches below normal. About 14.5 inches of precipitation was measured in Bad Axe during the 2004 summer growing season (May through August), which is about the same as was measured in Port Hope during the same period. Provisional precipitation totals for 2005 were 30.7 inches for January through November in Port Hope, and about 31.7 inches for the year in Bad Axe. About 10.6 inches of precipitation was measured in Bad Axe during the 2005 summer growing season, which is about 0.2 inches more than was recorded at Port Hope during the same period.Two wells equipped with continuous-data recorders are completed in the Saginaw and Marshall aquifers in Fairhaven and Lake Townships, respectively. From January 2004 through December 2005, the net rise in the water level in the Fairhaven Township well was 0.71 ft, and the net rise in the Lake Township well was 0.98 ft. The Fairhaven Township well is drilled adjacent to Saginaw Bay (Lake Huron), and, as previously noted, there was almost no net change in the water level in Saginaw Bay over the same period. Hydrographs showing water levels are presented for the two wells equipped with continuous-data recorders. Continuous-data recorders were discontinued in the Grant and Bingham Township wells at the end of 2003 due to budget constraints. The decision of which two wells to discontinue was based on an analysis of the intrinsic value to Huron County of data from each well. The Grant Township well was selected for periodic or quarterly measurement at that time because it is completed in the glacial aquifer, which is little used for drinking water purposes or absent in much of Huron County. The Bingham Township well, which is completed in the Marshall aquifer, was selected for periodic or quarterly measurement because water levels in the well are often perturbed as a result of pumpage from nearby production wells and do not reflect baseline conditions within the aquifer.Twenty five wells were measured on a periodic or quarterly basis in 2004-05. These wells are completed in the glacial, Saginaw, and Marshall aquifers, and the Coldwater confining unit. Although each quarterly measurement only provides a “snapshot” water level (measured in feet below land surface), the data adequately define the generalized water-level trend in the aquifer near the well. Water levels in 15 quarterlymeasured wells had a net rise ranging from 0.20 to 1.31 ft for the period from January 2004 to December 2005, while water levels in 10 of the wells had a net decline ranging from 0.07 to 0.99 ft over the same period (fig. 3; table 1). Period-of-record (the time period when water levels have been measured by U.S. Geological Survey or their cooperators) minimum depths to water (high-water levels) were measured in March 2004 in two quarterly-measured wells completed in the Marshall aquifer in Lake and Hume Townships. Period-of-record maximum depths to water were measured in September 2005 in three wells completed in the Marshall aquifer near Bad Axe. Water levels in those three wells recovered about 3 to 5 ft between September and December 2005. No period-of-record minimum or maximum depths to water were measured for the period from January 2004 through December 2005 in wells completed in either the glacial and Saginaw aquifers, or the Coldwater confining unit. Hydrographs showing water levels measured in each well are presented for the 25 wells measured on a quarterly basis.Water-level trends measured for the period from January 2004 through December 2005 in other wells in Lower Michigan have similarities to those measured in Huron County wells. Several external factors influence water-level trends including proximity to nearby production wells, amount and timing of precipitation events, evapotranspiration and type of prevalent ground cover, proximity of aquifer to the surface, and hydraulic characteristics of overlying geologic materials.
NASA Technical Reports Server (NTRS)
Schulz, J. R.; Anselmi, R. T.
1976-01-01
The feasibility of using free urease enzyme and ANGC-101 ion exchange resin to remove urea and ammonium ion for space system waste water applications was studied. Specifically examined is the prevention of urea and ammonia toxicity in a 30-day Orbiting Frog Otolith (OFO) flight experiment. It is shown that free urease enzyme used in conjunction with ANGC-101 ion-exchange resin and pH control can control urea and amonium ion concentration in unbuffered recirculating water. In addition, the resin does not adversely effect the bullfrogs by lowering the concentration of cations below critical minimum levels. Further investigations on bioburden control, frog waste excretion on an OFO diet, a trade-off analysis of methods of automating the urea/ammonium ion removal system and fabrication and test of a semiautomated breadboard were recommended as continuing efforts. Photographs of test equipment and test animals are shown.
Water, Sanitation and Hygiene Situation in Kenya's Urban Slums.
Kamau, Njoroge; Njiru, Haron
2018-01-01
Kenya has undergone rapid urbanization as people migrate to the cities in search of economic opportunities. This has given rise to informal settlements characterized by overcrowding, poor infrastructure, and inadequate social amenities. A cross-sectional study on water, sanitation, and hygiene (WASH) status was carried out in Mathare, an informal settlement in Nairobi. A random sample of 380 households was used. The average household size was five people, and 26% of the household heads had completed secondary or higher level of education. The main source of income (70%) was self-employment with 41% of the households living on less than 1.5 USD per day. The WASH situation in the urban slums is below the minimum standard recommended by the World Health Organization (WHO). There is need to improve the situation by improving and installing basic infrastructure including water, sanitation, and solid waste collection.
The airborne infrared scanner as a geophysical research tool
Friedman, Jules D.
1970-01-01
The infrared scanner is proving to be an effective anomaly-mapping tool, albeit one which depicts surface emission directly and heat mass transfer from depths only indirectly and at a threshold level 50 to 100 times the normal conductive heat flow of the earth. Moreover, successive terrain observations are affected by time-dependent variables such as the diurnal and seasonal warming and cooling cycle of a point on the earth's surface. In planning precise air borne surveys of radiant flux from the earth's surface, account must be taken of background noise created by variations in micrometeorological factors and emissivity of surface materials, as well as the diurnal temperature cycle. The effect of the diurnal cycle may be minimized by planning predawn aerial surveys. In fact, the diurnal change is very small for most water bodies and the emissivity factor for water (e) =~ 1 so a minimum background noise is characteristic of scanner records of calm water surfaces.
Hawley, Alyse K; Kheirandish, Sam; Mueller, Andreas; Leung, Hilary T C; Norbeck, Angela D; Brewer, Heather M; Pasa-Tolic, Ljiljana; Hallam, Steven J
2013-01-01
Water column oxygen (O2)-deficiency shapes food-web structure by progressively directing nutrients and energy away from higher trophic levels into microbial community metabolism resulting in fixed nitrogen loss and greenhouse gas production. Although respiratory O2 consumption during organic matter degradation is a natural outcome of a productive surface ocean, global-warming-induced stratification intensifies this process leading to oxygen minimum zone (OMZ) expansion. Here, we describe useful tools for detection and quantification of potential key microbial players and processes in OMZ community metabolism including quantitative polymerase chain reaction primers targeting Marine Group I Thaumarchaeota, SUP05, Arctic96BD-19, and SAR324 small-subunit ribosomal RNA genes and protein extraction methods from OMZ waters compatible with high-resolution mass spectrometry for profiling microbial community structure and functional dynamics. © 2013 Elsevier Inc. All rights reserved.
Designing adaptive operating rules for a large multi-purpose reservoir
NASA Astrophysics Data System (ADS)
Geressu, Robel; Rougé, Charles; Harou, Julien
2017-04-01
Reservoirs whose live storage capacity is large compared with annual inflow have "memory", i.e., their storage levels contain information about past inflows and reservoir operations. Such "long-memory" reservoirs can be found in basins in dry regions such as the Nile River Basin in Africa, the Colorado River Basin in the US, or river basins in Western and Central Asia. There the effects of a dry year have the potential to impact reservoir levels and downstream releases for several subsequent years, prompting tensions in transboundary basins. Yet, current reservoir operation rules in those reservoirs do not reflect this by integrating past climate history and release decisions among the factors that influence operating decisions. This work proposes and demonstrates an adaptive reservoir operating rule that explicitly accounts for the recent history of release decisions, and not only current storage level and near-term inflow forecasts. This implies adding long-term (e.g., multiyear) objectives to the existing short-term (e.g., annual) ones. We apply these operating rules to the Grand Ethiopian Renaissance Dam, a large reservoir under construction on the Blue Nile River. Energy generation has to be balanced with the imperative of releasing enough water in low flow years (e.g., the minimum 1, 2 or 3 year cumulative flow) to avoid tensions with downstream countries, Sudan and Egypt. Maximizing the minimum multi-year releases could be of interest for the Nile problem to minimize the impact on performance of the large High Aswan Dam in Egypt. Objectives include maximizing the average and minimum annual energy generation and maximizing the minimum annual, two year and three year cumulative releases. The system model is tested using 30 stochastically generated streamflow series. One can then derive adaptive release rules depending on the value of one- and two-year total releases with respect to thresholds. Then, there are 3 sets of release rules for the reservoir depending on whether one or both thresholds are not met, vs. only one with a non-adaptive rule. Multi-objective evolutionary algorithms (MOEAs) are used to obtain the Pareto front, i.e., non-dominated adaptive and non-adaptive operating rule sets. Implementing adaptive rules is found to improve the trade-offs between energy generation criteria and minimum release targets. Compared with non-adaptive operations, an adaptive operating policy shows an increase of around 3 and 10 Billion cubic meters in the minimum 1 and 3-year cumulative releases for a given value of the same average annual energy generation.
1987-01-15
algicidal effect on the * alga. LC50 values for the rainbow trout and the water flea were 2.2% and 9.3% of the stock solution, respectively. Additional...significantly from the initial inoculum level. " Algicidal concentration. This is the lowest concentration tested which causes an apparent algistatic...86.9 - 335.5 mg/L). The minimum algicidal concentration was greater than 542.4 mg/L, the highest concentration tested. When algal cultures from this
Minimum Wage Laws and the Distribution of Employment.
ERIC Educational Resources Information Center
Lang, Kevin
The desirability of raising the minimum wage long revolved around just one question: the effect of higher minimum wages on the overall level of employment. An even more critical effect of the minimum wage rests on the composition of employment--who gets the minimum wage job. An examination of employment in eating and drinking establishments…
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2011 CFR
2011-01-01
... displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is, 0 °C at 760 mm. Hg with no water vapor...
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2013 CFR
2013-01-01
... displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is 0 °C at 760mm Hg with no water vapor...
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2014 CFR
2014-01-01
... displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is 0 °C at 760mm Hg with no water vapor...
NASA Astrophysics Data System (ADS)
Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Liu, Hong; Zheng, Bin
2015-03-01
Glucose metabolism relates to biochemical processes in living organisms and plays an important role in diabetes and cancer-metastasis. Although many methods are available for measuring glucose metabolism-activities, from simple blood tests to positron emission tomography, currently there is no robust and affordable device that enables monitoring of glucose levels in real-time. In this study we tested feasibility of applying a unique resonance-frequency based electronic impedance spectroscopy (REIS) device that has been, recently developed to measure and monitor glucose metabolism levels using a phantom study. In this new testing model, a multi-frequency electrical signal sequence is applied and scanned through the subject. When the positive reactance of an inductor inside the device cancels out the negative reactance of the capacitance of the subject, the electrical impedance reaches a minimum value and this frequency is defined as the resonance frequency. The REIS system has a 24-bit analog-to-digital signal convertor and a frequency-resolution of 100Hz. In the experiment, two probes are placed inside a 100cc container initially filled with distilled water. As we gradually added liquid-glucose in increments of 1cc (250mg), we measured resonance frequencies and minimum electrical signal values (where A/D was normalized to a full scale of 1V). The results showed that resonance frequencies monotonously decreased from 243kHz to 178kHz, while the minimum voltages increased from 405mV to 793mV as the added amount of glucose increased from 0 to 5cc. The study demonstrated the feasibility of applying this new REIS technology to measure and/or monitor glucose levels in real-time in future.
Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy.
Pérez, Cristóbal; Muckle, Matt T; Zaleski, Daniel P; Seifert, Nathan A; Temelso, Berhane; Shields, George C; Kisiel, Zbigniew; Pate, Brooks H
2012-05-18
Theory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures. Here, we report that broadband rotational spectroscopy in a pulsed supersonic expansion unambiguously identifies all three isomers; we determined their oxygen framework structures by means of oxygen-18-substituted water (H(2)(18)O). Relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure. Rotational spectra consistent with predicted heptamer and nonamer structures have also been identified.
NASA Astrophysics Data System (ADS)
Zehe, E.; Blume, T.; Bloeschl, G.
2008-12-01
Preferential/rapid flow and transport is known as one key process in soil hydrology for more than 20 years. It seems to be rather the rule, than the exception. It occurs in soils, in surface rills and river networks. If connective preferential are present at any scale, they crucially control water flow and solute transport. Why? Is there an underlying principle? If energy is conserved a system follows Fermat's principle of minimum action i.e. it follows the trajectory that minimise the integral of the total energy/ La Grangian over time. Hydrological systems are, however, non-conservative as surface and subsurface water flows dissipate energy. From thermodynamics it is well known that natural processes minimize the free energy of the system. For hydrological systems we suggest, therefore, that flow in a catchment arranges in such a way that time to a minimum of free energy becomes minimal for a given rainfall input (disturbance) and under given constraints. Free energy in a soil is determined by potential energy and capillary energy. The pore size distribution of the soil, soil structures, depth to groundwater and most important vegetation make up the constraints. The pore size distribution determines whether potential energy or capillarity dominates the free energy of the soil system. The first term is minimal when the pore space is completely de-saturated the latter becomes minimal at soil saturation. Hence, the soil determines a) the amount of excess (gravity) water that has to be exported from the soil to reach a minimum state of free energy and b) whether redistribution or groundwater recharge is more efficient to reach that equilibrium. On the other hand, the pore size distribution of the soil and the connectivity of preferential pathways (root channels, worm holes and cracks) determine flow velocities and the redistribution of water within the pore space. As water flow and ground water recharge are fast in sandy soils and capillary energy is of minor importance, connective preferential pathways do not mean any advantage for an efficient transition to an equilibrium in these systems. In fine grained soils Darcy velocities and therefore redistribution of water is 2-4 orders of magnitude slower. As capillary energy dominates in these soils an effective redistribution of water within the pore space is crucial for a fast transition of system to an equilibrium state. Connective preferential pathways ore even cracks allow a faster redistribution of water and seem therefore necessary for a fast transition into a state of minimum free energy. The suggested principle "of minimum time to equilibrium" may explain the "advantage" of preferential flow as a much more efficient dissipation of energy in fine grained soils and therefore why connective preferential pathways control environmental flow. From a fundamental, long term perspective the principle may help us to understand whether and why soil structures and even cracks evolve in different landscapes and climates and b) to link soil hydrology and (landscape) ecology. Along the lines the proposed study will present model results to test the stated hypothesis.
Widdas, W F
2006-10-30
Hyde's scientific book The Language of Shape has emphasized the importance of minimum surfaces in the structure of biological membranes. Minimum surfaces can be visualized as the property which brings many droplets of liquids to spherical bubbles, since a sphere has the minimum surface to volume ratio. Thus, a sphere with a surface of 4pir2 and volume of 4/3pir3 has a surface to volume ratio of 3/r, that is, the ratio is dependent upon the reciprocal of the radius. The chemistry of water as dihydrides of the electronegative element oxygen is fundamentally dependent upon its polar properties and particularly the delta positive charges on the hydrogen atoms and the double delta negative charge on the larger oxygen atom, which from its mass (16 Da) is regarded as the centre of the water molecules. The cohesion of water as a liquid or as semi-crystal like structures in the surface depends upon electrostatic forces that are comparable in strength to covalent bonds. This review discusses the functional implications of some unexpected properties which have been evinced by model building and illustrated as a Poster in the 4th World Congress of Cellular and Molecular Biology.
Silva, Michele Bezerra; Perez, Victor Haber; Pereira, Nádia Rosa; Silveira, Thays da Costa; da Silva, Nathalia Ribeiro Ferreira; de Andrade, Cristilane Macharete; Sampaio, Romildo Martins
2018-05-01
The aim of the present study was to assess the drying kinetic of tucum fruits (epicarp and mesocarp) Astrocaryum aculeatum Meyer at three different temperatures (50, 60, and 70 °C). The physicochemical characterization, water activity, moisture content, including β-carotene and vitamin C content in - natura and dried fruits were analyzed. The fruit fractions presented high β-carotene, protein and lipid levels. Fatty acid profile showed oleic acid as the major fatty acid. Different mathematical models were computed to assess the drying process. The Page model was observed to be the best to describe the drying kinetic with the highest correlation coefficient ( R 2 ) 0.99 and the least Chi squared ( χ 2 ) close to 10 5 at the studied temperatures. The drying process reduced water activity to desirable levels in all trials and β-carotene retentions after drying remained at satisfactory levels, fact that resulted in minimum value of 63% and approximately 94% in some cases. Vitamin C retention was comparatively more around 20-40% compared to control.
NASA Astrophysics Data System (ADS)
Chiou, E. W.; McCormick, M. P.; Chu, W. P.
1997-08-01
Global distributions of water vapor in the stratosphere and upper troposphere are presented on the basis of ˜5.5 years (January 1986 to May 1991) of observations from the Stratospheric Aerosol and Gas Experiment II (SAGE II) aboard the Earth Radiation Budget Satellite (ERBS). Tabulations are included for seasonal zonal mean water vapor mixing ratios (in parts per million by volume) with 1-km vertical resolution and an altitude range from 6 to 40 km. Several climatological features identified in a previous study [McCormick et al., 1993], based on 3 years of observations, have been confirmed by this study: (1) the existence of a region of minimum water vapor (the hygropause) at all latitude bands; (2) the increase in the distance between the tropopause and the hygropause from 1 km at low latitudes to 4 km at high latitudes; and (3) the appearance of a positive poleward gradient throughout all seasons for fixed altitudes between 20 km and 40 km. The latitudinal variation of water vapor mixing ratio at 20 km is characterized by a symmetric pattern with a minimum occurring at the equator. However, the corresponding variations at 25 and 30 km indicate a shift of the minimum toward the summer hemisphere. For the latitude zones 0°-20° and 20°-40° in both hemispheres, the seasonal variations of the hygropause reveal that the altitude as well as the value of the minimum water vapor mixing ratio remain essentially unchanged from December, January, and February to March, April, and May. During September, October, and November the weakening of the hygropause and the spreading of the region of minimum water vapor to a wider altitude range are identified throughout these low-latitude and midlatitude zones. For the upper troposphere the clear-sky relative humidities at 300 mbar show a typical range of 5-60%, which is consistent with previous findings based on Meteosat 6.3 μm measurements. In addition, the unique capability of SAGE II observations has provided us with unprecedented vertically resolved moisture information for the upper troposphere. For example, the integrated column water vapor content for the 300- to 100-mbar layer ranges from 0.002 to 0.01 g/cm2 with larger longitudinal variability in the tropics. The integrated column water vapor content from 500 to 100 mbar is found to be significantly larger in the eastern hemisphere than in the western hemisphere. The corresponding integrated water vapor content at high latitudes increases by a factor of 6 from winter to summer (0.02 g/cm2 compared with 0.13 g/cm2).
Code of Federal Regulations, 2013 CFR
2013-07-01
... water, including hot and cold or tepid water, at a minimum of one accessible location (when longshoring... shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited eating areas...
Code of Federal Regulations, 2012 CFR
2012-07-01
... water, including hot and cold or tepid water, at a minimum of one accessible location (when longshoring... shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited eating areas...
Code of Federal Regulations, 2014 CFR
2014-07-01
... water, including hot and cold or tepid water, at a minimum of one accessible location (when longshoring... shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited eating areas...
Observation of Anomalous Potential Electric Energy in Distilled Water Under Solar Heating
NASA Astrophysics Data System (ADS)
Smarandache, Florentin; Christianto, V.
2011-04-01
In this paper, we describe a very simple experiment with distilled water which could exhibit anomalous potential electrical energy with very minimum preparation energy. While this observed excess energy here is less impressive than J-P. Beberian's and M. Porringa's, and the material used is also far less exotic than common LENR-CANR experiments, from the viewpoint of minimum preparation requirement --and therefore less barrier for rapid implementation--, it seems that further experiments could be recommended in order to verify and also to explore various implications of this new proposition.
No minimum threshold for ozone-induced changes in soybean canopy fluxes
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone concentrations [O3] are increasing at rates that exceed any other pollutant. This highly reactive gas drives reductions in plant productivity and canopy water use while also increasing canopy temperature and sensible heat flux. It is not clear whether a minimum threshold of ozone ...
Monti, Jack; Como, Michael D.; Busciolano, Ronald J.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the USGS conducts a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers (Smolensky and others, 1989)—and the hydraulically connected Jameco (Soren, 1971) and North Shore aquifers (Stumm, 2001). These data and the maps constructed from them are commonly used in studies of Long Island’s hydrology and are used by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 503 monitoring wells, a network of observation and supply wells, and 16 streamgage locations across Long Island during April–May 2010 were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured by using these measurements. The water-table contours were interpreted by using water-level data collected from 16 streamgages, 349 observation wells, and 1 supply well screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer’s potentiometric-surface contours were interpreted from measurements at 67 observation wells and 27 supply wells screened in the middle to deep Magothy aquifer and (or) the contiguous and hydraulically connected Jameco aquifer. The Lloyd aquifer’s potentiometric-surface contours were interpreted from measurements at 55 observation wells and 4 supply wells screened in the Lloyd aquifer or the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made so that the water levels in the wells could recover to the level of the potentiometric head in the surrounding aquifer. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less accurate than those measured at observation wells, which are not pumped (Busciolano, 2002). In this report, all water-level altitudes are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29). Hydrographs are included on these maps for selected wells that are instrumented with recording equipment. These hydrographs are representative of the 2010 water year1 to show the changes that have occurred throughout that period. The synoptic survey water level measured at the well is included on each hydrograph.
NASA Astrophysics Data System (ADS)
Drenkhan, Fabian; Huggel, Christian; Salzmann, Nadine; Giráldez, Claudia; Suarez, Wilson; Rohrer, Mario; Molina, Edwin; Montoya, Nilton; Miñan, Fiorella
2014-05-01
Glaciers have been an important element of Andean societies and livelihoods as direct freshwater supply for agriculture irrigation, hydropower generation and mining activities. Peru's mainly remotely living population in the Central Andes has to cope with a strong seasonal variation of precipitations and river runoff interannually superimposed by El Niño impacts. Direct glacier and lake water discharge thus constitute a vital continuous water supply and represent a regulating buffer as far as hydrological variability is concerned. This crucial buffer effect is gradually altered by accelerated glacier retreat which leads most likely to an increase of annual river runoff variability. Furthermore, a near-future crossing of the 'peak water' is expected, from where on prior enhanced streamflow decreases and levels out towards a new still unknown minimum discharge. Consequently, a sustainable future water supply especially during low-level runoff dry season might not be guaranteed whereas Peru's water demand increases significantly. Here we present a comprehensive review, the current conditions and perspectives for water resources in the Cusco area with focus on the Vilcanota River, Cordillera Vilcanota, Southern Peru. With 279 km2 the Cordillera Vilcanota represents the second largest glacierized mountain range of the tropics worldwide. Especially as of the second half of the 1980s, it has been strongly affected by massive ice loss with around 30% glacier area decline until present. Furthermore, glacier vanishing triggers the formation of new lakes and increase of lake levels and therefore constitutes determining hazardous drivers for mass movements related to deglaciation effects. The Vilcanota River still lacks more profound hydrological studies. It is likely that its peak water has already been or might be crossed in near-future. This has strong implications for the still at 0.9% (2.2%) annually growing population of the Cusco department (Cusco city). People mostly depend on these water resources but indicate a strong water vulnerability due to a high degree of absolute poverty, 30% and only 67% of access to drinking water. The Vilcanota area has been traditionally the breadbasket for the whole Cusco area. While agriculture is the most important labor sector, a growing export-oriented crop production depends highly on a minimum river streamflow ensuring sufficient water quantity and quality. Hydropower, with 53% of the total electricity nationwide the energy pillar of Peru's economy, might also be heavily affected by diminishing water resources. Nevertheless, improved power plants have to balance out Peru's by 7.5% y-1 increasing energy demand. For instance, the Machu Picchu hydropower plant is currently expanded by 100 MW to a full capacity of 190 MW but does not consider future water availability of the Vilcanota River and local impacts for the population. Our conclusions suggest to focus on an integrative risk-oriented supply-demand water balance model scheme in order to capture the complexity of recent and future water distribution. The integration of both physical and social key variables considering long-term changes in climate-glacier interactions as well as economic and demographic trends, plays a determinant role for the performance quality of that model and future adaptation strategies.
Structure and dynamics of the hydration shells of the Al3+ ion
NASA Astrophysics Data System (ADS)
Bylaska, Eric J.; Valiev, Marat; Rustad, James R.; Weare, John H.
2007-03-01
First principles simulations of the hydration shells surrounding Al3+ ions are reported for temperatures near 300°C. The predicted six water molecules in the octahedral first hydration shell were found to be trigonally coordinated via hydrogen bonds to 12s shell water molecules in agreement with the putative structure used to analyze the x-ray data, but in disagreement with the results reported from conventional molecular dynamics using two-and three-body potentials. Bond lengths and angles of the water molecules in the first and second hydration shells and the average radii of these shells also agreed very well with the results of the x-ray analysis. Water transfers into and out of the second solvation shell were observed to occur on a picosecond time scale via a dissociative mechanism. Beyond the second shell the bonding pattern substantially returned to the tetrahedral structure of bulk water. Most of the simulations were done with 64 solvating water molecules (20ps). Limited simulations with 128 water molecules (7ps) were also carried out. Results agreed as to the general structure of the solvation region and were essentially the same for the first and second shell. However, there were differences in hydrogen bonding and Al-O radial distribution function in the region just beyond the second shell. At the end of the second shell a nearly zero minimum in the Al-O radial distribution was found for the 128 water system. This minimum is less pronounced minimum found for the 64 water system, which may indicate that sizes larger than 64 may be required to reliably predict behavior in this region.
Sufficient oxygen for animal respiration 1,400 million years ago
Zhang, Shuichang; Wang, Xiaomei; Wang, Huajian; Bjerrum, Christian J.; Hammarlund, Emma U.; Costa, M. Mafalda; Connelly, James N.; Zhang, Baomin; Su, Jin; Canfield, Donald E.
2016-01-01
The Mesoproterozoic Eon [1,600–1,000 million years ago (Ma)] is emerging as a key interval in Earth history, with a unique geochemical history that might have influenced the course of biological evolution on Earth. Indeed, although this time interval is rather poorly understood, recent chromium isotope results suggest that atmospheric oxygen levels were <0.1% of present levels, sufficiently low to have inhibited the evolution of animal life. In contrast, using a different approach, we explore the distribution and enrichments of redox-sensitive trace metals in the 1,400 Ma sediments of Unit 3 of the Xiamaling Formation, North China Block. Patterns of trace metal enrichments reveal oxygenated bottom waters during deposition of the sediments, and biomarker results demonstrate the presence of green sulfur bacteria in the water column. Thus, we document an ancient oxygen minimum zone. We develop a simple, yet comprehensive, model of marine carbon−oxygen cycle dynamics to show that our geochemical results are consistent with atmospheric oxygen levels >4% of present-day levels. Therefore, in contrast to previous suggestions, we show that there was sufficient oxygen to fuel animal respiration long before the evolution of animals themselves. PMID:26729865
Rattray, Gordon W.
2014-01-01
Quality-control (QC) samples were collected from 2002 through 2008 by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, to ensure data robustness by documenting the variability and bias of water-quality data collected at surface-water and groundwater sites at and near the Idaho National Laboratory. QC samples consisted of 139 replicates and 22 blanks (approximately 11 percent of the number of environmental samples collected). Measurements from replicates were used to estimate variability (from field and laboratory procedures and sample heterogeneity), as reproducibility and reliability, of water-quality measurements of radiochemical, inorganic, and organic constituents. Measurements from blanks were used to estimate the potential contamination bias of selected radiochemical and inorganic constituents in water-quality samples, with an emphasis on identifying any cross contamination of samples collected with portable sampling equipment. The reproducibility of water-quality measurements was estimated with calculations of normalized absolute difference for radiochemical constituents and relative standard deviation (RSD) for inorganic and organic constituents. The reliability of water-quality measurements was estimated with pooled RSDs for all constituents. Reproducibility was acceptable for all constituents except dissolved aluminum and total organic carbon. Pooled RSDs were equal to or less than 14 percent for all constituents except for total organic carbon, which had pooled RSDs of 70 percent for the low concentration range and 4.4 percent for the high concentration range. Source-solution and equipment blanks were measured for concentrations of tritium, strontium-90, cesium-137, sodium, chloride, sulfate, and dissolved chromium. Field blanks were measured for the concentration of iodide. No detectable concentrations were measured from the blanks except for strontium-90 in one source solution and one equipment blank collected in September and October 2004, respectively. The detectable concentrations of strontium-90 in the blanks probably were from a small source of strontium-90 contamination or large measurement variability, or both. Order statistics and the binomial probability distribution were used to estimate the magnitude and extent of any potential contamination bias of tritium, strontium-90, cesium-137, sodium, chloride, sulfate, dissolved chromium, and iodide in water-quality samples. These statistical methods indicated that, with (1) 87 percent confidence, contamination bias of cesium-137 and sodium in 60 percent of water-quality samples was less than the minimum detectable concentration or reporting level; (2) 92‒94 percent confidence, contamination bias of tritium, strontium-90, chloride, sulfate, and dissolved chromium in 70 percent of water-quality samples was less than the minimum detectable concentration or reporting level; and (3) 75 percent confidence, contamination bias of iodide in 50 percent of water-quality samples was less than the reporting level for iodide. These results support the conclusion that contamination bias of water-quality samples from sample processing, storage, shipping, and analysis was insignificant and that cross-contamination of perched groundwater samples collected with bailers during 2002–08 was insignificant.
Measurement of suspended solids in lakes and oceans using satellite remote sensing data
NASA Technical Reports Server (NTRS)
Sydor, M. (Principal Investigator)
1980-01-01
Using satellite remote sensing data to measure low concentrations of suspended solids in lakes and oceans requires careful evaluation of background signals from the atmosphere and the water surface. Typical background corrections for Lake Superior are presented and the spectral distribution of the residual radiance from three major categories of turbidity in the lake are determined. The results indicate that for large bodies of water, some general information on atmospheric scattering, water clarity, and the optical properties of suspended solids allows estimates of concentrations of suspended solids to within + or - 0.5 mg/L without using real time ground truth data. Under calibrated conditions the threshold detection level is 0.3 mg/L for the fine particulates dispersed throughout the lake and 1 mg/L for the highly light absorbing effluent from rivers. Comparisons of the minimum reflectance over the open lake areas with reflection from the highly absorbing tannin water from rivers provides a check on the clarity of the atmosphere and the excessive background scatter from the water surface.
Quality control for federal clean water act and safe drinking water act regulatory compliance.
Askew, Ed
2013-01-01
QC sample results are required in order to have confidence in the results from analytical tests. Some of the AOAC water methods include specific QC procedures, frequencies, and acceptance criteria. These are considered to be the minimum controls needed to perform the method successfully. Some regulatory programs, such as those in 40 CFR Part 136.7, require additional QC or have alternative acceptance limits. Essential QC measures include method calibration, reagent standardization, assessment of each analyst's capabilities, analysis of blind check samples, determination of the method's sensitivity (method detection level or quantification limit), and daily evaluation of bias, precision, and the presence of laboratory contamination or other analytical interference. The details of these procedures, their performance frequency, and expected ranges of results are set out in this manuscript. The specific regulatory requirements of 40 CFR Part 136.7 for the Clean Water Act, the laboratory certification requirements of 40 CFR Part 141 for the Safe Drinking Water Act, and the ISO 17025 accreditation requirements under The NELAC Institute are listed.
Liquid-liquid critical point in a simple analytical model of water.
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
Liquid-liquid critical point in a simple analytical model of water
NASA Astrophysics Data System (ADS)
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
NASA Astrophysics Data System (ADS)
Ayanshola, Ayanniyi; Olofintoye, Oluwatosin; Obadofin, Ebenezer
2018-03-01
This study presents the impact of global warming on precipitation patterns in Ilorin, Nigeria, and its implications on the hydrological balance of the Awun basin under the prevailing climate conditions. The study analyzes 39 years of rainfall and temperature data of relevant stations within the study areas. Simulated data from the Coupled Global Climate model for historical and future datasets were investigated under the A2 emission scenario. Statistical regression and a Mann-Kendall analysis were performed to determine the nature of the trends in the hydrological variables and their significance levels, while a Soil and Water Assessment Tool (SWAT) was used to estimate the water balance and derive the stream flow and yield of the Awun basin. The study revealed that while minimum and maximum temperatures in Ilorin are increasing, rainfall is generally decreasing. The assessment of the trends in the water balance parameters in the basin indicates that there is no improvement in the water yield as the population increases. This may result in major stresses to the water supply in the near future.
40 CFR 35.918-1 - Additional limitations on awards for individual systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...
40 CFR 35.918-1 - Additional limitations on awards for individual systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...
40 CFR 35.918-1 - Additional limitations on awards for individual systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...
40 CFR 35.918-1 - Additional limitations on awards for individual systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...
Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.
2017-02-21
Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for the annual 7-day minimums, but only 3 of the 4 rivers had decreases that were significant (34 to 54 percent). The Branch River had decreasing annual mean daily streamflow (7.5 percent) and the largest decrease in the annual 7-day minimum streamflow. The Blackstone and Pawtuxet Rivers had the largest increases in annual maximum daily flows but had decreases in the annual 7-day minimum flows.
Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.
1996-01-01
Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.
Hydrologic Droughts in Kansas - Are They Becoming Worse?
Putnam, James E.; Perry, Charles A.; Wolock, David M.
2008-01-01
Multi-year droughts have been a recurrent feature of the climate and hydrology of Kansas since at least the 1930s. Streamflow records collected by the U.S. Geological Survey (USGS) indicate that water years 2000 to 2006 (October 1, 1999, through September 30, 2006) represent the sixth hydrologic drought during the past eight decades, and that corresponding streamflow levels in some parts of Kansas were lower than those during historic droughts of the 1930s and 1950s, even though the precipitation deficit was not as severe. Record-low streamflows in water year 2006 were recorded at USGS streamgages on the Republican, Smoky Hill, Solomon, Saline, upper Kansas, middle Arkansas, and Little Arkansas Rivers, as well as many tributary sites, and one tributary site of the Neosho River (fig. 1, table 1). Low streamflows during the hydrologic drought also resulted in record low levels at three Federal reservoirs in Kansas (fig. 1, table 2). An unprecedented number of administrative decisions were made by the Division of Water Resources, Kansas Department of Agriculture to curtail water diversions from rivers to maintain minimum desirable streamflows, and low flows on the lower Republican River in Kansas created concerns that Colorado and Nebraska were not complying with the terms of the 1943 Republican River Compact.
Tidal impact on geophysical fields registed in GPO "Mikhnevo" area
NASA Astrophysics Data System (ADS)
Vinogradov, Evgeny; Besedina, Alina; Gorbunova, Ella
2013-04-01
Geophysical observatory "Mikhnevo" is situated in the centre of Russian Plate and characterized with stable response to lunisolar tides. Since February 2008, regular precision measurements of groundwater level are carried out in a measurement well synchronously with atmospheric pressure measurements (sampling interval is 1 s, the measurement accuracy is 0.1 mm for the level and 0.1 gPa for atmospheric pressure). According to the results of hydrogeological sampling, the pressure head in the aquifer under study is 8.1 m, its transmissivity is 3.0 m2/day, hydraulic conductivity was 0.13 m/day, the pressure conductivity factor and elastic water yield are 1.3 × 104 m2/day and 2.3 × 10-4, respectively. Using flow measurements and telemetry of the open part of bore hole, major intervals of water inflow were detected at depths of 92-94 m and 99-100 m. Rock transmissivity in the fissure-conducting zone increases to 5.0 m2/day. Based on tidal component analysis in the filtered hydrogeological data, five main kinds of tidal waves were extracted (?1, ?2, Q1, ?1 and 2). STS-2 and KSESh-R seismometers registration range extension made it possible to extract tidal waves from Z-component of ground displacement. Similar methodology of data processing was used for tides analysis in hydrogeological, seismic and barometric data. It should be noted that barometric component extracted from water level variations can, in some cases, lead to misrepresentation of the data in frequency range under consideration. That is why two variants of data were analysed - with included and excluded barometric component. To extract tides from water level variations, long-period and barometric components were excluded from original precise monitoring datum. Data series obtained in this way were used for monthly spectrum realization, which, in turn, allowed finding out amplitudes of main tidal waves ?1, ?1 and 2. The most significant luni-solar ?1 wave annual variations cycle correlates with hydraulic head. Maximum amplitudes of ?1 wave for the whole 4 year observation period are observed then the ground-water level is high. Variation range of ?1 wave amplitude is stable and reaches 2.9 mm per year. Most significant variations take place in spring-summer period. Main lunar waves amplitude variations do not exceed 1.1 mm. The phase shift increase between luni-solar tides response in seismic and hydrogeological data was found. Diurnal O1 wave variations analysis should be done with barometric component excluded datum because of amplitude difference. During period under consideration M2 and K1 waves amplitudes are comparable and about 4.1 mm, O1 amplitude is on it minimum about 3.7 mm. Maximum diurnal and semi-diurnal wave amplitudes of water level variations confine with minimum values of luni-solar attraction. On the contrary on the same periods we can see decrease of ground displacement amplitudes as a result of tidal forces. Main tidal waves were extracted from atmospheric pressure datum too. Luni-solar K1 wave has the most amplitude there and exceeds O1 and M2 values 5-7 times.
Rural drinking water at supply and household levels: quality and management.
Hoque, Bilqis A; Hallman, Kelly; Levy, Jason; Bouis, Howarth; Ali, Nahid; Khan, Feroze; Khanam, Sufia; Kabir, Mamun; Hossain, Sanower; Shah Alam, Mohammad
2006-09-01
Access to safe drinking water has been an important national goal in Bangladesh and other developing countries. While Bangladesh has almost achieved accepted bacteriological drinking water standards for water supply, high rates of diarrheal disease morbidity indicate that pathogen transmission continues through water supply chain (and other modes). This paper investigates the association between water quality and selected management practices by users at both the supply and household levels in rural Bangladesh. Two hundred and seventy tube-well water samples and 300 water samples from household storage containers were tested for fecal coliform (FC) concentrations over three surveys (during different seasons). The tube-well water samples were tested for arsenic concentration during the first survey. Overall, the FC was low (the median value ranged from 0 to 4 cfu/100ml) in water at the supply point (tube-well water samples) but significantly higher in water samples stored in households. At the supply point, 61% of tube-well water samples met the Bangladesh and WHO standards of FC; however, only 37% of stored water samples met the standards during the first survey. When arsenic contamination was also taken into account, only 52% of the samples met both the minimum microbiological and arsenic content standards of safety. The contamination rate for water samples from covered household storage containers was significantly lower than that of uncovered containers. The rate of water contamination in storage containers was highest during the February-May period. It is shown that safe drinking water was achieved by a combination of a protected and high quality source at the initial point and maintaining quality from the initial supply (source) point through to final consumption. It is recommended that the government and other relevant actors in Bangladesh establish a comprehensive drinking water system that integrates water supply, quality, handling and related educational programs in order to ensure the safety of drinking water supplies.
Performance of a novel high throughput method for the determination of VX in drinking water samples.
Knaack, Jennifer S; Zhou, Yingtao; Magnuson, Matthew; Silvestri, Erin; Johnson, Rudolph C
2013-03-05
VX (O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothioate) is a highly toxic organophosphorus nerve agent, and even low levels of contamination in water can be harmful. Measurement of low concentrations of VX in aqueous matrixes is possible using an immunomagnetic scavenging technique and detection using liquid chromatography/tandem-mass spectrometry. Performance of the method was characterized in high-performance liquid chromatography (HPLC)-grade water preserved with sodium omadine, an antimicrobial agent, and sodium thiosulfate, a dechlorinating agent, over eight analytical batches with quality control samples analyzed over 10 days. The minimum reportable level was 25 ng/L with a linear dynamic range up to 4.0 μg/L. The mean accuracies for two quality control samples containing VX at concentrations of 0.250 and 2.00 μg/L were 102 ± 3% and 103 ± 6%, respectively. The stability of VX was determined in five tap water samples representing a range of water quality parameters and disinfection practices over a 91 day period. In preserved tap water samples, VX recovery was between 81 and 92% of the fortified amount, 2.0 μg/L, when analyzed immediately after preparation. Recovery of VX decreased to between 31 and 45% of the fortified amount after 91 days, indicating hydrolysis of VX. However, the preservatives minimized the hydrolysis rate to close to the theoretical limit. The ability to detect low concentrations of VX in preserved tap water 91 days after spiking suggests applicability of this method for determining water contamination with VX and utility during environmental remediation.
Remote Monitoring of Groundwater Overdraft Using GRACE and InSAR
NASA Astrophysics Data System (ADS)
Scher, C.; Saah, D.
2017-12-01
Gravity Recovery and Climate Experiment (GRACE) data paired with radar-derived analyses of volumetric changes in aquifer storage capacity present a viable technique for remote monitoring of aquifer depletion. Interferometric Synthetic Aperture Radar (InSAR) analyses of ground level subsidence can account for a significant portion of mass loss observed in GRACE data and provide information on point-sources of overdraft. This study summed one water-year of GRACE monthly mass change grids and delineated regions with negative water storage anomalies for further InSAR analyses. Magnitude of water-storage anomalies observed by GRACE were compared to InSAR-derived minimum volumetric changes in aquifer storage capacity as a result of measurable compaction at the surface. Four major aquifers were selected within regions where GRACE observed a net decrease in water storage (Central Valley, California; Mekong Delta, Vietnam; West Bank, occupied Palestinian Territory; and the Indus Basin, South Asia). Interferogram imagery of the extent and magnitude of subsidence within study regions provided estimates for net minimum volume of groundwater extracted between image acquisitions. These volumetric estimates were compared to GRACE mass change grids to resolve a percent contribution of mass change observed by GRACE likely due to groundwater overdraft. Interferograms revealed characteristic cones of depression within regions of net mass loss observed by GRACE, suggesting point-source locations of groundwater overdraft and demonstrating forensic potential for the use of InSAR and GRACE data in remote monitoring of aquifer depletion. Paired GRACE and InSAR analyses offer a technique to increase the spatial and temporal resolution of remote applications for monitoring groundwater overdraft in addition to providing a novel parameter - measurable vertical deformation at the surface - to global groundwater models.
Sharma, R K; Shrestha, D G
2016-10-01
Sikkim, a tiny Himalayan state situated in the north-eastern region of India, records limited research on the climate change. Understanding the changes in climate based on the perceptions of local communities can provide important insights for the preparedness against the unprecedented consequences of climate change. A total of 228 households in 12 different villages of Sikkim, India, were interviewed using eight climate change indicators. The results from the public opinions showed a significant increase in temperature compared to a decade earlier, winters are getting warmer, water springs are drying up, change in concept of spring-water recharge (locally known as Mul Phutnu), changes in spring season, low crop yields, incidences of mosquitoes during winter, and decrease in rainfall in last 10 years. In addition, study also showed significant positive correlations of increase in temperature with other climate change indicators viz. spring-water recharge concept (R (2) = 0.893), warmer winter (R (2) = 0.839), drying up of water springs (R (2) = 0.76), changes in spring season (R (2) = 0.68), low crop yields (R (2) = 0.68), decrease in rainfall (R (2) = 0.63), and incidences of mosquitoes in winter (R (2) = 0.50). The air temperature for two meteorological stations of Sikkim indicated statistically significant increasing trend in mean minimum temperature and mean minimum winter temperature (DJF). The observed climate change is consistent with the people perceptions. This information can help in planning specific adaptation strategies to cope with the impacts of climate change by framing village-level action plan.
Ammonia-Oxidizing β-Proteobacteria from the Oxygen Minimum Zone off Northern Chile▿
Molina, Verónica; Ulloa, Osvaldo; Farías, Laura; Urrutia, Homero; Ramírez, Salvador; Junier, Pilar; Witzel, Karl-Paul
2007-01-01
The composition of ammonia-oxidizing bacteria from the β-Proteobacteria subclass (βAOB) was studied in the surface and upper-oxycline oxic waters (2- to 50-m depth, ∼200 to 44 μM O2) and within the oxygen minimum zone (OMZ) suboxic waters (50- to 400-m depth, ≤10 μM O2) of the eastern South Pacific off northern Chile. This study was carried out through cloning and sequencing of genes coding for 16S rRNA and the ammonia monooxygenase enzyme active subunit (amoA). Sequences affiliated with Nitrosospira-like cluster 1 dominated the 16S rRNA gene clone libraries constructed from both oxic and suboxic waters. Cluster 1 consists exclusively of yet-uncultivated βAOB from marine environments. However, a single clone, out of 224 obtained from the OMZ, was found to belong to Nitrosospira lineage cluster 0. To our knowledge, cluster 0 sequences have been derived from βAOB isolated only from sand, soil, and freshwater environments. Sequences in clone libraries of the amoA gene from the surface and upper oxycline could be grouped in a marine subcluster, also containing no cultured representatives. In contrast, all 74 amoA sequences originating from the OMZ were either closely affiliated with cultured Nitrosospira spp. from clusters 0 and 2 or with other yet-uncultured βAOB from soil and an aerated-anoxic Orbal process waste treatment plant. Our results reveal the presence of Nitrosospira-like βAOB in both oxic and suboxic waters associated with the OMZ but with a clear community shift at the functional level (amoA) along the strong oxygen gradient. PMID:17416686
Ammonia-oxidizing beta-proteobacteria from the oxygen minimum zone off northern Chile.
Molina, Verónica; Ulloa, Osvaldo; Farías, Laura; Urrutia, Homero; Ramírez, Salvador; Junier, Pilar; Witzel, Karl-Paul
2007-06-01
The composition of ammonia-oxidizing bacteria from the beta-Proteobacteria subclass (betaAOB) was studied in the surface and upper-oxycline oxic waters (2- to 50-m depth, approximately 200 to 44 microM O(2)) and within the oxygen minimum zone (OMZ) suboxic waters (50- to 400-m depth, < or =10 microM O(2)) of the eastern South Pacific off northern Chile. This study was carried out through cloning and sequencing of genes coding for 16S rRNA and the ammonia monooxygenase enzyme active subunit (amoA). Sequences affiliated with Nitrosospira-like cluster 1 dominated the 16S rRNA gene clone libraries constructed from both oxic and suboxic waters. Cluster 1 consists exclusively of yet-uncultivated betaAOB from marine environments. However, a single clone, out of 224 obtained from the OMZ, was found to belong to Nitrosospira lineage cluster 0. To our knowledge, cluster 0 sequences have been derived from betaAOB isolated only from sand, soil, and freshwater environments. Sequences in clone libraries of the amoA gene from the surface and upper oxycline could be grouped in a marine subcluster, also containing no cultured representatives. In contrast, all 74 amoA sequences originating from the OMZ were either closely affiliated with cultured Nitrosospira spp. from clusters 0 and 2 or with other yet-uncultured betaAOB from soil and an aerated-anoxic Orbal process waste treatment plant. Our results reveal the presence of Nitrosospira-like betaAOB in both oxic and suboxic waters associated with the OMZ but with a clear community shift at the functional level (amoA) along the strong oxygen gradient.
25 CFR 170.506 - What are the minimum qualifications for certified bridge inspectors?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false What are the minimum qualifications for certified bridge inspectors? 170.506 Section 170.506 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Planning, Design, and Construction of Indian Reservation Roads...
40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...) The use of linearizing circuits is permitted. (c) The minimum water rejection ratio (maximum CO 2...) The minimum CO 2 rejection ratio (maximum CO 2 interference) as measured by § 86.322 for CO analyzers...
7 CFR 989.702 - Minimum grade standards for packed raisins.
Code of Federal Regulations, 2010 CFR
2010-01-01
... RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Quality Control § 989.702 Minimum grade standards for... washed with water to assure a wholesome product. (2) Grades. (i) Marketing Order Grade A is a quality of... paragraph. (ii) Marketing Order Grade B is the quality of the Cluster Seedless raisins that have similar...
40 CFR 132.1 - Scope, purpose, and availability of documents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.1 Scope, purpose, and availability of documents. (a) This part constitutes the Water Quality Guidance for the Great Lakes System (Guidance... identifies minimum water quality standards, antidegradation policies, and implementation procedures for the...
40 CFR 132.1 - Scope, purpose, and availability of documents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.1 Scope, purpose, and availability of documents. (a) This part constitutes the Water Quality Guidance for the Great Lakes System (Guidance... identifies minimum water quality standards, antidegradation policies, and implementation procedures for the...
40 CFR 132.1 - Scope, purpose, and availability of documents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.1 Scope, purpose, and availability of documents. (a) This part constitutes the Water Quality Guidance for the Great Lakes System (Guidance... identifies minimum water quality standards, antidegradation policies, and implementation procedures for the...
40 CFR 132.1 - Scope, purpose, and availability of documents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.1 Scope, purpose, and availability of documents. (a) This part constitutes the Water Quality Guidance for the Great Lakes System (Guidance... identifies minimum water quality standards, antidegradation policies, and implementation procedures for the...
50 CFR 300.132 - Lobster harvest limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... harvest limitations. (a) Berried lobsters. A berried (egg-bearing) lobster in treaty waters may not be retained on board. A berried lobster must be returned immediately to the water unharmed. A berried lobster... lobster smaller than the minimum size limit must be returned immediately to the water unharmed. ...
24 CFR 3280.603 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... heat tape located on the underside of the manufactured home within 2 feet of the water supply inlet... service for a reasonable life expectancy. (2) Conservation. Water closets shall be selected and adjusted to use the minimum quantity of water consistent with proper performance and cleaning. (3) Connection...
Nelson, Kenneth
2008-01-01
This article draws attention to the Europeanization of social policy and the development of minimum income protection in a large number of welfare democracies. The empirical analyses are based on unique institutional and comparative data on benefit levels from the Social Assistance and Minimum Income Protection Interim Dataset. There is some evidence of convergence in benefit levels among the European countries in the new millennium, but there is no clear proof of universal ambitions to fight poverty or of the existence of a single European social model. There are still welfare front-runners and those who lag behind in this regard, not only among industrial welfare democracies in general but also in Europe.
Cory, Robert L.; Dresler, P.V.
1980-01-01
Water temperature, salinity, turbidity, dissolved oxygen, pH, and water level data were continuously monitored and recorded from the Smithsonian Institution pier near Annapolis, Md., from January 1976 through December 1978. Daily maximum and minimum values are tabulated and summarized, and monthly averages and extremes are presented. Water temperature ranged from 0.0 to 33.9 Celsius. Both high and low extreme values exceeded those recorded during the previous 6 years. Salinity patterns showed normal seasonal variations and were related to the Susquehanna River inflow, which controls the upper bay salinity. Salinity between 13 and 15 parts per thousand in November and December 1978 were the highest recorded over a 9-year period. Turbidity varied seasonally, with lowest values in winter and highest in spring. Dissolved oxygen ranged from 2.0 to 18.7 milligrams per liter. Large variations between summertime daily minima and maxima indicated the high state of eutrophication of the water being monitored. Hydrogen-ion activity (pH) ranged from 7.0 to 10.2 over the 3-year period. The pH changes reflect daily variation in partial pressure of carbon dioxide, which varies inversely with the dissolved oxygen. Water level variation at the monitoring site for the 3-year period was 1.89 meters, with highest water 0.59 meter above mean high water and lowest 0.83 meter below mean low water. An apparent decline of 0.07 meter below previously recorded mean high and mean low water was associated with stronger winds and a prevalance of westerly winds in February during the winter of 1976-1977. (USGS)
Stress corrosion behavior of Ru-enhanced alpha-beta titanium alloys in methanol solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutz, R.W.; Horrigan, J.M.; Bednarowicz, T.A.
1998-12-31
Conservative, practical guidelines for the minimum water content required to prevent methanolic stress corrosion cracking (SCC) of Ti-6Al-4V-Ru and Ti-3Al-2.5V-Ru alloy tubulars have been developed from slow strain rate testing in plain and acidified NaCl-saturated methanol-water solutions at 25 C. A minimum methanol water content of 10 wt.% is proposed for Ti-6Al-4V-Ru, whereas 2-3 wt.% is sufficient for the lower strength Ti-3Al-2.5V-Ru alloy. Although HCl-acidification aggravated methanolic SCC, intermixing of methanol with crude oil or pure hydrocarbons, H{sub 2}S gas saturation, and/or increasing temperature diminished cracking susceptibility in these alloy tubulars.
Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?
NASA Astrophysics Data System (ADS)
Thomsen, S.; Kanzow, T.; Colas, F.; Echevin, V.; Krahmann, G.; Engel, A.
2016-08-01
The Peruvian upwelling system encompasses the most intense and shallowest oxygen minimum zone (OMZ) in the ocean. This system shows pronounced submesoscale activity like filaments and fronts. We carried out glider-based observations off Peru during austral summer 2013 to investigate whether submesoscale frontal processes ventilate the Peruvian OMZ. We present observational evidence for the subduction of highly oxygenated surface water in a submesoscale cold filament. The subduction event ventilates the oxycline but does not reach OMZ core waters. In a regional submesoscale-permitting model we study the pathways of newly upwelled water. About 50% of upwelled virtual floats are subducted below the mixed layer within 5 days emphasizing a hitherto unrecognized importance of subduction for the ventilation of the Peruvian oxycline.
How much reduction of virus is needed for recycled water: A continuous changing need for assessment?
Gerba, Charles P; Betancourt, Walter Q; Kitajima, Masaaki
2017-01-01
To ensure the safety of wastewater reuse for irrigation of food crops and drinking water pathogenic viruses must be reduced to levels that pose no significant risk. To achieve this goal minimum reduction of viruses by treatment trains have been suggested. For use of edible crops a 6-log reduction and for production of potable drinking water a 12-log reduction has been suggested. These reductions were based on assuming infective virus concentrations of 10 5 to 10 6 per liter. Recent application of molecular methods suggests that some pathogenic viruses may be occurring in concentrations of 10 7 to 10 9 per liter. Factors influencing these levels include the development of molecular methods for virus detection, emergence of newly recognized viruses, decrease in per capita water use due to conservation measures, and outbreaks. Since neither cell culture nor molecular methods can assess all the potentially infectious virus in wastewater conservative estimates should be used to assess the virus load in untreated wastewater. This review indicates that an additional 2- to 3-log reduction of viruses above current recommendations may be needed to ensure the safety of recycled water. Information is needed on peak loading of viruses. In addition, more virus groups need to be quantified using better methods of virus quantification, including more accurate methods for measuring viral infectivity in order to better quantify risks from viruses in recycled water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xing, Yanan; Li, Huan; Huang, Liubin; Wu, Huihui; Shen, Hengqing; Chen, Zhongming
2018-04-01
Methacrolein (MACR) is an abundant multifunctional carbonyl compound with high reactivity in the atmosphere. In this study, we investigated the hydroxyl radical initiated oxidation of MACR at various NO/MACR ratios (0 to 4.04) and relative humidities (<3% to 80%) using a flow tube. Meanwhile, a box model based on the Master Chemical Mechanism was performed to test our current understanding of the mechanism. In contrast to the reasonable predictions for hydroxyacetone production, the modeled yields of formaldehyde (HCHO) were twice higher than the experimental results. The discrepancy was ascribed to the existence of unconsidered non-HCHO forming channels in the chemistry of CH 3 C(CH 2 )OO, which account for approx. 50%. In addition, the production of hydroxyacetone and HCHO were affected by water vapor as well as the initial NO/MACR ratio. The yields of HCHO were higher under humid conditions than that under dry condition. The yields of hydroxyacetone were higher under humid conditions at low-NO x level, while lower at high-NO x level. The reasonable explanation for the lower hydroxyacetone yield under humid conditions at high-NO x level is that water vapor promotes the production of methacrolein nitrate in the reaction of HOCH 2 C(CH 3 )(OO)CHO with NO due to the peroxy radical-water complex formation, which was evidenced by calculational results. And the minimum equilibrium constant of this water complex formation was estimated to be 1.89×10 -18 cm 3 /molecule. These results provide new insights into the MACR oxidation mechanism and the effects of water vapor. Copyright © 2017. Published by Elsevier B.V.
42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...
42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...
42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...
42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...
Pugh, Aaron L.; Schrader, Tony P.
2009-01-01
The Wilcox Group of Eocene and Paleocene age is located throughout most of southern and eastern Arkansas. The Wilcox Group in southern Arkansas is undifferentiated, while in northeastern Arkansas, the Wilcox Group is subdivided into three units: Flour Island, Fort Pillow Sand, and Old Breastworks Formation. The Wilcox Group crops out in southwestern Arkansas in discontinuous, 1 to 3 mi wide bands. In northeastern Arkansas, the Wilcox Group crops out along a narrow, discontinuous, band along the western edge of Crowleys Ridge. The Wilcox aquifer provides sources of groundwater in southwestern and northeastern Arkansas. In 2005, reported withdrawals from the Wilcox aquifer in Arkansas totaled 27.0 million gallons per day, most of which came from the northeastern area. Major withdrawals from the aquifer were for public supplies with lesser but locally important withdrawals for commercial, domestic, and industrial uses. A study was conducted by the U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey to determine the water levels associated with the Wilcox aquifer in southwestern and northeastern Arkansas. During February 2009, 58 water-level measurements were made in wells completed in the Wilcox aquifer. The results from this study and previous studies are presented as potentiometric-surface maps, water-level difference maps, and long-term hydrographs. The direction of groundwater flow in the southwestern area is affected by two potentiometric-surface mounds, one in the north and the other in the southwest, and a cone of depression in the center. The direction of water flowing off of the northern mound of water is generally to the south and east with some to the north. The direction of water flowing off of the southwestern mound is generally to the south and east. The direction of water flowing into the cone of depression is generally from the north, west, and south. The direction of groundwater flow in the northeastern area is generally to the south and southeast, except in the northwestern part of the area where the flow is in a westerly direction towards Paragould. Large groundwater withdrawals have altered the natural direction of flow near centers of pumping at Paragould and West Memphis. Water-level difference maps for the Wilcox aquifer in Arkansas were constructed using the differences between water-level measurements made during 2003 and 2009 from 52 wells. The difference in water levels between 2003 and 2009 in the southwestern area ranged from -36.4 to 16.0 ft. Water levels rose in the northern parts of the southwestern area, while the water levels in the southern part of the area declined with the exception of one well. The differences in water levels between 2003 and 2009 in the northeastern area ranged from -21.7 to 1.3 ft. Water levels declined throughout the northeastern area with the exception of two wells. Hydrographs from 42 wells with a minimum of 20 yr of water-level measurements were constructed. Trend lines using linear regression were calculated for the period from 1990 to 2009 to determine the slope in ft/yr for water levels in each well. In the southwestern area, the county mean annual water level rose 0.15 ft/yr in Hot Spring County. County mean annual water levels declined between 0.71 ft/yr and 0.03 ft/yr in Clark, Hempstead, and Nevada counties. In the northeastern area, the county mean annual water level rose 0.46 ft/yr in Greene County. County mean annual water levels declined between 0.03 ft/yr and 2.12 ft/yr in Clay, Craighead, Crittenden, Lee, Mississippi, Poinsett, and St. Francis counties.
Childress, Carolyn J. Oblinger; Foreman, William T.; Connor, Brooke F.; Maloney, Thomas J.
1999-01-01
This report describes the U.S. Geological Survey National Water Quality Laboratory?s approach for determining long-term method detection levels and establishing reporting levels, details relevant new reporting conventions, and provides preliminary guidance on interpreting data reported with the new conventions. At the long-term method detection level concentration, the risk of a false positive detection (analyte reported present at the long-term method detection level when not in sample) is no more than 1 percent. However, at the long-term method detection level, the risk of a false negative occurrence (analyte reported not present when present at the long-term method detection level concentration) is up to 50 percent. Because this false negative rate is too high for use as a default 'less than' reporting level, a more reliable laboratory reporting level is set at twice the determined long-term method detection level. For all methods, concentrations measured between the laboratory reporting level and the long-term method detection level will be reported as estimated concentrations. Non-detections will be censored to the laboratory reporting level. Adoption of the new reporting conventions requires a full understanding of how low-concentration data can be used and interpreted and places responsibility for using and presenting final data with the user rather than with the laboratory. Users must consider that (1) new laboratory reporting levels may differ from previously established minimum reporting levels, (2) long-term method detection levels and laboratory reporting levels may change over time, and (3) estimated concentrations are less certain than concentrations reported above the laboratory reporting level. The availability of uncensored but qualified low-concentration data for interpretation and statistical analysis is a substantial benefit to the user. A decision to censor data after they are reported from the laboratory may still be made by the user, if merited, on the basis of the intended use of the data.
Nestler, John M.; Milhouse, Robert T.; Troxel, Jay; Fritschen, Janet A.
1985-01-01
In 1974 county governments in the Atlanta vicinity realized that demands on the Chattahoochee River for water supply plus the streamflow required for water quality nearly equaled the minimum flow in the river. Increased demands for water supply in the following years could not be supplied under the then existing flow regime in the river. In response to the anticipated shortage of water, the Atlanta Regional Commission, a multicounty agency responsible for comprehensive regional planning in the Atlanta region, was contracted to prepare water demand projections to the year 2010 and identify alternatives for meeting projected water demands. The results of this study are published in an extensive final report, the Metropolitan Atlanta Area Water Resources Management Study (1981). Requests for copies should be directed to the District Engineer, Savannah District. Many of the identified alternatives to increase future water supply for the Atlanta area would result in modifications to the present flow regime within the Chattahoochee River between Buford Dam (river mile 348.3) and its confluence with Peachtree Creek (river mile 300.5). The present preferred alternative is construction of a reregulation dam at about river mile 342. The proposed reregulation dam would release a much more constant flow than the peaking flows presently released from Buford Dam (generally, a maximum release of approximately 9000 cfs or minimum release of about 550 cfs) by storing the generation releases from Buford Dam for gradual release during non-generation periods. The anticipated minimum release from the rereg dam would he approximately 1U5U cfs (based on contractual obligations to the Southeast Power Administration to supply a minimum of 11 hours of peaking power per week from Buford Dam). The average annual release from the proposed reregulation dam into the Chattahoochee River would be approximately 2000 cfs (based on USGS flow records) and the median release would he approximately 1500 cfs (value obtained from Savannah District). The proposed reregulation dam would have sufficient storage to provide some opportunity for flow management to optimize uses other than water supply and water quality. Flow modifications (and resultant water quality changes) within this reach of the Chattahoochee River to meet increased demands for water supply may have an effect on other beneficial uses of this important natural resource. In addition to supplying a significant proportion of the water supply for metropolitan Atlanta and providing for water quality, the Chattahoochee River also is used extensively for recreation and supports a valuable trout fishery. Altered flows in the channel to meet water supply needs may have an impact on river recreation and trout habitat.
Buckwalter, T.F.; Squillace, P.J.
1995-01-01
Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the base of readily observed fresh ground water. Casing depths are selected generally to maximize drilling efficiency and to stop freshwater from entering the well and subsequently interfering with hydrocarbon recovery. The depths of surface casing generally are not selected with ground-water protection in mind. However, on the basis of existing hydrologic data, most freshwater aquifers generally are protected with current casing depths. Minimum surface-casing depths for deep gas wells are prescribed by Pennsylvania Department of Environmental Resources regulations and appear to be adequate to prevent ground-water contamination, in most respects, for the only study area with deep gas fields examined in Crawford County.
Is the difference between chemical and numerical estimates of baseflow meaningful?
NASA Astrophysics Data System (ADS)
Cartwright, Ian; Gilfedder, Ben; Hofmann, Harald
2014-05-01
Both chemical and numerical techniques are commonly used to calculate baseflow inputs to gaining rivers. In general the chemical methods yield lower estimates of baseflow than the numerical techniques. In part, this may be due to the techniques assuming two components (event water and baseflow) whereas there may also be multiple transient stores of water. Bank return waters, interflow, or waters stored on floodplains are delayed components that may be geochemically similar to the surface water from which they are derived; numerical techniques may record these components as baseflow whereas chemical mass balance studies are likely to aggregate them with the surface water component. This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. While more sophisticated techniques exist, these methods of estimating baseflow are readily applied with the available data and have been used widely elsewhere. During the early stages of high-discharge events, chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those from chemical mass balance using Cl calculated from continuous electrical conductivity. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of annual discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of annual discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge). These differences most probably reflect how the different techniques characterise the transient water sources in this catchment. The local minimum and recursive digital filters aggregate much of the water from delayed sources as baseflow. However, as many of these delayed transient water stores (such as bank return flow, floodplain storage, or interflow) have Cl concentrations that are similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low-salinity water from the transient stores as discharge falls. The use of complementary techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.
Martian stepped-delta formation by rapid water release.
Kraal, Erin R; van Dijk, Maurits; Postma, George; Kleinhans, Maarten G
2008-02-21
Deltas and alluvial fans preserved on the surface of Mars provide an important record of surface water flow. Understanding how surface water flow could have produced the observed morphology is fundamental to understanding the history of water on Mars. To date, morphological studies have provided only minimum time estimates for the longevity of martian hydrologic events, which range from decades to millions of years. Here we use sand flume studies to show that the distinct morphology of martian stepped (terraced) deltas could only have originated from a single basin-filling event on a timescale of tens of years. Stepped deltas therefore provide a minimum and maximum constraint on the duration and magnitude of some surface flows on Mars. We estimate that the amount of water required to fill the basin and deposit the delta is comparable to the amount of water discharged by large terrestrial rivers, such as the Mississippi. The massive discharge, short timescale, and the associated short canyon lengths favour the hypothesis that stepped fans are terraced delta deposits draped over an alluvial fan and formed by water released suddenly from subsurface storage.
Fout, G. Shay; Cashdollar, Jennifer L.; Varughese, Eunice A.; Parshionikar, Sandhya U.; Grimm, Ann C.
2015-01-01
EPA Method 1615 was developed with a goal of providing a standard method for measuring enteroviruses and noroviruses in environmental and drinking waters. The standardized sampling component of the method concentrates viruses that may be present in water by passage of a minimum specified volume of water through an electropositive cartridge filter. The minimum specified volumes for surface and finished/ground water are 300 L and 1,500 L, respectively. A major method limitation is the tendency for the filters to clog before meeting the sample volume requirement. Studies using two different, but equivalent, cartridge filter options showed that filter clogging was a problem with 10% of the samples with one of the filter types compared to 6% with the other filter type. Clogging tends to increase with turbidity, but cannot be predicted based on turbidity measurements only. From a cost standpoint one of the filter options is preferable over the other, but the water quality and experience with the water system to be sampled should be taken into consideration in making filter selections. PMID:25867928
Muskellunge growth potential in northern Wisconsin: implications for trophy management
Faust, Matthew D.; Isermann, Daniel A.; Luehring, Mark A.; Hansen, Michael J.
2015-01-01
The growth potential of Muskellunge Esox masquinongy was evaluated by back-calculating growth histories from cleithra removed from 305 fish collected during 1995–2011 to determine whether it was consistent with trophy management goals in northern Wisconsin. Female Muskellunge had a larger mean asymptotic length (49.8 in) than did males (43.4 in). Minimum ultimate size of female Muskellunge (45.0 in) equaled the 45.0-in minimum length limit, but was less than the 50.0-in minimum length limit used on Wisconsin's trophy waters, while the minimum ultimate size of male Muskellunge (34.0 in) was less than the statewide minimum length limit. Minimum reproductive sizes for both sexes were less than Wisconsin's trophy minimum length limits. Mean growth potential of female Muskellunge in northern Wisconsin appears to be sufficient for meeting trophy management objectives and angler expectations. Muskellunge in northern Wisconsin had similar growth potential to those in Ontario populations, but lower growth potential than Minnesota's populations, perhaps because of genetic and environmental differences.
Contribution of piezometric measurement on knowledge and management of low water levels
NASA Astrophysics Data System (ADS)
Bessiere, Hélène; Stollsteiner, Philippe; Allier, Delphine; Nicolas, Jérôme; Gourcy, Laurence
2014-05-01
This article is based on a BRGM study on piezometric indicators, threshold values of discharges and groundwater levels for the assessment of potentially pumpable volumes of chalky watersheds. A method for estimating low water levels from groundwater levels is presented from three examples of chalk aquifer; the first one is located in Picardy and the two other in the Champagne Ardennes region. Piezometers with "annual" cycles, used in these examples, are supposed to be representative of the aquifer hydrodynamics. The analysis leads to relatively precise and satisfactory relationships between groundwater levels and observed discharges for this chalky context. These relationships may be useful for monitoring, validation, extension or reconstruction of the low water flow. On the one hand, they allow defining the piezometric levels corresponding to the different alert thresholds of river discharges. On the other hand, they clarify the distribution of low water flow from runoff or the draining of the aquifer. Finally, these correlations give an assessment of the minimum flow for the coming weeks using of the rate of draining of the aquifer. Nevertheless the use of these correlations does not allow to optimize the value of pumpable volumes because it seems to be difficult to integrate the amount of the effective rainfall that may occur during the draining period. In addition, these relationships cannot be exploited for multi-annual cycle systems. In these cases, the solution seems to lie on the realization of a rainfall-runoff-piezometric level model. Therefore, two possibilities are possible. The first one is to achieve each year, on a given date, a forecast for the days or months to come with various frequential distributions rainfalls. However, the forecast must be reiterated each year depending on climatic conditions. The principle of the second method is to simulate forecasts for different rainfall intensities and following different initial conditions. The results are presented in chart form. In addition, this last method is currently tested for the problem of floods by groundwater level rise.
Sardessai, S; Shetye, Suhas; Maya, M V; Mangala, K R; Prasanna Kumar, S
2010-01-01
Nutrient characteristics of four water masses in the light of their thermohaline properties are examined in the eastern Equatorial Indian Ocean during winter, spring and summer monsoon. The presence of low salinity water mass with "Surface enrichments" of inorganic nutrients was observed relative to 20 m in the mixed layer. Lowest oxygen levels of 19 microM at 3 degrees N in the euphotic zone indicate mixing of low oxygen high salinity Arabian Sea waters with the equatorial Indian Ocean. The seasonal variability of nutrients was regulated by seasonally varying physical processes like thermocline elevation, meridional and zonal transport, the equatorial undercurrent and biological processes of uptake and remineralization. Circulation of Arabian Sea high salinity waters with nitrate deficit could also be seen from low N/P ratio with a minimum of 8.9 in spring and a maximum of 13.6 in winter. This large deviation from Redfield N/P ratio indicates the presence of denitrified high salinity waters with a seasonal nitrate deficit ranging from -4.85 to 1.52 in the Eastern Equatorial Indian Ocean. 2010 Elsevier Ltd. All rights reserved.
Mainstem Clearwater River Study: Assessment for Salmonid Spawning, Incubation, and Rearing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, William P.
1989-01-01
Chinook salmon reproduced naturally in the Clearwater River until damming of the lower mainstem in 1927 impeded upstream spawning migrations and decimated the populations. Removal of the Washington Water Power Dam in 1973 reopened upriver passage. This study was initiated to determine the feasibility of re-introducing chinook salmon into the lower mainstem Clearwater River based on the temperature and flow regimes, water quality, substrate, and invertebrate production since the completion of Dworshak Dam in 1972. Temperature data obtained from the United States Geological Survey gaging stations at Peck and Spalding, Idaho, were used to calculate average minimum and maximum watermore » temperature on a daily, monthly and yearly basis. The coldest and warmest (absolute minimum and maximum) temperatures that have occurred in the past 15 years were also identified. Our analysis indicates that average lower mainstem Clearwater River water temperatures are suitable for all life stages of chinook salmon, and also for steelhead trout rearing. In some years absolute maximum water temperatures in late summer may postpone adult staging and spawning. Absolute minimum temperatures have been recorded that could decrease overwinter survival of summer chinook juveniles and fall chinook eggs depending on the quality of winter hiding cover and the prevalence of intra-gravel freezing in the lower mainstem Clearwater River.« less
USDA-ARS?s Scientific Manuscript database
Research was conducted in northern Colorado in 2011 to estimate the Crop Water Stress Index (CWSI) and actual water transpiration (Ta) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that ...
Code of Federal Regulations, 2012 CFR
2012-10-01
... header or manifold. SMYS means specified minimum yield strength is: (1) For steel pipe manufactured in... the waters from the mean high water mark of the coast of the Gulf of Mexico and its inlets open to the... water. High-pressure distribution system means a distribution system in which the gas pressure in the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... header or manifold. SMYS means specified minimum yield strength is: (1) For steel pipe manufactured in... the waters from the mean high water mark of the coast of the Gulf of Mexico and its inlets open to the... water. High-pressure distribution system means a distribution system in which the gas pressure in the...
Code of Federal Regulations, 2013 CFR
2013-10-01
... header or manifold. SMYS means specified minimum yield strength is: (1) For steel pipe manufactured in... the waters from the mean high water mark of the coast of the Gulf of Mexico and its inlets open to the... water. High-pressure distribution system means a distribution system in which the gas pressure in the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... header or manifold. SMYS means specified minimum yield strength is: (1) For steel pipe manufactured in... the waters from the mean high water mark of the coast of the Gulf of Mexico and its inlets open to the... water. High-pressure distribution system means a distribution system in which the gas pressure in the...
Code of Federal Regulations, 2010 CFR
2010-10-01
... header or manifold. SMYS means specified minimum yield strength is: (1) For steel pipe manufactured in... the waters from the mean high water mark of the coast of the Gulf of Mexico and its inlets open to the... water. High-pressure distribution system means a distribution system in which the gas pressure in the...
Conservation of water for washing beef heads at harvest
USDA-ARS?s Scientific Manuscript database
The objective of this research was to develop methods to conserve water necessary to cleanse beef heads prior to USDA–FSIS inspection. This was to be accomplished by establishing a baseline for the minimum amount of water necessary to adequately wash a head and application of image analysis to provi...
78 FR 57585 - Minimum Training Requirements for Entry-Level Commercial Motor Vehicle Operators
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... specific minimum number of training hours. Instead, these commenters support a performance-based approach... support a minimum hours-based approach to training. They stated that FMCSA must specify the minimum number...\\ Additionally, some supporters of an hours-based training approach believed that the Agency's proposal did not...
Minimum retroreflectivity levels for overhead guide signs and street-name signs
DOT National Transportation Integrated Search
2003-12-01
In 1993, the Federal Highway Administration (FHWA) published research recommendations for minimum retroreflectivity (MR) levels for traffic signs. The recommendations included overhead signs, but not street-name signs. In revisions to the recommended...
Minimum Retroreflectivity Levels for Blue and Brown Traffic Signs
DOT National Transportation Integrated Search
2008-04-01
In 2003, the Federal Highway Administration published research recommendations for minimum maintained retroreflectivity (MR) levels for traffic signs. The recommendations included most sign types but not white-on-blue signs or white-on-brown signs. I...
Sunspot variation and selected associated phenomena: A look at solar cycle 21 and beyond
NASA Technical Reports Server (NTRS)
Wilson, R. M.
1982-01-01
Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated.
Davis, Linda C.
2008-01-01
Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer and perched-water zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched-water zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched-water wells in the USGS ground-water monitoring networks during 2002-05. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged primarily from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2001 to March-May 2005, water levels in wells declined throughout the INL area. The declines ranged from about 3 to 8 feet in the southwestern part of the INL, about 10 to 15 feet in the west central part of the INL, and about 6 to 11 feet in the northern part of the INL. Water levels in perched water wells declined also, with the water level dropping below the bottom of the pump in many wells during 2002-05. For radionuclides, concentrations that equal 3s, wheres s is the sample standard deviation, represent a measurement at the minimum detectable concentration, or 'reporting level'. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2002-05. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In October 2005, reportable concentrations of tritium in ground water ranged from 0.51+or-0.12 to 11.5+or-0.6 picocuries per milliliter and the tritium plume extended south-southwestward in the general direction of ground-water flow. Tritium concentrations in water from several wells southwest of the Idaho Nuclear Technology and Engineering Center (INTEC) decreased or remained constant as they had during 1998-2001, with the exception of well USGS 47, which increased a few picocuries per milliliter. Most wells completed in shallow perched water at the Reactor Technology Complex (RTC) were dry during 2002---05. Tritium concentrations in deep perched water exceeded the reporting level in nine wells at the RTC. The tritium concentration in water from one deep perched water well exceeded the reporting level at the INTEC. Concentrations of strontium-90 in water from 14 of 34 wells sampled during October 2005 exceeded the reporting level. Concentrations ranged from 2.2+or-0.7 to 33.1+or-1.2 picocuries per liter. However, concentrations from most wells remained relatively constant or decreased since 1989. Strontium-90 has not been detected within the eastern Snake River Plain aquifer beneath the RTC partly because of the exclusive use of waste-disposal ponds and lined evaporation ponds rather than the disposal well for radioactive-wastewater disposal at RTC. At the RTC, strontium-90 concentrations in water from six wells completed in deep perched ground water exceeded the reporting level during 2002-05. At the INTEC, the reporting level was exceeded in water from three wells completed in deep perched ground water. During 2002-05, concentrations of plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all wells sampled at the INL. During 2002-05, concentrations of cesium-137 in water from all wells sa
30 CFR 947.816 - Performance standards-surface mining activities.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE WASHINGTON... Forest Practices Act, RCW 76.09, the Water Pollution Control Act, RCW 90.48, the Minimum Water Flows and...
Absolute tracer dye concentration using airborne laser-induced water Raman backscatter
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1981-01-01
The use of simultaneous airborne-laser-induced dye fluorescence and water Raman backscatter to measure the absolute concentration of an ocean-dispersed tracer dye is discussed. Theoretical considerations of the calculation of dye concentration by the numerical comparison of airborne laser-induced fluorescence spectra with laboratory spectra for known dye concentrations using the 3400/cm OH-stretch water Raman scatter as a calibration signal are presented which show that minimum errors are obtained and no data concerning water mass transmission properties are required when the laser wavelength is chosen to yield a Raman signal near the dye emission band. Results of field experiments conducted with an airborne conical scan lidar over a site in New York Bight into which rhodamine dye had been injected in a study of oil spill dispersion are then indicated which resulted in a contour map of dye concentrations, with a minimum detectable dye concentration of approximately 2 ppb by weight.
ERIC Educational Resources Information Center
Federman, Jeremy; Ricketts, Todd
2008-01-01
Purpose: This study examined the impact that changing on-stage music and crowd noise levels during musical performance had on preferred listening levels (PLLs) and minimum acceptable listening levels (MALLs) across both floor and in-ear monitors. Method: Participants for this study were 23- to 48-year-old musicians, with and without hearing loss,…
Contamination levels of human pharmaceutical compounds in French surface and drinking water.
Mompelat, S; Thomas, O; Le Bot, B
2011-10-01
The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... the transit, and a requirement to maintain a minimum underkeel clearance to prevent groundings. Based...' at Mean Lower Low Water (MLLW), and a minimum channel width of 600'. While most shoaling was removed... number of small entities. The term ``small entities'' comprises small businesses, not-for-profit...
49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with a water capacity (nominal) of not over 150 pounds and a service pressure of at least 900 psig. (b...., should be held to a minimum consistent with good high stress pressure vessel manufacturing practices. If... wall thickness must be such that the wall stress at the minimum specified test pressure may not exceed...
Failure of the public health testing program for ballast water treatment systems.
Cohen, Andrew N; Dobbs, Fred C
2015-02-15
Since 2004, an international testing program has certified 53 shipboard treatment systems as meeting ballast water discharge standards, including limits on certain microbes to prevent the spread of human pathogens. We determined how frequently certification tests failed a minimum requirement for a meaningful evaluation, that the concentration of microbes in the untreated (control) discharge must exceed the regulatory limit for treated discharges. In 95% of cases where the result was accepted as evidence that the treatment system reduced microbes to below the regulatory limit, the discharge met the limit even without treatment. This shows that the certification program for ballast water treatment systems is dysfunctional in protecting human health. In nearly all cases, the treatment systems would have equally well "passed" these tests even if they had never been turned on. Protocols must require minimum concentrations of targeted microbes in test waters, reflecting the upper range of concentrations in waters where ships operate. Copyright © 2014 Elsevier Ltd. All rights reserved.
Risser, Dennis W.; Gburek, William J.; Folmar, Gordon J.
2005-01-01
This study by the U.S. Geological Survey (USGS), in cooperation with the Agricultural Research Service (ARS), U.S. Department of Agriculture, compared multiple methods for estimating ground-water recharge and base flow (as a proxy for recharge) at sites in east-central Pennsylvania underlain by fractured bedrock and representative of a humid-continental climate. This study was one of several within the USGS Ground-Water Resources Program designed to provide an improved understanding of methods for estimating recharge in the eastern United States. Recharge was estimated on a monthly and annual basis using four methods?(1) unsaturated-zone drainage collected in gravity lysimeters, (2) daily water balance, (3) water-table fluctuations in wells, and (4) equations of Rorabaugh. Base flow was estimated by streamflow-hydrograph separation using the computer programs PART and HYSEP. Estimates of recharge and base flow were compared for an 8-year period (1994-2001) coinciding with operation of the gravity lysimeters at an experimental recharge site (Masser Recharge Site) and a longer 34-year period (1968-2001), for which climate and streamflow data were available on a 2.8-square-mile watershed (WE-38 watershed). Estimates of mean-annual recharge at the Masser Recharge Site and WE-38 watershed for 1994-2001 ranged from 9.9 to 14.0 inches (24 to 33 percent of precipitation). Recharge, in inches, from the various methods was: unsaturated-zone drainage, 12.2; daily water balance, 12.3; Rorabaugh equations with PULSE, 10.2, or RORA, 14.0; and water-table fluctuations, 9.9. Mean-annual base flow from streamflow-hydrograph separation ranged from 9.0 to 11.6 inches (21-28 percent of precipitation). Base flow, in inches, from the various methods was: PART, 10.7; HYSEP Local Minimum, 9.0; HYSEP Sliding Interval, 11.5; and HYSEP Fixed Interval, 11.6. Estimating recharge from multiple methods is useful, but the inherent differences of the methods must be considered when comparing results. For example, although unsaturated-zone drainage from the gravity lysimeters provided the most direct measure of potential recharge, it does not incorporate spatial variability that is contained in watershed-wide estimates of net recharge from the Rorabaugh equations or base flow from streamflow-hydrograph separation. This study showed that water-level fluctuations, in particular, should be used with caution to estimate recharge in low-storage fractured-rock aquifers because of the variability of water-level response among wells and sensitivity of recharge to small errors in estimating specific yield. To bracket the largest range of plausible recharge, results from this study indicate that recharge derived from RORA should be compared with base flow from the Local-Minimum version of HYSEP.
Manyangadze, Tawanda; Chimbari, Moses J; Macherera, Margaret; Mukaratirwa, Samson
2017-11-21
Although there has been a decline in the number of malaria cases in Zimbabwe since 2010, the disease remains the biggest public health threat in the country. Gwanda district, located in Matabeleland South Province of Zimbabwe has progressed to the malaria pre-elimination phase. The aim of this study was to determine the spatial distribution of malaria incidence at ward level for improving the planning and implementation of malaria elimination in the district. The Poisson purely spatial model was used to detect malaria clusters and their properties, including relative risk and significance levels at ward level. The geographically weighted Poisson regression (GWPR) model was used to explore the potential role and significance of environmental variables [rainfall, minimum and maximum temperature, altitude, Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), rural/urban] and malaria control strategies [indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs)] on the spatial patterns of malaria incidence at ward level. Two significant clusters (p < 0.05) of malaria cases were identified: (1) ward 24 south of Gwanda district and (2) ward 9 in the urban municipality, with relative risks of 5.583 and 4.316, respectively. The semiparametric-GWPR model with both local and global variables had higher performance based on AICc (70.882) compared to global regression (74.390) and GWPR which assumed that all variables varied locally (73.364). The semiparametric-GWPR captured the spatially non-stationary relationship between malaria cases and minimum temperature, NDVI, NDWI, and altitude at the ward level. The influence of LLINs, IRS and rural or urban did not vary and remained in the model as global terms. NDWI (positive coefficients) and NDVI (range from negative to positive coefficients) showed significant association with malaria cases in some of the wards. The IRS had a protection effect on malaria incidence as expected. Malaria incidence is heterogeneous even in low-transmission zones including those in pre-elimination phase. The relationship between malaria cases and NDWI, NDVI, altitude, and minimum temperature may vary at local level. The results of this study can be used in planning and implementation of malaria control strategies at district and ward levels.
NASA Astrophysics Data System (ADS)
Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea
2017-04-01
Soil Tillage Conservation (STC) is considered major components of agricultural technology for soil conservation strategies and part of Sustainable Agriculture (SA). Human action upon soil by tillage determines important morphological, physical-chemical and biological changes, with different intensities and evaluative directions. Nowadays, internationally is unanimous accepted the fact that global climatic changes are the results of human intervention in the bio-geo-chemical water and material cycle, and the sequestration of carbon in soil is considered an important intervention to limit these changes. STC involves reducing the number of tillage's (minimum tillage) to direct sowing (no-tillage) and plant debris remains at the soil surface in the ratio of at least 30%. Plant debris left on the soil surface or superficial incorporated contributes to increased biological activity and is an important source of carbon sequestration. STC restore soil structure and improve overall soil drainage, allowing more rapid infiltration of water into soil. The result is a soil bioremediation, more productive, better protected against wind and water erosion and requires less fuel for preparing the germinative bed. Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. We present the influence of conventional plough tillage system on soil, water and organic matter conservation in comparison with an alternative minimum tillage (paraplow, chisel plow and rotary harrow) and no-tillage system. The application of STC increased the organic matter content 0.8 to 22.1% and water stabile aggregate content from 1.3 to 13.6%, in the 0-30 cm depth, as compared to the conventional system. For the organic matter content and the wet aggregate stability, the statistical analysis of the data showed, increasing positive significance of STC. While the soil fertility and the wet aggregate stability were initially low, the effect of conservation practices on the soil features resulted in a positive impact on the water permeability of the soil. Availability of soil moisture during the crop growth resulted in better plant water status. Subsequent release of conserved soil water regulated proper plant water status, soil structure, and lowered soil penetrometer resistance. Productions obtained at STC did not have significant differences for the wheat and maize crop but were higher for soybean. The advantages of minimum soil tillage systems for Romanian pedo-climatic conditions can be used to improve methods in low producing soils with reduced structural stability on sloped fields, as well as measures of water and soil conservation on the whole agroecosystem. Presently, it is necessary to make a change concerning the concept of conservation practices and to consider a new approach regarding the good agricultural practice. We need to focus on an upper level concerning conservation by focusing on soil quality. Carbon management is necessary for a complexity of matters including soil, water management, field productivity, biological fuel and climatic change. In conclusion a Sustainable Agriculture includes a range of complementary agricultural practices: (i) minimum soil tillage (through a system of reduced tillage or no-tillage) to preserve the structure, fauna and soil organic matter; (ii) permanent soil cover (cover crops, residues and mulches) to protect the soil and help to remove and control weeds; (iii) various combinations and rotations of the crops which stimulate the micro-organisms in the soil and controls pests, weeds and plant diseases. Acknowledgements: This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change, and International Cooperation Program - Sub-3.1. Bilateral AGROCEO c. no. 21BM/2016, PN-III-P3-3.1-PM-RO-MD-2016-0034: The comparative evaluation of conventional and conservative tillage systems regarding carbon sequestration and foundation of sustainable agroecosystems.
Estimation of the discharges of the multiple water level stations by multi-objective optimization
NASA Astrophysics Data System (ADS)
Matsumoto, Kazuhiro; Miyamoto, Mamoru; Yamakage, Yuzuru; Tsuda, Morimasa; Yanami, Hitoshi; Anai, Hirokazu; Iwami, Yoichi
2016-04-01
This presentation shows two aspects of the parameter identification to estimate the discharges of the multiple water level stations by multi-objective optimization. One is how to adjust the parameters to estimate the discharges accurately. The other is which optimization algorithms are suitable for the parameter identification. Regarding the previous studies, there is a study that minimizes the weighted error of the discharges of the multiple water level stations by single-objective optimization. On the other hand, there are some studies that minimize the multiple error assessment functions of the discharge of a single water level station by multi-objective optimization. This presentation features to simultaneously minimize the errors of the discharges of the multiple water level stations by multi-objective optimization. Abe River basin in Japan is targeted. The basin area is 567.0km2. There are thirteen rainfall stations and three water level stations. Nine flood events are investigated. They occurred from 2005 to 2012 and the maximum discharges exceed 1,000m3/s. The discharges are calculated with PWRI distributed hydrological model. The basin is partitioned into the meshes of 500m x 500m. Two-layer tanks are placed on each mesh. Fourteen parameters are adjusted to estimate the discharges accurately. Twelve of them are the hydrological parameters and two of them are the parameters of the initial water levels of the tanks. Three objective functions are the mean squared errors between the observed and calculated discharges at the water level stations. Latin Hypercube sampling is one of the uniformly sampling algorithms. The discharges are calculated with respect to the parameter values sampled by a simplified version of Latin Hypercube sampling. The observed discharge is surrounded by the calculated discharges. It suggests that it might be possible to estimate the discharge accurately by adjusting the parameters. In a sense, it is true that the discharge of a water level station can be accurately estimated by setting the parameter values optimized to the responding water level station. However, there are some cases that the calculated discharge by setting the parameter values optimized to one water level station does not meet the observed discharge at another water level station. It is important to estimate the discharges of all the water level stations in some degree of accuracy. It turns out to be possible to select the parameter values from the pareto optimal solutions by the condition that all the normalized errors by the minimum error of the responding water level station are under 3. The optimization performance of five implementations of the algorithms and a simplified version of Latin Hypercube sampling are compared. Five implementations are NSGA2 and PAES of an optimization software inspyred and MCO_NSGA2R, MOPSOCD and NSGA2R_NSGA2R of a statistical software R. NSGA2, PAES and MOPSOCD are the optimization algorithms of a genetic algorithm, an evolution strategy and a particle swarm optimization respectively. The number of the evaluations of the objective functions is 10,000. Two implementations of NSGA2 of R outperform the others. They are promising to be suitable for the parameter identification of PWRI distributed hydrological model.
Annual INTEC Groundwater Monitoring Report for Group 5 - Snake River Plain Aquifer (2001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roddy, Michael Scott
2002-02-01
This report describes the monitoring activities conducted and presents the results of groundwater sampling and water-level measurements from October 2000 to September 2001. Groundwater samples were initially collected from 41 wells from the Idaho Nuclear Technology and Engineering Center and the Central Facilities Area and analyzed for iodine-129, strontium-90, tritium, gross alpha, gross beta, technetium-99, uranium isotopes, plutonium isotopes, neptunium-237, americium-241, gamma spectrometry, and mercury. Samples from 41 wells were collected in April and May 2001. Additional sampling was conducted in August 2001 and included the two CFA production wells, the CFA point of compliance for the production wells, onemore » well that was previously sampled and five additional monitoring wells. Iodine-129 and strontium-90 were the only analytes above their respective maximum contaminant levels. Iodine-129 was detected just above its maximum contaminant level of 1 pCi/L at two of the Central Facilities Area landfill wells. Iodine-129 was detected in the CFA production wells at 0.35±0.083 pCi/L in CFA-1, but was below detectable activity in CFA-2. Strontium-90 was above its maximum contaminant level of 8 pCi/L in several wells near the Idaho Nuclear Technology and Engineering Center but was below its maximum contaminant level in the downgradient wells at the Central Facilities Area landfills. Sr-90 was not detected in the CFA production wells. Gross beta results generally mirrored the results for strontium-90 and technetium-99. Plutonium isotopes and neptunium-237 were not detected. Uranium-233/234 and uranium-238 isotopes were detected in all samples. Concentrations of background and site wells were similar and are within background limits for total uranium determined by the USGS, suggesting that the concentrations are background. Uranium-235/236 was detected in 11 samples, but all the detected concentrations were similar and near the minimum detectable activity. Americium-241 was detected at three locations near the minimum detectable activity of approximately 0.07 pCi/L. The gamma spectrometry results detected cesium-137 in three samples, potassium-40 at eight locations, and radium-226 at one location. Mercury was below its maximum contaminant level of 2 µg/L in all samples. Gamma spectrometry results for the CFA production wells did not detect any analytes. Water-level measurements were taken from wells in the Idaho Nuclear Technology and Engineering Center, Central Facilities Area, and the area south of Central Facilities Area to evaluate groundwater flow directions. Water-level measurements indicated groundwater flow to the south-southwest from the Idaho Nuclear Technology and Engineering Center.« less
Jiang, Min; Tuan, Le Huy; Mei, Wei-Ping; Ruan, Hui-Hui; Wu, Hao
2014-07-01
The spatial and temporal distribution of 16 polycyclic aromatic hydrocarbons (PAHs) has been investigated in water and sediments of Zhoushan coastal area every two months in 2012. The concentrations of total PAHs ranged from 382.3 to 816.9 ng x L(-1), with the mean value of 552.5 ng x L(-1) in water; whereas it ranged from 1017.9 to 3047.1 ng x g(-1), with the mean value of 2 022.4 ng x g(-1) in sediment. Spatial distribution showed that Yangshan and Yanwoshan offshore area had the maximum and minimum of total PAHs contents in water, while the maximum and minimum occurred at Yangshan and Zhujiajian Nansha offshore area in sediment. Temporal distribution revealed that total PAHs contents in water reached the maximum and minimum values in October and June, however in sediments these values were found in August and June, respectively. The PAHs pollution was affected by oil emission, charcoal and coal combustion. Using the biological threshold and exceeded coefficient method to assess the ecological risk of PAHs in Zhoushan coastal area, the result showed that sigma PAHs had a lower probability of potential risk, while there was a higher probability of potential risk for acenaphthylene monomer, and there might be ecological risk for acenaphthene and fluorene. Distribution of PAHs between sediment and water showed that Zhoushan coastal sediment enriched a lot of PAHs, meanwhile the enrichment coefficient (K(d) value) of sediment in Daishan island was larger than that in Zhoushan main island.
Code of Federal Regulations, 2010 CFR
2010-04-01
... examination and by a water leak test method, using 1,000 milliliters (ml) of water. (i) Units examined. Each... inches up the fill tube.) (iii) Leak test examination. Immediately after adding the water, examine the glove for water leaks. Do not squeeze the glove; use only minimum manipulation to spread the fingers to...
Schrader, T.P.
2009-01-01
The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively), since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2007, 309 water levels were measured in wells completed in the Sparta-Memphis aquifer. During the summer of 2007, 129 water-quality samples were collected and measured for temperature and specific conductance and 102 were collected and analyzed for chloride from wells completed in the Sparta-Memphis aquifer. Water-level measurements collected in wells screened in the Sparta-Memphis aquifer were used to produce a regional potentiometric-surface map. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large ground-water withdrawals. The highest water-level altitude measured in the Sparta-Memphis aquifer was 326 feet above National Geodetic Vertical Datum of 1929, located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 161 feet below National Geodetic Vertical Datum of 1929 in Union County near the southern boundary of the study area. Eight cones of depression (generally represented by closed contours) are located in the following counties: Bradley, Drew, and Ashley; Calhoun; Cleveland; Columbia; Crittenden; Arkansas, Jefferson, and Lincoln; Cross and Poinsett; and Union. Two large depressions are shown on the 2007 potentiometric-surface map, centered in Jefferson and Union Counties, as a result of large withdrawals for industrial and public supplies. The depression centered in Jefferson County deepened and expanded in recent years into Arkansas and Prairie Counties as a result of large withdrawals for irrigation and public supply. The area enclosed within the 40-foot contour has expanded on the 2007 potentiometric-surface map when compared with the 2005 potentiometric-surface map. In 2003, the depression in Union County was elongated east and west and beginning to coalesce with the depression in Columbia County. The deepest measurement during 2007 in the center of the depression in Union County has risen 38 feet since 2003. The area enclosed by the deepest contour, 160 feet below National Geodetic Vertical Datum of 1929, on the 2007 potentiometric-surface map is less than 10 percent of the area on the 2005 potentiometric-surface map. A broad depression in western Poinsett and Cross Counties was first shown in the 1995 potentiometric-surface map caused by withdrawals for irrigation extending north to the Poinsett-Craighead County line, and south into Cross County. A water-level difference map was constructed using the difference between water-level measurements made during 2003 and 2007 from 283 wells. The difference in water level between 2003 and 2007 ranged from -49.8 to 60.0 feet. Areas with a general rise in water levels are shown in northern Arkansas, Columbia, southern Jefferson, and most of Union Counties. In the area around west-central Union County, water levels rose as much as 60.0 feet with water levels in 15 wells rising 20 feet or more, which is an average annual rise of 5 feet or more. Water levels generally declined throughout most of the rest of Arkansas. Hydrographs from 157 wells were constructed with a minimum of 25 years of water-level measurements. During the period 1983-2007, the county mean annual water level rose in Calhoun, Columbia, Hot Spring, and Lafayette Counties. Mean an
Water resources of the Cook Inlet Basin, Alaska
Freethey, Geoffrey W.; Scully, David R.
1980-01-01
Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)
Halder, Ritaban; Jana, Biman
2018-06-05
Aqueous binary mixtures have received immense attention in recent years because of their extensive application in several biological and industrial processes. Water-ethanol binary mixture serves as a unique system because it exhibits composition dependent alteration of dynamic and thermodynamic properties. Our present work demonstrates how different compositions of water-ethanol binary mixtures affect the pair hydrophobicity of different hydrophobes. Pair hydrophobicity is measured by the depth of the first minimum (contact minima) of potential of mean force (PMF) profile between two hydrophobes. The pair hydrophobicity is found to be increased with addition of ethanol to water up to mole fraction of 0.10 and decreased with further addition of ethanol. This observation is shown to be true for three different pairs of hydrophobes. Decomposition of PMF into enthalpic and entropic contribution indicates a switch from entropic to enthalpic stabilization of the contact minimum upon addition of ethanol to water. The gain in mixing enthalpy of the binary solvent system upon association of two hydrophobes is found to be the determining factor for the stabilization of contact minimum. Several static/dynamics quantities (average composition fluctuations, diffusion coefficients, fluctuations in total dipole moment, propensity of ethyl-ethyl association, etc) of the ethanol-water binary mixture also show irregularities around xEtOH =0.10-0.15. We have also discovered that the hydrogen bonding pattern of ethanol rather than water reveals a change in trend near the similar composition range. As the anomalous behaviour of the physical/dynamical properties along with the pair hydrophobicity in aqueous binary mixture of amphiphilic solutes is common phenomena, our results may provide a general viewpoint on these aspects.
Tollett, Roland W.; Fendick, Robert B.
2004-01-01
In 1999-2001, the U.S. Geological Survey installed and sampled 27 shallow wells in the rice-growing area in southwestern Louisiana as part of the Acadian-Pontchartrain Study Unit of the National Water-Quality Assessment Program. The purpose of this report is to describe the waulity of water from shallow wells in the rice-growing area and to relate that water quality to natural and anthropogenic activities, particularly rice agriculture. Ground-water samples were analyzed for general ground-water properties and about 150 water-quality constituents, including major inorganic ions, trace elements, nutrients, dissolved organic carbon (DOC), pesticides, radon, chloroflourocarbons, and selected stable isotopes. Dissolved solids concentrations for 17 wells exceeded the U.S. Environmental Protection Agency secondary minimum containment level of 500 milligrams per liter (mg/L) for drinking water. Concentrations for major pesticides generally were less than the maximum contaminant levels for drinking water. Two major inorganic ions, sulfate and chloride, and two trace elements, iron and manganese, had concentrations that were greater than the secondary maximum containment levels. Three nutrient concentrations were greater than 2 mg/L, a level that might indicate contamination from human activities, and one nutrient concentration (that for nitrite plus nitrite as nitrogen) was greater than the maximum contaminant level of 10 mg/L for drinking water. The median concentration for DOC was 0.5 mg/L, indicating naturally-occurring DOC conditions in the study area. Thirteen pesticides and 7 pesticide degradation products were detected in 14 of the 27 wells sampled. Bentazon, 2, 4-D, and molinate (three rice herbicides) were detected in water from four, one, and one wells, respectively, and malathion (a rice insecticide) was deteced in water fromone well. Low-level concentrations and few detections of nutrients and pesticides indicated that ground-water quality was affected slightly by anthropogenic activities. Quality-control samples, including field blanks, replicates, and spikes, indicated no bias in ground-water data from collection on analysis. Radon concentrations for 22 of the 24 wells sampled wer at or greater than the U.S. Environmental Protection Agency proposed maximum contaminant level of 300 picocuries per liter. Chlorofluorocarbon concentrations in selected wells indicated the apparent ages of the ground water varied with depth water level and ranged from about 17 to 49 years. The stable isotopes of hydrogen and oxygen in water molecules indicated the origin of ground water in the study area was rainwater that originated near the study area and that few geochemical or physical processes influenced the stable isotopic composition of the shallow ground water. The Spearman rank correlation was used to detemrine whther significant correlations existed between physical properties, selected chemical constituents, the number of pesticides detected, and the apparent age of water. The depth to ground water was positively correlated to the well depth and inversely correlated to dissolved solids and other constituents, such as radon, indicating the ground water was under unconfined or semiconfined conditions and more dilute with increasing depth. As the depth to ground water increased, the concentrations of dissolved solids and other constituents decreased, possibly because the deeper sands had a greater transmittal of ground water, which, over time, would flush out, or dilute, the concentrations of dissolved solids in the natural sediments. The apparent age of water was correlated inversely with nitrite plus nitrite concentration, indicating that as apparent age increased, the nitrite plus nitrite concentration decreased. No significant correlations existed between the number of pesticides detected and any of the physical or chemica
Ab initio atomic recombination reaction energetics on model heat shield surfaces
NASA Technical Reports Server (NTRS)
Senese, Fredrick; Ake, Robert
1992-01-01
Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.
Johnson, Michael J.; Mayers, Charles J.; Andraski, Brian J.
2002-01-01
Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radioactive waste and hazardous chemical waste facility near Beatty, Nev., 1998-2000. Data were collected in support of ongoing research studies to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include precipitation, air temperature, solar radiation, net radiation, relative humidity, ambient vapor pressure, wind speed and direction, barometric pressure, soil temperature, and soil-heat flux. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily mean, maximum, and minimum values, and hourly mean values. For precipitation, data output consisted of daily, hourly, and 5-minute totals. Soil-moisture data included periodic measurements of soil-water content at nine neutron-probe access tubes with measurable depths ranging from 5.25 to 29.75 meters. The computer data files included in this report contain the complete micrometeorological and soil-moisture data sets. The computer data consists of seven files with about 14 megabytes of information. The seven files are in tabular format: (1) one file lists daily mean, maximum, and minimum micrometeorological data and daily total precipitation; (2) three files list hourly mean micrometeorological data and hourly precipitation for each year (1998-2000); (3) one file lists 5-minute precipitation data; (4) one file lists mean soil-water content by date and depth at four experimental sites; and (5) one file lists soil-water content by date and depth for each neutron-probe access tube. This report highlights selected data contained in the computer data files using figures, tables, and brief discussions. Instrumentation used for data collection also is described. Water-content profiles are shown to demonstrate variability of water content with depth. Time-series data are plotted to illustrate temporal variations in micrometeorological and soil-water content data. Substantial precipitation at the end of an El Ni?o cycle in early 1998 resulted in measurable water penetration to a depth of 1.25 meters at one of the four experimental soil-monitoring sites.
Willacker, James J.; Eagles-Smith, Collin A.; Lutz, Michelle A.; Tate, Michael T.; Lepak, Jesse M.; Ackerman, Joshua T.
2016-01-01
Anthropogenic manipulation of aquatic habitats can profoundly alter mercury (Hg) cycling and bioaccumulation. The impoundment of fluvial systems is among the most common habitat manipulations and is known to increase fish Hg concentrations immediately following impoundment. However, it is not well understood how Hg concentrations differ between reservoirs and lakes at large spatial and temporal scales or how reservoir management influences fish Hg concentrations. This study evaluated total Hg (THg) concentrations in 64,386 fish from 883 reservoirs and 1387 lakes, across the western United States and Canada, to assess differences between reservoirs and lakes, as well as the influence of reservoir management on fish THg concentrations. Fish THg concentrations were 1.4-fold higher in reservoirs (0.13 ± 0.011 μg/g wet weight ± standard error) than lakes (0.09 ± 0.006), though this difference varied among ecoregions. Fish THg concentrations were 1.5- to 2.6-fold higher in reservoirs than lakes of the North American Deserts, Northern Forests, and Mediterranean California ecoregions, but did not differ between reservoirs and lakes in four other ecoregions. Fish THg concentrations peaked in three-year-old reservoirs then rapidly declined in 4–12 year old reservoirs. Water management was particularly important in influencing fish THg concentrations, which were up to 11-times higher in reservoirs with minimum water storage occurring in May, June, or July compared to reservoirs with minimum storage occurring in other months. Between-year changes in maximum water storage strongly influenced fish THg concentrations, but within-year fluctuations in water levels did not influence fish THg concentrations. Specifically, fish THg concentrations increased up to 3.2-fold over the range of between-year changes in maximum water storage in all ecoregions except Mediterranean California. These data highlight the role of reservoir creation and management in influencing fish THg concentrations and suggest that water management may provide an effective means of mitigating Hg bioaccumulation in some reservoirs.
Carr, Jerry E.; Marcher, Melvin V.
1977-01-01
The Garber-Wellington aquifer, which dips westward at 30 to 40 feet per mile, consists of about 900 feet of interbedded sandstone, shale, and siltstone. Sandstone comprises 35 to 75 percent of the aquifer and averages about 50 percent. Water-table conditions generally exist in the upper 200 feet in the outcrop area of the aquifer; semi-artesian or artesian conditions exist below a depth of 200 feet and beneath rocks of the Hennessey Group (predominantly shale) where the aquifer is fully saturated. Water containing more than 1,000 milligrams per liter dissolved solids occurs at various depths through the area. The altitude of the base of fresh water ranges from 250 feet above sea level in the south-central part of the area to 950 feet in the northwestern part. The thickness of the fresh-water zone ranges from less than 150 feet in the northern part of the area to about 850 feet in the southern part. The total amount of water stored in the fresh-water zone is estimated to be 21 million acre-feet based on specific yield of 0.20. Minimum recharge to the aquifer in 1975 is estimated to be 190 acre-feet per square mile or about 10 percent of the annual precipitation. Total minimum recharge to the aquifer in the study area in 1975 is estimated to be 129,000 acre-feet. Streams in the area are the principal means of ground-water discharge; the amount of discharge is essentially the same as recharge. The amount of groundwater used for municipal and rural water supply in 1975 is estimated to have been 5,000 acre-feet; a similar amount may have been used for industrial purposes. As a result of pumping, the potentiometric surface in 1975 had been lowered about 200 feet in the vicinity of Edmond and about 100 feet in the vicinity of Nichols Hills. Chemical analyses of water from the aquifer indicates that hardness is greater in the upper part of the aquifer than in the lower part, and that sulfate, chloride, and dissolved solids increase with depth. Reported yields of wells more than 250 feet deep range from 70 to 475 gallons per minute and average 240 gallons per minute. Potential well yields range from 225 gallons per minute when the fresh-water zone is 350 feet thick to about 550 gallons per minute where the fresh water zone is 850 feet thick. These estimates of potential yield are based on an available drawdown of half the thickness of the fresh-water zone and a specific capacity of 1.3 gallons per minute per foot. Intrusion of saline water into the fresh-water zone is a potential threat to water quality in the aquifer if the pressure head in the fresh-water zone is reduced sufficiently to allow upconing of saline water. One way to avoid the problem of upconing is by steady pumping at low rates from widely spaced wells; however, information required to determine pumping rates and well spacing is not available. For proper aquifer management the distribution of wells and rates of withdrawals should be designed to capture maximum recharge to the ground-water system. This may be accomplished by developing regional ground-water gradients that are sufficiently large to move water to pumpage centers but not so steep as to cause upconing of saline water or excessive water-level declines.
Daley, Kiley; Truelstrup Hansen, Lisbeth; Jamieson, Rob C; Hayward, Jenny L; Piorkowski, Greg S; Krkosek, Wendy; Gagnon, Graham A; Castleden, Heather; MacNeil, Kristen; Poltarowicz, Joanna; Corriveau, Emmalina; Jackson, Amy; Lywood, Justine; Huang, Yannan
2017-06-13
Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of <2000) on trucked service, and in Iqaluit (population ~6700), which uses a combination of trucked and piped water conveyance. Generally, the source and drinking water was of satisfactory microbial quality, containing Escherichia coli levels of <1 MPN/100 mL with a few exceptions, and selected pathogenic bacteria and parasites were below detection limits using quantitative polymerase chain reaction (qPCR) methods. Tap water in households receiving trucked water contained less than the recommended 0.2 mg/L of free chlorine, while piped drinking water in Iqaluit complied with Health Canada guidelines for residual chlorine (i.e. >0.2 mg/L free chlorine). Some buildings in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks in buildings and ultimately at the tap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, W.R.; Giovengo, J.F.
1987-10-01
Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percentmore » of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.« less
NASA Astrophysics Data System (ADS)
Iritz, L.; Zheleznyak, M.; Dvorzhak, A.; Nesterov, A.; Zaslavsky, A.
2003-04-01
On the European continent the Dnieper is the third largest river basin (509000 sq.km). The Ukrainian part of the drainage basin is 291 400 sq.km. The cascade of 6 reservoirs, that have capacity from 2.5 to 18 cub.km comprises the entire reach of Dnieper River in Ukraine, redistributes the water regime in time. As a result, 17-18 cub. km water can be used, 50% for hydropower production, 30% for agriculture and up to 18% for municipal water supply. The water stress, the pollution load, the insufficient technical conditions require a lot of effort in the water management development. In order to achieve optimal use of water recourses in the Dnieper River basin, it is essential to develop strategies both for the long-term perspective (planning) as well as for the short-term perspective (operation). The Dnieper River basin must be seen as complex of the natural water resources, as well as the human system (water use, social and economic intercourse). In the frame of the project, supported by the Swedish International Development Cooperation Agency (SIDA) the software tool ASUD2 is developed to support reservoir operations provided by the State Committee of Ukraine on Water Management and by the Joint River Commission. ASUD2 includes multicriteria optimization engine that drives the reservoir water balamce models and box models of water quality. A system of supplementary (off-line) tools support more detailed analyses of the water quality parameters of largest reservoirs (Kachovka and Kremechug). The models AQUATOX and WASP ( in the developed 3-D version) are used for these purposes. The Integrated Database IDB-ASUD2 supplies the information such as state of the all reservoirs, hydrological observations and predictions, water demands, measured water quality parameters. ASUD2 is able to give the following information on an operational basis. : - recommended dynamics of the water elevation during the water allocation planning period in all reservoirs calculated on the basis of the different optimisation criteria minimum of the distance to the trajectory of the water level given by decision of the Joint River Commission, minimum value of the water contamination parameters (DO, nutrients, phosphorus), maximum energy production, taking into account limitations from fishery, water intakes of irrigation and transport channels etc; -water releases from the reservoirs to maintain the recommended dynamics in the whole Dnieper Cascade; -integrated water quality parameters for all reservoirs and distributed water quality parameters for the two largest reservoirs (Kremenchug and Kachovka). The analyses based on economical criteria provides the cost-benefit evaluation for different reservoir management alternatives. The assessment takes into account energy production, industry, agriculture as well as the costs associated with ecological damages.
Zimmerman, Frederick J.; Ralston, James D.; Martin, Diane P.
2011-01-01
Objectives. We examined whether minimum wage policy is associated with access to medical care among low-skilled workers in the United States. Methods. We used multilevel logistic regression to analyze a data set consisting of individual-level indicators of uninsurance and unmet medical need from the Behavioral Risk Factor Surveillance System and state-level ecological controls from the US Census, Bureau of Labor Statistics, and several other sources in all 50 states and the District of Columbia between 1996 and 2007. Results. Higher state-level minimum wage rates were associated with significantly reduced odds of reporting unmet medical need after control for the ecological covariates, substate region fixed effects, and individual demographic and health characteristics (odds ratio = 0.853; 95% confidence interval = 0.750, 0.971). Minimum wage rates were not significantly associated with being uninsured. Conclusions. Higher minimum wages may be associated with a reduced likelihood of experiencing unmet medical need among low-skilled workers, and do not appear to be associated with uninsurance. These findings appear to refute the suggestion that minimum wage laws have detrimental effects on access to health care, as opponents of the policies have suggested. PMID:21164102
Physiological and biochemical responses of Prorocentrum minimum to high light stress
NASA Astrophysics Data System (ADS)
Park, So Yun; Choi, Eun Seok; Hwang, Jinik; Kim, Donggiun; Ryu, Tae Kwon; Lee, Taek-Kyun
2009-12-01
Prorocentrum minimum is a common bloomforming photosynthetic dinoflagellate found along the southern coast of Korea. To investigate the adaptive responses of P. minimum to high light stress, we measured growth rate, and generation of reactive oxidative species (ROS), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in cultures exposed to normal (NL) and high light levels (HL). The results showed that HL (800 μmol m-2 s-1) inhibited growth of P. minimum, with maximal inhibition after 7-9 days. HL also increased the amount of ROS and MDA, suggesting that HL stress leads to oxidative damage and lipid peroxidation in this species. Under HL, we first detected superoxide on day 4 and H2O2 on day 5. We also detected SOD activity on day 5 and CAT activity on day 6. The level of lipid peroxidation, an indicator of cell death, was high on day 8. Addition of diphenyleneiodonium (DPI), an NAD(P)H inhibitor, decreased the levels of superoxide generation and lipid peroxidation. Our results indicate that the production of ROS which results from HL stress in P. minimum also induces antioxidative enzymes that counteract oxidative damage and allow P. minimum to survive.
McCarrier, Kelly P; Zimmerman, Frederick J; Ralston, James D; Martin, Diane P
2011-02-01
We examined whether minimum wage policy is associated with access to medical care among low-skilled workers in the United States. We used multilevel logistic regression to analyze a data set consisting of individual-level indicators of uninsurance and unmet medical need from the Behavioral Risk Factor Surveillance System and state-level ecological controls from the US Census, Bureau of Labor Statistics, and several other sources in all 50 states and the District of Columbia between 1996 and 2007. Higher state-level minimum wage rates were associated with significantly reduced odds of reporting unmet medical need after control for the ecological covariates, substate region fixed effects, and individual demographic and health characteristics (odds ratio = 0.853; 95% confidence interval = 0.750, 0.971). Minimum wage rates were not significantly associated with being uninsured. Higher minimum wages may be associated with a reduced likelihood of experiencing unmet medical need among low-skilled workers, and do not appear to be associated with uninsurance. These findings appear to refute the suggestion that minimum wage laws have detrimental effects on access to health care, as opponents of the policies have suggested.
Stochastic Optimization in The Power Management of Bottled Water Production Planning
NASA Astrophysics Data System (ADS)
Antoro, Budi; Nababan, Esther; Mawengkang, Herman
2018-01-01
This paper review a model developed to minimize production costs on bottled water production planning through stochastic optimization. As we know, that planning a management means to achieve the goal that have been applied, since each management level in the organization need a planning activities. The built models is a two-stage stochastic models that aims to minimize the cost on production of bottled water by observing that during the production process, neither interfernce nor vice versa occurs. The models were develop to minimaze production cost, assuming the availability of packing raw materials used considered to meet for each kind of bottles. The minimum cost for each kind production of bottled water are expressed in the expectation of each production with a scenario probability. The probability of uncertainly is a representation of the number of productions and the timing of power supply interruption. This is to ensure that the number of interruption that occur does not exceed the limit of the contract agreement that has been made by the company with power suppliers.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... require the use of heat pump technology to meet the minimum standard for electric storage water heaters... recently amended energy conservation standards for residential electric water heaters on utility programs that use high-storage-volume (above 55 gallons) electric storage water heaters to reduce peak...
The Environmental Protection Agency: What They do to Keep Your Drinking Water Safe
The EPA has been around for 35 years, but it was only in 1974 that they passed the Safe Drinking Water Act. The Act was amended several times in order to improve the minimum drinking water standards. These standards, which are in effect today, are constantly being evaluated and...
24 CFR 3280.610 - Drainage systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... individually vented. (iii) A 3-inch minimum diameter piping shall be required for water closets. (f) Wet-vented... water seal trap (§ 3280.606(a)). (2) The drainage system shall be designed to provide an adequate... equipped with a water-tight cap or plug matching the drain outlet. The cap or plug shall be permanently...
24 CFR 3280.610 - Drainage systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... individually vented. (iii) A 3-inch minimum diameter piping shall be required for water closets. (f) Wet-vented... water seal trap (§ 3280.606(a)). (2) The drainage system shall be designed to provide an adequate... equipped with a water-tight cap or plug matching the drain outlet. The cap or plug shall be permanently...
46 CFR 169.549 - Ring lifebuoys and water lights.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.549 Ring lifebuoys and water lights. (a)(1) The minimum number of...
46 CFR 169.549 - Ring lifebuoys and water lights.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.549 Ring lifebuoys and water lights. (a)(1) The minimum number of...
46 CFR 169.549 - Ring lifebuoys and water lights.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.549 Ring lifebuoys and water lights. (a)(1) The minimum number of...
Coal Gasification Processes for Retrofitting Military Central Heating Plants: Overview
1992-11-01
the water runoff has minimum contamination. The coal pile is located on a waterproof base to prevent water seepage into the ground. All runoff water...United Arab Naphtha Republic Chemical Fertili - Lignite Dust 1 217,000 Ammonia 1963 zer Company Ltd. Synthesis of Thailand, Ferti- lizer Plant in Mae Moh
40 CFR 125.89 - As the Director, what must I do to comply with the requirements of this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water Intake Structures for New Facilities... requirements must be included in each permit: (1) Cooling water intake structure requirements. At a minimum...
Little, Christine; Sagoo, Satnam
2009-12-01
This study was undertaken to assess the cleanliness of food preparation areas, cleaning methods used, and the microbiological quality of water used by 1258 mobile food vendors in the UK. Samples collected included potable water (1102), cleaning cloths (801) and environmental swabs from food preparation surfaces (2704). Cleaning cloths were more heavily contaminated with Aerobic Colony Counts, Enterobacteriaceae, Escherichia coli, and Staphylococcus aureus compared to surfaces sampled. Surfaces that were visually dirty, wet, and chopping boards that were plastic or damaged also had high levels of these bacteria. Fifty-four percent of potable water samples were of poor microbiological quality; i.e. contained coliforms, E. coli and/or enterococci. A documented food safety management system was only evident in 40.1% of vendors and cleaning schedules were only used by 43.6%. Deficiencies in the correct use of cleaning materials, such as dilution factors and the minimum contact time for disinfectants, were identified.
NASA Astrophysics Data System (ADS)
Abou-Elnour, Ali; Khaleeq, Hyder; Abou-Elnour, Ahmad
2016-04-01
In the present work, wireless sensor network and real-time controlling and monitoring system are integrated for efficient water quality monitoring for environmental and domestic applications. The proposed system has three main components (i) the sensor circuits, (ii) the wireless communication system, and (iii) the monitoring and controlling unit. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee and myRIO wireless modules have been used to implement the wireless system. The water quality parameters are accurately measured by the present computer based monitoring system and the measurement results are instantaneously transmitted and published with minimum infrastructure costs and maximum flexibility in term of distance or location. The mobility and durability of the proposed system are further enhanced by fully powering via a photovoltaic system. The reliability and effectiveness of the system are evaluated under realistic operating conditions.
Probing the electronic structure of liquid water with many-body perturbation theory
NASA Astrophysics Data System (ADS)
Pham, Tuan Anh; Zhang, Cui; Schwegler, Eric; Galli, Giulia
2014-03-01
We present a first-principles investigation of the electronic structure of liquid water based on many-body perturbation theory (MBPT), within the G0W0 approximation. The liquid quasiparticle band gap and the position of its valence band maximum and conduction band minimum with respect to vacuum were computed and it is shown that the use of MBPT is crucial to obtain results that are in good agreement with experiment. We found that the level of theory chosen to generate molecular dynamics trajectories may substantially affect the electronic structure of the liquid, in particular, the relative position of its band edges and redox potentials. Our results represent an essential step in establishing a predictive framework for computing the relative position of water redox potentials and the band edges of semiconductors and insulators. Work supported by DOE/BES (Grant No. DE-SC0008938). Work at LLNL was performed under Contract DE-AC52-07NA27344.
Triclosan resistant bacteria in sewage effluent and cross-resistance to antibiotics.
Coetzee, I; Bezuidenhout, C C; Bezuidenhout, J J
2017-09-01
The purpose of this study was to identify triclosan tolerant heterotrophic plate count (HPC) bacteria from sewage effluent and to determine cross-resistance to antibiotics. R2 agar supplemented with triclosan was utilised to isolate triclosan resistant bacteria and 16S rRNA gene sequencing was conducted to identify the isolates. Minimum inhibitory concentrations (MICs) of organisms were determined at selected concentrations of triclosan and cross-resistance to various antibiotics was performed. High-performance liquid chromatography was conducted to quantify levels of triclosan in sewage water. Forty-four HPC were isolated and identified as the five main genera, namely, Bacillus, Pseudomonas, Enterococcus, Brevibacillus and Paenibacillus. MIC values of these isolates ranged from 0.125 mg/L to >1 mg/L of triclosan, while combination of antimicrobials indicated synergism or antagonism. Levels of triclosan within the wastewater treatment plant (WWTP) ranged between 0.026 and 1.488 ppb. Triclosan concentrations were reduced by the WWTP, but small concentrations enter receiving freshwater bodies. Results presented indicate that these levels are sufficient to maintain triclosan resistant bacteria under controlled conditions. Further studies are thus needed into the impact of this scenario on such natural receiving water bodies.
NASA Astrophysics Data System (ADS)
Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin
2012-10-01
This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.
ERIC Educational Resources Information Center
Beris, Carole
The Fry Readability Graph was used to assess the approximate readability level of each of 23 selected instructions, publications, and forms commonly used by adults in order to compare their readability levels with the minimum literacy level as defined by the United States Office of Education (approximately the eighth grade level). The results…
Ground-water data, Sevier Desert, Utah
Mower, Reed W.; Feltis, Richard D.
1964-01-01
This report is intended to serve two purposes: (1) to make available to the public basic ground-water data useful in planning and studying development of water resources, and (2) to supplement an interpretive report that will be published later.Records were collected during the period 1935-64 by the U.S. Geological survey in cooperation with the Utah State Engineer as part of the investigation of ground-water conditions in the Sevier Desert, in Juab and Millard Counties, Utah. The interpretive material will be published in a companion report by R. W. Mower and R. D. Feltis.This report is most useful in predicting conditions likely to be found in areas that are being considered as well sites. The person considering the new well can spot the proposed site on plate 1 and examine the records of nearby wells as shown in the tables and figures. From table 1 he can note such things as depth, diameter, water level, yield, use of water, temperature of water, and depth of perforations. By comparing the depth of perforations with the drillers' logs in table 3 he can note the type of material that yields water to the wells. Table 2 and figure 2 show the historic fluctuations and trends of water levels in the vicinity. From table 4 he can note the chemical quality of the water from wells in the vicinity. Table 5 shows the amount of water discharged during 1951-63 from the pumped irrigation, public supply, and industrial wells. If the reader decides from his examination that conditions are favorable, he can place an application to drill a well with the state Engineer. If the State Engineer believes unappropriated water is available, the application may be approved after minimum statutory requirements have been satisfied.The report is also useful when planning large-scale developments of water supply. This and other uses of the report will be helped by use of the interpretive report upon its release.
Retzlaff, Deanna; Phebus, Randall; Kastner, Curtis; Marsden, James
2005-01-01
A static chamber steam pasteurization unit (SPS 400-SC()) was installed in a high-volume commercial beef slaughter facility. The SPS 400-SC consists of a three-phase carcass treatment cycle of water removal, steam pasteurization, and water chilling. Seven chamber temperatures (71.1, 73.9, 76.7, 79.4, 82.2, 85.0, and 87.8 degrees C) were evaluated at the midline area of pre-rigor beef carcasses. For each temperature evaluated, 20 carcass sides were randomly selected and aseptically sampled by tissue excision immediately before and after steam pasteurization to determine total aerobic bacteria, Enterobacteriaceae, generic E. coli, and total coliform populations. The 87.8 and 85.0 degrees C treatment temperatures were highly effective at reducing total aerobic bacterial populations, with log(10) reductions of 1.4 and 1.5 CFU/cm(2), respectively, from pretreatment mean population levels of 1.7 and 1.9 log10 CFU/cm(2). These temperatures also reduced Enterobacteriaceae, total coliforms, and generic E. coli to undetectable levels (<0.4 CFU/cm(2)) on all carcasses sampled. Treatment at 82.2 was marginally effective at reducing bacterial populations, while 71.1, 73.9, 76.7, and 79.4 degrees C treatments were ineffective at reducing microbial populations. In a Hazard Analysis Critical Control Points (HACCP)-based system employing steam pasteurization of carcasses as a critical control point, a critical limit of 85.0 degrees C as a minimum chamber temperature should be established, with a targeted operating temperature of 87.8 degrees C providing optimum antimicrobial activity.
Soluble phosphate fertilizer production using acid effluent from metallurgical industry.
Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B
2016-01-15
Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.
Landscape-level variation in disease susceptibility related to shallow-water hypoxia.
Breitburg, Denise L; Hondorp, Darryl; Audemard, Corinne; Carnegie, Ryan B; Burrell, Rebecca B; Trice, Mark; Clark, Virginia
2015-01-01
Diel-cycling hypoxia is widespread in shallow portions of estuaries and lagoons, especially in systems with high nutrient loads resulting from human activities. Far less is known about the effects of this form of hypoxia than deeper-water seasonal or persistent low dissolved oxygen. We examined field patterns of diel-cycling hypoxia and used field and laboratory experiments to test its effects on acquisition and progression of Perkinsus marinus infections in the eastern oyster, Crassostrea virginica, as well as on oyster growth and filtration. P. marinus infections cause the disease known as Dermo, have been responsible for declines in oyster populations, and have limited success of oyster restoration efforts. The severity of diel-cycling hypoxia varied among shallow monitored sites in Chesapeake Bay, and average daily minimum dissolved oxygen was positively correlated with average daily minimum pH. In both field and laboratory experiments, diel-cycling hypoxia increased acquisition and progression of infections, with stronger results found for younger (1-year-old) than older (2-3-year-old) oysters, and more pronounced effects on both infections and growth found in the field than in the laboratory. Filtration by oysters was reduced during brief periods of exposure to severe hypoxia. This should have reduced exposure to waterborne P. marinus, and contributed to the negative relationship found between hypoxia frequency and oyster growth. Negative effects of hypoxia on the host immune response is, therefore, the likely mechanism leading to elevated infections in oysters exposed to hypoxia relative to control treatments. Because there is considerable spatial variation in the frequency and severity of hypoxia, diel-cycling hypoxia may contribute to landscape-level spatial variation in disease dynamics within and among estuarine systems.
Storm water runoff-a source of emerging contaminants in urban streams
NASA Astrophysics Data System (ADS)
Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.
2016-12-01
Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This study demonstrated that urband storm water runoff could be a significant source, in addition to WWTP effluent, contributing to the widespread occurrence of ECs in aquatic environment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 89 300 91 4.0 102 (c) The exhalation resistance shall not exceed 25 mm. (1 inch) of water-column... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. 84.153 Section 84.153 Public Health PUBLIC HEALTH SERVICE...
Dreitz, V.J.; Kitchens, W.M.; DeAngelis, D.L.
2004-01-01
Survival rate from fledging to breeding, or juvenile survival, is an important source of variation in lifetime reproductive success in birds. Therefore, determining the relationship between juvenile survival and environmental factors is essential to understanding fitness consequences of reproduction in many populations. With increases in density of individuals and depletion of food resources, quality of most habitats deteriorates during the breeding season. Individuals respond by dispersing in search of food resources. Therefore, to understand the influence of environmental factors on juvenile survival, it is also necessary to know how natal dispersal influences survival of juveniles. We examined effects of various environmental factors and natal dispersal behavior on juvenile survival of endangered Snail Kites (Rostrhamus sociabilis) in central and southern Florida, using a generalized estimating equations (GEEs) approach and model selection criteria. Our results suggested yearly effects and an influence of age and monthly minimum hydrologic levels on juvenile Snail Kite survival. Yearly variation in juvenile survival has been reported by other studies, and other reproductive components of Snail Kites also exhibit such variation. Age differences in juvenile survival have also been seen in other species during the juvenile period. Our results demonstrate a positive relationship between water levels and juvenile survival. We suggest that this is not a direct linear relationship, such that higher water means higher juvenile survival. The juvenile period is concurrent with onset of the wet season in the ecosystem we studied, and rainfall increases as juveniles age. For management purposes, we believe that inferences suggesting increasing water levels during the fledging period will increase juvenile survival may have short-term benefits but lead to long-term declines in prey abundance and possibly wetland vegetation structure.
Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.
Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M
2015-01-01
Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.
Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones
Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.
2015-01-01
Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623
NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM (NELAP) SUPPORT
The nation has long suffered from the inefficiencies and inconsistencies of the current multiple environmental laboratory accreditation programs. In the 1970's, EPA set minimum standards for a drinking water certification program. The drinking water program was adopted by the s...
Santos, John F.; Stoner, J.D.
1972-01-01
This report describes the significant results to 1967 of a comprehensive study that began in 1963 to evaluate what changes take place in an estuary as the loads .of raw and partially treated industrial and municipal wastes are replaced by effluent from a secondary treatment plant. The study area is the Duwamish River estuary, about 18.3 river kilometers long. At mean sea level the estuary has a water-surface area of about 1 square mile and a mean width of 440 feet. At the lowest and highest recorded tides, the volume of the estuary is about 205 and 592 million cubic feet, respectively. The estuary is well stratified (salt-wedge type) at fresh-water inflows greater than 1,000 cfs (cubic feet per second), but when inflow rates are less than 1,000 cfs the lower 5.6 kilometers of the estuary grades into the partly mixed type. The crosschannel salinity distribution is uniform for a given location and depth. Salinity migration is controlled by tides and fresh-water inflow. At fresh-water inflow rates greater than 1,000 cfs, water in the upper 8.4 kilometers of the estuary is always fresh regardless of tide. At inflow rates less than 600 cfs and tide heights greater than 10 feet; some salinity has been detected 16.1 kilometers above the mouth of the estuary. Studies using a fluorescent dye show that virtually no downward mixing into the salt wedge occurs; soluble pollutants introduced at the upper end of the estuary stay in the surface layer (5-15 ft thick). On the basis of dye studies when fresh-water inflow is less than 400 cfs, it is estimated that less than 10 percent of a pollutant will remain in the estuary a minimum of 7 days. Longitudinal dispersion coefficients for the surface layer have been determined to be on the order of 100-400 square feet per second. Four water-quality stations automatically monitor DO (dissolved oxygen), water temperature, pH, and specific conductance; at one station solar radiation also is measured. DO concentration in the surface layer decreases almost linearly in a downstream direction. Minimum DO concentration in the surface layer is usually greater than 4 rag/1 (milligrams per liter). The smallest DO values are consistently recorded in the bottom layer at the station 7.7 kilometers above the mouth; monthly means of less than 3 mg/1 of DO have occurred at this point. Manual sampling shows that the DO sag in the bottom layer oscillates between 7.7 and 10.4 kilometers above the mouth of the estuary. Multiple-regression analysis shows that the surface DO content can be estimated from the fresh-water inflow and water temperature. Tidal exchange and fresh-water inflow indirectly control the bottom DO content. Information available from previous studies failed to indicate a progressive decrease in DO content during the period 1949-56, but data from the present study suggest a slight general decrease in the annual minimum DO concentrations in both the upper and lower layers. Average nitrate concentration in fresh water at station 16.2 has increased progressively since 1964, by amounts greater than those which can be attributed to the Renton Treatment Plant, 4.3 kilometers upstream from station 16.2. The BOD (biochemical oxygen demand) in both surface and bottom layers is generally less than 4 rag/1 of oxygen, but values greater than 6 rag/1 have been measured during a period of phytoplankton bloom. Phytoplankton blooms can occur during periods of minimum tidal exchange and fresh-water inflows of less than 300 cfs if solar radiation and water temperature are optimum. Nutrients (nitrogen and phosphorus compounds) do not control the occurrence of a bloom, because sufficient quantities of these nutrients are always present. Nutrients in the treated effluent may increase the biomass of the bloom. Trace-element studies have not defined any role that these elements may play in algal growth. The inflowing fresh water contains principally calcium and bicarbonate and has a dissolved-solids content ra
Chapotin, Saharah Moon; Razanameharizaka, Juvet H; Holbrook, N Michele
2006-06-01
Baobab trees are often cited in the literature as water-storing trees, yet few studies have examined this assumption. We assessed the role of stored water in buffering daily water deficits in two species of baobabs (Adansonia rubrostipa Jum. and H. Perrier and Adansonia za Baill.) in a tropical dry forest in Madagascar. We found no lag in the daily onset of sap flow between the base and the crown of the tree. Some night-time sap flow occurred, but this was more consistent with a pattern of seasonal stem water replenishment than with diurnal usage. Intrinsic capacitance of both leaf and stem tissue (0.07-0.08 and 1.1-1.43 MPa(-1), respectively) was high, yet the amount of water that could be withdrawn before turgor loss was small because midday leaf and stem water potentials (WPs) were near the turgor-loss points. Stomatal conductance was high in the daytime but then declined rapidly, suggesting an embolism-avoidance strategy. Although the xylem of distal branches was relatively vulnerable to cavitation (P50: 1.1-1.7 MPa), tight stomatal control and minimum WPs near--1.0 MPa maintained native embolism levels at 30-65%. Stem morphology and anatomy restrict water movement between storage tissues and the conductive pathway, making stored-water usage more appropriate to longer-term water deficits than as a buffer against daily water deficits.
Ahrens, Philipp; Martetschläger, Frank; Siebenlist, Sebastian; Attenberger, Johann; Crönlein, Moritz; Biberthaler, Peter; Stöckle, Ulrich; Sandmann, Gunther H
2017-04-26
Humeral head fractures requiring surgical intervention are severe injuries, which might affect the return to sports and daily activities. We hypothesize that athletic patients will be constrained regarding their sporting activities after surgically treated humeral head fractures. Despite a long rehabilitation program physical activities will change and an avoidance of overhead activities will be noticed. Case series with 65 Patients, with a minimum follow-up of 24 months participated in this study. All patients were treated using a locking plate fixation. Their sporting activity was investigated at the time of the injury and re-investigated after an average of 3.83 years. The questionnaire setup included the evaluation of shoulder function, sporting activities, intensity, sport level and frequency evaluation. Level of evidence IV. At the time of injury 61 Patients (94%) were engaged in recreational sporting activities. The number of sporting activities declined from 26 to 23 at the follow-up examination. There was also a decline in sports frequency and duration of sports activities. The majority of patients remains active in their recreational sporting activity at a comparable duration and frequency both pre- and postoperatively. Nevertheless, shoulder centered sport activities including golf, water skiing and martial arts declined or were given up.
NASA Astrophysics Data System (ADS)
Koho, K. A.; Reichart, G.-J.
2012-04-01
The Arabian Sea Oxygen Minimum Zone (OMZ) is sustained by high surface water productivity and relatively weak mid-depth water column ventilation. High primary productivity drives high respiration rates in the water column, causing severe oxygen depletion between ±150-1400 m water depths, with the oxygen concentrations falling below 2 μM in the core of the OMZ. Living (rose Bengal stained) benthic foraminifera were collected at 10-stations, covering a large bottom water oxygen concentration gradient from the Murray Ridge. This sub-marine ridge is located in the open marine environment of the Arabian Sea and thus not affected by large gradients in surface water productivity such as encountered at the continental margins. Since these sites thus receive similar organic fluxes, but are bathed in bottom waters with contrasting oxygen concentrations, pore water profiles mainly reflect bottom water oxygenation. The study sites represent a natural laboratory to investigate the impact of bottom water chemistry on trace metal incorporation in benthic foraminifera. Trace metal analyses by laser ablation ICP-MS allows detailed single chamber measurements of trace metal content, which can be related to in situ pore water geochemistry. Focus of this study is on redox sensitive trace metal (e.g. Mn, U) incorporation into foraminiferal test calcite in relation to pore water oxygen and carbonate chemistry.
Effect Of Water On Permeation By Hydrogen
NASA Technical Reports Server (NTRS)
Tomazic, William A.; Hulligan, David
1988-01-01
Water vapor in working fluid equilibrates with permeability-reducing oxides in metal parts. Report describes study of effects of water on permeation of heater-head tubes by hydrogen in Stirling engine. Experiments performed to determine minimum concentration of oxygen and/or oxygen-bearing gas maintaining oxide coverage adequate for low permeability. Tests showed 750 ppm or more of water effective in maintaining stable, low permeability.
NASA Astrophysics Data System (ADS)
Huang, Y.; Dong, X.; Xi, B.; Deng, Y.
2017-12-01
Earlier studies show that there is a strong positive correlation between the mean onset date of snow melt north of 70°N and the minimum Arctic sea ice extent (SIE) in September. Based on satellite records from 1980 to 2016, the September Arctic SIE minimum is most sensitive to the early melt onset over the Siberian Sea (73°-84°N, 90°-155°), which is defined as the area of focus (AOF) in this analysis. The day with melt onset exceeding 10% area of the AOF is marked as the initial melt date for a given year. With this definition, a strong positive correlation (r=0.59 at 99% confidence level) is found between the initial melt date over the AOF and the September SIE minimum over the Arctic. Daily anomalies of cloud and radiation properties are compared between six years with earliest initial melt dates (1990, 2012, 2007, 2003, 1991, 2016) and six years with latest initial melt dates (1996, 1984, 1983, 1982, 1987, 1992) using the NASA MERRA-2 reanalysis. Our results suggest that higher cloud water path (CWP) and precipitable water vapor (PWV) are clearly associated with early melt onset years through the period of mid-March to August. Major contrasts in CWP are found between the early and late onset years in a period of approximately 30 days prior to the onset to 30 days after the onset. As a result, the early melt onset years exhibit positive anomalies for downward longwave flux at the surface and negative anomalies for downward shortwave flux, shortwave cloud radiative effect (CRE) as well as net CRE. The negative net CRE is over-compensated by the positive longwave flux anomaly associated with elevated PWV, contributing to early melt onsets. The temporal evolution of CRE and PWV radiative effect during the entire melting season will be documented together with an analysis tracing the dynamical, mid-latitude origins of increased CWP and PWV prior to initial melt onsets.
DOT National Transportation Integrated Search
2012-10-01
A handout with tables representing the material requirements, test methods, responsibilities, and minimum classification levels mixture-based specification for flexible base and details on aggregate and test methods employed, along with agency and co...
McCarrier, Kelly P; Martin, Diane P; Ralston, James D; Zimmerman, Frederick J
2010-05-01
Minimum wage policies have been advanced as mechanisms to improve the economic conditions of the working poor. Both positive and negative effects of such policies on health care access have been hypothesized, but associations have yet to be thoroughly tested. To examine whether the presence of minimum wage policies in excess of the federal standard of $5.15 per hour was associated with health care access indicators among low-skilled adults of working age, a cross-sectional analysis of 2004 Behavioral Risk Factor Surveillance System data was conducted. Self-reported health insurance status and experience with cost-related barriers to needed medical care were adjusted in multi-level logistic regression models to control for potential confounding at the state, county, and individual levels. State-level wage policy was not found to be associated with insurance status or unmet medical need in the models, providing early evidence that increased minimum wage rates may neither strengthen nor weaken access to care as previously predicted.
Detection of Leaks in Water Distribution System using Non-Destructive Techniques
NASA Astrophysics Data System (ADS)
Aslam, H.; Kaur, M.; Sasi, S.; Mortula, Md M.; Yehia, S.; Ali, T.
2018-05-01
Water is scarce and needs to be conserved. A considerable amount of water which flows in the water distribution systems was found to be lost due to pipe leaks. Consequently, innovations in methods of pipe leakage detections for early recognition and repair of these leaks is vital to ensure minimum wastage of water in distribution systems. A major component of detection of pipe leaks is the ability to accurately locate the leak location in pipes through minimum invasion. Therefore, this paper studies the leak detection abilities of the three NDT’s: Ground Penetration Radar (GPR) and spectrometer and aims at determining whether these instruments are effective in identifying the leak. An experimental setup was constructed to simulate the underground conditions of water distribution systems. After analysing the experimental data, it was concluded that both the GPR and the spectrometer were effective in detecting leaks in the pipes. However, the results obtained from the spectrometer were not very differentiating in terms of observing the leaks in comparison to the results obtained from the GPR. In addition to this, it was concluded that both instruments could not be used if the water from the leaks had reached on the surface, resulting in surface ponding.
Chappell, Nick A; Jones, Timothy D; Tych, Wlodek
2017-10-15
Insufficient temporal monitoring of water quality in streams or engineered drains alters the apparent shape of storm chemographs, resulting in shifted model parameterisations and changed interpretations of solute sources that have produced episodes of poor water quality. This so-called 'aliasing' phenomenon is poorly recognised in water research. Using advances in in-situ sensor technology it is now possible to monitor sufficiently frequently to avoid the onset of aliasing. A systems modelling procedure is presented allowing objective identification of sampling rates needed to avoid aliasing within strongly rainfall-driven chemical dynamics. In this study aliasing of storm chemograph shapes was quantified by changes in the time constant parameter (TC) of transfer functions. As a proportion of the original TC, the onset of aliasing varied between watersheds, ranging from 3.9-7.7 to 54-79 %TC (or 110-160 to 300-600 min). However, a minimum monitoring rate could be identified for all datasets if the modelling results were presented in the form of a new statistic, ΔTC. For the eight H + , DOC and NO 3 -N datasets examined from a range of watershed settings, an empirically-derived threshold of 1.3(ΔTC) could be used to quantify minimum monitoring rates within sampling protocols to avoid artefacts in subsequent data analysis. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The influence of wave energy and sediment transport on seagrass distribution
Stevens, Andrew W.; Lacy, Jessica R.
2012-01-01
A coupled hydrodynamic and sediment transport model (Delft3D) was used to simulate the water levels, waves, and currents associated with a seagrass (Zostera marina) landscape along a 4-km stretch of coast in Puget Sound, WA, USA. A hydroacoustic survey of seagrass percent cover and nearshore bathymetry was conducted, and sediment grain size was sampled at 53 locations. Wave energy is a primary factor controlling seagrass distribution at the site, accounting for 73% of the variability in seagrass minimum depth and 86% of the variability in percent cover along the shallow, sandy portions of the coast. A combination of numerical simulations and a conceptual model of the effect of sea-level rise on the cross-shore distribution of seagrass indicates that the area of seagrass habitat may initially increase and that wave dynamics are an important factor to consider in predicting the effect of sea-level rise on seagrass distributions in wave-exposed areas.
NASA Astrophysics Data System (ADS)
Boori, Mukesh Singh; Choudhary, Komal; Kupriyanov, Alexander; Sugimoto, Atsuko
2016-11-01
Eastern Siberia, Russia is physically and socio-economically vulnerable to accelerated Arctic sea level rise due to low topography, high ecological value, harsh climatic conditions, erosion and flooding of coastal area and destruction of harbor constructions and natural coastal hazards. A 1 to 10m inundation land loss scenarios for surface water and sea level rise (SLR) were developed using digital elevation models of study site topography through remote sensing and GIS techniques by ASTER GDEM and Landsat OLI data. Results indicate that 10.82% (8072.70km2) and 29.73% (22181.19km2) of the area will be lost by flooding at minimum and maximum inundation levels, respectively. The most severely impacted sectors are expected to be the vegetation, wetland and the natural ecosystem. Improved understanding of the extent and response of SLR will help in preparing for mitigation and adaptation.
Montevecchi, W.A.; Piatt, John F.
1984-01-01
1. Lipid levels of capelin are highest in late fall and lowest during the summer spawning season; protein levels are constant at 13–14% body wt throughout the year.2. Ovid females contained significantly more lipid and protein and less water and had higher energy densities than males and spent females.3. Surgically-removed egg masses made up 34.2 ± 10.3% female body wt and were very similar in composition and energy density to gravid females, differing from spent females and males in similar respects. Owing to the ovarian development of females, sexes differ in energy density only during the spawning season.4. Sexes were similar in amino acid composition. Analysis of capelin and three other seabird forage species revealed that isoleucine levels were lower than minimum avian maintenance and growth requirements.5. Implications for the foraging behaviour and food preferences of diving seabird predators (murres, puffins) are discussed
Water Content of Lunar Alkali Fedlspar
NASA Technical Reports Server (NTRS)
Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.
2016-01-01
Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites crystallized between 4.3-3.8 Ga from relatively wet melts that degassed upon crystallization. The formation of these granites likely removed significant amounts of water from some mantle source regions, e.g. later mare basalts predicting derivation from a mantle with <10 ppm water. However, this would have been a heterogeneous pro-cess based on K distribution. Thus some, if not most of the mantle may not have been devolatilized by this process; as seen by water in volcanic glasses and melt inclusions.
NASA Astrophysics Data System (ADS)
Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.
2016-04-01
Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The water level monitoring network of Mires basin has been optimized 6 times by removing 5, 8, 12, 15, 20 and 25 wells from the original network. In order to achieve the optimum solution in the minimum possible computational time, a stall generations criterion was set for each optimisation scenario. An improvement made to the classic genetic algorithm was the change of the mutation and crossover fraction in respect to the change of the mean fitness value. This results to a randomness in reproduction, if the solution converges, to avoid local minima, or, in a more educated reproduction (higher crossover ratio) when there is higher change in the mean fitness value. The choice of integer genetic algorithm in MATLAB 2015a poses the restriction of adding custom selection and crossover-mutation functions. Therefore, custom population and crossover-mutation-selection functions have been created to set the initial population type to custom and have the ability to change the mutation crossover probability in respect to the convergence of the genetic algorithm, achieving thus higher accuracy. The application of the network optimisation tool to Mires basin indicates that 25 wells can be removed with a relatively small deterioration of the groundwater level map. The results indicate the robustness of the network optimisation tool: Wells were removed from high well-density areas while preserving the spatial pattern of the original groundwater level map. Varouchakis, E. A. and D. T. Hristopulos (2013). "Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables." Advances in Water Resources 52: 34-49.
34 CFR 361.84 - Performance indicators.
Code of Federal Regulations, 2012 CFR
2012-07-01
... competitive, self-, or BEP employment with earnings equivalent to at least the minimum wage. (iv) Performance... earnings equivalent to at least the minimum wage, the percentage who are individuals with significant... program in competitive, self-, or BEP employment with earnings levels equivalent to at least the minimum...
34 CFR 361.84 - Performance indicators.
Code of Federal Regulations, 2014 CFR
2014-07-01
... competitive, self-, or BEP employment with earnings equivalent to at least the minimum wage. (iv) Performance... earnings equivalent to at least the minimum wage, the percentage who are individuals with significant... program in competitive, self-, or BEP employment with earnings levels equivalent to at least the minimum...