Safeguards on uranium ore concentrate? the impact of modern mining and milling process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, Stephen
2013-07-01
Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
...-Calhoun Mine and Mill Site, Leadpoint, WA AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...-Calhoun Mine and Mill Site in Leadpoint, Washington, with settling party Blue Tee Corporation. The... Anderson-Calhoun Mine and Mill Site in Leadpoint, Washington, EPA Docket No. CERCLA-10-2010-0105 and should...
Uranium Mines and Mills | RadTown USA | US EPA
2017-08-07
Uranium is used as nuclear fuel for electric power generation. U.S. mining industries can obtain uranium in two ways: mining or milling. Mining waste and mill tailings can contaminate water, soil and air if not disposed of properly.
Eppinger, Robert G.; Briggs, Paul H.; Rosenkrans, Danny; Ballestrazze, Vanessa
2000-01-01
Environmental geochemical investigations at Wrangell-St. Elias National Park and Preserve, Alaska, between 1994 and 1997 included studies of the Kennecott stratabound copper mines and mill area; historic mines and mill in the Bremner District, gold placer mines at Gold Hill; the undisturbed porphyry, Cu-Mo deposits at Orange Hill and Bond Creek, and the historic mines and mill at Nabesna, The study was in cooperation with the National Park Service and focused on sample media including surface water, bedload sediment, rock, mine waste, and mill tailings samples. Results demonstrate that bedrock geology and mineral deposit type must be considered when environmental geochemical effects of historic or active mine areas are evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, R.F.; Eadie, G.G.; Russell, C.R.
Ground-water contamination from uranium mining and milling results from the infiltration of radium-bearing mine, mill, and ion-exchange plant effluents. Radium, selenium, and nitrate were of most value as indicators of contamination. In recent years, mining has increased radium in mine effluents from several picocuries/liter (pCi/1) or less, to 100-150 pCi/1. The shallow aquifer in use in the vicinity of one mill was grossly contaminated with selenium, attributable to the mill tailings. Seepage from two other mill tailings ponds averaged 67,400,000 liters/year and, to date, has contributed an estimated 1.1 curies of radium to ground water. At one of these, anmore » injection well was used to dispose of over 3,400,000,000 liters of waste from 1960-1973. The wastes have not been properly monitored and have apparently migrated to more shallow, potable aquifers. No adverse impacts on municipal water quality in Paguate, Bluewater, Grants, Milan, and Gallup were observed. (GRA)« less
1. VIEW OF OFFICE OF THE NEVADA LUCKY TIGER MILL ...
1. VIEW OF OFFICE OF THE NEVADA LUCKY TIGER MILL AND MINE COMPLEX (FEATURE B-I), FACING NORTHEAST. ROAD TO HATCH ADIT IN THE FOREGROUND. (OCTOBER, 1995) - Nevada Lucky Tiger Mill & Mine, Office, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
9. VIEW TO SOUTHSOUTHWEST, MINE WAREHOUSE, LABORATORY AND GRINDING/ROD MILL ...
9. VIEW TO SOUTH-SOUTHWEST, MINE WAREHOUSE, LABORATORY AND GRINDING/ROD MILL (FOREGROUND), AND SAMPLING BUILDING AND WATER TOWER (BACKGROUND). - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO
2010 Five-Year Plan: Assessment of Health and Environmental Impacts of Uranium Mining and Milling
The five-year plan is intended to compile all activities contributing to the identification and cleanup of legacy uranium milling and mining activities in the Grants Mining District in the State of New Mexico.
149. VIEW FROM SOUTH OF SWITCH NORTH OF CLINTON MINE. ...
149. VIEW FROM SOUTH OF SWITCH NORTH OF CLINTON MINE. SWITCH LEADS FROM PORTLAND MINE AND DIVERGES FOR PASSING TRACK ON WAY TO MILL. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Klein, Terry L.; Cannon, Michael R.; Fey, David L.
2004-01-01
Frohner Meadows, an area of low-topographic gradient subalpine ponds and wetlands in glaciated terrane near the headwaters of Lump Gulch (a tributary of Prickly Pear Creek), is located about 15 miles west of the town of Clancy, Montana, in the Helena National Forest. Mining and ore treatment of lead-zinc-silver veins in granitic rocks of the Boulder batholith over the last 120 years from two sites (Frohner mine and the Nellie Grant mine) has resulted in accumulations of mine waste and mill tailings that have been distributed downslope and downstream by anthropogenic and natural processes. This report presents the results of an investigation of the geochemistry of the wetlands, streams, and unconsolidated-sediment deposits and the hydrology, hydrogeology, and water quality of the area affected by these sources of ore-related metals. Ground water sampled from most shallow wells in the meadow system contained high concentrations of arsenic, exceeding the Montana numeric water-quality standard for human health. Transport of cadmium and zinc in ground water is indicated at one site near Nellie Grant Creek based on water-quality data from one well near the creek. Mill tailings deposited in upper Frohner Meadow contribute large arsenic loads to Frohner Meadows Creek; Nellie Grant Creek contributes large arsenic, cadmium, and zinc loads to upper Frohner Meadows. Concentrations of total-recoverable cadmium, copper, lead, and zinc in most surface-water sites downstream from the Nellie Grant mine area exceeded Montana aquatic-life standards. Nearly all samples of surface water and ground water had neutral to slightly alkaline pH values. Concentrations of arsenic, cadmium, lead, and zinc in streambed sediment in the entire meadow below the mine waste and mill tailings accumulations are highly enriched relative to regional watershed-background concentrations and exceed consensus-based, probable-effects concentrations for streambed sediment at most sites. Cadmium, copper, and zinc typically are adsorbed to the surface coatings of streambed-sediment grains. Mine waste and mill tailings contain high concentrations of arsenic, cadmium, copper, lead, and zinc in a quartz-rich matrix. Most of the waste sites that were sampled had low acid-generating capacity, although one site (fine-grained mill tailings from the Nellie Grant mine deposited in the upper part of lower Frohner Meadows) had extremely high acid-generating potential because of abundant fine-grained pyrite. Two distinct sites were identified as metal sources based on streambed-sediment samples, cores in the meadow substrate, and mine and mill-tailings samples. The Frohner mine and mill site contribute material rich in arsenic and lead; similar material from the Nellie Grant mine and mill site is rich in cadmium and zinc.
OVERVIEW OF GOLD HILL MILL, ROAD, AND WHITE PINE TALC ...
OVERVIEW OF GOLD HILL MILL, ROAD, AND WHITE PINE TALC MINE LOOKING EAST. THE OPENING TO THE TALC MINE IS IN THE DARK AREA AT CENTER LEFT EDGE. WARM SPRINGS CAMP IS OUT OF FRAME TO THE RIGHT. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA
U.S.-Australia Civilian Nuclear Cooperation: Issues for Congress
2010-12-01
Enrichment.......................................................................................................7 Uranium Mining and Milling...Issues for Congress Congressional Research Service 7 The nuclear fuel cycle begins with mining uranium ore and upgrading it to yellowcake. Because...uranium after the mining and milling stage. Commercial enrichment services are available in the United States, Europe, Russia, and Japan. Fuel
U.S.-Australia Civilian Nuclear Cooperation: Issues for Congress
2010-09-30
7 Uranium Mining and Milling ................................................................................................8...cycle begins with mining uranium ore and upgrading it to yellowcake. Because naturally occurring uranium lacks sufficient fissile 235U to make fuel for...enrichment, and finally fabrication into fuel elements. Australia exports its uranium after the mining and milling stage. Commercial enrichment services
U.S.-Australia Civilian Nuclear Cooperation: Issues for Congress
2010-07-07
Mining and Milling ................................................................................................7 Uranium Sales to India...carried out at Lucas Heights (see below). The nuclear fuel cycle begins with mining uranium ore and upgrading it to yellowcake. Because naturally... mining and milling stage. Commercial enrichment services are available in the United States, Europe, Russia, and Japan. Fuel fabrication services are
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj K. Rajamani; Sanjeeva Latchireddi; Sravan K. Prathy
The U.S. mining industry operates approximately 80 semi-autogenesis grinding mills (SAG) throughout the United States. Depending on the mill size the SAG mills draws between 2 MW and 17 MW. The product from the SAG mill is further reduced in size using pebble crushers and ball mills. Hence, typical gold or copper ore requires between 2.0 and 7.5 kWh per ton of energy to reduce the particle size. Considering a typical mining operation processes 10,000 to 100,000 tons per day the energy expenditure in grinding is 50 percent of the cost of production of the metal. A research team frommore » the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and others. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling and operators had to learn more. Now the power consumption is 0.3-1.3 kWh/ton lower than before. The actual SAG mill power draw is 230-370 kW lower. Mill runs 1 rpm lesser in speed on the average. The re-circulation to the cone crusher is reduced by 1-10%, which means more efficient grinding of critical size material is taking place in the mill. All of the savings have resulted in reduction of operating cost be about $0.023-$0.048/ ton.« less
James P. Wacker; Xiping Wang; Douglas R. Rammer; Bessie M. Woodward
2011-01-01
The U.S. National Park Service acquired the National Historic Copper Mine at Kennecott, Alaska, in 1998. There was uncertainty about the condition of the timber-cribbing foundation supporting the concentration mill, the largest building in the mine complex. A comprehensive on-site evaluation of the timber cribbing foundation was performed in summer 2009. The inspection...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Milling. 3596.1 Section 3596.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... OPERATIONS Waste From Mining or Milling § 3596.1 Milling. The operator/lessee shall conduct milling...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Milling. 3596.1 Section 3596.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... OPERATIONS Waste From Mining or Milling § 3596.1 Milling. The operator/lessee shall conduct milling...
36 CFR 13.1904 - Kennecott Mines National Historic Landmark (KNHL).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Wrangell-St. Elias... and other mine openings; (c) Camping in or on any historic structure; and (d) Camping within the mill... center; and (e) Lighting or maintaining a fire within the mill site as defined in paragraph (d) of this...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 557-acre Coalinga Asbestos Mine site, a former asbestos processing area and chromite mine, comprises part of the Johns Manville Coalinga Asbestos Mill site in western Fresno County, California. This rural mountainous area is used primarily for recreational purposes. From 1962 to 1974, asbestos ore from several local mines was processed and sorted onsite, and the resulting asbestos mill tailings were periodically bulldozed into an intermittent stream channel. Subsequently, from 1975 to 1977, a chromite milling operation was conducted onsite. Tailings were often washed downstream during periods of stream flow, and the resuspension of asbestos fibers from the tailings intomore » the air produced a significant inhalation hazard. As a result of these activities, approximately 450,000 cubic yards of mill tailings and asbestos ore remain onsite within a large tailing pile. In 1980 and 1987, State investigations indicated that the site was contributing a significant amount of asbestos into the surface water. The site will be remediated as two Operable Units (OU). The Record of Decision (ROD) addresses the remedial action for OU2, the Johns Manville Coalinga Asbestos Mill Area. The primary contaminant of concern affecting the surface water is asbestos.« less
Rostad, Colleen E.; Schmitt, Christopher J.; Schumacher, John G.; Leiker, Thomas J.
2011-01-01
Surface water samples were collected in 2006 from a lead mine-mill complex in Missouri to investigate possible organic compounds coming from the milling process. Water samples contained relatively high concentrations of dissolved organic carbon (DOC; greater than 20 mg/l) for surface waters but were colorless, implying a lack of naturally occurring aquatic humic or fulvic acids. Samples were extracted by three different types of solid-phase extraction and analyzed by electrospray ionization/mass spectrometry. Because large amounts of xanthate complexation reagents are used in the milling process, techniques were developed to extract and analyze for sodium isopropyl xanthate and sodium ethyl xanthate. Although these xanthate reagents were not found, trace amounts of the degradates, isopropyl xanthyl thiosulfonate and isopropyl xanthyl sulfonate, were found in most locations sampled, including the tailings pond downstream. Dioctyl sulfosuccinate, a surfactant and process filtering aid, was found at concentrations estimated at 350 μg/l at one mill outlet, but not downstream. Release of these organic compounds downstream from lead-zinc mine and milling areas has not previously been reported. A majority of the DOC remains unidentified.
Otton, James K.
2011-01-01
Studies of the natural environment in the Grants Mineral Belt in northwestern New Mexico have been conducted since the 1930s; however, few such investigations predate uranium mining and milling operations, which began in the early 1950s. This report provides an annotated bibliography of reports that describe the hydrology and geochemistry of groundwaters and surface waters and the geochemistry of soils and sediments in the Grants Mineral Belt and contiguous areas. The reports referenced and discussed provide a large volume of information about the environmental conditions in the area after mining started. Data presented in many of these studies, if evaluated carefully, may provide much basic information about the baseline conditions that existed over large parts of the Grants Mineral Belt prior to mining. Other data may provide information that can direct new work in efforts to discriminate between baseline conditions and the effects of the mining and milling on the natural environment.
Psychosocial and health impacts of uranium mining and milling on Navajo lands.
Dawson, Susan E; Madsen, Gary E
2011-11-01
The uranium industry in the American Southwest has had profoundly negative impacts on American Indian communities. Navajo workers experienced significant health problems, including lung cancer and nonmalignant respiratory diseases, and psychosocial problems, such as depression and anxiety. There were four uranium processing mills and approximately 1,200 uranium mines on the Navajo Nation's over 27,000 square miles. In this paper, a chronology is presented of how uranium mining and milling impacted the lives of Navajo workers and their families. Local community leaders organized meetings across the reservation to inform workers and their families about the relationship between worker exposures and possible health problems. A reservation-wide effort resulted in activists working with political leaders and attorneys to write radiation compensation legislation, which was passed in 1990 as the Radiation Exposure Compensation Act (RECA) and included underground uranium miners, atomic downwinders, and nuclear test-site workers. Later efforts resulted in the inclusion of surface miners, ore truck haulers, and millworkers in the RECA Amendments of 2000. On the Navajo Nation, the Office of Navajo Uranium Workers was created to assist workers and their families to apply for RECA funds. Present issues concerning the Navajo and other uranium-impacted groups include those who worked in mining and milling after 1971 and are excluded from RECA. Perceptions about uranium health impacts have contributed recently to the Navajo people rejecting a resumption of uranium mining and milling on Navajo lands.
Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V
2015-01-01
Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO42–) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. PMID:25475484
Nash, J. Thomas
2002-01-01
This report describes reconnaissance hydrogeochemical investigations of 22 mining districts on the Western Slope of Colorado in the Gunnison and Uncompahgre National Forests and adjacent public lands administered by the Bureau of Land Management. Sources and fates of contaminants from historic mines, mine waste, and mill tailings are interpreted from chemical analyses for 190 samples of surface waters; 185 samples of mined rocks, mill tailings, and altered rocks; and passive leach analyses of 116 samples of those mineralized materials. Short reaches of several headwater streams show relatively low level effects of historic mining; the headwaters of the Uncompahgre River are highly contaminated by mines and unmined altered rocks in the Red Mountain district. There is encouraging evidence that natural processes attenuate mine-related contamination in most districts.
2. VIEW OF LOWER MILL FLOOR FOUNDATION, SHOWING, LEFT TO ...
2. VIEW OF LOWER MILL FLOOR FOUNDATION, SHOWING, LEFT TO RIGHT, EDGE OF MILLING FLOOR, TABLE FLOOR, VANNING FLOOR, LOADING LEVEL, TAILINGS POND IN RIGHT BACKGROUND. VIEW IS LOOKING FROM THE NORTHWEST - Mountain King Gold Mine & Mill, 4.3 Air miles Northwest of Copperopolis, Copperopolis, Calaveras County, CA
1. VIEW NORTH OF PARADISE MILL FOUNDATION AND TAILINGS (FEATURE ...
1. VIEW NORTH OF PARADISE MILL FOUNDATION AND TAILINGS (FEATURE P-7). PHOTO TAKEN FROM MERCURY RETORT. (OCTOBER, 1995) - McCormick Group Mine, Paradise Mill, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
43 CFR 3832.34 - How may I use my mill site?
Code of Federal Regulations, 2011 CFR
2011-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Mill Sites... plants and substations; (3) Tailings ponds and leach pads; (4) Rock and soil dumps; (5) Water and process... independent mill sites for processing metallic minerals from lode claims using: (1) Quartz or stamp mills; or...
43 CFR 3832.34 - How may I use my mill site?
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Mill Sites... plants and substations; (3) Tailings ponds and leach pads; (4) Rock and soil dumps; (5) Water and process... independent mill sites for processing metallic minerals from lode claims using: (1) Quartz or stamp mills; or...
43 CFR 3832.34 - How may I use my mill site?
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Mill Sites... plants and substations; (3) Tailings ponds and leach pads; (4) Rock and soil dumps; (5) Water and process... independent mill sites for processing metallic minerals from lode claims using: (1) Quartz or stamp mills; or...
40 CFR 440.104 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that... process wastewater to navigable waters from mine areas and mills processes and areas that use dump, heap...
Changes in the substrate of rivers in historic mining districts
Milhous, R.T.
2004-01-01
The restoration of rivers in watersheds with historic mining districts has become a topic of interest during the last decade. Rivers restoration in these areas is difficult because the mines and mills can be scattered over a wide area and often small. Many have also been abandoned. This paper presents two substrate related factors that are important in the evaluation of river restoration alternatives in watersheds with significance impacts from mines and mills most of which are old and abandoned. The two factors are 1) changes in the size distribution and specific weights of the substrate, and 2) the changes in quality of the interstecial waters caused by metals associated with the tailings in the substrate. The most important impacts of tailings from mills may be on the physical characteristics of the substrate (porosity) and on the quality of the pore waters. The measurements presented in this paper do show significant variation in the porosity in gravel bed rivers and in the quality of the pore waters. Copyright ASCE 2004.
Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V
2015-03-01
Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO4 (2-) ) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. Environ Toxicol Chem 2015;34:562-574. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC.
From rum jungle to Wismut-reducing the environmental impact of uranium mining and milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuk, W.M.; Jeffree, R.A.; Levins, D.M.
1994-12-31
Australia has a long history of uranium mining. In the early days, little attention was given to environmental matters and considerable pollution occurred. Ansto has been involved in rehabilitation of a number of the early uranium mining sites, from Rum Jungle in Australia`s Northern Territory to Wismut in Germany, and is working with current producers to minimise the environmental impact of their operations. Ansto`s expertise is extensive and includes, inter alia, amelioration of acid mine drainage, radon measurement and control, treatment of mill wastes, management of tailings, monitoring of seepage plumes, mathematical modelling of pollutant transport and biological impacts inmore » a tropical environment.« less
Overview of bureau research directed towards surface powered haulage safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, J.P.; Aldinger, J.A.
1995-12-31
Surface mining operations, including mills and preparation plants, employ over 260,000 people. This represents a significant contribution to our nation`s economy and an important source of skilled and well-paying jobs. As mine production has shifted from underground to surface, and with continuing advances in underground mine safety, surface mining has unfortunately become the leader in mine fatalities. In 1994 surface mining accidents accounted for 49% of all mine fatalities, followed by underground mining with 37% and mills and preparation plants with 14%. The U.S. Bureau of Mines (USBM) has targeted surface mining as an important research priority to reduce themore » social and economic costs associated with fatalities and lost-work-time injuries. USBM safety research focuses on the development of technologies that can enhance productivity and reduce mining costs through a reduction in the number and severity of mining accidents. This report summarizes a number of completed and ongoing research programs directed towards surface powered haulage--the single largest category of fatalities in surface mining and a major cause of lost workdays. Research products designed for industry are highlighted and future USBM surface mining safety research is discussed.« less
Cooley, Maurice E.
1979-01-01
A reconnaissance was made of some of the effects of uranium development on erosion and associated sedimentation in the southern San Juan Basin, where uranium development is concentrated. In general, the effects of exploration on erosion are minor, although erosion may be accelerated by the building of access roads, by activities at the drilling sites, and by close concentration of drilling sites. Areas where the greatest effects on erosion and sedimentation from mining and milling operations have occurred are: (1) in the immediate vicinity of mines and mills, (2) near waste piles, and (3) in stream channels where modifications, such as changes in depth have been caused by discharge of excess mine and mill water. Collapse of tailings piles could result in localized but excessive erosion and sedimentation.
Uranium Mines and Mills Location Database
EPA has compiled mine location information from federal, state, and Tribal agencies into a single database as part of its investigation into the potential environmental hazards of wastes from abandoned uranium mines in the western United States.
Cyanide hazards to plants and animals from gold mining and related water issues
Eisler, R.; Wiemeyer, Stanley N.
2004-01-01
Highly toxic sodium cyanide (NaCN) is used by the international mining community to extract gold and other precious metals through milling of high-grade ores and heap leaching of low-grade ores (Korte et al. 2000). The process to concentrate gold using cyanide was developed in Scotland in 1887 and was used almost immediately in the Witwatersrand gold fields of the Republic of South Africa. Heap leaching with cyanide was proposed by the U.S. Bureau of Mines in 1969 as a means of extracting gold from low-grade ores. The gold industry adopted the technique in the 1970s, soon making heap leaching the dominant technology in gold extraction (Da Rosa and Lyon 1997). The heap leach and milling processes, which involve dewatering of gold-bearing ores, spraying of dilute cyanide solutions on extremely large heaps of ores containing low concentrations of gold, or the milling of ores with the use of cyanide and subsequent recovery of the gold-cyanide complex, have created a number of serious environmental problems affecting wildlife and water management. In this account, we review the history of cyanide use in gold mining with emphasis on heap leach gold mining, cyanide hazards to plants and animals, water management issues associated with gold mining, and proposed mitigation and research needs.
This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiroshi Saito; Tomihiro Taki
2013-07-01
Ningyo-toge Uranium Mine is subject to the environmental remediation. The main purposes are to take measures to ensure the radiation protection from the exposure pathways to humans in future, and to prevent the occurrence of mining pollution. The Yotsugi Mill Tailings Pond in the Ningyo-toge Uranium Mine has deposited mining waste and impounded water as a buffer reservoir before it is transferred to the Water Treatment Facility. It is located at the upstream of the water-source river and as the impact on its environment in case of earthquake is estimated significant, the highest priority has been put to it amongmore » mine-related facilities in the Mine. So far, basic concept has been examined and a great number of data has been acquired, and using the data, some remediation activities have already done, including capping construction for the upstream part of the Mill Tailings Pond. The capping is to reduce rainwater penetration to lower the burden of water treatment, and to reduce radon exhalation and dose rates. Only natural materials are used to alleviate the future maintenance. Data, including settlement amount and underground temperature is now being acquired and accumulated to verify the effectiveness of the capping, and used for the future remediation of the Downstream with revision of its specifications if necessary. (authors)« less
Application of Odor Sensors to Ore Sorting and Mill Feed Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. Nelson
2005-08-01
Control of the feed provided to mineral processing facilities is a continuing challenge. Much effort is currently being devoted to overcoming these problems. These projects are usually described under the general headings of Mine-to-Mill Integration or Mine-Mill Optimization. It should be possible to combine the knowledge of ore type, mineralogy, and other characteristics (located in the mine modeling system), with the advanced capabilities of state-of-the-art mill control systems, to achieve an improved level of control in mineral processing that will allow optimization of the mill processes on an almost real-time basis. This is not happening because mill feed it ismore » often treated as a uniform material, when in reality it varies in composition and characteristics. An investigation was conducted to assess the suitability of odor sensors for maintaining traceability in ore production and processing. Commercially available sensors are now used in food processing, environmental monitoring, and other applications and can detect the presence of very small amounts (0.1-500 ppm) of some molecules. An assortment of such molecules could be used to ''tag'' blocks of ore as they are mined, according to their respective characteristics. Then, as the ore came into the mill, an array of ''electronic noses'' could be used to assess its characteristics in real time. It was found that the Cyranose 320{trademark}, a commercially available odor sensor, can easily distinguish among samples of rock marked with almond, cinnamon, citronella, lemon, and orange oils. Further, the sensor could detect mixtures of rocks marked with various combinations of these oils. Treatment of mixtures of galena and silica with odorant compounds showed no detrimental effects on flotation response in laboratory tests. Additional work is recommended to determine how this concept can be extended to the marking of large volumes of materials.« less
Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.
Mudd, Gavin M; Diesendorf, Mark
2008-04-01
The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain.
Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis.
Zakaria, Mohd Rafein; Fujimoto, Shinji; Hirata, Satoshi; Hassan, Mohd Ali
2014-08-01
Oil palm biomass, namely empty fruit bunch and frond fiber, were pretreated using a planetary ball mill. Particle sizes and crystallinity index values of the oil palm biomass were significantly reduced with extended ball mill processing time. The treatment efficiency was evaluated by the generation of glucose, xylose, and total sugar conversion yields from the pretreatment process compared to the amount of sugars from raw materials. Glucose and xylose contents were determined using high-performance liquid chromatography. An increasing trend in glucose and xylose yield as well as total sugar conversion yield was observed with decreasing particle size and crystallinity index. Oil palm frond fiber exhibited the best material yields using ball milling pretreatment with generated glucose, xylose, and total sugar conversion yields of 87.0, 81.6, and 85.4%, respectively. In contrast, oil palm empty fruit bunch afforded glucose and xylose of 70.0 and 82.3%, respectively. The results obtained in this study showed that ball mill-treated oil palm biomass is a suitable pretreatment method for high conversion of glucose and xylose.
NASA Astrophysics Data System (ADS)
Naftz, D. L.; Walton-Day, K. E.; Fuller, C.; Dam, W. L.; Briggs, M. A.; Snyder, T.
2015-12-01
Legacy uranium (U) mining and processing activities have resulted in soil and water contamination on Federal, state, and tribal lands in the western United States. Sites include legacy mill sites associated with U extraction now managed by the Department of Energy and thousands of waste dumps associated with U exploration, mining, and processing. Recently (2012), over 400,000 hectares of federally managed land in northern Arizona was withdrawn from consideration of mining for a 20-year period to protect the Grand Canyon watershed from potentially adverse effects of U mineral exploration and development. Ore from active and recently active U mines in the Colorado Plateau, the Henry Mountains Complex, and the Arizona Strip is transported to the only currently (2015) active conventional mill site in the western United States, located in Utah. Previous and ongoing U.S. Geological Survey assessments to examine U mobility at a variety of legacy and active sites associated with ore exploration, extraction, and processing will be presented as field-scale examples. Topics associated with site investigations will include: (1) offsite migration of radionuclides associated with the operation of the White Mesa U mill; (2) long-term contaminant transport from legacy U waste dumps on Bureau of Land Management regulated land in Utah; (3) application of incremental soil sampling techniques to determine pre- and post-mining radionuclide levels associated with planned and operating U mines in northern Arizona; (4) application of fiber optic digital temperature sensing equipment to identify areas where shallow groundwater containing elevated U levels may be discharging to a river adjacent to a reclaimed mill site in central Wyoming; and (5) field-scale manipulation of groundwater chemistry to limit U migration from a legacy upgrader site in southeastern Utah.
Eppinger, R.G.; Briggs, P.H.; Rosenkrans, D.S.; Ballestrazze, Vanessa; Aldir, Jose; Brown, Z.A.; Crock, J.G.; d'Angelo, W. M.; Doughten, M.W.; Fey, D.L.; Hageman, P.L.; Hopkins, R.T.; Knight, R.J.; Malcolm, M.J.; McHugh, J.B.; Meier, A.L.; Motooka, J.M.; O'Leary, R. M.; Roushey, B.H.; Sultley, S.J.; Theodorakos, P.M.; Wilson, S.A.
1999-01-01
Environmental geochemical investigations were carried out between 1994 and 1997 in Wrangell-St. Elias National Park and Preserve (WRST), Alaska. Mineralized areas studied include the historic Nabesna gold mine/mill and surrounding areas; the historic Kennecott copper mill area and nearby Bonanza, Erie, Glacier, and Jumbo mines; the historic mill and gold mines in the Bremner district; the active gold placer mines at Gold Hill; and the unmined copper-molybdenum deposits at Orange Hill and Bond Creek. The purpose of the study was to determine the extent of possible environmental hazards associated with these mineralized areas and to establish background and baseline levels for selected elements. Thus, concentrations of a large suite of trace elements were determined to assess metal loadings in the various sample media collected. This report presents the methodology, analytical results, and sample descriptions for water, leachate, sediment, heavy-mineral concentrate, rock, and vegetation (willow) samples collected during these geochemical investigations. An interpretive U.S. Geological Survey Professional Paper incorporating these geochemical data will follow.
Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.
2011-01-01
The Ruth Mine and mill are located in the western Mojave Desert in Inyo County, California (fig. 1). The mill processed gold-silver (Au-Ag) ores mined from the Ruth Au-Ag deposit, which is adjacent to the mill site. The Ruth Au-Ag deposit is hosted in Mesozoic intrusive rocks and is similar to other Au-Ag deposits in the western Mojave Desert that are associated with Miocene volcanic centers that formed on a basement of Mesozoic granitic rocks (Bateman, 1907; Gardner, 1954; Rytuba, 1996). The volcanic rocks consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions (fig. 2) that were emplaced into Mesozoic silicic intrusive rocks (Troxel and Morton, 1962). The Ruth Mine is on Federal land managed by the U.S. Bureau of Land Management (BLM). Tailings from the mine have been eroded and transported downstream into Homewood Canyon and then into Searles Valley (figs. 3, 4, 5, and 6). The BLM provided recreational facilities at the mine site for day-use hikers and restored and maintained the original mine buildings in collaboration with local citizen groups for use by visitors (fig. 7). The BLM requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure arsenic (As) and other geochemical constituents in soils and tailings at the mine site and in stream sediments downstream from the mine in Homewood Canyon and in Searles Valley (fig. 3). The request was made because initial sampling of the site by BLM staff indicated high concentrations of As in tailings and soils adjacent to the Ruth Mine. This report summarizes data obtained from field sampling of mine tailings and soils adjacent to the Ruth Mine and stream sediments downstream from the mine on June 7, 2009. Our results permit a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.
Biogeochemical aspects of uranium mineralization, mining, milling, and remediation
Campbell, Kate M.; Gallegos, Tanya J.; Landa, Edward R.
2015-01-01
Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can affect the fate and transport of U and associated elements in the environment, and possible remediation strategies for site closure and aquifer restoration.This paper represents the fourth in a series of review papers from the U.S. Geological Survey (USGS) on geochemical aspects of UMT management that span more than three decades. The first paper (Landa, 1980) in this series is a primer on the nature of tailings and radionuclide mobilization from them. The second paper (Landa, 1999) includes coverage of research carried out under the U.S. Department of Energy’s Uranium Mill Tailings Remedial Action Program (UMTRA). The third paper (Landa, 2004) reflects the increased focus of researchers on biotic effects in UMT environs. This paper expands the focus to U mining, milling, and remedial actions, and includes extensive coverage of the increasingly important alkaline in situ recovery and groundwater restoration.
Biota of uranium mill tailings near the Black Hills
Mark A. Rumble
1982-01-01
Reclamation" often implies the enhancement of the land as wildlife habitat or for other productive uses. However, there are situations where revegetation to stabilize erosion is the only desired goal. Uranium mining and mill sites may fall into this later category. Data pertaining to plant and animal components on revegetated uranium mill tailings was collected....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj K. Rajamani; Jose Angel Delgadillo
A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and Outokumpu Technology. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as amore » test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling and operators had to learn more. Now the power consumption is 0.3-1.3 kWh/ton lower than before. The actual SAG mill power draw is 230-370 kW lower. Mill runs 1 rpm lesser in speed on the average. The recirculation to the cone crusher is reduced by 1-10%, which means more efficient grinding of critical size material is taking place in the mill. All of the savings have resulted in reduction of operating cost be about $0.023-$0.048/ ton. After completing the shell lifter design, the pulp lifter design was taken up. Through a series of mill surveys and model calculations it was figured that the radial pulp lifter installed on the mill had less than optimum discharge capacity. A number of alternative designs were evaluated. The final choice was the Turbo Pulp Lifter for which Outukumpu Technology, Centennial, Colorado had filed a patent. After installation of the pulp lifter a 22% increase in throughput rate from 344 stph to 421 stph was realized. A 35% decrease in the SAG mill power draw from 3,908 HP to 2,526 HP (2,915 kW to 1,884 kW) was recorded. This equates to a 47% decrease in SAG unit energy consumption from 8.98 kWh/ton to 4.74 kWh/ton. A 11% decrease in SAG mill speed was observed indicating optimized ball strikes. Also, the ball chip generation from the SAG mill was reduced considerably. Further more, a 7% decrease in ball mill power draw from 4,843 HP to 4,491 HP (3,613 kW to 3,350 kW) was observed. This equates to a 24% decrease in ball mill unit energy consumption from 11.13 kWh/ton to 8.43 kWh/ton.« less
8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, ...
8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, LOOKING WEST FROM ACCESS ROAD. THE ROADWAY ON THIS LEVEL (CENTER) WAS USED FOR UNLOADING ORE BROUGHT ON BURROWS INTO THE ORE BIN AT THE TOP LEVEL OF THE MILL. THE ORE BIN IN THE UPPER LEFT WAS ADDED LATER WHEN ORE WAS BROUGHT TO THE MILL BY TRUCKS. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
30 CFR 70.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operator. 70.209 Section 70.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Sampling Procedures... Laboratory, Pittsburgh Safety and Health Technology Center, Cochran Mill Road, Building 38, P.O. Box 18179...
30 CFR 70.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operator. 70.209 Section 70.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Sampling Procedures... Laboratory, Pittsburgh Safety and Health Technology Center, Cochran Mill Road, Building 38, P.O. Box 18179...
30 CFR 70.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator. 70.209 Section 70.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Sampling Procedures... Laboratory, Pittsburgh Safety and Health Technology Center, Cochran Mill Road, Building 38, P.O. Box 18179...
43 CFR 3832.34 - How may I use my mill site?
Code of Federal Regulations, 2014 CFR
2014-10-01
... recovery); (2) Mine administrative and support buildings, warehouses and maintenance buildings, electrical... treatment plants; and (6) Any other use that is reasonably incident to mine development and operation...
Occupational safety data and casualty rates for the uranium fuel cycle. [Glossaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donnell, F.R.; Hoy, H.C.
1981-10-01
Occupational casualty (injuries, illnesses, fatalities, and lost workdays) and production data are presented and used to calculate occupational casualty incidence rates for technologies that make up the uranium fuel cycle, including: mining, milling, conversion, and enrichment of uranium; fabrication of reactor fuel; transportation of uranium and fuel elements; generation of electric power; and transmission of electric power. Each technology is treated in a separate chapter. All data sources are referenced. All steps used to calculate normalized occupational casualty incidence rates from the data are presented. Rates given include fatalities, serious cases, and lost workdays per 100 man-years worked, per 10/supmore » 12/ Btu of energy output, and per other appropriate units of output.« less
Hot mill process parameters impacting on hot mill tertiary scale formation
NASA Astrophysics Data System (ADS)
Kennedy, Jonathan Ian
For high end steel applications surface quality is paramount to deliver a suitable product. A major cause of surface quality issues is from the formation of tertiary scale. The scale formation depends on numerous factors such as thermo-mechanical processing routes, chemical composition, thickness and rolls used. This thesis utilises a collection of data mining techniques to better understand the influence of Hot Mill process parameters on scale formation at Port Talbot Hot Strip Mill in South Wales. The dataset to which these data mining techniques were applied was carefully chosen to reduce process variation. There are several main factors that were considered to minimise this variability including time period, grade and gauge investigated. The following data mining techniques were chosen to investigate this dataset: Partial Least Squares (PLS); Logit Analysis; Principle Component Analysis (PCA); Multinomial Logistical Regression (MLR); Adaptive Neuro Inference Fuzzy Systems (ANFIS). The analysis indicated that the most significant variable for scale formation is the temperature entering the finishing mill. If the temperature is controlled on entering the finishing mill scale will not be formed. Values greater than 1070 °C for the average Roughing Mill and above 1050 °C for the average Crop Shear temperature are considered high, with values greater than this increasing the chance of scale formation. As the temperature increases more scale suppression measures are required to limit scale formation, with high temperatures more likely to generate a greater amount of scale even with fully functional scale suppression systems in place. Chemistry is also a significant factor in scale formation, with Phosphorus being the most significant of the chemistry variables. It is recommended that the chemistry specification for Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale formation. Slabs with higher values should be treated with particular care when being processed through the Hot Mill to limit scale formation.
1. VIEW SHOWING FOUNDATIONS OF HOISTING WORKS, ROYAL MINE, 1988, ...
1. VIEW SHOWING FOUNDATIONS OF HOISTING WORKS, ROYAL MINE, 1988, LOOKING SOUTHEAST. GLORY HOLE DROPS OFF TO LEFT, AND EXCAVATED TRENCH FOR THE 1920s SURFACE TRAM IN RIGHT FOREGROUND - Royal Consolidated Gold Mine & Mills, Hoisting Work, 4.0 Air Miles Northwest of Copperopolis, Copperopolis, Calaveras County, CA
Nitrous oxide emissions from a coal mine land reclaimed with stabilized manure
USDA-ARS?s Scientific Manuscript database
Mined land restoration using manure-based amendments may create soil conditions suitable for nitrous oxide production and emission. We measured nitrous oxide emissions from mine soil amended with composted poultry manure (Comp) or poultry manure mixed with paper mill sludge (Man+PMS) at C/N ratios o...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall not exceed...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines, either open-pit...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall not exceed...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines, either open-pit...
Attempted - to -Phase Conversion of Croconic Acid via Ball Milling
2017-05-18
extended milling times may degrade the material. 15. SUBJECT TERMS ball milling, croconic acid, Hertzian stress , C5H2O5, extended solid 16. SECURITY...the motion of the Wig-L-Bug ball mill; from this motion it was possible to determine the velocity parameters needed for Hertzian stress ...Milling Pressures The high pressures achievable in this type of mill result from stresses that develop in the milled material as it is trapped between
Lumber recovery of Douglas-fir from the Coast and Cascade Ranges of Oregon and Washington.
Susan Willits; Thomas D. Fahey
1988-01-01
This report summarizes the results of lumber recovery studies at four sawmills in western Oregon and western Washington; two dimension mills, one grade mill, and one timber mill were included. Results from individual mills are reported and discussed. The four mills were also combined to approximate "average" conversion of logs to lumber for the region....
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-28
.../National Historic Landmarks Program. COLORADO San Juan County Gold Prince Mine, Mill and Aerial Tramway, (Mining Industry in Colorado, MPS) Address Restricted, Silverton, 11000734 FLORIDA Miami-Dade County...
Mining of Business-Oriented Conversations at a Call Center
NASA Astrophysics Data System (ADS)
Takeuchi, Hironori; Nasukawa, Tetsuya; Watanabe, Hideo
Recently it has become feasible to transcribe textual records from telephone conversations at call centers by using automatic speech recognition. In this research, we extended a text mining system for call summary records and constructed a conversation mining system for the business-oriented conversations at the call center. To acquire useful business insights from the conversational data through the text mining system, it is critical to identify appropriate textual segments and expressions as the viewpoints to focus on. In the analysis of call summary data using a text mining system, some experts defined the viewpoints for the analysis by looking at some sample records and by preparing the dictionaries based on frequent keywords in the sample dataset. However with conversations it is difficult to identify such viewpoints manually and in advance because the target data consists of complete transcripts that are often lengthy and redundant. In this research, we defined a model of the business-oriented conversations and proposed a mining method to identify segments that have impacts on the outcomes of the conversations and can then extract useful expressions in each of these identified segments. In the experiment, we processed the real datasets from a car rental service center and constructed a mining system. With this system, we show the effectiveness of the method based on the defined conversation model.
The Effect of Sugarcane Bagassès Size on the Properties of Pretreatment and Enzymatic Hydrolysis
NASA Astrophysics Data System (ADS)
Xu, Jun; Zhou, Guoqiang; Li, Jun
2017-06-01
The influence of milled bagasse particle size on their reducing sugar and lignin content during dilute acid hydrolysis followed by enzymolysis was investigated. The biomass crystal structures of hydrolyzed residues and enzymolyzed substrates were studied with X-ray diffractometry (XRD). The results showed that the conversion ratio of reducing sugar declined with decreasing milled bagasse particle size. The conversion ratio of reducing sugar after acid hydrolysis decreased from 31.3% to 28.9%. The smaller of the milled bagasse particle size was, the higher of the klason lignin content of hydrolyzed residuals was, which resulted in a decline in conversion ratio of reducing sugar during enzymolysis. In this study, the optimal size of milled bagasse particles was 10 to 20 meshes. The total reducing sugar conversion ratio was 61.5%, consisting of 31.3% in hydrolysis and 30.2% in enzymolysis. After hydrolysis, the specific surface area and pore size increased, and the fiber length was shortened. The inner microfiber bundles were exposed, which improved the accessibility of cellulase and the efficiency of enzymolysis.
3. VIEW OF WATER TANKS FROM ACCESS ROAD TO HATCH ...
3. VIEW OF WATER TANKS FROM ACCESS ROAD TO HATCH ADIT. VIEW NORTH. LUCKY TIGER MILL OFFICE (FEATURE B-I) IN DISTANCE. (OCTOBER, 1995) - Nevada Lucky Tiger Mill & Mine, Water Tanks, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
30 CFR 50.30-1 - General instructions for completing MSHA Form 7000-2.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Operations, Preparation Plants, Breakers: Report data on all persons employed at your milling (crushing...) Employment, Employee Hours, and Coal Production—(1) Operation Sub-Unit: (i) Underground Mine: Report data for... underground mine, report data for those persons on the second line; (ii) Surface Mine (Including Shops and...
30 CFR 50.30-1 - General instructions for completing MSHA Form 7000-2.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Operations, Preparation Plants, Breakers: Report data on all persons employed at your milling (crushing...) Employment, Employee Hours, and Coal Production—(1) Operation Sub-Unit: (i) Underground Mine: Report data for... underground mine, report data for those persons on the second line; (ii) Surface Mine (Including Shops and...
DETAIL VIEW OF LOWER TRAM TERMINAL, SECONDARY ORE BIN, CRUSHER ...
DETAIL VIEW OF LOWER TRAM TERMINAL, SECONDARY ORE BIN, CRUSHER FOUNDATION, AND BALL MILL FOUNDATIONS, LOOKING NORTH NORTHWEST. ORE FROM THE MINES WAS DUMPED FROM THE TRAM BUCKETS INTO THE PRIMARY ORE BIN UNDER THE TRAM TERMINAL. A SLIDING CONTROL DOOR INTRODUCED THE INTO THE JAW CRUSHER (FOUNDATIONS,CENTER). THE CRUSHED ORE WAS THEN CONVEYED INTO THE SECONDARY ORE BIN AT CENTER LEFT. A HOLE IN THE FLOOR OF THE ORE BIN PASSED ORE ONTO ANOTHER CONVEYOR THAT BROUGHT IT OUT TO THE BALL MILL(FOUNDATIONS,CENTER BOTTOM). THIS SYSTEM IS MOST LIKELY NOT THE ORIGINAL SET UP, PROBABLY INSTALLED IN THE MINE'S LAST OCCUPATION IN THE EARLY 1940s. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding
2012-05-01
Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.
25. DETAIL OF STRUCTURAL TIMBERS, ORE BIN, AND STAIRWAY TO ...
25. DETAIL OF STRUCTURAL TIMBERS, ORE BIN, AND STAIRWAY TO TOP FLOOR OF MILL, LOOKING SOUTH FROM SECOND FLOOR OF MILL. PORTION OF ORE BIN ON RIGHT, STAIRS ON LEFT. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
Improving Energy Efficiency Via Optimized Charge Motion and Slurry Flow in Plant Scale Sag Mills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj K. Rajamani
2006-07-21
A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Outokumpu Technology, Kennecott Utah Copper Corporation, and Process Engineering Resources Inc. At Cortez Gold Operations the shell and pulp lifters of the semiautogenous grinding mill was redesigned. The redesigned shell lifter hasmore » been in operation for over three years and the redesigned pulp lifter has been in operation for over nine months now. This report summarizes the dramatic reductions in energy consumption. Even though the energy reductions are very large, it is safe to say that a 20% minimum reduction would be achieved in any future installations of this technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapham, S.C.; Millard, J.B.; Samet, J.M.
1989-03-01
This study was conducted to determine radionuclide tissue levels in cattle raised near U mining and milling facilities. Ambrosia Lake, New Mexico, has been the site of extensive U mining for 30 y and contains several underground U mines, a processing mill, and two large U tailings piles. Ten cows were purchased from two grazing areas in Ambrosia Lake and ten control animals were purchased from Crownpoint, New Mexico. Muscle, liver, kidney, and bone tissue taken from these animals, and environmental samples, including water, grasses and soil collected from the animals' grazing areas, were analyzed for /sup 238/U, /sup 234/U,more » /sup 230/Th, /sup 226/Ra, /sup 210/Pb, and /sup 210/Po. Mean radionuclide levels in cattle tissue and environmental samples from Ambrosia Lake were higher in almost every comparison than those found in respective controls. Liver and kidney tissues were particularly elevated in /sup 226/Ra and /sup 210/Po. Radiation dose commitments from eating cattle tissue with these radionuclide concentrations were calculated. We concluded that the health risk to the public from eating exposed cattle is minimal, unless large amounts of this tissue, especially liver and kidney, are ingested.« less
Van Gosen, Bradley S.; Lowers, Heather; Bush, Alfred L.; Meeker, Gregory P.; Plumlee, Geoffrey S.; Brownfield, Isabelle K.; Sutley, Stephen J.
2002-01-01
Unusually high incidences of asbestos-related mortality and respiratory disease in the small town of Libby, Montana, have been linked to amphibole mineral fibers intergrown with the vermiculite deposits mined and milled near the town from 1923 to 1990. A study conducted by the U.S. Agency for Toxic Substances and Disease Registry concluded that mortality due to asbestosis in Libby mine and mill workers and residents during 1979 to 1998 was much higher than expected for a similar Montana or United States population group. Recent medical testing of past and present mineworkers and residents of Libby showed lung abnormalities in nearly one-fifth of the adult study participants. The U.S. Environmental Protection Agency, under Superfund authority, is completing sampling and cleanup of asbestos-bearing materials in the mine, mill, and town sites. The U.S. Geological Survey is conducting a study, reviewed herein, to investigate the mineral content of other U.S. vermiculite deposits and to determine if the amphibole asbestos minerals like those found in the Libby deposits are common in other vermiculite deposits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... convenience of the user, the revised text is set forth as follows: § 570.54 Forest fire fighting and forest... performed, or mining operations. Portable sawmill shall mean a sawmilling operation where no office or...
Sodium cyanide hazards to fish and other wildlife from gold mining operations
Eisler, R.; Clark, D.R.; Wiemeyer, Stanley N.; Henny, C.J.; Azcue, Jose M.
1999-01-01
Highly toxic sodium cyanide (NaCN) is used increasingly by the international mining community to extract gold and other precious metals through milling of high grade ores and heap leaching of low grade ores. Of the 98 million kg cyanide (CN) consumed in North America in 1989, about 80% was used in gold mining (Knudson 1990). In Canada, more than 90% of the mined gold is extracted from ores with the cyanidation process. This process consists of leaching gold from the ore as a gold-cyanide complex, and gold being recovered by precipitation (Simovic and Snodgrass 1985). Milling and heap leaching require cycling of millions of liters of alkaline water containing high concentrations of potentially toxic NaCN, free cyanide, and metal cyanide complexes that are frequently accessible to wildlife. Some milling operations result in tailings ponds of 150 ha and larger. Heap leach operations that spray or drip cyanide solution onto the flattened top of the ore heap require solution processing ponds of about 1 ha in surface area. Although not intentional or desired, puddles of various sizes may occur on the top of heaps where the highest concentrations of NaCN are found. Exposed solution recovery channels are usually constructed at the base of leach heaps. All of these cyanidecontaining water bodies are hazardous to wildlife if not properly managed (Henny et al. 1994). In this account we emphasize hazards of cyanide from mining operations to fish and wildlife species and proposed mitigation to protect them.
40 CFR 440.50 - Applicability; description of the titanium ore subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) mills beneficiating titanium ores by electrostatic methods, magnetic and physical methods, or flotation methods; and (c) mines engaged in the dredge mining of placer deposits of sands containing rutile... methods in conjunction with electrostatic or magnetic methods). ...
Direct catalytic production of sorbitol from waste cellulosic materials.
Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro
2017-05-01
Cotton wool, cotton textile, tissue paper and printing paper, all potential waste cellulosic materials, were directly converted to sorbitol using a Ru/CNT catalyst in the presence of H 2 and using only water as solvent, without any acids. Conversions up to 38% were attained for the raw substrates, with sorbitol yields below 10%. Ball-milling of the materials disrupted their crystallinity, allowing reaching 100% conversion of cotton wool, cotton textile and tissue paper after 4h, with sorbitol yields around 50%. Mix-milling these materials with the catalyst greatly enhanced their conversion rate, and the materials were efficiently converted to sorbitol with a yield around 50% in 2h. However, ball- and mix-milled printing paper presented a conversion of only 50% after 5h, with sorbitol yields of 7%. Amounts of sorbitol of 0.525, 0.511 and 0.559g could be obtained from 1g of cotton wool, cotton textile and tissue paper, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cyanide and migratory birds at gold mines in Nevada, USA
Henny, C.J.; Hallock, R.J.; Hill, E.F.
1994-01-01
Since the mid-1980s, cyanide in heap leach solutions and mill tailings ponds at gold mines in Nevada has killed a large but incompletely documented number of wildlife ( gt 9,500 individuals, primarily migratory birds). This field investigation documents the availability of cyanide at a variety of 'typical' Nevada gold mines during 1990 and 1991, describes wildlife reactions to cyanide solutions, and discusses procedures for eliminating wildlife loss from cyanide poisoning. Substantial progress has been made to reduce wildlife loss. About half of the mill tailings ponds (some up to 150 ha) in Nevada have been chemically treated to reduce cyanide concentrations (the number needing treatment is uncertain) and many of the smaller heap leach solution ponds and channels are now covered with netting to exclude birds and most mammals. The discovery of a cyanide gradient in mill tailings ponds (concentration usually 2-3 times higher at the inflow point than at reclaim point) provides new insight into wildlife responses (mortality) observed in different portions of the ponds. Finding dead birds on the tops of ore heaps and associated with solution puddling is a new problem, but management procedures for eliminating this source of mortality are available. A safe threshold concentration of cyanide to eliminate wildlife loss could not be determined from the field data and initial laboratory studies. New analytical methods may be required to assess further the wildlife hazard of cyanide in mining solutions.
Stabilization of the As-contaminated soil from the metal mining areas in Korea.
Ko, Myoung-Soo; Kim, Ju-Yong; Bang, Sunbeak; Lee, Jin-Soo; Ko, Ju-In; Kim, Kyoung-Woong
2012-01-01
The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au-Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.
Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.
2000-01-01
Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-09-21
The 10.6-acre Cimarron Mining site, Lincoln County, New Mexico, is an inactive milling facility used to recover iron from ores transported to the site. A shallow aquifer, which is not a potential drinking water source, and a deeper primary drinking water aquifer lie beneath the site. Cyanide was used until 1982 to recover precious metals. The operation of the mill resulted in the discharge of contaminated liquids onsite. The sources of environmental cyanide contamination at the site are the processed waste materials, including tailings piles and cinder block trench sediment piles, the cyanide solution and tailings spillage areas, and themore » cyanide solution recycling and disposal areas, including cinder block trenches and an unlined discharge pit. The major sources of ground water contamination by cyanide are the cinder block trenches and the discharge pit. These areas of prolonged contact between cyanide solution and underlying soil led to cyanide contamination in the shallow aquifer. The ROD addresses contaminated shallow ground water at the Cimarron Mining mill area as Operable Unit 1 (OU1). The primary contaminants of concern affecting the ground water are inorganics including cyanide.« less
Simplified cost models for prefeasibility mineral evaluations
Camm, Thomas W.
1991-01-01
This report contains 2 open pit models, 6 underground mine models, 11 mill models, and cost equations for access roads, power lines, and tailings ponds. In addition, adjustment factors for variation in haulage distances are provided for open pit models and variation in mining depths for underground models.
Nash, J.T.
2001-01-01
Productive historic mines in 13 mining districts, of many geochemical types, were investigated in May of 1998. Reconnaissance field observations were made and samples of mine dumps, mine drainage waters, and mill tailings have been collected to characterize the geochemical signature of these materials and to determine their actual or potential contamination of surface or ground waters. Field observations suggest that visible indicators of acidic mine drainage are rare, and field measurements of pH and chemical analyses of several kinds of materials indicate that only a few sites release acid or significant concentrations of metals.
NASA Technical Reports Server (NTRS)
Warde, C. J.; Ruka, R. J.; Isenberg, A. O.
1976-01-01
A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.
Advanced Fuel Cycle Cost Basis – 2017 Edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, B. W.; Ganda, F.; Williams, K. A.
This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less
Waste Controls at Base Metal Mines
ERIC Educational Resources Information Center
Bell, Alan V.
1976-01-01
Mining and milling of copper, lead, zinc and nickel in Canada involves an accumulation of a half-million tons of waste material each day and requires 250 million gallons of process water daily. Waste management considerations for handling large volumes of wastes in an economically and environmentally safe manner are discussed. (BT)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
... considered but eliminated from detailed analysis include conventional uranium mining and milling, conventional mining and heap leach processing, alternative site location, alternate lixiviants, and alternate...'s Agencywide Document Access and Management System (ADAMS), which provides text and image files of...
30 CFR 47.51 - Requirement for an MSDS.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.51 Requirement for an MSDS. Operators must have... from mining or milling if its hazards are already addressed on the MSDS of the source chemical. ...
30 CFR 47.51 - Requirement for an MSDS.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.51 Requirement for an MSDS. Operators must have... from mining or milling if its hazards are already addressed on the MSDS of the source chemical. ...
30 CFR 47.51 - Requirement for an MSDS.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.51 Requirement for an MSDS. Operators must have... from mining or milling if its hazards are already addressed on the MSDS of the source chemical. ...
30 CFR 47.51 - Requirement for an MSDS.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.51 Requirement for an MSDS. Operators must have... from mining or milling if its hazards are already addressed on the MSDS of the source chemical. ...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent characteristic... for the extraction of uranium or from mines and mills using in situ leach methods. The Agency... Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L of this part any...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent characteristic... for the extraction of uranium or from mines and mills using in situ leach methods. The Agency... Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L of this part any...
14. OBLIQUE VIEW OF UPPER ORE BIN AND LOADING DECK, ...
14. OBLIQUE VIEW OF UPPER ORE BIN AND LOADING DECK, LOOKING WEST. DETAIL OF SUPPORTING TIMBERS. THE LOCATION OF THIS ORE BIN IN RELATION TO THE MILL CAN BE SEEN IN MANY OF THE MILL OVERVIEWS. (CA-290-4 THROUGH CA-290-8). - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, Fernando P.; Torres, Lubelia M.; Oliveira, Joao M.
2007-07-01
Uranium ore was extracted in the surroundings of Mangualde city, North of Portugal, in the mines of Cunha Baixa, Quinta do Bispo and Espinho until a few years ago. Mining waste, milling tailings and acid mine waters are the on site remains of this extractive activity. Environmental radioactivity measurements were performed in and around these sites in order to assess the dispersal of radionuclides from uranium mining waste and the spread of acidic waters resulting from the in situ uranium leaching with sulphuric acid. Results show migration of acid waters into groundwater around the Cunha Baixa mine. This groundwater ismore » tapped by irrigation wells in the agriculture area near the Cunha Baixa village. Water from wells displayed uranium ({sup 238}U) concentrations up to 19x10{sup 3} mBq L{sup -1} and sulphate ion concentrations up to 1070 mg L{sup -1}. These enhanced concentrations are positively correlated with low water pH, pointing to a common origin for radioactivity, dissolved sulphate, and acidity in underground mining works. Radionuclide concentrations were determined in horticulture and farm products from this area also and results suggest low soil to plant transfer of radionuclides and low food chain transfer of radionuclides to man. Analysis of aerosols in surface air showed re suspension of dust from mining and milling waste heaps. Therefore, it is recommended to maintain mine water treatment and to plan remediation of these mine sites in order to prevent waste dispersal in the environment. (authors)« less
Deubner, David C; Sabey, Philip; Huang, Wenjie; Fernandez, Diego; Rudd, Abigail; Johnson, William P; Storrs, Jason; Larson, Rod
2011-10-01
Beryllium mine and ore extraction mill workers have low rates of beryllium sensitization and chronic beryllium disease relative to the level of beryllium exposure. The objective was to relate these rates to the solubility and composition of the mine and mill materials. Medical surveillance and exposure data were summarized. Dissolution of BeO, ore materials and beryllium hydroxide, Be(OH)(2) was measured in synthetic lung fluid. The ore materials were more soluble than BeO at pH 7.2 and similar at pH 4.5. Be(OH)(2) was more soluble than BeO at both pH. Aluminum dissolved along with beryllium from ore materials. Higher solubility of beryllium ore materials and Be(OH)(2) at pH 7.2 might shorten particle longevity in the lung. The aluminum content of the ore materials might inhibit the cellular immune response to beryllium.
Outdoor (222)Rn-concentrations in Germany - part 2 - former mining areas.
Kümmel, M; Dushe, C; Müller, S; Gehrcke, K
2014-06-01
In the German Federal States of Saxony, Saxony-Anhalt and Thuringia, centuries of mining and milling activities resulted in numerous residues with increased levels of natural radioactivity such as waste rock dumps and tailings ponds. These may have altered potential radiation exposures of the population significantly. Especially waste rock dumps from old mining activities as well as 20th century uranium mining may, due to their radon ((222)Rn) exhalation capacity, lead to significant radiation exposures. They often lie close to or within residential areas. In order to study the impact on the natural radon level, the Federal Office for Radiation Protection (BfS) has run networks of radon measurement points in 16 former mining areas, together with 2 networks in regions not influenced by mining for comparison purposes. Representative overviews of the long-term outdoor radon concentrations could be established including estimates of regional background concentrations. Former mining and milling activities did not result in large-area impacts on the outdoor radon level. However, significantly increased radon concentrations were observed in close vicinity of shafts and large waste rock dumps. They are partly located in residential areas and need to be considered under radiation protection aspects. Examples are given that illustrate the consequences of the Wismut Ltd. Company's reclamation activities on the radon situation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fey, David L.; Wirt, Laurie
2007-01-01
The largest sources of copper and zinc to the creek were from surface inflows from the adit, diffuse inflows from wetland areas, and leaching of dispersed mill tailings. Major instream processes included mixing between mining- and non-mining-impacted waters and the attenuation of iron, aluminum, manganese, and othermetals by precipitation or sorption. One year after the rerouting, the Zn and Cu loads in Leavenworth Creek from the adit discharge versus those from leaching of a large volume of dispersed mill tailings were approximately equal to, if not greater than, those before. The mine-waste dump does not appear to be a major source of metal loading. Any improvement that may have resulted from the elimination of adit flow across the dump was masked by higher adit discharge attributed to a larger snow pack. Although many mine remediation activities commonly proceed without prior scientific studies to identify the sources and pathways of metal transport, such strategies do not always translate to water-quality improvements in the stream. Assessment of sources and pathways to gain better understanding of the system is a necessary investment in the outcome of any successful remediation strategy.
Lanxing Du; Jinwu Wang; Yang Zhang; Chusheng Qi; Michael P. Wolcott; Zhiming Yu
2017-01-01
This study demonstrated the technical potential for the large-scale co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals. Ball-milled woods with two particle sizes were prepared by ball milling for 80 min or 120 min (BMW80, BMW120) and then enzymatically hydrolyzed. 78.3% cellulose conversion of...
26. DETAIL OF STRUCTURAL COLLAPSE OF TOP FLOOR OF MILL, ...
26. DETAIL OF STRUCTURAL COLLAPSE OF TOP FLOOR OF MILL, ABOVE ORE BIN, LOOKING WEST FROM TOP OF STAIRWAY IN CA-290-25. THE PIPE AT CENTER WAS USED TO SPREAD CRUSHED ORE COMING FROM THE JAW CRUSHER EVENLY TO ALL AREA OF THE ORE BIN BELOW. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
Code of Federal Regulations, 2013 CFR
2013-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Code of Federal Regulations, 2011 CFR
2011-07-01
... any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach... operations other than placer deposits; (2) Mills that use the froth-flotation process alone or in conjunction... not apply to discharges from the Quartz Hill Molybdenum Project in the Tongass National Forest, Alaska...
Code of Federal Regulations, 2010 CFR
2010-07-01
... any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach... operations other than placer deposits; (2) Mills that use the froth-flotation process alone or in conjunction... not apply to discharges from the Quartz Hill Molybdenum Project in the Tongass National Forest, Alaska...
Code of Federal Regulations, 2012 CFR
2012-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Code of Federal Regulations, 2014 CFR
2014-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... (ADAMS), which provides text and image files of the NRC's public documents in the NRC Library at http... considered, but eliminated from detailed analysis, include conventional uranium mining and milling, conventional mining and heap leach processing, alternate lixiviants, and alternative wastewater disposal...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
THE MARY KATHLEEN URANIUM PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A.
1960-02-01
A description is given of uranium mining and milling methods at the Mary Kathleen Mine in the Cloncurry-Mt. Isa district of Queensland, Australia. The discovery of this property and its development are outlined. The deposit cecurs in highly altered meta-sediments in the corella beds of lower proterozoic age. Because of the considerable internal waste in the deposit, it was necessary to devise a selective mining method which would keep dilution to the lowest possible level. The mining, haulage and handling, premilling program, drilling, and blasting are discussed. (M.C.G.)
The new nuclear west: Uranium milling as community on Colorado's western slope
NASA Astrophysics Data System (ADS)
Tidwell, Abraham S. D.
In mid-2007, Energy Fuels, a Toronto-based uranium mining and milling company, announced their intent to build Piñon Ridge, the first new conventional uranium mill in the United States in 30 years. The prospect of a return to uranium milling has mobilized community support to bring back an industry some see as both familiar and capable of supporting and growing their communities. Using transcripts generated during the Colorado Department of Public Health and Environment's public meetings and hearings during 2010 and 2012, this study examines how proponents of the mill frame the socioeconomic advantages of bringing the industry back. Applying Kinsella's bounded constitutive model of communication, this study shows that the community and the uranium mill are bound in a "sorge-enframing" duality where the care generated by each binds the other to the recalcitrant nature of the uranium industry and preconceived notions of socioeconomic development, respectively.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... amended, the Bureau of Land Management (BLM) Mount Lewis Field Office, Battle Mountain, Nevada, intends to... Buffalo Valley Mine Project, a proposed open pit gold mine, mill, and associated facilities, located on..._mountain_field.html . In order to be considered during the preparation of the Draft EIS, all comments must...
West Virginia wood waste from uncharted sources: log landings and active surface mines
Shawn T. Grushecky; Lawrence E. Osborn
2013-01-01
Traditionally, biomass availability estimates from West Virginia have focused on primary and secondary mill byproducts and logging residues. Other sources of woody biomass are available that have not been surveyed. Through a series of field studies during 2010 and 2011, biomass availability estimates were developed for surface mine sites and log landings in West...
Code of Federal Regulations, 2013 CFR
2013-07-01
... using in-situ leach methods shall not exceed: Effluent characteristic Effluent limitations Maximum for... uranium, radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall... available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... using in-situ leach methods shall not exceed: Effluent characteristic Effluent limitations Maximum for... uranium, radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall... available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... using in-situ leach methods shall not exceed: Effluent characteristic Effluent limitations Maximum for... uranium, radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall... available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing...
Piatak, N.M.; Seal, R.R.; Sanzolone, R.F.; Lamothe, P.J.; Brown, Z.A.
2006-01-01
We report the preliminary results of sequential partial dissolutions used to characterize the geochemical distribution of selenium in stream sediments, mine wastes, and flotation-mill tailings. In general, extraction schemes are designed to extract metals associated with operationally defined solid phases. Total Se concentrations and the mineralogy of the samples are also presented. Samples were obtained from the Elizabeth, Ely, and Pike Hill mines in Vermont, the Callahan mine in Maine, and the Martha mine in New Zealand. These data are presented here with minimal interpretation or discussion. Further analysis of the data will be presented elsewhere.
Box, Stephen E.; Wallis, John C.; Briggs, Paul H.; Brown, Zoe Ann
2005-01-01
This report presents the results of one aspect of an integrated watershed-characterization study that was undertaken to assess the impacts of historical mining and milling of silver-lead-zinc ores on water and sediment composition and on aquatic biota in streams draining the northern part of the Coeur d?Alene Mining District in northern Idaho. We present the results of chemical analyses of 62 samples of streambed sediment, 19 samples of suspended sediment, 23 samples of streambank soil, and 29 samples of mine- and mill-related artificial- fill material collected from the drainages of Prichard, Eagle, and Beaver Creeks, all tributaries to the North Fork of the Coeur d?Alene River. All samples were sieved into three grain-size fractions (<0.063, 0.063?0.25, and 0.25?1.0 mm) and analyzed for 40 elements after four-acid digestion by inductively coupled plasma atomic-emission spectrometry and for mercury by continuous- flow cold-vapor atomic-absorption spectrometry in the U.S. Geological Survey laboratory in Denver, Colo. Historical mining of silver-lead-zinc ores in the headwater reaches of the Prichard Creek, Eagle Creek, and Beaver Creek drainages has resulted in enrichments of lead, zinc, mercury, arsenic, cadmium, silver, copper, cobalt, and, to a lesser extent, iron and manganese in streambed sediment. Using samples collected from the relatively unimpacted West Fork of Eagle Creek as representative of background compositions, streambed sediment in the vicinity of the mines and millsites has Pb and Zn contents of 20 to 100 times background values, decreasing to 2 to 5 times background values at the mouth of the each stream, 15 to 20 km downstream. Lesser enrichments (<10 times background values) of mercury and arsenic also are generally associated with, and decrease downstream from, historical silver-lead-zinc mining in the drainages. However, enrichments of arsenic and, to a lesser extent, mercury also are areally associated with the lode gold deposits along Prichard Creek near Murray, which were not studied here. Metal contents in samples of unfractionated suspended sediment collected during a high-flow event in April 2000 are generally similar to, but slightly higher than, those in the fine (<0.063- mm grain size) fraction of streambed sediment from the same sampling site. Although metal enrichment in streambed sediment typically begins adjacent to the mine portals and their associated mine-waste rock dumps, volumetrically larger inputs of metal-enriched materials were contributed by the ore-concentration millsites and their associated, more finely ground, more metal rich mill-tailings impoundments.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (whether or not by common carrier) from the point of extraction from the ground to the plants or mills in... section: (2) Mining. The term “mining” includes not merely the extraction of the ores or minerals from the... be transported a greater distance to such plants or mills. (4) Treatment processes considered as...
OVERVIEW OF STAMP MILL SITE,LOOKING SOUTHWEST. THE LOWER TRAM TERMINAL ...
OVERVIEW OF STAMP MILL SITE,LOOKING SOUTHWEST. THE LOWER TRAM TERMINAL IS OUT OF FRAME, JUST TO THE RIGHT. WATER TANK, LOADING PLATFORM, AND TRAM TRESTLE LEADING UP TO THE TRAM TERMINAL ARE AT RIGHT. THE STRUCTURE AT EXTREME RIGHT BELOW THE TRESTLE, ARE REMAINS OF A SECONDARY ORE BIN, WITH BALL MILL FOUNDATIONS AND WOOD DEBRIS JUST BELOW ON THE SECOND LEVEL. AT CENTER IS A BOILER AND THE FRAME WORK OF A FILTER PRESS. THE SMALL STRUCTURE AT CENTER LEFT IS AN INTERPRETIVE SIGN PLACED BY THE PARK SERVICE. AT LOWER LEFT, THIRD LEVEL OF THE MILL, ARE THE REMAINS OF A BLACKSMITH'S FORGE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
Ventilation planning at Energy West's Deer Creek mine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonc, L.; Prosser, B.; Gamble, G.
2009-08-15
In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... and Extend the NRC Long-Term Surveillance Boundary With Respect to Materials License SUA-1139 AGENCY... concentration limits and to extend the NRC Long-Term Surveillance Boundary at its Highland Uranium Mine and Mill... wells and at the proposed POC well. The amendment also proposes to expand the Long-Term Surveillance...
Moure-Eraso, R
1999-01-01
This article evaluates how an observational epidemiologic study of federal agencies in uranium miners became an experiment of opportunity for radiation effects. Navajo miners and communities suffered environmental exposures caused by the practices of uranium mining and milling in the Navajo reservation during the 1947 to 1966 period. A historical review of the state-of-the-art knowledge of the health effects of uranium mining and milling during the years prior to 1947 was conducted. Contemporary prevention and remediation practices also were assessed. An appraisal of the summary of findings of a comprehensive evaluation of radiation human experimentation conducted by the U.S. federal government in 1995-96 (ACHRE) demonstrates that uranium miners, including Navajo miners, were the single group that was put more seriously at risk of harm from radiation exposures, with inadequate disclosure and often with fatal consequences. Uranium miners were unwilling and unaware victims of human experimentation to evaluate the health effects of radiation. The failure of the State and U.S. Governments to issue regulations or demand installation of known mine-dust exposure control measures caused widespread environmental damage in the Navajo Nation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhi-jie; Dai, Le-yang; Yang, De-zheng
Highlights: • A novel and high efficiency synthesizing AlN powders method combining mechanical ball milling and DBDP has been developed. • The particle size, the crystallite size, the lattice distortion, the morphology of Al{sub 2}O{sub 3} powders, and the AlN conversion rate are investigated and compared under the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP. • The ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermalmore » temperature. - Abstract: In this paper, aluminum nitride (AlN) powers have been produced with a novel and high efficiency method by thermal annealing at 1100–1600 °C of alumina (Al{sub 2}O{sub 3}) powders which were previously ball milled for various time up to 40 h with and without the assistant of dielectric barrier discharge plasma (DBDP). The ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP and the corresponding synthesized AlN powers are characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. From the characteristics of the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP, it can be seen that the ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. Meanwhile, the synthesized AlN powders can be known as hexagonal AlN with fine crystal morphology and irregular lump-like structure, and have uniform distribution with the average particle size of about between 500 nm and 1000 nm. This provides an important method for fabricating ultra fine powders and synthesizing nitrogen compounds.« less
Remediation to Reduce Ecological Risk from Trace Element Contamination: A Decision Case Study
ERIC Educational Resources Information Center
Pierzynski, Gary M.; Vaillant, Grace C.
2006-01-01
The cumulative result of almost 100 years of mining, milling, and smelting has left areas of Jasper County, Missouri, contaminated with high levels of the trace metals Pb, Cd, and Zn. The site was listed on the National Priorities List in 1990 and is now known as the Jasper County or Oronogo-Duenweg Mining Belt Superfund Site. The U.S.…
Field investigation of a 100-year-old timber crib foundation at a historic copper mine
James Wacker; Xiping Wang; Douglas R. Rammer
2010-01-01
In June 2009, the authors conducted a comprehensive on-site evaluation of the timber crib foundation at Alaskaâs Historic Kennecott Mine Concentration Mill Building. The primary goal of the 6-day inspection was to assess the physical conditions of the existing timber crib foundation and identify timber members and areas that have structural deficiencies. The inspection...
Elliott, James E.; Wells, John David
1968-01-01
The Mill Canyon area is in the eastern part of the Cortez window of the Roberts Mountains thrust belt in the Cortez quadrangle, north-central Nevada. Gold and silver ores have been mined from fissure veins in Jurassic quartz monzonite and in the bordering Wenban Limestone of Devonian age. Geochemical data show anomalies of gold, silver, lead, zinc, copper, arsenic, antimony, mercury, and tellurium. Geologic and geochemical studies indicate that a formation favorable for gold deposition, the Roberts Mountains Limestone of Silurian age, may be found at depth near the mouth of Mill Canyon.
9. EAST ELEVATION OF SKIDOO MILL, LOOKING WEST. THE LEVELS ...
9. EAST ELEVATION OF SKIDOO MILL, LOOKING WEST. THE LEVELS OF THE MILL CAN BE CLEARLY SEEN HERE. THE UPPER MOST LEVEL CONSISTS OF A CONVEORY THAT BROUGHT ORE TO A JAW CRUSHER. THE CRUSHED ORE WAS CHANNELED DIRECTLY INTO A LARGE ORE BIN LOCATED BEHIND THE COVERED WALL (CENTER). THE NEXT LEVEL SHOWS THE BULL (DRIVE) WHEEL ON THE UPPER PART OF THE STAMP BATTERIES. THE NEXT LEVEL DOWN (STAIRS) IS THE LOWER PORTION OF THE STAMP BATTERIES WITH THE MORTAR BLOCKS AND APRONS. THE NEXT LEVEL DOWN (LOWER RIGHT) HELD CONCENTRATION (SHAKING) TABLES AND A CLASSIFIER. MOST EXTERIOR WALL COVERING, TIMBERS, AND ROOF IS MISSING FROM THE MILL. SEE CA-290-42 (CT) FOR IDENTICAL COLOR TRANSPARENCY - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
42. EAST ELEVATION OF SKIDOO MILL, LOOKING WEST. THE LEVELS ...
42. EAST ELEVATION OF SKIDOO MILL, LOOKING WEST. THE LEVELS OF THE MILL CAN BE CLEARLY SEEN HERE. THE UPPER MOST LEVEL CONSISTS OF A CONVEORY THAT BROUGHT ORE TO A JAW CRUSHER. THE CRUSHED ORE WAS CHANNELED DIRECTLY INTO A LARGE ORE BIN LOCATED BEHIND THE COVERED WALL (CENTER). THE NEXT LEVEL SHOWS THE BULL (DRIVE) WHEEL ON THE UPPER PART OF THE STAMP BATTERIES THE NEXT LEVEL DOWN (STAIRS) IS THE LOWER PORTION OF THE STAMP BATTERIES WITH MORTAR BLOCKS AND APRONS. THE NEXT LEVEL DOWN (LOWER RIGHT) HELD CONCENTRATION (SHAKING) TABLES AND A CLASSIFIER. MOST EXTERIOR WALL COVERING, TIMBERS, AND ROOF IS MISSING FROM THE MILL. SEE CA-290-9 FOR IDENTICAL B&W NEGATIVE. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
The History of Uranium Mining and the Navajo People
Brugge, Doug; Goble, Rob
2002-01-01
From World War II until 1971, the government was the sole purchaser of uranium ore in the United States. Uranium mining occurred mostly in the southwestern United States and drew many Native Americans and others into work in the mines and mills. Despite a long and well-developed understanding, based on the European experience earlier in the century, that uranium mining led to high rates of lung cancer, few protections were provided for US miners before 1962 and their adoption after that time was slow and incomplete. The resulting high rates of illness among miners led in 1990 to passage of the Radiation Exposure Compensation Act. PMID:12197966
NASA Technical Reports Server (NTRS)
Amos, D. J.; Fentress, W. K.; Stahl, W. F.
1976-01-01
Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.
Unruh, Daniel M.; Fey, David L.; Church, Stan E.
2000-01-01
IntroductionAs a part of the U.S. Geological Survey Abandoned Mine Lands Initiative, metal-mining related wastes in the Boulder River study area in northern Jefferson County, Montana, have been evaluated for their environmental effects. The study area includes a 24-km segment of the Boulder River in and around Basin, Montana and three principal tributaries to the Boulder River: Basin Creek, Cataract Creek, and High Ore Creek. Mine and prospect waste dumps and mill wastes are located throughout the drainage basins of these tributaries and in the Boulder River. Mine-waste material has been transported into and down streams, where it has mixed with and become incorporated into the streambed sediments. In some localities, mine waste material was placed directly in stream channels and was transported downstream forming fluvial tailings deposits along the stream banks. Water quality and aquatic habitat have been affected by trace-element-contaminated sediment that moves from mine wastes into and down streams during snowmelt and storm runoff events within the Boulder River watershed.Present-day trace element concentrations in the streambed sediments and fluvial tailings have been extensively studied. However, in order to accurately evaluate the impact of mining on the stream environments, it is also necessary to evaluate the pre-mining trace-element concentrations in the streambed sediments. Three types of samples have been collected for estimation of pre-mining concentrations: 1) streambed sediment samples from the Boulder River and its tributaries located upstream from historical mining activity, 2) stream terrace deposits located both upstream and downstream of the major tributaries along the Boulder River, and 3) cores through sediment in overbank deposits, in abandoned stream channels, or beneath fluvial tailings deposits. In this report, we present geochemical data for six stream-terrace samples and twelve sediment-core samples and lead isotopic data for six terrace and thirteen core samples. Sample localities are in table 1 and figures 1 and 2, and site and sample descriptions are in table 2.Geochemical data have been presented for cores through fluvial tailings on High Ore Creek, on upper Basin Creek, and on Jack Creek and Uncle Sam Gulch. Geochemical and lead isotopic data for modern streambed-sediment samples have been presented by Fey and others.Lead isotopic determinations in bed sediments have been shown to be an effective tool for evaluating the contributions from various sources to the metals in bed sediments. However, in order to make these calculations, the lead isotopic compositions of the contaminant sources must also be known. Consequently, we have determined the lead isotopic compositions of five streambed-sediment samples heavily contaminated with fluvial mine waste immediately downstream from large mines in the Boulder River watershed in order to determine the lead isotopic signatures of the contaminants. Summary geochemical data for the contaminants are presented here and geochemical data for the streambed-sediment samples are given by Fey and others.Downstream from the Katie mill site and Jib tailings, fluvial deposits of mill tailings are present on a 10-m by 50-m bar in the Boulder River below the confluence with Basin Creek. The source of these tailings is not known, but fluvial tailings are also present immediately downstream from the Katie mill site, which is immediately upstream from the confluence with Basin Creek. Nine cores of fluvial tailings from this bar were analyzed.Dendrochronology samples were taken at several stream terrace localities to provide age control on the stream terrace deposits. Trees growing on the surfaces of stream terraces provide a minimum age for the terrace deposits, although floods subsequent to the trees' growth could have deposited post-mining overbank deposits around the trees. Historical data were also used to provide estimates of minimum ages of cultural features and to bracket the age of events.
Effects of metal mining and milling on boundary waters of Yellowstone National Park, USA
Nimmo, D.R.; Willox, M.J.; Lafrancois, T.D.; Chapman, P.L.; Brinkman, S.F.; Greene, J.C.
1998-01-01
Aquatic resources in Soda Butte Creek within Yellowstone National Park, USA, continue to be threatened by heavy metals from historical mining and milling activities that occurred upstream of the park's boundary. This includes the residue of gold, silver, and copper ore mining and processing in the early 1900s near Cooke City, Montana, just downstream of the creek's headwaters. Toxicity tests, using surrogate test species, and analyses of metals in water, sediments, and macroinvertebrate tissue were conducted from 1993 to 1995. Chronic toxicity to test species was greater in the spring than the fall and metal concentrations were elevated in the spring with copper exceeding water quality criteria in 1995. Tests with amphipods using pore water and whole sediment from the creek and copper concentrations in the tissue of macroinvertebrates and fish also suggest that copper is the metal of concern in the watershed. In order to understand current conditions in Soda Butte Creek, heavy metals, especially copper, must be considered important factors in the aquatic and riparian ecosystems within and along the creek extending into Yellowstone National Park.
40 CFR 61.143 - Standard for roadways.
Code of Federal Regulations, 2012 CFR
2012-07-01
... area of asbestos ore deposits (asbestos mine): or (b) It is a temporary roadway at an active asbestos mill site and is encapsulated with a resinous or bituminous binder. The encapsulated road surface must...
40 CFR 61.143 - Standard for roadways.
Code of Federal Regulations, 2011 CFR
2011-07-01
... area of asbestos ore deposits (asbestos mine): or (b) It is a temporary roadway at an active asbestos mill site and is encapsulated with a resinous or bituminous binder. The encapsulated road surface must...
40 CFR 61.143 - Standard for roadways.
Code of Federal Regulations, 2014 CFR
2014-07-01
... area of asbestos ore deposits (asbestos mine): or (b) It is a temporary roadway at an active asbestos mill site and is encapsulated with a resinous or bituminous binder. The encapsulated road surface must...
40 CFR 61.143 - Standard for roadways.
Code of Federal Regulations, 2013 CFR
2013-07-01
... area of asbestos ore deposits (asbestos mine): or (b) It is a temporary roadway at an active asbestos mill site and is encapsulated with a resinous or bituminous binder. The encapsulated road surface must...
76 FR 61667 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
..., including: Mining and milling of nuclear materials; buildings on sites of facilities selected by the IAEA... verify the forms' data. The revision involves text clarifications. Affected Public: Business or other for...
High-conversion hydrolysates and corn sweetener production in dry-grind corn process.
USDA-ARS?s Scientific Manuscript database
Most corn is processed to fuel ethanol and distillers’ grain animal feed using the dry grind process. However, wet milling is needed to refine corn starch. Corn starch is in turn processed to numerous products, including glucose and syrup. However, wet milling is a capital, labor, and energy intensi...
1980-01-01
producers under a state law of 1978. Until the regulations under PURPA Title II (the National Energy Act of 1978) are promulgated and the PUC reviews this...hour (rWi); end it is FURTr.R ORDERMD, that the Corumission will re-examine th4 PURPA issues in this proceedirg upon the issuance of rules by the F-RC
A top-down assessment of energy, water and land use in uranium mining, milling, and refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Schneider; B. Carlsen; E. Tavrides
2013-11-01
Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, watermore » and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle.« less
Digital mine claim density map for Federal lands in Montana, 1996
Campbell, Harry W.; Hyndman, Paul C.
1998-01-01
This report describes a digital map and data files generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim information for Federal lands in Montana as of March, 1997. Statewide, 159,704 claims had been recorded with the Bureau of Land Management since 1975. Of those claims, 21,055 (13%) are still actively held while 138,649 (87%) are closed and are no longer held. Montana contains 147,704 sections (usually 1 section equals 1 square mile) in the Public Land Survey System, with 8,569 sections (6%) containing claim data. Of the sections with claim data, 2,192 (26%) contain actively held claims. Only 1.5% of Montana’s sections contains actively held mining claims. The four types of mining claim are lode, placer, mill, and tunnel. A mill claim may be as much as 5 acres or 1/128th (0.78125%) of a square mile. A lode claim, about 20 acres, would cover 1/32nd (3.125%) of a square mile. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. The digital map and data files that are available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller. Campbell (1996) summarized the methodology and GIS techniques that were used to produce the mining claim density map of the Pacific Northwest. Campbell and Hyndman (1997) displayed mining claim information for the Pacific Northwest that used data acquired in 1994. Appendix A of this report lists the attribute data for the digital data files. Appendix B contains the GIS metadata.
TOTAL ORE PROCESSING INTEGRATION AND MANAGEMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leslie Gertsch; Richard Gertsch
2005-05-16
The lessons learned from ore segregation test No.3 were presented to Minntac Mine personnel during the reporting period. Ore was segregated by A-Factor, with low values going to Step 1/2 and high values going to Step 3. During the test, the mine maintained the best split possible for the given production and location constraints. During the test, Step 1&2 A-Factor was lowered more than Step 3 was raised. All other ore quality changes were not manipulated, but the segregation by A-Factor affected most of the other qualities. Magnetic iron, coarse tails, fine tails, silica, and grind changed in response tomore » the split. Segregation was achieved by adding ore from HIS to the Step 3 blend and lowering the amount of LC 1&2 and somewhat lowering the amount of LC 3&4. Conversely, Step 1&2 received less HIS with a corresponding increase in LC 1&2. The amount of IBC was increased to both Steps about one-third of the way into the test. For about the center half of the test, LC 3&4 was reduced to both Steps. The most noticeable layer changes were, then: an increase in the HIS split; a decrease in the LC 1&2 split; adding IBC to both Steps; and lowering LC 3&4 to both Steps. Statistical analysis of the dataset collected during ordinary, non-segregated operation of the mine and mill is continuing. Graphical analysis of blast patterns according to drill monitor data was slowed by student classwork. It is expected to resume after the semester ends in May.« less
Uranium mining wastes, garden exhibition and health risks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Gerhard; Schmidt, Peter; Hinz, Wilko
2007-07-01
Available in abstract form only. Full text of publication follows: For more than 40 years the Soviet-German stockholding company SDAG WISMUT mined and milled Uranium in the East of Germany and became up to 1990 the world's third largest Uranium producer. After reunification of Germany, the new found state own company Wismut GmbH was faced with the task of decommissioning and rehabilitation of the mining and milling sites. One of the largest mining areas in the world, that had to be cleaned up, was located close to the municipality of Ronneburg near the City of Gera in Thuringia. After closingmore » the operations of the Ronneburg underground mine and at the 160 m deep open pit mine with a free volume of 84 Mio.m{sup 3}, the open pit and 7 large piles of mine waste, together 112 Mio.m{sup 3} of material, had to be cleaned up. As a result of an optimisation procedure it was chosen to relocate the waste rock piles back into the open pit. After taking this decision and approval of the plan the disposal operation was started. Even though the transport task was done by large trucks, this took 16 years. The work will be finished in 2007, a cover consisting of 40 cm of uncontaminated material will be placed on top of the material, and the re-vegetation of the former open pit area will be established. When in 2002 the City of Gera applied to host the largest garden exhibition in Germany, Bundesgartenschau (BUGA), in 2007, Wismut GmbH supported this plan by offering parts of the territory of the former mining site as an exhibition ground. Finally, it was decided by the BUGA organizers to arrange its 2007 exhibition on grounds in Gera and in the valley adjacent to the former open pit mine, with parts of the remediated area within the fence of the exhibition. (authors)« less
Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.
2012-07-01
Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The currentmore » Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated from uranium mining and milling' is to be introduced as the legal acts and regulatory documents. The recent ICRP recommendations provide the flexible approaches for solving of such tasks. The FMBA of Russia recognizes the problems of radiation safety assurance related to the legacy of the former USSR in the uranium mining industry. Some part of the regulatory problems assumes to be solved within the EurAsEC inter-state target program 'Reclamation of the territories of the EurAsEC member states affected by the uranium mining and milling facilities'. Using the example of the uranium legacy sites in Kyrgyz and Tajikistan which could result in the tran-boundary disasters and require urgent reclamation, the experience will be gained to be used in other states as well. Harmonization of the national legislations and regulative documents on radiation safety assurance is envisaged. (authors)« less
1. VIEW OF THE ENTRANCE TO THE HATCH ADIT (FEATURE ...
1. VIEW OF THE ENTRANCE TO THE HATCH ADIT (FEATURE B-28), FACING WEST. (OCTOBER, 1995) - Nevada Lucky Tiger Mill & Mine, Hatch Adit, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
164. Photocopied July 1978. VIEW OF STEAMTURBINE BUILDING AT STAMP ...
164. Photocopied July 1978. VIEW OF STEAM-TURBINE BUILDING AT STAMP MILL. BUILDING CONSTRUCTED IN 1921 TO USE EXHAUST STEAM TO GENERATE ELECTRICITY. C. 1925. - Quincy Mining Company, Hancock, Houghton County, MI
77 FR 77078 - Mine Safety and Health Research Advisory Committee: Notice of Charter Renewal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... for Disease Control and Prevention, Department of Health and Human Services, 626 Cochrans Mill Road.... The Director, Management Analysis and Services Office, has been delegated the authority to sign...
OVERVIEW OF REMAINS OF DEWATERING BUILDING, LOOKING SOUTH TOWARD CYANIDE ...
OVERVIEW OF REMAINS OF DEWATERING BUILDING, LOOKING SOUTH TOWARD CYANIDE PROCESSING AREA. WATER USED IN PROCESSING AT THE STAMP MILL WAS CIRCULATED HERE FOR RECLAMATION. SANDS WERE SETTLED OUT AND DEPOSITED IN ONE OF TWO TAILINGS HOLDING AREAS. CLEARED WATER WAS PUMPED BACK TO THE MILL FOR REUSE. THIS PROCESS WAS ACCOMPLISHED BY THE USE OF SETTLING CONES, EIGHT FEET IN DIAMETER AND SIX FEET HIGH. THE REMAINS OF FOUR CONES ARE AT CENTER, BEHIND THE TANK IN THE FOREGROUND. TO THE LEFT IS THE MAIN ACCESS ROAD BETWEEN THE MILL AND THE PARKING LOT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
1979-12-01
Catalpa Solidago sp. Goldenrod Aster novae - angliae New England Aster Acer saccharum Sugar Maple Ulmus rubra Slippery elm Solanum hi rum Common...red pine, and hemlock are the common softwood species, and the common hardwood species include red maple, silver maple, white oak, willow, slippery ... elm and birch. In 1972, between 70 and 7S percent of the total area of the watershed consisted of forests and primarily wooded land. (Reference 3
Noll, James; Gilles, Stewart; Wu, Hsin Wei; Rubinstein, Elaine
2015-01-01
In the United States, total carbon (TC) is used as a surrogate for determining diesel particulate matter (DPM) compliance exposures in underground metal/nonmetal mines. Since TC can be affected by interferences and elemental carbon (EC) is not, one method used to estimate the TC concentration is to multiply the EC concentration from the personal sample by a conversion factor to avoid the influence of potential interferences. Since there is no accepted single conversion factor for all metal/nonmetal mines, one is determined every time an exposure sample is taken by collecting an area sample that represents the TC/EC ratio in the miner's breathing zone and is away from potential interferences. As an alternative to this procedure, this article investigates the relationship between TC and EC from DPM samples to determine if a single conversion factor can be used for all metal/nonmetal mines. In addition, this article also investigates how well EC represents DPM concentrations in Australian coal mines since the recommended exposure limit for DPM in Australia is an EC value. When TC was predicted from EC values using a single conversion factor of 1.27 in 14 US metal/nonmetal mines, 95% of the predicted values were within 18% of the measured value, even at the permissible exposure limit (PEL) concentration of 160 μg/m3 TC. A strong correlation between TC and EC was also found in nine underground coal mines in Australia. PMID:25380085
Moyle, Phillip R.; Causey, J. Douglas
2001-01-01
This report provides chemical analyses for 31 samples collected from various phosphate mine sites in southeastern Idaho (25), northern Utah (2), and western Wyoming (4). The sampling effort was undertaken as a reconnaissance and does not constitute a characterization of mine wastes. Twenty-five samples were collected from waste rock dumps, 2 from stockpiles, and 1 each from slag, tailings, mill shale, and an outcrop. All samples were analyzed for a suite of major, minor, and trace elements. Although the analytical data set for the 31 samples is too small for detailed statistical analysis, a summary of general observations is made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muldoon, Joe; Yankovich, Tamara; Schramm, Laurier L.
The Gunnar Mine and mill site was the largest of some 38 now-abandoned uranium mines that were developed and operated in Northern Saskatchewan, Canada, during the Cold War years. During their operating lifetimes these mines produced large quantities of ore and tailings. The Gunnar mine (open pit and underground) produced over 5 million tonnes of uranium ore and nearly 4.4 million tonnes of mine tailings during its operations from 1955 through 1963. An estimated 2.2 to 2.7 million m{sup 3} of waste rock that was generated during the processing of the ore abuts the shores of Lake Athabasca, the 22.more » largest lake in the world. After closure in the 1960's, the Gunnar site was abandoned with little to no decommissioning being done. The Saskatchewan Research Council has been contracted to manage the clean-up of these abandoned northern uranium mine and mill sites. The Gunnar Mine, because of the magnitude of tailings and waste rock, is subject to an environmental site assessment process regulated by both provincial and federal governments. This process requires a detailed study of the environmental impacts that have resulted from the mining activities and an analysis of projected impacts from remediation efforts. The environmental assessment process, specific site studies, and public involvement initiatives are all now well underway. Due to the many uncertainties associated with an abandoned site, an adaptive remediation approach, utilizing a decision tree, presented within the environmental assessment documents will be used as part of the site regulatory licensing. A critical early task was dealing with major public safety hazards on the site. The site originally included many buildings that were remnants of a community of approximately 800 people who once occupied the site. These buildings, many of which contained high levels of asbestos, had to be appropriately abated and demolished. Similarly, the original mine head frame and mill site buildings, many of which still contained the original machinery and equipment, also had to be dismantled. Remediation options for the accumulated demolition debris have been assessed, as have remediation options for the waste rock and tailings, all of which form part of the environmental assessment. The regulatory requirements include the environmental assessment processes, a complex public involvement strategy, and licensing from the Canadian Nuclear Safety Commission (CNSC) with the long-term goal of releasing the property in a remediated and stable state to the Province of Saskatchewan. Prescribed environmental and land use endpoints will be determined based on the environmental assessment studies and remediation options analyzed and implemented. Ultimately, the site will be released into an institutional controls program that will allow long-term government management and monitoring. (authors)« less
1. VIEW OF THE HOIST (FEATURE B26), FACING NORTHEAST. IT ...
1. VIEW OF THE HOIST (FEATURE B-26), FACING NORTHEAST. IT IS SITUATED ADJACENT TO THE HATCH ADIT. - Nevada Lucky Tiger Mill & Mine, Hoist, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
NASA Astrophysics Data System (ADS)
Rodríguez, V. A. Peña; Medina, J. Medina; Marcatoma, J. Quispe; Ayala, Ch. Rojas; Landauro, C. V.; Baggio-Saitovitch, E. M.; Passamani, E. C.
2011-11-01
Nanocrystalline Fe/Zr alloys have been prepared after milling for 9 h the mixture of elemental Fe and Zr powders or the arc-melting produced Fe2Zr alloy by using mechanical alloying and mechanical milling techniques, respectively. X-ray and Mössbauer results of the Fe and Zr powders, mechanically alloyed, suggest that amorphous Fe2Zr phase and \\upalpha-Fe(Zr) nanograins have been produced with relative concentrations of 91% and 9%, respectively. Conversely, the results of the mechanically milled Fe2Zr alloy indicate that nanograins of the Fe2Zr alloy have been formed, surrounded by a magnetic inter-granular phase that are simultaneously dispersed in a paramagnetic amorphous phase.
NASA Technical Reports Server (NTRS)
Tsu, T. C.
1976-01-01
A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.
Drillers and mill operators in an open-pit gold mine are at risk for impaired lung function.
Vinnikov, Denis
2016-01-01
Occupational studies of associations of exposures with impaired lung function in mining settings are built on exposure assessment and far less often on workplace approach, so the aim of this study was to identify vulnerable occupational groups for early lung function reduction in a cohort of healthy young miners. Data from annual screening lung function tests in gold mining company in Kyrgyzstan were linked to occupations. We compared per cent predicted forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and FEV1/FVC between occupational groups and tested selected occupations in multivariate regression adjusted for smoking and work duration for the following outcomes: FEV1 < 80 %, FEV1/FVC < 70 % and both. 1550 tests of permanent workers of 41 occupations (mean age 40.5 ± 9.2 years, 29.8 % never smokers) were included in the analysis. The mean overall VC was 103.0 ± 12.9 %; FVC 109.1 ± 13.0 % and FEV1 100.2 ± 25.9 %. Drillers and smoking food handlers had the lowest FEV1%. In non-smokers, the lowest FEV1 was in drillers (94.9 ± 11.3 % compared to 115.2 ± 17.7 % in engineers). Drillers (adjusted odds ratio (OR) 1.53 (95 % confidence interval (CI) 1.11-2.09)) and mill operators (OR 2.01 (1.13-3.57)) were at greater risk of obstructive ventilation pattern (FEV1/FVC < 70 %). Drilling and mill operations are the highest risk jobs in an open-pit mine for reduced lung function. Occupational medical clinic at site should follow-up workers in these occupations with depth and strongly recommend smoking cessation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenson, Ron; Howard, Don
2013-07-01
As Canada's nuclear regulator, the Canadian Nuclear Safety Commission (CNSC) is responsible for licensing all aspects of uranium mining, including remediation activities at legacy sites. Since these sites already existed when the current legislation came into force in 2000, and the previous legislation did not apply, they present a special case. The Nuclear Safety and Control Act (NSCA), was written with cradle-to- grave oversight in mind. Applying the NSCA at the end of a 'facilities' life-cycle poses some challenges to both the regulator and the proponent. When the proponent is the public sector, even more challenges can present themselves. Althoughmore » the licensing process for legacy sites is no different than for any other CNSC license, assuring regulatory compliance can be more complicated. To demonstrate how the CNSC has approached the oversight of legacy sites the history of the Commission's involvement with the Gunnar uranium mine and mill site provides a good case study. The lessons learned from the CNSC's experience regulating the Gunnar site will benefit those in the future who will need to regulate legacy sites under existing or new legislation. (authors)« less
NASA Astrophysics Data System (ADS)
Liu, Zhijie; Wang, Wenchun; Yang, Dezheng; Wang, Sen; Dai, Leyang
2016-07-01
Nano-size aluminum nitride (AlN) powders have been successfully synthesized with a high efficiency method through annealing from milling assisted by discharge plasma (p-milling) alumina (Al2O3) precursors. The characterization of the p-milling Al2O3 powders and the synthesized AlN are investigated. Compared to conventional ball milling (c-milling), it can be found that the precursors by p-milling have a finer grain size with a higher specific surface area, which lead to a faster reaction efficiency and higher conversion to AlN at lower temperatures. The activation energy of p-milling Al2O3 is found to be 371.5 kJ/mol, a value that is much less than the reported value of the unmilled and the conventional milled Al2O3. Meanwhile, the synthesized AlN powders have unique features, such as an irregular lamp-like morphology with uniform particle distribution and fine average particle size. The results are attributed to the unique synergistic effect of p-milling, which is the effect of deformation, fracture, and cold welding of Al2O3 powders resulting from ball milling, that will be enhanced due to the introduction of discharge plasma. supported by National Natural Science Foundation of China (No. 51177008)
DETAIL VIEW OF ARRASTRA, LOOKING SOUTHEAST. THIS OLD TECHNOLOGY IS ...
DETAIL VIEW OF ARRASTRA, LOOKING SOUTHEAST. THIS OLD TECHNOLOGY IS AN ANACHRONISM OF THIS MILL. ORE WAS DUMPED INTO THE STONE LINED TROUGH. AS THE ARRASTRA TURNED LARGE STONES CONNECTED TO THE FOUR ARMS WERE DRAGGED AROUND OVER THE ORE TO CRUSH IT. IT IS CLEAR THAT THIS ARRASTRA WAS POWERED BY MACHINE THOUGH IT IS UNCLEAR EXACTLY HOW IT WAS POWERED. THE WHITE PINE TALC MINE OPENING IS SEEN IN THE DISTANCE AT THE CENTER LEFT EDGE. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA
Beyer, W N; Dalgarn, J; Dudding, S; French, J B; Mateo, R; Miesner, J; Sileo, L; Spann, J
2005-01-01
The Tri-State Mining District (Oklahoma, Kansas, and Missouri) is contaminated with Pb, Cd, and Zn from mining, milling and smelting. Metals have been dispersed heterogeneously throughout the District in the form of milled mine waste ("chat"), as flotation tailings and from smelters as aerial deposition or slag. This study was conducted to determine if the habitat has been contaminated to the extent that the assessment populations of wild birds are exposed to toxic concentrations of metals. American robins (Turdus migratorius), northern cardinals (Cardinalis cardinalis), and waterfowl had increased Pb tissue concentrations (p < 0.05) compared with Pb tissue concentrations from reference birds, and the exposure of songbirds to Pb was comparable with that of birds observed at other sites severely contaminated with Pb. Mean activities of the Pb-sensitive enzyme delta-aminolevulinic acid dehydratase (ALAD) were decreased by >50% in red blood cells in these birds (p < 0.05). Several birds had tissue concentrations of Pb that have been associated with impaired biological functions and external signs of poisoning. Cadmium was increased in kidneys of songbirds (p < 0.05), but no proximal tubule cell necrosis associated with Cd poisoning was observed. Zinc concentrations in liver and kidney of waterfowl were significantly higher (p < 0.05) than reference values. The increased environmental concentrations of Zn associated with mining in the District accounted for the pancreatitis previously observed in five waterfowl from the District. The District is the first site at which free-flying wild birds have been found to be suffering severe effects of Zn poisoning.
Kaur, Arvinder; Singh, Jaswinder; Vig, Adarsh Pal; Dhaliwal, S S; Rup, Pushpinder J
2010-11-01
Present study was envisaged for fast bioremediation of toxic paper mill sludge into a soil ameliorating agent. Although a rich source of organic carbon this sludge cannot be directly applied in fields and is recycled very slowly in landfills as it is deficient in other nutrients. Therefore it was mixed with cattle dung in various proportions and subjected to aerobic cocomposting (without worms) and vermicocomposting (with Eisenia fetida). It was observed that mixing cattle dung with the sludge improved physico-chemical characteristics (with transition metals in the permissible range for manures) of the products of both the processes and enhanced its acceptability for worms. Higher decline in organic carbon and higher content of nitrogen and phosphorous along with lower electrical conductivity and higher pH of the products of vermicomposting indicated that E. fetida helped in fast conversion of toxic paper mill sludge into a soil conditioner in 100days. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Velásquez, A. A.; Marín, C. C.; Urquijo, J. P.
2018-03-01
We present the process of synthesis and characterization of magnetite-maghemite nanoparticles by the ball milling method. The particles were synthesized in a planetary ball mill equipped with vials and balls of tempered steel, employing dry and wet conditions. For dry milling, we employed microstructured analytical-grade hematite (α-Fe2O3), while for wet milling, we mixed hematite and deionized water. Milling products were characterized by X-ray diffraction, transmission electron microscopy, room temperature Mössbauer spectroscopy, vibrating sample magnetometry, and atomic absorption spectroscopy. The Mössbauer spectrum of the dry milling product was well fitted with two sextets of hematite, while the spectrum of the wet milling product was well fitted with three sextets of spinel phase. X-ray measurements confirmed the phases identified by Mössbauer spectroscopy in both milling conditions and a reduction in the crystallinity of the dry milling product. TEM measurements showed that the products of dry milling for 100 h and wet milling for 24 h consist of aggregates of nanoparticles distributed in size, with mean particle size of 10 and 15 nm, respectively. Magnetization measurements of the wet milling product showed little coercivity and a saturation magnetization around 69 emu g-1, characteristic of a nano-spinel system. Atomic absorption measurements showed that the chromium contamination in the wet milling product is approximately two orders of magnitude greater than that found in the dry milling product for 24 h, indicating that the material of the milling bodies, liberated more widely in wet conditions, plays an important role in the conversion hematite-spinel phase.
16. VIEW OF ROAD AND LEVELED AREA IN FRONT OF ...
16. VIEW OF ROAD AND LEVELED AREA IN FRONT OF HATCH ADIT (FEATURE B-28) WHICH IS ON THE RIGHT SIDE OF PHOTOGRAPH. (OCTOBER, 1995) - Nevada Lucky Tiger Mill & Mine, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
NASA Astrophysics Data System (ADS)
Alaoui, Abdallah; El Kacemi, K.; El Ass, K.; Kitane, S.; El Bouzidi, S.
2015-05-01
The leaching capacity of olive mill wastewater (OMW) for pyrolusite mine tailings (MnO2) was evaluated using the Box-Behnken experimental design of response surface methodology. The selected test parameters include the concentration of sulfuric acid, the OMW dosage chemical oxygen demand (COD), the solid/liquid ratio S/ L, and particle size. It was determined that the MnO2 dissolution increased with an increase in the sulfuric acid concentration and the OMW dosage, and with a decrease in the solid/liquid ratio. The particle size does not have significant influence on the manganese recovery. A quadratic polynomial model has been developed to predict the amount of manganese extraction from pyrolusite for other operating conditions that were not directly tested. The leaching ability was evaluated based on manganese recovery (Mn%) and the removal capability of chemical oxygen demand (COD%). The predicted values for the responses agreed well with experimental values; R 2 (correlation coefficient) values for Mn% and COD% were 0.9602 and 0.9687, respectively. Within the design space, the optimum conditions for the lixiviation of MnO2 in terms of manganese recovery and COD removal were established and include [H2SO4] of 3 mol L-1, OMW in range of 23 g L-1 to 25 g L-1 COD, and pulp density in range of 90 g L-1 to 100 g L-1. Under these conditions, the response values generated by the model are Mn% ˜49% and COD% >40%. These values show good agreement with those obtained in the validation test. This study has demonstrated that it is possible to use the olive mill wastewater as a reductant agent to recover manganese from a pyrolusite mining residue.
Graphite-to-Graphene: Total Conversion.
Buzaglo, Matat; Bar, Ilan Pri; Varenik, Maxim; Shunak, Liran; Pevzner, Svetlana; Regev, Oren
2017-02-01
The rush to develop graphene applications mandates mass production of graphene sheets. However, the currently available complex and expensive production technologies are limiting the graphene commercialization. The addition of a protective diluent to graphite during ball-milling is demonstrated to result in a game-changer yield (>90%) of defect-free graphene, whose size is controlled by the milling energy and the diluent type. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Milbrandt, Anelia
2016-06-15
This dataset contains information about the biomass resources generated by county in the United States. It includes the following feedstock categories: crop residues, forest residues, primary mill residues, secondary mill residues, and urban wood waste. The estimates are based on county-level statistics and/or point-source data gathered from the U.S. Department of Agriculture (USDA), USDA Forest Service, EPA and other organizations, which are further processed using relevant assumptions and conversions.
Xu, Kailin; Xiong, Xinnuo; Zhai, Yuanming; Wang, Lili; Li, Shanshan; Yan, Jin; Wu, Di; Ma, Xiaoli; Li, Hui
2016-09-10
In this study, the amorphization of glipizide was systematically investigated through high-energy ball milling at different temperatures. The results of solid-state amorphization through milling indicated that glipizide underwent direct crystal-to-glass transformation at 15 and 25°C and crystal-to-glass-to-crystal conversion at 35°C; hence, milling time and temperature had significant effects on the amorphization of glipizide, which should be effectively controlled to obtain totally amorphous glipizide. Solid forms of glipizide were detailedly characterized through analyses of X-ray powder diffraction, morphology, thermal curves, vibrational spectra, and solid-state nuclear magnetic resonance. The physical stability of solid forms was investigated under different levels of relative humidity (RH) at 25°C. Forms I and III are kinetically stable and do not form any new solid-state forms at various RH levels. By contrast, Form II is kinetically unstable, undergoing direct glass-to-crystal transformation when RH levels higher than 32.8%. Therefore, stability investigation indicated that Form II should be stored under relatively dry conditions to prevent rapid crystallization. High temperatures can also induce the solid-state transformation of Form II; the conversion rate increased with increasing temperature. Copyright © 2016 Elsevier B.V. All rights reserved.
Digital mining claim density map for federal lands in Wyoming: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Wyoming as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Colorado: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Colorado as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Washington: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Washington as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Zinc and lead poisoning in wild birds in the Tri-State Mining District (Oklahoma, Kansas, Missouri)
Beyer, W.N.; Dalgam, J.; Dudding, S.; French, J.B.; Mateo, R.; Miesner, J.; Sileo, L.; Spann, J.
2004-01-01
contaminated with Pb, Cd, and Zn from mining, milling and smelting. Metals have been dispersed heterogeneously throughout the District in the form of milled mine waste ('chat'), as flotation tailings and from smelters as aerial deposition or slag. This study was conducted to determine if the habitat has been contaminated to the extent that the assessment populations of wild birds are exposed to toxic concentrations of metals. American robins (Turdus migratorius), northern cardinals (Cardinalis cardinalis), and waterfowl had increased Pb tissue concentrations (p < 0.05) compared with Pb tissue concentrations from reference birds, and the exposure of songbirds to Pb was comparable with that of birds observed at other sites severely contaminated with Pb. Mean activities of the Pb-sensitive enzyme delta-aminolevulinic acid dehydratase (ALAD) were decreased by >50% in red blood cells in these birds (p < 0.05). Several birds had tissue concentrations of Pb that have been associated with impaired biological functions and external signs of poisoning. Cadmium was increased in kidneys of songbirds (p < 0.05), but no proximal tubule cell necrosis associated with Cd poisoning was observed. Zinc concentrations in liver and kidney of waterfowl were significantly higher (p < 0.05) than reference values. The increased environmental concentrations of Zn associated with mining in the District accounted for the pancreatitis previously observed in five waterfowl from the District. The District is the first site at which free-flying wild birds have been found to be suffering severe effects of Zn poisoning.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Corporation, The Doe Run Resources Corporation d/b/a ``The Doe Run Company'', and The Buick Resource Recycling..., Buick Mill, Fletcher, Sweetwater, Viburnum, West Fork, Mine 35 (Casteel), and Buick Resource Recycling...
19. AERIAL VIEW, LOOKING SOUTHWEST, OF SILVER LAKE WEST SHORE ...
19. AERIAL VIEW, LOOKING SOUTHWEST, OF SILVER LAKE WEST SHORE WITH RUINS OF SILVER LAKE MINE AT BOTTOM CENTER. NOTE CONTINUITY OF GEOLOGICAL FORMATIONS WHERE BOTTOM OF LAKE CAN BE SEEN. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO
Fey, David L.; Church, Stan E.; Finney, Christopher J.
1999-01-01
Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubilization. Flotation-mill tailings in the meadow below the Buckeye mine, hereafter referred to as the Buckeye mill-tailings site, have been identified as significant contributors to water quality degradation of Basin Creek, Montana. Basin Creek is one of three tributaries to the Boulder River in the study area; bed sediments and waters draining from the Buckeye mine have also been implicated. Geochemical analysis of 35 tailings cores and six bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb,and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms that constitute their food. A suite of one-inch cores of dispersed flotation-mill tailings and underlying premining material was taken from a large, flat area north of Basin Creek near the site of the Buckeye mine. Thirty-five core samples were taken and divided into 204 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid digestion. Results of the core analyses show that the elements listed above are present at moderate to very high concentrations (arsenic to 63,000 ppm, silver to 290 ppm, cadmium to 370 ppm, copper to 4,800 ppm, lead to 93,000 ppm, and zinc to 23,000 ppm). Volume calculations indicate that an estimated 8,400 metric tons of contaminated material are present at the site. Six bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50°C) 2M HCl-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of Basin Creek are only slightly impacted by past mining above the Buckeye-Enterprise complex, moderately impacted at the upper (eastern) end of the tailings area, and heavily impacted at the lower (western) end of the area and downstream. The metals are mostly contained in the 2M HCl-1% H2O2 leachable phase, which are the hydrous amorphous iron- and manganese-hydroxide coatings on detrital sediment particles.
Characterization of Uranium Ore Concentrate Chemical Composition via Raman Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yin-Fong; Tonkyn, Russell G.; Sweet, Lucas E.
Uranium Ore Concentrate (UOC, often called yellowcake) is a generic term that describes the initial product resulting from the mining and subsequent milling of uranium ores en route to production of the U-compounds used in the fuel cycle. Depending on the mine, the ore, the chemical process, and the treatment parameters, UOC composition can vary greatly. With the recent advent of handheld spectrometers, we have chosen to investigate whether either commercial off-the-shelf (COTS) handheld devices or laboratory-grade Raman instruments might be able to i) identify UOC materials, and ii) differentiate UOC samples based on chemical composition and thus suggest themore » mining or milling process. Twenty-eight UOC samples were analyzed via FT-Raman spectroscopy using both 1064 nm and 785 nm excitation wavelengths. These data were also compared with results from a newly developed handheld COTS Raman spectrometer using a technique that lowers background fluorescence signal. Initial chemometric analysis was able to differentiate UOC samples based on mine location. Additional compositional information was obtained from the samples by performing XRD analysis on a subset of samples. The compositional information was integrated with chemometric analysis of the spectroscopic dataset allowing confirmation that class identification is possible based on compositional differences between the UOC samples, typically involving species such as U3O8, α-UO2(OH)2, UO4•2H2O (metastudtite), K(UO2)2O3, etc. While there are clearly excitation λ sensitivities, especially for dark samples, Raman analysis coupled with chemometric data treatment can nicely differentiate UOC samples based on composition and even mine origin.« less
Nash, J. Thomas; Stillings, Lisa L.
2003-01-01
Reconnaissance field studies of 40 mining districts in and near the Humboldt River basin have identified 83 mills and associated tailings impoundments and several other kinds of mineral-processing facilities (smelters, mercury retorts, heap-leach pads) related to historic mining. The majority of the mills and tailings sites are not recorded in the literature. All tailings impoundments show evidence of substantial amounts of erosion. At least 11 tailings dams were breached by flood waters, carrying fluvial tailings 1 to 15 km down canyons and across alluvial fans. Most of the tailings sites are dry most of the year, but some are near streams. Tailings that are wet for part of the year do not appear to be reacting significantly with those waters because physical factors such as clay layers and hard-pan cement appear to limit permeability and release of metals to surface waters. The major impact of mill tailings on surface- water quality may be brief flushes of runoff during storm events that carry acid and metals released from soluble mineral crusts. Small ephemeral ponds and puddles that tend to collect in trenches and low areas on tailings impoundments tend to be acidic and extremely enriched in metals, in part through cycles of evaporation. Ponded water that is rich in salts and metals could be acutely toxic to unsuspecting animals. Rare extreme storms have the potential to cause catastrophic failure of tailings impoundments, carry away metals in stormwaters, and transport tailings as debris flows for 1 to 15 km. In most situations these stormwaters and transported tailings could impact wildlife but probably would impact few or no people or domes-tic water wells. Because all identified historic tailings sites are several kilometers or more from the Humboldt River and major tributaries, tailings probably have no measurable impact on water quality in the main stem of the Humboldt River.
2. VIEW OF THE HATCH ADIT (FEATURE B28), FACING NORTH. ...
2. VIEW OF THE HATCH ADIT (FEATURE B-28), FACING NORTH. ADIT ROAD IS VISIBLE IN THE FOREGROUND AND OFFICE (FEATURE B-1) IN THE BACKGROUND. - Nevada Lucky Tiger Mill & Mine, Hatch Adit, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
The Fifth Wave: Using the Internet To Teach the Industrial Revolution.
ERIC Educational Resources Information Center
Franzen, Sarah
2000-01-01
Provides an annotated list of websites pertaining to the Industrial Revolution. Topics include the Boott Cotton Mills in Massachusetts, coal mining in the Gilded Age and Progressive Era, labor conflicts of the Progressive Era, Andrew Carnegie, and the Triangle Shirtwaist Factory fire. (CMK)
Digital mining claim density map for federal lands in Nevada: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Nevada as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate Bureau of Land Management (BLM) State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Utah: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Utah as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in California: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in California as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in New Mexico: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in New Mexico as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Arizona: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Arizona as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
NASA Technical Reports Server (NTRS)
Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.
1976-01-01
The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.
1980-12-01
the British Navy was also of significant value, for then Britannia still ruled the waves. The huge indemnity received from the Chinese played an...11 among the sons, the eldest took all and the second and third sons became either factory or mine workers or apprentices of a merchant. When...warehouses, spin- ning, paper and sugar mills, all based on the large profits which came from banking, mining and foreign trade. Mitsubishi had its
Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Antonio C.; Robichaud, Robi
The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground.more » This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-11-01
This decision document presents the selected remedial action for the mining and milling wastes at the Baxter Springs and Treece subsites, which are part of the Cherokee County Superfund Site in Cherokee County, Kansas.
DETAIL VIEW OF FILTER PRESS REMAINS, BOILER, SECONDARY ORE BIN, ...
DETAIL VIEW OF FILTER PRESS REMAINS, BOILER, SECONDARY ORE BIN, TRAM TRESTLE AND WATER TANK, LOOKING NORTHWEST. HIS VIEW IS TAKEN FROM THE THIRD LEVEL OF THE MILL, NEARBY THE BLACKSMITH'S FORGE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
Profile of a Rural Area Work Force: The Wyoming Uranium Industry.
ERIC Educational Resources Information Center
Dobbs, Thomas L.; Kiner, Phil E.
1974-01-01
Designed to provide insights into policies relative to human resource investments and employment information channels, the study's objectives were to: (1) relate types of employment in Wyoming's uranium mines and mills to work force participants; (2) determine employee earnings and relate those earnings to employment categories and…
34. August, 1971. PHOTOCOPY: GENERAL VIEW OF CITY OF MERCUR ...
34. August, 1971. PHOTOCOPY: GENERAL VIEW OF CITY OF MERCUR CA. 1910 (THIS HISTORIC VIEW IS TAKEN FROM A PUBLICATION BY UTAH POWER & LIGHT CO. CREDIT REQUESTED TO COMPANY.). (SEE UT-10-2 FOR PRESENT DAY VIEW). - DeLamar Mercur Mines Company, Golden Gate Mill, Ophir, Tooele County, UT
43 CFR 3596.2 - Disposal of waste.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Disposal of waste. 3596.2 Section 3596.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all...
43 CFR 3596.2 - Disposal of waste.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Disposal of waste. 3596.2 Section 3596.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all...
NASA Technical Reports Server (NTRS)
Deegan, P. B.
1976-01-01
Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).
Matrix model of the grinding process of cement clinker in the ball mill
NASA Astrophysics Data System (ADS)
Sharapov, Rashid R.
2018-02-01
In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.
Digital mining claim density map for federal lands in Idaho: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Idaho as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill and tunnel sites must be recorded at the appropriate Bureau of Land Management (BLM) State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Oregon: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Oregon as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill and tunnel sites must be recorded at the appropriate Bureau of Land Management (BLM) State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Coleman, Karl S; Sloan, Jeremy; Hanson, Neal A; Brown, Gareth; Clancy, Gerald P; Terrones, Mauricio; Terrones, Humberto; Green, Malcolm L H
2002-10-02
The encapsulation of ReO(x) within ReS(2) inorganic fullerene-like cages is described for the first time. The encapsulate was prepared by the sulfidization of both hand-milled and ball-milled samples of ReO(2); partial conversion of the oxide to the sulfide was achieved with the degree of sulfidization depending on the exposure to the sulfidizing agent, H(2)S.
NASA Astrophysics Data System (ADS)
Popov, Valeriy; Filatov, Yuriy; Lee, Hee; Golik, Anatoliy
2017-11-01
The paper discusses the problem of the underground mining safety control. The long-term air intake to coal accumulations is reviewed as one of the reasons of endogenous fires during mining. The methods of combating air leaks (inflows) in order to prevent endogenous fires are analyzed. The calculations showing the discrepancy between the design calculations for the mine ventilation, disregarding a number of mining-andgeological and mining-engineering factors, and the actual conditions of mining are given. It is proved that the conversion of operating mines to combined (pressure and exhaust) ventilation system in order to reduce the endogenous fire hazard of underground mining is unreasonable due to impossibility of providing an optimal distribution of aerodynamic pressure in mines. The conversion does not exclude the entry of air into potentially hazardous zones of endogenous fires. The essence of the combined application of positive and negative control methods for the distribution of air pressure is revealed. It consists of air doors installation in easily ventilated airways and installation of pressure equalization chambers equipped with auxiliary fans near the stoppings, working sections and in parallel airways.The effectiveness of the combined application of negative and positive control methods for the air pressure distribution in order to reduce endogenous fire hazard of mining operations is proved.
Bandli, Bryan R; Gunter, Mickey E
2006-11-01
This article reviews the past 90 yr of scientific research directed on multiple aspects of the unique geology and environmental health issues surrounding the vermiculite deposit found at Libby, MT. Hydrothermal alteration and extensive weathering of the ultramafic units resulted in the formation of a rich deposit of vermiculite that was mined for 67 yr and used in numerous consumer products in its expanded form. Later intrusions of alkaline units caused hydrothermal alteration of the pyroxenes, resulting in formation of amphiboles. Some of these amphiboles occur in the asbestiform habit and have been associated with pulmonary disease in former miners and mill workers. Identification of these amphibole asbestos minerals has received little attention in the past, but recent work shows that the majority of the amphibole mineral species present may not be any of the amphibole species currently regulated by government agencies. Epidemiological studies on former miners have, nevertheless, shown that the amphibole asbestos from the Rainy Creek igneous complex is harmful; also, a recent study by the Agency for Toxic Substances and Disease Registry shows that residents of Libby who had not been employed in the vermiculite mining or milling operations also appear to have developed asbestos-related pulmonary diseases at a higher rate than the general public elsewhere. Since November 1999, the U.S. Environmental Protection Agency has been involved in the cleanup of asbestos-contaminated sites in and around Libby associated with the mining and processing of vermiculite.
Substrate milling pretreatment as a key parameter for Solid-State Anaerobic Digestion optimization.
Motte, J-C; Escudié, R; Hamelin, J; Steyer, J-P; Bernet, N; Delgenes, J-P; Dumas, C
2014-12-01
The effect of milling pretreatment on performances of Solid-State Anaerobic Digestion (SS-AD) of raw lignocellulosic residue is still controverted. Three batch reactors treating different straw particle sizes (milled 0.25 mm, 1 mm and 10 mm) were followed during 62 days (6 sampling dates). Although a fine milling improves substrate accessibility and conversion rate (up to 30% compared to coarse milling), it also increases the risk of media acidification because of rapid and high acids production during fermentation of the substrate soluble fraction. Meanwhile, a gradual adaptation of microbial communities, were observed according to both reaction progress and methanogenic performances. The study concluded that particle size reduction affected strongly the performances of the reaction due to an increase of substrate bioaccessibility. An optimization of SS-AD processes thanks to particle size reduction could therefore be applied at farm or industrial scale only if a specific management of the soluble compounds is established. Copyright © 2014 Elsevier Ltd. All rights reserved.
Buaban, Benchaporn; Inoue, Hiroyuki; Yano, Shinichi; Tanapongpipat, Sutipa; Ruanglek, Vasimon; Champreda, Verawat; Pichyangkura, Rath; Rengpipat, Sirirat; Eurwilaichitr, Lily
2010-07-01
Sugarcane bagasse is one of the most promising agricultural by-products for conversion to biofuels. Here, ethanol fermentation from bagasse has been achieved using an integrated process combining mechanical pretreatment by ball milling, with enzymatic hydrolysis and fermentation. Ball milling for 2 h was sufficient for nearly complete cellulose structural transformation to an accessible amorphous form. The pretreated cellulosic residues were hydrolyzed by a crude enzyme preparation from Penicillium chrysogenum BCC4504 containing cellulase activity combined with Aspergillus flavus BCC7179 preparation containing complementary beta-glucosidase activity. Saccharification yields of 84.0% and 70.4% for glucose and xylose, respectively, were obtained after hydrolysis at 45 degrees C, pH 5 for 72 h, which were slightly higher than those obtained with a commercial enzyme mixture containing Acremonium cellulase and Optimash BG. A high conversion yield of undetoxified pretreated bagasse (5%, w/v) hydrolysate to ethanol was attained by separate hydrolysis and fermentation processes using Pichia stipitis BCC15191, at pH 5.5, 30 degrees C for 24 h resulting in an ethanol concentration of 8.4 g/l, corresponding to a conversion yield of 0.29 g ethanol/g available fermentable sugars. Comparable ethanol conversion efficiency was obtained by a simultaneous saccharification and fermentation process which led to production of 8.0 g/l ethanol after 72 h fermentation under the same conditions. This study thus demonstrated the potential use of a simple integrated process with minimal environmental impact with the use of promising alternative on-site enzymes and yeast for the production of ethanol from this potent lignocellulosic biomass. 2009. Published by Elsevier B.V.
McDowell, Robert C.; Harrison, Richard W.; Lagueux, Kerry M.
2000-01-01
The geology of the Powder Mill Ferry 7 1/2-minute quadrangle , Shannon and Reynolds Counties, Missouri was mapped from 1997 through 1998 as part of the Midcontinent Karst Systems and Geologic Mapping Project, Eastern Earth Surface Processes Team. The map supports the production of a geologic framework that will be used in hydrogeologic investigations related to potential lead and zinc mining in the Mark Twain National Forest adjacent to the Ozark National Scenic Riverways (National Park Service). Digital geologic coverages will be used by other federal and state agencies in hydrogeologic analyses of the Ozark karst system and in ecological models.
Zhuang, Z; Hearl, F J; Odencrantz, J; Chen, W; Chen, B T; Chen, J Q; McCawley, M A; Gao, P; Soderholm, S C
2001-11-01
Collaborative studies of Chinese workers, using over four decades of dust monitoring data, are being conducted by the National Institute for Occupational Safety and Health (NIOSH) and Tongji Medical University in China. The goal of these projects is to establish exposure-response relationships for the development of diseases such as silicosis or lung cancer in cohorts of pottery and mine workers. It is necessary to convert Chinese dust measurements to respirable silica measurements in order to make results from the Chinese data comparable to other results in the literature. This article describes the development of conversion factors and estimates of historical respirable crystalline silica exposure for Chinese workers. Ambient total dust concentrations (n>17000) and crystalline silica concentrations (n=347) in bulk dust were first gathered from historical industrial hygiene records. Analysis of the silica content in historical bulk samples revealed no trend from 1950 up to the present. During 1988-1989, side-by-side airborne dust samples (n=143 pairs) were collected using nylon cyclones and traditional Chinese samplers in 20 metal mines and nine pottery factories in China. These data were used to establish conversion factors between respirable crystalline silica concentrations and Chinese total dust concentrations. Based on the analysis of the available evidence, conversion factors derived from the 1988-1989 sampling campaign are assumed to apply to other time periods in this paper. The conversion factors were estimated to be 0.0143 for iron/copper, 0.0355 for pottery factories, 0.0429 for tin mines, and 0.0861 for tungsten mines. Conversion factors for individual facilities within each industry were also calculated. Analysis of variance revealed that mean conversion factors are significantly different among facilities within the iron/copper industry and within the pottery industry. The relative merits of using facility-specific conversion factors, industry-wide conversion factors, or a weighted average of the two are discussed. The exposure matrix of the historical Chinese total dust concentrations was multiplied by these conversion factors to obtain an exposure matrix of historical respirable crystalline silica concentrations.
Déjeant, Adrien; Bourva, Ludovic; Sia, Radia; Galoisy, Laurence; Calas, Georges; Phrommavanh, Vannapha; Descostes, Michael
2014-11-01
The radioactivities of (238)U and (226)Ra in mill tailings from the U mines of COMINAK and SOMAÏR in Niger were measured and quantified using a portable High-Purity Germanium (HPGe) detector. The (238)U and (226)Ra activities were measured under field conditions on drilling cores with 600s measurements and without any sample preparation. Field results were compared with those obtained by Inductive Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and emanometry techniques. This comparison indicates that gamma-ray absorption by such geological samples does not cause significant deviations. This work shows the feasibility of using portable HPGe detector in the field as a preliminary method to observe variations of radionuclides concentration with the aim of identifying samples of interest. The HPGe is particularly useful for samples with strong secular disequilibrium such as mill tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.
The use of data mining by private health insurance companies and customers' privacy.
Al-Saggaf, Yeslam
2015-07-01
This article examines privacy threats arising from the use of data mining by private Australian health insurance companies. Qualitative interviews were conducted with key experts, and Australian governmental and nongovernmental websites relevant to private health insurance were searched. Using Rationale, a critical thinking tool, the themes and considerations elicited through this empirical approach were developed into an argument about the use of data mining by private health insurance companies. The argument is followed by an ethical analysis guided by classical philosophical theories-utilitarianism, Mill's harm principle, Kant's deontological theory, and Helen Nissenbaum's contextual integrity framework. Both the argument and the ethical analysis find the use of data mining by private health insurance companies in Australia to be unethical. Although private health insurance companies in Australia cannot use data mining for risk rating to cherry-pick customers and cannot use customers' personal information for unintended purposes, this article nonetheless concludes that the secondary use of customers' personal information and the absence of customers' consent still suggest that the use of data mining by private health insurance companies is wrong.
Radionuclides from past uranium mining in rivers of Portugal.
Carvalho, Fernando P; Oliveira, João M; Lopes, Irene; Batista, Aleluia
2007-01-01
During several decades and until a few years ago, uranium mines were exploited in the Centre of Portugal and wastewaters from uranium ore milling facilities were discharged into river basins. To investigate enhancement of radioactivity in freshwater ecosystems, radionuclides of uranium and thorium series were measured in water, sediments, suspended matter, and fish samples from the rivers Vouga, Dão, Távora and Mondego. The results show that these rivers carry sediments with relatively high naturally occurring radioactivity, and display relatively high concentrations of radon dissolved in water, which is typical of a uranium rich region. Riverbed sediments show enhanced concentrations of radionuclides in the mid-section of the Mondego River, a sign of past wastewater discharges from mining and milling works at Urgeiriça confirmed by the enhanced values of (238)U/(232)Th radionuclide ratios in sediments. Radionuclide concentrations in water, suspended matter and freshwater fish from that section of Mondego are also enhanced in comparison with concentrations measured in other rivers. Based on current radionuclide concentrations in fish, regular consumption of freshwater species by local populations would add 0.032 mSv a(-1) of dose equivalent (1%) to the average background radiation dose. Therefore, it is concluded that current levels of enhanced radioactivity do not pose a significant radiological risk either to aquatic fauna or to freshwater fish consumers.
Optimize Operating Conditions on Fine Particle Grinding Process with Vertically Stirred Media Mill
NASA Astrophysics Data System (ADS)
Yang, Yang; Rowson, Neil; Ingram, Andy
2016-11-01
Stirred media mill recently is commonly utilized among mining process due to its high stressing intensity and efficiency. However, the relationship between size reduction and flow pattern within the mixing pot is still not fully understand. Thus, this work investigates fine particle grinding process within vertically stirred media mills by altering stirrer geometry, tip speed and solids loading. Positron Emitting Particle Tracking (PEPT) technology is utilized to plot routine of particles velocity map. By tacking trajectory of a single particle movement within the mixing vessel, the overall flow pattern is possible to be plotted. Ground calcium carbonate, a main product of Imerys, is chosen as feeding material (feed size D80 30um) mixed with water to form high viscous suspension. To obtain fine size product (normally D80 approximately 2um), large amount of energy is drawn by grinding mill to break particles through impact, shear attrition or compression or a combination of them. The results indicate higher energy efficient is obtained with more dilute suspension. The optimized stirrer proves more energy-saving performance by altering the slurry circulate. Imerys Minerals Limited.
42 CFR 82.5 - Definition of terms used in this part.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in this part. (a) Atomic weapons employer (AWE) means any entity, other than the United States, that... in the production of an atomic weapon, excluding uranium mining and milling; and, (2) is designated by the Secretary of Energy as an atomic weapons employer for purposes of EEOICPA. (b) Bioassay means...
42 CFR 82.5 - Definition of terms used in this part.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in this part. (a) Atomic weapons employer (AWE) means any entity, other than the United States, that... in the production of an atomic weapon, excluding uranium mining and milling; and, (2) is designated by the Secretary of Energy as an atomic weapons employer for purposes of EEOICPA. (b) Bioassay means...
42 CFR 82.5 - Definition of terms used in this part.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in this part. (a) Atomic weapons employer (AWE) means any entity, other than the United States, that... in the production of an atomic weapon, excluding uranium mining and milling; and, (2) is designated by the Secretary of Energy as an atomic weapons employer for purposes of EEOICPA. (b) Bioassay means...
Sources of Nuclear Fuel, Understanding the Atom Series.
ERIC Educational Resources Information Center
Singleton, Arthur L., Jr.
A brief outline of the historical landmarks in nuclear physics leading to the use of nuclear energy for peaceful purposes introduces this illustrated booklet. The distribution of known sources of uranium ores is mapped and some details about the geology of each geographical area given. Methods of prospective, mining, milling, refining, and fuel…
Navajo Uranium Education Programs: The Search for Environmental Justice
ERIC Educational Resources Information Center
Charley, Perry H.; Dawson, Susan E.; Madsen, Gary E.; Spykerman, Bryan R.
2004-01-01
Uranium mining and milling in the Four Corners' area of the American Southwest has had serious negative impacts on American Indian workers, their families, and their communities. In this article, we will examine Navajo education programs which inform citizens about risks and health impacts associated with radiation exposures. Because the Navajo…
Kumar, Anuj; Priyadarshinee, Rashmi; Roy, Abhishek; Dasgupta, Dalia; Mandal, Tamal
2016-12-01
Rice mills release huge volumes of wastewater and other by-products when processing paddy rice. The wastewater often contains toxic inorganic and organic contaminants which cause environmental damage when released. Accordingly, cost-effective techniques for removing contaminants are needed. This article reviews current processes for curbing pollution and also reusing and recycling waste products. Novel techniques exist for converting waste products into energy and value-added products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Markstrom, Carol A; Charley, Perry H
2003-01-01
Disasters can be defined as catastrophic events that challenge the normal range of human coping ability. The technological/human-caused disaster, a classification of interest in this article, is attributable to human error or misjudgment. Lower socioeconomic status and race intersect in the heightened risk for technological/human-caused disasters among people of color. The experience of the Navajo with the uranium industry is argued to specifically be this type of a disaster with associated long-standing psychological impacts. The history of the Navajo with uranium mining and milling is reviewed with a discussion of the arduous efforts for compensation. The psychological impacts of this long-standing disaster among the Navajo are organized around major themes of: (a) human losses and bereavement, (b) environmental losses and contamination, (c) feelings of betrayal by government and mining and milling companies, (d) fears about current and future effects, (e) prolonged duration of psychological effects, (f) anxiety and depression, and (g) complicating factors of poverty and racism. The paper concludes with suggestions for culturally-appropriate education and intervention.
OVERVIEW OF CYANIDE PLANT REMAINS, TAILINGS PILES, PARKING LOT, AND ...
OVERVIEW OF CYANIDE PLANT REMAINS, TAILINGS PILES, PARKING LOT, AND MINE MANAGER'S HOME, LOOKING SOUTH SOUTHEAST. RIGHT, TAILINGS PILES ARE AT CENTER WITH CYANIDE PLANT FOUNDATIONS TO THE LEFT OF THE PILES. PARKING LOT IS AT UPPER LEFT. THE AREA BETWEEN THE COLLAPSED TANK AT CENTER LEFT AND THE REMAINS OF THE MANAGER'S HOUSE AT LOWER RIGHT IS A TAILINGS HOLDING AREA. TAILINGS FROM THE MILL WERE HELD HERE. THE LARGE SETTLING TANKS WERE CHARGED FROM THIS HOLDING AREA BY A TRAM ON RAILS AND BY A SLUICEWAY SEEN AS THE DARK SPOT ON THE CENTER LEFT EDGE OF THE FRAME. AFTER THE TAILINGS WERE LEACHED, THEY WERE DEPOSITED ON THE LARGE WASTE PILE AT CENTER RIGHT. THE TANK AT CENTER RIGHT EDGE IS WHERE THE WATER PIPELINE ENTERED THE WORKS. A STRAIGHT LINE OF POSTS IN THE GROUND GO ACROSS THE CENTER FROM LEFT TO RIGHT, WHICH ORIGINALLY SUSPENDED THE WATER PIPELINE GOING FROM THE WATER HOLDING TANK AT RIGHT UP TO THE SECONDARY WATER TANKS ABOVE THE MILL. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
NASA Technical Reports Server (NTRS)
Amos, D. J.; Grube, J. E.
1976-01-01
Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost $170 to 200 $/kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty.
Skubacz, Krystian; Wojtecki, Łukasz; Urban, Paweł
2016-10-01
In Polish underground mines, hazards caused by enhanced natural radioactivity occur. The sources of radiation exposure are short-lived radon decay products, mine waters containing radium 226 Ra and 228 Ra and the radioactive sediments that can precipitate out of these waters. For miners, the greatest exposure is usually due to short-lived radon decay products. The risk assessment is based on the measurement of the total potential alpha energy concentration (PAEC) and the evaluation of the related dose by using the dose conversion factor as recommended by relevant legal requirements. This paper presents the results of measurements of particle size distributions of ambient aerosols in an underground hard coal mine, the assessment of the radioactive particle size distribution of the short-lived radon decay products and the corresponding values of dose conversion factors. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometers to about 20 μm. The study therefore included practically the whole class of respirable particles. The results showed that the high concentration of ultrafine and fine aerosols measured can significantly affect the value of the dose conversion factors, and consequently the corresponding committed effective dose, to which the miners can be exposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, H.M.; Reinhart, D.; Lettie, L.
2006-07-01
The operation of uranium mining and milling plants gives rise to huge amounts of wastes from both mining and milling operations. When pyrite is present in these materials, the generation of acid drainage can take place and result in the contamination of underground and surface waters through the leaching of heavy metals and radionuclides. To solve this problem, many studies have been conducted to find cost-effective solutions to manage acid mine drainage; however, no adequate strategy to deal with sulfide-ric h wastes is currently available. Ferrate (VI) is a powerful oxidizing agent in aqueous media. Under acidic conditions, the redoxmore » potential of the Ferrate (VI) ion is the highest of any other oxidant used in wastewater treatment processes. The standard half cell reduction potential of ferrate (VI) has been determined as +2.20 V to + 0.72 V in acidic and basic solutions, respectively. Ferrate (VI) exhibits a multitude of advantageous properties, including higher reactivity and selectivity than traditional oxidant alternatives, as well as disinfectant, flocculating, and coagulant properties. Despite numerous beneficial properties in environmental applications, ferrate (VI) has remained commercially unavailable. Starting in 1953, different methods for producing a high purity, powdered ferrate (VI) product were developed. However, producing this dry, stabilized ferrate (VI) product required numerous process steps which led to excessive synthesis costs (over $20/lb) thereby preventing bulk industrial use. Recently a novel synthesis method for the production of a liquid ferrate (VI) based on hypochlorite oxidation of ferric ion in strongly alkaline solutions has been discovered (USPTO 6,790,428; September 14, 2004). This on-site synthesis process dramatically reduces manufacturing cost for the production of ferrate (VI) by utilizing common commodity feedstocks. This breakthrough means that for the first time ferrate (VI) can be an economical alternative to treating acid mining drainage generating materials. The objective of the present study was to investigate a methodology of preventing the generation of acid drainage by applying ferrate (VI) to acid generating materials prior to the disposal in impoundments or piles. Oxidizing the pyritic material in mining waste could diminish the potential for acid generation and its related environmental risks and long-term costs at disposal sites. The effectiveness of toxic metals removal from acid mine drainage by applying ferrate (VI) is also examined. Preliminary results presented in this paper show that the oxidation of pyrite by ferrate is a first-order rate reaction in Fe(VI) with a half-life of about six hours. The stability of Fe(VI) in water solutions will not influence the reaction rate in a significant manner. New low-cost production methods for making liquid ferrate on-site makes this technology a very attractive option to mitigate one of the most pressing environmental problems in the mining industry. (authors)« less
Chala, Tolesa Fita; Wu, Chang-Mou; Chou, Min-Hui; Gebeyehu, Molla Bahiru; Cheng, Kuo-Bing
2017-01-01
In this work, novel WO3-x/polyurethane (PU) nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3 → WO2.8 → WO2.72) and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR) region of 780–2500 nm and excellent photothermal conversion properties. This is because the particle size of WO3-x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO3-x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO2.72/PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO3/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt % concentration of WO2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications. PMID:28737689
Principal thorium resources in the United States
Staatz, Mortimer Hay; Armbrustmacher, T.J.; Olson, J.C.; Brownfield, I.K.; Brock, M.R.; Lemons, J.F.; Coppa, L.V.; Clingan, B.V.
1979-01-01
Resources were assessed for thorium in the higher grade and better known deposits in the United States in: (1) veins, (2) massive carbonatites, (3) stream placers of North and South Carolina, and (4) disseminated deposits. Thorium resources for the first three categories were divided into reserves and probable potential resources. Each of these then were separated into the following cost categories: (1) the amount of ThO2 producible at less than $15 per pound, (2) the amount producible at between $15 and $30 per pound, and (3) the amount producible at more than $50 per pound. The type of mining and milling needed at each deposit determines the capital, operating, and fixed costs of both mining and milling. Costs start with the clearing of land and are carried through to the final product, which for all deposits is ThO2. Capital costs of mining are affected most by the type of mining and the size of the mine. Those of milling are affected most by the kind of mill, its size, and whether or not extra circuits are needed for the separation of rare earths or some other byproduct. Veins, massive carbonatites, and stream placers of North and South Carolina have reserves of 188,000 short tons of ThO2 and probable potential resources of 505,000 tons of ThO2. Approximately half of the reserves and probable potential resources can be produced at less than $30 per pound of ThO2. Veins are the highest grade source in the United States and have total reserves of 142,000 tons of ThO2 and probable potential resources of 343,000 tons. About 90 percent of the reserves and 91 percent of the probable potential resources can be produced at less than $15 per pound of ThO2. Seven vein districts were evaluated: (1) Lemhi Pass, Mont.-Idaho, (2) Wet Mountains, Colo., (3) Powderhorn, Colo., (4) Hall Mountain, Idaho, (5) Diamond Creek, Idaho, (6) Bear Lodge Mountains, Wyo. and (7) Mountain Pass, Calif. Eighty-seven percent of the total reserves and probable potential resources are in the Lemhi Pass and Wet Mountains Districts. The first district has reserves of 68,000 tons of ThO2 and probable potential resources of 124,000 tons that can be produced at less than $15 per pound; the second district has 54,000 tons of reserves and 141,000 tons of probable potential resources producible at less than $15 per pound. Rare earths are a common byproduct, and in many veins they are from one-half to several times as abundant as thorium. Massive carbonatite bodies are large-tonnage low-grade deposits. Thorium in these deposits would be a byproduct either of rare earth or of niobium mining. The Iron Hill carbonatite body in the Powderhorn district, Colorado, and the Sulfide Queen carbonatite body in the Mountain Pass district, California, were evaluated. These two deposits contain 40,800 tons of ThO2 in reserves and 125,000 tons of ThO2 in probable potential resources. More than 80 percent of this total is in the Iron Hill carbonatite. This thorium is entirely a byproduct and is producible at less than $15 per pound of ThO2. The Sulphide Queen massive carbonatite deposit was being mined in 1977 for rare earths, and thorium could be recovered by adding an extra circuit to the existing mill. Stream placers in North and South Carolina occur both in the Piedmont and just east of the Fall Line. The reserves of these deposits total 5,270 tons of ThO2, and the probable potential resources are 36,800 tons of ThO2. The Piedmont placers are all too small to produce ThO2 at a cost of less than $50 per pound. One placer on Hollow Creek, S.C., just east of the Fall Line had reserves of 2,040 tons of ThO2 that is producible at between $15 and $30 per pound. Thorium occurs in monazite in these placers. Other heavy minerals that would be recovered with the monazite include rutile, zircon, and ilmenite. In addition to thorium, monazite contains large amounts of rare earths and small amounts of uranium; both can be recovered during the process that separates thorium fr
NASA Astrophysics Data System (ADS)
Kniess, Rudolf; Martin, Tina
2015-04-01
Two abandoned small waste dumps in the west of the Harz mountains (Germany) were analysed using ground penetrating radar (GPR) and electrical resistivity tomography (ERT). Aim of the project (ROBEHA, funded by the German Federal Ministry of Education and Research (033R105)) is the assessment of the recycling potential of the mining residues taking into account environmental risks of reworking the dump site. One task of the geophysical prospection is the investigation of the inner structure of the mining dump. This is important for the estimation of the approximate volume of potentially reusable mining deposits within the waste dump. The two investigated dump sites are different in age and therefore differ in their structure. The older residues (< 1930) consist of ore processing waste from density separation (stamp mill sand). The younger dump site descends from comprises slag dump waste. The layer of fine grained residues at the first dump site is less than 6 m thick and the slag layer is less than 2 m thick. Both sites are partially overlain by forest or grassland vegetation and characterized by topographical irregularities. Due to the inhomogeneity of the sites we applied electrical resistivity tomography (ERT) and ground penetrating radar (GPR) for detailed investigation. Using ERT we could distinguish various layers within the mining dumps. The resistivities of the dumped material differ from the bedrock resistivities at both sites. The GPR measurements show near surface layer boundaries down to 3 - 4 m. In consecutive campaigns 100 MHz and 200 MHz antennas were used. The GPR results (layer boundaries) were included into the ERT inversion algorithm to enable more precise and stable resistivity models. This needs some special preprocessing steps. The 3D-Position of every electrode from ERT measurement and the GPR antenna position on the surface require an accuracy of less than 1cm. At some points, the layer boundaries and radar wave velocities can be calibrated with borehole stratigraphic data from a mineralogical drilling campaign. This is important for a precise time-depth conversion of reflectors from GPR measurement. This reflectors were taken from radargram and have been adopted as resistivity boundary in the start model of the geoelectric inversion algorithm.
Radioecological impacts of tin mining.
Aliyu, Abubakar Sadiq; Mousseau, Timothy Alexander; Ramli, Ahmad Termizi; Bununu, Yakubu Aliyu
2015-12-01
The tin mining activities in the suburbs of Jos, Plateau State, Nigeria, have resulted in technical enhancement of the natural background radiation as well as higher activity concentrations of primordial radionuclides in the topsoil of mining sites and their environs. Several studies have considered the radiological human health risks of the mining activity; however, to our knowledge no documented study has investigated the radiological impacts on biota. Hence, an attempt is made to assess potential hazards using published data from the literature and the ERICA Tool. This paper considers the effects of mining and milling on terrestrial organisms like shrubs, large mammals, small burrowing mammals, birds (duck), arthropods (earth worm), grasses, and herbs. The dose rates and risk quotients to these organisms are computed using conservative values for activity concentrations of natural radionuclides reported in Bitsichi and Bukuru mining areas. The results suggest that grasses, herbs, lichens, bryophytes and shrubs receive total dose rates that are of potential concern. The effects of dose rates to specific indicator species of interest are highlighted and discussed. We conclude that further investigation and proper regulations should be set in place in order to reduce the risk posed by the tin mining activity on biota. This paper also presents a brief overview of the impact of mineral mining on biota based on documented literature for other countries.
Contamination of the human food chain by uranium mill tailings piles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holtzman, R.B.; Urnezis, P.W.; Padova, A.
A study is in progress to estimate the contamination of the human food chain by uranium, /sup 230/Th, /sup 226/Ra /sup 210/Pb, and /sup 210/Po originating from tailing piles associated with uranium ore processing mills. Rabbits, cattle, vegetables, and grass were collected on or near two uranium mill sites. For controls, similar samples were obtained from areas 20 km or more from the mining and mill operations. For the onsite rabbits the mean /sup 226/Ra concentrations in muscle, lung, and kidney of 5.5, 14, and 15 pCi/kg wet, respectively, were substantially higher than those in the respective tissues of controlmore » animals (0.4, 1.5, and 0.2 pCi/kg). The levels in liver did not differ significantly between the groups. The concentrations in bone (femur and vertebra) were about 9000 and 350 pCi/kg ash for the onsite and offsite animals, respectively. The levels of /sup 210/Pb and /sup 210/Po did not differ significantly for a given tissue between the two groups, except that the /sup 210/Pb level in the kidney was greater in the onsite group. For cattle, the concentrations in muscle, liver, and kidney do not differ greatly between those grazed near the pile and the controls. The levels of /sup 226/Ra, and possibly of /sup 210/Pb, appear to be greater in the femur of the animals near the piles. Vegetables from a residential area on a mill site contained substantially greater concentrations of /sup 226/Ra and /sup 210/Pb than those reported for standard New York City diets. Grass and cattle dung from land irrigated by water containing 60 pCi/L /sup 226/Ra from uranium mines had concentrations of /sup 226/Ra and /sup 210/Pb 50 and 8 times, respectively, those in control samples. It is estimated that doubling the normal concentrations in meat and vegetables of uranium and daughter products could increase the dose equivalent rates to the skeletons of persons consuming these foods by 30 or more mrem/yr.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Michael M.
As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a numbermore » of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.« less
Oyewo, Opeyemi A; Onyango, Maurice S; Wolkersdorfer, Christian
2016-11-01
Transformation of agricultural waste such as banana peels into a valuable sorbent material has been proven effective and efficient in wastewater treatment. Further, transformation into nanosorbent to enhance the removal capacity of actinides (uranium and thorium) from synthetic and real mine water is extensively investigated in this study. The nanosorbent samples before and after adsorption were characterised by X-ray diffraction (XRD), Fourier transform infra-red (FTIR), zetasizer nanoseries and scanning electron microscopy (SEM) while the amount of radioactive substances adsorbed was determined by inductively coupled plasma optical emission spectroscopy. Results revealed that there was a crystallite size and particle size reduction from 108 to 12 nm and <65,000 nm to <25 nm respectively as a function of milling time. Furthermore, appearance and disappearance of nanofibers via milling was noticed during structural analysis. The functional groups responsible for the banana peels capability to coordinate and remove metal ions were identified at absorption bands of 1730 cm -1 (carboxylic groups) and 889 cm -1 (amine groups) via FTIR analysis. Equilibrium isotherm results demonstrated that the adsorption process was endothermic for both uranium and thorium. The Langmuir maximum adsorption capacity was 27.1 mg g -1 , 34.13 mg g -1 for uranium and 45.5 mg g -1 , 10.10 mg g -1 for thorium in synthetic and real mine water, respectively. The results obtained indicate that nanostructured banana peels is a potential adsorbent for the removal of radioactive substances from aqueous solution and also from real mine water. However, the choice of this sorbent material for any application depends on the composition of the effluent to be treated. Copyright © 2016 Elsevier Ltd. All rights reserved.
42 CFR 83.5 - Definitions of terms used in the procedures in this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... under EEOICPA. (b) Atomic Weapons Employer (“AWE”) is a statutory term of EEOICPA which means any entity... that emitted radiation and was used in the production of an atomic weapon, excluding uranium mining and milling: and, (2) Is designated by the Secretary of Energy as an atomic weapons employer for purposes of...
42 CFR 83.5 - Definitions of terms used in the procedures in this part.
Code of Federal Regulations, 2012 CFR
2012-10-01
... under EEOICPA. (b) Atomic Weapons Employer (“AWE”) is a statutory term of EEOICPA which means any entity... that emitted radiation and was used in the production of an atomic weapon, excluding uranium mining and milling: and, (2) Is designated by the Secretary of Energy as an atomic weapons employer for purposes of...
42 CFR 83.5 - Definitions of terms used in the procedures in this part.
Code of Federal Regulations, 2014 CFR
2014-10-01
... under EEOICPA. (b) Atomic Weapons Employer (“AWE”) is a statutory term of EEOICPA which means any entity... that emitted radiation and was used in the production of an atomic weapon, excluding uranium mining and milling: and, (2) Is designated by the Secretary of Energy as an atomic weapons employer for purposes of...
42 CFR 83.5 - Definitions of terms used in the procedures in this part.
Code of Federal Regulations, 2013 CFR
2013-10-01
... under EEOICPA. (b) Atomic Weapons Employer (“AWE”) is a statutory term of EEOICPA which means any entity... that emitted radiation and was used in the production of an atomic weapon, excluding uranium mining and milling: and, (2) Is designated by the Secretary of Energy as an atomic weapons employer for purposes of...
14. VIEW OF NORTHSOUTH ROAD WHICH PARALLELS ROAD TO HATCH ...
14. VIEW OF NORTH-SOUTH ROAD WHICH PARALLELS ROAD TO HATCH ADIT (FEATURE B-28). NOTE MODERN 'LAY DOWN' FENCE ON ROAD. ROAD LIES TO THE WEST OF THE HATCH ADIT AND PHOTOGRAPH IS VIEW TO THE SOUTH. (OCTOBER, 1995) - Nevada Lucky Tiger Mill & Mine, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-02
... Auburn City Hall and Fire House, (Auburn, CA MPS) 1103 High St., Auburn, 11000935 Auburn Fire House No. 1, (Auburn, CA MPS) El Dorado St. & Lincoln Way, Auburn, 11000936 Auburn Fire House No. 2, (Auburn, CA MPS... St., San Francisco, 11000944 COLORADO Boulder County Cardinal Mill, (Metal Mining and Tourist Era...
Gray, John E.; Hines, Mark E.; Higueras, Pablo L.; Adatto, Isaac; Lasorsa, Brenda K.
2004-01-01
Speciation of Hg and conversion to methyl-Hg were evaluated in mine wastes, sediments, and water collected from the Almade??n District, Spain, the world's largest Hg producing region. Our data for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from the Almade??n area. Concentrations of Hg and methyl-Hg in mine waste, sediment, and water from Almade??n are among the highest found at Hg mines worldwide. Mine wastes from Almade??n contain highly elevated Hg concentrations, ranging from 160 to 34 000 ??g/g, and methyl-Hg varies from <0.20 to 3100 ng/g. Isotopic tracer methods indicate that mine wastes at one site (Almadenejos) exhibit unusually high rates of Hg-methylation, which correspond with mine wastes containing the highest methyl-Hg concentrations. Streamwater collected near the Almade??n mine is also contaminated, containing Hg as high as 13 000 ng/L and methyl-Hg as high as 30 ng/L; corresponding stream sediments contain Hg concentrations as high as 2300 ??g/g and methyl-Hg concentrations as high as 82 ng/g. Several streamwaters contain Hg concentrations in excess of the 1000 ng/L World Health Organization (WHO) drinking water standard. Methyl-Hg formation and degradation was rapid in mines wastes and stream sediments demonstrating the dynamic nature of Hg cycling. These data indicate substantial downstream transport of Hg from the Almade??n mine and significant conversion to methyl-Hg in the surface environment.
The yellowed archives of yellowcake.
Silver, K
1996-01-01
Extensive historical documentation of exposures and releases at government-owned energy facilities is a unique and valuable resource for analyzing and communicating health risks. Facilities at all stages of the atomic fuel cycle were the subject of numerous industrial hygiene, occupational health, and environmental assessments during the Cold War period. Uranium mines and mills on the Colorado Plateau were investigated as early as the 1940s. One such facility was the mill in Monticello, Utah, which began operation as a vanadium extraction plant in 1943 and was later adapted to recover uranium from carnotite ores. The mill ceased operation in 1960. The site was added to the federal Superfund list in 1986. ATSDR held public availability sessions in 1993 as part of its public health assessment process, at which several former mill workers voiced health concerns. An extensive literature search yielded several industrial hygiene evaluations of the Monticello mill and health studies that included Monticello workers, only two of which had been published in the peer-reviewed literature. In combination with the broader scientific literature, these historical reports provide a partial basis for responding to mill workers' contemporary health concerns. The strengths and limitations of the available exposure data for analytical epidemiologic studies and dose reconstruction are discussed. As an interim measure, the available historical documentation may be especially helpful in communicating about health risks with workers and communities in ways that acknowledge the historical context of their experience. Images p116-a p117-a p118-a PMID:8606907
Asbestos contamination in feldspar extraction sites: a failure of prevention? Commentary.
Cavariani, Fulvio
2016-01-01
Fibrous tremolite is a mineral species belonging to the amphibole group. It is present almost everywhere in the world as a natural contaminant of other minerals, like talc and vermiculite. It can be also found as a natural contaminant of the chrysotile form of asbestos. Tremolite asbestos exposures result in respiratory health consequences similar to the other forms of asbestos exposure, including lung cancer and mesothelioma. Although abundantly distributed on the earth's surface, tremolite is only rarely present in significant deposits and it has had little commercial use. Significant presence of amphibole asbestos fibers, characterized as tremolite, was identified in mineral powders coming from the milling of feldspar rocks extracted from a Sardinian mining site (Italy). This evidence raises several problems, in particular the prevention of carcinogenic risks for the workers. Feldspar is widespread all over the world and every year it is produced in large quantities and it is used for several productive processes in many manufacturing industries (over 21 million tons of feldspar mined and marketed every year). Until now the presence of tremolite asbestos in feldspar has not been described, nor has the possibility of such a health hazard for workers involved in mining, milling and handling of rocks from feldspar ores been appreciated. Therefore the need for a wider dissemination of knowledge of these problems among professionals, in particular mineralogists and industrial hygienists, must be emphasized. In fact both disciplines are necessary to plan appropriate environmental controls and adequate protections in order to achieve safe working conditions.
Uranium and its decay products in samples contaminated with uranium mine and mill waste
NASA Astrophysics Data System (ADS)
Benedik, L.; Klemencic, H.; Repinc, U.; Vrecek, P.
2003-05-01
The routine determination of the activity concentrations of uranium isotopes (^{238}U, ^{235}U and ^{234}U), thorium isotopes (^{212}Th, ^{230}TI, and ^{228}Th), ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in the environment is one of the most important tasks in uranium mining areas. Natural radionuclides contribute negligibly to the extemal radiation dose, but in the case of ingestion or inhalation can represent a very serious hazard. The objective of this study was to determine the activities of uranium and its decay products ^{230}Th, ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in sediments and water below sources of contamination (uranium mine, disposal sites and individual inflows) using gamma and alpha spectrometry, beta counting, the liquid scintillation technique and radiochemical neutron activation analysis.
Conversations with Freudbot in Second Life: Mining the Virtuality of Relationship
ERIC Educational Resources Information Center
Heller, Bob
2017-01-01
The unstructured conversations of students who chatted with Freudbot in his Second Life virtual office over a 32-month period were examined in order to better understand the nature of the virtual relationship between students and conversational agents (CA) as historical figures. This research builds on past work that examined these conversations…
Folksong in the Classroom. Volume XI, Numbers 1-3, 1990-91.
ERIC Educational Resources Information Center
Scott, John W., Ed.
1991-01-01
This volume of a journal on folksong for elementary and secondary teachers of history, literature, music, and the humanities contains three issues. The Fall 1990 issue is devoted to the songs of Newfoundland. The Winter 1991 issue features songs concerning mine, mill and tunnel workers in the years 1877-1932. The Spring 1991 issue focuses on songs…
DETAIL OVERHEAD VIEW OF SECONDARY ORE BIN. CONVEYOR PLATFORM,TRAM TRESTLE, ...
DETAIL OVERHEAD VIEW OF SECONDARY ORE BIN. CONVEYOR PLATFORM,TRAM TRESTLE, AND LOADING PLATFORM. LOOKING SOUTHWEST. THE HOLE IN THE ORE BIN FLOOR CAN BE SEEN, AND BALL MILL FOUNDATION AT LOWER LEFT CORNER. SEE CA-291-47(CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
DETAIL OVERHEAD VIEW OF SECONDARY ORE BIN, CONVEYOR PLATFORM TRAM ...
DETAIL OVERHEAD VIEW OF SECONDARY ORE BIN, CONVEYOR PLATFORM TRAM TRESTLE, AND LOADING PLATFORM, LOOKING SOUTHWEST. THE HOLE IN THE ORE BIN FLOOR CAN BE SEEN, AND BALL MILL FOUNDATION AT LOWER LEFT CORNER. SEE CA-291-13 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amandus, H.E.; Wheeler, R.; Jankovic, J.
1987-01-01
The vermiculite ore and concentrate of a mine and mill near Libby, Montana, was found to be contaminated with fibrous tremolite-actinolite. Of 599 fibers (length greater than 5 microns and width greater than 0.45 micron) counted in eight airborne membrane filter samples, 96% had an aspect ratio greater than 10 and 16% had an aspect ratio greater than 50. Additionally, 73% of the fibers were longer than 10 microns, 36% were longer than 20 microns, and 10% were longer than 40 microns. Estimates of exposure before 1964 in the dry mill were 168 fibers/cc for working areas, 182 fibers/cc formore » sweepers, 88 fibers/cc for skipping, and 13 fibers/cc for the quality control laboratory. In 1964-1971, exposure estimates for these areas were 33, 36, 17, and 3 fibers/cc, respectively. Estimates of exposures in the mine before 1971 ranged from 9-23 fibers/cc for drillers and were less than 2 fibers/cc for nondrilling jobs. All 8-hr TWA job exposure estimates decreased from 1972-1976, and from 1977-1982 were less than 1 fiber/cc.« less
Amandus, H E; Wheeler, R; Jankovic, J; Tucker, J
1987-01-01
The vermiculite ore and concentrate of a mine and mill near Libby, Montana, was found to be contaminated with fibrous tremolite-actinolite. Of 599 fibers (length greater than 5 microns and width greater than 0.45 micron) counted in eight airborne membrane filter samples, 96% had an aspect ratio greater than 10 and 16% had an aspect ratio greater than 50. Additionally, 73% of the fibers were longer than 10 microns, 36% were longer than 20 microns, and 10% were longer than 40 microns. Estimates of exposure before 1964 in the dry mill were 168 fibers/cc for working areas, 182 fibers/cc for sweepers, 88 fibers/cc for skipping, and 13 fibers/cc for the quality control laboratory. In 1964-1971, exposure estimates for these areas were 33, 36, 17, and 3 fibers/cc, respectively. Estimates of exposures in the mine before 1971 ranged from 9-23 fibers/cc for drillers and were less than 2 fibers/cc for nondrilling jobs. All 8-hr TWA job exposure estimates decreased from 1972-1976, and from 1977-1982 were less than 1 fiber/cc.
Particle size and shape distributions of hammer milled pine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke
2015-04-01
Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Bothmore » materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.« less
Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.
Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun
2016-02-01
Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.
NASA Astrophysics Data System (ADS)
Mohan, S. Mariraj
2017-12-01
In this study, it was aimed for effective utilization of paper mill sludge through vermicomposting by varying seed proportion with sp. Eisenia fetida. Nine plastic trays were used for the experimental work including control. Different seed proportions of cow dung and cattle dung were tested. The multiplication of earthworms in terms of number was counted at the end of vermicomposting. The N, K, Ca, Na values of the manure in each vermibin were estimated before and after vermicomposting. In this study, it was concluded that tray A2 which has combination of 75% Cow dung (CD) and 25% Paper Mill Sludge (PMS) provided better nitrogen synthesis and lowering C/N ratio, whereas tray A4 (25%CD + 75% PMS) yielded better Calcium recovery. Both the seed materials were found to be suitable for Potassium recovery. From this study, it was inferred that vermicomposting of paper mill sludge with sp. Eisenia fetida along with seed materials can also solve the problem of disposal of this sludge.
Cyanide hazards to plants and animals from gold mining and related water issues.
Eisler, Ronald; Wiemeyer, Stanley N
2004-01-01
Cyanide extraction of gold through milling of high-grade ores and heap leaching of low-grade ores requires cycling of millions of liters of alkaline water containing high concentrations of potentially toxic sodium cyanide (NaCN), free cyanide, and metal-cyanide complexes. Some milling operations result in tailings ponds of 150 ha and larger. Heap leach operations that spray or drip cyanide onto the flattened top of the ore heap require solution processing ponds of about 1 ha in surface area. Puddles of various sizes may occur on the top of heaps, where the highest concentrations of NaCN are found. Solution recovery channels are usually constructed at the base of leach heaps, some of which may be exposed. All these cyanide-containing water bodies are hazardous to wildlife, especially migratory waterfowl and bats, if not properly managed. Accidental spills of cyanide solutions into rivers and streams have produced massive kills of fish and other aquatic biota. Freshwater fish are the most cyanide-sensitive group of aquatic organisms tested, with high mortality documented at free cyanide concentrations >20 microg/L and adverse effects on swimming and reproduction at >5 microg/L. Exclusion from cyanide solutions or reductions of cyanide concentrations to nontoxic levels are the only certain methods of protecting terrestrial vertebrate wildlife from cyanide poisoning; a variety of exclusion/cyanide reduction techniques are presented and discussed. Additional research is recommended on (1) effects of low-level, long-term, cyanide intoxication in birds and mammals by oral and inhalation routes in the vicinity of high cyanide concentrations; (2) long-term effects of low concentrations of cyanide on aquatic biota; (3) adaptive resistance to cyanide; and (4) usefulness of various biochemical indicators of cyanide poisoning. To prevent flooding in mine open pits, and to enable earth moving on a large scale, it is often necessary to withdraw groundwater and use it for irrigation, discharge it to rapid infiltration basins, or, in some cases, discharge it to surface waters. Surface waters are diverted around surface mining operations. Adverse effects of groundwater drawdown include formation of sinkholes within 5 km of groundwater drawdown; reduced stream flows with reduced quantities of wate available for irrigation, stock watering, and domestic, mining and milling, and municipal uses; reduction or loss of vegetation cover for wildlife, with reduced carrying capacity for terrestrial wildlife; loss of aquatic habitat for native fishes and their prey; and disruption of Native American cultural traditions. Surface discharge of excess mine dewatering water and other waters to main waterways may contain excess quantities of arsenic, total dissolved solids, boron, copper, fluoride, and zinc. When mining operations cease, and the water pumps are dismantled, these large open pits may slowly fill with water, forming lakes. The water quality of pit lakes may present a variety of pressing environmental problems.
Carvalho, Fernando P; Oliveira, João M; Faria, Isabel
2009-11-01
Two large uranium mines, Quinta do Bispo and Cunha Baixa, district of Viseu, North of Portugal, were exploited until 1991. Sulfuric acid was used for in situ uranium leaching in Cunha Baixa mine and for heap leaching of low grade ores at both mines. Large amounts of mining and milling residues were accumulated nearby. Since closure of mines, the treatment of acid mine waters has been maintained and treated water is released into surface water lines. Analysis of radionuclides in the soluble phase and in the suspended matter of water samples from the uranium mines, from the creeks receiving the discharges of mine effluents, from the rivers and from wells in this area, show an enhancement of radioactivity levels. For example, downstream the discharge of mine effluents into Castelo Stream, the concentrations of dissolved uranium isotopes and uranium daughters were up to 14 times the concentrations measured upstream; (238)U concentration in suspended particulate matter of Castelo Stream reached 72 kBq kg(-1), which is about 170 times higher than background concentrations in Mondego River. Nevertheless, radionuclide concentrations decreased rapidly to near background values within a distance of about 7 kilometers from the discharge point. Enhancement of radioactivity in underground waters was positively correlated with a decrease in water pH and with an increase of sulfate ion concentration, pointing out to Cunha Baixa mine as the source of groundwater contamination. The radiotoxic exposure risk arising from using these well waters as drinking water and as irrigation water is discussed and implementation of environmental remediation measures is advised.
Pereira, R; Barbosa, S; Carvalho, F P
2014-04-01
The history of uranium mining in Portugal during almost one century has followed international demand peaks of both radium and uranium, which in turn were driven by medical, military, and civil applications. Nowadays, following price drop in the 1980s, mining activities decreased and ceased in 2001. The current challenge is to deal with environmental legacies left by old uranium mines, mainly located in Viseu and Guarda districts. In 2001, based on several radiological surveys carried out, the Portuguese government assumed the remediation costs of abandoned mine areas for environmental safety and public health protection. Detailed environmental and public health risk assessments were performed under the scope of studies both requested by the government and by funded research projects. It was found that the existing risks, due to radiological and chemical exposures to metals and radionuclide's, were particularly high at the old milling facilities and mines where in situ and heap leaching of low-grade ore occurred. The different studies, involving both humans and non-human species from different trophic levels, demonstrated the existence of effects at different levels of biological organization (molecular, cellular, tissues, individuals, and populations) and on ecosystem services. To mitigate the risks, the environmental rehabilitation works at the Urgeiriça mine complex are almost complete, while at Cunha Baixa mine, they are presently in progress. These works and environmental improvements achieved and expected are described herein.
Rossini-Oliva, S; Mingorance, M D; Peña, A
2017-02-01
The effect of the addition (0-10%) of two types of sewage sludge composts (composted sewage sludge [CS] and sewage sludge co-composted with olive prune wastes [CSO]) on a polymetallic acidic soil from the Riotinto mining area was evaluated by i) a soil incubation experiment and ii) a greenhouse pot experiment using tomato (Solanum lycopersicum Mill.), ryegrass (Lolium perenne L.) and ahipa (Pachyrhizus ahipa (Wedd.) Parodi). Compost addition improved the soil organic carbon content, increased the pH and the electrical conductivity and enhanced enzyme activities and soil respiration, more for CSO than for CS. Plant growth was generally enhanced after compost addition, but not proportionally to the dose. Foliar concentrations of some hazardous elements (As, Cr, Fe) in tomato growing in non-amended soil were above the thresholds, questioning the adequacy of using this plant species. However, leaf concentrations of essential and potentially toxic elements (Fe, As, Cr and Pb) in tomato and/or ryegrass were reduced after the amendment with both composts, generally more for CSO than for CS. Conversely, foliar concentrations in ahipa, a plant species which is able to grow without the need of compost addition, were safe except for As and were only slightly affected by compost addition. This plant species would be a suitable candidate due to its low requirements and due to the limited element translocation to the leaves. Concerning the composts, amelioration of plant and soil properties was better accomplished when using CSO, a compost of sewage sludge and plant remains, than when using CS, which only contained the sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030
NASA Astrophysics Data System (ADS)
Hambali, E.; Rivai, M.
2017-05-01
During replanting activity in oil palm plantation, biomass including palm frond and trunk are produced. In palm oil mills, during the conversion process of fresh fruit bunches (FFB) into crude palm oil (CPO), several kinds of waste including empty fruit bunch (EFB), mesocarp fiber (MF), palm kernel shell (PKS), palm kernel meal (PKM), and palm oil mills effluent (POME) are produced. The production of these wastes is abundant as oil palm plantation area, FFB production, and palm oil mills spread all over 22 provinces in Indonesia. These wastes are still economical as they can be utilized as sources of alternative fuel, fertilizer, chemical compounds, and biomaterials. Therefore, breakthrough studies need to be done in order to improve the added value of oil palm, minimize the waste, and make oil palm industry more sustainable.
DETAIL VIEW OF WATER TANKS AND PIPELINE TO WATER SOURCE. ...
DETAIL VIEW OF WATER TANKS AND PIPELINE TO WATER SOURCE. LOOKING NORTHWEST FROM LARGE TAILINGS PILE. THE TANK ON THE LEFT IS A WATER TANK, POSSIBLY ASSOCIATED WITH A WATER SHAFT THAT IS SEEN AS A RAISED SPOT ON THE GROUND JUST TO THE RIGHT OF IT. THE TANK ON THE RIGHT IS IN DIRECT CONNECTION WITH THE PIPELINE CARRYING WATER FROM A NEARBY SPRING IN THE DISTANCE AT CENTER. THE WATER WAS THEN PUMPED UP TO ALL PARTS OF THE MINING OPERATION, INCLUDING THE UPPER MINES ONE MILE NORTH, THE MILL, AND THE CYANIDE PLANT. THE PIPELINE ITSELF IS DISMANTLED, WITH PARTS OF IT MISSING OR SCATTERED ALONG THE GROUND, AS SEEN IN THE CENTER DISTANCE. THE SPRING IS APPROX. A QUARTER MILE DISTANT, AND IS NOT PROMINENT IN THIS PHOTOGRAPH. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
27. DETAIL OF PROBABLY LOCATION OF PELTON WATER WHEEL ON ...
27. DETAIL OF PROBABLY LOCATION OF PELTON WATER WHEEL ON EAST SIDE OF MILL, LOOKING SOUTH SOUTHWEST. THE END OF THE WATER PIPELINE ENCASED IN A SQUARE BLOCK OF CONCRETE IS AT CENTER. THIS IS THE END OF A 23-MILE PIPELINE THAT SUPPLIED WATER FROM TELESCOPE PEAK IN THE PANAMINT MOUNTAINS. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
Hall, Marlene Louise; Butler, Arthur Pierce
1952-01-01
In 1942 the Geological Survey began to collect, in response to a request made by the War Production Board, samples of mine, mill, and smelter products. About 1,400 such samples were collected and analyzed spectrographically for about 20 elements that were of strategic importance, in order to determine whether any of the products analyzed might be possible sources of some of the needed elements. When attention was directed to radioactive elements in 1943, most of the samples were scanned for radioactivity. Part of the work was done on behalf of the Division of Raw Materials of the Atomic Energy Commission. The sources, mine mill, smelter, or prospect, from which these samples were collected, the kind of material sampled, i.e. ores, concentrates, middlings, tailings, flue dusts, and so forth, and the radioactivity of the samples are listed in this report. Samples of the materials collected in the course of the Geological Survey’s investigations for uranium are excluded, but about 500 such samples were analyzed spectrographically for some or all of the same 20 elements sought in the samples that are the subject of this report. Most of the samples were tested only for their radioactivity, but a few were analyzed chemically for uranium. The radioactivity of many of the samples tested in the early screening was determined only qualitatively. Several samples were tested at one time, and if the count obtained did not exceed a predetermined minimum above background, the samples were not tested individually. If the count was more than this minimum, the samples were tested individually to identify the radioactive sample or samples and to obtain a quantitative value for the radioactivity. In general, the rough screening served as a basis for separating samples in which the radioactivity amount to less than 0.003 percent equivalent uranium from those in which it exceeded that amount. Some aspects of various phases of the investigation of radioactivity in these samples have been reported in various other reports, as follows.
Total Ore Processing Integration and Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leslie Gertsch; Richard Gertsch
2006-01-30
This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve themore » predictability of mill and agglomerator performance at Hibtac Mine.« less
Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Kiah, Richard G.; Deacon, Jeffrey R.; Adams, Monique; Anthony, Michael W.; Briggs, Paul H.; Jackson, John C.
2006-01-01
The Pike Hill Copper Mine Superfund Site in the Vermont copper belt consists of the abandoned Smith, Eureka, and Union mines, all of which exploited Besshi-type massive sulfide deposits. The site was listed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004 due to aquatic ecosystem impacts. This study was intended to be a precursor to a formal remedial investigation by the USEPA, and it focused on the characterization of mine waste, mine drainage, and stream sediments. A related study investigated the effects of the mine drainage on downstream surface waters. The potential for mine waste and drainage to have an adverse impact on aquatic ecosystems, on drinking- water supplies, and to human health was assessed on the basis of mineralogy, chemical concentrations, acid generation, and potential for metals to be leached from mine waste and soils. The results were compared to those from analyses of other Vermont copper belt Superfund sites, the Elizabeth Mine and Ely Copper Mine, to evaluate if the waste material at the Pike Hill Copper Mine was sufficiently similar to that of the other mine sites that USEPA can streamline the evaluation of remediation technologies. Mine-waste samples consisted of oxidized and unoxidized sulfidic ore and waste rock, and flotation-mill tailings. These samples contained as much as 16 weight percent sulfides that included chalcopyrite, pyrite, pyrrhotite, and sphalerite. During oxidation, sulfides weather and may release potentially toxic trace elements and may produce acid. In addition, soluble efflorescent sulfate salts were identified at the mines; during rain events, the dissolution of these salts contributes acid and metals to receiving waters. Mine waste contained concentrations of cadmium, copper, and iron that exceeded USEPA Preliminary Remediation Goals. The concentrations of selenium in mine waste were higher than the average composition of eastern United States soils. Most mine waste was potentially acid generating because of paste-pH values of less than 4 and negative net-neutralization potentials (NNP). The processed flotation-mill tailings, however, had a near neutral paste pH, positive NNP, and a few weight percent calcite. Leachate tests indicated that elements and compounds such as Al, Cd, Cu, Fe, Mn, Se, SO4, and Zn were leached from mine waste in concentrations that exceeded aquatic ecosystem and drinking-water standards. Mine waste from the Pike Hill mines was chemically and mineralogically similar to that from the Elizabeth and Ely mines. In addition, metals were leached and acid was produced from mine waste from the Pike Hill mines in comparable concentrations to those from the Elizabeth and Ely mines, although the host rock of the Pike Hill deposits contains significant amounts of carbonate minerals and, thus, a greater acid-neutralizing capacity when compared to the host rocks of the Elizabeth and Ely deposits. Water samples collected from unimpacted parts of the Waits River watershed generally contained lower amounts of metals compared to water samples from mine drainage, were alkaline, and had a neutral pH, which was likely because of calcareous bedrock. Seeps and mine pools at the mine site had acidic to neutral pH, ranged from oxic to anoxic, and generally contained concentrations of metals, for example, aluminum, cadmium, copper, iron, and zinc, that exceeded aquatic toxicity standards or drinking-water standards, or both. Surface waters directly downstream of the Eureka and Union mines were acidic, as indicated by pH values from 3.1 to 4.2, and contained high concentrations of some elements including as much as 11,400 micrograms per liter (?g/L) Al, as much as 22.9 ?g/L Cd, as much as 6,790 ?g/L Cu, as much as 23,300 ?g/L Fe, as much as 1,400 ?g/L Mn, and as much as 3,570 ?g/L Zn. The concentrations of these elements exceeded water-quality guidelines. Generally, in surface waters, the pH increased and the concentrations of these elemen
Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R
2018-06-01
High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.
NASA Astrophysics Data System (ADS)
1980-12-01
A mail survey of randomly chosen 202 of the 1000 largest manufacturing and mining firms, as listed by Fortune magazine, was conducted in late 1979 and early 1980. About 64 percent (112 firms) responded with useful data. This Executive Summary draws on the full report (U.S. Metric Board 1979 Survey of Selected Large U.S. Firms and Industries, Lisa King, King Research, Inc., May 1980; AD-A-091-618) and provides an overview of the study's findings. Some selected findings are: (1) about 30 percent of the large firms produce at least one hard metric product; (2) about 48 percent of foreign sales are of metric products; (3) little corporate coordination and planning seems to accompany conversion to the metric system; (4) about one-third of the firms see laws and regulations as impeding conversion; (5) over 50 percent see lack of customers demand as inhibiting conversion; (6) the most realistic time period for conversion is 10 years, the minimum time for conversion (under pressure) is three years, and the preferred time (at the firm's own pace) is eight years.
He, Xun; Miao, Yelian; Jiang, Xuejian; Xu, Zidong; Ouyang, Pingkai
2010-04-01
An integrated wet-milling and alkali pretreatment was applied to corn stover prior to enzymatic hydrolysis. The effects of NaOH concentration in the pretreatment on crystalline structure, chemical composition, and reducing-sugar yield of corn stover were investigated, and the mechanism of increasing reducing-sugar yield by the pretreatment was discussed. The experimental results showed that the crystalline structure of corn stover was disrupted, and lignin was removed, while cellulose and hemicellulose were retained in corn stover by the pretreatment with 1% NaOH in 1 h. The reducing-sugar yield from the pretreated corn stovers increased from 20.2% to 46.7% when the NaOH concentration increased from 0% to 1%. The 1% NaOH pretreated corn stover had a holocellulose conversion of 55.1%. The increase in reducing-sugar yield was related to the crystalline structure disruption and delignification of corn stover. It was clarified that the pretreatment significantly enhanced the conversion of cellulose and hemicellulose in the corn stover to sugars.
NASA Technical Reports Server (NTRS)
Wolfe, R. W.
1976-01-01
A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.
Source identification of uranium-containing materials at mine legacy sites in Portugal.
Keatley, A C; Martin, P G; Hallam, K R; Payton, O D; Awbery, R; Carvalho, F P; Oliveira, J M; Silva, L; Malta, M; Scott, T B
2018-03-01
Whilst prior nuclear forensic studies have focused on identifying signatures to distinguish between different uranium deposit types, this paper focuses on providing a scientific basis for source identification of materials from different uranium mine sites within a single region, which can then be potentially used within nuclear forensics. A number of different tools, including gamma spectrometry, alpha spectrometry, mineralogy and major and minor elemental analysis, have been utilised to determine the provenance of uranium mineral samples collected at eight mine sites, located within three different uranium provinces, in Portugal. A radiation survey was initially conducted by foot and/or unmanned aerial vehicle at each site to assist sample collection. The results from each mine site were then compared to determine if individual mine sites could be distinguished based on characteristic elemental and isotopic signatures. Gamma and alpha spectrometry were used to differentiate between samples from different sites and also give an indication of past milling and mining activities. Ore samples from the different mine sites were found to be very similar in terms of gangue and uranium mineralogy. However, rarer minerals or specific impurity elements, such as calcium and copper, did permit some separation of the sites examined. In addition, classification rates using linear discriminant analysis were comparable to those in the literature. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Arsenic and mercury contamination related to historical goldmining in the Sierra Nevada, California
Alpers, Charles N.
2017-01-01
Arsenic (As) is a naturally occurring constituent in low-sulphide gold-quartz vein deposits, the dominant deposit type for lode mines in the Sierra Nevada Foothills (SNFH) gold (Au) province of California. Concentrations of naturally occurring mercury (Hg) in the SNFH Au province are low, but extensive use and loss of elemental Hg during amalgamation processing of ore from lode and placer Au deposits led to widespread contamination of Hg in the Sierra Nevada foothills and downstream areas, such as the Sacramento–San Joaquin Delta and San Francisco Bay. This review paper provides an overview of As and Hg contamination related to historical Au mining in the Sierra Nevada of California. It summarizes the geology, mineralogy, and geochemistry of the Au deposits, and provides information on specific areas where detailed studies have been done in association with past, ongoing, and planned remediation activities related to the environmental As and Hg contamination.Arsenic is a naturally occurring constituent in low-sulphide Au-quartz vein deposits, the dominant deposit type for lode mines in the Sierra Nevada Foothills (SNFH) Au province (Ashley 2002). Because of elevated concentrations of As in accessory iron-sulphide minerals including arsenopyrite (FeAsS) and arsenian pyrite (Fe(S,As)2), As is commonly a contaminant of concern in lode Au mine waste, including waste rock and mill tailings. The principal pathways of human As exposure from mine waste include ingestion of soil or drinking water, and inhalation of dust in contaminated areas (Mitchell 2014).Concentrations of naturally occurring Hg in the SNFH Au province are low, but extensive use and loss of elemental Hg during amalgamation processing of ore from lode and placer Au deposits (Churchill 2000) led to widespread contamination of Hg in the Sierra Nevada foothills and downstream areas, such as the Sacramento–San Joaquin Delta and San Francisco Bay (Alpers et al. 2005a). Conversion of Hg to monomethylmercury (MeHg) by sulphate-reducing and iron-reducing microbes facilitates its bioaccumulation (Wiener et al. 2003). The human Hg exposure pathway of main concern is ingestion of MeHg from sport (non-commercial) fish, especially higher trophic levels such as bass species (Davis et al. 2008). Wildlife exposure to MeHg is also a concern because of chronic and reproductive effects, for example in fish-eating and invertebrate-foraging birds (e.g. Wiener et al. 2003; Eagles-Smith et al. 2009; Ackerman et al. 2016).
2016-01-01
Background As the use of electronic cigarettes (e-cigarettes) rises, social media likely influences public awareness and perception of this emerging tobacco product. Objective This study examined the public conversation on Twitter to determine overarching themes and insights for trending topics from commercial and consumer users. Methods Text mining uncovered key patterns and important topics for e-cigarettes on Twitter. SAS Text Miner 12.1 software (SAS Institute Inc) was used for descriptive text mining to reveal the primary topics from tweets collected from March 24, 2015, to July 3, 2015, using a Python script in conjunction with Twitter’s streaming application programming interface. A total of 18 keywords related to e-cigarettes were used and resulted in a total of 872,544 tweets that were sorted into overarching themes through a text topic node for tweets (126,127) and retweets (114,451) that represented more than 1% of the conversation. Results While some of the final themes were marketing-focused, many topics represented diverse proponent and user conversations that included discussion of policies, personal experiences, and the differentiation of e-cigarettes from traditional tobacco, often by pointing to the lack of evidence for the harm or risks of e-cigarettes or taking the position that e-cigarettes should be promoted as smoking cessation devices. Conclusions These findings reveal that unique, large-scale public conversations are occurring on Twitter alongside e-cigarette advertising and promotion. Proponents and users are turning to social media to share knowledge, experience, and questions about e-cigarette use. Future research should focus on these unique conversations to understand how they influence attitudes towards and use of e-cigarettes. PMID:27956376
Comparison of five-axis milling and rapid prototyping for implant surgical templates.
Park, Ji-Man; Yi, Tae-Kyoung; Koak, Jai-Young; Kim, Seong-Kyoon; Park, Eun-Jin; Heo, Seong-Joo
2014-01-01
This study aims to compare and evaluate the accuracy of surgical templates fabricated using coordinate synchronization processing with five-axis milling and design-related processing with rapid prototyping (RP). Master phantoms with 10 embedded gutta-percha cylinders hidden under artificial gingiva were fabricated and imaged using cone beam computed tomography. Vectors of the hidden cylinders were extracted and transferred to those of the planned implants through reverse engineering using virtual planning software. An RP-produced template was fabricated by stereolithography in photopolymer at the RP center according to planned data. Metal sleeves were bonded after holes were bored (group RP). For the milled template, milling coordinates were synchronized using the conversion process for the coordinate synchronization platform located on the model's bottom. Metal bushings were set on holes milled on the five-axis milling machine, on which the model was fixed through the coordinate synchronization plate, and the framework was constructed on the model using orthodontic resin (group CS). A computed tomography image was taken with templates firmly fixed on models using anchor pins (RP) or anchor screws (CS). The accuracy was analyzed via reverse engineering. Differences between the two groups were compared by repeated measures two-factor analysis. From the reverse-engineered image of the template on the experimental model, RP-produced templates showed significantly larger deviations than did milled surgical guides. Maximum deviations of the group RP were 1.58 mm (horizontal), 1.68 mm (vertical), and 8.51 degrees (angular); those of the group CS were 0.68 mm (horizontal), 0.41 mm (vertical), and 3.23 degrees (angular). A comparison of milling and RP template production methods showed that a vector-milled surgical guide had significantly smaller deviations than did an RP-produced template. The accuracy of computer-guided milled surgical templates was within the safety margin of previous studies.
NASA Astrophysics Data System (ADS)
Bhakta, K. D.; Yeboah-Forson, A.
2015-12-01
The Tri-State lead and zinc mining district in SW Missouri, SE Kansas, and NE Oklahoma encompasses nearly 2,500 sq. miles of land and at its peak accounted for half of the US zinc (23,000,000 tons) production that surpassed one billion dollars in economic value. Once these lead and zinc rich ores were extracted, mining and milling sites were abandoned leaving behind a new landscape with numerous environmental challenges. Since 1970, most of the sites have been targeted for remediation and reclamation by federal and state agencies including the EPA. In order to capture the full extent of the impact of lead and zinc mining in the Tri-State area, numerous geoscientific approaches including data from small unmanned aerial vehicle (UAV) were employed to investigate the influence of mining in the study area. The study presented here is focused on observational assessment of the existing landscape using multiple commercial high-definitions data from UAVs to study different sites across areas of concern in the three states. Primary results (images) gathered and analyzed DEM and GIS data from abandoned mines showed the potential to provide a quick snapshot of successful or unsuccessful remediated areas. Although research and remediation of the Tri-State mining district are a continuous process, evidence from this geomorphic study suggest that UAVs can provide a quick overview of the remediated landscape or serve as a primary background tool for a more detail site-specific environmental study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, A.V.; Semenova, M.P.; Seregin, V.A.
2013-07-01
Manmade chemical and radioactive contamination of groundwater is one of damaging effects of the uranium mining and milling facilities. Groundwater contamination is of special importance for the area of Priargun Production Mining and Chemical Association, JSC 'PPMCA', because groundwater is the only source of drinking water. The paper describes natural conditions of the site, provides information on changes of near-surface area since the beginning of the company, illustrates the main trends of contaminators migration and assesses manmade impact on the quality and mode of near-surface and ground waters. The paper also provides the results of chemical and radioactive measurements inmore » groundwater at various distances from the sources of manmade contamination to the drinking water supply areas. We show that development of deposits, mine water discharge, leakages from tailing dams and cinder storage facility changed general hydro-chemical balance of the area, contributed to new (overlaid) aureoles and flows of scattering paragenetic uranium elements, which are much smaller in comparison with natural ones. However, increasing flow of groundwater stream at the mouth of Sukhoi Urulyungui due to technological water infiltration, mixing of natural water with filtration streams from industrial reservoirs and sites, containing elevated (relative to natural background) levels of sulfate-, hydro-carbonate and carbonate- ions, led to the development and moving of the uranium contamination aureole from the undeveloped field 'Polevoye' to the water inlet area. The aureole front crossed the southern border of water inlet of drinking purpose. The qualitative composition of groundwater, especially in the southern part of water inlet, steadily changes for the worse. The current Russian intervention levels of gross alpha activity and of some natural radionuclides including {sup 222}Rn are in excess in drinking water; regulations for fluorine and manganese concentrations are also in excess. Possible ways to improve the situation are considered. (authors)« less
LeClerc, Emma; Wiersma, Yolanda F
2017-04-01
This study investigates land cover change near the abandoned Pine Point Mine in Canada's Northwest Territories. Industrial mineral development transforms local environments, and the effects of such disturbances are often long-lasting, particularly in subarctic, boreal environments where vegetation conversion can take decades. Located in the Boreal Plains Ecozone, the Pine Point Mine was an extensive open pit operation that underwent little reclamation when it shut down in 1988. We apply remote sensing and landscape ecology methods to quantify land cover change in the 20 years following the mine's closure. Using a time series of near-anniversary Landsat images, we performed a supervised classification to differentiate seven land cover classes. We used raster algebra and landscape metrics to track changes in land cover composition and configuration in the 20 years since the mine shut down. We compared our results with a site in Wood Buffalo National Park that was never subjected to extensive anthropogenic disturbance. This space-for-time substitution provided an analog for how the ecosystem in the Pine Point region might have developed in the absence of industrial mineral development. We found that the dense conifer class was dominant in the park and exhibited larger and more contiguous patches than at the mine site. Bare land at the mine site showed little conversion through time. While the combination of raster algebra and landscape metrics allowed us to track broad changes in land cover composition and configuration, improved access to affordable, high-resolution imagery is necessary to effectively monitor land cover dynamics at abandoned mines.
27. Photocopy of drawing September 28, 1951 (original in files ...
27. Photocopy of drawing September 28, 1951 (original in files of United States Military Academy Architectural Archive, West Point, New York) CONVERSION OF ICE HOUSE TO WAREHOUSE, ELECTRICAL DETAILS - U.S. Military Academy, Ice House, Mills Road at Howze Place, West Point, Orange County, NY
Chuen, Onn Chiu; Yusoff, Sumiani
2012-03-01
This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.
Environmental pleural plaques in residents of a Quebec chrysotile mining town
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churg, A.; DePaoli, L.
1988-07-01
We report four cases of pleural plaques found at autopsy in individuals who resided in or near the chrysotile mining town of Thetford Mines, Quebec, and who had never been employed in the chrysotile mining and milling industry. Three of these patients were farmers, and one was a road construction worker. Lung asbestos content of these cases was compared with that of a group of nine persons living in the same vicinity who did not have pleural plaques. The plaque group was found to have an equal chrysotile content but about a fourfold elevation in median tremolite content, a statisticallymore » significant increase. Fiber sizes were the same in both groups. Also, one plaque case had an elevated level of relatively long titanium oxide fibers. These observations suggest that environmental pleural plaques in this region of Quebec are probably caused by exposure to tremolite derived from local soil and rock and that other types of mineral fibers such as titanium oxide may occasionally also be the cause of such lesions.« less
Enhanced Preliminary Assessment Report: Fort Wingate Depot Activity Gallup, New Mexico
1990-03-01
Census, 1980 Census of Population. U 20 uranium exploration, mining, and milling, while the trade sector is influenced by the Zuni and Navajo ...Five Indian reservations, eight national park areas ( Navajo , Chaco Canyon, Aztec Ruins, El Moro National Monuments, Mesa Verde, and Petrified Forest...Argonne National Laboratory Argonne, Illinois 60439 IAppmvd bo o. 90 0611 090 CETHA-BC-CR-90051 Enhanced Preliminary Assessment Report: Fort Wingate Depot
Steel: Price and Policy Issues
2006-08-31
former North Star mills in Minnesota and Iowa, but operations have continued without a new replacement contract.28 World Steel Output Totals At the...supply contracts for the coming year, Nippon Steel agreed to an unprecedented 71.5% price increase with the large Brazilian iron mining company, CVRD...production, which is in the form of taconite that is subsequently pelletized, increased in 2004-05. After averaging less than 50 million MT in 2001-03
Reference Aid: Abbreviations, Acronyms and Special Terms in the Turkish Press of Turkey and the TFSC
1977-07-18
Sirketi Cypriot Mines Corporation Kibris Mulkiyeciler Birligi Civil Servants Union of Cyprus Kadikoy Musik Dernegi Kadikoy Music Association (of...8217 Union (Cyprus) Lefkosa Turk Lisesi Musik Toplulugu Nicosia Turkish Lycee Musical Society Liman Harbor, port Libya Insaat ve Yatirim AS Libyan... Music Society KTMK Kaynak Teknigi Turk Mill! Komitesi Yonetmeligi Turkish National Committee for Welding Techniques 77 KTMMOB Kibris Turk Muhendis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, N. E.; Borg, L. E.; Eppich, G. R.
2015-07-09
The goals of this SP-1 effort were to understand how isotopic and elemental signatures behave during mining, milling, and concentration and to identify analytes that might preserve geologic signatures of the protolith ores. The impurities that are preserved through the concentration process could provide useful forensic signatures and perhaps prove diagnostic of sample origin.
Miao, Ziheng; Nihat, Hakan; McMillan, Andrew Lee; Brusseau, Mark L.
2013-01-01
The remediation of ammonium-containing groundwater discharged from uranium mill tailing sites is a difficult problem facing the mining industry. The Monument Valley site is a former uranium mining site in the southwest US with both ammonium and nitrate contamination of groundwater. In this study, samples collected from 14 selected wells were analyzed for major cations and anions, trace elements, and isotopic composition of ammonium and nitrate. In addition, geochemical data from the U.S. Department of Energy (DOE) database were analyzed. Results showing oxic redox conditions and correspondence of isotopic compositions of ammonium and nitrate confirmed the natural attenuation of ammonium via nitrification. Moreover, it was observed that ammonium concentration within the plume area is closely related to concentrations of uranium and a series of other trace elements including chromium, selenium, vanadium, iron, and manganese. It is hypothesized that ammonium-nitrate transformation processes influence the disposition of the trace elements through mediation of redox potential, pH, and possibly aqueous complexation and solid-phase sorption. Despite the generally relatively low concentrations of trace elements present in groundwater, their transport and fate may be influenced by remediation of ammonium or nitrate at the site. PMID:24357895
Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.
Archambault-Léger, Véronique; Lynd, Lee R
2014-04-01
The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow. Copyright © 2014. Published by Elsevier Ltd.
Cellulase production from spent sulfite liquor and paper-mill waste fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu Yinbo; Zhao Xin; Gao Peiji
1991-12-31
Since a high proportion of the overall cost of the conversion of cellulosics to useful products is the expense of cellulose production (1), it is desirable to develop new processes for producing large amounts of cellulase inexpensively. So far, most of the research work on cellulose production has been carried out using milled cellulose powder and inorganic salts as substrates, which significantly increases the cost of enzyme production. In order to reduce the cost of raw materials, we tried to develop from industrial wastes a new medium for the production of cellulose. In this report, we describe a simple methodmore » by which an all-waste medium, which was composed of spent ammonium sulfite liquor and cellulosic waste of a paper mill, and a catabolite derepression mutant of Penicillium decumbens were used to produce the enzyme efficiently.« less
NASA Astrophysics Data System (ADS)
Prasetya, A.; Mawadati, A.; Putri, A. M. R.; Petrus, H. T. B. M.
2018-01-01
Comminution is one of crucial steps in gold ore processing used to liberate the valuable minerals from gaunge mineral. This research is done to find the particle size distribution of gold ore after it has been treated through the comminution process in a rod mill with various number of rod and rotational speed that will results in one optimum milling condition. For the initial step, Sumbawa gold ore was crushed and then sieved to pass the 2.5 mesh and retained on the 5 mesh (this condition was taken to mimic real application in artisanal gold mining). Inserting the prepared sample into the rod mill, the observation on effect of rod-number and rotational speed was then conducted by variating the rod number of 7 and 10 while the rotational speed was varied from 60, 85, and 110 rpm. In order to be able to provide estimation on particle distribution of every condition, the comminution kinetic was applied by taking sample at 15, 30, 60, and 120 minutes for size distribution analysis. The change of particle distribution of top and bottom product as time series was then treated using Rosin-Rammler distribution equation. The result shows that the homogenity of particle size and particle size distribution is affected by rod-number and rotational speed. The particle size distribution is more homogeneous by increasing of milling time, regardless of rod-number and rotational speed. Mean size of particles do not change significantly after 60 minutes milling time. Experimental results showed that the optimum condition was achieved at rotational speed of 85 rpm, using rod-number of 7.
Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus
USDA-ARS?s Scientific Manuscript database
Particle size reduction is a crucial factor in transportation logistics as well as cellulosic conversion. The effect of particle size on enzymatic hydrolysis of pretreated Miscanthus x giganteus was determined. Miscanthus was ground using a hammer mill equipped with screens having 0.08, 2.0 or 6.0...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
PLA-Based Curriculum: Humanistic Model of Higher Education
ERIC Educational Resources Information Center
Popova-Gonci, Viktoria; Tobol, Amy Ruth
2011-01-01
The authors believe that there is no inherent academic validity or lack of thereof in the notion of prior learning assessment (PLA)-based curriculum. If mishandled, it can become the tool for carrying out diploma mill practices. Conversely, if implemented and facilitated appropriately, PLA-based curricula can offer humanistic educational values…
Mining disease state converters for medical intervention of diseases.
Dong, Guozhu; Duan, Lei; Tang, Changjie
2010-02-01
In applications such as gene therapy and drug design, a key goal is to convert the disease state of diseased objects from an undesirable state into a desirable one. Such conversions may be achieved by changing the values of some attributes of the objects. For example, in gene therapy one may convert cancerous cells to normal ones by changing some genes' expression level from low to high or from high to low. In this paper, we define the disease state conversion problem as the discovery of disease state converters; a disease state converter is a small set of attribute value changes that may change an object's disease state from undesirable into desirable. We consider two variants of this problem: personalized disease state converter mining mines disease state converters for a given individual patient with a given disease, and universal disease state converter mining mines disease state converters for all samples with a given disease. We propose a DSCMiner algorithm to discover small and highly effective disease state converters. Since real-life medical experiments on living diseased instances are expensive and time consuming, we use classifiers trained from the datasets of given diseases to evaluate the quality of discovered converter sets. The effectiveness of a disease state converter is measured by the percentage of objects that are successfully converted from undesirable state into desirable state as deemed by state-of-the-art classifiers. We use experiments to evaluate the effectiveness of our algorithm and to show its effectiveness. We also discuss possible research directions for extensions and improvements. We note that the disease state conversion problem also has applications in customer retention, criminal rehabilitation, and company turn-around, where the goal is to convert class membership of objects whose class is an undesirable class.
Mixed waste paper to ethanol fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.
Davis, Donald R.; Wagner, David L.
2011-01-01
Abstract Four New World species of Phyllocnistis Zeller are described from serpentine mines in Persea (Family Lauraceae). Phyllocnistis hyperpersea,new species, mines the upper leaf surfaces of avocado, Persea americana Mill., and red bay, Persea borbonia (L.) Spreng. and ranges over much of the southeastern United States into Central America. Phyllocnistis subpersea,new species, mines the underside and occasionally upper sides of new leaves of Persea borbonia in southeastern United States. Phyllocnistis longipalpa, new species, known only from southern Florida also mines the undersides of new leaves of Persea borbonia. Phyllocnistis perseafolia,new species, mines both leaf surfaces and possibly fruits of Persea americana in Colombia, South America. As in all known species of Phyllocnistis, the early instars are subepidermal sapfeeders in young (not fully hardened) foliage, and the final instar is an extremely specialized, nonfeeding larval form, whose primary function is to spin the silken cocoon, at the mine terminus, prior to pupation. Early stages are illustrated and described for three of the species. The unusual morphology of the pupae, particularly the frontal process of the head, is shown to be one of the most useful morphological sources of diagnostic characters for species identification of Phyllocnistis. COI barcode sequence distances are provided for the four proposed species and a fifth, undescribed species from Costa Rica. PMID:21594066
Davis, Donald R; Wagner, David L
2011-05-11
Four New World species of Phyllocnistis Zeller are described from serpentine mines in Persea (Family Lauraceae). Phyllocnistis hyperpersea,new species, mines the upper leaf surfaces of avocado, Persea americana Mill., and red bay, Persea borbonia (L.) Spreng. and ranges over much of the southeastern United States into Central America. Phyllocnistis subpersea,new species, mines the underside and occasionally upper sides of new leaves of Persea borbonia in southeastern United States. Phyllocnistis longipalpa, new species, known only from southern Florida also mines the undersides of new leaves of Persea borbonia. Phyllocnistis perseafolia,new species, mines both leaf surfaces and possibly fruits of Persea americana in Colombia, South America. As in all known species of Phyllocnistis, the early instars are subepidermal sapfeeders in young (not fully hardened) foliage, and the final instar is an extremely specialized, nonfeeding larval form, whose primary function is to spin the silken cocoon, at the mine terminus, prior to pupation. Early stages are illustrated and described for three of the species. The unusual morphology of the pupae, particularly the frontal process of the head, is shown to be one of the most useful morphological sources of diagnostic characters for species identification of Phyllocnistis. COI barcode sequence distances are provided for the four proposed species and a fifth, undescribed species from Costa Rica.
Opiso, Einstine M; Aseneiro, John Paul J; Banda, Marybeth Hope T; Tabelin, Carlito B
2018-03-01
The solid-phase partitioning of mercury could provide necessary data in the identification of remediation techniques in contaminated artisanal gold mine tailings. This study was conducted to determine the total mercury content of mine wastes and identify its solid-phase partitioning through selective sequential extraction coupled with cold vapour atomic absorption spectroscopy. Samples from mine tailings and the carbon-in-pulp (CIP) process were obtained from selected key areas in Mindanao, Philippines. The results showed that mercury use is still prevalent among small-scale gold miners in the Philippines. Tailings after ball mill-gravity concentration (W-BM and Li-BM samples) from Mt Diwata and Libona contained high levels of mercury amounting to 25.024 and 6.5 mg kg -1 , respectively. The most prevalent form of mercury in the mine tailings was elemental/amalgamated mercury, followed by water soluble, exchangeable, organic and strongly bound phases, respectively. In contrast, mercury content of carbon-in-pulp residues were significantly lower at only 0.3 and 0.06 mg kg -1 for P-CIP (Del Pilar) and W-CIP (Mt Diwata), respectively. The bulk of mercury in P-CIP samples was partitioned in residual fraction while in W-CIP samples, water soluble mercury predominated. Overall, this study has several important implications with regards to mercury detoxification of contaminated mine tailings from Mindanao, Philippines.
Hydrogeochemistry and microbiology of mine drainage: An update
Nordstrom, D. Kirk; Blowes, D.W; Ptacek, C.J.
2015-01-01
The extraction of mineral resources requires access through underground workings, or open pit operations, or through drillholes for solution mining. Additionally, mineral processing can generate large quantities of waste, including mill tailings, waste rock and refinery wastes, heap leach pads, and slag. Thus, through mining and mineral processing activities, large surface areas of sulfide minerals can be exposed to oxygen, water, and microbes, resulting in accelerated oxidation of sulfide and other minerals and the potential for the generation of low-quality drainage. The oxidation of sulfide minerals in mine wastes is accelerated by microbial catalysis of the oxidation of aqueous ferrous iron and sulfide. These reactions, particularly when combined with evaporation, can lead to extremely acidic drainage and very high concentrations of dissolved constituents. Although acid mine drainage is the most prevalent and damaging environmental concern associated with mining activities, generation of saline, basic and neutral drainage containing elevated concentrations of dissolved metals, non-metals, and metalloids has recently been recognized as a potential environmental concern. Acid neutralization reactions through the dissolution of carbonate, hydroxide, and silicate minerals and formation of secondary aluminum and ferric hydroxide phases can moderate the effects of acid generation and enhance the formation of secondary hydrated iron and aluminum minerals which may lessen the concentration of dissolved metals. Numerical models provide powerful tools for assessing impacts of these reactions on water quality.
Radon emanation from backfilled mill tailings in underground uranium mine.
Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar
2014-04-01
Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Joseph, C.; Waugh, W.; Glenn, E.; Chief, K.
2017-12-01
There are approximately 15,000 abandoned uranium mines (AUM) in the western United States, of which 500 AUMs are located in the Colorado Plateau Four-Corners region. Uranium mill tailings, referred to as legacy waste, compromise the largest volume of any category of radioactive waste in the nation. Today, the Department of Energy Legacy Management is responsible for long-term stewardship and maintenance of inactive uranium processing sites that have been remediated to prevent further migration and exposure of tailings to the environment and surrounding communities. In collaboration with the DOE-LM, I am investigating the impact of climate change and community adaptation on the long-term performance of disposal cell covers for uranium mill tailings located in Native American communities, as well as how these communities have adapted to and perceive these areas. I am interested in how abiotic engineered cell covers may be candidate sites for future conversion to vegetated evapotranspirative caps for arid to semi-arid climates. The objectives are to: 1) assess above-ground tissue of plants encroaching engineered cell covers for concentrations of uranium, radium, selenium, molybdenum, thorium, arsenic, lead, and manganese and compare them to control sites; 2) determine if above-cell plant tissue is accumulating to toxic levels that may create an exposure pathway, 3) identify climate scenarios for site locations and determine how short-and long-scale climate projections will influence spatial and temporal plant distribution for specific woody species; and 4) evaluate the risk perceptions of Hopi villages located five miles downstream of one site location. To date, risk perception and stakeholder outreach to the Hopi communities has been absent. This study will help inform how land use, water use, and sustenance practices may contribute to environmental health disparities for one of the few tribes that has maintained physical continuity within their ancestral homeland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-01
This article reviews uranium production in Romania. Geological aspects of the country are discussed, and known uranium deposits are noted. Uranium mining and milling activities are also covered. Utilization of Romania`s uranium production industry will primarily be to supply the country`s nuclear power program, and with the present adequate supplies and the operation of their recently revamped fuel production facility, Romania should be self-reliant in the front end of the nuclear fuel cycle.
Beneficiation of Stillwater Complex Rock for the Production of Lunar Simulants
NASA Technical Reports Server (NTRS)
Rickman, D. L.; Young, C.; Stoeser, D.; Edmunson, J.
2014-01-01
The availability of pure, high calcium plagioclase would be a significant asset in any attempt to manufacture high-quality lunar simulants. A suitable plagioclase product can be obtained from materials obtained from the Stillwater Complex of Montana. The access, geology, petrology, and mineralogy of the relevant rocks and the mill tailings are described here. This study demonstrates successful plagioclase recovery from mill tailings produced by the Stillwater Mine Company. Hydrogen peroxide was used to remove carboxymethyl cellulose from the tailing. The characteristics of the plagioclase products are shown and locked grains are identified as a limit to achievable purity. Based on the experimental results, flowsheets were developed showing how these resources could be processed and made into 'separates' of (1) high calcium plagioclase and (2) orthopyroxene/clinopyroxene with the thought that they would be combined later to make simulant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiatreungwattana, K.; Geiger, J.; Healey, V.
2013-04-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Peru Mill Industrial Park site in the City of Deming, New Mexico, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
Hamilton, S.J.; Buhl, K.J.
2000-01-01
Whitewood Creek, located in the Black Hills of southwestern South Dakota, has a long history of contamination from mining activity. Gold exploration began in the 1870s, and has continued since that time. Whitewood Creek received direct releases of tailings from 1870 to 1977 from Gold Run Creek in Lead, SD. It has been estimated that approximately 100 million to 1 billion tons of mining, milling, and ore processing wastes have been released by mining activity in the last century in to Whitewood Creek, the Belle Fourche river, and the Cheyenne River (Fox Consultants, Inc. 1984). Tailings deposition has altered the geomorphology of Whitewood Creek, and deposits up to 4.6 m. deep, have become stabilized by vegetation. Several other streams in the Black Hills also have been adversely affected by mining operations (Rahn 1996).As water leaches through rock strata that are disturbed by surface and subsurface mining, it dissolves inorganic elements and carries them to the groundwater. Groundwater movement through the extensive tailings deposits in the Whitewood Creek valley enter the creek at various seeps along its downstream course to the Belle Fourche river, and the Belle Fourche River itself, which empties into the Cheyenne River and eventually into Lake Oahe.
USDA-ARS?s Scientific Manuscript database
Rice milk beverages can well balanced nutrition. With healthier nutrition in consumer’s minds, national. Worldwide consumption/production of plant-based milk beverages are increasing. Much past research and invention was based on enzymatic conversion processes for starch that were uncomplicated be...
26. Photocopy of drawing August 30, 1951 (original in files ...
26. Photocopy of drawing August 30, 1951 (original in files of United States Military Academy Architectural Archive, West Point, New York) CONVERSION OF ICE HOUSE TO WAREHOUSE, SECTIONS OF DOORS, WALLS, SILLS, CONCRETE PLATFORMS, RAMPS - U.S. Military Academy, Ice House, Mills Road at Howze Place, West Point, Orange County, NY
25. Photocopy of drawing, August 30, 1951 (original in files ...
25. Photocopy of drawing, August 30, 1951 (original in files of United States Military Academy Architectural Archive, West Point, New York) CONVERSION OF ICE HOUSE TO WAREHOUSE, FRONT ELEVATION, SOUTH ELEVATION, PLAN, TRANSVERSE SECTION - U.S. Military Academy, Ice House, Mills Road at Howze Place, West Point, Orange County, NY
Effect of feed source and pyrolysis conditions on sugarcane bagasse biochar
USDA-ARS?s Scientific Manuscript database
Processing of sugarcane in sugar mills yield ca. 30% bagasse, a fibrous waste material composed mostly of crushed cane stalks. While 80-90% of the bagasse used on site as fuel, the remaining portion can be converted into a value-added product. One such option is thermal conversion of bagasse into bi...
Xing, Xue; Chen, Zheng; Li, Jifeng; Zhang, Jing; Deng, Huihua; Lu, Zuhong
2013-06-05
Hair cortisol has been used as a biomarker of chronic stress. The detected contents of hair cortisol might depend on the incubation duration in solvents for no-milled hair samples with 3-layer structure. However, there was no research on the dissolution mechanism of hair analytes. After uniform mixture, no-milled hair samples were incubated in methanol and water for the 12 different durations and milled hair was done as comparison. Hair cortisol and cortisone were determined with high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The measured concentrations of hair cortisol and cortisone showed ≥2 maxima during the entire incubation in methanol and water from 5 min to 72 h for no-milled hair. Hair cortisol concentration measured by LC-MS/MS was increased with the incubation duration. Conversely, it was not held when hair was powdered prior to the incubation in methanol. Hair cortisol and cortisone were dissolved from hair matrix through the 2-stage or multistage mechanism, which might depend on the hair 3-layer structure and its degree of damage. Copyright © 2013 Elsevier B.V. All rights reserved.
Boice, John D; Mumma, Michael T; Blot, William J
2007-06-01
Mining and milling of uranium in Montrose County on the Western Slope of Colorado began in the early 1900s and continued until the early 1980s. To evaluate the possible impact of these activities on the health of communities living on the Colorado Plateau, mortality rates between 1950 and 2000 among Montrose County residents were compared to rates among residents in five similar counties in Colorado. Standardized mortality ratios (SMRs) were computed as the ratio of observed numbers of deaths in Montrose County to the expected numbers of deaths based on mortality rates in the general populations of Colorado and the United States. Relative risks (RRs) were computed as the ratio of the SMRs for Montrose County to the SMRs for the five comparison counties. Between 1950 and 2000, a total of 1,877 cancer deaths occurred in the population residing in Montrose County, compared with 1,903 expected based on general population rates for Colorado (SMR(CO) 0.99). There were 11,837 cancer deaths in the five comparison counties during the same 51-year period compared with 12,135 expected (SMR(CO) 0.98). There was no difference between the total cancer mortality rates in Montrose County and those in the comparison counties (RR = 1.01; 95% CI 0.96-1.06). Except for lung cancer among males (RR = 1.19; 95% CI 1.06-1.33), no statistically significant excesses were seen for any causes of death of a priori interest: cancers of the breast, kidney, liver, bone, or childhood cancer, leukemia, non-Hodgkin lymphoma, renal disease or nonmalignant respiratory disease. Lung cancer among females was decreased (RR = 0.83; 95% CI 0.67-1.02). The absence of elevated mortality rates of cancer in Montrose County over a period of 51 years suggests that the historical milling and mining operations did not adversely affect the health of Montrose County residents. Although descriptive correlation analyses such as this preclude definitive causal inferences, the increased lung cancer mortality seen among males but not females is most likely due to prior occupational exposure to radon and cigarette smoking among underground miners residing in Montrose County, consistent with previous cohort studies of Colorado miners and of residents of the town of Uravan in Montrose County.
Lazard, Allison J; Saffer, Adam J; Wilcox, Gary B; Chung, Arnold DongWoo; Mackert, Michael S; Bernhardt, Jay M
2016-12-12
As the use of electronic cigarettes (e-cigarettes) rises, social media likely influences public awareness and perception of this emerging tobacco product. This study examined the public conversation on Twitter to determine overarching themes and insights for trending topics from commercial and consumer users. Text mining uncovered key patterns and important topics for e-cigarettes on Twitter. SAS Text Miner 12.1 software (SAS Institute Inc) was used for descriptive text mining to reveal the primary topics from tweets collected from March 24, 2015, to July 3, 2015, using a Python script in conjunction with Twitter's streaming application programming interface. A total of 18 keywords related to e-cigarettes were used and resulted in a total of 872,544 tweets that were sorted into overarching themes through a text topic node for tweets (126,127) and retweets (114,451) that represented more than 1% of the conversation. While some of the final themes were marketing-focused, many topics represented diverse proponent and user conversations that included discussion of policies, personal experiences, and the differentiation of e-cigarettes from traditional tobacco, often by pointing to the lack of evidence for the harm or risks of e-cigarettes or taking the position that e-cigarettes should be promoted as smoking cessation devices. These findings reveal that unique, large-scale public conversations are occurring on Twitter alongside e-cigarette advertising and promotion. Proponents and users are turning to social media to share knowledge, experience, and questions about e-cigarette use. Future research should focus on these unique conversations to understand how they influence attitudes towards and use of e-cigarettes. ©Allison J Lazard, Adam J Saffer, Gary B Wilcox, Arnold DongWoo Chung, Michael S Mackert, Jay M Bernhardt. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 12.12.2016.
Kato, Taku; Ohara, Satoshi; Fukushima, Yasuhiro; Sugimoto, Akira; Masuda, Takayuki; Yasuhara, Takaomi; Yamagishi, Hiromi
2016-07-01
Advances in glucose/fructose-selective ethanol production have successfully enhanced raw sugar extraction from sugarcane juice by converting inhibitory substances (i.e., glucose/fructose) into ethanol, which is removed by subsequent operations in cane sugar mills. However, the commercial implementation of this breakthrough process in existing cane sugar mills requires a yeast strain that (i) can be used in food production processes, (ii) exhibits stable saccharometabolic selectivity, and (iii) can be easily separated from the saccharide solution. In this study, we developed a suitable saccharometabolism-selective and flocculent strain, Saccharomyces cerevisiae GYK-10. We obtained a suitable yeast strain for selective fermentation in cane sugar mills using a yeast mating system. First, we crossed a haploid strain defective in sucrose utilization with a flocculent haploid strain. Next, we performed tetrad dissection of the resultant hybrid diploid strain and selected GYK-10 from various segregants by investigating the sucrose assimilation and flocculation capacity phenotypes. Ten consecutive fermentation tests of the GYK-10 strain using a bench-scale fermentor confirmed its suitability for the implementation of practical selective fermentation in a commercial sugar mill. The strain exhibited complete saccharometabolic selectivity and sustained flocculation, where it maintained a high ethanol yield and conversion rate throughout the test. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Research on solvent-refined coal. Quarterly technical progress report, April 1, 1981-June 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-10-01
This report describes progress on the Research on Solvent Refined Coal project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during the second quarter of 1981. Alexander Mine coal was evaluated as a feedstock for major liquefaction facilities and had a yield structure similar to other reactive Pittsburgh seam coals at standard SRC II conditions. Two lots of coal from the Ireland Mine (Pittsburgh seam) were found to be of nearly the same composition and produced essentially the same yields. Two experiments in which coal-derived nonvolatile organic matter was processed without fresh coal feed indicate constant rates ofmore » conversion of SRC to oil and gas. Insoluble organic matter (IOM) remained unconverted. The naphtha and middle distillate products from the deep conversion contained less sulfur but more nitrogen than those from conventional SRC II processing. Encouraging results were obtained when a very small amount of iron oxide dispersed on alumina was added to Kaiparowits coal which cannot be processed at normal SRC II conditions without added catalyst. Subbituminous coals from the McKinley and Edna Mines were processed successfully with added pyrite but would not run when the added catalyst was removed.« less
Machine-related injuries in the US mining industry and priorities for safety research.
Ruff, Todd; Coleman, Patrick; Martini, Laura
2011-03-01
Researchers at the National Institute for Occupational Safety and Health studied mining accidents that involved a worker entangled in, struck by, or in contact with machinery or equipment in motion. The motivation for this study came from the large number of severe accidents, i.e. accidents resulting in a fatality or permanent disability, that are occurring despite available interventions. Accident descriptions were taken from an accident database maintained by the United States Department of Labor, Mine Safety and Health Administration, and 562 accidents that occurred during 2000-2007 fit the search criteria. Machine-related accidents accounted for 41% of all severe accidents in the mining industry during this period. Machinery most often involved in these accidents included conveyors, rock bolting machines, milling machines and haulage equipment such as trucks and loaders. The most common activities associated with these accidents were operation of the machine and maintenance and repair. The current methods to safeguard workers near machinery include mechanical guarding around moving components, lockout/tagout of machine power during maintenance and backup alarms for mobile equipment. To decrease accidents further, researchers recommend additional efforts in the development of new control technologies, training materials and dissemination of information on best practices.
Method for in situ biological conversion of coal to methane
Volkwein, Jon C.
1995-01-01
A method and apparatus are provided for the in situ biological conversion of coal to methane comprising culturing on a coal-containing substrate a consortium of microorganisms capable of degrading the coal into methane under suitable conditions. This consortium of microorganisms can be obtained from an underground cavity such as an abandoned mine which underwent a change from being supplied with sewage to where no sewage was present, since these conditions have favored the development of microorganisms capable of using coal as a carbon source and converting coal to methane. The consortium of microorganisms obtained from such abandoned coal mines can be isolated and introduced to hard-to-reach coal-containing substrates which lack such microorganisms and which would otherwise remain unrecoverable. The present invention comprises a significant advantage in that useable energy can be obtained from a number of abandoned mine sites or other areas wherein coal is no longer being recovered, and such energy can be obtained in a safe, efficient, and inexpensive manner.
NASA Astrophysics Data System (ADS)
Kohl, Patrick B.; Kuo, H. Vincent; Ruskell, Todd G.
2008-10-01
The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Over the past year we have converted the second semester of our calculus-based introductory physics course (Physics II) to a Studio Physics format, starting from a traditional lecture-based format. In this paper, we document the early stages of this conversion in order to better understand which features succeed and which do not, and in order to develop a model for switching to Studio that keeps the time and resource investment manageable. We describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), solicited student comments, failure rates, and exam scores.
A watershed-scale approach to tracing metal contamination in the environment
Church, Stanley E
1996-01-01
IntroductionPublic policy during the 1800's encouraged mining in the western United States. Mining on Federal lands played an important role in the growing economy creating national wealth from our abundant and diverse mineral resource base. The common industrial practice from the early days of mining through about 1970 in the U.S. was for mine operators to dispose of the mine wastes and mill tailings in the nearest stream reach or lake. As a result of this contamination, many stream reaches below old mines, mills, and mining districts and some major rivers and lakes no longer support aquatic life. Riparian habitats within these affected watersheds have also been impacted. Often, the water from these affected stream reaches is generally not suitable for drinking, creating a public health hazard. The recent Department of Interior Abandoned Mine Lands (AML) Initiative is an effort on the part of the Federal Government to address the adverse environmental impact of these past mining practices on Federal lands. The AML Initiative has adopted a watershed approach to determine those sites that contribute the majority of the contaminants in the watershed. By remediating the largest sources of contamination within the watershed, the impact of metal contamination in the environment within the watershed as a whole is reduced rather than focusing largely on those sites for which principal responsible parties can be found.The scope of the problem of metal contamination in the environment from past mining practices in the coterminous U.S. is addressed in a recent report by Ferderer (1996). Using the USGS1:2,000,000-scale hydrologic drainage basin boundaries and the USGS Minerals Availability System (MAS) data base, he plotted the distribution of 48,000 past-producing metal mines on maps showing the boundaries of lands administered by the various Federal Land Management Agencies (FLMA). Census analysis of these data provided an initial screening tool for prioritization of watersheds in the western U.S. A different approach to the scope of the abandoned mine problem (Church et al., 1996a) is shown by the water quality data collected by the States under the Clean Water Act, section 305(b). These data document the stream reaches affected by metals from naturally occurring sources as well as from mining, or mineral resource extraction. Permitted discharges from active industrial and mine sites are not covered in the 305(b) data base.Local citizens and state and federal agencies are all part of the collaborative decision process used to select the drainage basins chosen for the AML Initiative pilot studies. Data gathered by these three entities were brought to bear on the watershed selection process. The USGS prepared data available from Federal data bases in the form of interpretative GIS products. Maps of the states of Colorado (Plumlee et al., 1995) and a similar study of the state of Montana (USGS, unpublished data) were used to select the Animas watershed in southwestern Colorado and the Boulder watershed southwest of Helena Montana as the pilot study areas for the AML Initiative. Thus, the watersheds selected for study were public decisions made on the basis of available scientific data. The role of the U.S. Geological Survey in the Abandoned Mine Land Initiative is outlined in Buxton et al. (1997).The watershed approach to metals contamination in the environment has been studied in several drainage basins (Church et al., 1993, 1994, 1995, 1996b; Kimball et al., 1995). The underlying principles used to successfully discriminate between sources and to quantify the impact of these sources on the environment are the subject of this report.
Farkas, Árpád; Balásházy, Imre
2015-04-01
A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Petersen, Abdul M; Farzad, Somayeh; Görgens, Johann F
2015-05-01
This study considered an average-sized sugar mill in South Africa that crushes 300 wet tonnes per hour of cane, as a host for integrating methanol and Fischer-Tropsch synthesis, through gasification of a combined flow of sugarcane trash and bagasse. Initially, it was shown that the conversion of biomass to syngas is preferably done by catalytic allothermal gasification instead of catalytic autothermal gasification. Thereafter, conventional and advanced synthesis routes for both Methanol and Fischer-Tropsch products were simulated with Aspen Plus® software and compared by technical and economic feasibility. Advanced FT synthesis satisfied the overall energy demands, but was not economically viable for a private investment. Advanced methanol synthesis is also not viable for private investment since the internal rate of return was 21.1%, because it could not provide the steam that the sugar mill required. The conventional synthesis routes had less viability than the corresponding advanced synthesis routes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gurram, Raghu Nandan; Al-Shannag, Mohammad; Lecher, Nicholas Joshua; Duncan, Shona M; Singsaas, Eric Lawrence; Alkasrawi, Malek
2015-09-01
In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Black liquor gasification integrated in pulp and paper mills: A critical review.
Naqvi, M; Yan, J; Dahlquist, E
2010-11-01
Black liquor gasification (BLG) has potential to replace a Tomlinson recovery boiler as an alternative technology to increase safety, flexibility and energy efficiency of pulp and paper mills. This paper presents an extensive literature review of the research and development of various BLG technologies over recent years based on low and high temperature gasification that include SCA-Billerud process, Manufacturing and Technology Conversion International (MTCI) process, direct alkali regeneration system (DARS), BLG with direct causticization, Chemrec BLG system, and catalytic hydrothermal BLG. A few technologies were tested on pilot scale but most of them were abandoned due to technical inferiority and very fewer are now at commercial stage. The drivers for the commercialization of BLG enabling bio-refinery operations at modern pulp mills, co-producing pulp and value added energy products, are discussed. In addition, the potential areas of research and development in BLG required to solve the critical issues and to fill research knowledge gaps are addressed and highlighted. Copyright 2010 Elsevier Ltd. All rights reserved.
Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillesheim, M.; Mosey, G.
2013-11-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power systemmore » at the site.« less
Kaolinosis in a cotton mill worker.
Levin, J L; Frank, A L; Williams, M G; McConnell, W; Suzuki, Y; Dodson, R F
1996-02-01
A 62-year-old white male employed for 43 years in the polishing room of a cotton textile mill was admitted to a tertiary care center with progressive dyspnea and productive cough that had not responded to therapy for tuberculosis. In spite of aggressive antibiotic therapy and respiratory support, the patient died as a consequence of respiratory failure. Small rounded and irregular opacities had been noted on the chest radiograph. Review of job-site spirometry demonstrated a worsening restrictive pattern over a 4-year period prior to his death. Additional occupational history revealed long-term exposure to kaolin in the polishing room, and pathologic examination of lung tissue confirmed extensive fibrosis and substantial quantities of kaolin. Kaolinosis is a disease typically found among individuals involved in mining or processing this material rather than in user industries. This case illustrates the importance of obtaining a complete occupational history in reaching a diagnosis. The clinicopathologic aspects of kaolinosis are also reviewed.
Brugge, Doug; deLemos, Jamie L; Bui, Cat
2007-09-01
The Three Mile Island nuclear release exemplifies why there is public and policy interest in the high-technology, highly visible end of the nuclear cycle. The environmental and health consequences of the early steps in the cycle--mining, milling, and processing of uranium ore--may be less appreciated. We examined 2 large unintended acute releases of uranium--at Kerr McGee's Sequoyah Fuels Corporation in Oklahoma and United Nuclear Corporation's Church Rock uranium mill in New Mexico, which were incidents with comparable magnitude to the Three Mile Island release. We urge exploration of whether there is limited national interest and concern for the primarily rural, low-income, and American Indian communities affected by these releases. More attention should be given to the early stages of the nuclear cycle and their impacts on health and the environment.
Brugge, Doug; deLemos, Jamie L.; Bui, Cat
2007-01-01
The Three Mile Island nuclear release exemplifies why there is public and policy interest in the high-technology, highly visible end of the nuclear cycle. The environmental and health consequences of the early steps in the cycle—mining, milling, and processing of uranium ore—may be less appreciated. We examined 2 large unintended acute releases of uranium—at Kerr McGee’s Sequoyah Fuels Corporation in Oklahoma and United Nuclear Corporation’s Church Rock uranium mill in New Mexico, which were incidents with comparable magnitude to the Three Mile Island release. We urge exploration of whether there is limited national interest and concern for the primarily rural, low-income, and American Indian communities affected by these releases. More attention should be given to the early stages of the nuclear cycle and their impacts on health and the environment. PMID:17666688
Processing woody debris biomass for co-milling with pulverized coal
Dana Mitchell; Bob Rummer
2007-01-01
The USDA, Forest Service, Forest Products Lab funds several grants each year for the purpose of studying woody biomass utilization. One selected project proposed removing small diameter stems and unmerchantable woody material from National Forest lands and delivering it to a coal-fired power plant in Alabama for energy conversion. The Alabama Power Company...
Needs and Opportunities for Longleaf Pine Ecosystem Restoration in Florida
Kenneth W. Outcalt
1997-01-01
Data from permanent plots measured periodically by Forest Inventory and Analyses of the Southern Research Station, USDA Forest Service shows a continuing decline in the longleaf pine (Pinus pulustris Mill,) ecosystem in Florida from 1987 to 1995. Conversion to some other forest type resulted in a net loss of 58,000 ha natural stands of longleaf pine...
Taper Functions for Predicting Product Volumes in Natural Shortleaf Pines
Robert M. Farrar; Paul A. Murphy
1987-01-01
Taper (stem-profile) functions are presented for natural shortleaf pine (Pinus echinata Mill.) trees growing in the West Gulf area. These functions, when integrated, permit the prediction of volume between any two heights on a stem and, conversely by iteration, the volume between any two diameters on a stem. Examples are given of use of the functions...
Not Your Run-of-the-Mill Art-Room Stools
ERIC Educational Resources Information Center
Chrzanowski, Rose-Ann C.
2010-01-01
An art room should be a garden of visual stimulation, born of creativity, inquiry, critical thinking and intellectual conversation--and a little collaboration is not a bad thing either! When the author unpacked the new stools for her art room at the high school, she envisioned something more beautiful than the brown masonite circles that…
New technology in pulping and bleaching
R. H. Atalla; R. S. Reiner; C. J. Houtman; E. L. Springer
2004-01-01
Innovation in advancing technoogies for production of pulp and paper has been driven, by and large, by the needs to reduce the environmental impact of pulp mills or to enhance the yield in processes of conversion of wood to fibers. "Fiberization" of wood chips is carred out in two categores of processes. One, chemical pulping relies on removing the lignin...
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Huifeng Hu
2015-01-01
Historical land-use and management practices in the southeastern United States have resulted in the widespread conversion of many upland sites from dominance of longleaf pine (Pinus palustris Mill.) to loblolly pine (P. taeda L.) in the time following European settlement. Given the ecological, economic, and cultural...
The Longleaf Pine Ecosystem of the South
Kenneth W. Outcalt
2000-01-01
Longleaf pine (Pinus palustris P. Mill. [Pinaceae]) was the most prevalent pine type in the southern US Stands of longleaf were also habitat for a vast array of plant species. Decades of timber harvest followed by conversion to agriculture, urban development, or to other pine species, have reduced longleaf dominated areas to less than 5% of its...
Saint-Pierre, Sylvain; Kidd, Steve
2011-01-01
This paper presents the WNA's worldwide nuclear industry overview on the anticipated growth of the front-end nuclear fuel cycle from uranium mining to conversion and enrichment, and on the related key health, safety, and environmental (HSE) issues and challenges. It also puts an emphasis on uranium mining in new producing countries with insufficiently developed regulatory regimes that pose greater HSE concerns. It introduces the new WNA policy on uranium mining: Sustaining Global Best Practices in Uranium Mining and Processing-Principles for Managing Radiation, Health and Safety and the Environment, which is an outgrowth of an International Atomic Energy Agency (IAEA) cooperation project that closely involved industry and governmental experts in uranium mining from around the world. Copyright © 2010 Health Physics Society
Lourenço, J; Marques, S; Carvalho, F P; Oliveira, J; Malta, M; Santos, M; Gonçalves, F; Pereira, R; Mendo, S
2017-12-15
Active and abandoned uranium mining sites often create environmentally problematic situations, since they cause the contamination of all environmental matrices (air, soil and water) with stable metals and radionuclides. Due to their cytotoxic, genotoxic and teratogenic properties, the exposure to these contaminants may cause several harmful effects in living organisms. The Fish Embryo Acute Toxicity Test (FET) test was employed to evaluate the genotoxic and teratogenic potential of mine liquid effluents and sludge elutriates from a deactivated uranium mine. The aims were: a) to determine the risk of discharge of such wastes in the environment; b) the effectiveness of the chemical treatment applied to the uranium mine water, which is a standard procedure generally applied to liquid effluents from uranium mines and mills, to reduce its toxicological potential; c) the suitability of the FET test for the evaluation the toxicity of such wastes and the added value of including the evaluation of genotoxicity. Results showed that through the FET test it was possible to determine that both elutriates and effluents are genotoxic and also that the mine effluent is teratogenic at low concentrations. Additionally, liquid effluents and sludge elutriates affect other parameters namely, growth and hatching and that water pH alone played an important role in the hatching process. The inclusion of genotoxicity evaluation in the FET test was crucial to prevent the underestimation of the risks posed by some of the tested effluents/elutriates. Finally, it was possible to conclude that care should be taken when using benchmark values calculated for specific stressors to evaluate the risk posed by uranium mining wastes to freshwater ecosystems, due to their chemical complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
Frost, Thomas P.; Box, Stephen E.
2009-01-01
This reconnaissance study was undertaken at the request of the USDA Forest Service, Region 4, to assess the geochemistry, in particular the mercury and selenium contents, of mining-impacted sediments in the Yankee Fork of the Salmon River in Custer County Idaho. The Yankee Fork has been the site of hard-rock and placer mining, primarily for gold and silver, starting in the 1880s. Major dredge placer mining from the 1930s to 1950s in the Yankee Fork disturbed about a 10-kilometer reach. Mercury was commonly used in early hard-rock mining and placer operations for amalgamation and recovery of gold. During the late 1970s, feasibility studies were done on cyanide-heap leach recovery of gold from low-grade ores of the Sunbeam and related deposits. In the mid-1990s a major open-pit bulk-vat leach operation was started at the Grouse Creek Mine. This operation shut down when gold values proved to be lower than expected. Mercury in stream sediments in the Yankee Fork ranges from below 0.02 ppm to 7 ppm, with the highest values associated with old mill locations and lode and placer mines. Selenium ranges from below the detection limit for this study of 0.2 ppm to 4 ppm in Yankee Fork sediment samples. The generally elevated selenium content in the sediment samples reflect the generally high selenium contents in the volcanic rocks that underlie the Yankee Fork and the presence of gold and silver selenides in some of the veins that were exploited in the early phases of mining.
Kim, C.S.; Wilson, K.M.; Rytuba, J.J.
2011-01-01
The mining and processing of metal-bearing ores has resulted in contamination issues where waste materials from abandoned mines remain in piles of untreated and unconsolidated material, posing the potential for waterborne and airborne transport of toxic elements. This study presents a systematic method of particle size separation, mass distribution, and bulk chemical analysis for mine tailings and adjacent background soil samples from the Rand historic mining district, California, in order to assess particle size distribution and related trends in metal(loid) concentration as a function of particle size. Mine tailings produced through stamp milling and leaching processes were found to have both a narrower and finer particle size distribution than background samples, with significant fractions of particles available in a size range (???250 ??m) that could be incidentally ingested. In both tailings and background samples, the majority of trace metal(loid)s display an inverse relationship between concentration and particle size, resulting in higher proportions of As, Cr, Cu, Pb and Zn in finer-sized fractions which are more susceptible to both water- and wind-borne transport as well as ingestion and/or inhalation. Established regulatory screening levels for such elements may, therefore, significantly underestimate potential exposure risk if relying solely on bulk sample concentrations to guide remediation decisions. Correlations in elemental concentration trends (such as between As and Fe) indicate relationships between elements that may be relevant to their chemical speciation. ?? 2011 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Rose, Derek H.; Viljoen, K. S.; Mulaba-Bafubiandi, Antoine
2018-06-01
Published studies dealing with the process mineralogy of Pt mines on the Bushveld Complex is generally limited to the Western Bushveld. The recognition by mine management that another resource, in addition to the Upper Group 2 (UG2) reef currently being mined at the Two Rivers platinum mine (TRP), is urgently required in order to extend the life of mine, presented an opportunity to conduct such a study on the Eastern Limb of the Bushveld Complex. A process mineralogical investigation was undertaken on ore from the Merensky Reef (MR) and the UG2 at TRP. This was conducted on a suite of geological samples (channel samples) collected from the underground workings, as well as metallurgical samples obtained from the rougher circuits at the concentrator plant during the processing of MR and UG2 ore. The geological and metallurgical samples were analysed for bulk composition and quantitative mineralogy, while the geological samples were also subjected to laboratory-scale milling and flotation tests. This study shows that, although mineralogically distinct, the MR and UG2 behave similarly in terms of metallurgical performance. This holds promise for the proposed blending of MR and UG2 ores at TRP. An evaluation of the bulk rock (ore) Pt/Pd ratio as a possible indicator of the level of hydrothermal alteration of the ore, demonstrates that this may be of use in predicting recovery plant performance.
Mineral resource of the month: fluorspar
,
2010-01-01
The article features the industrial mineral fluorspar, used in the manufacture of fluorochemicals, aluminum and steel. It defines fluorspar as crude or beneficiated material, mined or milled for the non-metallic mineral fluorite or calcium fluoride. Applications of acid-grade fluorspar in the U.S. are presented, including production of hydrofluoric acid for chemical production of refrigerants such as chlorofluorocarbons or CFCs. World demand for fluorspar decreased with the CFC ban in the 1990s, but recovered with the use of hydrofluorocarbons or HFCs.
50. OBLIQUE VIEW OF CYANIDE TANKS, LOOKING EAST SOUTHEAST, SHOWING ...
50. OBLIQUE VIEW OF CYANIDE TANKS, LOOKING EAST SOUTHEAST, SHOWING TANK SUPPORTS AND MASONRY FOUNDATIONS. THE SUPPORTING TIMBERS WERE ADDED DURING THE MILL STABILIZATION EFFORT IN THE 1990'S. THE TANKS ARE HANGING OVER THE FOUNDATIONS TO GIVE ACCESS TO THE TRAP DOOR IN THEIR BOTTOMS FOR EMPTYING THE SANDS AFTER PROCESSING (SEE CA-290-37). SEE CA-290-36 FOR IDENTICAL B&W NEGATIVE. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
36. OBLIQUE VIEW OF CYANIDE TANKS, LOOKING EAST SOUTHEAST, SHOWING ...
36. OBLIQUE VIEW OF CYANIDE TANKS, LOOKING EAST SOUTHEAST, SHOWING TANK SUPPORTS AND MASONRY FOUNDATIONS. THE SUPPORTING TIMBERS WERE ADDED DURING THE MILL STABILIZATION EFFORT IN THE 1990'S THE TANKS ARE HANGING OVER THE FOUNDATIONS TO GIVE ACCESS TO THE TRAP DOOR IN THEIR BOTTOMS FOR EMPTYING THE SANDS AFTER PROCESSING (SEE CA-290-37). SEE CA-290-50 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
Real Property Survey, Federal Prison Camp Nellis, Las Vegas, Nevada
1999-01-26
Release Frequency: Semi-Annually Uranium ore was mined by private companies for federal government use in national defense programs. When the mills...databases: FEDERA.L ASTM STANDARD NPL •••••.••.•. ---·--------- National Priority List Proposed NPL _ •••••••. •.. . . Proposed National Priority... National Priority List Deletions FINDS •• •••••••.. -----·-···-- Facility Index System/Facility Registry System HMIRS
An Evaluation of a Networked Radiation Detection System
2010-03-01
conducted at the site using RAT (Cooper, 2008a): “Beginning in the 1940’ s , widespread mining and milling of uranium ore for national defense and energy...contamination…” in order to determine future sampling points (Cooper, 2007). 2. 4 May 2005, conducted mobile air monitoring during the removal of 30...provide site-wide estimates of emissions…” at Warren (OH) Recycling Inc.®’ s 85 acre landfill emitting hydrogen sulfide (H2S) (Cooper, 2007). 4. 7 July
Accumulation of metals in fish from lead-zinc mining areas of southeastern Missouri, USA
Schmitt, Christopher J.; Brumbaugh, William G.; May, Thomas W.
2007-01-01
The potential effects of proposed lead-zinc mining in an ecologically sensitive area were assessed by studying a nearby mining district that has been exploited for about 30 yr under contemporary environmental regulations and with modern technology. Blood and liver samples representing fish of three species (largescale stoneroller, Campostoma oligolepis, n=91; longear sunfish, Lepomis megalotis, n=105; and northern hog sucker, Hypentelium nigricans, n=20) were collected from 16 sites representing a range of conditions relative to lead-zinc mining and ore beneficiation in southeastern Missouri. Samples were analyzed for lead, zinc, and cadmium, and for a suite of biomarkers (reported in a companion paper). A subset of the hog sucker (n=9) representing three sites were also analyzed for nickel and cobalt. Blood and liver lead concentrations were highly correlated (r=0.84-0.85, P < 0.01) in all three species and were significantly (ANOVA, P < 0.01) greater at sites < 10 km downstream of active lead-zinc mines and mills and in a historical lead-zinc mining area than at reference sites, including a site in the area proposed for new mining. Correlations between blood and liver cadmium concentrations were less evident than for lead but were nevertheless statistically significant (r=0.26-0.69, P < 0.01-0.07). Although blood and liver cadmium concentrations were highest in all three species at sites near mines, within-site variability was greater and mining-related trends were less evident than for lead. Blood and liver zinc concentrations were significantly correlated only in stoneroller (r=0.46, P < 0.01) and mining-related trends were not evident. Concentrations of cobalt and nickel in blood and liver were significantly higher (ANOVA, P < 0.01) at a site near an active mine than at a reference site and a site in the historical lead-zinc mining area. These findings confirm previous studies indicating that lead and other metals are released to streams from active lead-zinc mines and are available for uptake by aquatic organisms. ?? 2006 Elsevier Inc. All rights reserved.
Accumulation of metals in fish from lead-zinc mining areas of southeastern Missouri, USA.
Schmitt, Christopher J; Brumbaugh, William G; May, Thomas W
2007-05-01
The potential effects of proposed lead-zinc mining in an ecologically sensitive area were assessed by studying a nearby mining district that has been exploited for about 30 yr under contemporary environmental regulations and with modern technology. Blood and liver samples representing fish of three species (largescale stoneroller, Campostoma oligolepis, n=91; longear sunfish, Lepomis megalotis, n=105; and northern hog sucker, Hypentelium nigricans, n=20) were collected from 16 sites representing a range of conditions relative to lead-zinc mining and ore beneficiation in southeastern Missouri. Samples were analyzed for lead, zinc, and cadmium, and for a suite of biomarkers (reported in a companion paper). A subset of the hog sucker (n=9) representing three sites were also analyzed for nickel and cobalt. Blood and liver lead concentrations were highly correlated (r=0.84-0.85, P<0.01) in all three species and were significantly (ANOVA, P<0.01) greater at sites <10 km downstream of active lead-zinc mines and mills and in a historical lead-zinc mining area than at reference sites, including a site in the area proposed for new mining. Correlations between blood and liver cadmium concentrations were less evident than for lead but were nevertheless statistically significant (r=0.26-0.69, P <0.01-0.07). Although blood and liver cadmium concentrations were highest in all three species at sites near mines, within-site variability was greater and mining-related trends were less evident than for lead. Blood and liver zinc concentrations were significantly correlated only in stoneroller (r=0.46, P<0.01) and mining-related trends were not evident. Concentrations of cobalt and nickel in blood and liver were significantly higher (ANOVA, P<0.01) at a site near an active mine than at a reference site and a site in the historical lead-zinc mining area. These findings confirm previous studies indicating that lead and other metals are released to streams from active lead-zinc mines and are available for uptake by aquatic organisms.
Fractal and Chaos Analysis for Dynamics of Radon Exhalation from Uranium Mill Tailings
NASA Astrophysics Data System (ADS)
Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Xie, Yanshi
2016-08-01
Tailings from mining and milling of uranium ores potentially are large volumes of low-level radioactive materials. A typical environmental problem associated with uranium tailings is radon exhalation, which can significantly pose risks to environment and human health. In order to reduce these risks, it is essential to study the dynamical nature and underlying mechanism of radon exhalation from uranium mill tailings. This motivates the conduction of this study, which is based on the fractal and chaotic methods (e.g. calculating the Hurst exponent, Lyapunov exponent and correlation dimension) and laboratory experiments of the radon exhalation rates. The experimental results show that the radon exhalation rate from uranium mill tailings is highly oscillated. In addition, the nonlinear analyses of the time series of radon exhalation rate demonstrate the following points: (1) the value of Hurst exponent much larger than 0.5 indicates non-random behavior of the radon time series; (2) the positive Lyapunov exponent and non-integer correlation dimension of the time series imply that the radon exhalation from uranium tailings is a chaotic dynamical process; (3) the required minimum number of variables should be five to describe the time evolution of radon exhalation. Therefore, it can be concluded that the internal factors, including heterogeneous distribution of radium, and randomness of radium decay, as well as the fractal characteristics of the tailings, can result in the chaotic evolution of radon exhalation from the tailings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumagai, Akio; Wu, Long; Iwamoto, Shinichiro
In this study, to reduce the recalcitrance of lignocellulosic biomass for subsequent biological processing, we pretreated energy crop feedstocks with mild steam treatment (ST; 130 and 150 °C for 60 min) and wet disk milling (WDM). We tested two phylogenetically different, but typical energy crop feedstocks: Populus trichocarpa and switchgrass ( Panicum virgatum). WDM after ST facilitated the fibrillation of both types of biomass, resulting in an increase of specific surface area, improved enzymatic saccharification yield, and decrease in cellulose crystallinity. Lastly, after steam treatment at 150 °C followed by 17 cycles of WDM, enzymatic hydrolysis resulted in almost completemore » glucan to glucose conversion in both feedstocks.« less
Kumagai, Akio; Wu, Long; Iwamoto, Shinichiro; ...
2014-12-15
In this study, to reduce the recalcitrance of lignocellulosic biomass for subsequent biological processing, we pretreated energy crop feedstocks with mild steam treatment (ST; 130 and 150 °C for 60 min) and wet disk milling (WDM). We tested two phylogenetically different, but typical energy crop feedstocks: Populus trichocarpa and switchgrass ( Panicum virgatum). WDM after ST facilitated the fibrillation of both types of biomass, resulting in an increase of specific surface area, improved enzymatic saccharification yield, and decrease in cellulose crystallinity. Lastly, after steam treatment at 150 °C followed by 17 cycles of WDM, enzymatic hydrolysis resulted in almost completemore » glucan to glucose conversion in both feedstocks.« less
Berman, D Wayne
2010-01-01
Results of a meta-analysis indicate that the variation in potency factors observed across published epidemiology studies can be substantially reconciled (especially for mesothelioma) by considering the effects of fiber size and mineral type, but that better characterization of historical exposures is needed before improved exposure metrics potentially capable of fully reconciling the disparate potency factors can be evaluated. Therefore, an approach for better characterizing historical exposures, the Modified Elutriator Method (MEM), was evaluated to determine the degree that dusts elutriated using this method adequately mimic dusts generated by processing in a factory. To evaluate this approach, elutriated dusts from Grade 3 milled fiber (the predominant feedstock used at a South Carolina [SC] textile factory) were compared to factory dust collected at the same facility. Elutriated dusts from chrysotile ore were also compared to dusts collected in Quebec mines and mills. Results indicate that despite the substantial variation within each sample set, elutriated dusts from Grade 3 fiber compare favorably to textile dusts and elutriated ore dusts compare to dusts from mines and mills. Given this performance, the MEM was also applied to address the disparity in lung cancer mortality per unit of exposure observed, respectively, among chrysotile miners/millers in Quebec and SC textile workers. Thus, dusts generated by elutriation of stockpiled chrysotile ore (representing mine exposures) and Grade 3 milled fiber (representing textile exposures) were compared. Results indicate that dusts from each sample differ from one another. Despite such variation, however, the dusts are distinct and fibers in Grade 3 dusts are significantly longer than fibers in ore dusts. Moreover, phase-contrast microscopy (PCM) structures in Grade 3 dusts are 100% asbestos and counts of PCM-sized structures are identical, whether viewed by PCM or transmission electron microscope (TEM). In contrast, a third of PCM structures in ore dusts are not asbestos and only a third that are counted by PCM are also counted by TEM. These distinctions also mirror the characteristics of the bulk materials themselves. Perhaps most important, when the differences in size distributions and PCM/TEM distinctions in these dusts are combined, the combined difference is sufficient to completely explain the difference in exposure/response observed between the textile worker and miner/miller cohorts. Importantly, however, evidence that such an explanation is valid can only be derived from a meta-analysis (risk assessment) covering a diverse range of epidemiology study environments, which is beyond the scope of the current study. The above findings suggest that elutriator-generated dusts mimic factory dusts with sufficient reliability to support comparisons between historical exposures experienced by the various cohorts studied by epidemiologists. A simulation was also conducted to evaluate the relative degree that the characteristics of dust are driven by the properties of the bulk material processed versus the nature of the mechanical forces applied. That results indicate it is the properties of bulk materials reinforces the theoretical basis justifying use of the elutriator to reconstruct historical exposures. Thus, the elutriator may be a valuable tool for reconstructing historical exposures suitable for supporting continued refinements of the risk models being developed to predict asbestos-related cancer risk.
Parrott, Joanne L.; Tillitt, Donald E.
1997-01-01
Semipermeable membrane devices (SPMDs) are sampling and concentrating devices comprised of a thin polyethylene membrane containing a small quantity of triolein. They have previously been used to sample air, water and sediments and have concentrated fish tainting compounds from pulp mill effluents. The ability to induce mixed function oxygenases (MFOs) is a property of a variety of organic effluents, but the compound(s) responsible for induction have not been identified. We wanted to see if SPMDs would accumulate the MFO-inducing chemical(s) from pulp mill effluents and oil refinery effluents. Dialysates of effluent-exposed SPMDs induced ethoxyresorufin-O-deethylase (EROD) activity in a fish (Poeciliopsis lucida) hepatoma cell line, PLHC-1. In pulp mill effluents and oil sands mining and refining wastewaters, potencies varied greatly, from a few to thousands of pg TCDD-EQ/g SPMD. Low levels of inducers were seen in four pulp mills on the Athabasca R., and higher levels at one New Brunswick bleached sulphite and two Ontario bleached kraft pulp mills. The highest levels of MFO inducers were in SPMDs deployed for 14 days in wastewater from an oil sands upgrading facility, as well as SPMDs deployed at two sites on Athabasca River tributaries in the oil sands area. This suggests that natural erosion and weathering, as well as industrial processing of the oil sands, can release potent MFO inducers. Background (reference) induction by SPMD extracts ranged from non-detectable (<1) to 20 pg TCDD-EQ/g SPMD. Reactive clean-up of one of the bleached kraft mill effluent-exposed SPMD extracts on a sulfuric acid/silica gel column resulted in loss of the inducer(s), which suggested a polyaromatic hydrocarbon-type of inducing chemical(s), rather than a dioxin or furan inducer. SPMD deployments proved useful in the detection of inducers within the pulp mill process streams as extracts of SPMDs exposed to untreated bleached sulphite effluent were ten to twenty times as potent as those from secondary-treated effluent. Little is known about the nature and identity of the MFO inducers from pulp mill and refinery effluents, but the use of SPMDs as concentrators of MFO-inducing substances appears a promising avenue for future research.
Preparation and characterization of cellulose nanocrystals from the bio-ethanol residuals
Lanxing Du; Jinwu Wang; Yang Zhang; Chusheng Qi; Michael Wolcott; Zhiming Yu
2017-01-01
This study was to explore the conversion of low-cost bio-residuals into high value-added cellulose nanocrystals. Two enzymatic hydrolyzed residuals (i.e., HRMMW and HRSPW) were collected from two different bio-ethanol producing processesâhydrolyzing medium-milled wood (MMW) and hydrolyzing acid sulfite pretreated wood (SPW), respectively. The results showed that both...
Evaluation of a value prior to pulping-thermomechanical pulp business concept. Part 2.
Ted Bilek; Carl Houtman; Peter Ince
2011-01-01
Value Prior to Pulping (VPP) is a novel biorefining concept for pulp mills that includes hydrolysis extraction of hemicellulose wood sugars and acetic acid from pulpwood prior to pulping. The concept involves conversion of wood sugars via fermentation to fuel ethanol or other chemicals and the use of remaining solid wood material in the pulping process. This paper...
Large-scale alcohol production from corn, grain sorghum, and crop residues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turhollow, A.F. Jr.
1982-01-01
The potential impacts that large-scale alcohol production from corn, grain sorghum, and crop residues may have on US agriculture in the year 2000 are investigated. A one-land-group interregional linear-programming model is used. The objective function is to minimize the cost of production in the agricultural sector, given specified crop demands and constrained resources. The impacts that levels of alcohol production, ranging from zero to 12 billion gallons, have at two projected levels of crop demands, two grain-to-alcohol conversion and two milling methods, wet and dry, rates are considered. The impacts that large-scale fuel alcohol production has on US agriculture aremore » small. The major impacts that occur are the substitution of milling by-products, DDG, gluten feed, and gluten meal, for soybean meal in livestock feed rations. Production of 12 billion gallons of alcohol is estimated to be equivalent to an 18 percent increase in crop exports. Improving the grain-to-alcohol conversion rate from 2.6 to 3.0 gallons per bushels reduces the overall cost of agricultural production by $989 billion when 12 billion gallons of alcohol are produced.« less
Tsakona, Sofia; Kopsahelis, Nikolaos; Chatzifragkou, Afroditi; Papanikolaou, Seraphim; Kookos, Ioannis K; Koutinas, Apostolis A
2014-11-10
Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90% (w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitrogen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h. Copyright © 2014 Elsevier B.V. All rights reserved.
Estimated water requirements for the conventional flotation of copper ores
Bleiwas, Donald I.
2012-01-01
This report provides a perspective on the amount of water used by a conventional copper flotation plant. Water is required for many activities at a mine-mill site, including ore production and beneficiation, dust and fire suppression, drinking and sanitation, and minesite reclamation. The water required to operate a flotation plant may outweigh all of the other uses of water at a mine site, [however,] and the need to maintain a water balance is critical for the plant to operate efficiently. Process water may be irretrievably lost or not immediately available for reuse in the beneficiation plant because it has been used in the production of backfill slurry from tailings to provide underground mine support; because it has been entrapped in the tailings stored in the TSF, evaporated from the TSF, or leaked from pipes and (or) the TSF; and because it has been retained as moisture in the concentrate. Water retained in the interstices of the tailings and the evaporation of water from the surface of the TSF are the two most significant contributors to water loss at a conventional flotation circuit facility.
McCafferty, Anne E.; Yager, Douglas B.; Horton, Radley M.; Diehl, Sharon F.
2006-01-01
Federal land managers along with local stakeholders in the Upper Animas River watershed near Silverton, Colorado are actively designing and implementing mine waste remediation projects to mitigate the effects of acid mine drainage from several abandoned hard rock metal mines and mills. Local source rocks with high acid neutralization capacity (ANC) within the watershed are of interest to land managers for use in these remediation projects. A suite of representative samples was collected from propylitic to weakly sericitic-altered volcanic and plutonic rocks exposed in outcrops throughout the watershed. Acid-base accounting laboratory methods coupled with mineralogic and geochemical characterization provide insight into lithologies that have a range of ANC and net acid production (NAP). Petrophysical lab determinations of magnetic susceptibility converted to estimates for percent magnetite show correlation with the environmental properties of ANC and NAP for many of the lithologies. A goal of our study is to interpret watershed-scale airborne magnetic data for regional mapping of rocks that have varying degrees of ANC and NAP. Results of our preliminary work are presented here.
The search for asbestos within the Peter Mitchell Taconite iron ore mine, near Babbitt, Minnesota.
Ross, Malcolm; Nolan, Robert P; Nord, Gordon L
2008-10-01
Asbestos crystallizes within rock formations undergoing intense deformation characterized by folding, faulting, shearing, and dilation. Some of these conditions have prevailed during formation of the taconite iron ore deposits in the eastern Mesabi Iron Range of Minnesota. This range includes the Peter Mitchell Taconite Mine at Babbitt, Minnesota. The mine pit is over 8 miles long, up to 1 mile wide. Fifty three samples were collected from 30 sites within areas of the pit where faulting, shearing and folding occur and where fibrous minerals might occur. Eight samples from seven collecting sites contain significant amounts of ferroactinolite amphibole that is partially to completely altered to fibrous ferroactinolite. Two samples from two other sites contain ferroactinolite degraded to ropy masses of fibers consisting mostly of ferrian sepiolite as defined by X-ray diffraction and TEM and SEM X-ray spectral analysis. Samples from five other sites contain unaltered amphiboles, however some of these samples also contain a very small number of fiber bundles composed of mixtures of grunerite, ferroactinolite, and ferrian sepiolite. It is proposed that the alteration of the amphiboles was caused by reaction with water-rich acidic fluids that moved through the mine faults and shear zones. The fibrous amphiboles and ferrian sepiolite collected at the Peter Mitchell Mine composes a tiny fraction of one percent of the total rock mass of this taconite deposit; an even a smaller amount of these mineral fragments enter the ambient air during mining and milling. These fibrous minerals thus do not present a significant health hazard to the miners nor to those non-occupationally exposed. No asbestos of any type was found in the mine pit.
Shi, Xiang; Chen, Yi-Tai; Wang, Shu-Feng; Pan, Hong-Wei; Sun, Hai-Jing; Liu, Cai-Xia; Liu, Jian-Feng; Jiang, Ze-Ping
2016-11-01
Selecting plant species that can overcome unfavorable conditions and increase the recovery of degraded mined lands remains a challenge. A pot experiment was conducted to evaluate the feasibility of using transplanted tree seedlings for the phytoremediation of lead/zinc and copper mine tailings. One-year-old bare-root of woody species (Rhus chinensis Mill, Quercus acutissima Carruth, Liquidambar formosana Hance, Vitex trifolia Linn. var. simplicifolia Cham, Lespedeza cuneata and Amorpha fruticosa Linn) were transplanted into pots with mine tailings and tested as potential metal-tolerant plants. Seedling survival, plant growth, root trait, nutrient uptake, and metal accumulation and translocation were assessed. The six species grew in both tailings and showed different tolerance level. A. fruticosa was highly tolerant of Zn, Pb and Cu, and grew normally in both tailings. Metal concentrations were higher in the roots than in the shoots of the six species. All of the species had low bioconcentration and translocation factor values. However, R. chinensis and L. formosana had significantly higher translocation factor values for Pb (0.88) and Zn (1.78) than the other species. The nitrogen-fixing species, A. fruticosa, had the highest tolerance and biomass production, implying that it has great potential in the phytoremediation of tailing areas in southern China.
Church, Stanley E; Owen, J. Robert; Von Guerard, Paul; Verplanck, Philip L.; Kimball, Briant A.; Yager, Douglas B.
2006-01-01
Historical production of metals in the western United States has left a legacy of acidic drainage and toxic metals in many mountain watersheds that are a potential threat to human and ecosystem health. Studies of the effects of historical mining on surface water chemistry and riparian habitat in the Animas River watershed have shown that cost-effective remediation of mine sites must be carefully planned. Of the more than 5400 mine, mill, and prospect sites in the watershed, 80 sites account for more than 90% of the metal loads to the surface drainages. Much of the low pH water and some of the metal loads are the result of weathering of hydrothermally altered rock that has not been disturbed by historical mining. Some stream reaches in areas underlain by hydrothermally altered rock contained no aquatic life prior to mining. Scientific studies of the processes and metal-release pathways are necessary to develop effective remediation strategies, particularly in watersheds where there is little land available to build mine-waste repositories. Characterization of mine waste, development of runoff profiles, and evaluation of ground-water pathways all require rigorous study and are expensive upfront costs that land managers find difficult to justify. Tracer studies of water quality provide a detailed spatial analysis of processes affecting surface- and ground-water chemistry. Reactive transport models were used in conjunction with the best state-of-the-art engineering solutions to make informed and cost-effective remediation decisions. Remediation of 23% of the high-priority sites identified in the watershed has resulted in steady improvement in water quality. More than $12 million, most contributed by private entities, has been spent on remediation in the Animas River watershed. The recovery curve for aquatic life in the Animas River system will require further documentation and long-term monitoring to evaluate the effectiveness of remediation projects implemented.
Church, Stanley E.; Owen, Robert J.; Von Guerard, Paul; Verplanck, Philip L.; Kimball, Briant A.; Yager, Douglas B.
2007-01-01
Historical production of metals in the western United States has left a legacy of acidic drainage and toxic metals in many mountain watersheds that are a potential threat to human and ecosystem health. Studies of the effects of historical mining on surface water chemistry and riparian habitat in the Animas River watershed have shown that cost-effective remediation of mine sites must be carefully planned. of the more than 5400 mine, mill, and prospect sites in the watershed, ∼80 sites account for more than 90% of the metal loads to the surface drainages. Much of the low pH water and some of the metal loads are the result of weathering of hydrothermally altered rock that has not been disturbed by historical mining. Some stream reaches in areas underlain by hydrothermally altered rock contained no aquatic life prior to mining.Scientific studies of the processes and metal-release pathways are necessary to develop effective remediation strategies, particularly in watersheds where there is little land available to build mine-waste repositories. Characterization of mine waste, development of runoff profiles, and evaluation of ground-water pathways all require rigorous study and are expensive upfront costs that land managers find difficult to justify. Tracer studies of water quality provide a detailed spatial analysis of processes affecting surface- and ground-water chemistry. Reactive transport models were used in conjunction with the best state-of-the-art engineering solutions to make informed and cost-effective remediation decisions.Remediation of 23% of the high-priority sites identified in the watershed has resulted in steady improvement in water quality. More than $12 million, most contributed by private entities, has been spent on remediation in the Animas River watershed. The recovery curve for aquatic life in the Animas River system will require further documentation and long-term monitoring to evaluate the effectiveness of remediation projects implemented.
Forming artificial soils from waste materials for mine site rehabilitation
NASA Astrophysics Data System (ADS)
Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson
2014-05-01
Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation where there is a nutrient-rich source of waste.
Aero-MINE (Motionless INtegrated Energy) for Distributed Scalable Wind Power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houchens, Brent C.; Blaylock, Myra L.
The proposed Aero-MINE technology will extract energy from wind without any exterior moving parts. Aero-MINEs can be integrated into buildings or function stand-alone, and are scalable. This gives them advantages similar to solar panels, but with the added benefit of operation in cloudy or dark conditions. Furthermore, compared to solar panels, Aero-MINEs can be manufactured at lower cost and with less environmental impact. Power generation is isolated internally by the pneumatic transmission of air and the outlet air-jet nozzles amplify the effectiveness. Multiple units can be connected to one centrally located electric generator. Aero-MINEs are ideal for the built-environment, withmore » numerous possible configurations ranging from architectural integration to modular bolt-on products. Traditional wind turbines suffer from many fundamental challenges. The fast-moving blades produce significant aero-acoustic noise, visual disturbances, light-induced flickering and impose wildlife mortality risks. The conversion of massive mechanical torque to electricity is a challenge for gears, generators and power conversion electronics. In addition, the installation, operation and maintenance of wind turbines is required at significant height. Furthermore, wind farms are often in remote locations far from dense regions of electricity customers. These technical and logistical challenges add significantly to the cost of the electricity produced by utility-scale wind farms. In contrast, distributed wind energy eliminates many of the logistical challenges. However, solutions such as micro-turbines produce relatively small amounts of energy due to the reduction in swept area and still suffer from the motion-related disadvantages of utility-scale turbines. Aero-MINEs combine the best features of distributed generation, while eliminating the disadvantages.« less
Santos-Francés, F; García-Sánchez, A; Alonso-Rojo, P; Contreras, F; Adams, M
2011-04-01
An extensive and remote gold mining region located in the East of Venezuela has been studied with the aim of assessing the distribution and mobility of mercury in soil and the level of Hg pollution at artisanal gold mining sites. To do so, soils and pond sediments were sampled at sites not subject to anthropological influence, as well as in areas affected by gold mining activities. Total Hg in regionally distributed soils ranged between 0.02 mg kg(-1) and 0.40 mg kg(-1), with a median value of 0.11 mg kg(-1), which is slightly higher than soil Hg worldwide, possibly indicating long-term atmospheric input or more recent local atmospheric input, in addition to minor lithogenic sources. A reference Hg concentration of 0.33 mg kg(-1) is proposed for the detection of mining affected soils in this region. Critical total Hg concentrations were found in the surrounding soils of pollutant sources, such as milling-amalgamation sites, where soil Hg contents ranged from 0.16 mg kg(-1) to 542 mg kg(-1) with an average of 26.89 mg kg(-1), which also showed high levels of elemental Hg, but quite low soluble+exchangeable Hg fraction (0.02-4.90 mg kg(-1)), suggesting low Hg soil mobility and bioavailability, as confirmed by soil column leaching tests. The vertical distribution of Hg through the soil profiles, as well as variations in soil Hg contents with distance from the pollution source, and Hg in pond mining sediments were also analysed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hewett, Paul; Morey, Sandy Z; Holen, Brian M; Logan, Perry W; Olsen, Geary W
2012-01-01
A study was conducted to construct a job exposure matrix for the roofing granule mine and mill workers at four U.S. plants. Each plant mined different minerals and had unique departments and jobs. The goal of the study was to generate accurate estimates of the mean exposure to respirable crystalline silica for each cell of the job exposure matrix, that is, every combination of plant, department, job, and year represented in the job histories of the study participants. The objectives of this study were to locate, identify, and collect information on all exposure measurements ever collected at each plant, statistically analyze the data to identify deficiencies in the database, identify and resolve questionable measurements, identify all important process and control changes for each plant-department-job combination, construct a time line for each plant-department combination indicating periods where the equipment and conditions were unchanged, and finally, construct a job exposure matrix. After evaluation, 1871 respirable crystalline silica measurements and estimates remained. The primary statistic of interest was the mean exposure for each job exposure matrix cell. The average exposure for each of the four plants was 0.042 mg/m(3) (Belle Mead, N.J.), 0.106 mg/m(3) (Corona, Calif.), 0.051 mg/m(3) (Little Rock, Ark.), and 0.152 mg/m(3) (Wausau, Wis.), suggesting that there may be substantial differences in the employee cumulative exposures. Using the database and the available plant information, the study team assigned an exposure category and mean exposure for every plant-department-job and time interval combination. Despite a fairly large database, the mean exposure for > 95% of the job exposure matrix cells, or specific plant-department-job-year combinations, were estimated by analogy to similar jobs in the plant for which sufficient data were available. This approach preserved plant specificity, hopefully improving the usefulness of the job exposure matrix.
Sarfraz, Muhammad; Griffin, Sharoon; Gabour Sad, Tamara; Alhasan, Rama; Nasim, Muhammad Jawad; Irfan Masood, Muhammad; Schäfer, Karl Herbert; Ejike, Chukwunonso E C C; Keck, Cornelia M; Jacob, Claus; Ebokaiwe, Azubuike P
2018-04-20
Nanosizing represents a straight forward technique to unlock the biological activity of complex plant materials. The aim of this study was to develop herbal nanoparticles with medicinal value from dried leaves and stems of Loranthus micranthus with the aid of ball-milling, high speed stirring, and high-pressure homogenization techniques. The milled nanoparticles were characterized using laser diffraction analysis, photon correlation spectroscopy analysis, and light microscopy. The average size of leaf nanoparticles was around 245 nm and that of stem nanoparticles was around 180 nm. The nanoparticles were tested for their antimicrobial and nematicidal properties against a Gram-negative bacterium Escherichia coli , a Gram-positive bacterium Staphylococcus carnosus , fungi Candida albicans and Saccharomyces cerevisiae , and a nematode Steinernemafeltiae . The results show significant activities for both leaf and (particularly) stem nanoparticles of Loranthus micranthus on all organisms tested, even at a particle concentration as low as 0.01% ( w / w ). The results observed indicate that nanoparticles (especially of the stem) of Loranthus micranthus could serve as novel antimicrobial agents with wide-ranging biomedical applications.
Production of bioethanol from multiple waste streams of rice milling.
Favaro, Lorenzo; Cagnin, Lorenzo; Basaglia, Marina; Pizzocchero, Valentino; van Zyl, Willem Heber; Casella, Sergio
2017-11-01
This work describes the feasibility of using rice milling by-products as feedstock for bioethanol. Starch-rich residues (rice bran, broken, unripe and discolored rice) were individually fermented (20%w/v) through Consolidated Bioprocessing by two industrial engineered yeast secreting fungal amylases. Rice husk (20%w/v), mainly composed by lignocellulose, was pre-treated at 55°C with alkaline peroxide, saccharified through optimized dosages of commercial enzymes (Cellic® CTec2) and fermented by the recombinant strains. Finally, a blend of all the rice by-products, formulated as a mixture (20%w/v) according to their proportions at milling plants, were co-processed to ethanol by optimized pre-treatment, saccharification and fermentation by amylolytic strains. Fermenting efficiency for each by-product was high (above 88% of the theoretical) and further confirmed on the blend of residues (nearly 52g/L ethanol). These results demonstrated for the first time that the co-conversion of multiple waste streams is a promising option for second generation ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Amaro, Maria Inês; Simon, Alice; Cabral, Lúcio Mendes; de Sousa, Valéria Pereira; Healy, Anne Marie
2015-11-01
Rivastigmine (RHT) is an active pharmaceutical ingredient that is used for the treatment of mild to moderately severe dementia in Alzheimer's disease, and is known to present two polymorphic forms and to amorphise upon granulation. To date there is no information in the scientific or patent literature on polymorphic transition and stability. Hence, the aim of the current study was to gain a fundamental understanding of the polymorphic forms by (1) evaluating RHT thermodynamic stability (monotropy or enantiotropy) and (2) investigating the potential for polymorphic transformation upon milling. The two polymorphic and amorphous forms were characterised using X-ray powder diffractometry, thermal analyses, infra-red spectroscopy and water sorption analysis. The polymorphic transition was found to be spontaneous (ΔG0 < 0) and exothermic (ΔH0 < 0), indicative of a monotropic polymorph pair. The kinetic studies showed a fast initial polymorphic transition characterised by a heterogeneous nucleation, followed by a slow crystal growth. Ball milling can be used to promote the polymorphic transition and for the production of RHT amorphous form.
Zakaria, Mohd Rafein; Hirata, Satoshi; Fujimoto, Shinji; Hassan, Mohd Ali
2015-10-01
Combined pretreatment with hot compressed water and wet disk milling was performed with the aim to reduce the natural recalcitrance of oil palm biomass by opening its structure and provide maximal access to cellulase attack. Oil palm empty fruit bunch and oil palm frond fiber were first hydrothermally pretreated at 150-190° C and 10-240 min. Further treatment with wet disk milling resulted in nanofibrillation of fiber which caused the loosening of the tight biomass structure, thus increasing the subsequent enzymatic conversion of cellulose to glucose. The effectiveness of the combined pretreatments was evaluated by chemical composition changes, power consumption, morphological alterations by SEM and the enzymatic digestibility of treated samples. At optimal pretreatment process, approximately 88.5% and 100.0% of total sugar yields were obtained from oil palm empty fruit bunch and oil palm frond fiber samples, which only consumed about 15.1 and 23.5 MJ/kg of biomass, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hydrologic Investigations Concerning Lead Mining Issues in Southeastern Missouri
Kleeschulte, Michael J.
2008-01-01
Good stewardship of our Nation's natural resources demands that the extraction of exploitable, minable ore deposits be conducted in harmony with the protection of the environment, a dilemma faced by many land and water management agencies in the Nation's mining areas. As ore is mined, milled, and sent to the smelter, it leaves footprints where it has been in the form of residual trace metals. Often these footprints become remnants that can be detrimental to other natural resources. This emphasizes the importance of understanding the earth's complex physical and biological processes and their interactions at increasingly smaller scales because subtle changes in one component can substantially affect others. Understanding these changes and resulting effects requires an integrated, multidisciplinary scientific approach. As ore reserves are depleted in one area, additional exploitable deposits are required to replace them, and at times these new deposits are discovered in previously unmined areas. Informed decisions concerning resource management in these new, proposed mining areas require an understanding of the potential consequences of the planned mining actions. This understanding is usually based on knowledge that has been accumulated from studying previously mined areas with similar geohydrologic and biologic conditions. If the two areas experience similar mining practices, the information should be transferable. Lead and zinc mining along the Viburnum Trend Subdistrict of southeastern Missouri has occurred for more than 40 years. Additional potentially exploitable deposits have been discovered 30 miles to the south, within the Mark Twain National Forest. It is anticipated that the observation of current (2008) geohydrologic conditions in the Viburnum Trend can provide insight to land managers that will help reasonably anticipate the potential mining effects should additional mining occur in the exploration area. The purpose of this report is to present a compilation of previously unpublished information that was collected as part of a larger multidisciplinary study of lead mining issues in southeastern Missouri. The report resulted from the application of a multidisciplinary approach to investigate current hydrologic and biologic conditions in streams of the Viburnum Trend and the exploration area in the Mark Twain National Forest.
Nimick, D.A.; Gurrieri, J.T.; Furniss, G.
2009-01-01
Methods for assessing natural background water quality of streams affected by historical mining are vigorously debated. An empirical method is proposed in which stream-specific estimation equations are generated from relationships between either pH or dissolved Cu concentration in stream water and the Fe/Cu concentration ratio in Fe-precipitates presently forming in the stream. The equations and Fe/Cu ratios for pre-mining deposits of alluvial ferricrete then were used to reconstruct estimated pre-mining longitudinal profiles for pH and dissolved Cu in three acidic streams in Montana, USA. Primary assumptions underlying the proposed method are that alluvial ferricretes and modern Fe-precipitates share a common origin, that the Cu content of Fe-precipitates remains constant during and after conversion to ferricrete, and that geochemical factors other than pH and dissolved Cu concentration play a lesser role in determining Fe/Cu ratios in Fe-precipitates. The method was evaluated by applying it in a fourth, naturally acidic stream unaffected by mining, where estimated pre-mining pH and Cu concentrations were similar to present-day values, and by demonstrating that inflows, particularly from unmined areas, had consistent effects on both the pre-mining and measured profiles of pH and Cu concentration. Using this method, it was estimated that mining has affected about 480 m of Daisy Creek, 1.8 km of Fisher Creek, and at least 1 km of Swift Gulch. Mean values of pH decreased by about 0.6 pH units to about 3.2 in Daisy Creek and by 1-1.5 pH units to about 3.5 in Fisher Creek. In Swift Gulch, mining appears to have decreased pH from about 5.5 to as low as 3.6. Dissolved Cu concentrations increased due to mining almost 40% in Daisy Creek to a mean of 11.7 mg/L and as much as 230% in Fisher Creek to 0.690 mg/L. Uncertainty in the fate of Cu during the conversion of Fe-precipitates to ferricrete translates to potential errors in pre-mining estimates of as much as 0.25 units for pH and 22% for dissolved Cu concentration. The method warrants further testing in other mined and unmined watersheds. Comparison of pre-mining water-quality estimates derived from the ferricrete and other methods in single watersheds would be particularly valuable. The method has potential for use in monitoring remedial efforts at mine sites with ferricrete deposits. A reasonable remediation objective might be realized when the downstream pattern of Fe/Cu ratios in modern streambed Fe-precipitates corresponds to the pattern in pre-mining alluvial ferricrete deposits along a stream valley.
Creekmore, Lynn H.
1999-01-01
Cyanide poisoning of birds is caused by exposure to cyanide in two forms: inorganic salts and hydrogen cyanide gas (HCN). Two sources of cyanide have been associated with bird mortalities: gold and silver mines that use cyanide in the extraction process and a predator control device called the M-44 sodium cyanide ejector, which uses cyanide as the toxic agent.Most of the cyanide mortality documented in birds is a result of exposure to cyanide used in heap leach and carbonin-pulp mill gold or silver mining processes. At these mines, the animals are exposed when they ingest water that contains cyanide salts used in mining processes or, possibly, when they inhale HCN gas. In heap leach mining operations, the ore is placed on an impermeable pad over which a cyanide solution is sprayed or dripped. The cyanide solution dissolves and attaches to or “leaches out” the gold. The cyanide and gold solution is then drained to a plastic-lined pond, which is commonly called the pregnant pond. The gold is extracted, and the remaining solution is moved into another lined pond, which is commonly called the barren pond. The cyanide concentration in this pond is increased so that the solution is again suitable for use in the leaching process, and the solution is used again on the ore heap (Fig. 46.1). Bird use of the HCN-contaminated water in the ponds (Fig. 46.2) or contaminated water on or at the base of the heap leach pads (Fig. 46.3) can result in mortality.
NASA Astrophysics Data System (ADS)
Kesavan, Sathees Kumar
The Proton Exchange Membrane Fuel Cells (PEMFCs) are the most preferred and efficient energy conversion devices for automotive applications but demand high purity hydrogen which comes at a premium price. The currently pursued hydrogen generation methods suffer from issues such as, low efficiency, high cost, environmental non-benignity, and, in some cases, commercial non-viability. Many of these drawbacks including the CO contamination and, storage and delivery can be overcome by resorting to metal-steam reforming (MSR) using iron from steel industry's mill-scale waste. A novel solution-based room temperature technique using sodium borohydride (NaBH4) as the reducing agent has been developed that produces highly active nanoscale (30-40 nm) iron particles. A slightly modified version of this technique using a surfactant and water oil microemulsion resulted in the formation of 5 nm Fe particles. By using hydrazine (N2H4) as an inexpensive and more stable (compared to NaBH4) reductant, body centered cubic iron particles with edge dimensions ˜5 nm were obtained under mild solvothermal conditions in ethanol. The nanoscale zero valent iron (nZVI) powder showed improved kinetics and greater propensity for hydrogen generation than the coarser microscale iron obtained through traditional reduction techniques. To initiate and sustain the somewhat endothermic MSR process, a solar concentrator consisting of a convex polyacrylic sheet with aluminum reflective coating was fabricated. This unique combination of mill-scale waste as iron source, hydrazine as the reductant, mild process conditions for nZVI generation and solar energy as the impetus for actuating MSR, obviates several drawbacks plaguing the grand scheme of producing, storing and delivering pure and humidified H2 to a PEMFC stack.
A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR
NASA Astrophysics Data System (ADS)
Stanojlović, Rodoljub D.; Sokolović, Jovica M.
2014-10-01
In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.
Physical, chemical and antimicrobial characterization of copper-bearing material
NASA Astrophysics Data System (ADS)
Li, Bowen; Hwang, Jiann-Yang; Drelich, Jaroslaw; Popko, Domenic; Bagley, Susan
2010-12-01
Arsenic, cadmium, copper, mercury, silver, and zinc are elements with strong antimicrobial properties. Among them, copper is more environmentally friendly and has both good antibacterial and antifungal properties. It has been shown that copper can even be effective against new viruses such as avian influenza (H5N1). Development of copper-bearing materials for various applications, therefore, is receiving increased attention. The Keweenaw Peninsula of Michigan was the largest native copper mining regions of North America at the turn of the 20th century. Copper was extracted by mining the copper-rich basaltic rock, and steamdriven stamp mills were used to process a great volume of low-grade ores, resulting in huge amounts of crushed waste ore called stamp sands. Approximately 500 million tons of stamp sand were discarded. This material is investigated in this study as an example for the development of antimicrobial materials.
Gbadago, J K; Faanhof, A; Darko, E O; Schandorf, C
2011-09-01
The possible environmental impacts of naturally occurring radionuclides on workers and a critical community, as a result of milling and processing sulfide ores for gold by a mining company at Bogoso in the western region of Ghana, have been investigated using gamma spectroscopy. Indicative doses for the workers during sulfide ore processing were calculated from the activity concentrations measured at both physical and chemical processing stages. The dose rate, annual effective dose equivalent, radium equivalent activity, external and internal hazard indices, and radioactivity level index for tailings, for the de-silted sediments of run-off from the vicinity of the tailings dam through the critical community, and for the soils of the critical community's basic schools were calculated and found to be lower than their respective permissible limits. The environmental impact of the radionuclides is therefore expected to be low in this mining environment.
Release behavior of uranium in uranium mill tailings under environmental conditions.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan
2017-05-01
Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solid Waste Treatment Technology
ERIC Educational Resources Information Center
Hershaft, Alex
1972-01-01
Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)
Sierra Club Petition to Object to Doe Run Buick Mine and Mill Title V Permit
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
OVERVIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND TAILINGS ...
OVERVIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND TAILINGS PILES, LOOKING NORTHEAST. THE LOWER TRAM TERMINAL AND MILL SITE IS AT TOP CENTER IN THE DISTANCE. THE DARK SPOT JUST BELOW THE TRAM TERMINAL ARE REMAINS OF THE DEWATERING BUILDING. THE MAIN ACCESS ROAD IS AT UPPER LEFT. THE FOUNDATIONS AT CENTER SUPPORTED SIX 25 FT. OR GREATER DIAMETER SETTLING TANKS WHERE TAILINGS FROM THE MILL SETTLED IN A CYANIDE SOLUTION IN ORDER TO RECLAIM ANY GOLD CONTENT. THE PREGNANT SOLUTION WAS THEN RUN THROUGH THE ZINC BOXES ON THE GROUND AT CENTER RIGHT, WHERE ZINC SHAVINGS WERE INTRODUCED, CAUSING THE GOLD TO PRECIPITATE OUT OF THE CYANIDE SOLUTION, WHICH COULD BE USED AGAIN. THE FLAT AREA IN THE FOREGROUND WITH THE TANK AND TANK HOOPS IS THE FOOTPRINT OF A LARGE BUILDING WHERE THE PRECIPITATION AND FURTHER FILTERING AND FINAL CASTING TOOK PLACE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
McGarr, A.
2002-01-01
The shear stress ?? that can be sustained by the rock mass in the environs of a mining-induced earthquake controls the near-fault peak ground velocity v of that event according to v???0.25(??/G) ??, where ?? is the shear wave speed and G is the modulus of rigidity. To estimate ?? at mining depths, I review the results of four studies involving Witwatersrand tremors that relate to the bulk shear strength. The first and most general analysis uses the common assumptions that the seismogenic crust is pervasively faulted, has hydrostatic pore pressure before mining, and an extensional stress state that is close to failure. Mining operations reduce the pore pressure to zero within the mine and redistribute the stresses such that, in localized regions, the state of stress is again at the point of failure. Laboratory friction experiments can be used to estimate ?? in the zero-pore-pressure regime. Second, model calculations of states of stress in the vicinity of milling at about 3 km depth indicated the shear stress available to cause faulting near the centre of a distribution of induced earthquakes. Third, laboratory experiments combined with microscopic analyses of fault gouge from the rupture zone of a mining-induced event provided an estimate of the average shear stress acting on the fault to cause this earthquake at a depth of 2 km. Fourth, moment tensors determined for mining- induced earthquakes usually show substantial implosive components, from which it is straightforward to estimate ??. These four different analyses yield estimates of ?? that fall in the range 30 to 61 MPa which implies that near-fault particle velocities could he as high as about 1.5 m/s. To the extent that the causative fault ruptures previously intact rock, both ?? and v, in localized regions, could be several times higher than 61 MPa and 1.5 m/s.
NASA Astrophysics Data System (ADS)
Sun, Wenjie; Wu, Qiang; Liu, Honglei; Jiao, Jian
Coal resources and water resources play an essential and strategic role in the development of China's social and economic development, being the priority for China's medium and long technological development. As the mining of the coal extraction is increasingly deep, the mine water inrush of high-pressure confined karst water becomes much more a problem. This paper carried out research on the hundred-year old Kailuan coal mine's karst groundwater system. With the help of advanced Visual Modflow software and numerical simulation method, the paper assessed the flow field of karst water area under large-scale exploitation. It also predicted the evolution ofgroundwaterflow field under different mining schemes of Kailuan Corp. The result shows that two cones of depression are formed in the karst flow field of Zhaogezhuang mining area and Tangshan mining area, and the water levels in two cone centers are -270 m and -31 m respectively, and the groundwater generally flows from the northeast to the southwest. Given some potential closed mines in the future, the mine discharge will decrease and the water level of Ordovician limestone will increase slightly. Conversely, given increase of coal yield, the mine drainage will increase, falling depression cone of Ordovician limestone flow field will enlarge. And in Tangshan's urban district, central water level of the depression cone will move slightly towards north due to pumping of a few mines in the north.
Mugel, Douglas N.
2017-03-09
The Southeast Missouri Barite District and the Valles Mines are located in Washington, Jefferson, and St. Francois Counties, Missouri, where barite and lead ore are present together in surficial and near-surface deposits. Lead mining in the area began in the early 1700’s and extended into the early 1900’s. Hand mining of lead in the residuum resulted in widespread pits (also called shafts or diggings), and there was some underground mining of lead in bedrock. By the 1860’s barite was recovered from the residuum by hand mining, also resulting in widespread diggings, but generally not underground mines in bedrock. Mechanized open-pit mining of the residuum for barite began in the 1920’s. Barite production slowed by the 1980’s, and there has not been any barite mining since 1998. Mechanized barite mining resulted in large mined areas and tailings ponds containing waste from barite mills.The U.S. Environmental Protection Agency (EPA) has determined that lead is present in surface soils in Washington and Jefferson Counties at concentrations exceeding health-based screening levels. Also, elevated concentrations of barium, arsenic, and cadmium have been identified in surface soils, and lead concentrations exceeding the Federal drinking-water standard of 15 micrograms per liter have been identified in private drinking-water wells. Potential sources of these contaminants are wastes associated with barite mining, wastes associated with lead mining, or unmined natural deposits of barium, lead, and other metals. As a first step in helping EPA determine the source of soil and groundwater contamination, the U.S. Geological Survey (USGS), in cooperation with the EPA, investigated the geology and mining history of the Southeast Missouri Barite District and the Valles Mines.Ore minerals are barite (barium sulfate), galena (lead sulfide), cerussite (lead carbonate), anglesite (lead sulfate), sphalerite (zinc sulfide), smithsonite (zinc carbonate), and chalcopyrite (copper-iron sulfide). The Cambrian Potosi Dolomite is the most important formation for the ore deposits, followed by the Eminence Dolomite. Because galena, sphalerite, and barite are less soluble than dolomite, chemical weathering of the ore-bearing dolomite bedrock resulted in the concentration of ore minerals in the residuum. Most of the barite and lead mining was in the residuum, which averages 10 to 15 feet thick.Lead mining by French explorers may have begun in 1719 along Old Mines Creek at Cabanage de Renaudiere, which was followed shortly by the discovery of lead and the development of lead mines at Mine Renault (also called Forche a Renault Mine), Old Mines, and at other places along the Big River, Mineral Fork, and Forche a Renault Creek. Lead mining began sometime between 1775 and 1780 at Mine a Breton, the name of which was later changed to Potosi. Other mining areas were developed in the early part of the 19th century, including Fourche a Courtois (Palmer Mines), the French Diggings, and the Richwoods Mines. Zinc became a valuable resource after the Civil War, and the Valles Mines was an important supplier of zinc as well as lead, with at least some production up until the 1920’s. Lead mining declined in the early part of the 20th century as mining in the Old Lead Belt, Mine La Motte, and the Tri-State District expanded.The earliest lead mines were diggings in the residuum and were round holes (shafts) about 4 feet in diameter dug with pick and shovel about 15–20 feet deep, with drifts dug a short distance laterally from the bottom of the shafts. This mining process was repeated a short distance away until a large area was covered with pits. Some mining in bedrock began by about 1800, with shafts as deep as 170 feet and as much as several hundred feet of lateral drifts.Smelting of the lead ore to elemental lead was first done using a log furnace, which was inefficient; estimates have been made that only about 50 percent of the lead was recovered, and the remainder was lost to the ashes (slags) and to volatilization. Starting in 1798, ash furnaces were used to smelt the ashes from the log furnaces. These two furnaces were worked in tandem for many years but were gradually replaced by other furnaces, including the Scotch hearth. Estimates of lead recovery as high as 80–90 percent have been made for the Scotch hearth. By the mid-1870’s the air furnace was being used, also with estimated lead recovery as high as 80–90 percent. Zinc furnaces were built when zinc became a valuable commodity, but much of the zinc ore was shipped out of the area, either to a smelter in St. Louis, Missouri, or to other smelters.The total lead and zinc production from the Southeast Missouri Barite District and the Valles Mines is estimated at 180,000 tons of lead and 60,000 tons of zinc. An estimated 97,000 tons of lead and an estimated 120,000 tons of zinc were lost during smelting. The estimated losses do not include losses at the mine site during mining and preparation for smelting, such as the loss of fine-grained galena during hand cleaning or the discarding of zinc ore before its value was known, for which no estimates are available.Hand mining for barite in the residuum was active by at least the 1860’s and peaked from 1905 to the 1930’s when several thousand people were engaged in barite mining. Hand mining (diggings) and cleaning of the ore was done in much the same way as earlier lead mining, with the additional use of a rattle box to further clean the barite. Mechanized open-pit mining of old barite diggings began in 1924 to recover barite left behind by hand mining, and washing plants were used to clean the clay from the barite. Hand mining, however, continued to thrive, and washer plants began to close temporarily in 1931; nearly all of the barite produced before 1937 was by hand mining. By the 1940’s, however, all barite mining was mechanized.Mechanized mining used shovels powered by steam, gasoline, or electricity (and by the 1950’s draglines and front-end loaders) to mine the residuum. The ore was loaded onto rail cars (and by the 1940’s, trucks) for shipment to washer plants. Clay was removed from the barite using a log washer, and a jig was used to concentrate the barite. Overflow from the log washers was waste and went to a mud (tailings) pond. The coarse jig tailings went to tailings piles or were used as railroad ballast and, later, to create roads within the mine pit. Some barite was ground, depending on its final use, and some ground barite was bleached using a hot solution of sulfuric acid to remove impurities such as iron minerals and lead sulfide (galena). An earlier bleaching process used lead-lined tanks.Large quantities of water were required for milling the barite; some was recirculated water and the remainder came from dammed streams or was pumped from wells. Tailings and wastewater were impounded behind dikes that were built across small valleys and were increased in height as necessary using washer waste and any overburden that had been stripped. In some cases, dikes were built across valleys that had already been mined for barite.The total production of barite from the Southeast Missouri Barite District and the Valles Mines is estimated to have been about 13.1 million tons. Most of the barite production was from Washington County. Hand mining and processing of barite was inefficient. Estimates of barite recovery range from less than one-fourth to about one-half because pillars between the shafts in the residuum needed to be left unmined for stability. With mechanized mining, large amounts of barite were lost during the milling process. It has been estimated that about 30 percent of the barite was lost and that about two-thirds of the lost barite was fine-grained and was discharged to the tailings ponds. Some galena was lost to the tailings ponds.A 1972 inventory of tailings ponds by the Missouri Geological Survey identified 67 ponds in the Southeast Missouri Barite District (there are more than this currently documented). Results from samples from four ponds that were drilled were used to estimate that the 67 ponds contained almost 39 million tons (or cubic yards) of tailings averaging about 5 percent barite, for a potential reserve of 1.935 million tons of barite.It is not known how much lead was removed during barite mining, either by hand or mechanized mining and processing, how much lead was recovered, or how much lead went as fines to the tailing ponds or as coarse material to mine roads or was otherwise lost.
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker
2013-01-01
Longleaf pine restoration is a common management objective in the southeastern United States and requires artificial regeneration of longleaf pines on sites currently dominated by loblolly pine. In many cases, retention of canopy trees during stand conversion may be desirable to promote ecological function and meet conservation objectives. We tested the effects of...
High altitude mine waste remediation -- Implementation of the Idarado remedial action plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, A.J.; Redmond, J.V.; River, R.A.
1999-07-01
The Idarado Mine in Colorado's San Juan Mountains includes 11 tailing areas, numerous waste rock dumps, and a large number of underground openings connected by over 100 miles of raises and drifts. The tailings and mine wastes were generated from different mining and milling operations between 1975 and 1978. the Idarado Remedial Action Plan (RAP) was an innovative 5-year program developed for remediating the impacts of historic mining activities in the San Miguel River and Red Mountain Creek drainages. The challenges during implementation included seasonal access limitations due to the high altitude construction areas, high volumes of runoff during snowmore » melt, numerous abandoned underground openings and stopped-out veins, and high profile sites adjacent to busy jeep trails and a major ski resort town. Implementation of the RAP has included pioneering efforts in engineering design and construction of remedial measures. Innovative engineering designs included direct revegetation techniques for the stabilization of tailings piles, concrete cutoff walls and French drains to control subsurface flows, underground water controls that included pipelines, weeplines, and portal collection systems, and various underground structures to collect and divert subsurface flows often exceeding 2,000 gpm. Remote work locations have also required the use of innovative construction techniques such as heavy lift helicopters to move construction materials to mines above 10,000 feet. This paper describes the 5-year implementation program which has included over 1,000,000 cubic yards of tailing regrading, application of 5,000 tons of manure and 26,000 tons of limestone, and construction of over 10,000 feet of pipeline and approximately 45,000 feet of diversion channel.« less
Kerfoot, W Charles; Urban, Noel R; McDonald, Cory P; Zhang, Huanxin; Rossmann, Ronald; Perlinger, Judith A; Khan, Tanvir; Hendricks, Ashley; Priyadarshini, Mugdha; Bolstad, Morgan
2018-04-25
A geographic enigma is that present-day atmospheric deposition of mercury in the Upper Peninsula of Michigan is low (48%) and that regional industrial emissions have declined substantially (ca. 81% reduction) relative to downstate. Mercury levels should be declining. However, state (MDEQ) surveys of rivers and lakes revealed elevated total mercury (THg) in Upper Peninsula waters and sediment relative to downstate. Moreover, Western Upper Peninsula (WUP) fish possess higher methyl mercury (MeHg) levels than Northern Lower Peninsula (NLP) fish. A contributing explanation for elevated THg loading is that a century ago the Upper Peninsula was a major industrial region, centered on mining. Many regional ores (silver, copper, zinc, massive sulfides) contain mercury in part per million concentrations. Copper smelters and iron furnace-taconite operations broadcast mercury almost continuously for 140 years, whereas mills discharged tailings and old mine shafts leaked contaminated water. We show that mercury emissions from copper and iron operations were substantial (60-650 kg per year) and dispersed over relatively large areas. Moreover, lake sediments in the vicinity of mining operations have higher THg concentrations. Sediment profiles from the Keweenaw Waterway show that THg accumulation increased 50- to 400-fold above modern-day atmospheric deposition levels during active mining and smelting operations, with lingering MeHg effects. High MeHg concentrations are geographically correlated with low pH and dissolved organic carbon (DOC), a consequence of biogeochemical cycling in wetlands, characteristic of the Upper Peninsula. DOC can mobilize metals and elevate MeHg concentrations. We argue that mercury loading from mining is historically superimposed upon strong regional wetland effects, producing a combined elevation of both THg and MeHg in the Western Upper Peninsula.
Nutrient leaching and soil retention in mined land reclaimed with stabilized manure.
Dere, Ashlee L; Stehouwer, Richard C; Aboukila, Emad; McDonald, Kirsten E
2012-01-01
Two environmental problems in Pennsylvania are degraded mined lands and excess manure nutrients from intensive animal production. Manure could be used in mine reclamation, but the large application rates required for sustained biomass production could result in significant nutrient discharge. An abandoned mine site in Schuylkill County, Pennsylvania, was used to test manure nutrient stabilization by composting and by mixing with primary paper mill sludge (PMS). Reclamation treatments were lime and fertilizer, composted poultry manure (78 and 156 Mg ha), and poultry manure (50 Mg ha) mixed with PMS (103 and 184 Mg ha) to achieve C-to-N ratios of 20 and 29. Leachates were collected with zero-tension lysimeters, and during 3 yr following amendment application, <1% of added N leached from the compost treatments. The manure+PMS C:N 29 treatment leached more N than any other treatment (393 kg N ha during 3 yr, 12.4 times more N than compost treatments), mostly as pulses of NO in the first two fall seasons following reclamation. The manure+PMS C:N 20 treatment leached 107 kg N ha during 3 yr. Three years after amendment application, most of the N and P added with the manure-based amendments was retained in the mine soil even though net immobilization of N by PMS appeared to be limited to 3 mo following application. Composting or mixing PMS with manure to achieve a C-to-N ratio of 20 can effectively minimize N leaching, retain added N in mine soil, and provide greater improvement in soil quality than lime and fertilizer amendment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Chouhan, Lalit Singh; Raina, Avtar K.
2015-10-01
Blasting is a unit operation in Mine-Mill Fragmentation System (MMFS) and plays a vital role in mining cost. One of the goals of MMFS is to achieve optimum fragment size at minimal cost. Blast fragmentation optimization is known to result in better explosive energy utilization. Fragmentation depends on the rock, explosive and blast design variables. If burden, spacing and type of explosive used in a mine are kept constant, the firing sequence of blast-holes plays a vital role in rock fragmentation. To obtain smaller fragmentation size, mining professionals and relevant publications recommend V- or extended V-pattern of firing sequence. In doing so, it is assumed that the in-flight air collision breaks larger rock fragments into smaller ones, thus aiding further fragmentation. There is very little support to the phenomenon of breakage during in-flight collision of fragments during blasting in published literature. In order to assess the breakage of in-flight fragments due to collision, a mathematical simulation was carried over using basic principles of physics. The calculations revealed that the collision breakage is dependent on velocity of fragments, mass of fragments, the strength of the rock and the area of fragments over which collision takes place. For higher strength rocks, the in-flight collision breakage is very difficult to achieve. This leads to the conclusion that the concept demands an in-depth investigation and validation.
Raymond-Whish, Stefanie; Mayer, Loretta P.; O’Neal, Tamara; Martinez, Alisyn; Sellers, Marilee A.; Christian, Patricia J.; Marion, Samuel L.; Begay, Carlyle; Propper, Catherine R.; Hoyer, Patricia B.; Dyer, Cheryl A.
2007-01-01
Background The deleterious impact of uranium on human health has been linked to its radioactive and heavy metal–chemical properties. Decades of research has defined the causal relationship between uranium mining/milling and onset of kidney and respiratory diseases 25 years later. Objective We investigated the hypothesis that uranium, similar to other heavy metals such as cadmium, acts like estrogen. Methods In several experiments, we exposed intact, ovariectomized, or pregnant mice to depleted uranium in drinking water [ranging from 0.5 μg/L (0.001 μM) to 28 mg/L (120 μM). Results Mice that drank uranium-containing water exhibited estrogenic responses including selective reduction of primary follicles, increased uterine weight, greater uterine luminal epithelial cell height, accelerated vaginal opening, and persistent presence of cornified vaginal cells. Coincident treatment with the antiestrogen ICI 182,780 blocked these responses to uranium or the synthetic estrogen diethylstilbestrol. In addition, mouse dams that drank uranium-containing water delivered grossly normal pups, but they had significantly fewer primordial follicles than pups whose dams drank control tap water. Conclusions Because of the decades of uranium mining/milling in the Colorado plateau in the Four Corners region of the American Southwest, the uranium concentration and the route of exposure used in these studies are environmentally relevant. Our data support the conclusion that uranium is an endocrine-disrupting chemical and populations exposed to environmental uranium should be followed for increased risk of fertility problems and reproductive cancers. PMID:18087588
Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger.
Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael
2016-03-01
This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. Copyright © 2015 Elsevier B.V. All rights reserved.
The Homestake Interim Laboratory and Homestake DUSEL
NASA Astrophysics Data System (ADS)
Lesko, Kevin T.
2011-12-01
The former Homestake gold mine in Lead South Dakota is proposed for the National Science Foundation's Deep Underground Science and Engineering Laboratory (DUSEL). The gold mine provides expedient access to depths in excess of 8000 feet below the surface (>7000 mwe). Homestake's long history of promoting scientific endeavours includes the Davis Solar Neutrino Experiment, a chlorine-based experiment that was hosted at the 4850 Level for more than 30 years. As DUSEL, Homestake would be uncompromised by competition with mining interests or other shared uses. The facility's 600-km of drifts would be available for conversion for scientific and educational uses. The State of South Dakota, under Governor Rounds' leadership, has demonstrated exceptionally strong support for Homestake and the creation of DUSEL. The State has provided funding totalling $46M for the preservation of the site for DUSEL and for the conversion and operation of the Homestake Interim Laboratory. Motivated by the strong educational and outreach potential of Homestake, the State contracted a Conversion Plan by world-recognized mine-engineering contractor to define the process of rehabilitating the facility, establishing the appropriate safety program, and regaining access to the facility. The State of South Dakota has established the South Dakota Science and Technology Authority to oversee the transfer of the Homestake property to the State and the rehabilitation and preservation of the facility. The Homestake Scientific Collaboration and the State of South Dakota's Science and Technology Authority has called for Letters of Interest from scientific, educational and engineering collaborations and institutions that are interested in hosting experiments and uses in the Homestake Interim Facility in advance of the NSF's DUSEL, to define experiments starting as early as 2007. The Homestake Program Advisory Committee has reviewed these Letters and their initial report has been released. Options for developing the Homestake Interim Laboratory and evolving this facility into DUSEL are presented.
Xing, Mei-Ning; Zhang, Xue-Zhu; Huang, He
2012-01-01
Feedstock for biofuel synthesis is transitioning to lignocelluosic biomass to address criticism over competition between first generation biofuels and food production. As microbial catalysis is increasingly applied for the conversion of biomass to biofuels, increased import has been placed on the development of novel enzymes. With revolutionary advances in sequencer technology and metagenomic sequencing, mining enzymes from microbial communities for biofuel synthesis is becoming more and more practical. The present article highlights the latest research progress on the special characteristics of metagenomic sequencing, which has been a powerful tool for new enzyme discovery and gene functional analysis in the biomass energy field. Critical enzymes recently developed for the pretreatment and conversion of lignocellulosic materials are evaluated with respect to their activity and stability, with additional explorations into xylanase, laccase, amylase, chitinase, and lipolytic biocatalysts for other biomass feedstocks. Copyright © 2012 Elsevier Inc. All rights reserved.
A New Solution for Confined-Unconfined Flow Toward a Fully Penetrating Well in a Confined Aquifer.
Xiao, Liang; Ye, Ming; Xu, Yongxin
2018-02-08
Transient confined-unconfined flow conversion caused by pumping in a confined aquifer (i.e., piezometric head drops below the top confined layer) is complicated, partly due to different hydraulic properties between confined and unconfined regions. For understanding mechanism of the transient confined-unconfined conversion, this paper develops a new analytical solution for the transient confined-unconfined flow toward a fully penetrating well in a confined aquifer. The analytical solution is used to investigate the impacts on drawdown simulation by differences of hydraulic properties, including transmissivity, storativity, and diffusivity defined as a ratio of transmissivity and storativity, between the confined and unconfined regions. It is found that neglecting the transmissivity difference may give an overestimation of drawdown. Instead, neglecting the diffusivity difference may lead to an underestimation of drawdown. The shape of drawdown-time curve is sensitive to the change of storativity ratio, S/S y , between the confined and unconfined regions. With a series of drawdown data from pumping tests, the analytical solution can also be used to inversely estimate following parameters related to the transient confined-unconfined conversion: radial distance of conversion interface, diffusivity, and specific yield of the unconfined region. It is concluded that using constant transmissivity and diffusivity in theory can result in biased estimates of radial distance of the conversion interface and specific yield of the unconfined region in practice. The analytical solution is useful to gain insight about various factors related to the transient confined-unconfined conversion and can be used for the design of mine drainage and groundwater management in the mining area. © 2018, National Ground Water Association.
Development of hemicelluloses biorefineries for integration into kraft pulp mills
NASA Astrophysics Data System (ADS)
Ajao, Olumoye Abiodun
The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In the first part of this work, the feasibility of concentrating prehydrolysate solution with a reverse osmosis membrane was studied. The concentration step is required to reduce the energy demand of the subsequent conversion processes and the size of process equipments. Reconstituted prehydrolysate solutions containing different concentrations of glucose, xylose acetic acid, syringaldehyde and furfural was used to determine the feasibility of concentrating with a reverse osmosis membrane. The effect of the solution composition and operating conditions (cross flow velocity, temperature and pressure) on the selectivity of the membrane and the permeate flux were investigated. The results revealed that irrespective of the prehydrolysate composition, the feed pressure and temperature had the most dominant effect on the permeate flux. A permeate flux decline was observed in all experiments and the mechanisms responsible for the flux decline were elucidated. It was also confirmed that the membrane fouling is reversible and regeneration can be successfully carried out by cleaning with a sodium hydroxide solution. The second part of this work focussed on a chemical conversion pathway for furfural production. A prehydrolysate solution was generated by using a wood chips furnish that is similar to that of the reference mill and used to evaluate the membrane concentration requirements for furfural production. The retention and flux characteristics of six commercial organic membranes made from different polymers (polyamide, cellulose acetate and polypiperazine amide) and with molecular weight cut offs (MWCO) between 100 and 500 Da were evaluated. A membrane with total sugar retention of 99% and a MWCO of about 200 Da was shown to be the most suitable for a furfural process based on the criteria: low energy requirement for concentration, low degree of fouling potential and high retentions of the desired components (sugars, acetic acid and furfural). The maximum volumetric concentration factor was determined to be 4, exceeding this limit leads to increased fouling of the membrane. Cleaning of the membrane with sodium hydroxide returned the permeate flux back to 75%, relative to a virgin membrane. A response surface model was developed for minimizing the flux decline during concentration. The third part of this work covered a biochemical conversion pathway for the production of ethanol. The organic compounds in the prehydrolysate, that inhibit fermentation of the sugars into ethanol and cause the death of the fermentation microorganisms, must be removed. Suitable membranes that could be applied for the detoxification were identified during the membrane screening. The following inhibitor removal efficiencies were achieved: phenols (20%), furfural (80%), acetic acid (94%) and hydroxymethylfurfural (89%). Membrane filtration could be used for concentration and elimination of most of the inhibitors, it was however not efficient for the removal of phenolic compounds. The identification of a complementary detoxification step with a high specificity for phenols removal was necessary. Experiments to assess the use of activated charcoal adsorption and flocculation with ferric sulfate, alum or chitin showed that ferric sulfate significantly removes the phenolic compounds relative to sugar loss. To maximize the removal of phenolic compounds, the optimum ratio of iron to phenols ions [Fe]/[Phenols] was found to be 1g/g and the pH between 6.5 and 7.7. A detoxification strategy that can be used for prehydrolysate detoxification was developed by combining nanofiltration and flocculation with ferric sulfate as the coagulant. Simulation models for the production of furfural and ethanol from hemicelluloses prehydrolysate were developed with inputs from the experimental results. The furfural biorefinery was made up of 3 steps, prehydrolysate concentration, sugars transformation and product recovery. An optimized heat exchanger network and an absorption heat pump for implementation were designed to lower the energy consumption. The feasibility of the energy and material integration of the biorefinery was demonstrated and the utility demands can be met by the reference mill. A techno-economic evaluation of the developed process showed that it is economically feasible and a return on capital employed (ROCE) as high as 36 % can be obtained. The ethanol biorefinery process was shown to have a lower thermal energy requirement than the furfural process and can also be successfully integrated with the receptor mill. In the last phase of this research, the guideline for the implementation of hemicellulosic biorefineries in Canadian pulp and paper mills are proposed. It included analyses of the modifications required for different types of Kraft pulping processes prior to their conversion into a biorefinery, energy optimization approaches to address the increased energy demand after integration, factors that must be considered during bioproducts selection and types of collaboration that can be used to reduce risk and lower investment.
Pardo, Tania; Clemente, Rafael; Bernal, M Pilar
2011-07-01
The use of organic wastes as amendments in heavy metal-polluted soils is an ecological integrated option for their recycling. The potential use of alperujo (solid olive-mill waste) compost and pig slurry in phytoremediation strategies has been studied, evaluating their short-term effects on soil health. An aerobic incubation experiment was carried out using an acid mine spoil based soil and a low OM soil from the mining area of La Unión (Murcia, Spain). Arsenic and heavy metal solubility in amended and non-amended soils, and microbial parameters were evaluated and related to a phytotoxicity test. The organic amendments provoked an enlargement of the microbial community (compost increased biomass-C from non detected values to 35 μg g(-1) in the mine spoil soil, and doubled control values in the low OM soil) and an intensification of its activity (including a twofold increase in nitrification), and significantly enhanced seed germination (increased cress germination by 25% in the mine spoil soil). Organic amendments increased Zn and Pb EDTA-extractable concentrations, and raised As solubility due to the influence of factors such as pH changes, phosphate concentration, and the nature of the organic matter of the amendments. Compost, thanks to the greater persistence of its organic matter in soil, could be recommended for its use in (phyto)stabilisation strategies. However, pig slurry boosted inorganic N content and did not significantly enhance As extractability in soil, so its use could be specifically recommended in As polluted soils. Copyright © 2011 Elsevier Ltd. All rights reserved.
Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-09-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell sitemore » constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.« less
Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado. Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-09-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell sitemore » constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.« less
Boughton, G.K.
2001-01-01
Acid drainage from historic mining activities has affected the water quality and aquatic biota of Soda Butte Creek upstream of Yellowstone National Park. Numerous investigations focusing on metals contamination have been conducted in the Soda Butte Creek basin, but interpretations of how metals contamination is currently impacting Soda Butte Creek differ greatly. A retrospective analysis of previous research on metal loading in Soda Butte Creek was completed to provide summaries of studies pertinent to metal loading in Soda Butte Creek and to identify data gaps warranting further investigation. Identification and quantification of the sources of metal loading to Soda Butte Creek was recognized as a significant data gap. The McLaren Mine tailings impoundment and mill site has long been identified as a source of metals but its contribution relative to the total metal load entering Yellowstone National Park was unknown. A tracer-injection and synoptic-sampling study was designed to determine metal loads upstream of Yellowstone National Park.A tracer-injection and synoptic-sampling study was conducted on an 8,511-meter reach of Soda Butte Creek from upstream of the McLaren Mine tailings impoundment and mill site downstream to the Yellowstone National Park boundary in August 1999. Synoptic-sampling sites were selected to divide the creek into discrete segments. A lithium bromide tracer was injected continuously into Soda Butte Creek for 24.5 hours. Downstream dilution of the tracer and current-meter measurements were used to calculate the stream discharge. Stream discharge values, combined with constituent concentrations obtained by synoptic sampling, were used to quantify constituent loading in each segment of Soda Butte Creek.Loads were calculated for dissolved calcium, silica, and sulfate, as well as for dissolved and total-recoverable iron, aluminum, and manganese. Loads were not calculated for cadmium, copper, lead, and zinc because these elements were infrequently detected in mainstem synoptic samples. All of these elements were detected at high concentrations in the seeps draining the McLaren Mine tailings impoundment. The lack of detection of these elements in the downstream mainstem synoptic samples is probably because of sorption (coprecipitation and adsorption) to metal colloids in the stream.Most of the metal load that entered Soda Butte Creek was contributed by the inflows draining the McLaren Mine tailings impoundment (between 505 meters and 760 meters downstream from the tracer-injection site), Republic Creek (1,859 meters), and Unnamed Tributary (8,267 meters). Results indicate that treatment or removal of the McLaren Mine tailings impoundment would greatly reduce metal loading in Soda Butte Creek upstream of Yellowstone National Park. However, removing only that single source may not reduce metal loads to acceptable levels. The sources of metal loading in Republic Creek and Unnamed Tributary merit further investigation.
Savage, K.S.; Bird, D.K.; Ashley, R.P.
2000-01-01
Gold mining activity in the Sierra Nevada foothills, both recently and during the California Gold Rush, has exposed arsenic-rich pyritic rocks to weathering and erosion. This study describes arsenic concentration and speciation in three hydrogeologic settings in the southern Mother Lode Gold District: mineralized outcrops and mine waste rock (overburden); mill tailings submerged in a water reservoir; and lake waters in this monomictic reservoir and in a monomictic lake developing within a recent open-pit mine. These environments are characterized by distinct modes of rock-water interaction that influence the local transport and fate of arsenic. Arsenic in outcrops and waste rock occurs in arsenian pyrite containing an average of 2 wt% arsenic. Arsenic is concentrated up to 1300 ppm in fine-grained, friable iron-rich weathering products of the arsenian pyrite (goethite, jarosite, copiapite), which develop as efflorescences and crusts on weathering outcrops. Arsenic is sorbed as a bidentate complex on goethite, and substitutes for sulfate in jarosite. Submerged mill tailings obtained by gravity core at Don Pedro Reservoir contain arsenic up to 300 ppm in coarse sand layers. Overlying surface muds have less arsenic in the solid fraction but higher concentrations in porewaters (up to 500 ??g/L) than the sands. Fine quartz tailings also contain up to 3.5 ppm mercury related to the ore processing. The pH values in sediment porewaters range from 3.7 in buried gypsum-bearing sands and tailings to 7 in the overlying lake sediments. Reservoir waters immediately above the cores contain up to 3.5 ??g/L arsenic; lake waters away from the submerged tailings typically contain less than 1 ??g/L arsenic. Dewatering during excavation of the Harvard open-pit mine produced a hydrologic cone of depression that has been recovering toward the pre-mining groundwater configuration since mining ended in 1994. Aqueous arsenic concentrations in the 80 m deep pit lake are up to 1000 ??g/L. Redistribution of the arsenic occurs during summer stratification, with highest concentrations at middle depths. The total mass of arsenic in the pit lake increases coinciding with early winter rains that erode, partially dissolve, and transport arsenic-bearing salts into the pit lake. Arsenic concentration, speciation, and distribution in the Sierra Nevada foothills depend on many factors, including the lithologic sources of arsenic, climatic influences on weathering of host minerals, and geochemical characteristics of waters with which source and secondary minerals react. Oxidation of arsenian pyrite to goethite, jarosite, and copiapite causes temporary attenuation of arsenic during summer, when these secondary minerals accumulate; subsequent rapid dissemination of arsenic into the aqueous environment is caused by annual winter storms. As the population of the Mother Lode area grows, it is increasingly important to consider these effects during planning and development of land and groundwater resources.
Mechanochemical depolymerization of inulin.
Xing, Haoran; Yaylayan, Varoujan A
2018-05-02
Although chemical reactions driven by mechanical force is emerging as a promising tool in the field of physical sciences, its applications in the area of food sciences are not reported. In this paper, we propose ball milling as an efficient tool for the controlled generation of fructooligosaccharide (FOS) mixtures from inulin with a degree of polymerization (dp) ranging between 4 and 7. The addition of catalytic amounts of AlCl 3 together with ball milling (30 min, at 30 Hz) generated mixtures rich in dehydrated disaccharides such as di-D-fructose dianhydrides. Based on anion exchange chromatography in conjunction with ESI/qTOF/MS/MS analysis, catalysis increased the overall content of mono-, di-, and tri-saccharides by around 30 fold compared to un-catalyzed milling. In addition, dialysis results of the untreated and treated samples have indicated that under catalysis the percent of depolymerization (dp < 12) reached 73.4% from the starting value of 27.6% in the untreated sample. Both processes resulted in mixtures of prebiotic value. The use of mechanical energy may be suitable for a fast, cost-efficient and green conversion of inulin to value-added food ingredients. Copyright © 2018 Elsevier Ltd. All rights reserved.
Foster, Andrea L.; Ona-Nguema, Georges; Tufano, Kate; White, Richard III
2010-01-01
The Lava Cap Mine is located about 6 km east of the city of Grass Valley, Nevada County, California, at an elevation of about 900 m. Gold was hosted in quartz-carbonate veins typical of the Sierran Gold Belt, but the gold grain size was smaller and the abundance of sulfide minerals higher than in typical deposits. The vein system was discovered in 1860, but production was sporadic until the 1930s when two smaller operations on the site were consolidated, a flotation mill was built, and a 100-foot deep adit was driven to facilitate drainage and removal of water from the mine workings, which extended to 366 m. Peak production at the Lava Cap occurred between 1934 and 1943, when about 90,000 tons of ore per year were processed. To facilitate removal of the gold and accessory sulfide minerals, the ore was crushed to a very fine sand or silt grain size for processing. Mining operations at Lava Cap ceased in June 1943 due to War Production Board Order L-208 and did not resume after the end of World War II. Two tailings retention structures were built at the Lava Cap Mine. The first was a log dam located about 0.4 km below the flotation mill on Little Clipper Creek, and the second, built in 1938, was a larger earth fill and rip-rap structure constructed about 2 km downstream, which formed the water body now called Lost Lake. The log dam failed during a storm that began on December 31, 1996, and continued into January 1997; an estimated 8,000-10,000 m3 of tailings were released into Little Clipper Creek during this event. Most of the fine tailings were deposited in Lost Lake, dramatically increasing its turbidity and resulting in a temporary 1-1.5 m rise in lake level due to debris blocking the dam spillway. When the blockage was cleared, the lake level quickly lowered, leaving a ?bathtub ring? of very fine tailings deposited substantially above the water line. The U.S. Environmental Protection Agency (EPA) initiated emergency action in late 1997 at the mine site to reduce the possibility of future movement of tailings, and began an assessment of the risks posed by physical and chemical hazards at the site. The EPA's assessment identified arsenic (As) as the primary hazard of concern. Three main exposure routes were identified: inhalation/ingestion of mine tailings, dermal absorption/ingestion of As in lake water from swimming, and ingestion of As-contaminated ground water or surface water. Lost Lake is a private lake which is completely surrounded by low-density residential development. Prior to the dam failure, the lake was used by the local residents for swimming and boating. An estimated 1,776 people reside within one mile of the lake, and almost all residents of the area use potable groundwater for domestic use. Risk factors for human exposure to As derived from mine wastes were high enough to merit placement of the mine site and surrounding area on the National Priority List (commonly called ?Superfund?). The Lava Cap Mine Superfund site (LCMS) encompasses approximately 33 acres that include the mine site, the stretch of Little Clipper Creek between the mine and Lost Lake, the lake itself, and the area between the lake and the confluence of Little Clipper Creek with its parent stream, Clipper Creek. The area between the two creeks is named the ?deposition area? due to the estimated 24 m thick layer of tailings that were laid down there during and after active mining. The lobate structure of Lost Lake is also due to deposition in this area. The deposition area and Lost Lake are together estimated to contain 382,277 m3 of tailings. The primary goals of the EPA have been to minimize tailings movement downstream of Lost Lake and to ensure that residents in the area have drinking water that meets national water quality standards. EPA has officially decided to construct a public water supply line to deliver safe water to affected residences, since some residential wells in the area have As concentrations above the curr
Mercury and other metal(oid)s from mining activities in sediments from the Almadén district
NASA Astrophysics Data System (ADS)
García-Ordiales, Efrén; Esbrí, José M.; Higueras, Pablo; Loredo, Jorge
2015-04-01
Almadén (South Central Spain) is worldwide famous because of mercury mining. But besides, the area has also been the site of other types of mining, in particular exploitation of Pb-Zn sulphides, with variable contents of other economic metals such as Ag, as well as others with high pollution potential such as As, Cd, Sb, etc. These exploitations were in activity in different historic periods, since Romans times to the 20th Century, and most of them were abandoned with no reclamation measures at all, acting as important sources of contamination in surrounding soils. In this work, we present a preliminary assessment of the affection of sediments for the streams of Almadén mine district, considering other potential pollutants in addition to mercury. Sampling was carried out during the period 2010-2013, and involved the collection of 65 samples of stream sediments in the main river of the district (Valdeazogues River) and main subsidiaries. Samples were air-dried, sieved to <2mm to discard gravel fraction, milled to <63μm and analysed in certified laboratory (ACME Labs Canada) by ICP-AES and ICP-MS after hot acid digestion. Results showed that sediments suffer a significant metal accumulation within the district, being specially concern at the areas close to mines. Most studied samples exceed the heavy metals and metalloids reference values for uncontaminated sites as well as those fitted to protect the aquatic life. Element by element, mercury contents are widely disperse in the district because of mining activities and it can be considered as the main pollutant of the district. Concentrations of other potentially harmful elements such as Pb, Zn and As show also important concentrations, which may be attributed to anthropogenic sources, specially to decommissioned mines. Comparing concentrations from the different surveyed areas, two different zones were identified: One located in the upper part of the district, where the intense mining activities related with four of the largest Hg mines produced an important Hg anomaly of regional scale, and with no significant concentrations of the rest of metal(oid)s. On the other hand, in the lower part of the district, together with the intense activity of the Almadén mine, other polymetallic mines causes Pb, Zn and As concentrations implying significant enrichments with respect to the upper area.
Driscoll, Heather E; Vincent, James J; English, Erika L; Dolci, Elizabeth D
2016-12-01
Here we report on a metagenomics investigation of the microbial diversity in a serpentine-hosted aquatic habitat created by chrysotile asbestos mining activity at the Vermont Asbestos Group (VAG) Mine in northern Vermont, USA. The now-abandoned VAG Mine on Belvidere Mountain in the towns of Eden and Lowell includes three open-pit quarries, a flooded pit, mill buildings, roads, and > 26 million metric tons of eroding mine waste that contribute alkaline mine drainage to the surrounding watershed. Metagenomes and water chemistry originated from aquatic samples taken at three depths (0.5 m, 3.5 m, and 25 m) along the water column at three distinct, offshore sites within the mine's flooded pit (near 44°46'00.7673″, - 72°31'36.2699″; UTM NAD 83 Zone 18 T 0695720 E, 4960030 N). Whole metagenome shotgun Illumina paired-end sequences were quality trimmed and analyzed based on a translated nucleotide search of NCBI-NR protein database and lowest common ancestor taxonomic assignments. Our results show strata within the pit pond water column can be distinguished by taxonomic composition and distribution, pH, temperature, conductivity, light intensity, and concentrations of dissolved oxygen. At the phylum level, metagenomes from 0.5 m and 3.5 m contained a similar distribution of taxa and were dominated by Actinobacteria (46% and 53% of reads, respectively), Proteobacteria (45% and 38%, respectively), and Bacteroidetes (7% in both). The metagenomes from 25 m showed a greater diversity of phyla and a different distribution of reads than the two upper strata: Proteobacteria (60%), Actinobacteria (18%), Planctomycetes, (10%), Bacteroidetes (5%) and Cyanobacteria (2.5%), Armatimonadetes (< 1%), Verrucomicrobia (< 1%), Firmicutes (< 1%), and Nitrospirae (< 1%). Raw metagenome sequence data from each sample reside in NCBI's Short Read Archive (SRA ID: SRP056095) and are accessible through NCBI BioProject PRJNA277916.
Theobald, P.K.; Thompson, Charles Emmet
1968-01-01
Platinum-group metals in the Medicine Bow Mountains were first identified by W. C. Knight in 1901. In the Medicine Bow Mountains, these metals are commonly associated with copper, silver, or gold in shear zones that cut a series of mafic igneous and metamorphic rocks. At the New Rambler mine, where the initial discovery was made, about 50,000 tons of mine and mill waste contain an average of 0.3 percent copper, 7 ppm (parts per million) silver, 1 ppm platinum plus palladium, and 0.7 ppm gold. This material is believed to be from a low-grade envelope around the high-grade pod of complex ore that was mined selectively in the old workings. Soil samples in the vicinity of the New Rambler mine exhibit a wide range of content of several elements associated with the ore. Most of the variation can be attributed to contamination, from the mine workings. Even though soil samples identify a low-level copper anomaly that persists to the limit of the area sampled, soils do not offer a promising medium for tracing mineralization owing to the blanket of transported overburden. Stream sediments, if preconcentrated for analysis, do reveal anomalies not only in the contaminated stream below the New Rambler mine, but in adjacent drainage and on Dave Creek. Examination of a spectrum of elements in heavy-mineral concentrates from stream sediment may contribute to knowledge of the nature of the mineralization and of the basic geology of the environment. The sampling of bedrock exposures is not particularly fruitful because outcrops are sparse and the exposed rocks are the least altered and mineralized. Bedrock sampling does, however, provide information on the large size and provincial nature of the platinum-rich area. We feel that a properly integrated program of geological, geophysical, and geochemical exploration in the Medicine Bow Mountains and probably in the Sierra Madre to the west has a reasonable probability of successfully locating a complex ore body.
NASA Astrophysics Data System (ADS)
Kittipongvises, Suthirat
2015-12-01
There is presently overwhelming scientific consensus that global climate change is indeed occurring, and that human activities are the primary driver. An increasingly resource and carbon constrained world will continue to pose formidable challenges to major industries, including mining. Understanding the implications of climate change mitigation for the mining industry, however, remains limited. This paper presents the results of a feasibility study on the implementation of a clean development mechanism and greenhouse gases (GHGs) emission reductions in the gold mining industry. It draws upon and extends the analysis of a case study conducted on gold mining operations in Thailand. The results from the case study indicated that total GHGs emissions by company A were approximately 36,886 tons carbon dioxide equivalents (tCO2e) per annual gold production capacity that meet the eligibility criteria for small-scaled clean development mechanism (CDM) projects. The electrostatic separation process was found to release the lowest amount of GHGs, whereas comminution (i.e. crushing and grinding) generated the highest GHGs emissions. By scope, the emission from purchased electricity (scope 2) is the most significant source. Opportunities for CDM projects implementation in the gold mining sector can be found in employing energy efficiency measures. Through innovation, some technical efficiency and technological development in gold processing (i.e. high pressure grinding rolls (HPGR), vertical roller mills (VRM), gravity pre-concentration and microwave heating technologies) that have the potential to reduce energy use and also lower carbon footprint of the gold mining were further discussed. The evidence reviews found that HPGR and VRM abatement technologies have shown energy and climate benefits as electricity savings and CO2 reduction of about 8-25.93 kWh/ton ore processed and 1.8-26.66 kgCO2/ton ore processed, respectively. Implications for further research and practice were finally raised.
Mining Claim Activity on Federal Land in the United States
Causey, J. Douglas
2007-01-01
Several statistical compilations of mining claim activity on Federal land derived from the Bureau of Land Management's LR2000 database have previously been published by the U.S Geological Survey (USGS). The work in the 1990s did not include Arkansas or Florida. None of the previous reports included Alaska because it is stored in a separate database (Alaska Land Information System) and is in a different format. This report includes data for all states for which there are Federal mining claim records, beginning in 1976 and continuing to the present. The intent is to update the spatial and statistical data associated with this report on an annual basis, beginning with 2005 data. The statistics compiled from the databases are counts of the number of active mining claims in a section of land each year from 1976 to the present for all states within the United States. Claim statistics are subset by lode and placer types, as well as a dataset summarizing all claims including mill site and tunnel site claims. One table presents data by case type, case status, and number of claims in a section. This report includes a spatial database for each state in which mining claims were recorded, except North Dakota, which only has had two claims. A field is present that allows the statistical data to be joined to the spatial databases so that spatial displays and analysis can be done by using appropriate geographic information system (GIS) software. The data show how mining claim activity has changed in intensity, space, and time. Variations can be examined on a state, as well as a national level. The data are tied to a section of land, approximately 640 acres, which allows it to be used at regional, as well as local scale. The data only pertain to Federal land and mineral estate that was open to mining claim location at the time the claims were staked.
Exotic grasslands on reclaimed midwestern coal mines: An ornithological perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, P.E.; Lima, S.L.
The largest grasslands in Indiana and Illinois are on reclaimed surface coal mines, which are numerous in the Illinois Coal Basin. The reclamation goal of establishing a vegetation cover with inexpensive, hardy exotic grass species (e.g., tall fescue, smooth brome) inadvertently created persistent, large grassland bird refuges. We review research documenting the importance of these sites for native prairie birds. On mines, grassland specialist birds (restricted to grassland throughout their range) prefer sites dominated by exotic grasses to those rich in forbs, whereas nonspecialist bird species show no significant preference. Midwestern mine grasslands potentially could be converted into landscapes thatmore » include native warm-season grasses and forbs adapted to the relatively dry, poor soil conditions, in addition to the present successful exotic grass stands. A key question is whether native mixtures will resist conversion to forb-rich or woody growth over the long term, as the exotic grasses have done.« less
37. DETAIL OF CYANIDE LEACHING TANK DRAIN DOOR AND PIPING ...
37. DETAIL OF CYANIDE LEACHING TANK DRAIN DOOR AND PIPING SYSTEM. NOTE SPIGOT UNDER BOARD AT UPPER LEFT INSERTS INTO HOLE IN PIPE AT BOTTOM OF FRAME. CYANIDE SOLUTION WAS PUMPED INTO THE TANKS AND THE PREGNANT SOLUTION DRAINED OUT OF THE TANKS THROUGH THIS PIPE, AND BACK INTO A SEPARATE HOLDING TANK ON THE EAST SIDE OF THE MILL. TAILINGS WERE REMOVED FROM THE TANKS THROUGH THE ROUND DRAIN DOOR IN THE BOTTOM OF THE TANK (MISSING) SEEN AT TOP CENTER. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Industrial contributions of arsenic to the environment.
Nelson, K W
1977-01-01
Arsenic is present in all copper, lead, and zinc sulfide ores and is carried along with those metals in the mining, milling and concentrating process. Separation, final concentration and refining of by-product arsenic as the trioxide is achieved at smelters. Arsenic is the essential consistent element of many compounds important and widely used in agriculture and wood preservation. Lesser amounts are used in metal alloys, glass-making, and feed additives. There is no significant recycling. Current levels of arsenic emissions to the atmosphere from smelters and power plants and ambient air concentrations are given as data of greatest environmental interest. PMID:908308
Control of fumonisin: effects of processing.
Saunders, D S; Meredith, F I; Voss, K A
2001-01-01
Of about 10 billion bushels of corn that are grown each year in the United States, less than 2% is processed directly into food products, and about 18% is processed into intermediates such as high-fructose corn syrup, ethanol, and cornstarch. The vast majority of the annual crop is used domestically for animal feed (60%), and about 16% is exported. Thus, any program for controlling residues of fumonisin (FB) in food must recognize that most of the crop is grown for something other than food. Studies on the effects of wet milling on FB residues found these residues nondetectable in cornstarch, the starting material for high-fructose corn syrup and most other wet-milled food ingredients. Similar effects are noted for the dry-milling process. FB residues were nondetectable or quite low in dry flaking grits and corn flour, higher in corn germ, and highest in corn bran. Extrusion of dry-milled products reduces FB concentrations by 30-90% for mixing-type extruders and 20-50% for nonmixing extruders. Cooking and canning generally have little effect on FB content. In the masa process measurable FB is reduced following the cooking, soaking, and washing steps, with little conversion of FB to the hydrolyzed form. Sheeting, baking, and frying at commercial times and temperatures generally have no effect. In summary, all available studies on the effects of processing corn into food and food ingredients consistently demonstrate substantial reductions in measurable FB. No studies have shown a concentration in FB residues in food products or ingredients. PMID:11359704
Conversion of paper sludge to ethanol, II: process design and economic analysis.
Fan, Zhiliang; Lynd, Lee R
2007-01-01
Process design and economics are considered for conversion of paper sludge to ethanol. A particular site, a bleached kraft mill operated in Gorham, NH by Fraser Papers (15 tons dry sludge processed per day), is considered. In addition, profitability is examined for a larger plant (50 dry tons per day) and sensitivity analysis is carried out with respect to capacity, tipping fee, and ethanol price. Conversion based on simultaneous saccharification and fermentation with intermittent feeding is examined, with ethanol recovery provided by distillation and molecular sieve adsorption. It was found that the Fraser plant achieves positive cash flow with or without xylose conversion and mineral recovery. Sensitivity analysis indicates economics are very sensitive to ethanol selling price and scale; significant but less sensitive to the tipping fee, and rather insensitive to the prices of cellulase and power. Internal rates of return exceeding 15% are projected for larger plants at most combinations of scale, tipping fee, and ethanol price. Our analysis lends support to the proposition that paper sludge is a leading point-of-entry and proving ground for emergent industrial processes featuring enzymatic hydrolysis of cellulosic biomass.
NASA Astrophysics Data System (ADS)
Nur, T. B.; Pane, Z.; Amin, M. N.
2017-03-01
Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.
NASA Technical Reports Server (NTRS)
Townsend, Philip A.; Helmers, David P.; Kingdon, Clayton C.; McNeil, Brenden E.; de Beurs, Kirsten M.; Eshleman, Keith N.
2009-01-01
Surface mining and reclamation is the dominant driver of land cover land use change (LCLUC) in the Central Appalachian Mountain region of the Eastern U.S. Accurate quantification of the extent of mining activities is important for assessing how this LCLUC affects ecosystem services such as aesthetics, biodiversity, and mitigation of flooding.We used Landsat imagery from 1976, 1987, 1999 and 2006 to map the extent of surface mines and mine reclamation for eight large watersheds in the Central Appalachian region of West Virginia, Maryland and Pennsylvania. We employed standard image processing techniques in conjunction with a temporal decision tree and GIS maps of mine permits and wetlands to map active and reclaimed mines and track changes through time. For the entire study area, active surface mine extent was highest in 1976, prior to implementation of the Surface Mine Control and Reclamation Act in 1977, with 1.76% of the study area in active mines, declining to 0.44% in 2006. The most extensively mined watershed, Georges Creek in Maryland, was 5.45% active mines in 1976, declining to 1.83% in 2006. For the entire study area, the area of reclaimed mines increased from 1.35% to 4.99% from 1976 to 2006, and from 4.71% to 15.42% in Georges Creek. Land cover conversion to mines and then reclaimed mines after 1976 was almost exclusively from forest. Accuracy levels for mined and reclaimed cover was above 85% for all time periods, and was generally above 80% for mapping active and reclaimed mines separately, especially for the later time periods in which good accuracy assessment data were available. Among other implications, the mapped patterns of LCLUC are likely to significantly affect watershed hydrology, as mined and reclaimed areas have lower infiltration capacity and thus more rapid runoff than unmined forest watersheds, leading to greater potential for extreme flooding during heavy rainfall events.
Changing scene highlights III. [Iowa State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fassel, V. A.; Harl, Neil E.; Legvold, Sam
1979-01-01
The research programs in progress at Ames Laboratory, Iowa State University, are reviewed: hydrogen (storage), materials, catalysts, TRISTAN (their laboratory isotope separator), coal preparation, coal classification, land reclamation (after surface mining, nitinol, neutron radiography, grain dust explosions, biomass conversion, etc). (LTC)
Renewed mining and reclamation: Imapacts on bats and potential mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P.E.; Berry, R.D.
Historic mining created new roosting habitat for many bat species. Now the same industry has the potential to adversely impact bats. Contemporary mining operations usually occur in historic districts; consequently the old workings are destroyed by open pit operations. Occasionally, underground techniques are employed, resulting in the enlargement or destruction of the original workings. Even during exploratory operations, historic mine openings can be covered as drill roads are bulldozed, or drills can penetrate and collapse underground workings. Nearby blasting associated with mine construction and operation can disrupt roosting bats. Bats can also be disturbed by the entry of mine personnelmore » to collect ore samples or by recreational mine explorers, since the creation of roads often results in easier access. In addition to roost disturbance, other aspects of renewed mining can have adverse impacts on bat populations, and affect even those bats that do not live in mines. Open cyanide ponds, or other water in which toxic chemicals accumulate, can poison bats and other wildlife. The creation of the pits, roads and processing areas often destroys critical foraging habitat, or change drainage patterns. Finally, at the completion of mining, any historic mines still open may be sealed as part of closure and reclamation activities. The net result can be a loss of bats and bat habitat. Conversely, in some contemporary underground operations, future roosting habitat for bats can be fabricated. An experimental approach to the creation of new roosting habitat is to bury culverts or old tires beneath waste rock. Mining companies can mitigate for impacts to bats by surveying to identify bat-roosting habitat, removing bats prior to renewed mining or closure, protecting non-impacted roost sites with gates and fences, researching to identify habitat requirements and creating new artificial roosts.« less
Mortality of workers in two Minnesota taconite mining and milling operations.
Cooper, W C; Wong, O; Graebner, R
1988-06-01
Mortality during the years 1947 to 1983 was studied in 3,444 men employed for at least 3 months in Minnesota taconite mining operations during the years 1947 to 1958. During 86,307 person-years of observation, there were 801 deaths for a standardized mortality ratio (SMR) of 88 (US white male rates) or 98 (Minnesota rates). The 41 deaths from respiratory cancer were fewer than expected, the SMR being 61 (P less than or equal to .01) (US rates) and 85 (Minnesota rates). There were 25 respiratory cancers 20 or more years after first taconite employment, for an SMR of 57 (P less than or equal to .01) (US rates). SMRs for colon cancer, kidney cancer, and lymphopoietic cancer were elevated, but below the level of statistical significance. There was one death from pleural mesothelioma, 11 years after first taconite employment, in a man with long prior employment as a locomotive operator. The pattern of deaths did not suggest asbestos-related disease in taconite miners and millers.
Moreno-Jiménez, Eduardo; Clemente, Rafael; Mestrot, Adrien; Meharg, Andrew A
2013-02-01
Organic matter amendments are applied to contaminated soil to provide a better habitat for re-vegetation and remediation, and olive mill waste compost (OMWC) has been described as a promising material for this aim. We report here the results of an incubation experiment carried out in flooded conditions to study its influence in As and metal solubility in a trace elements contaminated soil. NPK fertilisation and especially organic amendment application resulted in increased As, Se and Cu concentrations in pore water. Independent of the amendment, dimethylarsenic acid (DMA) was the most abundant As species in solution. The application of OMWC increased pore water dissolved organic-carbon (DOC) concentrations, which may explain the observed mobilisation of As, Cu and Se; phosphate added in NPK could also be in part responsible of the mobilisation caused in As. Therefore, the application of soil amendments in mine soils may be particularly problematic in flooded systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Oso, Oladele A; Sobayo, Richard; Jegede, Vincent; Fafiolu, Adeboye; Iyasere, Oluwaseun Serah; Dele, Peter; Bamgbose, Adeyemi; Cecilia, Adesida
2011-06-01
Growth response, nutrient digestibility and cecal microflora of 80 male, mixed breed weaner rabbits fed with varying dietary inclusions of sorghum milling waste (SMW) was investigated. Four experimental diets were formulated such that SMW was included at 0 (control), 100, 200 and 300 g/kg, respectively. Each dietary treatment was performed on 20 rabbits. Feed intake increased (P < 0.05) while final live weight and feed conversion ratio of rabbits decreased (P < 0.05) following increased dietary inclusion of SMW. Rabbits fed with 100 and 200 g/kg SMW had similar feed conversion ratios, weight gain, crude fiber, dry matter and crude protein digestibility values. Rabbits fed with 300 g/kg SMW recorded the lowest (P < 0.05) hot carcass weight, dressing percentage and rack weight. Similar dressing percentage and rack weight were recorded for rabbits fed with control diet, 100 and 200 g/kg SMW. The weight of cecal content increased (P < 0.05) with increased dietary inclusion levels of SMW. Rabbits fed with 300 g/kg SMW recorded the lowest (P < 0.05) coliform and lactobaccillus counts. Dietary inclusion of up to 200 g/kg SMW supported improved growth response and carcass yield without imposing any detrimental effect on cecal microflora. © 2011 The Authors; Animal Science Journal © 2011 Japanese Society of Animal Science.
Pannalal, S.J.; Symons, David T. A.; Leach, D.L.
2007-01-01
Zinc-lead mineralization in the Metaline mining district of northeastern Washington, USA, is hosted by the Cambrian Metaline Formation and is classified into Yellowhead-type (YO) and Josephine-type (JO) ore based on texture and mineralogy. Paleomagnetic results are reported for four Cambrian Metaline Formation sites, one Ordovician Ledbetter slate site, 12 YO and 13 JO (including two breccia sites) mineralization sites in the Pend Oreille Mine, and eight sites from the nearby Cretaceous Kaniksu granite batholith. Thermal and alternating field step demagnetization, saturation isothermal remanence analysis, and synthetic specimen tests show that the remanence in the host carbonates and Zn-Pb mineralization is carried mostly by pseudosingle (PSD) to single domain (SD) pyrrhotite and mostly by PSD to SD magnetite in the Kaniksu granite. Based on thermomagnetic measurements, sphalerite and galena concentrates and tailings from the mine's mill contain hexagonal and monoclimc pyrrhotite. The postfolding characteristic remanent magnetization (ChRM), known thermal data, and paleoarc method of dating suggest that the Zn-Pb mineralization carries a primary chemical remanent magnetization (CRM), and Metaline Formation carbonates a secondary CRM that were acquired during the Middle Jurassic (166 ??6 Ma) during the waning stages of the Nevadan orogeny. A paleomagnetic breccia test favours a solution-collapse origin for the Josephine breccia. Finally, the Kaniksu paleopole is concordant with the North American Cretaceous reference paleopole, suggesting the Kootenay terrane has not been rotated since emplacement of the batholith at ???94 Ma. ?? 2007 NRC Canada.
Fawcett, Skya E.; Jamieson, Heather E.; Nordstrom, D. Kirk; McCleskey, R. Blaine
2015-01-01
Elevated levels of arsenic (As) and antimony (Sb) in water and sediments are legacy residues found downstream from gold-mining activities at the Giant Mine in Yellowknife, Northwest Territories (NWT), Canada. To track the transport and fate of As and Sb, samples of mine-waste from the mill, and surface water, sediment, pore-water, and vegetation downstream of the mine were collected. Mine waste, pore-water, and sediment samples were analyzed for bulk chemistry, and aqueous and solid-state speciation. Sediment and vegetation chemistry were evaluated using scanning electron microscope imaging, synchrotron-based element mapping and electron microprobe analysis. The distributions of As and Sb in sediments were similar, yet their distributions in the corresponding pore-waters were mostly dissimilar, and the mobility of As was greater than that of Sb. Competition for sorption sites is the most likely cause of elevated Sb concentrations in relatively oxidized pore-water and surface water. The aqueous and solid-state speciation of As and Sb also differed. In pore-water, As(V) dominated in oxidizing environments and As(III) in reducing environments. In contrast, the Sb(V) species dominated in all but one pore-water sample, even under reducing conditions. Antimony(III) appears to preferentially precipitate or adsorb onto sulfides as evidenced by the prevalence of an Sb(III)-S secondary solid-phase and the lack of Sb(III)(aq) in the deeper zones. The As(V)–O solid phase became depleted with depth below the sediment–water interface, and the Sb(V)–O phase persisted under relatively reducing conditions. In the surficial zone at a site populated by Equisetum fluviatile (common horsetail), As and Sb were associated with organic material and appeared mobile in the root zone. In the zone below active plant growth, As and Sb were associated primarily with inorganic phases suggesting a release and reprecipitation of these elements upon plant death. The co-existence of reduced and oxidized As and Sb species, instability of some phases under changing redox conditions, and plant uptake and release pose challenges for remediation efforts at the mine.
Goulet, Richard R; Thompson, Patsy-A
2018-05-26
Uranium mining and milling release arsenic (As), nickel (Ni) and uranium (U) to receiving waters, which accumulate in sediments. The objective of this study was to investigate if As, Ni and U concentrations in tissue residue of Hyalella azteca, overlying water, sediment pore water and solids could predict juvenile and adult survival and growth in similar conditions to lake sediments downstream of Uranium mines and mills. We conducted 14 day, static sediment toxicity tests spiked with uranium, arsenic and nickel salts. For uranium, we spiked uranyl nitrate with sodium bicarbonate to limit U precipitation once in contact with circumneutral sediment. LC 50 for As, Ni and U of juveniles and adults based on measured concentrations in sediments were 1.8 and 2.2 µmol As/g dw, 6.3 and 13.4 µmol Ni/g dw and 0.2 and 0.9 µmol U/g dw, respectively. Adult survival and growth linearly decreased with increasing bioaccumulation. For juveniles, metal accumulation linearly predicted survival. We calculated lethal body concentrations (LBC 50 ) for juveniles and adults of 70 and 485 nmol As/g dw, 246 and 832 nmol Ni/g dw and 1.7 and 4.4 nmol U/g dw, respectively. The concentrations of As, Ni and U in tissue residue leading to a 20% decrease in growth were 427 nmol As/g, 755 nmol Ni/g and 5 nmol U/g. Overall, this study showed that Uranium was the most toxic element followed by As and Ni, that juveniles were more sensitive to the three metals tested than adults and that threshold body concentrations can support assessment of benthic invertebrate community impairment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
U.S. metric board 1979 survey of selected large U.S. firms and industries
NASA Astrophysics Data System (ADS)
King, L. L.
1980-05-01
A mail survey of randomly chosen 202 of the 1000 largest manufacturing and mining firms, as listed by Fortune magazine, was conducted in late 1979 and early 1980. About 64 percent (112 firms) responded with useful data. Among the findings are: about 63 percent of the largest firms produce at least one metric product; about 48 percent of exported sales are of metric products; about three quarters of the firms selling metric products sell products labelled in customary and metric units (soft conversion); about half the firms selling metric products sell hard converted products (products manufactured in metric units); little corporate coordination and planning seems to accompany conversion to the metric system; about one-third of the firms see laws and reputation impeding conversion; over 50 percent see lack of customer demand as inhibiting conversion; and the most realistic time period for conversion is 10 years, the minimum time for conversion (under pressure) is three years, and the perferred time (at the firm's own pace) is eight years.
Langer, William H.; Van Gosen, Bradley S.; Meeker, Gregory P.; Adams, David T.; Hoefen, Todd M.
2011-01-01
Mining operations began at a world-class vermiculite deposit at Vermiculite Mountain near Libby, Montana, circa 1920 and ended in 1990. Fibrous and asbestiform amphiboles intergrown with vermiculite ore are suspected to be a causative factor in an abnormally high number of cases of respiratory diseases in former mine and mill workers, and in residents of Libby. The question addressed in this report is whether some of the amphibole from Vermiculite Mountain could have been dispersed by Pleistocene glacial processes rather than by human activity after vermiculite mining began. The history of Pinedale glaciation in the Libby area provides a framework for estimating the presence and distribution of asbestiform amphiboles derived from Vermiculite Mountain and found in naturally occurring sediments of Glacial Lake Kootenai that underlie the Libby Valley area. There were two situations where sediments derived from Vermiculite Mountain were deposited into Glacial Lake Kootenai: (1) as lake-bottom sediments derived from meltwater flowing down Rainy Creek when the valley south of Vermiculite Mountain was free of ice but active ice still covered Vermiculite Mountain; and (2) as lake-bottom sediments eroded from the Rainy Creek outwash and re-deposited during a re-advance of the Purcell Trench Glacier lobe near Moyie Springs, Idaho.
Geometallurgy of ironsand from the Waikato North Head deposit, New Zealand
Mauk, Jeffrey L.; Cocker, Helen A; Rogers, Harold; Ogiliev, Jamie; Padya, Alex B
2016-01-01
The Waikato North Head deposit produces a magnetic mineral concentrate from Quaternary sands that formed in a coastal setting in the North Island of New Zealand. Detailed examination of the magnetic mineral fraction of the different stratigraphic horizons mined at Waikato North Head shows that the youngest units yield concentrates with significant concentrations of gangue minerals that are included as composite grains, inclusions in titanomagnetite, and as gangue grains with titanomagnetite inclusions. The most abundant gangue minerals in the magnetic fractions of all mined units are pyroxene and amphibole; feldspar, quartz, and biotite are less abundant. The magnetic minerals, which are predominantly titanomagnetite, are used as feed for the Iron Plant in New Zealand Steel’s Glenbrook Steel Mill. From time to time, excessive accretion formation impacts the operation of the rotary reduction kilns of the Iron Plant. Olivine group minerals are the most common silicate phase in these accretions, and we hypothesise that the silicon and magnesium in these minerals are derived from the gangue minerals that are included in the magnetic mineral concentrate from the ironsands. Although various remediation processes are possible, the simplest and most cost effective would appear to be ensuring adequate blending of material from different stratigraphic units, particularly when the youngest strata are being mined in the deposit.
A comprehensive review on privacy preserving data mining.
Aldeen, Yousra Abdul Alsahib S; Salleh, Mazleena; Razzaque, Mohammad Abdur
2015-01-01
Preservation of privacy in data mining has emerged as an absolute prerequisite for exchanging confidential information in terms of data analysis, validation, and publishing. Ever-escalating internet phishing posed severe threat on widespread propagation of sensitive information over the web. Conversely, the dubious feelings and contentions mediated unwillingness of various information providers towards the reliability protection of data from disclosure often results utter rejection in data sharing or incorrect information sharing. This article provides a panoramic overview on new perspective and systematic interpretation of a list published literatures via their meticulous organization in subcategories. The fundamental notions of the existing privacy preserving data mining methods, their merits, and shortcomings are presented. The current privacy preserving data mining techniques are classified based on distortion, association rule, hide association rule, taxonomy, clustering, associative classification, outsourced data mining, distributed, and k-anonymity, where their notable advantages and disadvantages are emphasized. This careful scrutiny reveals the past development, present research challenges, future trends, the gaps and weaknesses. Further significant enhancements for more robust privacy protection and preservation are affirmed to be mandatory.
The Conversion and Sustainable Use of Alumina Refinery Residues: Global Solution Examples
NASA Astrophysics Data System (ADS)
Fergusson, Lee
This paper introduces current industry best practice for the conversion of alumina refinery residues (or "red mud") from hazardous waste to benign, inert material. The paper will examine four neutralization methods and Basecon Technology, a sustainable conversion process. The paper will consider ways through which this converted material can be combined and processed for sustainable applications in the treatment of hazardous waste streams (such as industrial wastewater and sludges, biosolids, and CCA wastes), contaminated brownfield sites, and mine site wastes. Recent discoveries and applications, such as the successful treatment of high levels of radium in drinking water in the USA, will also be discussed. Examples of global solutions and their technical merits will be assessed.
Mercury contamination in chile: a chronicle of a problem foretold.
Barrios-Guerra, Carlos A
2004-01-01
This review analyzes the effects of environmental mercury contamination in Chile. This contamination generates one of the most important environmental conflicts in the country in that it affects air, ground, and water (rivers and oceans), which are fundamental in maintaining natural biotic equilibrium and at the same time important for the nation's economy. Chile possesses extraordinarily wealthy mining resources between Regions I and IV that have developed into an extraction industry essential for the economy of the country. However, waste discharges from this production have created an environmental problem in that the majority of the mines are located in the Andes mountain range, or areas close by, and the water used in the extraction process is deposited into the rivers, significantly increasing the amount of chemical contamination. Therefore, the cities and downstream waters used in agriculture suffer the negative consequences of a natural resource that is becoming more and more scarce. In addition, minerals released from mills into the atmosphere are deposited onto the soil, drastically affecting the biological resources of these areas. One of these affected areas is the Metropolitan region, where one of the highest contamination levels of mercury in the country was found in one of its affluents due to industrial and domestic waste discharge. In a country that is only 200 km in width, the gathering of all these contaminants in the rivers results in a rapid flow to the ocean, thereby contaminating coastal waters and the biota. In general, this contamination has been detected in semiclosed bodies of water (bays). Between Regions VII and IX, the principal sources of mercury contamination are related to cellulose industrial sites (Regions VII and VIII) and, until the 1980s, the bleach-soda industry. The most important industrial and fishing activity is also found in this area. In San Vicente Bay, waste discharges released into the ocean include sewage, industrial residues, residues from fishing and mining industries, hydrocarbons, petrochemical derivatives, oils, and detergents. This combination of chemical assault makes the San Vicente Bay the most contaminated in the country and the area where the majority of mercury contamination studies have been carried out. Between Regions X and XII, mercury contamination is reduced due to decreased release of domestic residues, especially batteries and sanitary waste. Beginning with the decade of the 1990s, Chile made a great effort to decrease contamination through governmental organizations (CONAMA, SERNAGEOMIN, DGA, ECOMIN, SONAMI), nongovernmental organizations (NGOs), universities, government mining industries (CODELCO, ENAMI), and private mining industries (El Indio, La Escondida, La Candelaria, Fachinal, etc). These reduction efforts within the last 10 years exceed $900 million, and in the private mining sector alone more than 1,100 monitoring stations have been installed and more than 100,000 environmental measurements have been carried out each year. Furthermore, an important educational program on the use of mercury has been implemented in the small mining area to decrease contamination to the air, water, and soil. However, the consequences of mercury accumulation are seen in their damaging effects to the rivers that deliver water to crops and cities, in the bays where food is extracted, and in the air of some cities where there exist mills that release chemical substances into the atmosphere.
Methods for Estimating Water Withdrawals for Mining in the United States, 2005
Lovelace, John K.
2009-01-01
The mining water-use category includes groundwater and surface water that is withdrawn and used for nonfuels and fuels mining. Nonfuels mining includes the extraction of ores, stone, sand, and gravel. Fuels mining includes the extraction of coal, petroleum, and natural gas. Water is used for mineral extraction, quarrying, milling, and other operations directly associated with mining activities. For petroleum and natural gas extraction, water often is injected for secondary oil or gas recovery. Estimates of water withdrawals for mining are needed for water planning and management. This report documents methods used to estimate withdrawals of fresh and saline groundwater and surface water for mining during 2005 for each county and county equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands. Fresh and saline groundwater and surface-water withdrawals during 2005 for nonfuels- and coal-mining operations in each county or county equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands were estimated. Fresh and saline groundwater withdrawals for oil and gas operations in counties of six states also were estimated. Water withdrawals for nonfuels and coal mining were estimated by using mine-production data and water-use coefficients. Production data for nonfuels mining included the mine location and weight (in metric tons) of crude ore, rock, or mineral produced at each mine in the United States, Puerto Rico, and the U.S. Virgin Islands during 2004. Production data for coal mining included the weight, in metric tons, of coal produced in each county or county equivalent during 2004. Water-use coefficients for mined commodities were compiled from various sources including published reports and written communications from U.S. Geological Survey National Water-use Information Program (NWUIP) personnel in several states. Water withdrawals for oil and gas extraction were estimated for six States including California, Colorado, Louisiana, New Mexico, Texas, and Wyoming, by using data from State agencies that regulate oil and gas extraction. Total water withdrawals for mining in a county were estimated by summing estimated water withdrawals for nonfuels mining, coal mining, and oil and gas extraction. The results of this study were distributed to NWUIP personnel in each State during 2007. NWUIP personnel were required to submit estimated withdrawals for numerous categories of use in their States to a national compilation team for inclusion in a national report describing water use in the United States during 2005. NWUIP personnel had the option of submitting the estimates determined by using the methods described in this report, a modified version of these estimates, or their own set of estimates or reported data. Estimated withdrawals resulting from the methods described in this report may not be included in the national report; therefore the estimates are not presented herein in order to avoid potential inconsistencies with the national report. Water-use coefficients for specific minerals also are not presented to avoid potential disclosure of confidential production data provided by mining operations to the U.S. Geological Survey.
NASA Astrophysics Data System (ADS)
Farzanegan, A.; Ghalaei, A. Ebtedaei
2015-03-01
The run of mine ore from Aghdarreh gold mine must be comminuted to achieve the desired degree of liberation of gold particles. Currently, comminution circuits include a single-stage crushing using a jaw crusher and a single-stage grinding using a Semi-Autogenous Grinding (SAG) mill in closed circuit with a hydrocyclone package. The gold extraction is done by leaching process using cyanidation method through a series of stirred tanks. In this research, an optimization study of Aghdarreh plant grinding circuit performance was done to lower the product particle size (P80) from 70 μm to approximately 40 μm by maintaining current throughput using modeling and simulation approach. After two sampling campaigns from grinding circuit, particle size distribution data were balanced using NorBal software. The first and second data sets obtained from the two sampling campaigns were used to calibrate necessary models and validate them prior to performing simulation trials using MODSIM software. Computer simulations were performed to assess performance of two proposed new circuit flowsheets. The first proposed flowsheet consists of existing SAG mill circuit and a new proposed ball mill in closed circuit with a new second hydrocyclone package. The second proposed flowsheet consists of existing SAG mill circuit followed by a new proposed ball mill in closed circuit with the existing hydrocyclone package. In all simulations, SAGT, CYCL and MILL models were selected to simulate SAG mill, Hydrocyclone packages and ball mill units. SAGT and MILL models both are based on population balance model of grinding process. CYCL model is based on Plitt's empirical model of classification process in hydrocyclone units. It was shown that P80 can be reduced to about 40 μm and 42 μm for the first and second proposed circuits, respectively. Based on capital and operational costs, it can be concluded that the second proposed circuit is a more suitable option for plant grinding flowsheet modification.
Woody biomass size reduction with selective material orientation
Dooley, James H.; Lanning, David N.; Lanning, Christopher J.
2013-01-01
Roundwood logs from forests and energy plantations must be chipped, ground, or otherwise comminuted into small particles prior to conversion to solid or liquid biofuels. Rotary veneer followed by cross-grain shearing is demonstrated to be a novel and low energy consuming method for primary breakdown of logs into a raw material having high transport and storage density. Processing of high moisture raw logs into 2.5 – 4.2 mm particles prior to drying or conversion consumes less than 20% of the energy required for achieving similar particle size with hammer mills while producing a more uniform particle shape and size. Asmore » a result, energy savings from the proposed method may reduce the comminution cost of woody feedstocks by more than half.« less
Water demands for expanding energy development
Davis, G.H.; Wood, Leonard A.
1974-01-01
Water is used in producing energy for mining and reclamation of mined lands, onsite processing, transportation, refining, and conversion of fuels to other forms of energy. In the East, South, Midwest, and along the seacoasts, most water problems are related to pollution rather than to water supply. West of about the 100th meridian, however, runoff is generally less than potential diversions, and energy industries must compete with other water users. Water demands for extraction of coal, oil shale, uranium, and oil and gas are modest, although large quantities of water are used in secondary recovery operations for oil. The only significant use of water for energy transportation, aside from in-stream navigation use, is for slurry lines. Substantial quantities of water are required in the retorting and the disposal of spent oil shale. The conversion of coal to synthetic gas or oil or to electric power and the generation of electric power with nuclear energy require large quantities of water, mostly for cooling. Withdrawals for cooling of thermal-electric plants is by far the largest category of water use in energy industry, totaling about 170 billion gallons (644 million m3) per day in 1970. Water availability will dictate the location and design of energy-conversion facilities, especially in water deficient areas of the West.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.
2015-06-15
Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validationmore » study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.« less
Heat and electricity from the Sun using parabolic dish collector systems
NASA Technical Reports Server (NTRS)
Truscello, V. C.; Williams, A. N.
1980-01-01
Point focus distributed receiver solar thermal technology for the production of electric power and of industrial process heat is addressed. The thermal power systems project which emphasizes the development of cost effective systems which will accelerate the commercialization and industrialization of plants up to 10 MWe, using parabolic dish collectors is described. The projected size of the isolated load market in the 1990-2000 time period is 300 to 1000 MW/year. Although this market is small in comparison to the grid connected utility market, it is indicated that by assuming only a 20 percent market penetration, up to 10,000 power modules per year would be required to meet this need. At a production rate of 25,000 units/year and assuming no energy storage, levelized bus bar energy costs of 75 mills/kWeh are projected. These numbers are based on what is believed to be a conservative estimate regarding engine-generator conversion efficiency (40 percent) for the 1990 time period. With a more optimistic estimate of efficiency (i.e., 45 percent), the bus bar cost decreases to about 67 mills/kWeh. At very large production rates (400,000 modules/years), the costs decrease to 58 mills/kWeh. Finally, the present status of the technology development effort is discussed.
Off-road truck-related accidents in U.S. mines
Dindarloo, Saeid R.; Pollard, Jonisha P.; Siami-Irdemoosa, Elnaz
2016-01-01
Introduction Off-road trucks are one of the major sources of equipment-related accidents in the U.S. mining industries. A systematic analysis of all off-road truck-related accidents, injuries, and illnesses, which are reported and published by the Mine Safety and Health Administration (MSHA), is expected to provide practical insights for identifying the accident patterns and trends in the available raw database. Therefore, appropriate safety management measures can be administered and implemented based on these accident patterns/trends. Methods A hybrid clustering-classification methodology using K-means clustering and gene expression programming (GEP) is proposed for the analysis of severe and non-severe off-road truck-related injuries at U.S. mines. Using the GEP sub-model, a small subset of the 36 recorded attributes was found to be correlated to the severity level. Results Given the set of specified attributes, the clustering sub-model was able to cluster the accident records into 5 distinct groups. For instance, the first cluster contained accidents related to minerals processing mills and coal preparation plants (91%). More than two-thirds of the victims in this cluster had less than 5 years of job experience. This cluster was associated with the highest percentage of severe injuries (22 severe accidents, 3.4%). Almost 50% of all accidents in this cluster occurred at stone operations. Similarly, the other four clusters were characterized to highlight important patterns that can be used to determine areas of focus for safety initiatives. Conclusions The identified clusters of accidents may play a vital role in the prevention of severe injuries in mining. Further research into the cluster attributes and identified patterns will be necessary to determine how these factors can be mitigated to reduce the risk of severe injuries. Practical application Analyzing injury data using data mining techniques provides some insight into attributes that are associated with high accuracies for predicting injury severity. PMID:27620937
Off-road truck-related accidents in U.S. mines.
Dindarloo, Saeid R; Pollard, Jonisha P; Siami-Irdemoosa, Elnaz
2016-09-01
Off-road trucks are one of the major sources of equipment-related accidents in the U.S. mining industries. A systematic analysis of all off-road truck-related accidents, injuries, and illnesses, which are reported and published by the Mine Safety and Health Administration (MSHA), is expected to provide practical insights for identifying the accident patterns and trends in the available raw database. Therefore, appropriate safety management measures can be administered and implemented based on these accident patterns/trends. A hybrid clustering-classification methodology using K-means clustering and gene expression programming (GEP) is proposed for the analysis of severe and non-severe off-road truck-related injuries at U.S. mines. Using the GEP sub-model, a small subset of the 36 recorded attributes was found to be correlated to the severity level. Given the set of specified attributes, the clustering sub-model was able to cluster the accident records into 5 distinct groups. For instance, the first cluster contained accidents related to minerals processing mills and coal preparation plants (91%). More than two-thirds of the victims in this cluster had less than 5years of job experience. This cluster was associated with the highest percentage of severe injuries (22 severe accidents, 3.4%). Almost 50% of all accidents in this cluster occurred at stone operations. Similarly, the other four clusters were characterized to highlight important patterns that can be used to determine areas of focus for safety initiatives. The identified clusters of accidents may play a vital role in the prevention of severe injuries in mining. Further research into the cluster attributes and identified patterns will be necessary to determine how these factors can be mitigated to reduce the risk of severe injuries. Analyzing injury data using data mining techniques provides some insight into attributes that are associated with high accuracies for predicting injury severity. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.
A 20-KW Wind Energy Conversion System (WECS) at the Marine Corps Air Station, Kaneohe, Hawaii.
1983-01-01
of propellers and that vertical-axis wind turbines would be more efficient. Several turbines such as the Darrieus and gyro-mill, of this type are... wind turbines , wind systems siting, alternate energy systems, remote site power generation. 20 ABSTRACT (Con!,,u,. - r r... .. do I(3 lI - d #,d e...Corps Air Station (MCAS) Kaneohe Bay, Hawaii. The wind turbine generator chosen for the evaluation was a horizontal-axis-propeller- downwind rotor
2013-01-01
Cs0.33WO3 nanoparticles have been prepared successfully by a stirred bead milling process. By grinding micro-sized coarse powder with grinding beads of 50 μm in diameter, the mean hydrodynamic diameter of Cs0.33WO3 powder could be reduced to about 50 nm in 3 h, and a stable aqueous dispersion could be obtained at pH 8 via electrostatic repulsion mechanism. After grinding, the resulting Cs0.33WO3 nanoparticles retained the hexagonal structure and had no significant contaminants from grinding beads. Furthermore, they exhibited a strong characteristic absorption and an excellent photothermal conversion property in the near-infrared (NIR) region, owing to the free electrons or polarons. Also, the NIR absorption and photothermal conversion property became more significant with decreasing particle size or increasing particle concentration. When the concentration of Cs0.33WO3 nanoparticles was 0.08 wt.%, the solution temperature had a significant increase of above 30°C in 10 min under NIR irradiation (808 nm, 2.47 W/cm2). In addition, they had a photothermal conversion efficiency of about 73% and possessed excellent photothermal stability. Such an effective NIR absorption and photothermal conversion nanomaterial not only was useful in the NIR shielding, but also might find great potential in biomedical application. PMID:23379652
Annual report on the AECB research and support program, 1997--1998. Report number INFO-0698
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-31
The AECB-funded extramural Research and Support Program provides access to independent advice, expertise, and information via contracts placed in the private sector and with other agencies and organizations in Canada and elsewhere. This report presents information on the scope of activities in the Program during the year and describes how the Program was managed, organized, and carried out. Information on individual sub-programs is presented in such fields as nuclear reactors, fuel cycle facilities, uranium mines and mills, waste management, dosimetry, health physics, and regulatory process development. A list of individual projects and their expenditures is appended.
Material flows generated by pyromet copper smelting
Goonan, T.G.
2005-01-01
Copper production through smelting generates large volumes of material flows. As copper contained in ore becomes copper contained in concentrate to be fed into the smelting process, it leaves behind an altered landscape, sometimes mine waste, and always mill tailings. Copper concentrate, fluxing materials, fuels, oxygen, recyclables, scrap and water are inputs to the process. Dust (recycled), gases - containing carbon dioxide (CO2) (dissipated) and sulfur dioxide (SO2) (mostly collected, transformed and sold) and slag (discarded or sold) - are among the significant process outputs. This article reports estimates of the flows of these input/output materials for a particular set of smelters studied in some countries.
In many parts of the world, aquatic ecosystems are threatened by hydrological and water quality alterations due to extraction and conversion of natural resources for agriculture, urban development, forestry, mining, transportation, and water resources development. To evaluate the...
Great Basin sagebrush ecosystems
Jeanne C. Chambers
2008-01-01
Sagebrush ecosystems exhibit widespread degradation due to a variety of causes, including invasion by exotic plants, expansion of pinyon and juniper, altered fire regimes, excessive livestock grazing, urbanization and land development, conversion to agriculture, road development and use, mining, and energy development. These ecosystems have been identified as the most...
Mineral commodity profiles: Silver
Butterman, W.C.; Hilliard, Henry E.
2005-01-01
Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the United States, about 30 companies accounted for more than 90 percent of the silver fabricated. The consumption of silver for all fabrication uses is expected to grow slowly through the decade ending in 2010 at about 1.3 percent per year for the world and 2.4 percent per year for the United States. World and U.S. reserves and reserve bases are more than adequate to satisfy the demand for newly mined silver through 2010. The other components of supply will be silver recovered from scrap, silver from industrial stocks, and silver bullion that is sold into the market from commodity exchange and private stocks.
NASA Astrophysics Data System (ADS)
Andarani, Pertiwi; Nugraha, Winardi Dwi; Wieddya
2017-03-01
Indonesia is one of the largest palm oil producers in the world. The total exported crude palm oil (CPO) and its derivatives in 2015 reached about 26.40 million tons or increase at 21% compared to the previous year (2014). However, the further expansion of the CPO production system could potentially have environmental impacts. The objective of this study is to analyze the energy balances and greenhouse gas emissions at mill P, PT X located in Sumatera Island. System analysis approaches was applied to this study and the assessment was focused on a CPO production system in PT XYZ located on the Sumatera Island. The system boundary was determined based on the field study. The data collection consisted of all the input and output energy which involving all input materials (including fertilizers, herbicides, pesticides, water, etc.) and energy consumption (consumption of diesel, electricity, etc.) starting from plantation activities (at the oil palm plantation) to the conversion process (at the palm oil mill). The energy output from biodiesel was 480.46 GJ/ha (2014) and decreased to 450.79 GJ/ha (2015). Surplus energy from biogas was 15.21 GJ/ha (2014) and 13.57 GJ/ha (2015). The NEP was 494.56 GJ/ha and decreased to 317.84 GJ/ha. Meanwhile, the NER decreased from 3.27 (2014) to 3.17 (2015). The NEP in this mill is significantly higher than other related studies of similar palm oil production system in other companies. The emission of the activities in the palm estate increased from 12.50 kgCO2eq/ton FFB to 22.057 kgCO2eq/ton FFB. In the palm oil mill, the emission decreased from 2,509.93 kgCO2eq/ton CPO to 2,057.14 kgCO2eq/ton CPO.
Matrix Intensification Alters Avian Functional Group Composition in Adjacent Rainforest Fragments
Deikumah, Justus P.; McAlpine, Clive A.; Maron, Martine
2013-01-01
Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining. PMID:24058634
Matrix intensification alters avian functional group composition in adjacent rainforest fragments.
Deikumah, Justus P; McAlpine, Clive A; Maron, Martine
2013-01-01
Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.
Energy, environmental and climate assessment with the EPA MARKAL energy system modeling framework
The energy system is comprised of the technologies and fuels that extend from the import or extraction of energy resources (e.g., mines and wells), through the conversion of these resources into useful forms (e.g., electricity and gasoline), to the technologies (e.g., cars, light...
Skills Conversion Project: Chapter 18, Mineral Extraction. Final Report.
ERIC Educational Resources Information Center
National Society of Professional Engineers, Washington, DC.
As part of a federal study conducted for the U.S. Department of Labor, the employment potential for displaced aerospace and defense professionals in the area of mineral extraction was examined. Mining and metallurgical engineering, the classical technical disciplines employed in the mineral extraction industry, are supplied from schools…
Mining Social Media Data for Understanding Students' Learning Experiences
ERIC Educational Resources Information Center
Chen, Xin; Vorvoreanu, Mihaela; Madhavan, Krishna
2014-01-01
Students' informal conversations on social media (e.g., Twitter, Facebook) shed light into their educational experiences--opinions, feelings, and concerns about the learning process. Data from such uninstrumented environments can provide valuable knowledge to inform student learning. Analyzing such data, however, can be challenging. The complexity…
Guittonny-Larchevêque, Marie; Bussière, Bruno; Pednault, Carl
2016-05-01
Tree water uptake relies on well-developed root systems. However, mine wastes can restrict root growth, in particular metalliferous mill tailings, which consist of the finely crushed ore that remains after valuable metals are removed. Thus, water stress could limit plantation success in reclaimed mine lands. This study evaluates the effect of substrates varying in quality (topsoil, overburden, compost and tailings mixture, and tailings alone) and quantity (50- or 20-cm-thick topsoil layer vs. 1-m plantation holes) on root development and water stress exposure of trees planted in low-sulfide mine tailings under boreal conditions. A field experiment was conducted over 2 yr with two tree species: basket willow ( L.) and hybrid poplar ( Moench × A. Henry). Trees developed roots in the tailings underlying the soil treatments despite tailings' low macroporosity. However, almost no root development occurred in tailings underlying a compost and tailings mixture. Because root development and associated water uptake was not limited to the soil, soil volume influenced neither short-term (water potential and instantaneous transpiration) nor long-term (δC) water stress exposure in trees. However, trees were larger and had greater total leaf area when grown in thicker topsoil. Despite a volumetric water content that always remained above permanent wilting point in the tailings colonized by tree roots, measured foliar water potentials at midday were lower than drought thresholds reported for both tested tree species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
20. Raw Material for the Geographic Magazine. The mills of ...
20. Raw Material for the Geographic Magazine. The mills of the Champion International Company which make paper on which the National Geographic Magazine is printed are located in Lawrence, Mass. This picture shows great piles of pulp-wood ready for conversion into paper for the The Geographic. Parts of these wood piles are more than 50 feet high. The cars shown in the picture are on a trestle 21 feet high. The Geographic magazines mailed in a single year, if laid side by side, would reach from Quito, Ecuador, across Colombia and Caribbean, thence across the United States and Canada, through the North Pole, and across Siberia, China, and Siam to Bangkok. It takes 33,000 miles of wrappers to mail one year's edition. It would require a bookshelf more than three and a half miles long to hold all the copies of this month's issue of The Geographic. (p.235.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA
Preparation of powders suitable for conversion to useful .beta.-aluminas
Morgan, Peter E. D.
1982-01-01
A process for forming a precursor powder which, when suitably pressed and sintered forms highly pure, densified .beta.- or .beta."-alumina, comprising the steps of: (1) forming a suspension (or slurry) of Bayer-derived Al(OH).sub.3 in a water-miscible solvent; (2) adding an aqueous solution of a Mg compound, a Li compound, a Na compound or mixtures thereof to the Bayer-derived Al(OH).sub.3 suspension while agitating the mixture formed thereby, to produce a gel; (3) drying the gel at a temperature above the normal boiling point of water to produce a powder material; (4) lightly ball milling and sieving said powder material; and (5) heating the ball-milled and sieved powder material at a temperature of between 350.degree. to 900.degree. C. to form the .beta.- or .beta."-alumina precursor powder. The precursor powder, thus formed, may be subsequently isopressed at a high pressure and sintered at an elevated temperature to produce .beta.- or .beta."-alumina. BACKGROUND OF THE INVENTION
Martini, Daniela; Ciccoritti, Roberto; Nicoletti, Isabella; Nocente, Francesca; Corradini, Danilo; D'Egidio, Maria Grazia; Taddei, Federica
2018-02-01
The aim of this work was to compare the traditional with a non-conventional (i.e. kernel micronisation) durum wheat milling process by monitoring the content of bound, conjugated and free phenolic acids (PAs) and the level of the total antioxidant capacity (TAC) occurring in the durum wheat pasta production chain, from seed to cooked pasta. The traditional transformation processes negatively influenced TAC and PA content (40% and 89% decrease from seed to cooked pasta, respectively), mainly during the milling process (25% and 84% decrease of TAC and PA, respectively), which has been related to the removal of external layers of kernels. Conversely, the micronisation applied on durum wheat kernels allowed to obtain whole-wheat pasta that preserved the seed endowment of antioxidant compounds even in cooked pasta. These results indicate the micronisation as a valuable approach to produce pasta with improved nutritional value and potential health-promoting effects compared to the traditional pasta.
Aoyama, Akihisa; Kurane, Ryuichiro; Matsuura, Akira; Nagai, Kazuo
2015-01-01
An enzyme producing micro-organism, which can directly saccharify rice straw that has only been crushed without undergoing the current acid or alkaline pretreatment, was found. From the homology with the ITS, 28S rDNA sequence, the strain named A592-4B was identified as Penicillium oxalicum. Activities of the A592-4B enzymes and commercial enzyme preparations were compared by Novozymes Cellic CTec2 and Genencore GC220. In the present experimental condition, activity of A592-4B enzymes was 2.6 times higher than that of CTec2 for degrading milled rice straw. Furthermore, even when a quarter amount of A592-4B enzyme was applied to the rice straw, the conversion rate was still higher than that by CTec2. By utilizing A592-4B enzymes, improved lignocellulose degradation yields can be achieved without pre-treatment of the substrates; thus, contributing to cost reduction as well as reducing environmental burden.
NASA Astrophysics Data System (ADS)
Wang, J. S.; Cording, E. J.; Fairhurst, C.; Lesko, K. T.; Nabighian, M.; Silver, L. T.; Tiedje, J. M.; Wierenga, P. J.; Witherspoon, P. A.
2001-12-01
A summary of the Earth Science Workshop, Lead, South Dakota, October 4-7 2001, on the planned development of earth science research at the proposed National Underground Science Laboratory (NUSL) will be presented. The Homestake Mine in South Dakota will cease gold production in 2002. The Mine has been recommended for conversion into a NUSL by a national underground science committee and is the focus of a major (physics) proposal to the National Science Foundation. The Earth Science Workshop, associated with the Conference on Underground Science, was held to discuss the type of studies that could be conducted in the Mine and associated practical aspects such as space and time requirements. Construction of the NUSL (estimated to take approximately five years) will involve a variety of rock mechanics and geotechnical studies necessary for the design and excavation of large test chambers at depth for physics experiments, extension of access drifts, and enlargement and deepening of the Yates shaft. Hundreds of kilometers of drifts over fifty levels will be accessible during this period for geological mapping, mineral sampling, seepage quantification, mine water evaluation, seismic monitoring, and geophysical imaging. The extensive network of drifts and vertical shafts will allow installation of kilometer-scale antenna and seismograph networks for remote sensing. Another possibility is for earth scientists to collaborate with physicists in using cosmic-ray flux distributions for crustal imaging. The Homestake Mine has been in operation for over 125 years and drifts of different ages are accessible for studies of rock alternation, environment tracer migration, and hydrological studies associated with mine dewatering and mine operation. The majority of drifts will probably become inaccessible for sampling within a few years when these are sealed off from the NUSL test chambers. Monitoring equipment installed behind the bulkheads will be designed to last for decades under flooded conditions. The re-flooding process around the NUSL will be assessed carefully before implementation. Preservation of a region with multiple levels below 4,850 ft (connected by sloping ramps) for multi-drift heater tests over a 30-year period is a possibility. These tests could study heat-induced coupled processes with temperature, fluid flow, chemical transport, and mechanical deformation measurements in fractured rocks (which are in igneous and sedimentary units that have been subject to intense folding, and have been uplifted and domed by a nearby granite massif). The space around the NUSL and the access shaft will be open to a depth of 8,000 ft. This will allow long term hydrochemical/geomechanical evaluations and ecological/geomicrobiological studies in these ~2 billion years old metamorphic rocks. Underground access at these depths will facilitate additional drilling and excavation into surrounding intact rocks for multi-disciplinary research during and after the conversion of the Mine.
Seiler, Ralph L.; Lico, Michael S.; Wiemeyer Evers, David C.
2004-01-01
Mercury is one of the most serious contaminants of water, sediment, and biota in Nevada because of its use during 19th century mining activities to recover gold and silver from ores. In 1998, mercury problems were discovered in the Walker River Basin of California and Nevada when blood drawn from three common loons from Walker Lake was analyzed and found to have severely elevated mercury levels. From 1999 to 2001, the U.S. Geological Survey and the U.S. Fish and Wildlife Service collected water, sediment, and biological samples to determine mercury sources, distribution, and potential effects on the Walker River Basin ecosystem. Total-mercury concentrations ranged from 0.62 to 57.11 ng/L in streams from the Walker River system and ranged from 1.02 to 26.8 ng/L in lakes and reservoirs. Total-mercury concentrations in streambed sediment ranged from 1 to 13,600 ng/g, and methylmercury concentrations ranged from 0.07 to 32.1 ng/g. The sediment-effects threshold for mercury for fresh-water invertebrates is 200 ng/g, which was exceeded at nine stream sites in the Walker River Basin. The highest mercury concentrations were in streams with historic mines and milling operations in the watershed. The highest mercury concentration in sediment, 13,600 ng/g, was found in Bodie Creek near Bodie, Calif., a site of extensive gold mining and milling activities during the 19th century. Sediment cores taken from Walker Lake show total-mercury concentrations exceeding 1,000 ng/g at depths greater than 15 cm below lake bottom. The presence of 137Cs above 8 cm in one core indicates that the upper 8 cm was deposited sometime after 1963. The mercury peak at 46 cm in that core, 2,660 ng/g, likely represents the peak of mining and gold extraction in the Bodie and Aurora mining districts between 1870 and 1880. Mercury concentrations in aquatic invertebrates at all sites downstream from mining activities in the Rough Creek watershed, which drains the Bodie and Aurora mining districts, were elevated (range 0.263 to 0.863 ?g/g, dry weight). Mercury concentrations in the Walker Lake tui chub, the most abundant and likely prey for common loons, ranged from approximately 0.09 ?g/g to approximately 0.9 ?g/g (wet weight). Larger tui chub in the lake, which are most likely older, had the highest mercury concentrations. Blood samples from 94 common loons collected at Walker Lake between 1998 and 2001 contained a mean mercury concentration of 2.96 ?g/g (standard deviation 1.72 ?g/g). These levels were substantially higher than those found in more than 1,600 common loons tested across North America. Among the 1,600 common loons, the greatest blood mercury concentration, 9.46 ?g/g, was from a loon at Walker Lake. According to risk assessments for northeastern North America, blood mercury concentrations exceeding 3.0 ?g/g cause behavioral, reproductive, and physiological effects. At least 52 percent of the loons at Walker Lake are at risk for adverse effects from mercury on the basis of their blood-mercury concentrations. The larger loons staging in the spring are the most at risk group. The elevated mercury levels found in tui chub and common loons indicate that there is a potential threat to the well being and reproduction of fish and wildlife that use Walker Lake. Wildlife that use Weber Reservoir may also be at risk because it is the first reservoir downstream from mining activities in the Bodie and Aurora areas and mercury concentrations in sediment were elevated. Additional data on mercury concentrations in top level predators, such as piscivorous fish and birds, are needed to assess public health and other environmental risks.
NASA Technical Reports Server (NTRS)
Ballew, G.
1977-01-01
The ability of Landsat multispectral digital data to differentiate among 62 combinations of rock and alteration types at the Goldfield mining district of Western Nevada was investigated by using statistical techniques of cluster and discriminant analysis. Multivariate discriminant analysis was not effective in classifying each of the 62 groups, with classification results essentially the same whether data of four channels alone or combined with six ratios of channels were used. Bivariate plots of group means revealed a cluster of three groups including mill tailings, basalt and all other rock and alteration types. Automatic hierarchical clustering based on the fourth dimensional Mahalanobis distance between group means of 30 groups having five or more samples was performed. The results of the cluster analysis revealed hierarchies of mill tailings vs. natural materials, basalt vs. non-basalt, highly reflectant rocks vs. other rocks and exclusively unaltered rocks vs. predominantly altered rocks. The hierarchies were used to determine the order in which sets of multiple discriminant analyses were to be performed and the resulting discriminant functions were used to produce a map of geology and alteration which has an overall accuracy of 70 percent for discriminating exclusively altered rocks from predominantly altered rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenholtz, S.H.; Burger, J.A.; Torbert, J.L.
The effects of spoil type, slow-release fertilization, and weed control using glyphosate on the degree of ectomycorrhizal colonization of container-grown white (Pinus strobus L.), loblolly (P. taeda L.), and Virginia (P. virginiana Mill.) pines were studied on two strip mined sites (sandstone vs. siltstone overburden material) in southwestern Virginia. Although some seedlings were successfully colonized at both sites, the number of seedlings colonized and the proportion of short-root colonization per seedling were consistently higher on the sandstone spoil. On both sites, loblolly and Virginia pines had more ectomycorrhizal formation than white pine. Foliar P levels of all three species onmore » the sandstone spoil and of loblolly pine on the siltstone spoil were significantly correlated with ectomycorrhizal development. The degree of ectomycorrhizal formation for any of the species on either spoil was not decreased by slow-release fertilization or glyphosate applications. These results indicate that natural mycorrhizal colonization is compatible with these cultural treatments, and that colonization from indigenous fungal species may be adequate, eliminating the need for artificial inoculation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-05-09
The Cimarron Mining Corporation, an Update 7 National Priorities List site, is located in the southeastern section of Carrizozo, Lincoln County, New Mexico. From 1979 to 1982 the site was operated as a milling operation where precious metals were extracted from crushed iron ore by using either sodium cyanide or potassium cyanide mixed with a metal stripper in a leaching process. Currently the site is inactive; however, drums of sodium/potassium cyanide and solid metal stripping and recovery compounds remain on-site. Preliminary environmental monitoring data indicate chromium, cyanide, lead, and nitrate contamination of on-site groundwater, and cyanide contamination of on-site soil,more » tailings, and wastes. The most likely pathways for contaminant transport to off-site areas appear to be those associated with groundwater and soil. Pathways for human exposure to site-associated contaminants include ingestion of contaminated groundwater and soil and inhalation of contaminated dusts. The site is of potential public health concern because of possible human exposure to site contaminants.« less
Mineral facilities of Africa and the Middle East
Eros, J.M.; Candelario-Quintana, Luissette
2006-01-01
This map displays over 1,500 mineral facilities in Africa and the Middle East. The mineral facilities include mines, plants, mills, or refineries of aluminum, cement, coal, copper, diamond, gold, iron and steel, nickel, platinum-group metals, salt, and silver, among others. The data used in this poster were compiled from multiple sources, including the 2004 USGS Minerals Yearbook (Africa and Middle East volume), Minerals Statistics and Information from the USGS Web site (http://minerals.usgs.gov/minerals/), and data collected by USGS minerals information country specialists. Data reflect the most recent published table of industry structure for each country. Other sources include statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Due to the sensitivity of some energy commodity data, the quality of these data should be evaluated on a country-by-country basis. Additional information and explanation is available from the country specialists. See Table 1 for general information about each mineral facility site including country, location and facility name, facility type, latitude, longitude, mineral commodity, mining method, main operating company, status, capacity, and units.
Mishra, Devi Prasad; Sahu, Patitapaban; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara
2014-02-01
This paper presents a comparative study of (222)Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, (226)Ra and moisture contents on (222)Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10(-3) and 1.03 Bq m(-2) s(-1), respectively. Significant positive linear correlations between (222)Rn emanation rate and the (226)Ra content of ore and tailings were observed. For normalised (226)Ra content, the (222)Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the (226)Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.
Study of microforging of metallic nanoflakes in relation to electronic applications
NASA Astrophysics Data System (ADS)
Kang, Wooseung
This dissertation reports the first systematic study of cold microforging; the conversion of micron scale metal powders to thin flakes by a series of plastically deforming impacts in a ball mill at low temperature. The research focused on processing Fe and Cu flakes with submicron thicknesses (nanoflakes) which are expected to find significant applications in electronics. The principal objectives were to develop a detailed understanding of the underlying materials science of the process, and to characterize the material and processing parameters that maximize the rate at which nanoflakes with a specific aspect ratio (diameter/thickness) can be microforged. A model for microforging was developed using Hertzian impact theory to establish the compressive impact energy (Emf) imparted to a spherical powder particle in a ball-powder-ball impact, and the Coffin-Manson relation for cyclical fatigue to determine the number of plastically deforming impacts it could sustain before fracturing. The rate of microforging in the ball mill was obtained from the product of the impact frequency (f) and the statistical probability of impact (p). Both f and p depend on the number of balls and powders, and the collision velocity (v) and the milling vial volume (V). The parameters Emf, p, v and V are specific to the mill and used to develop scaling laws for transferring the process from small vibratory research mills to large commercial equipment. The empirical parameters required by these models were determined by microforging a few grams of powders in small research mills. The validity of the model was assessed by comparing the time required to microforge several hundred grams of a particular powder in a much larger mill, with that determined by scaling the model equations to account for change in mill parameters. The good agreement obtained provided strong support for the microforging model. SEM microphotos and sieving fractions were used to show that the minimum thicknesses, and maximum aspect ratios of the Fe and Cu nanoflakes that could be produced before fracture, are in the ~0.3 μm-0.5 μm range, and agreed well with those calculated from volume conserving sphere-flake transformations. X-ray diffraction measurements showed that the grain sizes of these powders were ~0.1x their thicknesses, and were little changed by microforging. The magnetic hysteresis and permeabilities of the Fe nanoflakes were in good agreement with those computed from the nanoflake geometries. The results indicate that the model of microforging as a statistical random sequence of plastic deformations can be used to develop a commercial process to support the development of their application potential in electronics.
Conversations among Coal Miners in a Campaign to Promote Hearing Protection
ERIC Educational Resources Information Center
Stephenson, Michael T.; Quick, Brian L.; Witte, Kim; Vaught, Charles; Booth-Butterfield, Steve; Patel, Dhaval
2009-01-01
Although working in a coal mine can diminish one's hearing capabilities by 50%, not until 2000 did federal laws require companies to establish noise standards in order to help prevent hearing loss among their employees. Since then, researchers have worked with safety administrators to develop effective messages promoting hearing protection and…
The 4M compaNy: Make Mine Metric Mystery. Fifth Grade Student Booklet.
ERIC Educational Resources Information Center
Hawaii State Dept. of Education, Honolulu.
This student activity manual for elementary students is designed to teach several concepts related to the metric system and measurement. Included are activities related to length, area, volume, conversion of metric units, and computation skills with decimals (addition, subtraction, and division). Cartoons are used extensively to appeal to student…
Hydrological principles for sustainable management of forest ecosystems
Irena F. Creed; Gabor Z. Sass; Jim M. Buttle; Julia A. Jones
2011-01-01
Forested landscapes around the world are changing as a result of human activities, including forest management, fire suppression, mountaintop mining, conversion of natural forests to plantations, and climate change (Brockerhoff et al., 2008; Cyr et al., 2009; Johnston et al., 2010; Miller et al., 2009; Kelly et al., 2010; Palmer et al., 2010). Forests...
Code of Federal Regulations, 2012 CFR
2012-01-01
... industry titles 211 Oil and gas extraction. 212 Mining (except oil and gas). 213 Support activities for..., Bend, Medford, Umatilla, Multnomah Utah: Salt Lake Idaho: Ada, Canyon, Adams Washington: Spokane, Grant..., Platte, Niobrara, Converse, Natrona, Fremont, Sublette, Lincoln Utah: Beaver, Box Elder, Cache, Carbon...
Code of Federal Regulations, 2010 CFR
2010-01-01
... industry titles 211 Oil and gas extraction. 212 Mining (except oil and gas). 213 Support activities for..., Bend, Medford, Umatilla, Multnomah Utah: Salt Lake Idaho: Ada, Canyon, Adams Washington: Spokane, Grant..., Platte, Niobrara, Converse, Natrona, Fremont, Sublette, Lincoln Utah: Beaver, Box Elder, Cache, Carbon...
Code of Federal Regulations, 2011 CFR
2011-01-01
... industry titles 211 Oil and gas extraction. 212 Mining (except oil and gas). 213 Support activities for..., Bend, Medford, Umatilla, Multnomah Utah: Salt Lake Idaho: Ada, Canyon, Adams Washington: Spokane, Grant..., Platte, Niobrara, Converse, Natrona, Fremont, Sublette, Lincoln Utah: Beaver, Box Elder, Cache, Carbon...
Code of Federal Regulations, 2013 CFR
2013-01-01
... industry titles 211 Oil and gas extraction. 212 Mining (except oil and gas). 213 Support activities for..., Bend, Medford, Umatilla, Multnomah Utah: Salt Lake Idaho: Ada, Canyon, Adams Washington: Spokane, Grant..., Platte, Niobrara, Converse, Natrona, Fremont, Sublette, Lincoln Utah: Beaver, Box Elder, Cache, Carbon...
Code of Federal Regulations, 2014 CFR
2014-01-01
... industry titles 211 Oil and gas extraction. 212 Mining (except oil and gas). 213 Support activities for..., Bend, Medford, Umatilla, Multnomah Utah: Salt Lake Idaho: Ada, Canyon, Adams Washington: Spokane, Grant..., Platte, Niobrara, Converse, Natrona, Fremont, Sublette, Lincoln Utah: Beaver, Box Elder, Cache, Carbon...
Process for converting magnesium fluoride to calcium fluoride
Kreuzmann, A.B.; Palmer, D.A.
1984-12-21
This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.
Pulmonary asbestosis: radiologic-pathologic brief report.
Ahn, C S; Kim, S J; Oh, S J; Park, K J; Kim, H J; Ahn, C M; Kim, H K; Shin, D H; Cho, S H; Yang, K M
1997-10-01
Pulmonary asbestosis is defined as bilateral diffuse interstitial fibrosis of the lungs caused by exposure to asbestos. Many occupations are at risk for asbestos exposure, particularly in the mining, milling, manufacturing, construction, shipbuilding, and automotive industries. Therefore, the prevalence of asbestosis should be fairly widespread. The diagnosis of asbestosis can be made on either clinical or pathological grounds. We recently encountered one case of asbestosis which was confirmed histologically. On HRCT, there was ground-glass opacity with irregular linear shadows, subpleural curvilinear lines and parenchymal bands. Neither plaque nor calcification were noted. The histologic findings observed on open-lung biopsy specimen were well in accord with those in HRCT. Many asbestos-coated bodies were present along with black dust.
NASA Astrophysics Data System (ADS)
Kim, Sangmo; Song, Myoung Geun; Bark, Chung Wung
2018-01-01
Dye-sensitized solar cells (DSSCs) are one of the most promising third generation solar cells that have been extensively researched over the past decade as alternative to silicon-based solar cells, due to their low production cost and high energy-conversion efficiency. In general, a DSSC consists of a transparent electrode, a counter electrode, and an electrolyte such as dye. To achieve high power-conversion efficiency in cells, many research groups have focused their efforts on developing efficient dyes for liquid electrolytes. In this work, we report on the photovoltaic properties of DSSCs fabricated using a mixture of TiO2 with nanosized Fe-doped bismuth lanthanum titanate (nFe-BLT) powder). Firstly, nFe-BLT powders were prepared using a high-energy ball milling process and then, TiO2 and nFe-BLT powders were stoichiometrically blended. Direct current (DC) bias of 20 MV/m was applied to lab-made DSSCs. With the optimal concentration of nFe-BLT doped in the electrode, their light-to-electricity conversion efficiency could be improved by ∼64% compared with DSSCs where no DC bias was applied.
Candeias, Carla; Ávila, Paula F; Ferreira da Silva, Eduardo; Teixeira, João Paulo
2015-03-01
Through the years, mining and beneficiation processes in Panasqueira Sn-W mine (Central Portugal) produced large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments (Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to the formation of acid mine drainage (AMD) and consequently to the contamination of the surrounding environments, particularly soils. The active mine started the exploration during the nineteenth century. This study aims to look at the extension of the soil pollution due to mining activities and tailing erosion by combining data on the degree of soil contamination that allows a better understanding of the dynamics inherent to leaching, transport, and accumulation of some potential toxic elements in soil and their environmental relevance. Soil samples were collected in the surrounding soils of the mine, were digested in aqua regia, and were analyzed for 36 elements by inductively coupled plasma mass spectrometry (ICP-MS). Selected results are that (a) an association of elements like Ag, As, Bi, Cd, Cu, W, and Zn strongly correlated and controlled by the local sulfide mineralization geochemical signature was revealed; (b) the global area discloses significant concentrations of As, Bi, Cd, and W linked to the exchangeable and acid-soluble bearing phases; and (c) wind promotes the mechanical dispersion of the rejected materials, from the milled waste rocks and the mineral processing plant, with subsequent deposition on soils and waters. Arsenic- and sulfide-related heavy metals (such as Cu and Cd) are associated to the fine materials that are transported in suspension by surface waters or associated to the acidic waters, draining these sites and contaminating the local soils. Part of this fraction, especially for As, Cd, and Cu, is temporally retained in solid phases by precipitation of soluble secondary minerals (through the precipitation of hydrated metal sulfates) in warm, dry periods, but such minerals are easily dissolved during rainy periods. Climate is an important instability factor, and the hot and dry summers and cold, rainy, and windy winters in this region are physical phenomena that enhance the good receptivity of these soils to retain some of the metals present in the primary and also the secondary mineralogy. Considering the obtained results from both the sequential chemical extraction and the environmental risk assessment according to the risk assessment code, Ag, Cd, Cu, and Zn are classified with very high risk while As is classified with medium risk.
Lin, Jinru; Sun, Wei; Desmarais, Jacques; Chen, Ning; Feng, Renfei; Zhang, Patrick; Li, Dien; Lieu, Arthur; Tse, John S; Pan, Yuanming
2018-01-01
Phosphogypsum formed from the production of phosphoric acid represents by far the biggest accumulation of gypsum-rich wastes in the world and commonly contains elevated radionuclides, including uranium, as well as other heavy metals and metalloids. Therefore, billions-of-tons of phosphogypsum stockpiled worldwide not only possess serious environmental problems but also represent a potential uranium resource. Gypsum is also a major solid constituent in many other types of radioactive mine tailings, which stems from the common usage of sulfuric acid in extraction processes. Therefore, management and remediation of radioactive mine tailings as well as future beneficiation of uranium from phosphogysum all require detailed knowledge about the nature and behavior of uranium in gypsum. However, little is known about the uptake mechanism or speciation of uranium in gypsum. In this study, synthesis experiments suggest an apparent pH control on the uptake of uranium in gypsum at ambient conditions: increase in U from 16 μg/g at pH = 6.5 to 339 μg/g at pH = 9.5. Uranium L 3 -edge synchrotron X-ray absorption spectroscopic analyses of synthetic gypsum show that uranyl (UO 2 ) 2+ at the Ca site is the dominant species. The EXAFS fitting results also indicate that uranyl in synthetic gypsum occurs most likely as carbonate complexes and yields an average U-O distance ∼0.25 Å shorter than the average Ca-O distance, signifying a marked local structural distortion. Applications to phosphogypsum from the New Wales phosphoric acid plant (Florida, USA) and uranium mine tailings from the Key Lake mill (Saskatchewan, Canada) show that gypsum is an important carrier of uranium over a wide range of pH and controls the fate of this radionuclide in mine tailings. Also, development of new technologies for recovering U from phosphogypsum in the future must consider lattice-bound uranyl in gypsum. Copyright © 2017 Elsevier Ltd. All rights reserved.
Traditional knowledge for sustainable forest management and provision of ecosystem services
John Parrotta; Yeo-Chang Youn; Leni D. Camacho
2016-01-01
Forests, and the people who depend on them, are under enormous pressure worldwide. Deforestation in many parts of the world continues at an alarming pace, the result of agricultural conversion for food and industrial crops such as oil palm, livestock production, mining, and energy and industrial infrastructure development. Forest degradation is even more widespread,...
The 4M companY: Make Mine Metric Mission! Sixth Grade Teacher's Guide.
ERIC Educational Resources Information Center
Hawaii State Dept. of Education, Honolulu.
This is one of several teacher's guides for the 4M Company, a set of materials for teaching metric concepts and computation skills to elementary school students. Included in the guide are sections on needed materials, metric symbols, length, perimeter, area, volume, capacity, mass (weight), decimals, conversion between metric units, temperature,…
BioCreative Workshops for DOE Genome Sciences: Text Mining for Metagenomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Cathy H.; Hirschman, Lynette
The objective of this project was to host BioCreative workshops to define and develop text mining tasks to meet the needs of the Genome Sciences community, focusing on metadata information extraction in metagenomics. Following the successful introduction of metagenomics at the BioCreative IV workshop, members of the metagenomics community and BioCreative communities continued discussion to identify candidate topics for a BioCreative metagenomics track for BioCreative V. Of particular interest was the capture of environmental and isolation source information from text. The outcome was to form a “community of interest” around work on the interactive EXTRACT system, which supported interactive taggingmore » of environmental and species data. This experiment is included in the BioCreative V virtual issue of Database. In addition, there was broad participation by members of the metagenomics community in the panels held at BioCreative V, leading to valuable exchanges between the text mining developers and members of the metagenomics research community. These exchanges are reflected in a number of the overview and perspective pieces also being captured in the BioCreative V virtual issue. Overall, this conversation has exposed the metagenomics researchers to the possibilities of text mining, and educated the text mining developers to the specific needs of the metagenomics community.« less
Houben, Adam James; D’Onofrio, Rebecca; Kokelj, Steven V; Blais, Jules M
2016-01-01
Gold mines in the Yellowknife, NT, region—in particular, the Giant Mine—operated from 1949–99, releasing 237,000 tonnes of waste arsenic trioxide (As2O3) dust, among other compounds, from gold ore extraction and roasting processes. For the first time, we show the geospatial distribution of roaster-derived emissions of several chemical species beyond the mine property on otherwise undisturbed taiga shield lakes within a 25 km radius of the mine, 11 years after its closing. Additionally, we demonstrate that underlying bedrock is not a significant source for the elevated concentrations in overlying surface waters. Aquatic arsenic (As) concentrations are well above guidelines for drinking water (10 μg/L) and protection for aquatic life (5 μg/L), ranging up to 136 μg/L in lakes within 4 km from the mine, to 2.0 μg/L in lakes 24 km away. High conversion ratios of methyl mercury were shown in lakes near the roaster stack as well, with MeHg concentrations reaching 44% of total mercury. The risk of elevated exposures by these metals is significant, as many lakes used for recreation and fishing near the City of Yellowknife are within this radius of elevated As and methyl Hg concentrations. PMID:27050658
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-31
The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resourcesmore » (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, C.W.; Chander, S.; Gutterman, C.
Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than didmore » relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.« less
Assessing mechanical deconstruction of softwood cell wall for cellulosic biofuels production
NASA Astrophysics Data System (ADS)
Jiang, Jinxue
Mechanical deconstruction offers a promising strategy to overcome biomass recalcitrance for facilitating enzymatic hydrolysis of pretreated substrates with zero chemicals input and presence of inhibitors. The goal of this dissertation research is to gain a more fundamental understanding on the impact of mechanical pretreatment on generating digestible micronized-wood and how the physicochemical characteristics influence the subsequent enzymatic hydrolysis of micronized wood. The initial moisture content of feedstock was found to be the key factor affecting the development of physical features and enzymatic hydrolysis of micronized wood. Lower moisture content resulted in much rounder particles with lower crystallinity, while higher moisture content resulted in the milled particles with larger aspect ratio and crystallinity. The enzymatic hydrolysis of micronized wood was improved as collectively increasing surface area (i.e., reducing particle size and aspect ratio) and decreasing crystallinity during mechanical milling pretreatment. Energy efficiency analysis demonstrated that low-moisture content feedstock with multi-step milling process would contribute to cost-effectiveness of mechanical pretreatment for achieving more than 70% of total sugars conversion. In the early stage of mechanical pretreatment, the types of cell fractures were distinguished by the initial moisture contents of wood, leading to interwall fracture at the middle lamella region for low moisture content samples and intrawall fracture at the inner cell wall for high moisture content samples. The changes in cell wall fractures also resulted in difference in the distribution of surface chemical composition and energy required for milling process. In an effort to exploit the underlying mechanism associated with the reduced recalcitrance in micronized wood, we reported the increased enzymatic sugar yield and correspondingly structural and accessible properties of micronized feedstock. Electronic microscopy analysis detailed the structural alternation of cell wall during mechanical process, including cell fracture and delamination, ultrastructure disintegration, and cell wall fragments amorphization, as coincident with the particle size reduction. It was confirmed with Simons' staining that longer milling time resulted in increased substrate accessibility and porosity. The changes in cellulose molecular structure with respect to degree of polymerization (DP) and crystallinity index (CrI) also benefited to decreasing recalcitrance and facilitating enzymatic hydrolysis of micronized wood.
Paoli, Luca; Winkler, Aldo; Guttová, Anna; Sagnotti, Leonardo; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Loppi, Stefano
2017-05-01
The content of selected elements (Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Ti, V and Zn) was measured in samples of the lichen Evernia prunastri exposed for 30, 90 and 180 days around a cement mill, limestone and basalt quarries and urban and agricultural areas in SW Slovakia. Lichens transplanted around the investigated quarries and the cement mill rapidly (30 days) reflected the deposition of dust-associated elements, namely Ca (at the cement mill and the limestone quarry) and Fe, Ti and V (around the cement mill and the basalt quarry), and their content remained significantly higher throughout the whole period (30-180 days) with respect to the surrounding environment. Airborne pollutants (such as S) progressively increased in the study area from 30 to 180 days. The magnetic properties of lichen transplants exposed for 180 days have been characterized and compared with those of native lichens (Xanthoria parietina) and neighbouring bark, soil and rock samples, in order to test the suitability of native and transplanted samples as air pollution magnetic biomonitors. The magnetic mineralogy was homogeneous in all samples, with the exception of the samples from the basalt quarry. The transplants showed excellent correlations between the saturation remanent magnetization (Mrs) and the content of Fe. Native samples had a similar magnetic signature, but the values of the concentration-dependent magnetic parameters were up to two orders of magnitude higher, reflecting higher concentrations of magnetic particles. The concentrations of As, Ca and Cr in lichens correlated with Mrs values after neglecting the samples from the basalt quarry, which showed distinct magnetic properties, suggesting the cement mill as a likely source. Conversely, Ti and Mn were mostly (but not exclusively) associated with dust from the basalt quarry. It is suggested that the natural geological characteristics of the substrate may strongly affect the magnetic properties of lichen thalli. Taking this into account, the results of this study point out the suitability of lichens as air pollution magnetic biomonitors.
NASA Technical Reports Server (NTRS)
1981-01-01
The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.
Goddard, K.E.
1989-01-01
The Whitewood Creek-Belle Fourche-Cheyenne River stream system in western South Dakota has been extensively contaminated by the discharge to Whitewood Creek of about 100 million tons of mill tailings from gold-mining operations. The resulting contaminated sediments contain unusually large concentrations of arsenic, as much as 11,000 micrograms/g, derived from the mineral arsenopyrite, as well as potentially toxic constituents derived from the ore-body minerals or from the milling processes. Because of the anomalous arsenic concentrations associated with the contamination, arsenic was used as an indicator for a geochemically based, random, sediment-sampling program. Arsenic concentrations in shallow, contaminated sediments along the flood plains of the streams were from 1 to 3 orders of magnitude larger than arsenic concentrations in uncontaminated sediments in about 75% of the flood plains of Whitewood Creek and the Belle Fourche River. Appreciable surface-water contamination resulting from the contaminated sediments is confined to Whitewood Creek and a reach of the Belle Fourche River downstream from the mouth of Whitewood Creek. In Whitewood Creek , dissolved-arsenic concentrations vary from about 20 to 80 microgram/L during the year in response to variations in groundwater inflow and dilution, whereas total-recoverable-arsenic concentrations vary from about 20 to 8 ,000 micrograms/L during short periods in response to rapid changes in suspended-sediment concentration. Contamination of the alluvial aquifer along the stream system is limited to areas in direct contact with large deposits of contaminated sediments. Within the aquifer, arsenic concentrations are thought to be controlled by sorption-desorption on metallic hydroxides. (USGS)
Öztürk, Ayşe; Cimrin, Arif Hikmet; Tür, Mahmut; Güven, Rana
2012-01-01
Problems in legal definition and diagnosis of occupational diseases in Turkey makes the diagnosis of these diseases and informing the parties important. For this purpose, this study was planned to elicit the frequency of silicosis in quartz mill workers in Cine which is one of the largest quartz and feldspat areas, and to detect the working conditions, to inform the workers to improve the working conditions. The aim was to evaluate 592 workers in 10 quartz mill and mines around Cine in 2004. A structured questionnaire including personal information and work-related questions was applied. Standards chest X-rays taken in the last six months were evaluated according to International Labour Organization (ILO) 1980 standards. Dust concentration and respirable dust concentration in the work place were measured in enterprises. The mean age of the workers was 31.8 ± 8.26 years and 71.7% was smoker. Duration of working was ≤ 5 years in 80.5% and ≥ 10 years in only 4.2%. According to the results of dust measurements, threshold value was found to be exceeded in chopping, packaging and bagging parts of three workplaces. Frequency of silicosis was calculated to be 23.7%. Frequency of pneumoconiosis was found to be high like previous studies carried out in similar workplaces in this study. Although it was impossible to put forward the cumulative effect of dust exposure because of frequent altering in workplace, the high frequency of working in similar workplaces among the cases supported the significant risk of silicosis in these enterprises. The workplaces were observed after the workers and persons responsible from occupational health and safety.
Gaidajis, George
2003-01-01
To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.
Green plants as solar energy converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
A survey covers the potential of energy production from biomass and solid wastes; various processes for the combustion of wastes, such as the co-combustion of solid waste and sewage sludge at the St. Paul/Seneca Treatment Plant Sludge Incinerator; various biological processes for the conversion of solid wastes to fuel such as the Institute of Gas Technology 400 l. digestor for the biogasification of municipal solid waste and sewage solids to a methane-rich product gas; the use of industrial wastes for fuel, such as slash and mill residues used as fuel in lumber mills; the biogasification of animal wastes by usingmore » small-scale on-site digesters to produce methane gas for cooking and lighting; energy farming methods, such as growing giant California kelp, sargassum, and plankton as suitable feedstock for the production of methane, fertilizers, and food; problems, such as the possible alteration of the reflectivity of large areas of the earth's surface by rapidly growing plants raised for biomass; and benefits such as the reduction in air, water, and land pollution associated with the use of wastes and biomass grown especially for energy.« less
Applications of imaging spectroscopy data: A case study at Summitville, Colorado
King, Trude V.V.; Clark, Roger N.; Swayze, Gregg A.
2000-01-01
From 1985 through 1992, the Summitville open-pit mine produced gold from lowgrade ore using cyanide heap-leach techniques, a method to extract gold whereby the ore pile is sprayed with water containing cyanide, which dissolves the minute gold grains. Environmental problems due to mining activity at Summitville include significant increases in acidic and metal-rich drainage from the site, leakage of cyanide-bearing solutions from the heap-leach pad into an underdrain system, and several surface leaks of cyanide-bearing solutions into the Wightman Fork of the Alamosa River. In general, drainage from the Summitville mine moves downslope into the Wightman Fork, a small tributary of the Alamosa River, which in turn flows east into the Terrace Reservoir before entering the agricultural lands of the San Luis Valley. The increase in the trace-metal burden of the Alamosa River watershed due to the mining activities at Summitville is of concern to farmers and fisherman, as well as Federal and State of Colorado agencies having responsibility for land stewardship. The environment of the Summitville area is a result of 1) its geologic evolution, that culminated in the formation of precious-metal mineral deposits; and 2) previous metal mining activity. Mining accentuates, accelerates, and pertubates natural geochemical processes. The development of underground workings, open pits, mill tailings, and spoil heaps and the extractive processing of ore enhances the likelihood of releasing chemicals and elements to the surrounding areas and at increased rates relative to unmined areas. Both mined and unmined mineralized areas can produce acid drainage from the formation and movement of highly acidic water rich in heavy metals. This acidic water forms principally through the chemical reaction of oxygenated surface water and shallow subsurface water with rocks that contain sulfide minerals, producing sulphuric acid. Heavy metals can be leached by the acid solution that comes in contact with mineralized rocks, a process that may be enhanced by bacterial action. The resulting fluids may be highly toxic and, when mixed with groundwater, surface water, and soil, may have harmful effects on humans, animals, and plants. Thus, understanding the geologic and hydrologic history of this area is a critical piece of the environmental puzzle in the Summitville area. The Summitville mine operators had ceased active mining and begun environmental remediation, including treatment of the heap-leach pile and installation of a water-treatment facility, when it declared bankruptcy in December 1992 and abandoned the mine site. The U.S. Environmental Protection Agency (EPA) immediately took over the Summitville site under EPA Superfund Emergency Response authority. Summitville has focused public attention on the environmental effects of modern mineral-resource development. Soon after the mine was abandoned, Federal, State, and local agencies, along with Alamosa River water users and private companies, began extensive studies at the mine site and surrounding areas. These studies included analysis of water, soil, livestock and vegetation. The role of the U.S. Geological Survey (USGS) was to provide geologic, hydrologic and agricultural information about the mine and surrounding area and to describe and evaluate the environmental condition of the Summitville mine and the downstream effects of the mine on the San Luis Valley (King 1995).
Microbial transformations of uranium in wastes and implication on its mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki,Y.; Nankawa, T.; Ozaki, T.
2008-09-14
Uranium exists in several chemical forms in mining and mill tailings and in nuclear and weapons production wastes. Under appropriate conditions, microorganisms can affect the stability and mobility of U in wastes by altering the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of U in solution and the bioavailability. Dissolution or immobilization of U is brought about by direct enzymatic action or indirect nonenzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of U have been extensively investigated, we have only limited information on the mechanismsmore » of microbial transformations of various chemical forms of U in the presence of electron donors and acceptors.« less
Van Gosen, B. S.; Lowers, H.A.
2007-01-01
The Iron Hill (Powderhorn) carbonatite complex is a 31-kM2 (12-sq mile) alkalic intrusion located about 35 km (22 miles) south-southwest of Gunnison, CO. The intrusion has been well studied and described because of its classic petrology and architecture ofa carbonatite-alkalic complex. The complex is also noteworthy because it contains enrichments of titanium, rare earth elements, thorium, niobium (columbium), vanadium and deposits of vermiculite and nepheline syenite. In particular, the complex is thought to host the largest titanium and niobium resources in the United States, although neither has been developed. It may be economic to extract multiple resources from this complex with a well-coordinated mine and mill plan.
Multistage variable probability forest volume inventory. [the Defiance Unit of the Navajo Nation
NASA Technical Reports Server (NTRS)
Anderson, J. E. (Principal Investigator)
1979-01-01
An inventory scheme based on the use of computer processed LANDSAT MSS data was developed. Output from the inventory scheme provides an estimate of the standing net saw timber volume of a major timber species on a selected forested area of the Navajo Nation. Such estimates are based on the values of parameters currently used for scaled sawlog conversion to mill output. The multistage variable probability sampling appears capable of producing estimates which compare favorably with those produced using conventional techniques. In addition, the reduction in time, manpower, and overall costs lend it to numerous applications.
Uranium association with iron-bearing phases in mill tailings from Gunnar, Canada.
Othmane, Guillaume; Allard, Thierry; Morin, Guillaume; Sélo, Madeleine; Brest, Jessica; Llorens, Isabelle; Chen, Ning; Bargar, John R; Fayek, Mostafa; Calas, Georges
2013-11-19
The speciation of uranium was studied in the mill tailings of the Gunnar uranium mine (Saskatchewan, Canada), which operated in the 1950s and 1960s. The nature, quantification, and spatial distribution of uranium-bearing phases were investigated by chemical and mineralogical analyses, fission track mapping, electron microscopy, and X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies at the U LIII-edge and Fe K-edge. In addition to uranium-containing phases from the ore, uranium is mostly associated with iron-bearing minerals in all tailing sites. XANES and EXAFS data and transmission electron microscopy analyses of the samples with the highest uranium concentrations (∼400-700 mg kg(-1) of U) demonstrate that uranium primarily occurs as monomeric uranyl ions (UO2(2+)), forming inner-sphere surface complexes bound to ferrihydrite (50-70% of the total U) and to a lesser extent to chlorite (30-40% of the total U). Thus, the stability and mobility of uranium at the Gunnar site are mainly influenced by sorption/desorption processes. In this context, acidic pH or alkaline pH with the presence of UO2(2+)- and/or Fe(3+)-complexing agents (e.g., carbonate) could potentially solubilize U in the tailings pore waters.
NASA Technical Reports Server (NTRS)
Ballew, G.
1977-01-01
The ability of Landsat multispectral digital data to differentiate among 62 combinations of rock and alteration types at the Goldfield mining district of Western Nevada was investigated by using statistical techniques of cluster and discriminant analysis. Multivariate discriminant analysis was not effective in classifying each of the 62 groups, with classification results essentially the same whether data of four channels alone or combined with six ratios of channels were used. Bivariate plots of group means revealed a cluster of three groups including mill tailings, basalt and all other rock and alteration types. Automatic hierarchical clustering based on the fourth dimensional Mahalanobis distance between group means of 30 groups having five or more samples was performed using Johnson's HICLUS program. The results of the cluster analysis revealed hierarchies of mill tailings vs. natural materials, basalt vs. non-basalt, highly reflectant rocks vs. other rocks and exclusively unaltered rocks vs. predominantly altered rocks. The hierarchies were used to determine the order in which sets of multiple discriminant analyses were to be performed and the resulting discriminant functions were used to produce a map of geology and alteration which has an overall accuracy of 70 percent for discriminating exclusively altered rocks from predominantly altered rocks.
14 Conversations about Three Things
ERIC Educational Resources Information Center
Wainer, Howard
2010-01-01
In this essay, the author tries to look forward into the 21st century to divine three things: (i) What skills will researchers in the future need to solve the most pressing problems? (ii) What are some of the most likely candidates to be those problems? and (iii) What are some current areas of research that seem mined out and should not distract…
Granular Material Flows with Interstitial Fluid Effects
NASA Technical Reports Server (NTRS)
Hunt, Melany L.; Brennen, Christopher E.
2004-01-01
The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.
Somerset, Vernon; Petrik, Leslie; Iwuoha, Emmanuel
2005-01-01
Filtrates were collected using a codisposal reaction wherein fly ash was reacted with acid mine drainage. These codisposal filtrates were then analyzed by X-ray Fluorescence spectrometry for quantitative determination of the SiO2 and Al2O3 content. Alkaline hydrothermal zeolite synthesis was then applied to the filtrates to convert the fly ash material into zeolites. The zeolites formed under the experimental conditions were faujasite, sodalite, and zeolite A. The use of the fly ash-derived zeolites and a commercial zeolite was explored in wastewater decontamination experiments as it was applied to acid mine drainage in different dosages. The concentrations of Ni, Zn, Cd, As, and Pb metal ions in the treated wastewater were investigated. The results of the treatment of the acid mine drainage with the prepared fly ash zeolites showed that the concentrations of Ni, Zn, Cd, and Hg were decreased as the zeolite dosages of the fly ash zeolite (FAZ1) increased.
Yosipof, Abraham; Nahum, Oren E; Anderson, Assaf Y; Barad, Hannah-Noa; Zaban, Arie; Senderowitz, Hanoch
2015-06-01
Growth in energy demands, coupled with the need for clean energy, are likely to make solar cells an important part of future energy resources. In particular, cells entirely made of metal oxides (MOs) have the potential to provide clean and affordable energy if their power conversion efficiencies are improved. Such improvements require the development of new MOs which could benefit from combining combinatorial material sciences for producing solar cells libraries with data mining tools to direct synthesis efforts. In this work we developed a data mining workflow and applied it to the analysis of two recently reported solar cell libraries based on Titanium and Copper oxides. Our results demonstrate that QSAR models with good prediction statistics for multiple solar cells properties could be developed and that these models highlight important factors affecting these properties in accord with experimental findings. The resulting models are therefore suitable for designing better solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wołoszczuk, Katarzyna; Skubacz, Krystian
2018-01-01
Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).
NASA Astrophysics Data System (ADS)
Jeschke, Christina; Knöller, Kay; Koschorreck, Matthias; Ussath, Maria; Hoth, Nils
2014-05-01
In Germany, a major share of the energy production is based on the burning of lignite from open cast pit mines. The remediation and re-cultivation of the former mining areas in the Lusatian and Central German lignite mining district is an enormous technical and economical challenge. After mine closures, the surrounding landscapes are threatened by acid mine drainage (AMD), i.e. the acidification and mineralization of rising groundwater with metals and inorganic contaminants. The high content of sulfur (sulfuric acid, sulfate), nitrogen (ammonium) and iron compounds (iron-hydroxides) deteriorates the groundwater quality and decelerates sustainable development of tourism in (former) mining landscapes. Natural biodegradation or attenuation (NA) processes of inorganic contaminants are considered to be a technically low impact and an economically beneficial solution. The investigations of the stable isotope compositions of compounds involved in NA processes helps clarify the dynamics of natural degradation and provides specific informations on retention processes of sulfate and nitrogen-compounds in mine dump water, mine dump sediment, and residual pit lakes. In an active mine dump we investigated zones where the process of bacterial sulfate reduction, as one very important NA process, takes place and how NA can be enhanced by injecting reactive substrates. Stable isotopes signatures of sulfur and nitrogen components were examined and evaluated in concert with hydrogeochemical data. In addition, we delineated the sources of ammonium pollution in mine dump sediments and investigated nitrification by 15N-labeling techniques to calculate the limit of the conversion of harmful ammonium to nitrate in residual mining lakes. Ultimately, we provided an isotope biogeochemical assessment of natural attenuation of sulfate and ammonium at mine dump sites and mining lakes. Also, we estimated the risk potential for water in different compartments of the hydrological system. In laboratory experiments, we tested reactive materials that may speed up the process of bacterial sulfate reduction. In in-situ experiments, we quantified nitrification rates. Based on the results, we are able to suggest promising technical measures that enhance natural attenuation processes at mine dump site and in mining lakes. The natural water cycle in lignite mining landscapes is heavily impacted by human activities. Basically, nature is capable of cleaning itself to a certain extent after mining activities stopped. However, it is our responsibility to support biogeochemical processes to make them more efficient and more sustainable. Isotopic monitoring proved to be an excellent tool for assessing the relevance and performance of different re-cultivation measures for a positive long-term development of the water quality in large-scale aquatic systems affected by the impact of lignite mining.
Cope, Caleb C.; Becker, Mark F.; Andrews, William J.; DeHay, Kelli
2008-01-01
Picher mining district is an abandoned lead and zinc mining area located in Ottawa County, northeastern Oklahoma. During the first half of the 20th century, the area was a primary producer of lead and zinc in the United States. Large accumulations of mine tailings, locally referred to as chat, produce leachate containing cadmium, iron, lead, and zinc that enter drainages within the mining area. Metals also seep to local ground water and streams from unplugged shafts, vent holes, seeps, and abandoned mine dewatering wells. Streamflow measurements were made and water-quality samples were collected and analyzed from two locations in Picher mining district from August 16 to August 29 following a rain event beginning on August 14, 2005, to determine likely concentrations and loads of metals from tailings and mine outflows in the part of Picher mining district near Tar Creek. Locations selected for sampling included a tailings pile with an adjacent mill pond, referred to as the Western location, and a segment of Tar Creek from above the confluence with Lytle Creek to below Douthat bridge, referred to as Tar Creek Study Segment. Measured streamflow was less than 0.01 cubic foot per second at the Western location, with streamflow only being measurable at that site on August 16, 2005. Measured streamflows ranged from <0.01 to 2.62 cubic feet per second at Tar Creek Study Segment. One water-quality sample was collected from runoff at the Western location. Total metals concentrations in that sample were 95.3 micrograms per liter cadmium, 182 micrograms per liter iron, 170 micrograms per liter lead, 1,760 micrograms per liter zinc. Total mean metals concentrations in 29 water-quality samples collected from Tar Creek Study Segment from August 16-29, 2005, were 21.8 micrograms per liter cadmium, 7,924 micrograms per liter iron, 7.68 micrograms per liter lead, and 14,548 micrograms per liter zinc. No metals loading values were calculated for the Western location. Metals loading to Tar Creek Study Segment were calculated based on instantaneous streamflow and metals concentrations. Total metals loading to Tar Creek from chat leachate ranged from 0.062 to 0.212 pound per day of cadmium, <0.001 to 0.814 pound per day of iron, 0.003 to 0.036 pound per day of lead, and 10.6 to 47.9 pounds per day of zinc. Metals loading to Tar Creek Study Segment from chat leachate and mine outflow was determined by subtracting values at appropriate upstream and downstream stations. Four sources of calculated metal loads are from Tar Creek and Lytle Creek entering the study segment, from chat pile leachate, and from old Lytle Creek mine outflow. Less than 1 percent of total and dissolved iron loading came from chat leachate, while about 99 percent of total iron loading came from mine outflow. Total and dissolved lead loading percentages from chat leachate were greater than total and dissolved lead loading percentages from mine outflow. About 19 percent of total zinc loading came from chat leachate, about 29 percent of total zinc loading came from mine outflow, and about 52 percent of total zinc loading came from Lytle Creek.
Salmelin, Johanna; Leppänen, Matti T; Karjalainen, Anna K; Vuori, Kari-Matti; Gerhardt, Almut; Hämäläinen, Heikki
2017-01-01
Mining of sulfide-rich pyritic ores produces acid mine drainage waters and has induced major ecological problems in aquatic ecosystems worldwide. Biomining utilizes microbes to extract metals from the ore, and it has been suggested as a new sustainable way to produce metals. However, little is known of the potential ecotoxicological effects of biomining. In the present study, biomining impacts were assessed using survival and behavioral responses of aquatic macroinvertebrates at in situ exposures in streams. The authors used an impedance conversion technique to measure quantitatively in situ behavioral responses of larvae of the regionally common mayfly, Heptagenia dalecarlica, to discharges from the Talvivaara mine (Sotkamo, Northern Finland), which uses a biomining technique. Behavioral responses measured in 3 mine-impacted streams were compared with those measured in 3 reference streams. In addition, 3-d survival of the mayfly larvae and the oligochaete Lumbriculus variegatus was measured in the study sites. Biomining impacts on stream water quality included increased concentrations of sulfur, sulfate, and metals, especially manganese, cadmium, zinc, sodium, and calcium. Survival of the invertebrates in the short term was not affected by the mine effluents. In contrast, apparent behavioral changes in mayfly larvae were detected, but these responses were not consistent among sites, which may reflect differing natural water chemistry of the study sites. Environ Toxicol Chem 2017;36:147-155. © 2016 SETAC. © 2016 SETAC.
Combining complex networks and data mining: Why and how
NASA Astrophysics Data System (ADS)
Zanin, M.; Papo, D.; Sousa, P. A.; Menasalvas, E.; Nicchi, A.; Kubik, E.; Boccaletti, S.
2016-05-01
The increasing power of computer technology does not dispense with the need to extract meaningful information out of data sets of ever growing size, and indeed typically exacerbates the complexity of this task. To tackle this general problem, two methods have emerged, at chronologically different times, that are now commonly used in the scientific community: data mining and complex network theory. Not only do complex network analysis and data mining share the same general goal, that of extracting information from complex systems to ultimately create a new compact quantifiable representation, but they also often address similar problems too. In the face of that, a surprisingly low number of researchers turn out to resort to both methodologies. One may then be tempted to conclude that these two fields are either largely redundant or totally antithetic. The starting point of this review is that this state of affairs should be put down to contingent rather than conceptual differences, and that these two fields can in fact advantageously be used in a synergistic manner. An overview of both fields is first provided, some fundamental concepts of which are illustrated. A variety of contexts in which complex network theory and data mining have been used in a synergistic manner are then presented. Contexts in which the appropriate integration of complex network metrics can lead to improved classification rates with respect to classical data mining algorithms and, conversely, contexts in which data mining can be used to tackle important issues in complex network theory applications are illustrated. Finally, ways to achieve a tighter integration between complex networks and data mining, and open lines of research are discussed.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Pernia, Denet; Evans, Michael; Fu, Qi; Bissada, Kadry K.; Curiale, Joseph A.; Niles, Paul B.
2014-01-01
Described here is a technique for H isotope analysis of organic compounds pyrolyzed from kerogens isolated from gas- and liquids-rich shales. Application of this technique will progress the understanding of the use of H isotopes not only in potential kerogen occurrences on Mars, but also in terrestrial oil and gas resource plays. H isotope extraction and analyses were carried out utilizing a CDS 5000 Pyroprobe connected to a Thermo Trace GC interfaced with a Thermo MAT 253 IRMS. Also, a split of GC-separated products was sent to a DSQ II quadrupole MS to make qualitative and semi-quantitative compositional measurements of these products. Kerogen samples from five different basins (type II and II-S) were dehydrated (heated to 80 C overnight under vacuum) and analyzed for their H isotope compositions by Pyrolysis-GC-MS-TC-IRMS. This technique takes pyrolysis products separated via GC and reacts them in a high temperature conversion furnace (1450 C), which quantitatively forms H2. Samples ranging from 0.5 to 1.0mg in size, were pyrolyzed at 800 C for 30s. and separated on a Poraplot Q GC column. H isotope data from all kerogen samples typically show enrichment in D from low to high molecular weight. H2O average delta D = -215.2 per mille (V-SMOW), ranging from - 271.8 per mille for the Marcellus Shale to -51.9 per mille for a Polish shale. Higher molecular weight compounds like toluene (C7H8) have an average delta D of -89.7 per mille, ranging from -156.0 per mille for the Barnett Shale to -50.0 per mille for the Monterey Shale. We interpret these data as representative of potential H isotope exchange between hydrocarbons and sediment pore water during basin formation. Since hydrocarbon H isotopes readily exchange with water, these data may provide some useful information on gas-water or oil-water interaction in resource plays, and further as a possible indicator of paleoenvironmental conditions. Alternatively, our data may be an indication of H isotope exchange with water and/or acid during the kerogen isolation process. Either of these interpretations will prove useful when deciphering H isotope data derived from kerogen analyses. Understanding the role that these H-bearing compounds play in terrestrial shale paleo-environmental reconstruction may also prove useful as analogs for understanding the interactions of water and potential kerogen/organic compounds on the planet Mars.
High-Performance Three-Stage Cascade Thermoelectric Devices with 20% Efficiency
NASA Astrophysics Data System (ADS)
Cook, B. A.; Chan, T. E.; Dezsi, G.; Thomas, P.; Koch, C. C.; Poon, J.; Tritt, T.; Venkatasubramanian, R.
2015-06-01
The use of advanced materials has resulted in a significant improvement in thermoelectric device conversion efficiency. Three-stage cascade devices were assembled, consisting of nano-bulk Bi2Te3-based materials on the cold side, PbTe and enhanced TAGS-85 [(AgSbTe2)15(GeTe)85] for the mid-stage, and half-Heusler alloys for the high-temperature top stage. In addition, an area aspect ratio optimization process was applied in order to account for asymmetric thermal transport down the individual n- and p-legs. The n- and p-type chalcogenide alloy materials were prepared by high-energy mechanical ball-milling and/or cryogenic ball-milling of elementary powders, with subsequent consolidation by high-pressure uniaxial hot-pressing. The low-temperature stage materials, nano-bulk Bi2Te3- x Sb x and Bi2Te3- x Se x , exhibit a unique mixture of nanoscale features that leads to an enhanced Seebeck coefficient and reduced lattice thermal conductivity, thereby achieving an average ZT of ~1.26 and ~1.7 in the 27°C to 100°C range for the n-type and p-type materials, respectively. Also, the addition of small amounts of selected rare earth elements has been shown to improve the ZT of TAGS-85 by 25%, compared with conventional or neat TAGS-85, resulting in a ZT = 1.5 at 400°C. The incorporation of these improved materials resulted in a peak device conversion efficiency of ~20% at a temperature difference of 750°C when corrected for radiation heat losses and thermal conduction losses through the lead wires. These high-efficiency results were shown to be reproducible across multiple cascade devices.
Modular femoral component for conversion of previous hip surgery in total hip arthroplasty.
Goldstein, Wayne M; Branson, Jill J
2005-09-01
The conversion of previous hip surgery to total hip arthroplasty creates a durable construct that is anatomically accurate. Most femoral components with either cemented or cementless design have a fixed tapered proximal shape. The proximal femoral anatomy is changed due to previous hip surgery for fixation of an intertrochanteric hip fracture, proximal femoral osteotomy, or a fibular allograft for avascular necrosis. The modular S-ROM (DePuy Orthopaedics Inc., Warsaw, Ind) hip stem accommodates these issues and independently prepares the proximal and distal portion of the femur. In preparation and implantation, the S-ROM hip stem creates less hoop stresses on potentially fragile stress risers from screws and thin bone. The S-ROM hip stem also prepares a previously distorted anatomy by milling through cortical bone that can occlude the femoral medullar canals and recreate proper femoral anteversion and reduces the risk of intraoperative or postoperative periprosthetic fracture due to the flexible titanium-slotted stem. The S-ROM femoral stem is recommended for challenging total hip reconstructions.
Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline; Geiger, Cherie; Clausen, Christian
2013-01-01
Following the 1976 Toxic Substances Control Act ban on their manufacture, PCBs remain an environmental threat. PCBs are known to bio-accumulate and concentrate in fatty tissues. Further complications arise from the potential for contamination of commercial mixtures with other more toxic chlorinated compounds such as polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Until recently, only one option was available for the treatment of PCB-contaminated materials: incineration. This may prove to be more detrimental to the environment than the PCBs themselves due to the potential for formation of PCDDs. Metals have been used for the past ten years for the remediation of halogenated solvents and other contaminants in the environment; however, zero-valent metals alone do not possess the activity required to dehalogenate PCBs. Palladium has been shown to act as an excellent catalyst for the dechlorination of PCBs with active metals. This invention is a method for the production of a palladium/magnesium bimetal capable of dechlorinating PCBs using mechanical milling/mechanical alloying. Other base metals and catalysts may also be alloyed together (e.g., nickel or zinc) to create a similarly functioning catalyst system. Several bimetal catalyst systems currently can be used for processes such as hydrogen peroxide synthesis, oxidation of ethane, selective oxidation, hydrogenation, and production of syngas for further conversion to clean fuels. The processes for making these bimetal catalysts often involve vapor deposition. This technology provides an alternative to vapor deposition that may provide equally active catalysts. A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts. Preferably, the hydrogenation catalyst is a bimetallic particle formed from a zero-valent iron or zero-valent magnesium particle coated with palladium that is impregnated onto a high-surface-area graphite support. The zero-valent metal particles should be microscale or nanoscale zero-valent magnesium or zero-valent iron particles. Other zero-valent metal particles and combinations may be used. Additionally, the base material may be selected from a variety of minerals including, but not limited to, alumina and zeolites. The catalytic metal is preferably selected from the group consisting of noble metals and transition metals, preferably palladium. The mechanical milling process includes milling the base material with a catalytic metal impregnated into a high-surface-area support to form the hydrogenation catalyst. In a preferred mechanical milling process, a zero-valent metal particle is provided as the base material, preferably having a particle size of less than about 10 microns, preferably 0.1 to 10 microns or smaller, prior to milling. The catalytic metal is supported on a conductive carbon support structure prior to milling. For example, palladium may be impregnated on a graphite support. Other support structures such as semiconductive metal oxides may also be used.